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Approximate Robust Control Barrier Functions
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Abstract— This paper presents a safety-critical motion plan-
ning approach for Autonomous Underwater Vehicles (AUVs). To
this end, we formulate a safe Model Predictive Control (MPC)
scheme by leveraging the benefits of MPC with a discrete-time
Control Barrier Function (CBF). To address the truncation
errors associated with the discretized CBF, we then adopt a
Moving Horizon Estimation (MHE) approach to approximate
these errors. To cope with both the model mismatch in the
CBF and unknown external disturbances, we also leverage the
MHE scheme to formulate an approximate Robust CBF (RCBF).
Finally, to demonstrate the efficacy of the proposed safety-critical
robust control scheme, simulation studies are conducted for path
planning of AUVs, and the results confirm the superiority of
the proposed method compared to few other methods.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) have been
employed for various missions such as non-invasive testing
of marine structures or underwater oil/gas pipelines, as well
as ocean exploration [1], to name a few. Motion planning is
an important task in AUV navigation that is critical in finding
a collision-free and feasible path from the initial position to
the target position under certain evaluation criteria such as
optimal path length or minimum energy consumption.

The recent enhancements in computational power and
optimization techniques have provided an opportunity for
Model Predictive Control (MPC) to be used in the maritime
applications with limited onboard computational resources.
MPC is a popular and widely used approach for the optimal
control design. This optimization-based control approach is
often selected due to its capability to handle both input and
state constraints [2]. The MPC-based motion planning offers
significant benefits for the safer operations of constrained
AUVs in complex environments. Previous studies have
explored the inclusion of safety considerations within MPC
framework to ensure that the controlled system operates within
predefined safety boundaries. For example, barrier functions
were utilized to develop a safety-critical MPC with Control
Barrier Functions (CBFs) in [3], [4].

Using CBFs has become popular for synthesizing safety-
critical controllers due to their generality and relative ease of
synthesis and implementation [5]. Barrier functions made their
debut in optimization theory and, and now they are frequently
mentioned in control and verification literature because of
their bond with Lyapunov-like functions, their ability to
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establish safety and avoidance, and their association with
multi-objective control [6], [7]. Although CBF is a popular
tool to achieve provable safety guarantees, designing CBFs
and calculating the corresponding safe control inputs may
be nontrivial in the presence of external disturbances. Safety
criteria within the scope of MPC are commonly expressed
as constraints of the underlying optimization problem, as
demonstrated in previous works [8], [3]. These constraints
encompass factors such as obstacles and actuation limits.
An example of a specific situation where safety criteria are
relevant in robotics is obstacle avoidance [9]. However, they
only restrict the movement of a robot when it is in close
proximity of obstacles. In order to prompt the robot to take
preventive actions even when obstacles are far away, a larger
prediction horizon is typically required. Nevertheless, this
elongated horizon leads to increased computational time
during the optimization process. As a result, there is a
motivation to develop a novel form of predictive controls that
ensures safety within the framework of set invariance. This
approach employs the CBF constraints to confine the robot’s
movement throughout the optimization process [6].

Although CBF-based control design approaches have
emerged as highly effective safety-critical control tools,
the effectiveness of CBFs heavily relies on the precision
and fidelity of the model employed for making the CBF
constraints. To cope with external disturbances in the CBF-
based control design, robust CBF schemes have been recently
proposed [10], [11]. However, proposed robust CBFs in
the literature are formulated in the continuous-time domain
while the control implementation is done in discrete time. To
allow using the continuous-time safety analysis and design a
discrete-time robust CBF in the context of CBF-MPC, in this
work, we propose to tackle the truncation errors due to the
discretization of the continuous-time CBFs using a Moving
Horizon Estimation (MHE) scheme. MHE is an optimization-
based estimator/observer and a simple choice that, combined
with an MPC scheme, works on a horizon window covering
a limited history of past measurements [12]. Moreover, we
leverage the MHE scheme to formulate an approximate robust
CBF (RCBF) in order to cope with both model mismatch in
the CBF and unknown external disturbances.

The paper is structured as follows. A dynamic model of
AUVs used in this work is described in Section II. Section
IIT provides background information on the control barrier
functions. The proposed approximate RCBF is detailed in
Section IV. In Section V, a safe MPC-based motion planning
method is presented, which is formulated using the proposed
MHE-based RCBF. The simulation results and discussions



are given in Section VI. Finally, concluding remarks are made
in Section VIL

II. DESCRIPTION OF THE AUV DYNAMIC MODEL

To provide a dynamic model of an AUV, one can assume
that the pitch and roll motions are intrinsically stable due
to the effect of the buoyancy force. However, we assume
that there is a higher level controller as autopilot to track the
desired roll and pitch angles. Therefore, the 6-DOF platform
can be reduced to the fully actuated 4-DOF model with the
following nonlinear equations [13]:

n=Jnv,
Mo+ C(w)v+Dw)v+g(n)=1+T4

(1a)
(1b)

where n = [z, v, 2, w]T is the position-orientation (yaw angle)
vector, and v = [u,v,w,r]T denotes the velocity vector
for the surge, sway, heave and yaw motions, respectively.
Furthermore, M, C(v), D(v) € R*** are the inertia matrix
(including the effects of added mass), Coriolis-centripetal
matrix and the drag force matrix (hydrodynamic damping),
respectively. The vector of forces and moments induced by the
gravity and buoyancy is labeled by g € R**!. The control
inputs and the external time-varying disturbances (winds,
waves, and ocean currents) are labeled as 7,74 € R**1,
respectively. The transformation matrix between the reference
frames can be represented in Euler angles as

cos(yp) —sin(yp) 0 0O
J(n) = smo(w) coso(z/J) (1) 8 @)
0 0 0 1

Let M = diag {m11, ma2, m33, mqq} be the inertia matrix.
Then, the diagonal terms are my; = m— Xy, mos = m—Y,,
ms3 — Zw» mya = I, — Ny, where m is the total
mass of AUV and I, is the moment of inertia about the yaw
motion. The corresponding hydrodynamic coefficients are
labeled by X, Y,, Z., N,. Then, the Coriolis—centripetal
matrix is expressed as

0 0 0 —(m-=Y,)v
B 0 0 0 (m—Xuu
Clv) = 0 0 0 0
(m—-Y,)v —(m—Xgu 0 0
3
Let D(v) = diag {d11, da2, d33,d44} be the damping matrix.
Then, the diagonal terms are di; = —X,, — X,y |u], doo =

_Yv - Yv\v|v|s d33 - _Zw - Z\w|w|w|s and d44 - _Nr -
Ny |7|. The gravity-buoyancy vector is

0"

where G and B are the gravity and buoyancy forces,
respectively. Then, one can rewrite (1) as

g:[oa()?_(G_B)r (4)

M+ Cm,mn+D@H,nn+gn)=7+74, O
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where
M(n) =J~"MJ " (n), (62)
Cin.m) = J~T [C(0) = M m)d(m)| 77 (), (6b)
D(n n) "D(v)J (), (6¢)
F=JT (6d)
To=J *Trd. (6¢)

In practice, the aforementioned system dynamics includes
uncertain parameters. Let AM, AC, AD, Ag be the uncertain
parts of each parameter matrix or vector. Then, the entire
model of AUV can be rewritten as

Mmui+Cm,mn+D@H,mn+gn)=7+p,

where the perturbation p includes the external time-varying
disturbances 7, and model uncertainties § as

p=7q—J TAMJ ()i
—J7T [AC(w) = AMI ) d(m)] T (i
— J7TAD(v)J " (n) — Ag(n) = T4 — 4.

Let us now define 1 = 1 and x, = 1) as state variables,
and so the concatenated state vector is © = [x1, :cg]T. Then,
the system (7) can be described in control-affine form as

®)

&=f(x)+g@)T+f() ©)
Yy =1
where . _
f=1[22F] .9=[04x4.9". f (@) = [0sx1.d(21)]" and
flx) = M_l(fBl)(— C(x1, x2)m2 — D(21, T2)2 — g),
(10a)
g=M"(z)J T, (10b)
d(z1) = M~ (x1)p. (10c)

III. REVIEW OF CONTROL BARRIER FUNCTIONS

In the context of safety-critical systems, the control barrier
functions (CBFs) are adopted to provide an admissible control
input space for safety assurance of dynamical systems. More
specifically, safety can be formulated in the context of
enforcing invariance of a set, i.e., not leaving a safe set.

A. Continuous-Time CBFs
Let us consider a set C defined as the super-level set of a
continuously differentiable function h : D C R™ — R such
that
C={zeDCR":h(x) >0},
OC={xeDCR":h(x)=0},
Int(C)={x €D CR":h(x) >0},

Y

where JC and Int (C) are the boundary of C and the interior
of C, respectively. We additionally assume that Int (C) # ().
We then refer to C as the safe set so that a CBF certifies
whether a control policy achieves forward invariance of C
by evaluating if the system trajectory remains away from



the boundary of C. Let us consider a nonlinear system in
control-affine form as

&= f(x)+g(r)u

where f : R — R” and g : R® — R"*™ are locally
Lipschitz continuous functions, € R™ and u € R™ are the
system states and control inputs. The closed-loop dynamics
then is

(12)

&= fq(x)=f(2)+9 (@) tra), (13)

where the control policy (feedback controller) 7 : R™ — R™
is locally Lipschitz continuous. Then, one can consider a
maximum interval of existence I (o) = [to,tmax) for any
initial condition @ € D such that x (¢) is the unique solution
to (13) on I (xg). In the case tpmx = oo, the closed-loop
system f is forward complete.

Definition 1. [6] (Forward Invariant) The closed-loop system
(13) is forward invariant w.r.t the set C if for every xg € C,
we have x (t) € C for all t € I (xo).

Definition 2. [6] (Control Barrier Function) Given a dy-
namic system described by (12) and the safe set C with a
continuously differentiable function h : D — R, then h is
a CBF if there exists a class K, function k for all x € D
such that

sup Vh(z)' (f (x)+g(x)u)

h(z,u)

> —r(h(z). (14)

The affine CBF condition then reads as

= Vh(@) (f (@) +g()u) +r(h(2)) = 0.
(1)

CBF (z,u)

However, the affine CBF above assumes the control signal
w is applied to the real system in continuous-time, while in
practice, controllers generate discrete-time signals.

B. Discrete-time CBFs

In this paper, we consider a nonlinear MPC scheme to
control an AUV, where the discrete-time control input signals
delivered from the MPC scheme are defined as

w(T) =ug, V7 E [tr,trr1), (16)

where uj, € U is computed at time instant ¢;, and applied over
the interval [ty, t;11) with the sampling time of T = tg 41—tk
To use a CBF in the MPC scheme, a discrete-time CBF can
be formulated as [3]

Ah(x,up) > —vh(zr), 0<y<1 (17)

However, the discrete-time CBF condition (17) may not hold
in the presence of uncertainties, disturbances and imperfect
safety function h. Moreover, it is not straightforward to
modify the condition above in order to capture a robust
discrete-time CBF, whereas the safety and robustness analysis
can be readily guaranteed in continuous time upon the CBF
condition (14) [14]. To address this issue and formulate a

discrete-time controller, e.g., an MPC scheme with continuous-
time safety guarantees, a discrete-time version of the CBF
condition (15) can be formulated as [15]

CBF (x,,ux) > 0, (18a)
CBF (z,,ug) = (18b)
Vh(@:)" (f (@) + 9 (@) w) + r (h (),
where
f(xr) = f (zx) + wy, (19a)
g (x7) = g (@k) + wy, (19b)
h(x;) = h(xg) + wp, (19¢)
Vh(z:) = Vh(xy) + wwn, (19d)
and the set of possible disturbances wy =

{wy,wy,w, wyp} includes the truncation errors due
to the discretization. A tube-based CBF was proposed in [15]
to robustify the discrete-time CBF condition (18) against
the truncation errors. However, designing an accurate tube
to provide an adequate robustness against the truncation
errors and additional disturbances/model uncertainties is
challenging in particular for the large-scale nonlinear systems
with unknown disturbances. To address this issue and design
an approximate robust discrete-time CBF for AUVs, we then
propose to approximate the augmented disturbances using an
MHE scheme detailed in the next section.

IV. APPROXIMATE ROBUST CBF

Let us define combined disturbances w4, including both
the truncation error and model uncertainty/disturbance, as

Waq = wy+ f,wg, wp, + h,wen + Vh oy, (20

w s W Wy

where f , i~L, Vh are unknown disturbances. Assume that we
do not have access to an accurate model of the real (true)
safety function h, and let h, be an approximation model (an
imperfect model) of the real safety function h. We then have
that @y, () = h(x) — he () and @y, () = Vh(x) —

Vhe ().
Assumption 1. The unknown errors are uniformly bounded
such that

[wn ()| <en(x), |[@Wyn (@) <evn(xz)  (21)

for some ey, (x) : R" — R>¢ and ey, () : R” — Rx,.

Assumption 2. There exists an observer, e.g., an MHE scheme,
to estimate wy,wq, f,evh, €p.

Note that the bounds ey, e;, can be directly obtained from
an exact safety function h. However, we additionally assume
that these bounds are unknown.

Theorem 1. Under Assumptions 1, 2 and considering a linear
Sform of k (h(x;)) = ah(x,), a discrete-time CBF is then
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an approximate robust CBF (RCBF) using an imperfect safety
function h, such that
(Tha (@) (f (@4) + s + (g (@) +wg) ur)  (22)
+ a (hq (1) — €n (xk))
> || f (zr) + Wy + (9 (k) + wg) uk| evn (xk)
and wuy, guarantees that the safe set C is forward invariant.

Proof. Considering the combined disturbances (20) and
substituting (19) in (18), the discrete-time CBF condition
then reads as

(Vha (2x)) " (f (x1) + @5 + (9 (1) + wg)ur)  (23)
+ (@vn (1) (f () + D5 + (g (2n) + wg) ur)
> —k (hqe () + wp) -

To robustify the condition above, the minimum value of the
left-hand side in the inequality (23) must be greater than the
maximum value of the right-hand side for any xj, and any
wp, (X)) and Wy, (@) satisfying (21) in order to ensure that
(18) still holds. We then have that

min
|[Wvr(zr)|<evh(zk)

(Vha (@) (£ (@) +@; @4

+ (9 (@) + wy) w)

+ (@vn (zx) " (f (@1) + @5 + (9 (k) + wy) up)

> max —k (hq (1) + wp, (1))

| D ()| <en(xk)
The minimum value of the left-hand side is then obtained
when Wv, (xy) is in the opposite direction to the gradient of
(f (zr) + w5 + (9 (xx) + wy) ug). Since x is an extended
class K function and ey, (z) > 0, the maximum value of

the right-hand side then reads as —k (hy () — en (k).

The approximate robust discrete-time CBF condition is then
expressed as

N (F (@) + @5 + (g (@) +wg)ug) (25
+ K (ha (.’I)k) — ép (a:k))

> || f (zx) + @y + (9 (z1) + 0g) urll evn (zk) -

(Vhe (z

We then have that

K (ha (zk) — en (zr)) = a (ha (zx) — en (zk)) -

By substituting (26) in (25), the condition (22) is then
obtained. |

(26)

In the present paper, we propose a linear combination of
candidate CBFs. Moreover, we use this parametric CBF in
the context of MPC, where the mapping function & in (26) is
constructed as a polynomial function containing independent
odd-powered safety functions h, (xy), which are candidate
class K functions [16]. This parametric CBF can regulate
how fast the state of the system can approach the boundary
of the safe set C. The approximate RCBF condition (22) then
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reads as

(Vha (@) " (£ (@e) + 5 + (g (@2) +wg)ue) @7

+ (H (z
k) + Wy

k) —en (zr) | o
+ (9 (xk) + wy) ukll evn (xk) ,

>|f(z

where (for p € N)

T

H (@) = [ha(@y), (ha(@)® .. (ha (1))

(28)
To provide an adaptive structure for the parametric CBFs, we

then use MHE scheme to estimate the parameters associated
with the proposed approximate RCBF condition (27).

V. SAFE MPC-BASED MOTION PLANNING

In this section, we formulate the safety-critical MPC
problem using the proposed approximate RCBF (27), where

the parameters d = {Wy,wy, €}, ey, },n=1,..., nes are
estimated by the following MHE scheme
{dk,ﬁ’»‘k—NMHE,...,k,’ftk—NMHE,...,k—1}
= arg min ||mk7_NMHE - ik—NMHE“i
x,u,d
2
T Z ly: —y(@)llg,
i=k— NmuE

- 9 TNebf
+ Z i — |5, + Y L (d) (29a)

i=k— Nyug n=1
st mip1 = fg(x) + ga (z5) ug, (29b)
(Vhi @) (f (@) + @+ (29¢)

(9 (@:) + wg) wi) + (H" (2;) - €, (1)) @
> || f (i) + @5 + (g (@) + wg) wil| ey, (2) ,
evp, (@), e () >0, n=1,... Nt (29d)
where the dynamics f,; and g4 respectively denote the
discrete-time version of f and g, which are discretized using
the fourth-order Runge-Kutta (RK4) method. In the MHE
cost function (29a), the first two terms are the arrival costs
weighted with matrices A, A4, which aim at approximating
the information prior to k— Nyyg, where , d are the available
estimations at time k — Nypng. The measurements available at
the time instant k are u;, y; while their corresponding values
obtained from the MHE model are u; and y (;), respectively.
The cost terms L,,,n = 1,...,nqy are selected as quadratic
functions, e.g., L, (d") = W ' d"W with sufficiently large
weights W in order to capture an accurate magnitude of
the estimated truncation errors/disturbances in the proposed
MHE-bsed RCBF. The estimated parameters and states at the
time instant k£ are then used in the MPC scheme formulated



as
mInJI; Vf(w’f+NMPC) + Fk+NMPc (Gk+NMPc) (30a)
k+Nmpc—1
+ Z l(mi,ui) + I (O'i)
i=k

st. Ty = .fd (.’131) + 94 (I’l) U;, (30b)
T = ﬁ?k, d" = &Z (30C)
T(us) <0, (30d)
P(z;,u;) < 0i, P (@hiNye) < ThrNypes (30€)

Ok, kt+Nupe = 0, (301)
(Vhi @) (f (@) + @5+ (30g)

(9 (@:) + wy) wi) + (H" (@) — € (@) @

> |If (@) + @5 + (9 (@) + wg) will €5, (24) ,
n = 1,...,ncbf

where V/ ,1 are the terminal and the stage cost functions,
respectively. I collects the input inequality constraints while
P/ and P are the mixed terminal and stage inequality
constraints. To guarantee feasibility of the MPC scheme above,
we relax the constraints by introducing the slack variables
o;, which are penalized by using a function of the form
I'; (0;) = w ' o; with sufficiently large weights w.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we examine the performance of the
proposed MHE-based approximate RCBF-MPC for AUVs
motion planning. In this scenario, an AUV aims at arriving
a final destination B from an initial position A while
safely navigating around unsafe zones in the presence of
external disturbances. To model the external disturbances

d = M~'(x1)p, the perturbation terms p = [pl,pg,pg,p4]T
are selected as
p1 = p2 = 20sin (0.08t), ps = 10sin (0.08¢),  (31)

ps=N(0,0%),0=0.1.

The continuous-time dynamics is discretized using an RK4
with a sampling time of 0.05 sec. Both the prediction and
estimation horizons are set to Nypc = Nype = 8. In the
parametric CBF setting, we only consider two odd-powered

O
safety functions as H (xy) = [ha(a:k), (ha(z))?| . and

select & = [1,1]". Each safety function h, is described
by a sphere equation dedicated to each unsafe zone. The
constraints on the control inputs and states are as

—20< 7 <20, —-15<71 <15 —-1<7 <1 (32

- 0.2 <u,v,w <0.2.

The AUV model parameters are selected the same as those in
[13]. As observed in Fig. 1, the magenta path generated by the
MPC-CBF intersects the obstacle 1 as the CBF scheme is not
robust against the truncation errors/disturbances. To compare
the performance of the proposed MHE-based approximate
RCBF with the existing discrete-time CBF, we show the blue,
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purple and black paths generated by the MPC-CBF when
the CBF scheme is formulated as (17) with v = 0.01 and
v = 0.05 and v = 0.1, respectively. Although we select
the three constants v small enough to provide the maximum
safety (more conservative), this approach still fails to ensure
a collision-free navigation as the corresponding paths cannot
safely pass the unsafe zones represented by obstacles 1,2, 4.
More specifically, the external disturbances cause a model
mismatch so that the model used in the MPC scheme cannot
capture the true dynamics of AUV, and consequently the
discrete-time CBFs are no longer able to tackle the effects of
this model mismatch. The cyan line shows the path generated
by the proposed MPC scheme combined with an MHE-based
approximate RCBF. This approach provides a collision-free
navigation as the CBF scheme is robust against both the
truncation errors and external disturbances captured by the
MHE scheme (29). The evolution of adaptive parameters of

[C"lobstacle 2
[ obstacle 1
MPC+non-robust CBF

[ obstacle 4

[ obstacle 3
MPC+MHE-based RCBF
MPGC+DTCBF (,=0.05)

MPC+DTCBF (4=0.1)
MPC+DTCBF (7=0.01)

Fig. 1. The magenta line shows the path planning result when the CBFs
are non-parametric, and the truncation errors/disturbances are not considered
in the CBF condition. The blue, purple and black lines illustrate the paths
generated using the non-parametric CBFs, where the discrete-time CBF
condition (17) is used. The cyan line shows the path generated using the
proposed MHE-based approximate RCBF with parametric CBFs, where the
mapping function is constructed by the odd-powered functions (28). The
red crosses show the locations where collisions occur.

the proposed approximate RCBF is shown in figures 2 and
3. The constrained control inputs are shown in Fig. 4. As
shown in Fig. 3, the three CBFs representing the obstacles
1, 2,4 are heavily affected by the external disturbances as the
estimations of the augmented perturbations have some high
frequency fluctuations, a.k.a chattering when AUV is passing
the areas around these unsafe zones (obstacles 1,2,4). The
proposed MHE-based RCBF then enhances the performance
of CBFs by estimating these augmented perturbations such
that the CBF models used in the MPC scheme can adaptively
adjust their structure and capture a more accurate model of
the real environment.

VII. CONCLUSION

In this paper, a safe motion planning approach for AUVs
has been proposed, where we formulated a robust discrete-
time CBF in an MPC scheme to address the safety problem in
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Fig. 2. Evolution of the estimated bounds ey, ey} using the proposed
MHE-based approximate robust CBF.
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Fig. 3. Estimation of the augmented perturbations (truncation er-
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MHE-based approximate robust CBF.
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Fig. 4. Evolution of the control inputs using the proposed MHE-based
approximate robust CBF.
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the presence of external disturbances. The proposed discrete-
time CBF has the same structure as the continuous-time
CBFs, which allows us to construct a robust CBF in order
to cope with unknown CBFs and external disturbances. To
capture both the external disturbances and the truncation
errors due to discretization of the continuous-time CBFs,
and estimate several parameters required in the proposed
CBF-MPC scheme, we then proposed to use an MHE
scheme to construct an approximate robust CBF. Simulation
results demonstrated the advantages our proposed safe control
approach provided compared to several other methods for
path planning of AUVs.
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