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Abstract—IoT-enabled smart homes can be double-edged
swords. On one side, the convenience and efficiency brought
about by smart device integrations can improve the standard
of living dramatically. However, on the other side, the prevalent
interconnectivity among home devices can drastically increase
the potential risk of attack. Therefore, in order to reduce
the possibility of a successful attack we propose a complex
correlation-based anomaly detection system powered by intricate
two-to-one correlations. Through the use of a state-of-the-art
transformer model, we present a novel correlation mining mech-
anism that leverages the power of attention weights to develop an
understanding of the underlying correlations that exist between
IoT events in a smart home environment. Using this knowledge,
we use a special validation algorithm to verify 52 two-to-one
correlations in our system. Furthermore, we simulate four distinct
attack scenarios and attain an average detection accuracy and
recall of 96.59% and 97.38% respectively. Our results indicate
that our method is effective at identifying a range of IoT attacks
and successfully demonstrates the capabilities of IoT correlations.

Index Terms—Smart home, Security, Anomaly Detection

I. INTRODUCTION AND RELATED WORKS

The rapid development of smart home IoT technology has
facilitated the emergence of home automation systems that
encompass IoT devices, hubs, mobile apps, and cloud services.
This new system architecture enables adaptable integrations
of devices and services, along with advanced automation ac-
cording to user-customized rules. However, these conveniences
also come with significant security risks that can impose
harm directly to the physical environment. Recent research
has revealed various vulnerabilities in APIs that are opened for
third-party vendors and developers [5], [9], [10], which may
be exploited by attackers to manipulate IoT messages. These
manipulated messages can further affect other devices in the
same smart environment through automation rules and cause
more severe consequences such as burglary and fire hazards.

To cope with these security issues and bring IoT users
peace of mind, various security enhancement solutions have
been proposed in a series of research works [7], [12]. The
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most prominent advancements fall in the category of smart
home anomaly detection [6], [11], which aims to raise alarms
whenever the behavior of any device in a smart home IoT
system deviates from its regular routine. HAWatcher [11]
proposes the novel concept of inter-device correlation that
serves as a powerful tool to profile invariant device behaviors
for accurate anomaly detection. However, both Peeves [6] and
HAWatcher [11] use statistics-based solutions for capturing
correlations between two devices and fail to generate more
complicated correlations that involve multiple devices. Missing
these more sophisticated correlations undermines their detec-
tion performance and limits their capabilities for detecting
stealthy attacks.

In this paper, we focus on extracting compound correlations
that have one more device in the anterior position, which is
called “two-to-one” correlations. Because of the added device,
the permutation space of hypothetical correlations will become
too large that make the original method in HAWatcher no
longer usable. Targeting this challenge, we present a novel
correlation mining method that leverages the power of the self-
attention layer of a transformer deep neural network model
to correlate events of different devices to one another in an
event sequence. Using these correlated events, we develop a
comprehensive set of correlation rules that are used to flag
anomalous behaviors caused by a range of attacks in the
system. We evaluate the performance of our system through
a comprehensive experiment on a smart home environment
consisting of, a total of 20 IoT smart devices spanning nine
different types. In the experiment, we successfully mine 57
unique two-to-one correlations and calculate a detection recall
and accuracy as 96.59% and 97.38% respectively.

For reference, the paper is organized as follows. In Section
II we present background information and investigate related
works. Then, in Section III, we define the system model and
examine different IoT-related attacks relevant to the study.
Moreover, in Section IV, we break down correlations by
type and complexity and include their corresponding notation.
In Section V, we analyze the fundamental components of a
transformer and highlight the specific parts we leverage in
our system. Then in Section VI, we characterize our unique
correlation mining process. Thereafter, in Section VII, we
present our experiment including environment details, model
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configuration, selected correlation parameters, and so on. After
that, we provide a thorough performance evaluation in Section
VIII. Finally, we conclude the paper in Section IX.

II. BACKGROUND AND RELATED WORKS

Smart Home IoT systems epitomize the revolutionary ad-
vancement in sensing, communication, and intelligent con-
trol technologies. Typical smart home IoT systems, such as
SmartThings [4], Alexa [2], and Google Home [3] all have
devices connected to smart home hubs or cloud servers which
offer publicly accessible APIs for the connection of third-
party devices. The interaction of all connected devices is
uniformly defined by a set of schema that contains the format
and content of event and command messages. Automation
rules are programmed using Trigger-Action-Programming [14]
and triggered by event messages emitted by IoT devices. The
execution of automation rules leads to commands that dictate
actuator devices to make the corresponding actions. Since the
runtime of automation rules does not have the built-in capa-
bility to detect IoT message anomalies, they can be violated
by attacks for manipulating benign actuator devices [9].

HAWatcher [11] represents the state-of-the-art solution to
detect anomalous events and device actions. It models the
smart home IoT systems’ normal behavior into a collection
of correlations between two devices that captures their causal
or co-occurring relationship. More specifically, it crafts a
list of possibly correlated devices and uses them to derive
hypothetical correlations. Then, it verifies all hypothetical
correlations against a training dataset. When deployed, every
event from the smart environment is checked against all
accepted correlations and any violation will be reported as
potential anomalies.

III. SYSTEM AND THREAT MODEL

A. System Model

A smart home defines a IoT-enabled living space, outfitted
with a range of smart sensors, actuators, and controllers.
Most often, smart homes contain numerous devices that are
inherently related to one another through some form of
predefined rule or shared action. We consider devices that
exhibit such inherent relationships to be correlated to one
another. By nature, smart home devices communicate with
each other using popular communication standards such as
Zigbee, Z-wave, Bluetooth, or Wifi. Special platforms such
as Samsung Smartthings, Apple Homekit, and Google Home,
promote easy communication between devices in the system.
In this paper, we consider a highly correlated smart home
environment consisting of multiple Smartthings compatible
devices that communicate using a range of different commu-
nication standards. Additionally, we engineer a system such
that correlations are inherently influenced by device location
and pre-defined automation rules.

B. Threat Model

In this section, we examine different IoT attacks published
by recent studies that our method has the capability to detect.

More specifically, we focus on attacks that assert a change that
is reflected in the historical log of the smart home system.
Attacks on Events: We distinguish attacks on events as
specialized attacks that work to undermine the integrity of
IoT sensor devices. We bifurcate such attacks by way of their
method of modification made to the system.

a) Event Injection: In event injection, an attacker works
to maliciously inject a nefarious event into the system [17].
The goal of this attack can range from indirectly influencing
an actuator, to attempting to disguise one’s presence in the
home or fool the homeowner to gain access to their residence.
For example, in the situation that a person leaves their home,
but accidentally leaves the door slightly open an attacker
may inject a front door closed into the system to fool the
homeowner to believe the front door is closed when in reality
it’s actually open. In this manner, the attacker can then enter
the home through the door without the owner ever knowing.

b) Event Interception: For an event interception attack,
an attacker can intercept events and prevent them from ever
being registered by the smart home system. This form of
attack can be devastating to the home because an attacker
can use it to block critical events to gain access to the home,
prevent an alert from indicating his or her presence on the
property, or even prevent safety systems such as a fire alarm
from registering a disaster.

Attacks on Commands: We designate attacks on commands
as specific attacks that are executed on actuation devices to
influence a certain state change or action in the environment.

c) Fake Commands: Fake commands describe a subset of
injection attacks that are focused on injected actuator-specific
events into the system to cause or prevent an action by that
device. For instance, given a smart door lock, an attacker may
inject an unlock command into the system to unlock the front
door and gain access to the home. Moreover, an attacker may
also choose to turn on power-consuming devices to overload
the electric systems of the home.

d) Command Interception: In a command interception
attack, a malicious actor attempts to block commands from
executing to either gain unauthorized access to the premises
or inflict damage to the system. One common scenario involves
an attacker intercepting and discarding the lock door command
as the user leaves their home, thereby gaining easy entry into
the residence. Another example is when an attacker intercepts
and alters a command regulating a home’s thermostat. By
manipulating the set temperature command, the attacker can
cause the system to either overheat or become excessively
cold, potentially causing damage to appliances and creating
an inhospitable environment within the residence.

IV. CORRELATIONS IN IOT-ENABLED ENVIRONMENTS

Correlations describe underlying relationships between de-
vice events per a variety of modalities. Such modalities in-
clude physical operation channels, user activity channels, and
automation rules. We define correlations as a directed relation-
ship between device events using the notation Ecapability

device=value
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where a capability is an event’s operation mode. For example,
some capabilities include ”motion”, ”presence”, ”contact”,
etc. The capability is important for differentiating between
separate event types that originate from the same device. For
the purpose of this study, we define events as they appear in
the SmartThings CLI historical logs. Mainly, the event log is
an irregularly spaced time series consisting of categorical and
continuous values. Moreover, events are only recorded when
a state change in a device is initiated.

A. One-to-one Correlations

At the most basic level, a one-to-one correlation represents
a simple directed relationship between two events or an event
and a subsequent state in a smart system [11]. Given two
events A and B we represent one-to-one correlations using
the following form: A → B. In this manner, we say that event
A is correlated to event B such that there exists some inherent
relationship between these events that, if violated, indicates an
anomaly in the system.

One-to-one correlations exist as the foundation for more
complex two-to-one correlations defined in Sec. IV-B. In terms
of anomaly detection, one-to-one correlations stand as the first
line of defense against nefarious attacks. Unfortunately, they
are not perfect and possess certain gaps in their detection
capabilities [11]. Our method addresses these limitations by
targeting those correlations that don’t meet a certain validation
threshold. For those correlations that don’t meet the threshold,
we refine them by incorporating a third event, creating what
we term as two-to-one correlations. Two-to-one correlations
possess greater detection capabilities by adding complexity
to the rules. In this way, an attacker has to consider more
components when trying to infiltrate the smart system.

B. Two-to-one Correlations

Considering three events, A, B, and C, we define a two-
to-one correlation as a bidirectional relationship where, under
certain conditions, all three events occur together within a spe-
cific time frame with high statistical significance. We represent
such correlations using the notation A ∧ B ↔ C. Here, ∧
signifies that there is a dependence relationship between the
first two events, A and B. The ↔ symbol indicates that the
correlation has a focal order involving all three events, A, B,
and C. Furthermore, we designate that in the presence of A
and B if the subsequent correlated C is missing, the correlation
is violated and an anomaly should be flagged.

Two-to-one correlations expand upon the detection capabil-
ities of one-to-one correlations highlighted in [11] by adding
a third condition to the relationship. Specifically, we aim
to discover two-to-one correlations that achieve statistical
significance where their foundational one-to-one correlation
roots have previously failed.

Notably, we consider two-to-one correlations as bi-
directional formulae to consider cases where the order may
not be preserved. For example, during times of severe network
congestion, certain communications between devices and the
smart hub may be delayed by some indeterminate amount of

time. In such cases, two events that often happen at the same
time might occasionally flip order in the log.

V. TRANSFORMER FRAMEWORK

This section aims to uncover the underlying transformer
architecture and highlight the specific modules we leverage
to attain consistent and accurate event correlations.

A. Transformer Architecture

Transformers are powerful AI models that achieve state-of-
the-art performance in a variety of complex tasks. The secret
behind their success lies in their usage attention, a special
mechanism that can learn context and meaning between inputs
by tracking relationships in sequential data [15].

IoT devices are influenced by a wide variety of incidents
in the smart system. As a result, it is important to consider
the context of the event log from both directions. Therefore,
we adopt the RoBERTa transformer model, a special sub-type
of the BERT architecture that uses dynamic masking and byte
pair encoding for performance optimization [8], [13]. Unlike
most models, BERT considers the surrounding context of a
token by considering both the tokens that come before it and
after it. This is especially useful for IoT-related applications
because a slight difference in an event sequence can mean the
difference between two entirely separate actions taking place
in the environment. Moreover, the surrounding context of the
sequences might change the influence one event has on another
event, a vital aspect to consider for correlation generation.

B. Token Embedding

By default, transformers do not perform recurrence or
convolution; therefore, sequential order must be incorporated
into the model separately. In RoBERTa, positional embedding
is used to fill this gap by applying a learnable positional
embedding layer to the model architecture. Thus, as the model
is trained it learns a vectorized positional representation for
each token that is appended to the token embedding to form
a final representation for each input.

C. Multi-headed Self Attention

Attention is a critical component of Transformer models
that allows them to focus on different parts of the input data
with varying degrees of emphasis. In general, attention lets the
model dynamically assess and combine information from any
position in an input sequence, making it effective for handling
long-range dependencies.

A single attention head is defined as the scaled dot product
of Query, Key, and Value vectors represented as Q, K, and V
respectively. An attention matrix defined by [15] is calculated
using Equ. 1

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where dk is the dimension of the queries and keys in the
input sequence. The attention score output is an NxN matrix
where N is the number of tokens in the input sequence. A

2023 IEEE 12th International Conference on Cloud Networking (CloudNet)

283
Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on June 24,2024 at 15:24:38 UTC from IEEE Xplore.  Restrictions apply. 



single score at position (i, j) indicates how much token i,
attends to token j with respect to the sequence at hand. For
the purpose of understanding how different tokens relate to
one another in a sequence, we use a special form of attention
known as Self Attention. In Self Attention, the query, key,
and value vectors are populated by different tokens from the
same input sequence. Therefore, when we perform attention
we are left with a matrix with scores that attend different
tokens within the same sequence to one another.

Moreover, in Multi-Headed Self Attention, self-attention is
performed h times for a single input such that multiple learned
linear projections are considered for each input. The resultant
matrices are concatenated by a typical transformer model, but
for the purpose of correlation generation described in Sec.
VI-A, we use the raw weights before concatenation. All in
all, the true power behind Multi-headed Self Attention is its
ability to capture the relationship between two tokens whilst
considering a variety of representational subspaces.

VI. CORRELATION MINING

This section describes the underlying procedure of our novel
correlation mining method. First, we discuss how the event
log is tailored into a transformer-compatible form. Then, we
describe how the attention weights of the output model are
normalized before diving into how the weights are interpreted
for generating hypothetical correlations.

A. Event Log Transformation

This paper considers a standard historical log from Smart-
Things CLI [1]. Specifically, we consider an event as a
logged state change containing a timestamp, capability, device
name, and value. The log, by nature, is an asymmetrical time
series which means that the events are irregularly spaced in
the temporal domain. Moreover, we apply discretization to
continuous values to maintain uniformity among the data log.

With regard to the chosen transformer framework, we draw
a subtle parallel between an IoT event log and a Natural
Language Corpus. We regard an event sequence akin to a
sentence, where each event is analogous to a word, and the
order in the log holds positional importance comparable to
words in a sentence.

We formulate event sequences through a specialized algo-
rithm that compares the time stamps of an anterior event to
that of a posterior event and a time tolerance value. If the
temporal difference between the two events is less than the
time tolerance, then we add it to the sequence. If not, we end
the previous sequence and add the event to a new sequence.

B. Correlation Discovery

Once we sequence the event log we pass it to the trans-
former for attention score analysis. By nature, a transformer
can only compute attention in relation to a particular sequence.
Therefore, it is not possible to discover a global attention score
for each token pairing. Rather, we take all the event sequences
from the training data and pass them through the model to
generate attention matrices for each individual sequence.

For each unique token pairing, we take the maximum
attention score as an overall indication of correlation for those
two events. In other words, the attention scores provide an
initial measure of correlation for basic one-to-one pairings.
Inherently, BERT attention scores undergo processing through
a softmax function. So, to enhance their interpretability, we
apply a natural log function to the weights, and use a min-
max scaler to standardize the data range between 0 and 1.

Using the definitions established in Sec. IV we say that two
events are hypothetically correlated if their scaled attention
score surpasses a threshold T . To incorporate dynamism into
the method, we ascertain the threshold by computing the mean
and subsequently positioning it at a distance of n standard
deviation intervals from the calculated mean.

C. Correlation Validation

For all one-to-one correlations that pass the threshold, a
special validation algorithm checks them against the data log
itself. First, all unique events are counted throughout the
data. Then, an occurrence count is found for each one-to-one
correlation pairing by iterating through the log and checking
for all instances both events are found within a certain time
tolerance from each other. The time tolerance value should be
the same as the tolerance mentioned in Sec. VI-A. In order
to filter between valid and invalid correlations, we establish
a conditional occurrence ratio using the formula ratio =
len(A∩B)
len(A) , where len() indicates the count of the events. For

all one-to-one correlations that pass a ratio threshold, we say
they are valid correlation rules and save them for anomaly
detection. As for the correlations that fail the threshold, they
get passed on for two-to-one correlation formulation.

D. Two-to-one Correlation Formulation and Validation

The primary objective of two-to-one correlations is to es-
tablish more intricate relationships between devices possessing
enhanced detection capabilities compared to the fundamental
one-to-one correlations. As such, we formulate two-to-one
correlations from hypothetical one-to-one correlations that
fail the validation stage. Specifically, we formulate two-to-
one correlations such that they can not be broken down into
two valid one-to-one formulae. Therefore, for two one-to-one
correlations A → B and A → C, the first form we consider
is B ∧ C ↔ A. In this situation, we notice two cases where
a specific input event allocates high attention scores to two
distinct events; however, individually, their occurrences in the
data are too scarce to be considered significant rules. Thus we
combine both posterior events together to formulate the first
kind of two-to-one correlation.

Moreover, given two one-to-one correlations A → C and
B → C, we deem A ∧ B ↔ C as a legitimate two-to-one
correlation as well. In this scenario, we have two different
events that both attend to the same event, yet as standalone
one-to-one correlations, they fail the validation threshold. Thus
we combine both events together and consider the combined
two-to-one correlation rule instead.
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To validate the hypothesized two-to-one correlations, we
employ a specialized algorithm that searches throughout the
training data for all instances of each correlation. Using the
standard notation for a two-to-one correlation, A∧B ↔ C, the
algorithm works by first finding all values for A, B, and C as
well as their opposite state events we denote as A′, B′, and C ′.
We denote an event of the opposite state using the ’ indicator.
For example, given an event A, where A indicates a sensor is
active, A′ indicates the sensor is inactive. After all the events
and their primes are gathered, we search through the training
data for all instances of the event in the A position. At each
instance of A, we first search backward for events B or B′. If
B′ is found, then we search 30 seconds after A for an instance
of B. This accounts for a case where B doesn’t happen before
A but rather happens right after it instead. After the search for
event B is complete, if B is found we log it and perform the
same steps, but for event C. If B is not found, we simply move
on to the next instance of A. Overall, the algorithm returns the
ratio of how many times A, B, and C all happen together over
how many times solely A, and B are found together. Using
this ratio, we say a two-to-one correlation is validated if it
achieves a ratio of greater than or equal to 95%. This means
that at least 95% of the time that events A and B were found
together, C is also found. By using a validation threshold of
95% we can severely reduce the likelihood of false positives
as defined in Sec. VIII-B3.

VII. EXPERIMENT

A. Environment Setup

For data collection and experimentation we put together a
smart home testing environment made of four distinct testbeds.
Throughout the testbeds, a total of 20 IoT smart devices
spanning nine different types were deployed throughout the
testbeds as shown in Tab. I. Data was collected over a 24-
day span and accessed using the SmartThings CLI. Moreover,
the smart home possessed six full-time residents with varying
degrees of technical expertise. All residents consented to the
devices used throughout the testbeds. For privacy purposes,
we excluded recording devices that collect sensitive data such
as cameras and microphones.

B. Model Configuration and Training

As mentioned in Sec. V-A we use a RoBERTa transformer
architecture to learn the attention weights of all the events in
the smart home system. The model configuration we use has a
maximum positional embedding size of 512, a hidden size of
768 units, 6 attention heads, and 6 hidden layers. Furthermore,
we use an Adam optimizer with a learning rate of 1e−4. Note,
due to the smaller scale of our testing environment, a more
complex configuration was not necessary to yield good results.
For consistency purposes, we mask 15% of the tokens at
random as is performed in [13]. The model is trained to predict
the masked tokens and in doing so adjusts the attention weights
accordingly as it learns the hidden relationships between the
event tokens in the system.

TABLE I: IoT Devices, Capabilities, and Values

Code Device Name Capabilities Values

B SmartThings
Button

Button pressed, double
pressed, held

CA SmartThings
Multipurpose
Sensor

Contact, Accel-
eration

active, inactive,
open, closed

SW Third Reality
Smart Switch

Switch on, off

MS SmartThings
Motion Sensor

Motion active, inactive

PS SmartThings Ar-
rival Sensor

Presence present, not
present

PO SmartThings
Power Outlet

Switch, Power-
Meter

on, off

Z Zooz 4-in-1 Sen-
sor

Motion,
Illuminance,
Tamper, etc.

active, inactive,
tampered, not
tampered, etc.

SL August Smart
Lock

Lock, Contact locked, closed,
unlocked, open,

TV Samsung 6 Se-
ries

Switch on, off

For training, we set aside 18 days’ worth of data, while
the last 6 days collected are reserved for testing. Through
experimentation, we discovered that a batch size of 8 yielded
the best results for our system. Consequently, we train the
model over 75 epochs.

C. Correlation Identification

The output of the trained model is a high-dimensional
matrix of attention weights between all tokens in the model
vocabulary. To develop hypothetical one-to-one correlations
using the attention weights, we run all of the event sequences
from the training data through a specialized algorithm that
performs the following actions. First, it finds all permutations
of token pairings in the sequence. Then, for each token pair,
it averages the attention weights for that pair by layer per
attention head. The output for each pair is a list of 6 attention
weights: one for each attention head. Once all of the attention
weights have been found for each pair of each sequence, we
scale the scores to fit between 0 and 1 and determine the
maximum score out of all of the attention heads for each
pairing of each sequence. Using the maximum scores, we
apply a threshold as described in Sec. VI-B to determine a
list of hypothetical one-to-one correlations. Out of maximum
scores for 20,304 token pairings, we determine the mean to
be 0.379 and the standard deviation to be 0.200. Therefore,
using two deviation steps we determine the threshold to be
0.779 ≈ 0.78.

As a result, after applying the threshold, we find 622 pairs
that pass. Finally, we take the maximum score for each unique
pairing out of all of the sequences tested and find 88 unique
one-to-one hypothetical correlations that need to be validated,
described in Sec. VI-C. Out of the 88 correlations validated,
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37 passed the threshold qualifying them as legitimate one-
to-one correlations. Moreover, the remaining 51 one-to-one
correlations that failed the threshold passed onto two-to-one
correlation generation.

Building on the foundation laid by the 51 one-to-one
correlations that failed, we employ the techniques outlined in
Section VI-D to formulate 171 unique hypothetical two-to-
one correlations. Subsequently, we input the 171 correlations
into the validation algorithm, as defined in Sec. VI-C, to
compute the occurrence ratio for each correlation. In an effort
to mitigate the likelihood of false positives, we confine our
considerations to two-to-one correlations that have an occur-
rence ratio of 95% or higher. Taking everything into account,
57 of the two-to-one correlations surpassed this threshold. A
selection of the correlations unearthed through this process can
be found in Table II.

VIII. PERFORMANCE EVALUATION

A. Anomalous Activity Generation

To evaluate the detection proficiency of our method, we em-
ulate four attack scenarios within our system: event injection,
event interception, fake commands, and command interception.
A detailed explanation of these attacks is present in our threat
model in Sec. III-B. In order to evaluate the performance of
our method we simulate the following attack cases:

1) Event Injection: In this scenario, we consider an attacker
who attempts to fool the system by injecting a fake sensor
event. To simulate an injection attack, we insert n number of
sensor events into the data log such that the injected event
follows an event reflecting the opposite state of that capability
and device pairing. For example, for a case where we inject n
instances of Emotion

MS2=active we position the injection in the log
such that each instance of Emotion

MS2=active follows an instance of
Emotion

MS2=inactive. This method of injection reflects a more likely
case of an attacker attempting to fool the system by quickly
reversing the state of a device in the system. Moreover, for
consistency purposes, we select the injection event as the A
event given a two-to-one correlation A ∧B ↔ C.

2) Event Interception: For event interception, we simulate
an attacker who wants to fool the system by blocking certain
sensor events from happening. Given the two-to-one correla-
tion format, A ∧ B ↔ C, we conduct an interception attack
by removing n number of sensor events from the data log in
the C position.

3) Fake command: Similar to the event injection attack
in Sec. VIII-A1, we insert n number of commands into the
data log. We define commands as events that solely pertain to
actuator devices such as a smart lock or smart switch. In the
scenario of this attack, an attacker will try and fool the smart
home system by injecting fake commands into the log to enact
some form of physical transformation in the environment (I.E.
a smart door lock unlocking).

4) Command Interception: Given the same fundamental
concept as an Event Interception attack, Command Intercep-
tion attacks define an actuator-specific attack by which an
attacker blocks a command from being sent to the system. For

the purpose of simulating this method of attack, we eliminate
the n number of actuator-specific events from the log. The
ultimate goal of the attacker is to block a certain actuator
device from changing its states (I.E. preventing a smart door
lock from locking).

B. Performance Metrics

We measure the performance using standard recall and
accuracy metrics defined in [16]. Further, we establish the fol-
lowing definitions to distinguish True Positive, True Negative,
False Positive, and False Negative below. It is important to
note that for any particular attack, a single event is cross-
compared with all correlations that it is related to. For metrics

TABLE II: Subset of Validated Two-to-One Correlations

Index Correlation Ratio

C1 Econtact
SL=closed ∧ Eswitch

SW1=on ↔ Emotion
MS2=active 100.00%

C2 Econtact
CA3=open ∧ Eswitch

SW1=on ↔ Emotion
MS2=active 100.00%

C3 Econtact
CA3=open ∧ Eswitch

SW1=on ↔ Elock
SL=locked 100.00%

C4 Econtact
CA3=open ∧ Econtact

SL=closed ↔ Emotion
MS2=active 98.91%

C5 Econtact
CA3=open ∧ Elock

SL=locked ↔ Emotion
MS2=active 98.51%

C6 Econtact
CA3=open ∧ Eswitch

SW3=off ↔ Emotion
MS2=active 98.49%

C7 Emotion
MS2=active ∧ Eacceleration

CA3=active ↔ Econtact
CA1=closed 97.73%

C8 Emotion
MS2=active ∧ Econtact

CA3=active ↔ Econtact
CA1=closed 97.90%

C9 Emotion
MS2=active ∧ Econtact

CA3=active ↔ Elock
SL=locked 100.00%

C10 Econtact
CA1=closed ∧ Econtact

CA1=open ↔ Emotion
MS1=active 96.28%

C11 Econtact
CA1=closed ∧ Econtact

CA3=open ↔ Emotion
MS2=active 97.98%

C12 Eacceleration
CA3=active ∧ Econtact

CA3=open ↔ Econtact
CA1=closed 97.05%

C13 Eacceleration
CA3=active ∧ Eswitch

SW1=off ↔ Econtact
CA1=closed 97.41%

C14 Eacceleration
CA3=active ∧E

motion
MS4=inactive ↔ Econtact

CA1=closed 97.35%

C15 Econtact
CA3=closed∧Emotion

MS4=inactive ↔ Econtact
CA1=closed 96.22%

C16 Econtact
CA3=closed ∧ Econtact

CA3=open ↔ Elock
SL=locked 97.05%

C17 Emotion
MS2=inactive∧E

acceleration
CA3=active ↔ Econtact

CA1=closed 95.86%

C18 Emotion
MS2=inactive∧E

motion
MS2=active ↔ Econtact

CA1=closed 96.11%

C19 Econtact
SL=open ∧ Econtact

CA3=open ↔ Elock
SL=locked 100.00%

C20 Econtact
SL=open ∧ Emotion

MS2=active ↔ Elock
SL=locked 100.00%

C21 Econtact
SL=open ∧ Econtact

CA1=closed ↔ Elock
SL=locked 100.00%

C22 Econtact
SL=open ∧ Econtact

CA3=open ↔ Elock
SL=locked 100.00%

C23 Emotion
MS1=inactive ∧ Econtact

CA3=open ↔ Econtact
CA1=closed 95.14%

C24 Eswitch
SW1=off ∧ Eswitch

TV =on ↔ Econtact
CA1=closed 100.00%

C25 Elock
SL=locked ∧ Eswitch

SW1=off ↔ Econtact
CA1=closed 95.40%

C26 Elock
SL=locked ∧ Emotion

MS4=inactive ↔ Econtact
CA1=closed 95.60%

C27 Emotion
MS2=active ∧ Econtact

CA1=closed ↔ Econtact
CA3=open 95.68%

C28 Emotion
MS2=active ∧ Elock

SL=locked ↔ Econtact
CA3=open 95.58%

C29 Econtact
CA3=open ∧ Econtact

CA1=closed ↔ Eacceleration
CA3=active 95.90%

C30 Econtact
CA3=open ∧ Econtact

CA1=open ↔ Eacceleration
CA3=active 97.58%
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purposes, we consider the set of related correlations to the
target event and check for an occurrence of a correlation
violation for any item in that set.

1) True Positive (TP): For a standard two-to-one correla-
tion, A ∧ B ↔ C, we say that a True Positive reflects a
positive correlation violation such that A and B are found
but the related C is missing in any given event sequence for a
modified data log. Here, a modified data log refers to data that
has undergone alterations such as injections or interception.

2) True Negative (TN): Given a correlation of the form
A ∧ B ↔ C, a True Negative defines a situation where the
correlation is satisfied in the unmodified data. In this case, a
C is found to exist in any particular sequence where an A and
B event are also found.

3) False Positive (FP): Continuing with the correlation
format A ∧ B ↔ C, a False Positive is a scenario where
events A and B are found in the unmodified data log, but
there is no corresponding C found in that sequence. We limit
false positives by only considering correlations that pass a 95%
occurrence ratio threshold, meaning a C must be found with
a corresponding A and B in at least 95% of all sequences
where A and B occur together.

4) False Negative (FN): A false negative defines a case
where for a particular sequence of events A and B in a
modified data log, a C is also present resulting in a situation
where the correlation is satisfied when it should be violated.

C. Performance Results

Across 21 test scenarios, our method achieved a mean recall
of 97.38% and mean accuracy of 96.59%, as detailed in Table
III. Notably, of the 21 scenarios, 17 had a 100% recall rate and
15 exceeded or met an accuracy rate of 95%. In the following
cases below, we elaborate on some situations that highlight
the detection capabilities of our method. For detection, we
consider the set of all correlations that are related to the
modification event. Therefore, the more correlations an event
is related to, the greater the detection capabilities are for an
attack directed at that instance.

Scenario S1. In this scenario, an attacker attempts to fool
the system into believing the front door is closed when in
reality it is still open. In the testbed, the hallway’s entrance
features a smart lock and contact sensor labeled as SL. To
enter or exit the home, residents must unlock and open the
door before closing it. Notably, when the door closes, two
correlations, C1 and C4, capture this activity. When the event
Econtact

SL=closed occurs alongside either Eswitch
SW1=on or Econtact

CA3=open,
the event Emotion

MS2=active is expected to show up as well in
this sequence. For an attacker to successfully fool the system
he or she must insert the Econtact

SL=closed such that it follows an
Econtact

SL=open event whilst also occurring in a sequence with either
the Eswitch

SW1=on or Econtact
CA3=open events with a corresponding

Emotion
MS2=active. Given the recall of 100%, this indicates the

likelihood of successfully injecting the event such that all the
necessary conditions are satisfied to produce a false negative,
are next to none.

Scenario S7. In the following scenario, the attacker injects a
fake Econtact

CA3=open event into the system to divert the attention of
the homeowner away from a particular area. The Econtact

CA3=open

is found in correlations C2 through C6. The detection of this
attack attained a recall of 100% indicating there were no
false negatives found during the simulation. For an attacker
to successfully pull off an attack of this kind, they would be
required to find a gap in the system such that none of the
correlations are violated. For instance, given the schematic
of the testbed, it is easy to see that motion sensor MS2
is deployed right at the entryway of contact sensor CA3.
Moreover, the smart lock and corresponding contact sensor SL
are located just opposite the CA3 doorway. For these given
circumstances this location is highly correlated making it quite
likely that with the injection of Econtact

CA3=open there will be at
least one violation in the set of related correlations which will
notify the homeowner to the nefarious activity.

Scenario S12. Given this scenario, the attacker tries to
cover his or her tracks by eliminating the event Emotion

MS2=active.
In doing so, the attacker is trying to keep their presence
hidden from the homeowner. To the benefit of the homeowner,
Emotion

MS2=active is related to correlations C2, C4, C5, and C6.
For this highly correlated event, the attacker would have to
figure out a means to get into the home and through the hall
doorway without setting off the events Econtact

CA3=open, Eswitch
SW1=on,

Econtact
SL=closed, Elock

SL=locked, Eswitch
SW3=off , which are all events that

indicate activity in that region.
Scenario S16. For the following scenario, an attacker

attempts to fool the system into believing the front door is
locked when in reality it is still unlocked. Given an injected
command, Elock

SL=locked, correlations C5, C25, C26 are evalu-
ated for possible violations. For this attack to be successful
the attacker would have to inject the command right after
a Elock

SL=unlocked command and align it in a sequence such
that if Econtact

CA3=open occurs the event Emotion
MS2=active must also

occur, or if either Eswitch
SW1=off or Emotion

MS4=inactive occurs the
event Econtact

CA1=closed also occurs. It is important to note that
events of this form are logged most often at the moment of
occurrence. Thus the attack window to cause a false negative
reading would again be very tiny.

Scenario S19. In this scenario, the attacker aims to prevent
the system from registering the lock command for the front
door. If successful, the attacker could gain access to the
home. To the attacker’s detriment, Elock

SL=locked is related to
correlations C3, C9, C16, C19, C20, C21, C22 which makes it
very complicated to intercept the Elock

SL=locked without violating
one of the seven correlations. Due to the number of related cor-
relations, no matter how many different positions Elock

SL=locked

is removed from, one of the correlations is violated, thus
resulting in 0 reported false negatives and a 100% recall.

D. Observations

In this section, we highlight intriguing behaviors observed
during our experiments. Notably, the subsequent insights em-
phasize distinct discrepancies evident in Table III.
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TABLE III: Attack Scenarios and Performance Results

Scenario Attack Modification # Trials Related Correlations Recall Accuracy

S1

Event Injection Attack

injected fake Econtact
SL=closed 30 C1, C4 100% 100%

S2 injected fake Econtact
CA3=open 30 C2, C3, C4, C5, C6 100% 93.61%

S3 injected fake Econtact
CA1=closed 30 C10, C11 100% 94.87%

S4 injected fake Emotion
MS2=active 30 C7, C8, C9 100% 94.44%

S5 injected fake Eacceleration
CA3=active 30 C12, C13, C14 93.33% 91.40%

S6 injected fake Econtact
CA3=closed 30 C15, C16 100% 96.48%

S7 injected fake Emotion
MS2=inactive 30 C17, C18 96.55% 94.25%

S8 injected fake Econtact
SL=open 30 C19, C20, C21 100% 100%

S9 injected fake Emotion
MS1=inactive 30 C23 61.90% 89.15%

S10

Event Interception Attack

removed Econtact
CA3=open 30 C27, C28 100% 96.92%

S11 removed Econtact
CA1=closed 30 C7, C8, C12, C13, C14 100% 95.40%

S12 removed Emotion
MS2=active 30 C2, C4, C5, C6 100% 97.49%

S13 removed Eacceleration
CA3=active 30 C29, C30 100% 96.28%

S14 removed Emotion
MS1=active 30 C10 100% 97.32%

S15
Fake Command Attack

injected fake Eswitch
SW1=off 30 C24 100% 100%

S16 injected fake Elock
SL=locked 30 C5, C25, C26 93.10% 95.05%

S17 injected fake Elock
SL=locked 10 C5, C25, C26 100% 95.68%

S18 injected fake Eswitch
SW1=off 10 C24 100% 100%

S19
Command Interception Attack

removed Elock
SL=locked 30 C3, C9, C16, C19, C20, C21, C22 100% 100%

S20 removed Elock
SL=locked 10 C3, C9, C16, C19, C20, C21, C22 100% 100%

S21 removed Elock
SL=locked 2 C3, C9, C16, C19, C20, C21, C22 100% 100%

Average - - - 97.38% 96.59%

For scenario S9, we observe a considerably low recall and
accuracy when juxtaposed to the performance of the other
simulated scenarios. The reason behind the less-than-ideal
readings is related to the size of the correlation set considered
in detecting the attack. Unfortunately, there was only one two-
to-one correlation that passed the threshold that possessed the
event Emotion

MS1=inactive in the A or B position. Therefore, our
model’s ability to capture the anomalous behavior is severely
limited by considering only a single rule which necessitates
that Econtact

CA3=open be present and Econtact
CA1=closed to be missing

in order to be flagged as an anomaly. Nevertheless, when
Emotion

MS1=inactive is injected near a common occurrence of both
Econtact

CA3=open and Econtact
CA1=closed, a false negative is produce and

the injected event is wrongfully assumed to be legitimate.

For scenarios S16 and S17, the same fake command attack
using Elock

SL=locked is performed three separate times for three
different quantities of trials. For each scenario, as the number
of trials increased, the metric values got slightly worse. The
reasoning behind this trend is due to the varying position
of insertion in the log. For scenario S17, the command
Elock

SL=locked was injected 10 times in 10 different positions. For
all injections, the attack was successfully detected because one
of the correlations in the related correlation set was violated.
However, as the number of trials increased from 10 to 30,
the locations of injections changed, thereby, increasing the
possibility for a false negative. Hence, out of the 30 injection
positions tested, 2 resulted in a false negative meaning none

of the correlations in the related correlation set were violated.
The situation indicates, that despite the reduced likelihood of a
successful attack as the related correlation set increases, there
is still a minute chance of success. Nonetheless, our method
ensures that as the smart devices in the environment increase,
so too does the quantity of correlations and the strength of
detection of our system.

IX. CONCLUSION

The integration of Internet of Things (IoT) devices within
smart homes exponentially escalates the attack surface for
potential security breaches. As these devices operate through
constant connectivity and data exchange, they inadvertently
create entry points for malevolent entities. In this paper, we
presented a novel correlation-based anomaly detection system
for identifying nefarious activity in smart home systems.
Moreover, we proposed an innovative two-to-one correlation
mining schema that leverages the power of transformer at-
tention weights for identifying related events in the smart
environment. To prove the capabilities of our approach we
simulated 21 attack scenarios ranging over 4 common forms
of IoT attacks. Using 57 mined two-to-one correlations, our
system attained a detection accuracy and recall of 96.59% and
97.38%, respectively. Our results show that two-to-one corre-
lations are an effective means of detecting a range of attacks
in a smart home environment. Furthermore, we demonstrate
the potential of two-to-one correlations to fill the gaps left by
their elementary one-to-one relatives.
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