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Abstract

Deep learning accomplishes remarkable success through
training with massively labeled datasets. However, the high
demands on the datasets impede the feasibility of deep learning
in edge computing scenarios and suffer the data scarcity issue.
Rather than relying on labeled data, animals learn by interacting
with their surroundings and memorizing the relationship
between concurrent events. This learning paradigm is referred
to as associative memory. The successful implementation of
associative memory potentially achieves self-learning schemes
analogous to animals to resolve the challenges of deep learning.
The state-of-the-art implementations of associative memory are
limited to small-scale and offline paradigms. Thus, in this work,
we implement associative memory learning with an Unmanned
Ground Vehicle (UGV) and neuromorphic chips (Intel Loihi)
for an online learning scenario. Our system reproduces the
classic associative memory in rats. In specific, our system
successfully reproduces the fear conditioning with no
pretraining procedure and labeled datasets. In our experiments,
the UGV serves as a substitute for the rats. Our UGV
autonomously memorizes the cause-and-effect of the light
stimulus and vibration stimulus, then exhibits a movement
response. During associative memory learning, the synaptic
weights are updated by Hebbian learning. The Intel Loihi chip
is integrated with our online learning system for processing
visual signals. Its average power usages for computing logic
and memory are 30 mW and 29 mW, respectively.

Keywords
Associative Memory; Hebbian Learning; Neuromorphic
Computing; Unmanned Ground Vehicles.

1 Introduction

Deep learning demonstrates remarkable capabilities in
multiple cognitive tasks, such as image recognition, self-
driving vehicles, and natural language processing [1]. These
capabilities stem from the training of large-scale Deep Neural
Networks (DNNs) with a large amount of data [1]. However,
the huge datasets and large-scale DNNs significantly prolong
training time and increase energy demands. The excessive
demand for computational resources makes the application of
deep learning highly reliant on supercomputers. Unfortunately,
these bulky supercomputers cannot meet applications with
strict requirements of Size, Weight, and Power (SWaP), such as
deep-ocean and planetary exploration [1, 2]. In addition, it is
costly and laborious to build massive and labeled data sets, and
sometimes the data is not practical to collect. For instance, the
terrain data on the Moon and Mars are both extremely difficult
to collect [2].

A modern and novel approach for implementing Artificial
Intelligence (Al) is proposed to resolve these challenges:
Neuromorphic Computing (NC). NC is a software and
hardware co-design approach to achieving a power-efficient Al
system by emulating nervous systems using hardware,
algorithms, and computational models. In an NC system, the
neurons are biologically plausible neuron models, such as
Leaky Integrate and Fire neurons (LIF) [3]. The signal
communication among neurons is low-frequency spikes in a
neuromorphic system forming Spiking Neural Networks (SNN)
[4]. Several training methods for SNNs have been proposed,
including converting traditional ANNs into an SNN [4],
biologically plausible algorithms [4], the approximation
methods [4], etc. These training methods still utilize labeled
datasets rather than mimic the learning process of animals. In
real-world scenarios, animals learn from interacting with their
surroundings and memorizing concurrent events. This self-
learning scheme is referred to as associative memory [5-7].
Several studies attempted to implement associative memory
using neuromorphic computing [8], electronic neurons, and
synapse [6, 9-11]. However, these studies merely complete a
small-scale association with a few neurons in simulation
platforms rather than the experiments in real-world scenarios.
Furthermore, the process of pretraining with labeled datasets is
still required for these studies [12-16]. Thus, in this work, we
design a large-scale neuromorphic system with associative
memory and deploy it to an Unmanned Ground Vehicle (UGV)
for online learning through interacting with surroundings in
real-world scenarios. To our best knowledge, we for the first
time implement associative memory into a UGV to complement
real-time online learning by directly constant surroundings with
no pre-trained procedure. The Loihi chip is integrated with
UGVs to further enhance energy efficiency [17]. In specific, we
utilize our UGV to reproduce the fear conditioning experiment
with rats. In our experiment, the brightness of a light emulates
the visual stimulus, and the vibration measured with the
accelerometer mimics the electric shock to rats. The fear
response, escaping, will be emulated by a motion of the UGV
away from the vibration source. The perception of the light and
the vibration are separately processed within two different
neural assemblies. In our experimental design, vibration is the
unpleasurable stimulus and light is the neutral stimulus. The
signal pathway from vibration unconditionally evokes the
movement of the UGV, so it is referred to as the unconditional
signal pathway. Meanwhile, the light stimulus does not
stimulate a movement response until the associative memory
learning accomplished, making it is a conditional signal
pathway.

The contributions of this paper are summarized as follows:
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1) Unlike other off-line associative memory [12-16], to our
best knowledge, we first implemented associative memory
with a UGV in an online learning scenario using an Intel
Loihi chip, achieving an average power usage of 59 mW.

2) The work reproduces the classic fear conditioning of rats
with solid biological rationales from a cellular level
(Hebbian learning) to the behavior level (fear
conditioning).

3) No pre-training process and labeled dataset are required.

2 Background of Associative Memory

The underlying mechanism behind associative memory is
the synaptic plasticity among neurons. The studies on the sea
slug: Aplysia [5] reveal the causality between synaptic
plasticity and associative memory. Two signal pathways of
Aplysia are from the siphon to the gill and from the tail to the
gill. Normally, the gill neuron does not respond to siphon
stimulation, which is analogous to the sound of the bell in fear
conditioning experiments on dogs. The underlying reason for
this nonresponse comes from the blocked signal pathway from
the siphon to the gill. The signals received from the stimulus of
the siphon cannot be delivered to the gill of Aplysia due to the
attenuation of the synaptic connection strength between them.
However, this blockage caused by the synapse can be changed
if the stimulus from the siphon and tail are applied at the same
time or with a small lag [5]. If the stimulus from the siphon and
tail are provided at the same time, the signals overlap with each
other. The paired signals will enhance the synaptic connection
strength between the siphon and gill. As a result, the signals
crossing them are not significantly attenuated. The larger signal
from the siphon of Aplysia will be transferred to the response
neuron of its gill, leading to the gill contracting.

In more advanced animals, the perception neurons are not
simply one neuron such as in Aplysia. The captured signals in
these animals are processed with a group of neurons known as
neural assemblies [18]. For instance, the electrical shock and
sound signals in the rats are processed at the auditory and
somatosensory thalamus, respectively. The output signals from
these neural assemblies merge at the lateral nucleus. This is
analogous to what happens in Aplysia. The main difference is
that the individual neurons in Aplysia are replaced by the
assemblies of neurons in rats. Associative learning can be
conducted with the similar training procedures. Initially, the
rats ignore a neutral tone as the signal pathway from the Lateral
Nucleus is blocked. When the tone is presented immediately
before a foot shock, the animal learns to associate the tone with
the shock. After multiple repetitions, the tone alone will
provoke a fear response as well. As the neural tone stimulus
will not stimulate a fear response without an associative
memory process, it is referred to as a conditional stimulus (CS).
Meanwhile, the shock stimulus is defined as an unconditional
stimulus (US) because it unconditionally stimulates the fear
response [5].

3 Reproducing Fear Conditioning with UGV

With a comprehensive understanding of the fear
conditioning of rats and the associative memory mechanism in

Aplysia, we design a neuromorphic system to reproduce the
fear conditioning of rats and validate it with experiments. In our
experiment, a UGV is placed on a vibration platform and
unconditionally responds to the vibration signals. These
vibration signals emulate the unpleasurable/fear stimulus in the
fear conditioning experiment in rats. In addition, the light is
provided as a conditional stimulus (CS). To render the UGV
capable of reproducing a similar response to fear conditioning,
we design several special types of neurons to convert the
brightness of light and acceleration of the vibration platform
into spiking signals. Moreover, the movement of UGV is
controlled by the motion neurons we designed. All these
neurons are customized from classic Leaky Integrate and Fire
(LIF) neurons. The LIF neurons are expressed with the
equations [19]:

Cmd—’t”= GL(E, — Vi) + A * 1oy O
if iy >V thenV, = Vgt
Tre = Cn/Gy ()

where C,, defines the membrane capacitance, V,, is the
membrane potential, G, is the leak conductance, E, is the leak
potential, I,,,, is the applied input current, A is the input signal
gain, and T, is the membrane RC time constant. For all the
neurons in Table 1, the membrane potential is fixed at 1 V and
input gain is modified instead. They all use the Nengo LIF
model’s default Ty, of 0.02 seconds because it was sufficient
for our desired functionality. The other two parameters are
calculated and optimized based on our experimental setups so
that they can produce the desired responses for their respective
uses. Specifically, the vibration detection neuron’s gain (A4) and
bias (Vs ) were empirically derived so that it fires with
vibration stimulus input but not small sudden movements. The
motion neuron is a typical LIF configured to spike whenever it
receives any sustained input spikes, either from vibration
neurons or brightness neurons. The brightness neuron is the
Layer 3 neuron in Table 3 and is a LIF neuron with empirically
derived gain and bias so that it fires only when the light feature
neurons have a high enough collective output.

Table 1: LIF neuron parameters

Neuron Types Tre A Vyeset (V) Va(V)
Vibration 0.02 13 0.6 1.0
neuron
Brightness 0.02 03 -1.0 1.0
neuron
Motion 0.02 1.0 0.01 1.0
neuron

3.1 Neuron Coding for Perception and

Movement of UGV

The accelerometer within the onboard inertial measurement
unit (IMU) is used to measure the acceleration of UGV at the
vibration platform. These measured accelerations of the three
axes are illustrated in Figure 1. The vibration stimuli is from the
vibration platform operating at 25 Hz and 1.2 mm amplitude.
As shown in Figure 1, the acceleration in the z-axis (vertical)
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has the largest magnitude due to the intrinsic gravity of the earth
(9.8 m/s?). We remove this by subtracting the standard gravity
of the earth from the z-axis acceleration. Eventually, the
resultant acceleration, which is used for evaluating the vibration
states, is calculated by the equation:

Ares = Jaxz +a,? + (a, — 9.8)?, 3)

where @, is the resultant acceleration, a,, a,,, a, are the
accelerations in Y-axis, Y-axis, and Z-axis, respectively. The
resultant acceleration is illustrated in Figure 2. The resultant
acceleration calculated is the input for the vibration detection
neuron.

Vibration Acceleration Data
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Figure 1: Acceleration data of IMU for three dimensions denoted
as X-axis (blue), Y-axis (orange), and Z-axis (green).
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Figure 2: Resultant acceleration waveform.

In our experiments, the Nengo simulator was used to
implement the system, and the vibration signal is imported to the
sensory neuron.

A vibration detection neuron, implemented with LIF, is
connected to the accelerometer, and it fires in response to the
vibration detected as shown in Figure 3. At last, to make the
robot move away from the vibration platform, the motion
neurons are designed specifically to control the direction and
speed of movement. The motion neuron is also implemented by
a LIF neuron with parameters listed in Table 1. The active
motion neuron will trigger a specific escape (fear) response that
commands the UGV to move away from the vibration source
with a speed of 0.3 m/s.

10
vibration
0.0

10 . 0.0
18.867 19.367 18.867

(a) (c)

Figure 3: Vibration detection neuron response to the acceleration
input: (a) input vibration signals; (b) membrane potential of the
vibration detection neuron; (c) output spiking signals of the
vibration detection neuron.

19.367

3.2 Processing of Visual Signals

For processing visual stimuli, we designed a neural network
that activates an output neuron if it detects the light is on. Figure
4 shows the brightness of the light captured with the stereo
camera equipped at our UGV. The stream of visual signals
captured by the camera is sent to the computer via Robot
Operating System (ROS). As the images arrive, their resolution
is reduced to 24x48 pixels, and the pixel brightness is
normalized to the range between -1 and 1.

(a) (b)

Figure 4: Images of the light on and off: (a) the light is on; (b) the
light is off.

A deep neural network model based on 2D sparse coding is
used for recognizing the brightness of light. The goal of sparse
coding is to represent an input vector with a linear combination
of features from a dictionary. This can be modeled by the
LASSO equivalent optimization function:

1
E@ =3llx—@-all} + 2-llal, @
a’ = argmin E (a) 5)

a
Where E(a) is the cost, a is the “sparse code” vector consisting
of the feature coefficients a;, x is the input signal, and © is the
dictionary matrix, the columns of which are the features @;.

24x48 Pixel Input Image Divided into 9 Regions

Patch Contains
9 Pixels

Center Region
Contains 16 Patches

Figure 5: Image region layout and patch structure

The cost is determined by how close input matches the
reconstruction @ - a, and the size of the sparse code vector
[lall;, where A is an additional sparsity penalty parameter to
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control the tradeoff between sparsity and accuracy. Eq. (5)
shows a* is the optimal sparse code for minimizing the cost in
Eq. (4).

Typically, the sparse code a* is used to reconstruct x, or as
the input to a classifier. In 2D image sparse coding, the image
is divided into patches the size of the features ®;. Thus, each
patch is a sparse coding optimization problem. The image is
first divided into 9 sub-regions which are further partitioned
into patches as shown in Figure 5. The Locally Competitive
Algorithm (LCA) [20] is used for solving Eq. (4) and Eq. (5)
because it is a biologically plausible method inspired by lateral
inhibition observed in neuroscience and uses it to emulate the
V1 region of the primary visual cortex. The algorithm uses only
local competition between neighboring neuron elements, and it
can be implemented with SNNs, unlike other solutions to the
sparse coding problem. The essential idea is each dictionary
feature is represented by a neuron, with its firing rate or
activation indicating its features contribution to the input. The
activation is achieved by the weights of the connections from
the input to these “feature neurons”. The higher a feature
neuron’s activity level is, the more it inhibits, or reduces, its
neighboring neurons’ activity levels. The following equations
describe the Spiking LCA (S-LCA) model [21].

0= %(CDTx —u—(DTPp—1)-a),a= T,u) (6)

Ty(w)=0ifu<sitelseTy(u) =u—1 (7
Where 1 is the discrete timestep, a; is the average firing rate of
neuron i, u; is the average soma current for the neuron, and T,
is the thresholding function that determines if neuron i is going
to fire. This is achieved by adjusting the firing threshold of the
neurons to A. It has been shown that the S-LCA system
dynamics converge to the set of average firing rates g
corresponding to the optimum solution a*.

Inhibitory Competitive Connections
—(@F - ®))a;

Patch Feature Neurons

9 Pixel Image Patch

Excitatory Stimulus Connections
of . x

COCOEOO0Y) s
ALl Te s

Figure 6: LCA network for one patch including input neurons
(Layer 1) and feature neurons (Layer 2)

Figure 6 illustrates a spiking LCA network for solving one
image patch, which is depicted in Figure 5. The model consists
of one layer for the input x and another layer for the sparse code
a*. The firing rates of each neuron are the coefficients a;. The
neurons in the second layer are referred to as feature neurons
because each of them is associated with one feature Oi.
Typically, an overcomplete dictionary is used in sparse coding,
resulting in @ having a larger size than x. However, our model
represents each patch with only two features, light and dark.

Thus, the dictionary in Figure 6 only contains two features. The
system could be made overcomplete by using more variations
of exclusively light and dark features to create more feature
vectors than the input (9 pixels in the patch).

Layer 1 Layer 2 Layer 3
144 Input Stimulus Neurons 16 Light Feature Neurons Light Detector Neuron
from Center Region’s Pixels  from Center Region’s Patches for Center Region

Figure 7: Neural network for light detection in the center region.
Note: The dark feature neurons in Layer 2 are not shown.

The convolutional stride between the image patches is equal
to the width of one patch (3 pixels) resulting in no overlap
between them. This simplifies the LCA model by removing
connections between feature neurons in overlapping patches.
The neural network contains a third layer with one neuron for
each of the 9 regions in the image. The portion of the network
for the center region is shown in Figure 7. The third layer has
only one neuron as an output neuron that integrates the light
feature neurons of every patch. In Layer 1 each neuron is a spike
generator and has a firing rate proportional to the pixel intensity
it represents. The Layer 2 neurons are Integrate and Fire LCA
neurons, or “patch feature neurons”. The sparsity penalty A is
implemented via the V.., parameter in the LCA neurons,
which was empirically adjusted until the desired response was
achieved from the feature neurons. The other parameters are
kept constant according to the LCA model used in [21]. The
Layer 3 neurons are the same LIF neurons with the parameters
listed in Table 2

Table 2: LCA neuron parameters in Layer 2 and 3

LCA Neuron
Layer Tre (5) A Vieset (V) Vin (V)
Layer 2 o 1.0 -1=-0.85 1.0
Layer 3 0.02 0.3 -1.0 1.0
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Figure 8: Membrane potential of Layer 2 light feature neurons in
center region image patches.

When the light-on image (Figure 4 (a)) is the input to the
network, the light feature neurons in the center patches start to
fire. The light-off image (Figure 4 (b)) subsequently reduces the
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activity in the neurons. These images are alternately presented
as inputs, shown in Figure 8. This causes the neurons in layer 3
to fire for the center region from 0s-2s and 4s-6s as shown in

Figure 9. It is the period the light is off in our experiment.
ON OFF ON

& e & > < >
< > <€ » < >
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=
o
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o
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Figure 9: Spike output of Layer 3 neuron for the center region.
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Figure 10: Power consumption for sparse coding network with
Loihi chip. The VDD represents the compute logic, VDDM is the
SRAMs, and VDDIO is the 10 interface.

The sparse coding network was ported to the Intel Loihi
neuromorphic chip for power and energy profiling using
Nengo’s support for using Intel’s NxSDK software as the
backend to recreate the network with the same neuron models.
NxSDK contains a built-in LCA network implementation,
which can be connected to the rest of the SNN. The parameters
from Table 3 were used to create the same LCA network from
Nengo for deployment on Loihi. In Loihi chip, the synaptic
weights only have a 4-bit resolution, instead of the 24-bit
resolution of the CPU network. The length of one simulation
time-step, how often the network parameters (neuron spikes,
membrane potentials, etc.) are increased from 1 ms to 20 ms for
the Loihi. The network was given the same input stimulus and
measured power, as shown in Figure 10. The average VDD
power is 30 mW and the average VDDM power is 29 mW.
VDD represents the compute logic, VDDM is the SRAM, and
VDDIO is the 10 interface. One can see VDDIO’s contribution
is relatively negligible to the total power, while VDD and
VDDM have effectively equal contributions. The power is
measured and reported with the average consumption across
every 8 timesteps during the experiment.

4 Associative Memory
Experiment with UGV

The neuromorphic system implementing associative
memory is illustrated in Figure 11. In our system, the signal
from light is a conditional stimulus and the acceleration signal
from vibration is the unconditional stimulus. The movement
away from the vibration platform emulates the fear response of
rats. The experimental setup with our UGV is shown in Figure
12.

Simulation and

Conditional
signal pathway

Light
(cs) /
Sensory Neurons:
Firing with the light inputs
Vibration Response
(Us) P

Response Neurons:
Firing to move the robot

Moving the robot away from

Sensory Neurons:
the vibration platform

Firing with the vibration

Unconditional
signal pathway

Figure 11: Neuromorphic system for associative memory learning
implementation.

Robot with
Loihi chip
Moving

B>

Neutral location Vibration platform

i= =

Figure 12: Experimental setup with UGV.

The synaptic weights are modified based on Hebbian
learning [19, 22]. Hebbian learning states that when the pre-and
postsynaptic neurons are both active at the same time, the
synaptic weights between them will be modified by the
equations [19, 22]:

w = nn;, ®)

where the 7; and 7; are firing rates of pre- and postsynaptic
neurons, respectively, and the 7 is the learning rate,
determining the changing rate of synaptic weight. In our
experiment, the learning rate 7 is 2 X 10™*. Our simulation
results are shown in Figure 14. The initial synaptic weights
between the brightness detection neuron (CS) and the
movement neuron are small. Consequently, the brightness
stimulus of the light cannot be delivered to the movement
neuron to stimulate it to fire. As a result, the synaptic weights
between the brightness detection neuron and movement neuron
stay constant. When the vibration (US) is applied to the
vibration detection neuron, the movement neuron starts to fire.
When the vibration and light are applied to the system, both the
brightness detection neuron and the motion neuron are active,
resulting in their synaptic weight increases.

Figure 14 illustrates that the synaptic weights increase when
the vibration and light stimulus are both applied. However, the
first overlapping time frame is not long enough to establish a
significant synaptic weight modification. Thus, a sequence of
weak spiking signals is observed from the response neuron after
the vibration is removed, which is marked in Figure 14. In
contrast, the second overlapping period is longer than the first
one which leads to a larger increase in synaptic weights.
Thereby, after training, the response neuron (motion neuron)
will fire with a visual stimulus (light) even with no vibration
stimulus. This demonstrates an accomplishment of associative
memory.
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Figure 13: Real-time experiment data of associative memory with UGV: (a) The membrane potentials and spiking outputs of the
brightness detection neuron, vibration detection neuron, and movement neuron. (b) The UGV is moving away from the vibration

platform

Next, our neuromorphic system with associative memory is
validated using real-time experiments. Our experimental setup
is illustrated in Figure 12. We replace the rats in fear learning
with the UGV. The UGV is placed on a testing platform, which
is constructed with 9 wooden boxes. The dimension of each box
is 23 in (L) x 23 in (W) x 8 in (H).

A vibration plate is installed underneath the center platform,
which is marked in red square in Figure 12 (a). The vibration
plate can provide vibration signals (15-40 Hz) emulating an
unpleasurable stimulus (the electrical shock) in fear learning on
the rats. The other eight platforms with no installed vibration
plate are marked in green-dashed squares in Figure 12.

Associative Memory with Hebbian Learning
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Figure 14: Change of synaptic weight during associative learning.

With the unpleasurable stimulus applied, the UGV will
move away from the vibration platform to the neutral location.
Figure 13 illustrates our experiments of associative memory
learning on UGV in real-time. In the experiments, the synaptic
weights between the brightness detection neuron and the
motion neurons are modified during the training process. As a
result, after associative memory learning, the UGV will move

away from the vibration platform under the stimulus of light
even with no vibration signal presented, demonstrating
successful online learning in real time. Several state-of-the-art
relevant works are summarized in Table 3. Our work
outperforms these works in several aspects. First, our
associative memory learning model is constructed with more
than thousands of neurons and synapses, which outperforms a
few neurons in [12-15, 23, 24]. The large scale of neural
networks enables our model to have the capability of processing
more complicated signals, such as visual and acceleration
signals. More importantly, other associative memory learning
processes in [8, 12-15, 23, 24] are accomplished in simulation
scenarios rather than in experiments in the real world. In the
real world, the system requires more robustness in noisy and
unpredictable environments. At last, our UGV provides a
platform with sensors that can accomplish associative memory
learning by directly collecting signals from surroundings rather
than manually-labeled the data.

Table 3: Comparison of scale and association capability with
other state-of-the-art works

Neuron Synapse Dataset Learning Scheme

[12] 6 3 N/A Simulation
[13] 3 1 N/A Simulation
[14] 5 6 N/A Simulation
[15] 3 1 N/A Simulation
[23] 3 1 N/A Simulation
[24] 3 2 N/A Simulation

(8] 20 100 vf;}el g:;;‘:e‘is Simulation
VTVES( 1419 1420 Ngrgfrfiﬁlg)r Experiment

5 Conclusion

In this paper, we implement associative memory with a
UGV and Intel Loihi for an online learning scenario. Our
system successfully reproduces the fear conditioning of rats
with no pretraining procedure and labeled datasets. Our UGV
autonomously memorizes the cause-and-effect of the light
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stimulus and vibration stimulus. The Intel Loihi chip is
integrated with our online learning system for processing visual
signals. The average power usage is 59 mW.
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