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Abstract 
Deep learning accomplishes remarkable success through 

training with massively labeled datasets. However, the high 
demands on the datasets impede the feasibility of deep learning 
in edge computing scenarios and suffer the data scarcity issue. 
Rather than relying on labeled data, animals learn by interacting 
with their surroundings and memorizing the relationship 
between concurrent events. This learning paradigm is referred 
to as associative memory. The successful implementation of 
associative memory potentially achieves self-learning schemes 
analogous to animals to resolve the challenges of deep learning. 
The state-of-the-art implementations of associative memory are 
limited to small-scale and offline paradigms. Thus, in this work, 
we implement associative memory learning with an Unmanned 
Ground Vehicle (UGV) and neuromorphic chips (Intel Loihi) 
for an online learning scenario. Our system reproduces the 
classic associative memory in rats. In specific, our system 
successfully reproduces the fear conditioning with no 
pretraining procedure and labeled datasets. In our experiments, 
the UGV serves as a substitute for the rats. Our UGV 
autonomously memorizes the cause-and-effect of the light 
stimulus and vibration stimulus, then exhibits a movement 
response. During associative memory learning, the synaptic 
weights are updated by Hebbian learning. The Intel Loihi chip 
is integrated with our online learning system for processing 
visual signals. Its average power usages for computing logic 
and memory are 30 mW and 29 mW, respectively.  
Keywords 
Associative Memory; Hebbian Learning; Neuromorphic 
Computing; Unmanned Ground Vehicles.  
1 Introduction 
Deep learning demonstrates remarkable capabilities in 

multiple cognitive tasks, such as image recognition, self-
driving vehicles, and natural language processing [1]. These 
capabilities stem from the training of large-scale Deep Neural 
Networks (DNNs) with a large amount of data [1].  However, 
the huge datasets and large-scale DNNs significantly prolong 
training time and increase energy demands. The excessive 
demand for computational resources makes the application of 
deep learning highly reliant on supercomputers. Unfortunately, 
these bulky supercomputers cannot meet applications with 
strict requirements of Size, Weight, and Power (SWaP), such as 
deep-ocean and planetary exploration [1, 2]. In addition, it is 
costly and laborious to build massive and labeled data sets, and 
sometimes the data is not practical to collect. For instance, the 
terrain data on the Moon and Mars are both extremely difficult 
to collect [2]. 

A modern and novel approach for implementing Artificial 
Intelligence (AI) is proposed to resolve these challenges: 
Neuromorphic Computing (NC). NC is a software and 
hardware co-design approach to achieving a power-efficient AI 
system by emulating nervous systems using hardware, 
algorithms, and computational models. In an NC system, the 
neurons are biologically plausible neuron models, such as 
Leaky Integrate and Fire neurons (LIF) [3]. The signal 
communication among neurons is low-frequency spikes in a 
neuromorphic system forming Spiking Neural Networks (SNN) 
[4]. Several training methods for SNNs have been proposed, 
including converting traditional ANNs into an SNN [4], 
biologically plausible algorithms [4], the approximation 
methods [4], etc. These training methods still utilize labeled 
datasets rather than mimic the learning process of animals. In 
real-world scenarios, animals learn from interacting with their 
surroundings and memorizing concurrent events. This self-
learning scheme is referred to as associative memory [5-7]. 
Several studies attempted to implement associative memory 
using neuromorphic computing [8], electronic neurons, and 
synapse [6, 9-11]. However, these studies merely complete a 
small-scale association with a few neurons in simulation 
platforms rather than the experiments in real-world scenarios. 
Furthermore, the process of pretraining with labeled datasets is 
still required for these studies [12-16]. Thus, in this work, we 
design a large-scale neuromorphic system with associative 
memory and deploy it to an Unmanned Ground Vehicle (UGV) 
for online learning through interacting with surroundings in 
real-world scenarios. To our best knowledge, we for the first 
time implement associative memory into a UGV to complement 
real-time online learning by directly constant surroundings with 
no pre-trained procedure. The Loihi chip is integrated with 
UGVs to further enhance energy efficiency [17]. In specific, we 
utilize our UGV to reproduce the fear conditioning experiment 
with rats.  In our experiment, the brightness of a light emulates 
the visual stimulus, and the vibration measured with the 
accelerometer mimics the electric shock to rats. The fear 
response, escaping, will be emulated by a motion of the UGV 
away from the vibration source. The perception of the light and 
the vibration are separately processed within two different 
neural assemblies. In our experimental design, vibration is the 
unpleasurable stimulus and light is the neutral stimulus. The 
signal pathway from vibration unconditionally evokes the 
movement of the UGV, so it is referred to as the unconditional 
signal pathway. Meanwhile, the light stimulus does not 
stimulate a movement response until the associative memory 
learning accomplished, making it is a conditional signal 
pathway.  
The contributions of this paper are summarized as follows:  
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1) Unlike other off-line associative memory [12-16],  to our 
best knowledge, we first implemented associative memory 
with a UGV in an online learning scenario using an Intel 
Loihi chip, achieving an average power usage of 59 mW.  

2) The work reproduces the classic fear conditioning of rats 
with solid biological rationales from a cellular level 
(Hebbian learning) to the behavior level (fear 
conditioning).  

3) No pre-training process and labeled dataset are required.  
2 Background of Associative Memory 
The underlying mechanism behind associative memory is 

the synaptic plasticity among neurons. The studies on the sea 
slug: Aplysia [5] reveal the causality between synaptic 
plasticity and associative memory. Two signal pathways of 
Aplysia are from the siphon to the gill and from the tail to the 
gill. Normally, the gill neuron does not respond to siphon 
stimulation, which is analogous to the sound of the bell in fear 
conditioning experiments on dogs. The underlying reason for 
this nonresponse comes from the blocked signal pathway from 
the siphon to the gill. The signals received from the stimulus of 
the siphon cannot be delivered to the gill of Aplysia due to the 
attenuation of the synaptic connection strength between them. 
However, this blockage caused by the synapse can be changed 
if the stimulus from the siphon and tail are applied at the same 
time or with a small lag [5]. If the stimulus from the siphon and 
tail are provided at the same time, the signals overlap with each 
other. The paired signals will enhance the synaptic connection 
strength between the siphon and gill. As a result, the signals 
crossing them are not significantly attenuated. The larger signal 
from the siphon of Aplysia will be transferred to the response 
neuron of its gill, leading to the gill contracting. 
In more advanced animals, the perception neurons are not 

simply one neuron such as in Aplysia. The captured signals in 
these animals are processed with a group of neurons known as 
neural assemblies [18]. For instance, the electrical shock and 
sound signals in the rats are processed at the auditory and 
somatosensory thalamus, respectively. The output signals from 
these neural assemblies merge at the lateral nucleus. This is 
analogous to what happens in Aplysia. The main difference is 
that the individual neurons in Aplysia are replaced by the 
assemblies of neurons in rats. Associative learning can be 
conducted with the similar training procedures. Initially, the 
rats ignore a neutral tone as the signal pathway from the Lateral 
Nucleus is blocked. When the tone is presented immediately 
before a foot shock, the animal learns to associate the tone with 
the shock. After multiple repetitions, the tone alone will 
provoke a fear response as well. As the neural tone stimulus 
will not stimulate a fear response without an associative 
memory process, it is referred to as a conditional stimulus (CS). 
Meanwhile, the shock stimulus is defined as an unconditional 
stimulus (US) because it unconditionally stimulates the fear 
response [5]. 
3 Reproducing Fear Conditioning with UGV 
With a comprehensive understanding of the fear 

conditioning of rats and the associative memory mechanism in 

Aplysia, we design a neuromorphic system to reproduce the 
fear conditioning of rats and validate it with experiments. In our 
experiment, a UGV is placed on a vibration platform and 
unconditionally responds to the vibration signals. These 
vibration signals emulate the unpleasurable/fear stimulus in the 
fear conditioning experiment in rats. In addition, the light is 
provided as a conditional stimulus (CS). To render the UGV 
capable of reproducing a similar response to fear conditioning, 
we design several special types of neurons to convert the 
brightness of light and acceleration of the vibration platform 
into spiking signals. Moreover, the movement of UGV is 
controlled by the motion neurons we designed. All these 
neurons are customized from classic Leaky Integrate and Fire 
(LIF) neurons. The LIF neurons are expressed with the 
equations [19]:  

𝐶!
𝑑𝑉!
𝑑𝑡 = 𝐺"(𝐸" − 𝑉!) + 𝐴 ∗ 𝐼#$$; 

𝑖𝑓	𝑉! > 𝑉%&	𝑡ℎ𝑒𝑛	𝑉! = 𝑉'()(%, 
(1) 

𝜏*+ =	𝐶!/𝐺"  (2) 

where 𝐶!  defines the membrane capacitance, 𝑉!  is the 
membrane potential, 𝐺"is the leak conductance, 𝐸"is the leak 
potential, 𝐼#$$ is the applied input current, A is the input signal 
gain, and 𝜏*+  is the membrane RC time constant. For all the 
neurons in Table 1, the membrane potential is fixed at 1 V and 
input gain is modified instead. They all use the Nengo LIF 
model’s default 𝜏*+ of 0.02 seconds because it was sufficient 
for our desired functionality. The other two parameters are 
calculated and optimized based on our experimental setups so 
that they can produce the desired responses for their respective 
uses. Specifically, the vibration detection neuron’s gain (𝐴) and 
bias (𝑉'()(% ) were empirically derived so that it fires with 
vibration stimulus input but not small sudden movements. The 
motion neuron is a typical LIF configured to spike whenever it 
receives any sustained input spikes, either from vibration 
neurons or brightness neurons. The brightness neuron is the 
Layer 3 neuron in Table 3 and is a LIF neuron with empirically 
derived gain and bias so that it fires only when the light feature 
neurons have a high enough collective output. 

Table 1: LIF neuron parameters 

Neuron Types 𝜏!" A Vreset (V) Vth(V) 

Vibration 
neuron 0.02 1.3 0.6 1.0 

Brightness 
neuron 0.02 0.3 -1.0 1.0 

Motion  
neuron 0.02 1.0 0.01 1.0 

3.1 Neuron Coding for Perception and 
Movement of UGV 

The accelerometer within the onboard inertial measurement 
unit (IMU) is used to measure the acceleration of UGV at the 
vibration platform. These measured accelerations of the three 
axes are illustrated in Figure 1. The vibration stimuli is from the 
vibration platform operating at 25 Hz and 1.2 mm amplitude. 
As shown in Figure 1, the acceleration in the z-axis (vertical) 

Authorized licensed use limited to: Michigan Technological University. Downloaded on June 24,2024 at 15:21:06 UTC from IEEE Xplore.  Restrictions apply. 



 
 

has the largest magnitude due to the intrinsic gravity of the earth 
(9.8 m/s2). We remove this by subtracting the standard gravity 
of the earth from the z-axis acceleration. Eventually, the 
resultant acceleration, which is used for evaluating the vibration 
states, is calculated by the equation:   

𝑎'() =	:𝑎,- + 𝑎.- + (𝑎/ − 9.8)-, (3) 

where 𝑎'()  is the resultant acceleration, 𝑎, , 𝑎. , 𝑎/  are the 
accelerations in Y-axis, Y-axis, and Z-axis, respectively.   The 
resultant acceleration is illustrated in Figure 2. The resultant 
acceleration calculated is the input for the vibration detection 
neuron.  

 
Figure 1: Acceleration data of IMU for three dimensions denoted 
as X-axis (blue), Y-axis (orange), and Z-axis (green). 

 
Figure 2: Resultant acceleration waveform.  
In our experiments, the Nengo simulator was used to 

implement the system, and the vibration signal is imported to the 
sensory neuron.  
A vibration detection neuron, implemented with LIF, is 

connected to the accelerometer, and it fires in response to the 
vibration detected as shown in Figure 3. At last, to make the 
robot move away from the vibration platform, the motion 
neurons are designed specifically to control the direction and 
speed of movement. The motion neuron is also implemented by 
a LIF neuron with parameters listed in Table 1. The active 
motion neuron will trigger a specific escape (fear) response that 
commands the UGV to move away from the vibration source 
with a speed of 0.3 m/s.   

 
Figure 3: Vibration detection neuron response to the acceleration 
input: (a) input vibration signals; (b) membrane potential of the 
vibration detection neuron; (c) output spiking signals of the 
vibration detection neuron. 

3.2 Processing of Visual Signals  
For processing visual stimuli, we designed a neural network 

that activates an output neuron if it detects the light is on. Figure 
4 shows the brightness of the light captured with the stereo 
camera equipped at our UGV. The stream of visual signals 
captured by the camera is sent to the computer via Robot 
Operating System (ROS). As the images arrive, their resolution 
is reduced to 24x48 pixels, and the pixel brightness is 
normalized to the range between -1 and 1. 

 
Figure 4: Images of the light on and off: (a) the light is on; (b) the 
light is off.    
A deep neural network model based on 2D sparse coding is 

used for recognizing the brightness of light. The goal of sparse 
coding is to represent an input vector with a linear combination 
of features from a dictionary. This can be modeled by the 
LASSO equivalent optimization function: 

𝐸(𝑎) =
1
2
‖𝑥 − Φ ∙ 𝑎‖-- + 	𝜆 ∙ ‖𝑎‖0 (4) 

𝑎∗ = argmin
#

𝐸(𝑎) (5) 
Where E(a) is the cost, a is the “sparse code” vector consisting 
of the feature coefficients 𝑎2, x is the input signal, and Φ is the 
dictionary matrix, the columns of which are the features Φ2.   

 
Figure 5: Image region layout and patch structure 
The cost is determined by how close input matches the 

reconstruction Φ ∙ 𝑎 , and the size of the sparse code vector 
‖𝑎‖0 , where 𝜆 is an additional sparsity penalty parameter to 
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control the tradeoff between sparsity and accuracy. Eq. (5) 
shows 𝑎∗ is the optimal sparse code for minimizing the cost in 
Eq. (4).  
Typically, the sparse code a⃰   is used to reconstruct x, or as 

the input to a classifier. In 2D image sparse coding, the image 
is divided into patches the size of the features Φ3. Thus, each 
patch is a sparse coding optimization problem. The image is 
first divided into 9 sub-regions which are further partitioned 
into patches as shown in Figure 5. The Locally Competitive 
Algorithm (LCA) [20] is used for solving Eq. (4) and Eq. (5) 
because it is a biologically plausible method inspired by lateral 
inhibition observed in neuroscience and uses it to emulate the 
V1 region of the primary visual cortex. The algorithm uses only 
local competition between neighboring neuron elements, and it 
can be implemented with SNNs, unlike other solutions to the 
sparse coding problem. The essential idea is each dictionary 
feature is represented by a neuron, with its firing rate or 
activation indicating its features contribution to the input. The 
activation is achieved by the weights of the connections from 
the input to these “feature neurons”. The higher a feature 
neuron’s activity level is, the more it inhibits, or reduces, its 
neighboring neurons’ activity levels. The following equations 
describe the Spiking LCA (S-LCA)  model [21]. 

𝑢̇ = 	
1
𝜏
(Φ4𝑥 − 𝑢 − (Φ4𝜙 − 𝐼) ∙ 𝑎), 𝑎 = 	𝑇5(𝑢) (6) 

	𝑇5(𝑢) = 0	𝑖𝑓	𝑢 ≤ 𝜆, 𝑒𝑙𝑠𝑒	𝑇5(𝑢) = 𝑢 − 𝜆 (7) 
Where τ is the discrete timestep, 𝑎2 is the average firing rate of 
neuron i, 𝑢2 is the average soma current for the neuron, and 𝑇5 
is the thresholding function that determines if neuron i is going 
to fire. This is achieved by adjusting the firing threshold of the 
neurons to 𝜆 . It has been shown that the S-LCA system 
dynamics converge to the set of average firing rates 𝑎2 
corresponding to the optimum solution 𝑎∗. 

 
Figure 6: LCA network for one patch including input neurons 
(Layer 1) and feature neurons (Layer 2) 
Figure 6 illustrates a spiking LCA network for solving one 

image patch, which is depicted in Figure 5. The model consists 
of one layer for the input x and another layer for the sparse code 
a∗. The firing rates of each neuron are the coefficients 𝑎2. The 
neurons in the second layer are referred to as feature neurons 
because each of them is associated with one feature Φi. 
Typically, an overcomplete dictionary is used in sparse coding, 
resulting in a having a larger size than x. However, our model 
represents each patch with only two features, light and dark. 

Thus, the dictionary in Figure 6 only contains two features. The 
system could be made overcomplete by using more variations 
of exclusively light and dark features to create more feature 
vectors than the input (9 pixels in the patch).  

 
Figure 7: Neural network for light detection in the center region. 
Note: The dark feature neurons in Layer 2 are not shown. 
The convolutional stride between the image patches is equal 

to the width of one patch (3 pixels) resulting in no overlap 
between them. This simplifies the LCA model by removing 
connections between feature neurons in overlapping patches. 
The neural network contains a third layer with one neuron for 
each of the 9 regions in the image. The portion of the network 
for the center region is shown in Figure 7. The third layer has 
only one neuron as an output neuron that integrates the light 
feature neurons of every patch. In Layer 1 each neuron is a spike 
generator and has a firing rate proportional to the pixel intensity 
it represents. The Layer 2 neurons are Integrate and Fire LCA 
neurons, or “patch feature neurons”. The sparsity penalty 𝜆 is 
implemented via the 𝑉'()(%  parameter in the LCA neurons, 
which was empirically adjusted until the desired response was 
achieved from the feature neurons. The other parameters are 
kept constant according to the LCA model used in [21]. The 
Layer 3 neurons are the same LIF neurons with the parameters 
listed in Table 2. 

Table 2: LCA neuron parameters in Layer 2 and 3 
LCA Neuron 
Layer 𝜏"# 	(s) A Vreset (V) Vth (V) 

Layer 2 ∞ 1.0 -𝜆 = -0.85 1.0 

Layer 3 0.02 0.3 -1.0 1.0 

 
Figure 8: Membrane potential of Layer 2 light feature neurons in 
center region image patches.  
When the light-on image (Figure 4 (a)) is the input to the 

network, the light feature neurons in the center patches start to 
fire. The light-off image (Figure 4 (b)) subsequently reduces the 
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activity in the neurons. These images are alternately presented 
as inputs, shown in Figure 8. This causes the neurons in layer 3 
to fire for the center region from 0s-2s and 4s-6s as shown in 
Figure 9. It is the period the light is off in our experiment.  

 
Figure 9: Spike output of Layer 3 neuron for the center region. 

 
Figure 10: Power consumption for sparse coding network with 
Loihi chip. The VDD represents the compute logic, VDDM is the 
SRAMs, and VDDIO is the IO interface. 
The sparse coding network was ported to the Intel Loihi 

neuromorphic chip for power and energy profiling using 
Nengo’s support for using Intel’s NxSDK software as the 
backend to recreate the network with the same neuron models. 
NxSDK contains a built-in LCA network implementation, 
which can be connected to the rest of the SNN. The parameters 
from Table 3 were used to create the same LCA network from 
Nengo for deployment on Loihi. In Loihi chip, the synaptic 
weights only have a 4-bit resolution, instead of the 24-bit 
resolution of the CPU network. The length of one simulation 
time-step, how often the network parameters (neuron spikes, 
membrane potentials, etc.) are increased from 1 ms to 20 ms for 
the Loihi. The network was given the same input stimulus and 
measured power, as shown in Figure 10. The average VDD 
power is 30 mW and the average VDDM power is 29 mW.  
VDD represents the compute logic, VDDM is the SRAM, and 
VDDIO is the IO interface. One can see VDDIO’s contribution 
is relatively negligible to the total power, while VDD and 
VDDM have effectively equal contributions. The power is 
measured and reported with the average consumption across 
every 8 timesteps during the experiment.  
4 Associative Memory Simulation and 

Experiment with UGV 
The neuromorphic system implementing associative 

memory is illustrated in Figure 11. In our system, the signal 
from light is a conditional stimulus and the acceleration signal 
from vibration is the unconditional stimulus. The movement 
away from the vibration platform emulates the fear response of 
rats. The experimental setup with our UGV is shown in Figure 
12. 

 
Figure 11: Neuromorphic system for associative memory learning 
implementation.  

 
Figure 12: Experimental setup with UGV.  
The synaptic weights are modified based on Hebbian 

learning [19, 22]. Hebbian learning states that when the pre-and 
postsynaptic neurons are both active at the same time, the 
synaptic weights between them will be modified by the 
equations [19, 22]:  

𝑤 = 	𝜂𝑟2𝑟3, (8) 

where the 𝑟2  and 𝑟3  are firing rates of pre- and postsynaptic 
neurons, respectively, and the 𝜂  is the learning rate, 
determining the changing rate of synaptic weight. In our 
experiment, the learning rate 𝜂  is 2 × 1067 . Our simulation 
results are shown in Figure 14. The initial synaptic weights 
between the brightness detection neuron (CS) and the 
movement neuron are small. Consequently, the brightness 
stimulus of the light cannot be delivered to the movement 
neuron to stimulate it to fire. As a result, the synaptic weights 
between the brightness detection neuron and movement neuron 
stay constant.  When the vibration (US) is applied to the 
vibration detection neuron, the movement neuron starts to fire. 
When the vibration and light are applied to the system, both the 
brightness detection neuron and the motion neuron are active, 
resulting in their synaptic weight increases.  
Figure 14 illustrates that the synaptic weights increase when 

the vibration and light stimulus are both applied. However, the 
first overlapping time frame is not long enough to establish a 
significant synaptic weight modification. Thus, a sequence of 
weak spiking signals is observed from the response neuron after 
the vibration is removed, which is marked in Figure 14. In 
contrast, the second overlapping period is longer than the first 
one which leads to a larger increase in synaptic weights. 
Thereby, after training, the response neuron (motion neuron) 
will fire with a visual stimulus (light) even with no vibration 
stimulus. This demonstrates an accomplishment of associative 
memory. 
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Next, our neuromorphic system with associative memory is 

validated using real-time experiments. Our experimental setup 
is illustrated in Figure 12. We replace the rats in fear learning 
with the UGV. The UGV is placed on a testing platform, which 
is constructed with 9 wooden boxes. The dimension of each box 
is 23 in (L) × 23 in (W) × 8 in (H). 
A vibration plate is installed underneath the center platform, 

which is marked in red square in Figure 12 (a).  The vibration 
plate can provide vibration signals (15-40 Hz) emulating an 
unpleasurable stimulus (the electrical shock) in fear learning on 
the rats. The other eight platforms with no installed vibration 
plate are marked in green-dashed squares in Figure 12. 

 
Figure 14: Change of synaptic weight during associative learning.  
With the unpleasurable stimulus applied, the UGV will 

move away from the vibration platform to the neutral location. 
Figure 13 illustrates our experiments of associative memory 
learning on UGV in real-time. In the experiments, the synaptic 
weights between the brightness detection neuron and the 
motion neurons are modified during the training process.  As a 
result, after associative memory learning, the UGV will move 

away from the vibration platform under the stimulus of light 
even with no vibration signal presented, demonstrating 
successful online learning in real time. Several state-of-the-art 
relevant works are summarized in Table 3. Our work 
outperforms these works in several aspects. First, our 
associative memory learning model is constructed with more 
than thousands of neurons and synapses, which outperforms a 
few neurons in [12-15, 23, 24]. The large scale of neural 
networks enables our model to have the capability of processing 
more complicated signals, such as visual and acceleration 
signals. More importantly, other associative memory learning 
processes in [8, 12-15, 23, 24] are accomplished in simulation 
scenarios rather than in experiments in the real world. In the 
real world, the system requires more robustness in noisy and 
unpredictable environments. At last, our UGV provides a 
platform with sensors that can accomplish associative memory 
learning by directly collecting signals from surroundings rather 
than manually-labeled the data.  
Table 3: Comparison of scale and association capability with 

other state-of-the-art works 

 Neuron Synapse Dataset  Learning Scheme 

[12] 6 3 N/A Simulation 

[13] 3 1 N/A Simulation 

[14] 5 6 N/A Simulation 

[15] 3 1 N/A Simulation 

[23] 3 1 N/A Simulation 

[24] 3 2 N/A Simulation 

[8] 20 100 Pre-trained 
with datasets Simulation 

This 
work 1419 1420 No dataset for 

pretraining Experiment 

5 Conclusion 
In this paper, we implement associative memory with a 

UGV and Intel Loihi for an online learning scenario. Our 
system successfully reproduces the fear conditioning of rats 
with no pretraining procedure and labeled datasets. Our UGV 
autonomously memorizes the cause-and-effect of the light 

 
Figure 13: Real-time experiment data of associative memory with UGV: (a) The membrane potentials and spiking outputs of the 
brightness detection neuron, vibration detection neuron, and movement neuron. (b) The UGV is moving away from the vibration 
platform 
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stimulus and vibration stimulus. The Intel Loihi chip is 
integrated with our online learning system for processing visual 
signals. The average power usage is 59 mW.  
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