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People have associations between colors and concepts that influence the way they interpret color meaning in
information visualizations (e.g., charts, maps, diagrams). These associations are not limited to concrete objects (e.g.,
fruits, vegetables); even abstract concepts, like sleeping and driving, have systematic color-concept associations.
However, color-concept associations and color meaning (color semantics) are not the same thing, and sometimes they
conflict. This article describes an approach to understanding color semantics called the color inference framework.
The framework shows how color semantics is highly flexible and context dependent, which makes color an effective

medium for communication.
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When you think of raspberries, what comes to mind?
You may think of features like red, fuzzy, and sweet.
In this classic cognitive psychology feature listing task,
color is just one of many features in people’s concep-
tual representations of objects (Mervis & Rosch, 1981).
Historically, color was considered a not-so-important
feature of object representations (Biederman & Ju,
1988) that must sometimes be ignored to find deeper
relations among concepts (Gopnik & Sobel, 2000).
Cases in which color dominates in object representa-
tions (e.g., inferences about foods; Macario, 1991) have
been treated as domain-specific exceptions (Rogers &
McClelland, 2004). Researchers have even challenged
that color is part of conceptual representations of
objects, and evidence to the contrary was limited to
objects with strong color associations (Tanaka &
Presnell, 1999; Therriault et al., 2009). From this per-
spective, there is potential to underestimate the role of
color in human cognition.

However, color can be considered through a differ-
ent lens—not as one of many attributes of object rep-
resentations in the human mind but rather as a visual
feature that represents, or “stands for,” concepts. From
this perspective, the meaning that people ascribe to
colors—color semantics—plays an important role in the
way humans evaluate and interpret the world around
them (Hasantash et al., 2019; Lin et al., 2013; Schloss,
2018; Schloss et al., 2018, 2023; Schloss & Palmer, 2017).
Such effects are not limited to concepts with strong
color associations (Mukherjee et al., 2022).

This article primarily focuses on the role of color
semantics in visual communication. Visual communica-
tion is fundamental to how humans share information.
People use information visualizations (e.g., maps,
charts, diagrams, and signage) to help others navigate
new environments, track perilous weather patterns,
learn about scientific discoveries, monitor political
trends, and indicate where to discard different types of
recyclables, to name a few examples.! In visual com-
munication, designers create visualizations by repre-
senting concepts using visual features (e.g., colors,
shapes, sizes, textures), and observers interpret visual-
izations by discerning the meaning of those visual fea-
tures (Franconeri et al., 2021; Goldstone et al., 2015).
For example, in Figure 1la, colors represent fruits in a
bar chart (left) or variations in magnitude in a colormap
data visualization (right). Readers may be tempted to
think that interpreting color meaning in Figure 1la is
trivial—observers can simply follow the legends.
However, observers have expectations about color
meaning independent of legends, and they have more
difficulty interpreting visualizations that violate those
expectations (Lin et al., 2013; Schloss et al., 2019).

Readers may also be tempted to assume that color
meanings are simply color-concept associations—the
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Fig. 1. (a) Examples of information visualizations that are easier/harder to interpret depending on the encoded mapping between colors
and concepts specified in the legend. Left: Bar charts were easier to interpret when bar colors resembled the objects the bars represented
(adapted from Lin et al., 2013). Right: Colormap data visualizations were easier to interpret when darker colors mapped to greater magnitude
(dark-is-more bias; adapted from Schloss et al., 2019). (b) Example of the dissociation between color-concept associations and color meaning
from Schloss et al. (2018). Left: Task in which participants rated the association strength between each of 37 colors and the concepts trash and
paper and the corresponding mean ratings for each color (sorted from low to high). Right: Task in which participants judged which colored
bin represented the target concept named above and results showing the proportion of times each color was chosen for each target (error
bars represent standard errors of the means). Note that trash was more associated with white than with purple (left), yet observers inferred

purple meant trash (right); see text for an explanation of why.

degree to which individual colors are associated with
individual concepts. But color-concept associations and
color meaning are not the same thing, and they can
even conflict. Consider the study illustrated in Figure
1b (Schloss et al., 2018). One group of participants
judged associations between colors and recycling-
related concepts (e.g., paper and trash). Another group
judged color meaning by interpreting which colored
bin was for discarding a target object. Here, the target
was trash, but on other trials, the target was paper.

Trash was more strongly associated with white than
with purple (left), yet participants reported purple
meant trash (right). Thus, color meaning conflicted with
color-concept associations. An explanation for this dis-
crepancy will be discussed later.

This article describes a novel approach to understand-
ing color semantics called the color inference framework
(Schloss, 2018). The framework shows how color seman-
tics is flexible and context dependent, which makes
color an effective medium for communication.
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Fig. 2. Overview of the color inference framework (Schloss, 2018). See text for details.

Color Inference Framework

The color inference framework characterizes the way
people infer meanings from colors and use those infer-
ences to make judgments about the world (Schloss,
2018; Fig. 2). The framework begins with color-
concept associations, the degree to which each possible
color is associated with each possible concept. These
associations are stored in a color-concept association
network, which connects all colors to all concepts. On
this network representation, different color inference
operations are computed to produce different kinds of
judgments. Figure 2 shows two such inference pro-
cesses: Pooling inference produces preferences for col-
ors, and assignment inference produces interpretations
of color meaning in information visualizations. Although
formulated using color as a paradigm example, the
color inference framework has potential to extend to
other perceptual features, insofar as they are systemati-
cally associated with concepts. The following sections
provide detailed descriptions and supporting evidence
for the components of the framework.

Color-concept associations

Although color semantics is not solely determined by
associations between individual colors and concepts,
such associations are a key ingredient.

Historically, work on color-concept associations in
cognitive psychology focused on associations between
concrete objects and their characteristic colors (e.g.,
fire trucks with red; Tanaka & Presnell, 1999). But, for
any concept, one can quantify the degree to which it

is associated with each possible color humans perceive
via either human judgments (e.g., Mukherjee et al.
2022; Murthy et al., 2022; Schloss et al., 2018) or com-
putational estimations (e.g., Lin et al., 2013; Rathore
et al., 2020). Rather than considering only some con-
cepts as having discrete associations with a small set
of colors, all concepts can be viewed as evoking a
distribution of associations across all of color space.

Figure 2 shows examples of color-concept association
distributions sampled over a perceptual color space,
called color-concept associations spaces (Rathore et al.,
2020), for the concepts watermelon (W), raspberry (R),
and avocado (A). Each point represents a color, and
each color receives a weight proportional to association
strength (longer bars indicate greater weight).
Watermelon puts strong weights on reds and greens,
raspberry puts strong weights on reds and purples, avo-
cado puts strong weights on greens, and none of these
fruits put strong weights on blues, yellows, or grays.
Estimating the full distribution, rather than the top asso-
ciated colors for a given concept, is important both for
understanding the nature of color-concept associations
and for designing effective color palettes for information
visualizations. Although beyond the scope of the present
article, Schloss et al. (2018) reports evidence that some-
times designing effective palettes requires using weakly
associated colors to avoid confusability.

The color inference framework proposes that color-
concept association distributions arise and continually
update through experience (Schloss, 2018). Schoenlein
and Schloss (2022) tested this hypothesis by teaching
participants about novel concepts: Filk and Slub alien
species. Participants saw examples of colored aliens from



Current Directions in Psychological Science 33(1)

61

each species, which had different color distributions:
One species was warm biased (mostly orange, red, and
yellow), and the other was cool biased (mostly cyan,
green, and blue). After, participants rated color-concept
associations for each species with each color they saw
during exposure plus new, unseen colors varying in
saturation/lightness. Overall, participants formed new
associations from exposure, and association strength
increased with color-concept exposure frequency. This
frequency effect generalized to similar colors not seen
during learning, which helps explain how continuous
color-concept association distributions can be “filled in”
after exposure to a small sample of colors. Moreover,
evidence suggests that color-concept associations spread
to other colors within the same color category (e.g., an
association between a concept and a particular shade of
blue spreads to other colors categorized as blue; Rathore
et al., 2020). Questions remain concerning how color-
concept associations are formed for abstract concepts,
but some have proposed that abstract associations
extend from experiences with related concrete objects
(Schloss, 2018; Soriano & Valenzuela, 2009).

Color-concept association network

Within the color inference framework, color-concept
associations are thought of as stored in a color-concept
association network (Fig. 2) connecting all colors to all
concepts. The connecting-edge weights are proportional
to association strength between each color and concept.

This idea stems from classic semantic networks (e.g.,
Collins & Loftus, 1975), with key differences. In classic
semantic networks, nodes representing concepts of col-
ors (e.g., the concept red) are connected only to con-
cepts for things appearing that color (e.g., fire trucks,
roses) and disconnected from things not appearing as
that color (e.g., bananas). In color-concept association
networks, each perceivable color is connected to every
possible concept. For example, rather than just one
node for the concept of red, nodes exist for every color
percept that appears reddish (light reds, dark reds,
muted reds, purplish reds, orangish reds, and every red
in between.? These nodes are connected to not only
strongly associated concepts (e.g., fire trucks, roses)
but also all other concepts (e.g., bananas). Accounting
for connections between all concepts and colors,
regardless of association strength, is key for under-
standing the color inference processes discussed later.

The distance between any two concepts in the net-
work depends on similarity of their color-concept asso-
ciations, which can deviate from semantic similarity
among concepts. For example, watermelon would be
near Christmas (similar color associations, dissimilar
concepts) but far from bananas (dissimilar color

associations, similar concepts). The color inference
framework focuses on color meaning arising from rela-
tive distances between colors and concepts, but whether
semantic similarity among concepts also plays a role is
an open question.

Contextual cues

A given judgment does not engage the entire color-
concept association network at once. Instead, contextual
cues provide input specifying which colors and concepts
are relevant to a task. Perceptual input (observation of
colors) activates particular color nodes, and conceptual
input (thinking about concepts) activates particular con-
cept nodes within the network. As discussed next, the
resulting inferences depend on which colors and con-
cepts are jointly perceived and considered.

Color inference processes and
corresponding judgments

Different computations on the color-concept associa-
tion network support different kinds of inference pro-
cesses, which produce different kinds of judgments.
Variations in network structure due to cultural, indi-
vidual, or temporal variation (Schloss & Palmer, 2017;
Tham et al., 2020) will produce different judgments
across individuals, but such judgments should still be
predictable if the network structure and inference pro-
cesses are well specified. Two kinds of inference pro-
cesses have been well studied.

Pooling inference for evaluating color preferences.
Pooling inference is an operation on the color-concept
association network that produces judgments of color
preference (Fig. 2). When a person judges their prefer-
ence for a color, concepts strongly associated with that
color are activated. Each concept has a valence (positive/
negative signs in Fig. 2) representing the individual’s
preference for the concept (or referent thereof). The
valences of those concepts are pooled to produce a sum-
mary valence, which determines how much the individ-
ual likes that color.

This notion stems from the ecological valence theory
(EVT), which states that people like colors to the extent
that they like all objects strongly associated with those
colors (Palmer & Schloss, 2010). Supporting the EVT,
80% of the variance in average color preferences of
participants in the United States was explained by the
combined valence of all objects associated with those
colors, weighted by association strength. Color prefer-
ences are considered part of a feedback loop such that
seeking experiences with liked colors reinforces prefer-
ences for those colors, insofar as those experiences are
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Fig. 3. Application of the color inference framework to explain the dissociation between color-concept associations and color meaning

shown in Figure 1b (based on Schloss et al., 2018). See text for details.

positive (Palmer & Schloss, 2010). Earlier work focused
on concrete objects, but later work extended the theory
to include any kind of concept (see Schloss & Palmer,
2017). Although the EVT explains color preferences
across a variety of cultures, it falls short in others (e.g.,
participants in Saudi Arabia), and further research is
needed to understand why (Al-Rasheed et al., 2022).

Within the color inference framework, changes in
color preferences can arise from variations in weights
on relevant concepts in the color-concept association
network during the pooling function. Indeed, priming
observers to think about positive concepts associated
with a particular color (e.g., strawberries associated
with red) increases preference for that color (Strauss
et al., 2013), and natural variations in concept activation
over environmental seasons also produce systematic
changes in color preference (Schloss & Heck, 2017).
These and related results are summarized in a theory
and review article on individual and temporal differ-
ences in color preferences (Schloss & Palmer, 2017), so
they will not be further discussed here.

Assignment inference for interpreting colors in
information visualizations. Assignment inference is
an operation on the color-concept association network
that produces interpretations of color meaning in infor-
mation visualizations. This operation is computed over
the subset of the color-concept association network rel-
evant to the encoding system of the visualization (i.e., the
specific concepts represented in the visualization and the
visual features used to represent them; Fig. 2). For exam-
ple, in the recycling task from Figure 1b, the encoding
system includes the concepts of trash and paper and the
colors purple and white. This subset of the network is
shown as a bipartite graph in Figure 3, a representation

using edges to connect the two concept nodes to the two
color nodes of the encoding system. The numbers next
to the edges (and edge thickness) represent the “good-
ness” of each color-concept pairing, called merit. For
visualizations involving only two discrete concepts and
colors, merit can be considered as association strength
(depicted toward the left of Fig. 3). For visualizations with
> 2 colors and concepts (Schloss et al., 2018) or involving
relational rather than discrete concepts (Schoenlein et al.,
2023), merit can be more complex.?

When participants are asked which color represents
a target concept (e.g., trash), the concepts and colors
in the context of the encoding system are activated
within the network. Assignment inference evaluates
possible assignments between colors and concepts and
returns the overall “best” assignment (greatest total
merit).* Comparing total merit in Figure 3, trash—purple
and paper—white (1.1) has greater merit than trash—
white and paper—purple (0.5), so observers interpreted
that purple meant trash even though trash was more
strongly associated with white (Schloss et al., 2018).
Thus, assignment inference accounts for the dissocia-
tion between color-concept associations and color
meaning shown in Figure 1b.

This recycling example emphasizes that understand-
ing color meaning requires accounting for all colors
and concepts in the context of the encoding system,
not merely each color-concept association alone. This
finding implies that changes to the encoding system
will change inferences about color meaning. Indeed,
ongoing work suggests that if paper is removed from
the encoding system (i.e., participants only complete
trials with trash as the target), then participants no
longer have a reason to choose purple and instead infer
that white means trash.
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Fig. 4. (a) Example trials, for which participants reported which bar color (left/right) represented the target concept above. (b) Bipartite
graphs for the concepts watermelon (W) and mango (M) and colors with low semantic discriminability (green [G] and purple [Pu]) and high
semantic discriminability (red [R] and brown [B]). Here, the colors with low versus high semantic discriminability have high versus low per-
ceptual discriminability, respectively. (¢) Mean proportion of correct responses plotted as a function of semantic discriminability in the mango/
watermelon and cantaloupe/strawberry conditions (averaged over participants and the two concepts within each pair). The colors above
each plot indicate the eight colors judged in that condition (all pairwise comparisons). The bipartite graphs inset in the mango/watermelon
condition correspond to (b). These data are from Schloss et al. (2021). Asterisks indicate significant correlations (***p < .001).

The outcome of assignment inference corresponds
to interpretation of color meaning if there is no conflict-
ing information from legends, labels, or captions.
However, under conflicts (e.g., Fig. 1a), observers must
resolve the mismatch between their expectations from
assignment inference and the external information to
produce an accurate interpretation, which makes inter-
preting visualizations more difficult.

Assuming no conflict, what determines people’s abil-
ity to use assignment inference to interpret color mean-
ing? To address this question, consider the bar charts
in Figure 4a, which represent data about watermelon
and mango. For each chart, which color represents
watermelon? How easy was it to decide? One might
think ease of assignment depends simply on how
strongly you associate each color with the target con-
cept, watermelon, or how easy it is to see the difference
between the colors (perceptual discriminability). But
ease of assignment depends on something else.

For Figure 4a (right), most readers probably inferred
red meant watermelon and the task felt easy, but for
Figure 4a (left), responses were probably split between
colors and the task felt hard (assuming typical color
vision). This example demonstrates semantic discrim-
inability, the ability to discern the difference in meaning
between colors within an encoding system (Schloss
et al., 2021). Semantic discriminability can be quantified
using a metric evaluating the total merit of the most
likely assignment compared with the alternative
assignment(s) (see Schloss et al., 2021, for a formal

definition for two colors and concepts and Mukherjee
et al., 2022, for a definition for larger encoding systems).
Figure 4b shows that for red and brown, the water-
melon-red and mango-brown assignment has much
greater merit than the alternative, so semantic discrim-
inability is high. For green and purple, both assignments
have similar merit, so semantic discriminability is low.
Semantic discriminability is a property of observers’
expectations of color meaning, distinct from the “true”
mapping specified by the designer of an encoding sys-
tem (e.g., watermelon = red and mango = brown or
watermelon = brown and mango = red). Assuming that
the encoding system matches observers’ expectations
(e.g., watermelon = red and mango = brown), the ability
to use assignment inference to correctly interpret color
meaning in visualizations should increase with increased
semantic discriminability.

Schloss et al. (2021) tested this hypothesis by having
participants interpret bar charts (Fig. 4a) with bars rep-
resenting data about two fruits (mango and watermelon
or cantaloupe and strawberry). Participants reported
which color (left/right) represented the fruit named
above the chart. For each fruit pair, participants judged
all pairs of eight colors, which varied in semantic dis-
criminability. Responses were scored as correct if they
matched the optimal assignment (i.e., the assignment
with greatest merit), which should align with observer
expectations (Schloss et al., 2018). Figure 4c shows that
mean accuracy increased with increased semantic dis-
criminability for both mango/watermelon (r= .88) and
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adapted from Mukherjee et al. (2022).

cantaloupe/strawberry (r= .84). A statistical model
showed that semantic discriminability predicted inter-
pretability, independent of effects of association
strength between the target concept and correct color
or perceptual discriminability. Figures 4b and 4c show
an example where accuracy was greater for colors with
lower perceptual discriminability because semantic dis-
criminability was higher.

Semantic discriminability also predicts interpretabil-
ity for visualizations representing a larger number of
concepts and concepts that are more abstract (Mukherjee
et al., 2022). Previously, the prevailing view was that
abstract concepts lacking strong, specific color-concept
associations (e.g., sleeping, comfort, driving, safety)
were noncolorable—they could not be encoded mean-
ingfully using color (Lin et al., 2013). However,
Mukherjee et al. (2022) found that such concepts could
be meaningfully represented using colors to the extent
that those colors were semantically discriminable, given
the other colors and concepts in the context of the
encoding system. Participants saw bar charts with four
colored bars and four concepts listed above and
reported which color they thought represented each

concept (Fig. 5a). Across trials, each concept appeared
in four concept sets, with colors designed to be as
semantically discriminable as possible (Schloss et al.,
2018). Figure 5b shows that within the concept sleep-
ing, accuracy for choosing the optimal color depended
on semantic discriminability between that color and
other colors in the encoding system defined by the four
colors and concepts. Figure 5S¢ shows the full data set,
where accuracy significantly increased with semantic
discriminability. Note that responses were well above
chance, even for concepts that Lin et al. (2013) consid-
ered noncolorable (i.e., activities and properties). Thus,
color is a more powerful cue for visual communication
than previously thought.

Having established that people can use assignment
inference to interpret color meaning insofar as the colors
are semantically discriminable, the next question is, what
determines the ability to find semantically discriminable
colors for a set of concepts? Semantic discriminability
theory posits that the capacity to find semantically dis-
criminable colors for a set of concepts depends on how
different the color-concept association distributions are
for those concepts (Mukherjee et al., 2022).
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To illustrate this theory, Figure 6 shows color-
concept association distributions for pairs of concepts
along with the most semantically discriminable color
pair among all colors assessed for each concept pair.
For concept sets with very different color-concept asso-
ciation distributions (e.g., peach and celery, and banana
and comfort), it is possible to find colors with high
semantic discriminability. Note, comfort has a relatively
uniform distribution on its own (no strong, specific asso-
ciated colors), but when paired with banana, which has
a peaky distribution (strong, specific associated colors),
it is possible to produce highly semantically discrim-
inable colors. When concepts in a set have less peaky
distributions that are still different from one another
(e.g., sleeping and driving), it is possible to find colors
that are moderately high in semantic discriminability.
However, when association distributions are highly simi-
lar, (e.g., grape and eggplant), it is not possible to find
colors in those distributions that are highly semantically
discriminable, even if those concepts have strong, spe-
cific associations on their own. Overall, the ability to
produce semantically discriminable colors for concept
sets increased with increased distribution difference for
sets of two concepts (7= .93) and four concepts (r=.74;
Mukherjee et al., 2022). Initially tested using color,
semantic discriminability theory is a general account of
when perceptual features can or cannot meaningfully
represent concepts. It can be tested using other

perceptual features (e.g., shape, tactile texture) or pos-
sibly even other semantic features (e.g., words).

The Color Inference Framework
in Application

The color inference framework can be applied to pre-
dict color preferences and design colors for information
visualizations that facilitate visual communication. Once
color-concept associations have been quantified, mod-
els of pooling inference can predict color preferences
(Schloss & Palmer, 2017), and models of assignment
inference can select color-concept pairings that opti-
mize interpretability (Mukherjee et al., 2022; Schloss
et al., 2018). These approaches will become more scal-
able as methods improve for automatically estimating
color-concept associations without extensive human
judgments (Lin et al., 2013; Rathore et al., 2020).
Although color-concept associations are dynamic,
updating with experience (Schoenlein et al., 2023), evi-
dence suggests they are sufficiently stable at the group
level to predict group-level color preferences (Palmer
& Schloss, 2010) and color meaning in information
visualizations (Mukherjee et al., 2022; Schloss et al.,
2018, 2021; Schoenlein et al., 2023), which is key for
designing visualizations for public audiences. The
results of these studies can extend to incorporating
color semantics into recommender tools for effective
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visualization design (Gramazio et al., 2017; Smart et al.,
2020) and have already contributed to understanding
color in marketing (Spence & Van Doorn, 2022).

Conclusions

The color inference framework explains why color
semantics is flexible and context dependent, which
makes color an effective medium for communication.
Color semantics cannot be understood only in terms of
associations between individual colors and concepts; it
is important to account for all other colors and concepts
in the context of an encoding system. Any concept set
has potential to be represented meaningfully using colors
if those colors are semantically discriminable. Although
formulated using color, the color inference framework
and accompanying theories have potential to serve as
general accounts of semantics, extending to other visual
features (e.g., shape, visual texture), perceptual features
in other modalities (e.g., audition, touch), and possibly
verbal semantic features (e.g., words). This work
addresses fundamental questions of how the human mind
extracts information from sensory input to acquire knowl-
edge about the world and can be translated to make
communication more effective and efficient.
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K. B. (2022). (See References). Introduces, explains, and
tests semantic discriminability theory for when perceptual
features can or cannot meaningfully represent concepts.

Schloss, K. B., Lessard, L., Walmsley, C. S., & Foley, K. (2018).
(See References). Introduces assignment inference as the
process by which people infer meaning from colors and
shows that associations and meaning are not the same
thing.

Schloss, K. B., & Palmer, S. E. (2017). (See References).
Provides an overview of the ecological valence theory
of color preferences and explains how individual and
temporal differences in color preferences can be under-
stood within a single framework.

Transparency

Action Editor: Robert L. Goldstone

Editor: Robert L. Goldstone

Declaration of Conflicting Interests
The author(s) declared that there were no conflicts of
interest with respect to the authorship or the publication
of this article.

Funding
This work was supported by the University of Wisconsin—
Madison Office of the Vice Chancellor for Research and
Graduate Education, Wisconsin Alumni Research Foundation,
the McPherson Eye Research Institute, and National Science
Foundation award BCS-1945303 to K. B. Schloss. Any opin-
ions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do

not necessarily reflect the views of the National Science
Foundation.

ORCID iD

Karen B. Schloss https://orcid.org/0000-0003-4833-4117

Acknowledgments

Thank you to Tim Rogers, Stephen Palmer, Laurent Lessard,
Kevin Lande, Kushin Mukherjee, Melissa Schoenlein, Melina
Mueller, Mary Peterson, and Morton Ann Gernsbacher for
their constructive feedback.

Notes

1. As described in Schloss et al. (2023) and references therein,
the term “information visualizations” (“*visualizations” for short)
used here refers to external graphical representations and cor-
responding verbal labels created to support visual communi-
cation. “Graphical” refers to nonverbal markings (e.g., visual
features like color, shape, size, and texture) that a designer uses
to communicate their intended message. A “designer” is any-
one who creates a visualization. This definition of visualizations
includes data visualizations (e.g., charts) as well as any system
for encoding information (encoding system) in which designers
use nonverbal visual features to communicate their intended
message. In this sense, an encoding system for recycling bins
in which different colors represent different kinds of trash/recy-
clables is considered a visualization.

2. If colors in the color-concept association network are
extrapolated/interpolated over every perceivable color, it can
be thought of as a smooth distribution over colors. Ongoing
work suggests this distribution of colors is well situated in a
six-dimensional space. The axes contort dimensions of color
appearance (hue, chroma, and lightness) but are well character-
ized by color-space metrics.

3. For colormap data visualizations where variations in data mag-
nitude are represented by gradations of color, merit is informed
by “direct” color-concept associations between individual colors
and concepts represented in the map (e.g., data representing
more sunshine are associated with lighter yellowish colors) and
“relational” associations (e.g., data representing larger magni-
tude are associated with darker colors; dark-is-more bias). See
Schoenlein et al. (2023) for a method to estimate combined merit
from two sources, with potential to scale to include additional
sources of merit that are known and those yet to be discovered.
4. The notion of assignment inference stems from assignment
problems, which are mathematical models that assign items
in one domain to another domain to optimize some feature
(e.g., assigning trucks to delivery routes to minimize mileage;
Burkard et al., 2012). However, a key distinction is that assignment
problems return the best assignment, regardless of the difference
in merit between the possible assignments, whereas people’s abil-
ity to perform assignment inference depends on how much one
assignment is better than the alternative(s) (Schloss et al., 2018).
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