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Pulse characterization in ultra-fast optics presents a powerful motivation to study phase retrieval problems of
high order. Frequency- and time-resolved techniques for pulse characterization both construct measurements
that depend on the intensity of the cross-correlation between two unknown signals undergoing known
modulations. The problem of recovering these signals has been traditionally studied and solved with alternating
minimization, but recently Wirtinger gradient techniques were demonstrated to invert frequency-resolved
measurements on a symmetric signal pair (Pinilla et al., 2019). In this paper, we construct a generalized
Wirtinger gradient and Hessian to solve a wide breadth of problems including signal recovery from time-
and frequency-resolved measurements. We further demonstrate that both measurement paradigms are special
cases of low-rank phase retrieval but with a special structure that disrupts spectral initializers. To combat this
problem, we present a tensor-based iterative hard thresholding initializer that, when paired with a Wirtinger
gradient descent, is capable of recovering unknown signals with fewer measurements than matrix-based
alternating minimization or spectral initialization methods. Finally, we employ Wirtinger gradient descent
to recover signals from real-world DSCAN (Wilhelm et al., 2021) measurements and compare results with the
existing state-of-the-art.

1. Introduction optical elements are used for pulse modulation in spatial and temporal
domains, while non-linear optics are used to multiply pulses by other
pulses or enact a non-linear function on a single pulse. Laser pulse
characterization produces a series of measurements wherein one or two
unknown vectors multiply with modulation functions and each other
before they are integrated in intensity. The reader is referred to [4] for
a complete treatment on ultra-fast optics.

Recovering pulses from phaseless measurements of their interaction
can be formulated as a higher-order phase retrieval problem [5]. The
matrix formed by the outer product of two signals contains all unique
products involved in cross-correlation of two signals, and we note that

Recovering information from measurements that discard phase in-
formation is a broadly studied topic that unites algorithms from the
optimization community with powerful motivations from optics. Phase
retrieval in optics is widely employed to recover crystal structure and
unit cell projections in crystallography [1] and images in ptychographic
and coded diffraction imaging [2].

Physical nuances in non-linear ultra-fast optics have created the
need to recover information from more complicated and intricate inter-
actions between light and material—and even between light and itself.
Specifically, laser pulse characterization [3] defies classical formula-

tions of phase retrieval by recovering unknown complex signals from
phaseless quadratic measurements rather than phaseless linear measure-
ments. Pulse characterization presents a unique challenge because at
the incredibly brief time-duration of the pulses involved, direct in-phase
and quadrature (IQ)-style heterodyne sampling is not possible. Instead,
measurements must be made in an integrated fashion, where the pulse
interacts with sensors that integrate intensity over time-scales much
larger than the duration of a laser-pulse. This loss of both phase and
time information motivates the use of a probing function to temporally
encode the pulse under test. The probing function is typically another
laser pulse, either one that is shorter in duration than or a copy of
the pulse under test. Depending on the specific optical setup, linear
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optical pulse characterization measurements can be viewed as phaseless
quadratic measurements of this rank-one outer product matrix. This
raises the possibility that algorithmic techniques for low-rank phase
retrieval [6] may bring new approaches to solve the pulse character-
ization problem. Among these, techniques like anchored regression [7]
have been demonstrated effective in low-rank phase retrieval and could
present a convex optimization approach to pulse characterization.
Meanwhile, many algorithmic techniques to solve the pulse charac-
terization problem exist. Frequency-resolved optical gating (FROG) [8]
remains one of the most commonly studied measurement paradigms
for pulse characterization in the optics and optimization communities
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Fig. 1. Comparison of frequency- and time-resolved pulse characterization systems.
(a) Simplified setup of a frequency-resolved optical gating (FROG) system. Two pulses,
or a single pulse that is split, are physically time-delayed with respect to one another
with the use of a physical delay path. The two pulses are brought together in a
non-linear medium, where their product is produced and measured at a spectrometer.
(b) Simplified setup of a time-resolved pulse characterization system. A pulse enters
a pulse-shaper [15], which modulates the pulse in the wavelength domain. The pulse
is then squared in the time domain and measured in the wavelength domain at the
spectrometer. When properly converted from wavelength to frequency, the intensity
of cross-correlation of the pulse’s modulated frequency content is measured at the
spectrometer.

alike. Recovery techniques from FROG measurements include vari-
ous alternating minimization algorithms [8-11] and gradient descent
methods [12]. Alternating minimization techniques typically rely on
alternating between a forward model that imposes magnitude con-
straints and a gating constraint that ensures the forward model acts
only on a rank-one matrix projection [9]. Gradient approaches typically
seek to minimize a least-squares cost function with descent following a
Wirtinger gradient [12].

Recently developed time-resolved pulse characterization systems
[13,14] use less physically complicated optical setups for collecting
measurements compared to frequency-resolved systems. Whereas FROG
systems typically measure intensity of cross-correlation using a physical
translation stage to move one pulse in time against another, time-
resolved systems use non-linear effects in a transform domain to com-
pute the intensity of cross-correlation for modulated spectra. Math-
ematically, the two approaches are very similar, with the difference
being that the time-resolved systems aim to recover the complex spec-
trum of a pulse, while frequency-resolved systems aim to recover its
complex time-domain profile. Frequency- and time-resolved systems
are compared in Fig. 1. Generally speaking, time-resolved techniques
are advantageous because of their simplified optical setups and the
control they offer over spectral modulation. This is expanded on in
Section 2.

The similarities between classical measurement techniques like
FROG and more recent time-resolved techniques motivate a broader
definition of the pulse characterization problem. In this paper, we
formulate the general problem of bivariate recovery from intensity
of cross-correlation (ICC), and we present its representations both
as a low-rank phase retrieval problem and as a low-rank tensor re-
covery problem. We demonstrate how these formulations motivate
new algorithms and initializers. We present preliminary work toward
understanding theoretical convergence properties of the intensity cost
function, as well as an examination of the computational and memory
complexity of several approaches. Finally, we demonstrate the effec-
tiveness of these algorithms on recovery from real measurements and
compare results against a recent inversion algorithm from the optics
community [16].

In Section 2 we present the ICC problem and its matrix and tensor
formulations. In Section 3, we detail a least-squares cost function,
its gradient, and its Hessian. In Section 4, we discuss a limitation
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of spectral approaches for solving the ICC problem and demonstrate
several effective alternating minimization approaches. In Section 5.1,
we provide numerical experiments that demonstrate the efficacy and
complexity of gradient and tensor approaches to this problem as well as
numerical investigations into cost function behavior and convergence.
Finally, in Section 6, we demonstrate the performance of algorithms in
this paper on data taken from a physical system.

Notation: Many equations in this paper involve the manipulation
of complex-valued vectors and matrices. The superscript * represents
elementwise complex conjugation of a scalar, vector, or matrix. The
superscript ¥ represents the conjugate transpose of a vector or matrix,
while the superscript 7 represents the non-conjugate transpose of a
vector or matrix. Vectors bearing 7 or # are interpreted as row vectors.
The notation x ~ C(0,IV) represents a complex Gaussian random vector
with zero mean and identity covariance in dimension N.

2. Background and problem definition
2.1. Intensity of cross-correlation

We consider the recovery of two vectors x, € C and y, € CV from
a series of I phaseless cross-correlation intensity measurements of the
form
2

hlk1 = eixo @) diyo| +nilk] M
k
min(M,N—k)—1 2
= > alnld In+ Klxolnlyy[n + k1| +n,lkl,

n=max(0,—k)
ie{0,1,....I -1},
ke{-M+1,-M+2,....,N —1}.

Here, {c;} 1’:_01 c CM and {dq; }[’:‘01 c CN are complex modulation
vectors that are point-wise multiplied with the target vectors x, and
¥o- A second indexing variable k represents the lag shift in the cross-
correlation measurement. Presented vectors and sums are zero-based.
Real-valued noise is denoted by #;[k]. We define signal-to-noise ratio
(SNR) throughout this paper as
2
SNR = M %)
i mlk115

2.2. Blind FROG

Among several existing FROG measurement paradigms, one that
matches the definition of ICC presented in (1) is blind FROG [5]. In
our notation, the measurements of pulses x, € CM and y, € CV in
blind FROG can be expressed as

2
T2 M o (nlyg[n + k1| + ;K. 3

min(M,N —k)—1

mlkl=| Y
n=max(0,—k)
We see that (3) is an instance of (1) with ¢;[n] = e=>*/"/M and d,[n] = 1.
An aspect of FROG that was explored in [5] was that the lag k
may be larger in time than the spacing between samples of x, and
¥o,» which lowers the non-ambiguous bandwidth in the recovery of x,
and y,. This treatment is largely left out of this paper, where we focus
primarily on time-resolved approaches. In time-resolved approaches,
the lag variable is controlled by sample density in a spectrometer rather

than the coarser physical spacing of a delay line.

2.3. Time-resolved techniques

Measurement systems such as SPARC [14] and DSCAN [16] belong
to the family of time-resolved pulse characterization techniques. In
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stark contrast with FROG, where the delay in ICC measurements is
produced by physically translating the path of one pulse with respect
to the other, time-resolved techniques compute ICC measurements by
modulating and measuring in the spectral domain. This difference is
illustrated in Fig. 1. A key advantage of time-resolved systems is the
ability to control the modulation applied in the spectral domain by
the use of a mask. Masks are complex-valued and can modulate both
the amplitude and the phase of the pulse at various wavelengths.
Upon returning to the time domain at the exit of the compressor, the
signal is passed through a doubling crystal. The crystal acts to square
(without conjugation) the pulse, rather than multiply it by another
pulse. This results in the measurement (at the spectrometer) of the
intensity of the cross-convolution of the modulated frequency spectrum
of the pulse with itself, rather than a measurement of the intensity of
cross-correlation.

In summary, time-resolved techniques take the form of the ICC
measurements presented in (1) where x, represents the spectrum of
the pulse to be measured, y, = xé[:: —1], where [:: —1] represents
time-reversal, and for all i, d; = ¢/[:: —1].

DSCAN [16] provides a minimalist system for time-resolved pulse
characterization. DSCAN opts to move the position of the second
diffraction grating in the Martinez pulse compressor to impart a phase
profile on the spectrum of the pulse. Subsequent modulations are
achieved at unique locations of the grating. With DSCAN, the modu-
lation ¢,[n] is given by

; 2
e[n] = exp j@\/l - (% - sin(e[i])) . @

Here, L[i] denotes the position (positive or negative) of the second
grating of the pulse compressor away from the nominal four focal
length separation, 6[i] denotes the incident angle of the compressor’s
first grating [16] typically held at the Littrow angle of the center-
wavelength, and d represents the density of the diffraction grating used.
We will return to this measurement paradigm in Section 6 when we
present experiments using real data.

The generality of (1) and the adaptability of the algorithms pre-
sented here to various frequency- and time-resolved pulse measurement
systems suggest that we are not limited to using existing pulse correla-
tion and convolution systems. The requirements on the forward model
(i.e., properties of {c;}, {d;}, and measurement count (I)) to guarantee
recovery are topics of future research.

2.4. Extension from existing phase retrieval problems

This problem extends naturally from that of linear phase retrieval
where a complex vector x € CV is recovered from phaseless linear
measurements y = |Ax|?, A € CM*N_ This problem has been studied
for the better part of the last half-century and has yielded convex and
non-convex techniques in a multitude of varieties [17-25].

The approaches that are studied in this paper draw direct analog
to three phase-retrieval algorithms applied to the higher-order phase
retrieval problem raised by pulse characterization. The first of these
algorithms is the Gerchberg—Saxtonalgorithm [18] which iteratively
constrains magnitude of Fourier coefficients against a transform do-
main constraint. Applied to pulse characterization, the most common
alternating minimization method is the PCGPA algorithm [10] that
we generalize to two unknown pulses in this paper. The second is
Wirtinger Flow and its variants [19,26], which is typically an initial-
ization procedure followed by a gradient descent cost minimization.
This paper examines several initializations followed by a gradient
descent over intensity cost. The final extension is from PhaseLift [21],
a lifted technique that minimizes the trace of a larger “lifted” linear
matrix recovery problem rather than solve a non-linear vector recovery
problem. In this paper we expand this concept to a linear tensor
rank minimization problem lifted from a higher-order low-rank phase
retrieval problem.
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Current state-of-the-art in phase retrieval is dominated largely by
alternating minimization approaches like Gerchberg—Saxtonand gradi-
ent descent techniques. Recent years have seen extensive study into
modifications and improvements of both forms of these algorithms,
with particular attention from the optimization community directed
toward improved gradient techniques. In particular, advances in ini-
tializers, transitioning to amplitude based cost functions, and the use
of reweighting and truncation per iteration techniques have demon-
strated significant practical use [22,23,25]. A brief examination of an
amplitude based approach is included in our numerical results.

Expanded capabilities in phase retrieval led to the more recent
measurement paradigm of low-rank phase retrieval [6,7,27]. Low-rank
phase retrieval examines the recovery of a matrix X from a series
of phaseless matrix inner products of the form y, = |(A,, X)|%. This
problem is typically motivated by simultaneously solving for a series of
ordinary vector-based phase retrieval problems of the form y; = A;x;
with the caveat that the x; vary only in some low-rank fashion when
concatenated into a matrix X = [x,, x,, ...] [6]. This formulation allows
generalizes measurement matrices A that can extend over multiple x;,
and this joint information can effectively recover the matrix X and
thereby [x;, x,, ...]. Low-rank phase retrieval is also motivated in blind
deconvolution problems [7] where pairs of signals are recovered from
the Fourier magnitude of their convolution. The technique we share in
this paper can be viewed as a low-rank phase retrieval problem with
distinct challenges which will be reviewed in Section 4.1, and is distinct
from these previous low-rank phase retrieval problems largely due to
the structure of the measurement matrices A; used in ICC.

2.5. Problem formulations

At this point, our analysis will be made considerably easier and the
motivation for our algorithms will be made more clear by rewriting the
problem in (1) in several forms. These formulations will share some
common notations:

I[k] = max(0, —k) and u[k] = min(M, N — k) — 1 are the lower and
upper limits, respectively, for the index of summation » in the
cross-correlation at k lag appearing in (1).

For a matrix C, diag(C, k) is a matrix of all zeros, except the kth
diagonal which is filled with the kth diagonal of C.

A;lk] = diag(c,-d,.H , k) represents an M X N matrix whose values
are all zero except for the kth diagonal, which is filled with the
lagged product of ¢;[n]d}[n+ k].

El’.‘ = A;[k]* ® A;[k] is the fourth order tensor whose entries are
zero except where filled as

L¥g.r,s.1] = diag(c;d, k)lq,r]* diag(c;d[, k)[s.1].

Xy =xo® y(*; ® x(*; ® y, is the fourth order outer product tensor
with non-zero entries indexed as X[q,r, s, 1] = x([q] y(’; [r]x(’;[s] Yoltl.

2.5.1. Quartic bivariate vector formulation

The first formulation we construct is straightforward from (1). The
ICC measurements (1) can be expressed as a quartic function of the
vectors x, and yj:

ulk] 2

Z ¢;[nld; [n + klxolnlygln + k1| + n;[k]
n=I[k]

X 2
Ix{ diag(c;d/?, K)yi™ +nlk]

i

hy[k]

12
= |x{ ALKLY 1™ + milk]
= x{ A [klygxf A [Kklyg + K], (5

This formulation will be useful for the construction of a Wirtinger
gradient in Section 3.



D. Rosen and M.B. Wakin

2.5.2. Quadratic low-rank matrix formulation

Our second formulation highlights the fact that the ICC measure-
ments (1) can also be expressed as phaseless quadratic measurements
of the rank-one matrix xoyé’ formed by the outer product of the two
unknown vectors x, and y:

hilk) = |xD A TK1yE L + 0]
= (ALTKL xoyE) I + miTk]. ®)

Here, (A, B) = trace(BH A) represents the Frobenius inner product
between matrices A and B.

This formulation reveals that ICC falls into the category of low-
rank phase retrieval problems [6]. Interestingly, in ICC the low-rank
(in fact, rank-one) structure of x, ygl arises due to the lagged quadratic
relationship between measurements and variables; in other settings [6],
low-rank structure connects phaseless measurements spanning a time
period over which a one-dimensional objective signal varies. An impor-
tant distinction in ICC is that matrices A¥[k] = diag(c,d”, k)* against
which xoy(’f is measured in (6) are entry-wise sparse and disjoint
across different k. This structure differs from the global, often low-
rank measurement matrices that typically appear in the low-rank phase
retrieval literature [6,7]. This also has substantial implications for the
efficacy of spectral initializers as we discuss in Section 4.2.

2.5.3. Linear low-rank tensor formulation

Finally, it is important to note that the ICC measurements (1) can
also be expressed as linear measurements of a rank-one fourth-order
tensor formed by x,, y,, and their complex conjugates:

h[K] = KATTKL, xoyiD)I + milk]
= (ATTK] Xy WAK], x5yl + n,Tk]
= (AT[K] ® A;lk], xo ® vy ® x5 ® yo) + m;lk]
=(Lk, X))+ nilk. )

This linearity will be the foundation on which we base our iterative
hard tensor thresholding approach for inverting measurements as we
discuss in Section 4.4.

3. Cost function, wirtinger gradient, and wirtinger hessian
3.1. Wirtinger calculus

Gradient-based optimization techniques for phase retrieval typically
differentiate a cost function built on the intensity or amplitude error
between measurements generated from truth and the current approx-
imation. Starting from (5), we construct a least-squares cost function
for pulse characterization from ICC measurements that extends cost
functions used in Wirtinger Flow for linear phase retrieval [26], and
we provide the gradient and Hessian of that cost function. Because the
vectors x, and y, are in general complex-valued, we use the Wirtinger
gradient and Hessian [19,26,28]. We also characterize the ambiguities
of this cost function as they align with current understandings of ICC
ambiguities in the literature [12].

Throughout this section, some notation will be condensed. Let x €
CM and y € CN denote the optimization variables with which we aim
to recover x, and y, (up to some ambiguities to be discussed). The
modulated cross-correlation at lag k between ¢;x and d,y is represented
by g[k] = xT A;[k]y*. The intensity of modulated cross-correlation for
this choice of x and y is then given by H;[k] = | g,-[k]lz. Finally, the error
between the actual measurements 4,[k] and those predicted by x and y
is given by e;[k] = h;[k] — H,[k].

The least-squares intensity error cost function for ICC is given by

ZZ

i=0 k=—M+1

Sy = hilk] = X" A;lk]y* <" A} [k]y) . (8

Signal Processing 215 (2024) 109267

This cost function adds the squared differences for all lags without
any special weighting, and it operates on the error in intensity as
opposed to magnitude (the square root of intensity, amplitude is used
synonymously). Derivation of the Wirtinger gradient and Hessian is
simplified with the use of a concatenated variable z = [x7, yT]T and
corresponding cost function of this single variable. This representation
and the derivation of its Wirtinger gradient and Hessian are shown in
Appendix A. Their adaptation to the ICC problem is presented here.
For the cost function (8), the generic Wirtinger gradient derived
in (26) can be evaluated with the substitutions made in (19) and (20)
to arrive at the following expression for the ICC Wirtinger gradient:

gilk1AT[k]y
g [k]AT [k]x
g k1A, [k
g,[k]A,” [k]x*

Vixy) = )]

I

i=0 k=—M+1

Note that at the ground truth (when x = x; and y = y) in a
noiseless problem, e;[k] = 0 for all i,k, and so the gradient Vf(x,y)
will be zero as expected. Also note that the gradient will also be zero
if x and y lie in the null-space of Z N 1M+| e,-[k]g;k[k]AIT[k] and
Z M 41 eilklg[k1AT[k], respectlvely. A more detailed discussion
of convergence results to date will be discussed in Section 5.3.1.

Similarly, the generic Wirtinger Hessian derived in (36) can be
evaluated with the substitutions made in (19) and (20) to arrive at the
following expression for the ICC Wirtinger Hessian:

V2 f(x,y) = Z Z U1U e[k](vzv +v;v3 +V) (10)
i=0 k=—M+1
where
glKA: K]y | [ Arlkly 0
_ | grk1AT (k)X 0 AT [k]x
B epaamay || 0 [laky |
gilk1AT [k]x* ) | AH [k]x* 0
and
0 glK1AZ K] 0 0
v - |&tA] k] 0 0 0
0 0 0 g kALK |
0 0 glk1AT k] 0

Recall that at the ground truth (when x = x; and y = yy) in a
noiseless problem, e;[k] = 0 for all i, k. In this case, the ICC Wirtinger
Hessian in (10) reduces to a sum of outer products of the form v, v
and is therefore positive semi-definite. While this bodes well for
local convergence properties, analysis away from ground truth is more
complicated and is discussed further in Section 5.3.1.

3.2. Ambiguities

The cost function presented in (8) is invariant to certain transfor-
mations of the optimization variables. In particular, for any x € CM
and y € CV, f(x,y) = f(x,,y,), Where
Xgln] = ax[n]e/(®x*vm) an
Yalnl = a”y[n)e (s*vn)
for any nonzero a € R and for any ¢,,,,w € R. This fact is proved in
Appendix B.

We therefore see that certain ambiguities plague the recovery of any
ground truth vectors x, and y, from ICC measurements: (i) a global
amplitude scaling factor resulting from the correlation function, (ii) a
global phase offset resulting from phaseless measurements, and (iii) a
frequency offset resulting from phaseless correlations. These are very
similar in form to the ambiguities that are discussed in FROG recov-
ery [5,12]. In the noiseless case, we note that the Wirtinger gradient
will again be zero and the Wirtinger Hessian again positive semi-
definite at any (x,, y,) constructed by applying the transformation (11)
to the ground truth (x, yy).
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3.3. Wirtinger descent algorithm

To minimize the cost function (8), we use the off-the-shelf L-BFGS-B
algorithm from Scipy’s optimization library [29]. This function operates
on real variables. We adapt the Wirtinger gradient and Hessian to
functions of real variables in Appendix C. In remaining sections, L-
BFGS-B applied to the cost function in Eq. (8)will be referred to as
Wirtinger descent.

4. Initializer algorithms inspired by low-rank matrix and tensor
formulations

In this section, we present several additional algorithms for estimat-
ing the vectors x, and y, from ICC measurements of the form (1). To
complement the Wirtinger descent algorithm, which derives from the
quartic bivariate vector formulation of ICC outlined in Section 2.5.1,
the algorithms in this section are inspired by the quadratic low-rank
matrix formulation outlined in Section 2.5.2 and the linear low-rank
tensor formulation outlined in Section 2.5.3. Each of these algorithms
has the capacity to solve the ICC problem, although they differ in
computational complexity, memory usage, convergence rate, and sam-
ple complexity. Consequently, we have identified that the algorithms
introduced in this section are well suited to the role of initializer
for Wirtinger descent. Numerical comparisons of these initializers are
provided in Section 5.1.

Inspired by the quadratic low-rank matrix formulation of ICC, we
present a modified spectral initializer that is specially adapted to the
structure of ICC measurements. Additionally, we discuss the use of
alternating matrix projection algorithms for solving the ICC problem.
These algorithms are capable of converging very quickly, but are typi-
cally inferior to Wirtinger descent as they require more measurements
to converge.

A common problem exists between traditional spectral initializers
and alternating minimization approaches for ICC in that disjoint mea-
surements prevent information from separate lags of h;[k] from being
combined effectively. To remedy this, we also lift the low-rank matrix
problem into a low-rank tensor recovery problem, which we solve using
an iterative hard tensor thresholding algorithm. This algorithm is capa-
ble of operating in a low measurement regime, but it is computationally
intensive. For this reason, it is better suited as a starting point for
Wirtinger descent.

4.1. Differences from classical low-rank phase retrieval

The formulation of ICC in (6) shows that recovery from ICC can be
viewed as a low-rank phase retrieval problem. However, several major
differences exist between ICC and problems studied in the low-rank
phase retrieval literature [6,7,27].

The first difference is that the objective matrix xoyé{ in (6) is not
only low-rank, but known a priori to be rank-one. While this is a
powerful prior, a complication that exists in ICC is that the measure-
ment matrix Af[k] has a rank that is typically u[k] — /[k] (assuming
the entries of ¢;,d; are non-zero). In contrast, most low-rank phase
retrieval problems involve interactions with low-rank measurement
matrices [7,27].

An additional complication is the disjoint nature of ICC measure-
ments as a function of k. For k;,ky € (-M +1, — M +2, .., N-1}
with k, # k;, we have (Af[k,], Af[k,]) =0 for all i. We also note that
for a given k, Af[k] is only capable of operating on the kth diagonal
of xoyéf and no “global” (i.e., multi-diagonal) measurements of xoyg’
exist. This leaves the rank-one structure of x, y{f as the only assumption
that can combine information across diagonals.

Another way to view this stark contrast with existing low-rank phase
retrieval works is to think of the ICC recovery problem as a series
of M + N — 1 disjoint linear phase retrieval problems (y = |Ax|?)
that each contribute a single diagonal of the matrix xoyg’ as shown
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diag(codl, k)
Dy = diag(c.ldf, k)

diag(cl—ld;l—l' k)

h;[k]

i »

Fig. 2. ICC measurements from (1) represent k diagonal-disjoint phase retrieval
problems of a rank-one matrix. Every measurement h;[k] represents the intensity of
the inner product between a diagonal of our objective and a diagonal of a rank-one
measurement matrix: h,[k] = |(diag(c,d/, k)*, diag(xy", k))|2.

in Fig. 2. Measurements A;[k] for a fixed k are created using only
the kth diagonal of the outer product matrix x,y/. One could then
attempt to solve for each of the diagonals separately using any preferred
phase retrieval algorithm, and collect their results at the end to solve
for the outer product matrix xoy(’)* . However, because phase retrieval
algorithms recover vectors only up to an ambiguous global phase offset,
all diagonals recovered separately will have a unique global phase-
offset. This means that if one were to form the M + N —1 phase retrieval
problems and solve for each diagonal of x y(’)i , each diagonal would be
multiplied by an arbitrary unknown phase, and the resulting matrix
would in general have rank greater than one.

This lack of global measurements also prevents spectral decompo-
sition from properly combining information in spectral initializers like
those employed in [7,30]. For the ICC problem, the spectral initializer
is mostly easily constructed from the tensor formation shown in (7),
where the ICC measurements are the linear projection of the fourth
order tensor X = xj, ® y; ® x; ® y, onto successive fourth-order
measurement tensors £f.‘ = A[k] ® A;[k]. Letting vec (&) denote a
vectorization of X and Y denote a vector containing the ICC measure-
ments {Ah;[k]};,, we may write J = Avec (&), where A is a matrix
whose rows are formed by the appropriate vectorizations of {£l’.‘} i A
typical spectral initializer at this stage would use the adjoint of A to
construct Z = A" Y, reshape Z to form a matrix corresponding to the
unfolding of X — vec (x, yé{ Yvec (xo yg’ )N, and then take the leading
eigenvector of this matrix as an initial guess of vec (xoy{)’ ). We will
refer to the matrix reshaping of Z as the spectral matrix. In typical
low-rank phase retrieval settings [7], measurement matrices are global
and the spectral matrix has a leading eigenvector that contains global
information from the objective matrix. But here, (Ef." ,£*y = 0 when
k| # k,, and the resulting spectral matrix will produce a block diagonal
matrix as shown in Fig. 3. In particular, the spectral matrix produced
for ICC measurements will have a block for every diagonal of x, yg’ , and
taking the leading eigenvector will merely return a spectral estimate for
the largest energy diagonal of xoy(’)’ . Spectral decomposition could be
used with the largest M + N — 1 eigenvectors of the spectral matrix to
recover estimates of all of the diagonals of x,y*!, but these would again
be ambiguous up to phase rotations and the resulting estimate of xoyg’
would in general have rank greater than one. A technique to align these
diagonals is presented in Section 4.2.

Because vec (xoyé’ )(vec (xoyg’ N is inherently a rank-one matrix,
one may consider low-rank matrix completion techniques to augment
the block diagonal estimates such as those in the right panel of Fig. 3.
However, we consider an even more direct approach for exploiting
low-rank structure. The values of Z can be reshaped into a tensor
approximation of X, and iterative hard thresholding on this tensor
forms the core principle of the initializer we present in Section 4.4.
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Spectral Matrices for two measurements
Global Measurements

ICC Measurements

0 25 50 0 25 50

Fig. 3. Using x, ~ C(0,1°) and y, ~ C(0,1'%), we construct a spectral matrix in the
2
fashion of [7] from 1000 measurements of the form s, = |<Ai, xoyé’)| . For the purposes

of illustration, the outer product matrix x,y{' has been vectorized along its diagonals.
Left: measurements h; correspond to global rank-one measurements, where each 4, is
the outer product of two vectors. Such measurements align with recent research in
low-rank phase retrieval [7,27]. The leading eigenvector for the spectral matrix (which
is not visually apparent because the matrix also contains a multiple of the identity) can
be reshaped into a 6 x 12 matrix to provide a spectral initializer for x, y(‘:’ in low-rank
phase retrieval. Right: measurements s, depend on diagonals of x,y;, i.e., each A4,
is a high-rank, diagonal matrix as one encounters in ICC. Each eigenvector of this
block-diagonal spectral matrix will only provide information about a single diagonal
of xoyil.

4.2. Spectral initializer for disjoint low-rank phase retrieval

We present here a low-complexity approach to synchronize the
phases across noisy estimates of the diagonals of the rank-one matrix
xoygl . The aim of this technique is to resolve the phase mismatch
between diagonals recovered with spectral techniques to produce a
rank-one matrix whose leading eigenvector serves as a good estimate
of vec (x y(’f ).

Our approach is based on an examination of local sub-matrix con-
ditions in a properly phase synchronized matrix. To illustrate local
regularity condition we employ, for two vectors x € CM and y €
CV, consider an outer product matrix of the form xy that has been
multiplied by an arbitrary phase per diagonal ¢,. In any 2 x 2 sub-
matrix with nonzero entries, notice that the product of two diagonal
entries divided by the product of the two anti-diagonal entries produces
a ratio that is invariant to x and y and depends only on a product of
phase terms of the form Gubnd_ & 410 as shown in Fig. 4. In a rank-
one matrix, this ratio must always be equal to 1; therefore this quantity
gives a local regularity condition that measures how well the phases
are synchronized to give a rank-one matrix. Moreover, this leads to
a constructive procedure for synchronizing the phases. Computing the
ratio for every 2 x 2 sub-matrix, we obtain a series of cross terms that
each depend on no less than 3 unique entries of ¢. This leaves two
elements of ¢ as free parameters. For algorithms in this paper, we set
¢ = ¢ = 1 arbitrarily. With this assumption in hand, ¢, can be solved
for using the products D1d100P; = b3, and so on.

More generally, this problem can be thought of as a phase syn-
chronization problem [31] where we have M N third-order cross-term
measurements of three vectors x, y, ¢. While it may thus be feasible to
pose another optimization at this stage, where the rank of the resulting
misaligned outer product matrix is minimized by varying diagonal
phase offsets, we select the local regularity approach because it is
largely algebraic and requires only simple assumptions. We note that
the ambiguities discussed in Section 3.2 remain and cannot be resolved
by any algorithm without additional assumptions. In particular, the
unknown phase offset between ¢, and ¢, propagates across all values
of ¢, which manifests as an unknown frequency offset in the recovery
of x and y.

In practice, an estimate of x yg’ may contain both magnitude and
phase errors. Algorithmically, we align magnitude and phase in two
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Fig. 4. When xy is multiplied by an arbitrary phase offset ¢, on each diagonal, any
2 x 2 submatrix can be used to compute a ratio that depends only on the phase offsets.
Ensuring these ratios are equal to 1 ensures the phases are synchronized so the matrix
can have rank I.

different steps. Magnitude errors in the entries of the misaligned xy*
are corrected iteratively because of the coupled nature of the ratio
measurements, and the algorithm used for this process is detailed in
Algorithm 1. Phase is solved for directly as detailed in Algorithm 2.
We adopt the following notation: y;,,. represents the collection of the
largest M + N — 1 eigenvectors of the spectral matrix collected as
misaligned diagonals of an approximation of x yg’ s Xmag TEPTESENtS the
local magnitude aligned version of y,,.., and s represents the
phase and magnitude aligned estimate of xOy(I)’ .

Algorithm 1: Iterative magnitude correction for diagonally
disjoint recoveries (MagReg)

Data:
c (CMXN

Xspec
Parameters:
maxIts = 1000
thresh = le — 4
Result: y,,,, € CM*N
1 X < Xspec
2 for(ii=0, 1, .., maxlts— 1) {
// adjust =1€ RMXN _gjf f € RIM-Dx(N-1)
3 Xold < X
4 adjust =1
sy = sy
adjust[: =1, =11 s=dif f
adjust[l :,1 ] x=dif f
adjust[: =1,1 ]/ =dif f
adjust[l :,: =11/ =dif f
10 x = x * adjust
1 | if |z = xoall?/11 2113 < thresh then

9]

|1/8

© ® N o

12 ‘ break

13 else if ii == maxIts then
14 ‘ break

15 }

16 Ymag < X

Finally, we present a complete spectral initializer in Algorithm 3
that uses the magnitude and phase alignment techniques described in
Algorithms 1 and 2. Fig. 5 shows results from spectral initializers with
and without magnitude and phase alignment as well as the result of
a spectral initializer that uses the single largest eigenvector [7]. The
phase and magnitude alignment concentrates the eigenspectrum similar
to that of the ground truth, and produces a much finer estimate of
magnitude than the unaligned attempt. The estimate of phase from
the aligned version does appear noisy in comparison to the unaligned
initializer, however this is only in the region where the unaligned
initializer produced estimates significantly larger than zero. Across the
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Algorithm 2: Iterative phase correction for diagonally disjoint
recoveries (PhaseReg)

Data:
c (CMXN

){mag
Result: y,0,q € CMN
1 adjust =1 € CMxN
2 for(k=[-M+1, —M+2, ..., N-1){
o | compare= exp (12 (it
if k <0 then
‘ diag(ad just, k)[: —1] x= diag(compare, k + 1)
else if k> 1 then
‘ diag(ad just, k)[: —1] x= diag(compare, k — 1)
}
for(k=[-M+1, —M+2, ..., N-1){
10 if k <0 then

© ® N o u H

. . __ diag(ad just, k+D[:—1]?
1 ‘ diag(ad just, k) *= G e
12 else if k> 1 then
diag(ad just, k=1)[:=1]*
diag(ad just, k-2)[:-2]

13 ‘ diag(ad just, k) %=
14 }
15 Xaligned = Xmag * €xp(—j£(ad just))

full signal width, the aligned estimate is more consistent. This higher
concentration of eigenspectrum in the aligned initializer aligns with
a priori knowledge that the spectral initializer here should be rank-
one, and was chosen to initialize Wirtinger descent later. It should
be noted that the traditional approach (“spectral”) of using only a
single eigenvector from the spectral matrix fails almost completely
here, seemingly able only to estimate a single large value of x.

Algorithm 3: Spectral initializer with iterative magnitude and
phase correction
Data:
hilk] = |e;xo @y di}’0|2 + m;[k] € RIAMAN=1
Result: xe CM, ye CN
1 Zspee = 0€ CMXN
for(k=[-M+1, —M+2, .., N-1){
// A, € CXu=D p eRI] D e CUuhHxw=D

N

diag(codf!, k)
s | A= diag(cl.le )
diag(c,_l'dﬁl, k)
hylk]
o | m=| e
hy_[k]
5 D = Af diag(hy)A,

6 u, s, = SV D(D)

7 diag(¥ypec> k) = ul:,014/s[0]
8 }

9 Xmag = MagReg(Xspec)

10 Xaligned = PhaseReg( Xmag)
1 U, S,V = SVDuignea)

12 x = U[:,0]4/S[0]
13 y=V[:,0]4/S[0]

4.3. Matrix projective algorithms

PCGPA represented an early projective algorithm in the optics
community [9] that alternated a magnitude constraint with a rank-one
enforcement to invert FROG measurements. For our approach, we al-
ternate an AltMinPhase step [32] that is outlined in Algorithm 4 and an
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Spectral Recovery of M, N,1=32,32,1024

Initializer Eigenspectra

truth - 1.0
aligned
unaligned | 0.5
spectral

Fig. 5. Several spectral initializer approaches are applied to an M, N, I =32,32,1024
ICC measurement set of a low-bandwidth signal with full-bandwidth complex Gaussian
i.i.d. measurements. Here the eigenvectors corresponding to the x recovery are shown.
Selecting only the largest eigenvector, as is common in the literature [7] produces
the result labeled “spectral”. Recovering every diagonal and collecting them into
a single matrix without diagonal phase alignment is labeled “unaligned”. Finally,
applying the magnitude and phase alignment techniques discussed in this paper is
shown under the label “aligned”. The concentration of eigenvalues for the aligned
technique demonstrates the strengths of the local regularity condition at correcting the
unknown diagonal phase offsets.

SVD enforced rank-one condition that is outlined in Algorithm 5. This
technique is modeled after [6], with appropriate substitutions made for
known rank-one a priori. To distinguish this technique, we will identify
it as Matrix AltMin throughout the rest of the paper. This approach is
extremely close in nature to PCGPA and is an important baseline to
compare against because of its common use. It is important to note
that this algorithm still has the identical phase misalignment problem
that the spectral methods mentioned earlier encounter. Here iterative
applications of rank-one projections and AltMinPhase projections are
applied to a null-initialized matrix until a stable result is produced. The
complete alternating minimization algorithm is detailed in Algorithm
6. Some additional notation useful here: y is the current guess of the
outer-product matrix x yg’ » Xmag 1S the output of y when AltMinPhase
is applied to every diagonal, and y,,,, is the rank-one projection of y.

It should be noted here that in Algorithm 6, we use pseudo-inverse
operators instead of adjoints for our magnitude back-projection. Be-
cause our problem is disjoint per diagonal on the outer product of xy¥,
we found that computing these pseudo-inverses added little time to
computation and typically provided faster convergence compared to
using adjoints. Using the adjoint typically works well when properly
scaled, but takes more iterations to converge.

4.4. Tensor projective algorithms

As outlined in Section 2.5.3, ICC can be viewed as taking linear
measurements of a rank-one, fourth order tensor X = x,® y;‘®x;® Yo- As
an alternative to matrix-based projective algorithms, which still involve
phase retrieval, one can attempt to directly estimate the tensor X and
then factor this tensor to obtain estimates of x; and y,.
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Algorithm 4: Matrix magnitude back-projection (MatrixMagPro-
ject)
Data:
7 € (CMXN
Ay, forward operator for all k
A}, pseudo-inverse of each forward operator
hilk] = | xo @y d:uV()l2 +n[k] € RPMEN=D
by = {holkl, hylk], ..., hy_i[k]}
Result: y,,,
1for(k=[-M+1, —M+2, ..., N—1){
2 forward = A, diag(y, k)
3 phasedMag = \/h_kexp (j «(forward))
4 diag(¥,ee» k) = A} phasedMag
5

Algorithm 5: Single rank matrix projection (MatrixRankProject)
Data:
¥ € (CM XN
Result: y, ..
1 U,S,VH =SVD(y)

2 x =U[:,0]4/S[0]
3 y=V[:,0]4/S[0]

— H
4 Xrank = XY

Algorithm 6: Alternating Magnitude Backprojection and Rank
Constrained Minimization (Matrix AltMin)
Data:
ikl = |¢;x0 @y deOl2 + k] € RPMEN=D
ce ClxM’ de (CIXN
Parameters:
thresh=1le—6
maxIts = 1000
Result: x € CM, ye CN
1 gy« 0eCMxN
2 for(k=[-M+1, —M+2, ..., N-1){
rows = I[k] : 1 : u[k]
cols =1[k] : 1 : ulk]l+k
Ay = c[:, rows] * d*[:,cols] // A, € CX@=D
AT = pinv(4y)

}
for(ii=0, 1, ..., maxlts—1) {

Xold < X

Xmag = MatrixMagProject(y, Ay, Az, h)
1 x = MatrixRankProject(,,q,)

12 | if ||y = Zuall3/11x113 < thresh then

© ® N o u o~ W

10

13 ‘ break

14 else if ii == maxIts then
15 ‘ break

16 }

17 U,S,VH =SV D(y)
18 x = U[:,0]4/S[0]
19 y = V[:,0]4/S[0]

Tensor iterative hard thresholding [33,34] is a two step protective
algorithm that alternates between back-projecting error and promoting
low tensor rank. To promote low tensor rank, we use the Tucker
decomposition to reduce our tensor, then use only the top eigen-
vector to reconstruct a rank-one tensor as shown in Algorithm 7.
Measurements in the back-projection step are still disjoint over k, and
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therefore this step can be broken into M + N — 1 back-projections as
shown in Algorithm 8; we again choose pseudo-inverses over adjoints.
The complete alternating minimization algorithm that employs both
of these projections is detailed in Algorithm 6. At low measurement
counts, Algorithm 6 may converge to tensors with smaller or larger
norm magnitude if this algorithm is initiated at zero or randomly. For
this reason, results are scaled by Algorithm 10 rather than by core
tensor value, as it typically provides a better estimate of scale. At
higher measurement counts, when Algorithm 6 converges to a tighter
estimate of x, y, the scaling factor is typically identical to W, where
c is the single value of the core tensor. Tensor decompositions in this
project were performed using the Python tensor decomposition package
Tensorly [35]. Conceptually, in the same way PhaseLift [21] lifts the
non-linear inversion of linear phase retrieval to linear low-rank matrix
recovery, we have lifted the non-linear inversion of low-rank phase
retrieval to linear low-rank tensor recovery. Additional notation useful
in this section includes: y is the current estimate of x, ® y(’; ® x(*)‘ ® Yo,
Xback 1S x added to the backprojection of its forward error, and y,,,, is
the rank-one projection of y.

Algorithm 7: Rank-one tensor projection (TensorRankProject)

Data:
7 € CMXNXMXN

Result: y,,,..
1 v[0], v[1], v[2], v[3] = tucker(y, rank = [1,1,1,1])
2 Jrank = V(0] ® v[1] ® v[0]* ® v[1]*

Algorithm 8: Tensor error back-projection (TensorBackProject)

Data:
7 € CMXNXMXN

A, forward operator for all k
A:, pseudo-inverse of each forward operator
k] = |eixo @y divol|” + milk] € RIXM+EN-D
Result: y;,.., e € R Frobenius error

1e=0

2 Kpack < 0c (CMXNXMXN

sfor(k=[-M+1, —M+2, ..., N-1){

4 rows = I[k] : 1 : u[k]

5 ii = repeat(rows, u—1)
6 Jjj = tile(rows, u—1)+k
7 kk =ii+k

8 IN=jj+k

9

flatKSection = y[ii, jj, kk, 1]

10 error = h;, — A, flatKSection

1 backProject = A error

12 Xoacklils jj, kk, 111 = ylii, jj, kk,11] + backProject
13 e = e+ ||error|[3.

14 }

4.5. Alternating projections and variants

Projective algorithms have been studied in the context of phase
retrieval for many years, and variants studied dating back to the early
2000’s demonstrated superior rates of convergence. Relaxed Averaged
Alternating Reflections (RAAR) [36] is one such algorithm and is
widely used. We have adapted RAAR to both the matrix and tensor
projective algorithms in an attempt to improve rates. RAAR algorithms
used here assume there are two projection operators P;, P,, which
for us are the functions MatrixRankProject and MatrixMagProject for
the matrix case, and TensorRankProject and TensorBackProject for
the tensor case. With P, P, so defined, RAAR variants of our matrix
and tensor initializers are identical to their alternating minimization
counter-parts, with the exception of a new update step per iteration
shown for RAAR in Algorithm 11. This update step depends on two
parameters a, f; in numerical tests, we find that setting « = 0.9 and
f = 0.5 works well.
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Algorithm 9: Iterative hard tensor thresholding (Tensor AltMin)

© ® N o u h~h w b =

1
12
13
14
15
16
17
18
19
20
21
22
23

Data:
ikl = |¢;x0 @ diYOl2 +n[k] € RPMEN=D
ce (CIXM’ de (CIXN
Parameters:
thresh=1le—6
maxIts = 1000
Result: x e CM, ye CN
¥ < C(O, 1) c (CMXNXMXN
for(k=[-M+1, —M+2, ..., N-1){
rows = I[k] : 1 : u[k]
ii = repeat(rows, u—1)
Jjj = tile(rows, u—1)+k
kk =ii+k
I=jj+k
for(i=[0,1, .., I—-1]){
vgli] = diag(eli, :1d[i, 1, k)
Ali, 1] = flatten(v, [i] ® v, [i]*)
// Ak c (C1><(ufl)2
}
Af = pinv(Ay)

}
for(ii=0, 1, ..., maxlts—1) {
Xback> € = TensorErrorProject(y, Ay, AZ, h)
= TensorRankProject(xy.x)
if e < thresh then

‘ break
else if ii == maxIts then

‘ break

}
X,Y*, X* Y = tucker(y, rank = [1,1,1,1])
x,y = measurementScale( X, Y, h, c, d)

Algorithm 10: measurementScale

Data:

xeCM yecCN

ce (CIXM, de (CIXN

hlk] =[x @y diYOl2 +n;[k] € RIX(M+N=D
Result: x, y correct relative scaling

H;[k] = |c;x @y diy|2

ratio = mean(H,[k]/h;[k]Vi, k)

scale = ratio'/*
x = x/scale

y = y/scale

Algorithm 11: RAAR update for single iteration

Data:

X; current guess
Parameters:

a=.9

p=.5

Result: y;,,

/* At iteration i
ry=2P(x) - xi

ry =2P (r)) — P (x;)
my = flary + (1 —a)x;)
my = (1- ﬂ)Pz()(,-)
Xig1 =My +my
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Percent of X;,;;, Yini €T0r product

above -3dB(noiseless)

Random Spectral
Trial Count: 8 Trial Count: 8

Matrix Altmin Matrix RAAR
Trial Count: 8 Trial Count: 8

Tensor Altmin Tensor RAAR
Trial Count: 4 Trial Count: 4

Fig. 6. Various initializers are compared, and the resulting error in the x, y estimates
are multiplied and shown as a function of M = N and /. With respect to problem size
M, N, tensor methods require less measurements / than matrix methods. At the scales
presented here, spectral methods do not show any dramatic improvement over the
random initializer. Trial spaces presented in black were not tested due to prohibitive
processing time.

5. Performance results
5.1. Numerical testing

Initial results for numerical Monte-Carlo testing of algorithms are
presented in this section. For the purposes of testing, x, ~ C(0,IM),
yo ~ C(0,1V), and each ¢; ~ C(0,1M) and d; ~ C(0,IV) for all i =
[0,1,...,1 —1].

Fig. 6 displays the resulting error of the initializers developed in
Section 4 over several trials with free variables M = N and I.
Error in Fig. 6 for a given estimate x,y of x,,y, is calculated as
llxo — ming 4(pxe/®)|l5/l|xoll, times [lyy — ming 4(dye’® |5/ llyollp, the
product of unambiguous, normalized error in x and the unambiguous,
normalized error in y. Fig. 6 shows the percentage over which this error
product was below —3 dB over several experiments. Each initializer was
allowed to iterate maxIts = 1000 times and was required to terminate at
a threshold condition of thresh = 1e—6. The maximum number of itera-
tions was typically reached for low numbers of measurements 7, while
the threshold condition was typically reached in higher measurement
regimes.

Based on the output from experiments in Fig. 6, we run L-BFGS-B
Wirtinger descent initialized with the result of the various initialization
algorithms. The final product of unambiguous errors (after Wirtinger
descent) is shown in Fig. 7. Fig. 8 shows the median total runtime from
initializer through descent for the tests run in Fig. 7.

From the numerical results presented here, tensor initializers allow
convergence from a reduced number of ICC measurements, but this
comes at the expense of a much longer run time. Otherwise, there
appears to be no definite advantage in using an initializer before
Wirtinger descent for this problem.
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0 100

Spectral
Trial Count: 8

Percent of x, y error product
above -40dB(noiseless)

Random
Trial Count: 8

Matrix Altmin Matrix RAAR
Trial Count: 8 Trial Count: 8
Tensor Altmin Tensor RAAR
Trial Count: 4 Trial Count: 4
40
— 20

20

40

M,N M,N

Fig. 7. Various initializers are followed with Wirtinger descent, and the resulting error
in the x, y estimates are multiplied and shown as a function of M = N and /. Compared
to random initialization, there does not appear to be a strong improvement from the
spectral initializer or the matrix alternating minimization methods when followed by
Wirtinger descent. Only the iterative hard tensor thresholding initialization methods
appear to place the Wirtinger descent in a more advantaged initial point than random.

Run duration vs. Initializer
(noiseless)

—20

Random
Trial Count: 8

Spectral
Trial Count: 8

_

Matrix RAAR
Trial Count: 8

Matrix Altmin
Trial Count: 8

Tensor RAAR
Trial Count: 4

Tensor Altmin
Trial Count: 4

20

40
M,N

60
M, N

Fig. 8. Various initializers are followed with Wirtinger Descent, and resulting runtimes
are shown as a function of M = N and I. Tensor methods take significantly longer
than other approaches studied.
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Table 1

Memory and Computational complexity per iterations of presented

algorithms.
Algorithm Memory Compute
Matrix AltMin O (IK?) O (IK?* + K?)
Tensor AltMin O(IK3 +K*) O (IK? + K*)
Gradient O (IK?) O (IK?)

5.2. Complexity

As demonstrated in Fig. 8, tensor methods typically take much
longer to compute than matrix alternating methods and randomly
initialized gradient descent. This merits a discussion on the memory
and per iteration computational complexity of the presented methods,
along with a discussion on their scalability to practical problem sets.
For the purposes of this discussion, we focus comparison to Matrix
AltMin, Tensor AltMin, and Wirtinger descent. RAAR per iteration
complexity will be a constant multiple more complex than alternating
minimization methods, and spectral initializers are not discussed here
because of their ineffectiveness demonstrated in Section 5.1. Common
terms appear in both the discussion of computational and memory
complexity, which are listed and simplified here.

* 0 =min(M,N) > min(M, N — k) — min(0, k) bounds the length
of each diagonal in the matrix xy®.

P =max(M, N).

SVD computational complexity for a matrix xy? € CM*N is
O (P20 +0?) [371.

Tensor t-HOSVD computational complexity for a tensor xy" xf'y €
(CM><N><M><N is @ (P2Q2) [38].

K is used to simplify expressions when Q, P are roughly the same
value, e.g. O~ P ~ K.

5.2.1. Memory complexity

Persistent memory storage between each iteration is presented in
Table 1.

Matrix AltMin stores only two leading guess vectors (P,Q terms),
a matrix that is their outer product (QP terms), and the adjoint or
pseudo-inverse matrices that relate measurements to diagonals ((P +
0 -1)xQxI terms). The adjoint matrix dominates memory complexity
and scales as O(I K?).

Tensor AltMin stores two leading guess vectors (P, Q terms), a ten-
sor that represents the fourth-order outer product terms (P2>Q? terms),
and a collection of matrices that relate measurements to subsections of
the outer product tensor (P+Q— 1 matrices of I xQ? terms). The tensor
and measurement matrices dominate here and scale as O(1 K> + K*).

Basic Wirtinger methods per iteration store current best guess and
scale linearly as P+Q. However, to achieve the computation complexity
listed earlier, it is convenient to pre-compute outer products of c;,d;
and store them. This requires a memory structure with size 1PQ —
O(IK?). More complex algorithms may store additional information
like previous guesses or an estimate of Hessian, but are not presented
here.

5.2.2. Computational complexity

Operations per iteration for each algorithm is presented in Table 1
in units of complex floats.

Matrix AltMin is a series of matrix multiplications back-projecting
error from measurements to diagonals (P + Q — 1 matrix multiplies
of size I x Q) followed by an SVD (O (P2Q + Q3) listed above). SVD
and matrix multiplies both contribute similar complexity, and gathering
terms yields O(IK? + K3).

Tensor AltMin is a series of matrix multiplications back-projecting
error from measurements to sub-sections of a fourth-order tensor (P +
O — 1 matrix multiplications of size I x Q?) followed by a HOSVD
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(O (P?Q?) from above). Matrix multiplication and HOSVD both con-
tribute similar complexity, and gathering terms yields O(1 K> + K*).

Gradient calculations produce an estimate of g;[k] (20 multiplies per
i, k), followed by a subtraction of ¢;[k] = h;[k] — |g,~[k]|2 (Q multiplies
per i, k). Weighting each diagonal A;[k] is a multiplication by e; and
g; (20 multiplies per i, k). This process is repeated four times for each
subsection of the gradient to produce a total of 20Q operations per i, k.
Accounting for each diagonal and measurement, we arrive at a total of
16Q X (P + Q — 1) x I yielding a generic complexity of O(IK?).

5.2.3. Scalability

Based on the computational complexity and memory complexity per
iteration, gradient techniques are roughly as complex as Matrix AltMin,
while tensor techniques require vastly more resources than gradient
descent and Matrix AltMin. In our own studies, the resource intensity
of tensor problems quickly grew to be prohibitive as is visible in the
cropping in Fig. 7.

Note from Table 1 that each term depends on K or on both K and
1. Based on the phase-transition diagrams presented in Fig. 7, we see
that all algorithms converge when [ is on the order of K (ignoring log
factors). Based on the assumption that I ~ K, we see that Matrix AltMin
and gradient techniques are roughly equal in memory complexity and
are both an order of K less complex than tensor techniques.

For practical problems moving forward, gradient descent approaches
offer both an efficient and scalable technique for solving for signals
from the intensity of cross-correlation with tensor initializers offering
slight benefit only when the problem size is small enough that the
computational expense can be spared. Comparing to existing state-
of-the-art algorithms built from Matrix Altmin, gradient methods are
equivalently complex in both memory and computation but appear to
have superior recovery rates for lower measurement count as shown in
Figs. 6 and 7.

Using tensors to solve for low-dimensional approximations of x,y
may be an effective way to initialize gradient descent while maintaining
low computational cost, but remains a topic of future research.

5.3. Convergence

5.3.1. Toward theoretical bounds

The intensity-based cost function studied in ICC was selected in
part because it is possible to take an expectation value with respect
to measurement vectors ¢,d when these vectors are assumed to be
constructed using random distributions in phase and amplitude. For
this discussion, as in the numerical experiments in Section 5.1, we
treat c¢,d as independent and identically distributed (i.i.d.) complex
Gaussian vectors c¢,d ~ CN'(0,IM),CN'(0,TV). This practice is typical
in phase retrieval studies because complex Gaussian measurements
provide a generic measurement type with known moments and because
recovery from Gaussian measurements has been demonstrated to be
near optimal [39]. Expectations can be calculated by lifting polyno-
mial interactions in the cost function to appropriate tensor orders.
Bounding deviation from this asymptotic landscape is a straightforward
approach to creating theoretical requirements for the number of mea-
surements required for convergence [28]. The gradient and Hessian of
the expected value of cost can provide insight into regions over which
convergence could be expected, impossible, or plagued by erroneous
local minima.

Toward this end we have obtained derived the expectation of the
cost function presented in Eq. (8), as well as the gradient of the expec-
tation. The results are constructed of tightly coupled terms of x, y, x, yo
and diagonals of the outer product of xy* and x, y{)’ . This tight coupling
is not surprising considering that the Wirtinger gradient of cost for x, y
is a linear function of y, x respectively modified by cross terms of x, y
contained in g;[k]. This dependence on cross-terms makes it difficult
to analyze the function, and further work is needed to determine
the regions of convergence of the cost function. Our derivations are
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presented in Appendices D and E. We also present a brief numerical
study of the convergence of gradient descent in Section 5.3.2.

Outside of our studies of asymptotic cost function, we can make two
comments on convergence based on the Wirtinger gradient and Hessian
shown in Egs. (9) and (10).

First, the point x = 0,y = 0 is a point of both zero gradient and
zero Hessian. All terms in the gradient and Hessian are either directly
dependent on x, y or indirectly through g;[k]. This point has no gradient
and no curvature and is therefore unsuitable as a starting point for
our descents, prompting random initialization. This also implies that
a global convergence guarantee cannot be established, though a local
guarantee may still be possible.

Second, the matrix U(x.y) = Y1) Yo\, eilklg[k1A k] con-
tains significant geometric information of the cost function due to its
ubiquity in the gradient and Hessian alike. Examining the gradient
in Eq. (9), we see that gradient will go to zero at points other than
ambiguities of the ground truth if x,y are in the left and right-hand
null-space of U(x, y) respectively. Were it not for the presence of g,[k],
this problem would largely be solvable with statements about the rela-
tionship between x, y and c, d vectors; however this g;[k] term modifies
what would be an ordinary quadratic (diag(c;, d,.H ,k), xy") to a higher-
order interaction. We believe that understanding the behavior of U(x, y)
and its variations present in the Hessian is critical to understanding the
regions of convergence.

5.3.2. Numerical convergence analysis

By fitting models against the phase transition plots shown in Fig. 7,
we aim to provide some estimate of the convergence rate of randomly
initialized Wirtinger descent using the procedure outlined below.

1. For each M, N fit the phase transition plot for randomly initial-
ized Wirtinger descent to a generalized logistic function (GLF)
as a function of I:

1

GLF(, a, b, ¢c)= m.

12)

2. For every GLF function fit, determine where the GLF crosses the
points .25, .5, and .75 to provide estimates of the 25%, 50%,
and 75% convergence rates of randomly initialized ICC problems
converging to a correct answer.

3. Fit a linear, square-root, and log-linear function to these cross-
ings as a function of M, N, and determine which function fits
data with least mean-squared error.

The GLF function was used here to approximate columns of the
phase transition plot because of its low complexity and generalizability
for monotonic functions transitioning between 0 and 1. The linear,
square-root, and log-linear functions fit to resulting GLF crossings are
outlined in Egs. (13), (14), and (15). All variables that are not M are
free variables.

flinear(M) =aM +b (13)
fsqn(M)=VaM +b+c a4
Si0giin(M) =log(aM + b)(cM + d) (15)

Functions in Egs. (13), (14), and (15) were fit to the resulting GLF
crossings and the residual mean squared error is listed in Table 2. The
log-linear function fits the crossing data with least error consistently
for the 25%, 50%, and 75% convergence rate. The fits extracted for
the log-linear function are plotted over the phase-transition diagram in
Fig. 9.

We suspect based off these brief numerical experiments that the
number of measurements I required to converge with constant success
rate is approximately log-linear with respect to problem complexity
M, N with parameters listed in Table 3. Note that the additive parame-
ter b in the log-linear expression consistently solved to be insignificant
and is not listed.
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Table 2

Residual MSE for various fit functions vs. convergence rate.
25% 50% 75%

Linear 2.54 2.42 2.94

Square-root 1.06 1.43 291

Log-linear .76 .92 1.82

Randomly initialized W. descent
with fit convergence rate lines

Ratio Convergence

30 40

M,N

50 60 70 80

Fig. 9. 25%, 50%, and 75% log-linear functions plotted against the phase-transition
plot. Note the phase transition plot shows the average number of trials that converge
to within 1% relative error of ground truth.

Table 3
Measurement count per convergence rate fit
to log-linear function of problem complexity.

log(.44M)(.035M +3.9)

log(.89M)(.041M +3.7)
log(2.3M)(.047M + 3.3)

Drsy,
Iso%
Irsq,

5.4. Amplitude cost

Recent advances in gradient based phase retrieval have studied
nuanced initializers, reweighting and truncation steps, and additional
cost functions [22,23]. Useful comparisons of existing reweighting,
truncation, and cost function variations have been studied in [19,25].
One of the more broadly recognized improvements to gradient tech-
niques has studied the transition to an amplitude cost function like that
in Eq. (17) as opposed to an intensity cost function like the one shown
in Eq. (16).

1

M
a7 2 (i - 1411, 1127

7 2 (4

lin(2) = (16)

Lamp(2) = a7

(Voti1 - 140 1z|)2

Despite performance improvements demonstrated in ordinary phase
retrieval by amplitude techniques, the research presented in this paper
examines unweighted intensity based approaches because the relative
simplicity of the intensity cost function seemed a more straightfor-
ward route toward theoretical guarantees via geometric analysis. As
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Intensity vs. Amplitude Error Descent
M=16 vs. I, 256 trials
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Fig. 10. Over 256 trials, amplitude and intensity based cost functions solve for
objective variables from phaseless modulated cross-correlation measurements. The
top plot shows the percentage of trials that meet a minimum ground truth error
requirement, and the bottom plot shows the average duration for each gradient descent.

demonstrated in Appendices D and E, the intensity cost function can
be studied in the asymptotic landscape with expectations because its
polynomial admits an expectation when lifted to a tensor inner product.
The amplitude construction cannot be made into a linear inner product
by lifting because it is not constructed from polynomials.

While this paper primarily addresses the efficacy of an intensity
based cost function presented in Eq. (8), it is worth demonstrating that
amplitude based cost functions present a viable approach to the pulse
characterization problem. To demonstrate this, we devised a head-to-
head comparison of the cost function in Eq. (8) and a cost function
formulated in Eq. (18).

2
Z Z <\/h,.[k]—,/xTA,.[k]y*xHA;‘[k]y)

i=0 k=—M+1

We run an experiment on a fixed problem size M = 16 for varying
measurement counts I and record the error of their solutions as well as
the run-time over many trials. Each experiment is initialized randomly
and ground truth and measurements are constructed from i.i.d. complex
Gaussian random variables. Both intensity and amplitude gradient
descents are initialized from precisely the same x;,;, y;,;- To provide
a fair head-to-head for the intensity and amplitude cost functions,
gradient is estimated numerically with identical function parameters
using the L-BFGS-B algorithm in the Scipy optimization library [29]
as equations for amplitude gradient have not yet been verified and
implemented. The measurements used in this experiment are provided
to each algorithm without noise.

Results of this experiment demonstrated in Fig. 10 show that the
amplitude based cost does marginally improve the percentage of trials
that converge to ground truth over the intensity based cost function.
Amplitude based trials appear to converge on their solution at a faster
rate, typically in about two thirds the amount of time of the intensity
approach in this experiment. This result encourages future examination
of amplitude based cost functions applied to the pulse characterization
problem.

Sy = 18)
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6. DSCAN

DSCAN [16] is a simple time-resolved phaseless auto-convolution
technique that modulates the spectrum of a pulse with a known phase-
profile. This pulse is squared in its time domain and the spectral
intensity is measured at a spectrometer, resulting in the intensity of
modulated pulse spectrum auto-convolution. Our technique is adapted
to this problem where x, and y, (and conversely, c,d) are conjugate
time reversals of each other.

6.1. Prior art comparison

Wilhelm et al. [16] introduce techniques in DSCAN to resolve multi-
mode phase retrieval. Multi-mode retrieval is a generalized problem to
ICC in which multiple pulses exist in a pulse train (i.e, multiple x(, x,, ...
and y,,y;,...) and integrate in the same measurements h;[k]. Multi-
mode may be possible with techniques in this paper, for example by
changing the rank solved for in iterative algorithms and concatenating
additional x, y as descent variables, but is not tested in this paper.

When applied to singular modes, as done in this paper, the tech-
nique presented in [16] is an alternating minimization (referred to in
this section as AltMin) that uses a forward and backward model to
iterate between applying an average in the pulse spectral domain and
applying a magnitude constraint in the measurement domain. With a
minor adaptation, our algorithm can be compared directly with this
algorithm to determine its suitability for pulse retrieval.

Each algorithm was seeded identically, starting with a vector of 1.
Pulses of length N = 64 were generated with a Gaussian magnitude
envelope and random spline phase profile. Grating position bounds on
DSCAN generation were fixed to 1 mm in each scan direction. With
fixed scan bounds, scan steps span the measurement range uniformly
with gradually increasing step counts between 20 and 100 grating
positions. Results presented here are conducted for the noiseless case.
Results comparing error in retrieved x, are shown in Fig. 11 against
identical synthetic data. Results show that Wirtinger descent has more
consistent success at lower measurement count than AltMin. In Fig. 11,
some final errors displayed in the histogram for AltMin are lower
than Wirtinger descent different because of the termination criteria
tuning. In this experiment, success rates for Wirtinger descent begin
to decline for higher measurement count. It may be that decreasing
distinction between c; vectors by decreasing step size (DSCAN grating
boundaries are fixed) complicates convergence, but the cause is still
under investigation.

6.2. Evaluation on real data

Finally, we have applied Wirtinger descent to the single mode data-
set used in [16]. The data set represents a spectrometer intensity
measurement at 500 positions of the grating screen in the DSCAN sys-
tem; these positions are symmetric about its zero position and stepped
across 5 mm in each direction. Grating density d is 1400 lines/mm and
angles in and out of the system were held at 34.05°. Spectral density
of the measurement permitted a recoverable pulse width of M = 320
samples. The initial vector state for both the Wirtinger descent and
AltMin was held as a complex vector of x = 1M, At convergence, the
recovered vector was able to regenerate the measured dataset to 4.3%
Frobenius error, with input and recreated data set presented in Fig. 12.
AltMin is able to regenerate measured dataset to 10.1% Frobenius error.

When the ambiguous linear component of the spectral phase is
subtracted off, the recovered vector highly resembles the AltMin re-
covery and accompanying spectrometer measurement shown in Fig. 13.
The recovered trace comparison in shows the efficacy of the Wirtinger
descent techniques of this paper as a drop in alternative to existing
recovery algorithms.
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DSCAN Comparison (N:64) 10gz(Hetz/HXH2)
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Fig. 11. Alternating minimization current state-of-the-art is compared with Wirtinger
descent presented in this paper. Final results of each algorithm are binned and displayed
in the top figure; failure and success distributions are on either side of a chosen success
threshold 275. Over 64 trials, each algorithm was seeded identically with identical data,
and their ability to return a result below the threshold is displayed against measurement
count I in the two middle figures. Their average (over the vertical dimension of the
middle figures) is shown in the bottom two plots.
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Fig. 12. Following the practice of pulse recovery papers [8,12,14,16], we show the
measured DSCAN dataset against the forward model for the DSCAN setup on our
recovered spectrum. The two results are nearly identical, and differ in Frobenius norm
by only 4.3%.
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Fig. 13. Two algorithms recover the spectral profile of a pulse from DSCAN measure-
ments. The solid blue line represents the spectrometer measurement of the intensity
of the spectrum of the pulse, a direct measurement of ground truth intensity for the
spectrum. The solid orange line shows the recovery of intensity made by the alternating
minimization algorithm presented in [16]. The broken orange line is the phase of
the recovered pulse. The solid red line is the intensity profile recovered by Wirtinger
descent initialized with Algorithm 6. The broken red line is the recovered pulse phase
using Wirtinger descent.

7. Conclusion

In this paper, we adapted the phase retrieval techniques of Wirtinger
descent to a new intensity of cross-correlation problem. We highlighted
a key difference in this problem from existing low-rank phase retrieval
literature in the lack of phase-coherence between the recovered diag-
onals of the outer product matrix xy®. This lack of coherence makes
traditional spectral initializers fail and motivates techniques that are
able to combine this phase information coherently. We achieved this
using a novel low-rank tensor initializer based on iterative hard tensor
thresholding. We demonstrated that when used as an initializer to
Wirtinger descent, low-rank tensor initialization is superior to matrix
alternating minimization and adapted spectral initializers with respect
to measurement count at the expense of greater computational burden.
Wirtinger descent over intensity based cost functions were demon-
strated to out-perform state-of-the-art matrix alternating-minimization
by inverting ICC problems with fewer measurements for comparable
memory and computational cost. Finally we demonstrate the ability of
our recovery algorithms to operate on real data, recovering objective
variables comparable to current state-of-the-art with little adaptation.

Further analysis of the forward operator is in progress, where exam-
inations of the geometric landscape of the Wirtinger objective function
may lend insight into convergence properties of Wirtinger descent in
the style of [28].
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Appendix A. Cost, gradient, hessian with a single variable

Concatenating the variables x and y into one vector z = [xT, yT]T IS
CM+N  we may rewrite the cost function (8) simply as
1 T H 2
f@=3 Zk} (hilk1 = 27 pilk1z* 2" 7 [K1z)
_1 2
=3 Zk} e;[k12, 19)
where
0 ALk
ﬂi[k]=< war - AL ]>. 20)
Onsrr Onxw

This new cost function is quartic with respect to the variable z and has a

well defined Wirtinger gradient and Hessian. Similarly, we may express

g;[k] (defined above (8) as xT A;[k]y*) in terms of z as g;[k] = zT p,[k]z*.
Producing a Wirtinger gradient will proceed much in the same

manner as [28]. The Wirtinger gradient of f(z), with z complex-valued,

is defined as

@n

dz*

H
Vf(z) = (% ﬂ) .
Note that the partial derivatives in (21) are taken to be row vectors.
Moreover, according to the Wirtinger calculus, the partial derivative %
is computed assuming z* (and z") is fixed, while the partial derivative
% is computed assuming z (and z”) is fixed [41].

Differentiating f(z) in (19) with respect to z yields
o _o1 0e,1K]

Tk1? = e.[k ,
oz 022ike'[] ekl =5

(22)

where
ae(;-ik] = —2T (B K1z 2! pr Ik + p K122 BT K1)

= — (g;[k12" 71k + g} (k121 pT (K1) . (23)

Differentiating with respect to z* yields

o1 il
az* 2 az*

9f

, 24
Fp (€2

Y ekl = ¢,lk]
ik
where
de;
elkl ___u
az*

(Br1k1z2T Bk + BT [K)zz" g [K])

= — (g k1" B,[k] + g [K1z" pH 1K) . (25)
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Collecting terms, we arrive at the following expression for the
Wirtinger gradient:

of H de; k] H
Vf(z) = (5 H> = Yelk| 2 . (26)
P ik o
where
deilk

= | _ [ &lkIB Kz + g k16! Tz
etk H g IkIB[k1z* + g [k1pH K1z )

dz*

The Wirtinger Hessian of f(z), with z complex-valued, is defined as
2(%) =g
Vz — dz \ 0z az* \ oz
f(@ i<ﬂ>H i(ﬂ)H
dz \ dz* dz* \ dz*

Using (26), we have that the individual components of the Wirtinger
Hessian are given by

27)

H H H
0 de;[k] ™ de;[k de;[k
Y (A S L L S L (28)
0z \ 0z ~ oz oz 0z 0z
o (of \" < oelk1™ oe[k] o oek1"
az* <6z> B ; 0z oz Talkam = (29
H H H
9 e, [k1 7 de,[k de, [k
a (of =Z e;[k] e[]+ei 0 9¢;[k] ’ 30)
0z \ oz* =~ oz 0z 0z 0z*
and
o (of \" o delk]™ oe,[k] o Oe;[k1"
oz* <dz*> B 2 oz* az* +ei[k]6z* oz* 81

ik
The partial derivatives of e¢;[k] with respect to z and z* appear in
Egs. (28)-(31) and have already been computed in Egs. (23) and (25).
Computing the remaining terms in Egs. (28)—(31) requires the following
second derivatives:

de;[k1H
% e(;i L &lk1B; (k] — g [K1B] [K]
- ﬂi*[k]zZHﬂ,T[k] - ﬂiT[k]zzHﬂf[k], (32)
de;[k1H
% ;z[] =~ B k12" 2" ] (k] = LK1z 2" B} K1, (33)
de;[k1H
ai* eéi ] == ﬁ,* [k]ZZTﬂi[k] - ﬂ'ir[k]ZZTﬂiH [k], (34)
de;[k]
ai* ;‘z[* o &ilk1B/ (k] — g} [K1p;1K]
— Bilk1z* 2" BH k] = pH (K1 z* 2T [k (35)

Finally, it is very useful to decompose the Wirtinger Hessian into
two sections based on their structure within the sum. As shown below,
one of these terms is a direct sum of outer products and the other is
a sum that contains several terms that decompose to an outer product.
We have:

Vif(z)= A + Ay (36)
where

de;[k1H de;[k] e (k1 H de;[k]

s
I

— H
—2‘11“1

0z 0z 0z oz*
Z de;[k1 H de; (k] de;[k] H de;[k] -
L,

Lk az*

0z* 0z

az*

o= | T o &KIB Rz + g k1] Tk
P gata ® g 1k1B[K]z* + g [K1pH [K1z* ) 7

=
=

0 oeilk] H de;[
— ) dz 0z 0z 0z
Ay = Ze:[k] 0 oeilkl H 0 ae;[k] H

dz 0z* dz*  dz*

|~

*
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=- z e;[k] (azylafl + a2,2a2F’12 + A2,3>

ik
with
R Y A [k B IK1z
2,1-%22 ﬂiH[k]Z* ’ ﬁi[k]z*
A =(ﬂ,-T [k]g;Tk] + BF[klg;[k] 0 )
>3 0 Bilk1g: Tk + pH [k1g,[k1)

Appendix B. Cost function ambiguities

Let x, and y, be as defined in (11), and note that to prove f(x,y) =
f(x,,y,) for f defined in (8), it suffices to prove that

xT A Kk1y* ™ A [kly = xT A [k1yEx T A2 [k,
for all i, k. To that end, write

xDA Ky xE Az Ky,

ulk]  ulk]

XD X Irle [rlyilr + KId: Tr + K1 - x5 [s1c] [s]y,[s + Kld,[s + k]
r=I[k] s=I[k]

ulk]  ulk]

DY xlrIxiIslyls + kIyilr + k1 - ¢ [rle] [s1d,[s + k)d; [r + k]
r=I[k] s=I[k]

Wkl ikl oo _
= 2 D S xlrIx*[slyls + kIy*Ir + kle® - ¢[rle] [s1d;[s + kd; [r + k]
r=I[k] s=I[k] 14

ulk]  ulk]

Z x[rF]x*[syls + K1y*[r + k] - ¢;[r)c [s1d;[s + k1d] [r + k]

r=I[k] s=I[k]
= xT ALkl xH AZ K1y,

where the fourth equality follows because

(= =+, —by+ sy —sy+ry —ry+ky —ky =0.
Appendix C. Adaptation to real solvers

For numerical experiments, expressions for gradient and Hessian
were provided to Scipy’s minimize function [29]. Because the function
does not optimize over complex variables, the following translations
from Wirtinger gradient and Hessian to real and imaginary portions
of the gradient and Hessian are provided in Egs. (37) and (38) for a
generic complex function f(z).

V.f+V,
i (, 711551 @
v <z>=< TR Hfﬁfrfl_f}))
real,imag P+ fh=fi—f) A+fi—f—f
fis f2=£(vzf)’ ;?(sz) (38)
f3 [u= %(Vz‘f)’ (;)?(Vz‘f)

Here, V,f, V.. f are the first and second half of the Wirtinger gradi-
ent V f, differentiated respectively with respect to z, z* then conjugate-
transposed.

Appendix D. Expectation of intensity-based cost function

Determining the expectation of the cost function presented in Eq. (8)
is done by lifting the non-linear function to a linear inner product
between higher-order tensors. The linearity that allows this expecta-
tion to be evaluated is demonstrated in the tensor notation shown in
Section 2.5.3. Here we assume c;, d; are i.i.d. and drawn from CN(0, ).
We start from the cost function and gradually replace terms in Eq. (39).
To reduce reuse of outer product operators, throughout this section we
interpret concatenation of tensor objects to be a tensor outer product.
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Recall here that ¥ = x @ y* @ x* @ y, Xy = x; ® y(’; ® x(*; ® ¥y, and
L£F = A k] ® ALkl

I-1 N-1
fen=3 Y Y (k=X ALKy < A7)
i=0 k=—M+1
11—1 N-1 )
=32 X (e xy -k x)
i=0 k=—M+1
11—1 N-1
= Y (LRLE, XX+ XX - XX - XX)
i=0 k=—M+1
l1—1 N-1
=<§ Y LhLk, XX+ XX — XX - xx0> (39)
i=0 k=—M+1
1 I-1 N-1
E[f(x, 0] = <1E [52 yockek| . XX+ xx>
i=0 k=—M+1
1 I-1 N-1
—<IE DD Effﬁff] . XX + XX0>
i=0 k=—M+1
= (L, XpXy+ XX — XX — XX,) (40)

The expectation of this problem shown in Eq. (40) then solely re-
volves on the expectation of the eighth-order tensor % ,]:';_'M L (Lkeh,
While the tensor (Ef.‘ﬁf.‘) has eight indexing variables, each variable is
coupled with another as a function of k, meaning that the only non-zero

entries of the tensor can be written in Eq. (41).
(LFLOg. q.r 1,5, 5,1.0] = ¢ [q)d; g + Kle,[r)d; [r + k]

x ¢l [s1d;[s + kle;[11d] [t + k] (41)

q,r,s,t =[—min(0, k), ..., min(M, N — k) — 1]

The uniform phase distribution of the complex random vectors ¢, d
gives an expectation of zero for any collection of variables that are of
odd conjugate matching. This leaves only three combinations of g, r, s, ¢
in Eq. (41) that result in non-zero expectations:

1. ¢ = r = s = t which produces A; =
E, [(£¥ ® £5)]4.4,9.9.4,4.9.9]]

2. g =r # s = t which produces 4, = E [lc,*|¢,|*lld 1] *dy i 1]
when E; [([,f.‘ ® Eﬁ‘)[q,q, q.9,5,5, S, s]]

3. ¢ =t # r = s which produces A, = E [l¢,I*|c,|*[ld 4 *d, 1. ]?]
when E; [(E{.‘ ® Ef.‘)[q,q, FoEFFL G, q]]

E [le,1*1d,.]*] when

Under our assumption that c¢,d are drawn i.i.d. from CN'(0,D),
A;,A;, = 4,1. Note here that in the expectation, the sum over i
multiplies now just a multiplication by I. Collecting indicator terms, we
arrive at an expression for L in Eq. (42). Here, concatenated e; indexing
terms are joined as an outer product.

L=I@y+L;+1Ly

N—=1 min(M,N—k)-1
A] _ 2A2 min( )
Ly == z €q €ark €q Cark €q Cork €q €tk
k=—M+1 g=—min(0,k)
A, N=1 min(M.N—k)=1 min(M N —k)-1
2
]Ll =7 Z €q Cq+k €q Cq+k €5 Cs+k €5 Cs+k
k=—M+1 g=—min(0,k)  s=—min(0,k)
N=1  min(M,N—k)—1 min(M,N—k)—1

]L2=% D

k==M+1 g=—min(0.k)

eq eq+k €r Cryk €r Crik eq eq+k
r=—min(0,k)

(42)

We note here that in Eq. (42), L, donates a term to L; and L,
to simplify the sums and avoid the use of indicator expressions that
prevent ¢ = s,q = r respectively. Evaluating Eq. (40) with A, 4, =
4,1 with the expression for expectation in Eq. (42), we arrive at the
following expectation of the intensity cost function in Eq. (43).

ELf e, 0] =1 1xoye 12 = 1xy™ 12115

16
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N-1
A KA 2 K2 ko kyp2
+ 1) (Nzgl3 + 12508 = NzE 1312513 = 1K=, 2)17) (43)
k==M-+1

The expression in Eq. (43) is dense with functions over z¢ =

diag(xy™, k), zg = diag(x, y(';’ ,k) as well as absolute values of point-wise
multiplications between x, y, x(, ), a difficulty that carries on to the
gradient of this function.

Appendix E. Gradient of expectation

Derivation of Wirtinger gradient of the expectation of ICC cost
is shown in Eq. (44). Because the expressions are not cleanly repre-
sentable as vectors, partial derivatives F,, F, shown in Egs. (45) and
(46) are indexed by i, j respectively. Only F, and F, are presented here
for brevity; F,« and F,. will be their conjugate respectively as Eq. (40)
is a real valued function. As a shorthand here, we use concatenation to
imply outer products (e.g. x ® y* ® x* ® y — xy*x*y).

F) *
(sBtreeom)
(ZE/ D) U]
VELS Gl =] 2% *
(ZEeen)
) .
(sZE ) 1]
i,j=1[0,1,....M - 11,[0,1,...,N = 1]

Fi[i]
_| KU1
B F;[z’] “4)

Fylj]

where

+ (L, gt (X = xGyexoyg)yxyT)
=21 x[i] (L1l = 1xolil*llyoyl3)

N-i-1

+ Ixlil Y Iyli+ k1P (112413 = 12§13)
k=—i
N-i—1

+ Ix[i] Y, Iyli+kIP1EE13
k=—i
N-i-1

= I xolil Y, yli+klyjli + kl(zEH 2)
k=—i

(45)

and

Fy[j1=(Ll:, 5 s 5t 5 1 X yx(x yxy™ = xpyoXoyg))

=2 1 y[j1 (IyL1P x5 = DolilPIxex113)
J
+ Iyl Y
k=j—M+1
J
+ 1y Y
k=j—M+1
J
= Iylil Yl = KIxlj = kI zf).
k=j—M+1

Ix[j = &1 (112413 = 1z5113)
Ix[j — k111125113

(46)

Determination of where these expressions are positive, negative,
and zero relies on the relationship between x, y, x, y, as well as second-
order cross terms stored in z¥, z’é.
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