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A B S T R A C T

Pulse characterization in ultra-fast optics presents a powerful motivation to study phase retrieval problems of
high order. Frequency- and time-resolved techniques for pulse characterization both construct measurements
that depend on the intensity of the cross-correlation between two unknown signals undergoing known
modulations. The problem of recovering these signals has been traditionally studied and solved with alternating
minimization, but recently Wirtinger gradient techniques were demonstrated to invert frequency-resolved
measurements on a symmetric signal pair (Pinilla et al., 2019). In this paper, we construct a generalized
Wirtinger gradient and Hessian to solve a wide breadth of problems including signal recovery from time-
and frequency-resolved measurements. We further demonstrate that both measurement paradigms are special
cases of low-rank phase retrieval but with a special structure that disrupts spectral initializers. To combat this
problem, we present a tensor-based iterative hard thresholding initializer that, when paired with a Wirtinger
gradient descent, is capable of recovering unknown signals with fewer measurements than matrix-based
alternating minimization or spectral initialization methods. Finally, we employ Wirtinger gradient descent
to recover signals from real-world DSCAN (Wilhelm et al., 2021) measurements and compare results with the
existing state-of-the-art.
1. Introduction

Recovering information from measurements that discard phase in-
formation is a broadly studied topic that unites algorithms from the
optimization community with powerful motivations from optics. Phase
retrieval in optics is widely employed to recover crystal structure and
unit cell projections in crystallography [1] and images in ptychographic
nd coded diffraction imaging [2].
Physical nuances in non-linear ultra-fast optics have created the

need to recover information from more complicated and intricate inter-
actions between light and material—and even between light and itself.
Specifically, laser pulse characterization [3] defies classical formula-
tions of phase retrieval by recovering unknown complex signals from
phaseless quadraticmeasurements rather than phaseless linear measure-
ments. Pulse characterization presents a unique challenge because at
the incredibly brief time-duration of the pulses involved, direct in-phase
and quadrature (IQ)-style heterodyne sampling is not possible. Instead,
measurements must be made in an integrated fashion, where the pulse
interacts with sensors that integrate intensity over time-scales much
larger than the duration of a laser-pulse. This loss of both phase and
time information motivates the use of a probing function to temporally
encode the pulse under test. The probing function is typically another
laser pulse, either one that is shorter in duration than or a copy of
the pulse under test. Depending on the specific optical setup, linear
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optical elements are used for pulse modulation in spatial and temporal
domains, while non-linear optics are used to multiply pulses by other
pulses or enact a non-linear function on a single pulse. Laser pulse
characterization produces a series of measurements wherein one or two
unknown vectors multiply with modulation functions and each other
before they are integrated in intensity. The reader is referred to [4] for
a complete treatment on ultra-fast optics.

Recovering pulses from phaseless measurements of their interaction
can be formulated as a higher-order phase retrieval problem [5]. The
matrix formed by the outer product of two signals contains all unique
products involved in cross-correlation of two signals, and we note that
optical pulse characterization measurements can be viewed as phaseless
quadratic measurements of this rank-one outer product matrix. This
raises the possibility that algorithmic techniques for low-rank phase
retrieval [6] may bring new approaches to solve the pulse character-
ization problem. Among these, techniques like anchored regression [7]
have been demonstrated effective in low-rank phase retrieval and could
present a convex optimization approach to pulse characterization.

Meanwhile, many algorithmic techniques to solve the pulse charac-
terization problem exist. Frequency-resolved optical gating (FROG) [8]
remains one of the most commonly studied measurement paradigms
for pulse characterization in the optics and optimization communities
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Fig. 1. Comparison of frequency- and time-resolved pulse characterization systems.
(a) Simplified setup of a frequency-resolved optical gating (FROG) system. Two pulses,
or a single pulse that is split, are physically time-delayed with respect to one another
with the use of a physical delay path. The two pulses are brought together in a
non-linear medium, where their product is produced and measured at a spectrometer.
(b) Simplified setup of a time-resolved pulse characterization system. A pulse enters
a pulse-shaper [15], which modulates the pulse in the wavelength domain. The pulse
s then squared in the time domain and measured in the wavelength domain at the
pectrometer. When properly converted from wavelength to frequency, the intensity
f cross-correlation of the pulse’s modulated frequency content is measured at the
pectrometer.

like. Recovery techniques from FROG measurements include vari-
us alternating minimization algorithms [8–11] and gradient descent
ethods [12]. Alternating minimization techniques typically rely on
lternating between a forward model that imposes magnitude con-
traints and a gating constraint that ensures the forward model acts
nly on a rank-one matrix projection [9]. Gradient approaches typically
eek to minimize a least-squares cost function with descent following a
irtinger gradient [12].
Recently developed time-resolved pulse characterization systems

13,14] use less physically complicated optical setups for collecting
easurements compared to frequency-resolved systems. Whereas FROG
ystems typically measure intensity of cross-correlation using a physical
ranslation stage to move one pulse in time against another, time-
esolved systems use non-linear effects in a transform domain to com-
ute the intensity of cross-correlation for modulated spectra. Math-
matically, the two approaches are very similar, with the difference
eing that the time-resolved systems aim to recover the complex spec-
rum of a pulse, while frequency-resolved systems aim to recover its
omplex time-domain profile. Frequency- and time-resolved systems
re compared in Fig. 1. Generally speaking, time-resolved techniques
re advantageous because of their simplified optical setups and the
ontrol they offer over spectral modulation. This is expanded on in
ection 2.
The similarities between classical measurement techniques like

ROG and more recent time-resolved techniques motivate a broader
efinition of the pulse characterization problem. In this paper, we
ormulate the general problem of bivariate recovery from intensity
f cross-correlation (ICC), and we present its representations both
s a low-rank phase retrieval problem and as a low-rank tensor re-
overy problem. We demonstrate how these formulations motivate
ew algorithms and initializers. We present preliminary work toward
nderstanding theoretical convergence properties of the intensity cost
unction, as well as an examination of the computational and memory
omplexity of several approaches. Finally, we demonstrate the effec-
iveness of these algorithms on recovery from real measurements and
ompare results against a recent inversion algorithm from the optics
ommunity [16].
In Section 2 we present the ICC problem and its matrix and tensor

formulations. In Section 3, we detail a least-squares cost function,
its gradient, and its Hessian. In Section 4, we discuss a limitation
2

t

of spectral approaches for solving the ICC problem and demonstrate
several effective alternating minimization approaches. In Section 5.1,
e provide numerical experiments that demonstrate the efficacy and
omplexity of gradient and tensor approaches to this problem as well as
umerical investigations into cost function behavior and convergence.
inally, in Section 6, we demonstrate the performance of algorithms in
his paper on data taken from a physical system.
Notation: Many equations in this paper involve the manipulation

f complex-valued vectors and matrices. The superscript ∗ represents
lementwise complex conjugation of a scalar, vector, or matrix. The
uperscript 𝐻 represents the conjugate transpose of a vector or matrix,
hile the superscript 𝑇 represents the non-conjugate transpose of a
ector or matrix. Vectors bearing 𝑇 or 𝐻 are interpreted as row vectors.
he notation 𝑥 ∼ (𝟎, I𝑁 ) represents a complex Gaussian random vector
ith zero mean and identity covariance in dimension 𝑁 .

. Background and problem definition

.1. Intensity of cross-correlation

We consider the recovery of two vectors 𝑥0 ∈ C𝑀 and 𝑦0 ∈ C𝑁 from
series of 𝐼 phaseless cross-correlation intensity measurements of the
orm

𝑖[𝑘] =
|

|

|

|

|

𝑐𝑖𝑥0
⨂

𝑘
𝑑𝑖𝑦0

|

|

|

|

|

2

+ 𝜂𝑖[𝑘] (1)

=
|

|

|

|

|

|

min(𝑀,𝑁−𝑘)−1
∑

𝑛=max(0,−𝑘)
𝑐𝑖[𝑛]𝑑∗𝑖 [𝑛 + 𝑘]𝑥0[𝑛]𝑦

∗
0[𝑛 + 𝑘]

|

|

|

|

|

|

2

+ 𝜂𝑖[𝑘],

𝑖 ∈ {0, 1,… , 𝐼 − 1},

𝑘 ∈ {−𝑀 + 1,−𝑀 + 2,… , 𝑁 − 1}.

ere, {𝑐𝑖}𝐼−1𝑖=0 ⊂ C𝑀 and {𝑑𝑖}𝐼−1𝑖=0 ⊂ C𝑁 are complex modulation
ectors that are point-wise multiplied with the target vectors 𝑥0 and
0. A second indexing variable 𝑘 represents the lag shift in the cross-
orrelation measurement. Presented vectors and sums are zero-based.
eal-valued noise is denoted by 𝜂𝑖[𝑘]. We define signal-to-noise ratio
SNR) throughout this paper as

NR =
∑

𝑖,𝑘 |ℎ𝑖[𝑘]|
2
2

∑

𝑖,𝑘 |𝜂𝑖[𝑘]|
2
2

. (2)

2.2. Blind FROG

Among several existing FROG measurement paradigms, one that
matches the definition of ICC presented in (1) is blind FROG [5]. In
ur notation, the measurements of pulses 𝑥0 ∈ C𝑀 and 𝑦0 ∈ C𝑁 in
lind FROG can be expressed as

𝑖[𝑘] =
|

|

|

|

|

|

min(𝑀,𝑁−𝑘)−1
∑

𝑛=max(0,−𝑘)
𝑒−2𝜋𝑗𝑖𝑛∕𝑀𝑥0[𝑛]𝑦∗0[𝑛 + 𝑘]

|

|

|

|

|

|

2

+ 𝜂𝑖[𝑘]. (3)

We see that (3) is an instance of (1) with 𝑐𝑖[𝑛] = 𝑒−2𝜋𝑗𝑖𝑛∕𝑀 and 𝑑𝑖[𝑛] = 1.
An aspect of FROG that was explored in [5] was that the lag 𝑘
ay be larger in time than the spacing between samples of 𝑥0 and
0, which lowers the non-ambiguous bandwidth in the recovery of 𝑥0
nd 𝑦0. This treatment is largely left out of this paper, where we focus
rimarily on time-resolved approaches. In time-resolved approaches,
he lag variable is controlled by sample density in a spectrometer rather
han the coarser physical spacing of a delay line.

.3. Time-resolved techniques

Measurement systems such as SPARC [14] and DSCAN [16] belong

o the family of time-resolved pulse characterization techniques. In
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stark contrast with FROG, where the delay in ICC measurements is
produced by physically translating the path of one pulse with respect
to the other, time-resolved techniques compute ICC measurements by
modulating and measuring in the spectral domain. This difference is
illustrated in Fig. 1. A key advantage of time-resolved systems is the
bility to control the modulation applied in the spectral domain by
he use of a mask. Masks are complex-valued and can modulate both
he amplitude and the phase of the pulse at various wavelengths.
pon returning to the time domain at the exit of the compressor, the
ignal is passed through a doubling crystal. The crystal acts to square
without conjugation) the pulse, rather than multiply it by another
ulse. This results in the measurement (at the spectrometer) of the
ntensity of the cross-convolution of the modulated frequency spectrum
f the pulse with itself, rather than a measurement of the intensity of
ross-correlation.
In summary, time-resolved techniques take the form of the ICC
easurements presented in (1) where 𝑥0 represents the spectrum of
he pulse to be measured, 𝑦0 = 𝑥∗0[∶∶ −1], where [∶∶ −1] represents
ime-reversal, and for all 𝑖, 𝑑𝑖 = 𝑐∗𝑖 [∶∶ −1].
DSCAN [16] provides a minimalist system for time-resolved pulse

haracterization. DSCAN opts to move the position of the second
iffraction grating in the Martinez pulse compressor to impart a phase
rofile on the spectrum of the pulse. Subsequent modulations are
chieved at unique locations of the grating. With DSCAN, the modu-
ation 𝑐𝑖[𝑛] is given by

𝑖[𝑛] = exp
⎛

⎜

⎜

⎝

𝑗 𝑛𝐿[𝑖]
𝑐

√

1 −
( 2𝜋𝑐
𝑛𝑑

− sin(𝜃[𝑖])
)2⎞

⎟

⎟

⎠

. (4)

ere, 𝐿[𝑖] denotes the position (positive or negative) of the second
rating of the pulse compressor away from the nominal four focal
ength separation, 𝜃[𝑖] denotes the incident angle of the compressor’s
irst grating [16] typically held at the Littrow angle of the center-
avelength, and 𝑑 represents the density of the diffraction grating used.
e will return to this measurement paradigm in Section 6 when we

present experiments using real data.
The generality of (1) and the adaptability of the algorithms pre-

sented here to various frequency- and time-resolved pulse measurement
systems suggest that we are not limited to using existing pulse correla-
tion and convolution systems. The requirements on the forward model
(i.e., properties of {𝑐𝑖}, {𝑑𝑖}, and measurement count (𝐼)) to guarantee
recovery are topics of future research.

2.4. Extension from existing phase retrieval problems

This problem extends naturally from that of linear phase retrieval
where a complex vector 𝑥 ∈ C𝑁 is recovered from phaseless linear
measurements 𝑦 = |𝐴𝑥|2, 𝐴 ∈ C𝑀×𝑁 . This problem has been studied
for the better part of the last half-century and has yielded convex and
non-convex techniques in a multitude of varieties [17–25].

The approaches that are studied in this paper draw direct analog
to three phase-retrieval algorithms applied to the higher-order phase
retrieval problem raised by pulse characterization. The first of these
algorithms is the Gerchberg–Saxtonalgorithm [18] which iteratively
constrains magnitude of Fourier coefficients against a transform do-
main constraint. Applied to pulse characterization, the most common
alternating minimization method is the PCGPA algorithm [10] that
we generalize to two unknown pulses in this paper. The second is
Wirtinger Flow and its variants [19,26], which is typically an initial-
ization procedure followed by a gradient descent cost minimization.
This paper examines several initializations followed by a gradient
descent over intensity cost. The final extension is from PhaseLift [21],
a lifted technique that minimizes the trace of a larger ‘‘lifted’’ linear
matrix recovery problem rather than solve a non-linear vector recovery
problem. In this paper we expand this concept to a linear tensor
rank minimization problem lifted from a higher-order low-rank phase
3

retrieval problem.
Current state-of-the-art in phase retrieval is dominated largely by
alternating minimization approaches like Gerchberg–Saxtonand gradi-
ent descent techniques. Recent years have seen extensive study into
modifications and improvements of both forms of these algorithms,
with particular attention from the optimization community directed
toward improved gradient techniques. In particular, advances in ini-
tializers, transitioning to amplitude based cost functions, and the use
of reweighting and truncation per iteration techniques have demon-
strated significant practical use [22,23,25]. A brief examination of an
amplitude based approach is included in our numerical results.

Expanded capabilities in phase retrieval led to the more recent
measurement paradigm of low-rank phase retrieval [6,7,27]. Low-rank
phase retrieval examines the recovery of a matrix 𝑋 from a series
of phaseless matrix inner products of the form 𝑦𝑖 = |⟨𝐴𝑖, 𝑋⟩|

2. This
problem is typically motivated by simultaneously solving for a series of
ordinary vector-based phase retrieval problems of the form 𝑦𝑗 = 𝐴𝑗𝑥𝑗
with the caveat that the 𝑥𝑗 vary only in some low-rank fashion when
concatenated into a matrix 𝑋 = [𝑥1, 𝑥2,…] [6]. This formulation allows
generalizes measurement matrices 𝐴 that can extend over multiple 𝑥𝑗 ,
and this joint information can effectively recover the matrix 𝑋 and
thereby [𝑥1, 𝑥2,…]. Low-rank phase retrieval is also motivated in blind
deconvolution problems [7] where pairs of signals are recovered from
the Fourier magnitude of their convolution. The technique we share in
this paper can be viewed as a low-rank phase retrieval problem with
distinct challenges which will be reviewed in Section 4.1, and is distinct
from these previous low-rank phase retrieval problems largely due to
the structure of the measurement matrices 𝐴𝑖 used in ICC.

2.5. Problem formulations

At this point, our analysis will be made considerably easier and the
motivation for our algorithms will be made more clear by rewriting the
problem in (1) in several forms. These formulations will share some
common notations:

• 𝑙[𝑘] = max(0,−𝑘) and 𝑢[𝑘] = min(𝑀,𝑁 − 𝑘) − 1 are the lower and
upper limits, respectively, for the index of summation 𝑛 in the
cross-correlation at 𝑘 lag appearing in (1).

• For a matrix 𝐶, diag(𝐶, 𝑘) is a matrix of all zeros, except the 𝑘th
diagonal which is filled with the 𝑘th diagonal of 𝐶.

• 𝛬𝑖[𝑘] = diag(𝑐𝑖𝑑𝐻𝑖 , 𝑘) represents an 𝑀 × 𝑁 matrix whose values
are all zero except for the 𝑘th diagonal, which is filled with the
lagged product of 𝑐𝑖[𝑛]𝑑∗𝑖 [𝑛 + 𝑘].

• 𝑘𝑖 = 𝛬𝑖[𝑘]∗ ⊗ 𝛬𝑖[𝑘] is the fourth order tensor whose entries are
zero except where filled as
𝑘𝑖 [𝑞, 𝑟, 𝑠, 𝑡] = diag(𝑐𝑖𝑑𝐻𝑖 , 𝑘)[𝑞, 𝑟]

∗ diag(𝑐𝑖𝑑𝐻𝑖 , 𝑘)[𝑠, 𝑡].
• 0 = 𝑥0 ⊗ 𝑦∗0 ⊗ 𝑥∗0 ⊗ 𝑦0 is the fourth order outer product tensor
with non-zero entries indexed as [𝑞, 𝑟, 𝑠, 𝑡] = 𝑥0[𝑞]𝑦∗0[𝑟]𝑥

∗
0[𝑠]𝑦0[𝑡].

2.5.1. Quartic bivariate vector formulation
The first formulation we construct is straightforward from (1). The

ICC measurements (1) can be expressed as a quartic function of the
vectors 𝑥0 and 𝑦0:

ℎ𝑖[𝑘] =
|

|

|

|

|

|

𝑢[𝑘]
∑

𝑛=𝑙[𝑘]
𝑐𝑖[𝑛]𝑑∗𝑖 [𝑛 + 𝑘]𝑥0[𝑛]𝑦

∗
0[𝑛 + 𝑘]

|

|

|

|

|

|

2

+ 𝜂𝑖[𝑘]

= |𝑥𝑇0 diag(𝑐𝑖𝑑𝐻𝑖 , 𝑘)𝑦
∗
0|

2 + 𝜂𝑖[𝑘]

= |𝑥𝑇0 𝛬𝑖[𝑘]𝑦
∗
0|

2 + 𝜂𝑖[𝑘]

= 𝑥𝑇0 𝛬𝑖[𝑘]𝑦
∗
0𝑥

𝐻
0 𝛬

∗
𝑖 [𝑘]𝑦0 + 𝜂𝑖[𝑘]. (5)

This formulation will be useful for the construction of a Wirtinger

gradient in Section 3.
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2.5.2. Quadratic low-rank matrix formulation
Our second formulation highlights the fact that the ICC measure-

ments (1) can also be expressed as phaseless quadratic measurements
of the rank-one matrix 𝑥0𝑦𝐻0 formed by the outer product of the two
unknown vectors 𝑥0 and 𝑦0:

ℎ𝑖[𝑘] = |𝑥𝑇0 𝛬𝑖[𝑘]𝑦
∗
0|

2 + 𝜂𝑖[𝑘]

= |⟨𝛬∗
𝑖 [𝑘], 𝑥0𝑦

𝐻
0 ⟩|

2 + 𝜂𝑖[𝑘]. (6)

Here, ⟨𝐴, 𝐵⟩ = trace(𝐵𝐻𝐴) represents the Frobenius inner product
between matrices 𝐴 and 𝐵.

This formulation reveals that ICC falls into the category of low-
rank phase retrieval problems [6]. Interestingly, in ICC the low-rank
(in fact, rank-one) structure of 𝑥0𝑦𝐻0 arises due to the lagged quadratic
relationship between measurements and variables; in other settings [6],
low-rank structure connects phaseless measurements spanning a time
period over which a one-dimensional objective signal varies. An impor-
tant distinction in ICC is that matrices 𝛬∗

𝑖 [𝑘] = diag(𝑐𝑖𝑑𝐻𝑖 , 𝑘)
∗ against

which 𝑥0𝑦𝐻0 is measured in (6) are entry-wise sparse and disjoint
across different 𝑘. This structure differs from the global, often low-
rank measurement matrices that typically appear in the low-rank phase
retrieval literature [6,7]. This also has substantial implications for the
efficacy of spectral initializers as we discuss in Section 4.2.

2.5.3. Linear low-rank tensor formulation
Finally, it is important to note that the ICC measurements (1) can

also be expressed as linear measurements of a rank-one fourth-order
tensor formed by 𝑥0, 𝑦0, and their complex conjugates:

ℎ𝑖[𝑘] = |⟨𝛬∗
𝑖 [𝑘], 𝑥0𝑦

𝐻
0 ⟩|

2 + 𝜂𝑖[𝑘]

= ⟨𝛬∗
𝑖 [𝑘], 𝑥0𝑦

𝐻
0 ⟩⟨𝛬𝑖[𝑘], 𝑥∗0𝑦

𝑇
0 ⟩ + 𝜂𝑖[𝑘]

= ⟨𝛬∗
𝑖 [𝑘]⊗𝛬𝑖[𝑘], 𝑥0 ⊗ 𝑦∗0 ⊗ 𝑥∗0 ⊗ 𝑦0⟩ + 𝜂𝑖[𝑘]

= ⟨𝑘𝑖 , 0⟩ + 𝜂𝑖[𝑘]. (7)

This linearity will be the foundation on which we base our iterative
hard tensor thresholding approach for inverting measurements as we
discuss in Section 4.4.

3. Cost function, wirtinger gradient, and wirtinger hessian

3.1. Wirtinger calculus

Gradient-based optimization techniques for phase retrieval typically
differentiate a cost function built on the intensity or amplitude error
between measurements generated from truth and the current approx-
imation. Starting from (5), we construct a least-squares cost function
for pulse characterization from ICC measurements that extends cost
functions used in Wirtinger Flow for linear phase retrieval [26], and
we provide the gradient and Hessian of that cost function. Because the
vectors 𝑥0 and 𝑦0 are in general complex-valued, we use the Wirtinger
gradient and Hessian [19,26,28]. We also characterize the ambiguities
of this cost function as they align with current understandings of ICC
ambiguities in the literature [12].

Throughout this section, some notation will be condensed. Let 𝑥 ∈
C𝑀 and 𝑦 ∈ C𝑁 denote the optimization variables with which we aim
to recover 𝑥0 and 𝑦0 (up to some ambiguities to be discussed). The
modulated cross-correlation at lag 𝑘 between 𝑐𝑖𝑥 and 𝑑𝑖𝑦 is represented
by 𝑔𝑖[𝑘] = 𝑥𝑇𝛬𝑖[𝑘]𝑦∗. The intensity of modulated cross-correlation for
this choice of 𝑥 and 𝑦 is then given by 𝐻𝑖[𝑘] = |𝑔𝑖[𝑘]|

2. Finally, the error
between the actual measurements ℎ𝑖[𝑘] and those predicted by 𝑥 and 𝑦
is given by 𝑒𝑖[𝑘] = ℎ𝑖[𝑘] −𝐻𝑖[𝑘].

The least-squares intensity error cost function for ICC is given by

𝑓 (𝑥, 𝑦) = 1
𝐼−1
∑

𝑁−1
∑

(

ℎ𝑖[𝑘] − 𝑥𝑇𝛬𝑖[𝑘]𝑦∗𝑥𝐻𝛬∗
𝑖 [𝑘]𝑦

)2 . (8)
4

2 𝑖=0 𝑘=−𝑀+1
This cost function adds the squared differences for all lags without
any special weighting, and it operates on the error in intensity as
opposed to magnitude (the square root of intensity, amplitude is used
synonymously). Derivation of the Wirtinger gradient and Hessian is
simplified with the use of a concatenated variable 𝑧 =

[

𝑥𝑇 , 𝑦𝑇
]𝑇 and

corresponding cost function of this single variable. This representation
and the derivation of its Wirtinger gradient and Hessian are shown in
Appendix A. Their adaptation to the ICC problem is presented here.

For the cost function (8), the generic Wirtinger gradient derived
n (26) can be evaluated with the substitutions made in (19) and (20)
o arrive at the following expression for the ICC Wirtinger gradient:

𝑓 (𝑥, 𝑦) = −
𝐼−1
∑

𝑖=0

𝑁−1
∑

𝑘=−𝑀+1
𝑒𝑖[𝑘]

⎛

⎜

⎜

⎜

⎜

⎝

𝑔𝑖[𝑘]𝛬∗
𝑖 [𝑘]𝑦

𝑔∗𝑖 [𝑘]𝛬
𝑇
𝑖 [𝑘]𝑥

𝑔∗𝑖 [𝑘]𝛬𝑖[𝑘]𝑦
∗

𝑔𝑖[𝑘]𝛬𝐻𝑖 [𝑘]𝑥∗

⎞

⎟

⎟

⎟

⎟

⎠

. (9)

ote that at the ground truth (when 𝑥 = 𝑥0 and 𝑦 = 𝑦0) in a
oiseless problem, 𝑒𝑖[𝑘] = 0 for all 𝑖, 𝑘, and so the gradient ∇𝑓 (𝑥, 𝑦)
ill be zero as expected. Also note that the gradient will also be zero
f 𝑥 and 𝑦 lie in the null-space of ∑𝐼−1

𝑖=0
∑𝑁−1
𝑘=−𝑀+1 𝑒𝑖[𝑘]𝑔

∗
𝑖 [𝑘]𝛬

𝑇
𝑖 [𝑘] and

𝐼−1
𝑖=0

∑𝑁−1
𝑘=−𝑀+1 𝑒𝑖[𝑘]𝑔𝑖[𝑘]𝛬

∗
𝑖 [𝑘], respectively. A more detailed discussion

f convergence results to date will be discussed in Section 5.3.1.
Similarly, the generic Wirtinger Hessian derived in (36) can be

valuated with the substitutions made in (19) and (20) to arrive at the
ollowing expression for the ICC Wirtinger Hessian:

2𝑓 (𝑥, 𝑦) =
𝐼−1
∑

𝑖=0

𝑁−1
∑

𝑘=−𝑀+1
𝑣1𝑣

𝐻
1 − 𝑒𝑖[𝑘]

(

𝑣2𝑣
𝐻
2 + 𝑣3𝑣𝐻3 + 𝑉

)

, (10)

here

1, 𝑣2, 𝑣3 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑔𝑖[𝑘]𝛬∗
𝑖 [𝑘]𝑦

𝑔∗𝑖 [𝑘]𝛬
𝑇
𝑖 [𝑘]𝑥

𝑔∗𝑖 [𝑘]𝛬𝑖[𝑘]𝑦
∗

𝑔𝑖[𝑘]𝛬𝐻𝑖 [𝑘]𝑥∗

⎞

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎝

𝛬∗
𝑖 [𝑘]𝑦
𝟎
𝟎

𝛬𝐻𝑖 [𝑘]𝑥∗

⎞

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎝

𝟎
𝛬𝑇𝑖 [𝑘]𝑥
𝛬𝑖[𝑘]𝑦∗

𝟎

⎞

⎟

⎟

⎟

⎟

⎠

,

nd

=

⎛

⎜

⎜

⎜

⎜

⎝

𝟎 𝑔𝑖[𝑘]𝛬∗
𝑖 [𝑘] 𝟎 𝟎

𝑔∗𝑖 [𝑘]𝛬
𝑇
𝑖 [𝑘] 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝑔∗𝑖 [𝑘]𝛬𝑖[𝑘]
𝟎 𝟎 𝑔𝑖[𝑘]𝛬𝐻𝑖 [𝑘] 𝟎

⎞

⎟

⎟

⎟

⎟

⎠

.

Recall that at the ground truth (when 𝑥 = 𝑥0 and 𝑦 = 𝑦0) in a
noiseless problem, 𝑒𝑖[𝑘] = 0 for all 𝑖, 𝑘. In this case, the ICC Wirtinger
Hessian in (10) reduces to a sum of outer products of the form 𝑣1𝑣𝐻1
and is therefore positive semi-definite. While this bodes well for
local convergence properties, analysis away from ground truth is more
complicated and is discussed further in Section 5.3.1.

3.2. Ambiguities

The cost function presented in (8) is invariant to certain transfor-
mations of the optimization variables. In particular, for any 𝑥 ∈ C𝑀
and 𝑦 ∈ C𝑁 , 𝑓 (𝑥, 𝑦) = 𝑓 (𝑥𝑎, 𝑦𝑎), where

𝑥𝑎[𝑛] = 𝑎𝑥[𝑛]𝑒𝑗(𝜙𝑥+𝜓𝑛)

𝑦𝑎[𝑛] = 𝑎−1𝑦[𝑛]𝑒𝑗
(

𝜙𝑦+𝜓𝑛
) (11)

for any nonzero 𝑎 ∈ R and for any 𝜙𝑥, 𝜙𝑦, 𝜓 ∈ R. This fact is proved in
Appendix B.

We therefore see that certain ambiguities plague the recovery of any
ground truth vectors 𝑥0 and 𝑦0 from ICC measurements: (𝑖) a global
amplitude scaling factor resulting from the correlation function, (𝑖𝑖) a
global phase offset resulting from phaseless measurements, and (𝑖𝑖𝑖) a
frequency offset resulting from phaseless correlations. These are very
similar in form to the ambiguities that are discussed in FROG recov-
ery [5,12]. In the noiseless case, we note that the Wirtinger gradient
will again be zero and the Wirtinger Hessian again positive semi-
definite at any (𝑥𝑎, 𝑦𝑎) constructed by applying the transformation (11)
to the ground truth (𝑥 , 𝑦 ).
0 0
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3.3. Wirtinger descent algorithm

To minimize the cost function (8), we use the off-the-shelf L-BFGS-B
algorithm from Scipy’s optimization library [29]. This function operates
on real variables. We adapt the Wirtinger gradient and Hessian to
functions of real variables in Appendix C. In remaining sections, L-
FGS-B applied to the cost function in Eq. (8)will be referred to as
irtinger descent.

. Initializer algorithms inspired by low-rank matrix and tensor
ormulations

In this section, we present several additional algorithms for estimat-
ng the vectors 𝑥0 and 𝑦0 from ICC measurements of the form (1). To
complement the Wirtinger descent algorithm, which derives from the
quartic bivariate vector formulation of ICC outlined in Section 2.5.1,
the algorithms in this section are inspired by the quadratic low-rank
matrix formulation outlined in Section 2.5.2 and the linear low-rank
ensor formulation outlined in Section 2.5.3. Each of these algorithms
as the capacity to solve the ICC problem, although they differ in
omputational complexity, memory usage, convergence rate, and sam-
le complexity. Consequently, we have identified that the algorithms
ntroduced in this section are well suited to the role of initializer
or Wirtinger descent. Numerical comparisons of these initializers are
rovided in Section 5.1.
Inspired by the quadratic low-rank matrix formulation of ICC, we

resent a modified spectral initializer that is specially adapted to the
tructure of ICC measurements. Additionally, we discuss the use of
lternating matrix projection algorithms for solving the ICC problem.
hese algorithms are capable of converging very quickly, but are typi-
ally inferior to Wirtinger descent as they require more measurements
o converge.
A common problem exists between traditional spectral initializers

nd alternating minimization approaches for ICC in that disjoint mea-
urements prevent information from separate lags of ℎ𝑖[𝑘] from being
ombined effectively. To remedy this, we also lift the low-rank matrix
roblem into a low-rank tensor recovery problem, which we solve using
n iterative hard tensor thresholding algorithm. This algorithm is capa-
le of operating in a low measurement regime, but it is computationally
ntensive. For this reason, it is better suited as a starting point for
irtinger descent.

.1. Differences from classical low-rank phase retrieval

The formulation of ICC in (6) shows that recovery from ICC can be
iewed as a low-rank phase retrieval problem. However, several major
ifferences exist between ICC and problems studied in the low-rank
hase retrieval literature [6,7,27].
The first difference is that the objective matrix 𝑥0𝑦𝐻0 in (6) is not

only low-rank, but known a priori to be rank-one. While this is a
powerful prior, a complication that exists in ICC is that the measure-
ment matrix 𝛬∗

𝑖 [𝑘] has a rank that is typically 𝑢[𝑘] − 𝑙[𝑘] (assuming
the entries of 𝑐𝑖, 𝑑𝑖 are non-zero). In contrast, most low-rank phase
retrieval problems involve interactions with low-rank measurement
matrices [7,27].

An additional complication is the disjoint nature of ICC measure-
ments as a function of 𝑘. For 𝑘1, 𝑘2 ∈ {−𝑀 + 1, −𝑀 + 2, ... , 𝑁 − 1}
with 𝑘2 ≠ 𝑘1, we have ⟨𝛬∗

𝑖 [𝑘1], 𝛬
∗
𝑖 [𝑘2]⟩ = 0 for all 𝑖. We also note that

for a given 𝑘, 𝛬∗
𝑖 [𝑘] is only capable of operating on the 𝑘th diagonal

of 𝑥0𝑦𝐻0 and no ‘‘global’’ (i.e., multi-diagonal) measurements of 𝑥0𝑦𝐻0
exist. This leaves the rank-one structure of 𝑥0𝑦𝐻0 as the only assumption
that can combine information across diagonals.

Another way to view this stark contrast with existing low-rank phase
retrieval works is to think of the ICC recovery problem as a series
of 𝑀 + 𝑁 − 1 disjoint linear phase retrieval problems (𝑦 = |𝐴𝑥|2)
that each contribute a single diagonal of the matrix 𝑥 𝑦𝐻 as shown
5

0 0
Fig. 2. ICC measurements from (1) represent 𝑘 diagonal-disjoint phase retrieval
problems of a rank-one matrix. Every measurement ℎ𝑖[𝑘] represents the intensity of
he inner product between a diagonal of our objective and a diagonal of a rank-one
easurement matrix: ℎ𝑖[𝑘] = |

|

⟨diag(𝑐𝑖𝑑𝐻𝑖 , 𝑘)
∗ , diag(𝑥𝑦𝐻 , 𝑘)⟩|

|

2.

n Fig. 2. Measurements ℎ𝑖[𝑘] for a fixed 𝑘 are created using only
he 𝑘th diagonal of the outer product matrix 𝑥0𝑦𝐻0 . One could then
ttempt to solve for each of the diagonals separately using any preferred
hase retrieval algorithm, and collect their results at the end to solve
or the outer product matrix 𝑥0𝑦𝐻0 . However, because phase retrieval
lgorithms recover vectors only up to an ambiguous global phase offset,
ll diagonals recovered separately will have a unique global phase-
ffset. This means that if one were to form the𝑀+𝑁−1 phase retrieval
roblems and solve for each diagonal of 𝑥0𝑦𝐻0 , each diagonal would be
ultiplied by an arbitrary unknown phase, and the resulting matrix
ould in general have rank greater than one.
This lack of global measurements also prevents spectral decompo-

ition from properly combining information in spectral initializers like
hose employed in [7,30]. For the ICC problem, the spectral initializer
s mostly easily constructed from the tensor formation shown in (7),
here the ICC measurements are the linear projection of the fourth
rder tensor  = 𝑥0 ⊗ 𝑦∗0 ⊗ 𝑥∗0 ⊗ 𝑦0 onto successive fourth-order
measurement tensors 𝑘𝑖 = 𝛬∗

𝑖 [𝑘] ⊗ 𝛬𝑖[𝑘]. Letting vec () denote a
vectorization of  and  denote a vector containing the ICC measure-
ments {ℎ𝑖[𝑘]}𝑖,𝑘, we may write  =  vec (), where  is a matrix
whose rows are formed by the appropriate vectorizations of {𝑘𝑖 }𝑖,𝑘. A
ypical spectral initializer at this stage would use the adjoint of  to
construct  = 𝐻 , reshape  to form a matrix corresponding to the
unfolding of  → vec (𝑥0𝑦𝐻0 )(vec (𝑥0𝑦𝐻0 ))𝐻 , and then take the leading
eigenvector of this matrix as an initial guess of vec (𝑥0𝑦𝐻0 ). We will
refer to the matrix reshaping of  as the spectral matrix. In typical
low-rank phase retrieval settings [7], measurement matrices are global
and the spectral matrix has a leading eigenvector that contains global
information from the objective matrix. But here, ⟨𝑘1𝑖 ,

𝑘2
𝑗 ⟩ = 0 when

𝑘1 ≠ 𝑘2, and the resulting spectral matrix will produce a block diagonal
matrix as shown in Fig. 3. In particular, the spectral matrix produced
for ICC measurements will have a block for every diagonal of 𝑥0𝑦𝐻0 , and
taking the leading eigenvector will merely return a spectral estimate for
the largest energy diagonal of 𝑥0𝑦𝐻0 . Spectral decomposition could be
used with the largest 𝑀 +𝑁 − 1 eigenvectors of the spectral matrix to
recover estimates of all of the diagonals of 𝑥0𝑦𝐻0 , but these would again
be ambiguous up to phase rotations and the resulting estimate of 𝑥0𝑦𝐻0
would in general have rank greater than one. A technique to align these
diagonals is presented in Section 4.2.

Because vec (𝑥0𝑦𝐻0 )(vec (𝑥0𝑦𝐻0 ))𝐻 is inherently a rank-one matrix,
one may consider low-rank matrix completion techniques to augment
the block diagonal estimates such as those in the right panel of Fig. 3.
However, we consider an even more direct approach for exploiting
low-rank structure. The values of  can be reshaped into a tensor
approximation of  , and iterative hard thresholding on this tensor

forms the core principle of the initializer we present in Section 4.4.
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Fig. 3. Using 𝑥0 ∼ (𝟎, I6) and 𝑦0 ∼ (𝟎, I12), we construct a spectral matrix in the
fashion of [7] from 1000 measurements of the form ℎ𝑖 =

|

|

|

⟨𝐴𝑖 , 𝑥0𝑦𝐻0 ⟩

|

|

|

2
. For the purposes

f illustration, the outer product matrix 𝑥0𝑦𝐻0 has been vectorized along its diagonals.
eft: measurements ℎ𝑖 correspond to global rank-one measurements, where each 𝐴𝑖 is
he outer product of two vectors. Such measurements align with recent research in
ow-rank phase retrieval [7,27]. The leading eigenvector for the spectral matrix (which
s not visually apparent because the matrix also contains a multiple of the identity) can
e reshaped into a 6 × 12 matrix to provide a spectral initializer for 𝑥0𝑦𝐻0 in low-rank
hase retrieval. Right: measurements ℎ𝑖 depend on diagonals of 𝑥0𝑦𝐻0 , i.e., each 𝐴𝑖
s a high-rank, diagonal matrix as one encounters in ICC. Each eigenvector of this
lock-diagonal spectral matrix will only provide information about a single diagonal
f 𝑥0𝑦𝐻0 .

.2. Spectral initializer for disjoint low-rank phase retrieval

We present here a low-complexity approach to synchronize the
hases across noisy estimates of the diagonals of the rank-one matrix
0𝑦𝐻0 . The aim of this technique is to resolve the phase mismatch
etween diagonals recovered with spectral techniques to produce a
ank-one matrix whose leading eigenvector serves as a good estimate
f vec (𝑥0𝑦𝐻0 ).
Our approach is based on an examination of local sub-matrix con-

itions in a properly phase synchronized matrix. To illustrate local
egularity condition we employ, for two vectors 𝑥 ∈ C𝑀 and 𝑦 ∈
𝑁 , consider an outer product matrix of the form 𝑥𝑦𝐻 that has been
ultiplied by an arbitrary phase per diagonal 𝜙𝑘. In any 2 × 2 sub-
atrix with nonzero entries, notice that the product of two diagonal
ntries divided by the product of the two anti-diagonal entries produces
ratio that is invariant to 𝑥 and 𝑦 and depends only on a product of
hase terms of the form 𝜙𝑛𝜙𝑛𝜙∗

𝑛−1𝜙
∗
𝑛+1, as shown in Fig. 4. In a rank-

ne matrix, this ratio must always be equal to 1; therefore this quantity
ives a local regularity condition that measures how well the phases
re synchronized to give a rank-one matrix. Moreover, this leads to
constructive procedure for synchronizing the phases. Computing the
atio for every 2 × 2 sub-matrix, we obtain a series of cross terms that
ach depend on no less than 3 unique entries of 𝜙. This leaves two
lements of 𝜙 as free parameters. For algorithms in this paper, we set
0 = 𝜙1 = 1 arbitrarily. With this assumption in hand, 𝜙2 can be solved
or using the products 𝜙1𝜙1𝜙0𝜙∗

2 = 𝜙∗
2, and so on.

More generally, this problem can be thought of as a phase syn-
hronization problem [31] where we have 𝑀𝑁 third-order cross-term
easurements of three vectors 𝑥, 𝑦, 𝜙. While it may thus be feasible to
ose another optimization at this stage, where the rank of the resulting
isaligned outer product matrix is minimized by varying diagonal
hase offsets, we select the local regularity approach because it is
argely algebraic and requires only simple assumptions. We note that
he ambiguities discussed in Section 3.2 remain and cannot be resolved
y any algorithm without additional assumptions. In particular, the
nknown phase offset between 𝜙0 and 𝜙1 propagates across all values
f 𝜙, which manifests as an unknown frequency offset in the recovery
f 𝑥 and 𝑦.
In practice, an estimate of 𝑥0𝑦𝐻0 may contain both magnitude and
6

hase errors. Algorithmically, we align magnitude and phase in two
Fig. 4. When 𝑥𝑦𝐻 is multiplied by an arbitrary phase offset 𝜙𝑘 on each diagonal, any
2 × 2 submatrix can be used to compute a ratio that depends only on the phase offsets.
Ensuring these ratios are equal to 1 ensures the phases are synchronized so the matrix
can have rank 1.

different steps. Magnitude errors in the entries of the misaligned 𝑥𝑦𝐻
re corrected iteratively because of the coupled nature of the ratio
easurements, and the algorithm used for this process is detailed in
lgorithm 1. Phase is solved for directly as detailed in Algorithm 2.
We adopt the following notation: 𝜒𝑠𝑝𝑒𝑐 represents the collection of the
largest 𝑀 + 𝑁 − 1 eigenvectors of the spectral matrix collected as
misaligned diagonals of an approximation of 𝑥0𝑦𝐻0 , 𝜒𝑚𝑎𝑔 represents the
local magnitude aligned version of 𝜒𝑠𝑝𝑒𝑐 , and 𝜒𝑎𝑙𝑖𝑔𝑛𝑒𝑑 represents the
phase and magnitude aligned estimate of 𝑥0𝑦𝐻0 .

Algorithm 1: Iterative magnitude correction for diagonally
disjoint recoveries (MagReg)

Data:
𝜒𝑠𝑝𝑒𝑐 ∈ C𝑀×𝑁

Parameters:
maxIts = 1000
thresh = 1𝑒 − 4
Result: 𝜒𝑚𝑎𝑔 ∈ C𝑀×𝑁

1 𝜒 ← 𝜒𝑠𝑝𝑒𝑐
2 for( 𝑖𝑖 = 0, 1, ... , maxIts − 1 ) {

// 𝑎𝑑𝑗𝑢𝑠𝑡 = 𝟏 ∈ R𝑀×𝑁 , 𝑑𝑖𝑓𝑓 ∈ R(𝑀−1)×(𝑁−1)

3 𝜒𝑜𝑙𝑑 ← 𝜒
4 𝑎𝑑𝑗𝑢𝑠𝑡 = 𝟏

5 𝑑𝑖𝑓𝑓 = |

|

|

𝜒[∶−1,1∶]𝜒[1∶,∶−1]
𝜒[∶−1,∶−1]𝜒[1∶,1∶]

|

|

|

1∕8

6 𝑎𝑑𝑗𝑢𝑠𝑡[∶ −1, ∶ −1] ∗= 𝑑𝑖𝑓𝑓
7 𝑎𝑑𝑗𝑢𝑠𝑡[1 ∶, 1 ∶] ∗= 𝑑𝑖𝑓𝑓
8 𝑎𝑑𝑗𝑢𝑠𝑡[∶ −1, 1 ∶]∕ = 𝑑𝑖𝑓𝑓
9 𝑎𝑑𝑗𝑢𝑠𝑡[1 ∶, ∶ −1]∕ = 𝑑𝑖𝑓𝑓
10 𝜒 = 𝜒 ∗ 𝑎𝑑𝑗𝑢𝑠𝑡
11 if ||𝜒 − 𝜒𝑜𝑙𝑑 ||22∕||𝜒||

2
2 < thresh then

12 break
13 else if 𝑖𝑖 == maxIts then
14 break
15 }
16 𝜒𝑚𝑎𝑔 ← 𝜒

Finally, we present a complete spectral initializer in Algorithm 3
hat uses the magnitude and phase alignment techniques described in
lgorithms 1 and 2. Fig. 5 shows results from spectral initializers with
and without magnitude and phase alignment as well as the result of
a spectral initializer that uses the single largest eigenvector [7]. The
phase and magnitude alignment concentrates the eigenspectrum similar
to that of the ground truth, and produces a much finer estimate of
magnitude than the unaligned attempt. The estimate of phase from
the aligned version does appear noisy in comparison to the unaligned
initializer, however this is only in the region where the unaligned

initializer produced estimates significantly larger than zero. Across the
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Algorithm 2: Iterative phase correction for diagonally disjoint
recoveries (PhaseReg)

Data:
𝜒𝑚𝑎𝑔 ∈ C𝑀×𝑁

Result: 𝜒𝑎𝑙𝑖𝑔𝑛𝑒𝑑 ∈ C𝑀×𝑁

1 𝑎𝑑𝑗𝑢𝑠𝑡 = 𝟏 ∈ C𝑀×𝑁

2 for( 𝑘 = [−𝑀 + 1, −𝑀 + 2, ... , 𝑁 − 1 ) {
3 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 = 𝑒𝑥𝑝

(

𝑗∠
(

𝜒[∶−1,1∶]𝜒[1∶,∶−1]
𝜒[∶−1,∶−1]𝜒[1∶,1∶]

))

4 if 𝑘 < 0 then
5 diag(𝑎𝑑𝑗𝑢𝑠𝑡, 𝑘)[∶ −1] ∗= diag(𝑐𝑜𝑚𝑝𝑎𝑟𝑒, 𝑘 + 1)
6 else if 𝑘 > 1 then
7 diag(𝑎𝑑𝑗𝑢𝑠𝑡, 𝑘)[∶ −1] ∗= diag(𝑐𝑜𝑚𝑝𝑎𝑟𝑒, 𝑘 − 1)
8 }
9 for( 𝑘 = [−𝑀 + 1, −𝑀 + 2, ... , 𝑁 − 1 ) {
10 if 𝑘 < 0 then
11 diag(𝑎𝑑𝑗𝑢𝑠𝑡, 𝑘) ∗= diag(𝑎𝑑𝑗𝑢𝑠𝑡, 𝑘+1)[∶−1]2

diag(𝑎𝑑𝑗𝑢𝑠𝑡, 𝑘+2)[∶−2]
12 else if 𝑘 > 1 then
13 diag(𝑎𝑑𝑗𝑢𝑠𝑡, 𝑘) ∗= diag(𝑎𝑑𝑗𝑢𝑠𝑡, 𝑘−1)[∶−1]2

diag(𝑎𝑑𝑗𝑢𝑠𝑡, 𝑘−2)[∶−2]
14 }
15 𝜒𝑎𝑙𝑖𝑔𝑛𝑒𝑑 = 𝜒𝑚𝑎𝑔 ∗ 𝑒𝑥𝑝 (−𝑗∠(𝑎𝑑𝑗𝑢𝑠𝑡))

full signal width, the aligned estimate is more consistent. This higher
concentration of eigenspectrum in the aligned initializer aligns with
a priori knowledge that the spectral initializer here should be rank-
one, and was chosen to initialize Wirtinger descent later. It should
be noted that the traditional approach (‘‘spectral’’) of using only a
single eigenvector from the spectral matrix fails almost completely
here, seemingly able only to estimate a single large value of 𝑥.
Algorithm 3: Spectral initializer with iterative magnitude and
phase correction

Data:
ℎ𝑖[𝑘] = |

|

𝑐𝑖𝑥0
⨂

𝑘 𝑑𝑖𝑦0||
2 + 𝜂𝑖[𝑘] ∈ R𝐼×(𝑀+𝑁−1)

Result: 𝑥 ∈ C𝑀 , 𝑦 ∈ C𝑁
1 𝜒𝑠𝑝𝑒𝑐 ← 𝟎 ∈ C𝑀×𝑁

2 for( 𝑘 = [−𝑀 + 1, −𝑀 + 2, ... , 𝑁 − 1 ) {
// 𝐴𝑘 ∈ C𝐼×(𝑢−𝑙), ℎ𝑘 ∈ R𝐼 , 𝐷 ∈ C(𝑢−𝑙)×(𝑢−𝑙)

3 𝐴𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

diag(𝑐0𝑑𝐻0 , 𝑘)
diag(𝑐1𝑑𝐻1 , 𝑘)

⋮
diag(𝑐𝐼−1𝑑𝐻𝐼−1, 𝑘)

⎞

⎟

⎟

⎟

⎟

⎠

4 ℎ𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

ℎ0[𝑘]
ℎ1[𝑘]
⋮

ℎ𝐼−1[𝑘]

⎞

⎟

⎟

⎟

⎟

⎠

5 𝐷 = 𝐴𝐻𝑘 diag(ℎ𝑘)𝐴𝑘
6 𝑢, 𝑠, 𝑣𝐻 = 𝑆𝑉 𝐷(𝐷)
7 diag(𝜒𝑠𝑝𝑒𝑐 , 𝑘) = 𝑢[∶, 0]

√

𝑠[0]
8 }
9 𝜒𝑚𝑎𝑔 = MagReg(𝜒𝑠𝑝𝑒𝑐 )
10 𝜒𝑎𝑙𝑖𝑔𝑛𝑒𝑑 = PhaseReg(𝜒𝑚𝑎𝑔)
11 𝑈,𝑆, 𝑉 𝐻 = 𝑆𝑉 𝐷(𝜒𝑎𝑙𝑖𝑔𝑛𝑒𝑑 )
12 𝑥 = 𝑈 [∶, 0]

√

𝑆[0]
13 𝑦 = 𝑉 [∶, 0]

√

𝑆[0]

4.3. Matrix projective algorithms

PCGPA represented an early projective algorithm in the optics
community [9] that alternated a magnitude constraint with a rank-one
enforcement to invert FROG measurements. For our approach, we al-
ternate an AltMinPhase step [32] that is outlined in Algorithm 4 and an
7

Fig. 5. Several spectral initializer approaches are applied to an 𝑀,𝑁, 𝐼 = 32, 32, 1024
ICC measurement set of a low-bandwidth signal with full-bandwidth complex Gaussian
i.i.d. measurements. Here the eigenvectors corresponding to the 𝑥 recovery are shown.
Selecting only the largest eigenvector, as is common in the literature [7] produces
the result labeled ‘‘spectral’’. Recovering every diagonal and collecting them into
a single matrix without diagonal phase alignment is labeled ‘‘unaligned’’. Finally,
applying the magnitude and phase alignment techniques discussed in this paper is
shown under the label ‘‘aligned’’. The concentration of eigenvalues for the aligned
technique demonstrates the strengths of the local regularity condition at correcting the
unknown diagonal phase offsets.

SVD enforced rank-one condition that is outlined in Algorithm 5. This
technique is modeled after [6], with appropriate substitutions made for
known rank-one a priori. To distinguish this technique, we will identify
it as Matrix AltMin throughout the rest of the paper. This approach is
extremely close in nature to PCGPA and is an important baseline to
compare against because of its common use. It is important to note
that this algorithm still has the identical phase misalignment problem
that the spectral methods mentioned earlier encounter. Here iterative
applications of rank-one projections and AltMinPhase projections are
applied to a null-initialized matrix until a stable result is produced. The
complete alternating minimization algorithm is detailed in Algorithm
6. Some additional notation useful here: 𝜒 is the current guess of the
outer-product matrix 𝑥0𝑦𝐻0 , 𝜒𝑚𝑎𝑔 is the output of 𝜒 when AltMinPhase
is applied to every diagonal, and 𝜒𝑟𝑎𝑛𝑘 is the rank-one projection of 𝜒 .

It should be noted here that in Algorithm 6, we use pseudo-inverse
operators instead of adjoints for our magnitude back-projection. Be-
cause our problem is disjoint per diagonal on the outer product of 𝑥𝑦𝐻 ,
we found that computing these pseudo-inverses added little time to
computation and typically provided faster convergence compared to
using adjoints. Using the adjoint typically works well when properly
scaled, but takes more iterations to converge.

4.4. Tensor projective algorithms

As outlined in Section 2.5.3, ICC can be viewed as taking linear
measurements of a rank-one, fourth order tensor  = 𝑥0⊗𝑦∗0⊗𝑥

∗
0⊗𝑦0. As

n alternative to matrix-based projective algorithms, which still involve
hase retrieval, one can attempt to directly estimate the tensor  and
hen factor this tensor to obtain estimates of 𝑥 and 𝑦 .
0 0
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Algorithm 4:Matrix magnitude back-projection (MatrixMagPro-
ect)
Data:
𝜒 ∈ C𝑀×𝑁

𝐴𝑘, forward operator for all 𝑘
𝐴+
𝑘 , pseudo-inverse of each forward operator

ℎ𝑖[𝑘] = |

|

𝑐𝑖𝑥0
⨂

𝑘 𝑑𝑖𝑦0||
2 + 𝜂𝑖[𝑘] ∈ R𝐼×(𝑀+𝑁−1)

ℎ𝑘 =
{

ℎ0[𝑘], ℎ1[𝑘], ... , ℎ𝐼−1[𝑘]
}

Result: 𝜒𝑚𝑎𝑔
1 for( 𝑘 = [−𝑀 + 1, −𝑀 + 2, ... , 𝑁 − 1 ) {
2 forward = 𝐴𝑘 diag(𝜒, 𝑘)
3 phasedMag =

√

ℎ𝑘𝑒𝑥𝑝 (𝑗∠(forward))
4 diag(𝜒𝑚𝑎𝑔 , 𝑘) = 𝐴+

𝑘 phasedMag
5 }

Algorithm 5: Single rank matrix projection (MatrixRankProject)
Data:
𝜒 ∈ C𝑀×𝑁

Result: 𝜒𝑟𝑎𝑛𝑘
1 𝑈,𝑆, 𝑉 𝐻 = 𝑆𝑉 𝐷(𝜒)
2 𝑥 = 𝑈 [∶, 0]

√

𝑆[0]
3 𝑦 = 𝑉 [∶, 0]

√

𝑆[0]
4 𝜒𝑟𝑎𝑛𝑘 = 𝑥𝑦𝐻

Algorithm 6: Alternating Magnitude Backprojection and Rank
onstrained Minimization (Matrix AltMin)
Data:
ℎ𝑖[𝑘] = |

|

𝑐𝑖𝑥0
⨂

𝑘 𝑑𝑖𝑦0||
2 + 𝜂𝑖[𝑘] ∈ R𝐼×(𝑀+𝑁−1)

𝑐 ∈ C𝐼×𝑀 , 𝑑 ∈ C𝐼×𝑁
Parameters:
thresh = 1𝑒 − 6
maxIts = 1000
Result: 𝑥 ∈ C𝑀 , 𝑦 ∈ C𝑁

1 𝜒 ← 𝟎 ∈ C𝑀×𝑁

2 for( 𝑘 = [−𝑀 + 1, −𝑀 + 2, ... , 𝑁 − 1 ) {
3 𝑟𝑜𝑤𝑠 = 𝑙[𝑘] ∶ 1 ∶ 𝑢[𝑘]
4 𝑐𝑜𝑙𝑠 = 𝑙[𝑘] ∶ 1 ∶ 𝑢[𝑘] + 𝑘
5 𝐴𝑘 = 𝑐[∶, 𝑟𝑜𝑤𝑠] ∗ 𝑑∗[∶, 𝑐𝑜𝑙𝑠] // 𝐴𝑘 ∈ C𝐼×(𝑢−𝑙)
6 𝐴+

𝑘 = pinv(𝐴𝑘)
7 }
8 for( 𝑖𝑖 = 0, 1, ... , maxIts − 1 ) {
9 𝜒𝑜𝑙𝑑 ← 𝜒
10 𝜒𝑚𝑎𝑔 = MatrixMagProject(𝜒, 𝐴𝑘, 𝐴+

𝑘 , ℎ)
11 𝜒 = MatrixRankProject(𝜒𝑚𝑎𝑔)
12 if ||𝜒 − 𝜒𝑜𝑙𝑑 ||22∕||𝜒||

2
2 < thresh then

13 break
14 else if 𝑖𝑖 == maxIts then
15 break
16 }
17 𝑈,𝑆, 𝑉 𝐻 = 𝑆𝑉 𝐷(𝜒)
18 𝑥 = 𝑈 [∶, 0]

√

𝑆[0]
19 𝑦 = 𝑉 [∶, 0]

√

𝑆[0]

Tensor iterative hard thresholding [33,34] is a two step protective
lgorithm that alternates between back-projecting error and promoting
ow tensor rank. To promote low tensor rank, we use the Tucker
ecomposition to reduce our tensor, then use only the top eigen-
ector to reconstruct a rank-one tensor as shown in Algorithm 7.
Measurements in the back-projection step are still disjoint over 𝑘, and
8

therefore this step can be broken into 𝑀 + 𝑁 − 1 back-projections as
shown in Algorithm 8; we again choose pseudo-inverses over adjoints.
The complete alternating minimization algorithm that employs both
of these projections is detailed in Algorithm 6. At low measurement
counts, Algorithm 6 may converge to tensors with smaller or larger
norm magnitude if this algorithm is initiated at zero or randomly. For
this reason, results are scaled by Algorithm 10 rather than by core
tensor value, as it typically provides a better estimate of scale. At
higher measurement counts, when Algorithm 6 converges to a tighter
estimate of 𝑥, 𝑦, the scaling factor is typically identical to

√

𝑐∕2, where
is the single value of the core tensor. Tensor decompositions in this
roject were performed using the Python tensor decomposition package
ensorly [35]. Conceptually, in the same way PhaseLift [21] lifts the
on-linear inversion of linear phase retrieval to linear low-rank matrix
ecovery, we have lifted the non-linear inversion of low-rank phase
etrieval to linear low-rank tensor recovery. Additional notation useful
n this section includes: 𝜒 is the current estimate of 𝑥0 ⊗ 𝑦∗0 ⊗ 𝑥∗0 ⊗ 𝑦0,
𝑏𝑎𝑐𝑘 is 𝜒 added to the backprojection of its forward error, and 𝜒𝑟𝑎𝑛𝑘 is
he rank-one projection of 𝜒 .
Algorithm 7: Rank-one tensor projection (TensorRankProject)

Data:
𝜒 ∈ C𝑀×𝑁×𝑀×𝑁

Result: 𝜒𝑟𝑎𝑛𝑘
1 𝑣[0], 𝑣[1], 𝑣[2], 𝑣[3] = tucker(𝜒, rank = [1, 1, 1, 1])
2 𝜒𝑟𝑎𝑛𝑘 = 𝑣[0]⊗ 𝑣[1]⊗ 𝑣[0]∗ ⊗ 𝑣[1]∗

Algorithm 8: Tensor error back-projection (TensorBackProject)
Data:
𝜒 ∈ C𝑀×𝑁×𝑀×𝑁

𝐴𝑘, forward operator for all 𝑘
𝐴+
𝑘 , pseudo-inverse of each forward operator

ℎ𝑖[𝑘] = |

|

𝑐𝑖𝑥0
⨂

𝑘 𝑑𝑖𝑦0||
2 + 𝜂𝑖[𝑘] ∈ R𝐼×(𝑀+𝑁−1)

Result: 𝜒𝑏𝑎𝑐𝑘, 𝑒 ∈ R Frobenius error
1 𝑒 = 0
2 𝜒𝑏𝑎𝑐𝑘 ← 𝟎 ∈ C𝑀×𝑁×𝑀×𝑁

3 for( 𝑘 = [−𝑀 + 1, −𝑀 + 2, ... , 𝑁 − 1 ) {
4 𝑟𝑜𝑤𝑠 = 𝑙[𝑘] ∶ 1 ∶ 𝑢[𝑘]
5 𝑖𝑖 = repeat(𝑟𝑜𝑤𝑠, 𝑢 − 𝑙)
6 𝑗𝑗 = tile(𝑟𝑜𝑤𝑠, 𝑢 − 𝑙) + 𝑘
7 𝑘𝑘 = 𝑖𝑖 + 𝑘
8 𝑙𝑙 = 𝑗𝑗 + 𝑘
9 flatKSection = 𝜒[𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙]
10 error = ℎ𝑘 − 𝐴𝑘flatKSection
11 backProject = 𝐴+

𝑘 error
12 𝜒𝑏𝑎𝑐𝑘[𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙] = 𝜒[𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙] + backProject
13 𝑒 = 𝑒 + ||error||2𝐹
14 }

4.5. Alternating projections and variants

Projective algorithms have been studied in the context of phase
retrieval for many years, and variants studied dating back to the early
2000’s demonstrated superior rates of convergence. Relaxed Averaged
Alternating Reflections (RAAR) [36] is one such algorithm and is
widely used. We have adapted RAAR to both the matrix and tensor
projective algorithms in an attempt to improve rates. RAAR algorithms
used here assume there are two projection operators 𝑃1, 𝑃2, which
for us are the functions MatrixRankProject and MatrixMagProject for
the matrix case, and TensorRankProject and TensorBackProject for
the tensor case. With 𝑃1, 𝑃2 so defined, RAAR variants of our matrix
and tensor initializers are identical to their alternating minimization
counter-parts, with the exception of a new update step per iteration
shown for RAAR in Algorithm 11. This update step depends on two
parameters 𝛼, 𝛽; in numerical tests, we find that setting 𝛼 = 0.9 and

𝛽 = 0.5 works well.
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Algorithm 9: Iterative hard tensor thresholding (Tensor AltMin)
Data:
ℎ𝑖[𝑘] = |

|

𝑐𝑖𝑥0
⨂

𝑘 𝑑𝑖𝑦0||
2 + 𝜂𝑖[𝑘] ∈ R𝐼×(𝑀+𝑁−1)

𝑐 ∈ C𝐼×𝑀 , 𝑑 ∈ C𝐼×𝑁
Parameters:
thresh = 1𝑒 − 6
maxIts = 1000
Result: 𝑥 ∈ C𝑀 , 𝑦 ∈ C𝑁

1 𝜒 ← (0, 1) ∈ C𝑀×𝑁×𝑀×𝑁

2 for( 𝑘 = [−𝑀 + 1, −𝑀 + 2, ... , 𝑁 − 1 ) {
3 𝑟𝑜𝑤𝑠 = 𝑙[𝑘] ∶ 1 ∶ 𝑢[𝑘]
4 𝑖𝑖 = repeat(𝑟𝑜𝑤𝑠, 𝑢 − 𝑙)
5 𝑗𝑗 = tile(𝑟𝑜𝑤𝑠, 𝑢 − 𝑙) + 𝑘
6 𝑘𝑘 = 𝑖𝑖 + 𝑘
7 𝑙𝑙 = 𝑗𝑗 + 𝑘
8 for( 𝑖 = [ 0, 1, ... , 𝐼 − 1] ) {
9 𝑣𝑘[𝑖] = diag(𝑐[𝑖, ∶]𝑑[𝑖, ∶]𝐻 , 𝑘)
10 𝐴𝑘[𝑖, ∶] = flatten(𝑣𝑘[𝑖]⊗ 𝑣𝑘[𝑖]∗)

// 𝐴𝑘 ∈ C𝐼×(𝑢−𝑙)2

11 }
12 𝐴+

𝑘 = pinv(𝐴𝑘)
13 }
14 for( 𝑖𝑖 = 0, 1, ... , maxIts − 1 ) {
15 𝜒𝑏𝑎𝑐𝑘, 𝑒 = TensorErrorProject(𝜒, 𝐴𝑘, 𝐴+

𝑘 , ℎ)
16 𝜒 = TensorRankProject(𝜒𝑏𝑎𝑐𝑘)
17 if 𝑒 < thresh then
18 break
19 else if 𝑖𝑖 == maxIts then
20 break
21 }
22 𝑋, 𝑌 ∗, 𝑋∗, 𝑌 = tucker(𝜒, rank = [1, 1, 1, 1])
23 𝑥, 𝑦 = measurementScale( 𝑋, 𝑌 , ℎ, 𝑐, 𝑑)

Algorithm 10: measurementScale
Data:
𝑥 ∈ C𝑀 , 𝑦 ∈ C𝑁
𝑐 ∈ C𝐼×𝑀 , 𝑑 ∈ C𝐼×𝑁

ℎ𝑖[𝑘] = |

|

𝑐𝑖𝑥0
⨂

𝑘 𝑑𝑖𝑦0||
2 + 𝜂𝑖[𝑘] ∈ R𝐼×(𝑀+𝑁−1)

Result: 𝑥, 𝑦 correct relative scaling
1 𝐻𝑖[𝑘] = |

|

𝑐𝑖𝑥
⨂

𝑘 𝑑𝑖𝑦||
2

2 ratio = mean(𝐻𝑖[𝑘]∕ℎ𝑖[𝑘]∀𝑖, 𝑘)
3 scale = ratio1∕4
4 𝑥 = 𝑥∕scale
5 𝑦 = 𝑦∕scale

Algorithm 11: RAAR update for single iteration
Data:
𝜒𝑖 current guess
Parameters:
𝛼 = .9
𝛽 = .5
Result: 𝜒𝑖+1
/* At iteration 𝑖 */

1 𝑟1 = 2𝑃2(𝜒𝑖) − 𝜒𝑖
2 𝑟2 = 2𝑃1(𝑟1) − 𝑃2(𝜒𝑖)
3 𝑚1 = 𝛽(𝛼𝑟2 + (1 − 𝛼)𝜒𝑖)
4 𝑚2 = (1 − 𝛽)𝑃2(𝜒𝑖)
5 𝜒𝑖+1 = 𝑚1 + 𝑚2
9

Fig. 6. Various initializers are compared, and the resulting error in the 𝑥, 𝑦 estimates
re multiplied and shown as a function of 𝑀 = 𝑁 and 𝐼 . With respect to problem size
𝑀,𝑁 , tensor methods require less measurements 𝐼 than matrix methods. At the scales
presented here, spectral methods do not show any dramatic improvement over the
random initializer. Trial spaces presented in black were not tested due to prohibitive
processing time.

5. Performance results

5.1. Numerical testing

Initial results for numerical Monte-Carlo testing of algorithms are
presented in this section. For the purposes of testing, 𝑥0 ∼ (𝟎, I𝑀 ),
𝑦0 ∼ (𝟎, I𝑁 ), and each 𝑐𝑖 ∼ (𝟎, I𝑀 ) and 𝑑𝑖 ∼ (𝟎, I𝑁 ) for all 𝑖 =
0, 1,… , 𝐼 − 1].
Fig. 6 displays the resulting error of the initializers developed in

ection 4 over several trials with free variables 𝑀 = 𝑁 and 𝐼 .
rror in Fig. 6 for a given estimate 𝑥, 𝑦 of 𝑥0, 𝑦0 is calculated as
𝑥0 − min𝜃,𝜙(𝜙𝑥𝑒𝑗𝜃𝑛)‖2∕‖𝑥0‖2 times ‖𝑦0 − min𝜃,𝜙(𝜙𝑦𝑒𝑗𝜃𝑛)‖2∕‖𝑦0‖2, the
roduct of unambiguous, normalized error in 𝑥 and the unambiguous,
ormalized error in 𝑦. Fig. 6 shows the percentage over which this error
roduct was below −3 dB over several experiments. Each initializer was
llowed to iterate 𝑚𝑎𝑥𝐼𝑡𝑠 = 1000 times and was required to terminate at
threshold condition of 𝑡ℎ𝑟𝑒𝑠ℎ = 1𝑒−6. The maximum number of itera-
ions was typically reached for low numbers of measurements 𝐼 , while
he threshold condition was typically reached in higher measurement
egimes.
Based on the output from experiments in Fig. 6, we run L-BFGS-B
irtinger descent initialized with the result of the various initialization
lgorithms. The final product of unambiguous errors (after Wirtinger
escent) is shown in Fig. 7. Fig. 8 shows the median total runtime from
nitializer through descent for the tests run in Fig. 7.
From the numerical results presented here, tensor initializers allow

onvergence from a reduced number of ICC measurements, but this
omes at the expense of a much longer run time. Otherwise, there
ppears to be no definite advantage in using an initializer before
irtinger descent for this problem.
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Fig. 7. Various initializers are followed with Wirtinger descent, and the resulting error
n the 𝑥, 𝑦 estimates are multiplied and shown as a function of 𝑀 = 𝑁 and 𝐼 . Compared
to random initialization, there does not appear to be a strong improvement from the
spectral initializer or the matrix alternating minimization methods when followed by
Wirtinger descent. Only the iterative hard tensor thresholding initialization methods
appear to place the Wirtinger descent in a more advantaged initial point than random.

Fig. 8. Various initializers are followed with Wirtinger Descent, and resulting runtimes
are shown as a function of 𝑀 = 𝑁 and 𝐼 . Tensor methods take significantly longer
han other approaches studied.
10

𝑄

Table 1
Memory and Computational complexity per iterations of presented
algorithms.
Algorithm Memory Compute

Matrix AltMin 
(

𝐼𝐾2) 
(

𝐼𝐾2 +𝐾3)

Tensor AltMin 
(

𝐼𝐾3 +𝐾4) 
(

𝐼𝐾3 +𝐾4)

Gradient 
(

𝐼𝐾2) 
(

𝐼𝐾2)

5.2. Complexity

As demonstrated in Fig. 8, tensor methods typically take much
longer to compute than matrix alternating methods and randomly
initialized gradient descent. This merits a discussion on the memory
and per iteration computational complexity of the presented methods,
along with a discussion on their scalability to practical problem sets.
For the purposes of this discussion, we focus comparison to Matrix
AltMin, Tensor AltMin, and Wirtinger descent. RAAR per iteration
complexity will be a constant multiple more complex than alternating
minimization methods, and spectral initializers are not discussed here
because of their ineffectiveness demonstrated in Section 5.1. Common
erms appear in both the discussion of computational and memory
omplexity, which are listed and simplified here.

• 𝑄 = min(𝑀,𝑁) ≥ min(𝑀,𝑁 − 𝑘) − min(0, 𝑘) bounds the length
of each diagonal in the matrix 𝑥𝑦𝐻 .

• 𝑃 = max(𝑀,𝑁).
• SVD computational complexity for a matrix 𝑥𝑦𝐻 ∈ 𝐂𝑀×𝑁 is

(

𝑃 2𝑄 +𝑄3) [37].
• Tensor t-HOSVD computational complexity for a tensor 𝑥𝑦𝐻𝑥𝐻𝑦 ∈
C𝑀×𝑁×𝑀×𝑁 is 

(

𝑃 2𝑄2) [38].
• 𝐾 is used to simplify expressions when 𝑄, 𝑃 are roughly the same
value, e.g. 𝑄 ≈ 𝑃 ≈ 𝐾.

.2.1. Memory complexity
Persistent memory storage between each iteration is presented in

able 1.
Matrix AltMin stores only two leading guess vectors (𝑃 ,𝑄 terms),
matrix that is their outer product (𝑄𝑃 terms), and the adjoint or
seudo-inverse matrices that relate measurements to diagonals ((𝑃 +
−1)×𝑄×𝐼 terms). The adjoint matrix dominates memory complexity
nd scales as (𝐼𝐾2).
Tensor AltMin stores two leading guess vectors (𝑃 ,𝑄 terms), a ten-

or that represents the fourth-order outer product terms (𝑃 2𝑄2 terms),
nd a collection of matrices that relate measurements to subsections of
he outer product tensor (𝑃 +𝑄−1 matrices of 𝐼×𝑄2 terms). The tensor
nd measurement matrices dominate here and scale as (𝐼𝐾3 +𝐾4).
Basic Wirtinger methods per iteration store current best guess and

cale linearly as 𝑃+𝑄. However, to achieve the computation complexity
isted earlier, it is convenient to pre-compute outer products of 𝑐𝑖, 𝑑𝑖
nd store them. This requires a memory structure with size 𝐼𝑃𝑄 →

(𝐼𝐾2). More complex algorithms may store additional information
ike previous guesses or an estimate of Hessian, but are not presented
ere.

.2.2. Computational complexity
Operations per iteration for each algorithm is presented in Table 1

n units of complex floats.
Matrix AltMin is a series of matrix multiplications back-projecting

rror from measurements to diagonals (𝑃 + 𝑄 − 1 matrix multiplies
f size 𝐼 × 𝑄) followed by an SVD (

(

𝑃 2𝑄 +𝑄3) listed above). SVD
nd matrix multiplies both contribute similar complexity, and gathering
erms yields (𝐼𝐾2 +𝐾3).
Tensor AltMin is a series of matrix multiplications back-projecting

rror from measurements to sub-sections of a fourth-order tensor (𝑃 +
2
− 1 matrix multiplications of size 𝐼 × 𝑄 ) followed by a HOSVD



Signal Processing 215 (2024) 109267D. Rosen and M.B. Wakin

𝑖
p
𝑔
s
A
1

5

i
w
d
o
c

p
f
s
o

(
(

𝑃 2𝑄2) from above). Matrix multiplication and HOSVD both con-
tribute similar complexity, and gathering terms yields (𝐼𝐾3 +𝐾4).

Gradient calculations produce an estimate of 𝑔𝑖[𝑘] (2𝑄multiplies per
, 𝑘), followed by a subtraction of 𝑒𝑖[𝑘] = ℎ𝑖[𝑘] − |𝑔𝑖[𝑘]|

2 (𝑄 multiplies
er 𝑖, 𝑘). Weighting each diagonal 𝛬𝑖[𝑘] is a multiplication by 𝑒𝑖 and
𝑖 (2𝑄 multiplies per 𝑖, 𝑘). This process is repeated four times for each
ubsection of the gradient to produce a total of 20𝑄 operations per 𝑖, 𝑘.
ccounting for each diagonal and measurement, we arrive at a total of
6𝑄 × (𝑃 +𝑄 − 1) × 𝐼 yielding a generic complexity of (𝐼𝐾2).

.2.3. Scalability
Based on the computational complexity and memory complexity per

teration, gradient techniques are roughly as complex as Matrix AltMin,
hile tensor techniques require vastly more resources than gradient
escent and Matrix AltMin. In our own studies, the resource intensity
f tensor problems quickly grew to be prohibitive as is visible in the
ropping in Fig. 7.
Note from Table 1 that each term depends on 𝐾 or on both 𝐾 and

𝐼 . Based on the phase-transition diagrams presented in Fig. 7, we see
that all algorithms converge when 𝐼 is on the order of 𝐾 (ignoring log
factors). Based on the assumption that 𝐼 ≈ 𝐾, we see that Matrix AltMin
and gradient techniques are roughly equal in memory complexity and
are both an order of 𝐾 less complex than tensor techniques.

For practical problems moving forward, gradient descent approaches
offer both an efficient and scalable technique for solving for signals
from the intensity of cross-correlation with tensor initializers offering
slight benefit only when the problem size is small enough that the
computational expense can be spared. Comparing to existing state-
of-the-art algorithms built from Matrix Altmin, gradient methods are
equivalently complex in both memory and computation but appear to
have superior recovery rates for lower measurement count as shown in
Figs. 6 and 7.

Using tensors to solve for low-dimensional approximations of 𝑥, 𝑦
may be an effective way to initialize gradient descent while maintaining
low computational cost, but remains a topic of future research.

5.3. Convergence

5.3.1. Toward theoretical bounds
The intensity-based cost function studied in ICC was selected in

part because it is possible to take an expectation value with respect
to measurement vectors 𝑐, 𝑑 when these vectors are assumed to be
constructed using random distributions in phase and amplitude. For
this discussion, as in the numerical experiments in Section 5.1, we
treat 𝑐, 𝑑 as independent and identically distributed (i.i.d.) complex
Gaussian vectors 𝑐, 𝑑 ∼  (0, I𝑀 ), (0, I𝑁 ). This practice is typical
in phase retrieval studies because complex Gaussian measurements
provide a generic measurement type with known moments and because
recovery from Gaussian measurements has been demonstrated to be
near optimal [39]. Expectations can be calculated by lifting polyno-
mial interactions in the cost function to appropriate tensor orders.
Bounding deviation from this asymptotic landscape is a straightforward
approach to creating theoretical requirements for the number of mea-
surements required for convergence [28]. The gradient and Hessian of
the expected value of cost can provide insight into regions over which
convergence could be expected, impossible, or plagued by erroneous
local minima.

Toward this end we have obtained derived the expectation of the
cost function presented in Eq. (8), as well as the gradient of the expec-
tation. The results are constructed of tightly coupled terms of 𝑥, 𝑦, 𝑥0, 𝑦0
and diagonals of the outer product of 𝑥𝑦𝐻 and 𝑥0𝑦𝐻0 . This tight coupling
is not surprising considering that the Wirtinger gradient of cost for 𝑥, 𝑦
is a linear function of 𝑦, 𝑥 respectively modified by cross terms of 𝑥, 𝑦
contained in 𝑔𝑖[𝑘]. This dependence on cross-terms makes it difficult
to analyze the function, and further work is needed to determine
11

the regions of convergence of the cost function. Our derivations are
presented in Appendices D and E. We also present a brief numerical
study of the convergence of gradient descent in Section 5.3.2.

Outside of our studies of asymptotic cost function, we can make two
comments on convergence based on the Wirtinger gradient and Hessian
shown in Eqs. (9) and (10).

First, the point 𝑥 = 𝟎, 𝑦 = 𝟎 is a point of both zero gradient and
zero Hessian. All terms in the gradient and Hessian are either directly
dependent on 𝑥, 𝑦 or indirectly through 𝑔𝑖[𝑘]. This point has no gradient
and no curvature and is therefore unsuitable as a starting point for
our descents, prompting random initialization. This also implies that
a global convergence guarantee cannot be established, though a local
guarantee may still be possible.

Second, the matrix 𝑈 (𝑥, 𝑦) =
∑𝐼−1
𝑖=0

∑𝑁−1
𝑘=−𝑀+1 𝑒𝑖[𝑘]𝑔𝑖[𝑘]𝛬

∗
𝑖 [𝑘] con-

tains significant geometric information of the cost function due to its
ubiquity in the gradient and Hessian alike. Examining the gradient
in Eq. (9), we see that gradient will go to zero at points other than
ambiguities of the ground truth if 𝑥, 𝑦 are in the left and right-hand
null-space of 𝑈 (𝑥, 𝑦) respectively. Were it not for the presence of 𝑔𝑖[𝑘],
this problem would largely be solvable with statements about the rela-
tionship between 𝑥, 𝑦 and 𝑐, 𝑑 vectors; however this 𝑔𝑖[𝑘] term modifies
what would be an ordinary quadratic ⟨diag(𝑐𝑖, 𝑑𝐻𝑖 , 𝑘), 𝑥𝑦

𝐻
⟩ to a higher-

order interaction. We believe that understanding the behavior of 𝑈 (𝑥, 𝑦)
and its variations present in the Hessian is critical to understanding the
regions of convergence.

5.3.2. Numerical convergence analysis
By fitting models against the phase transition plots shown in Fig. 7,

we aim to provide some estimate of the convergence rate of randomly
initialized Wirtinger descent using the procedure outlined below.

1. For each 𝑀,𝑁 fit the phase transition plot for randomly initial-
ized Wirtinger descent to a generalized logistic function (GLF)
as a function of 𝐼 :

𝐺𝐿𝐹 (𝐼, 𝑎, 𝑏, 𝑐) = 1
(1 + 𝑒−𝑎∗(𝐼−𝑏))1∕𝑐

. (12)

2. For every GLF function fit, determine where the GLF crosses the
points .25, .5, and .75 to provide estimates of the 25%, 50%,
and 75% convergence rates of randomly initialized ICC problems
converging to a correct answer.

3. Fit a linear, square-root, and log-linear function to these cross-
ings as a function of 𝑀,𝑁 , and determine which function fits
data with least mean-squared error.

The GLF function was used here to approximate columns of the
hase transition plot because of its low complexity and generalizability
or monotonic functions transitioning between 0 and 1. The linear,
quare-root, and log-linear functions fit to resulting GLF crossings are
utlined in Eqs. (13), (14), and (15). All variables that are not 𝑀 are
free variables.

𝑓𝑙𝑖𝑛𝑒𝑎𝑟(𝑀) = 𝑎𝑀 + 𝑏 (13)

𝑓𝑠𝑞𝑟𝑡(𝑀) =
√

𝑎𝑀 + 𝑏 + 𝑐 (14)

𝑓𝑙𝑜𝑔𝑙𝑖𝑛(𝑀) = log(𝑎𝑀 + 𝑏)(𝑐𝑀 + 𝑑) (15)

Functions in Eqs. (13), (14), and (15) were fit to the resulting GLF
crossings and the residual mean squared error is listed in Table 2. The
log-linear function fits the crossing data with least error consistently
for the 25%, 50%, and 75% convergence rate. The fits extracted for
the log-linear function are plotted over the phase-transition diagram in
Fig. 9.

We suspect based off these brief numerical experiments that the
number of measurements 𝐼 required to converge with constant success
rate is approximately log-linear with respect to problem complexity
𝑀,𝑁 with parameters listed in Table 3. Note that the additive parame-
ter 𝑏 in the log-linear expression consistently solved to be insignificant

and is not listed.
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Table 2
Residual MSE for various fit functions vs. convergence rate.

25% 50% 75%

Linear 2.54 2.42 2.94
Square-root 1.06 1.43 2.91
Log-linear .76 .92 1.82

Fig. 9. 25%, 50%, and 75% log-linear functions plotted against the phase-transition
plot. Note the phase transition plot shows the average number of trials that converge
to within 1% relative error of ground truth.

Table 3
Measurement count per convergence rate fit
to log-linear function of problem complexity.
𝐼25% log(.44𝑀)(.035𝑀 + 3.9)
𝐼50% log(.89𝑀)(.041𝑀 + 3.7)
𝐼75% log(2.3𝑀)(.047𝑀 + 3.3)

5.4. Amplitude cost

Recent advances in gradient based phase retrieval have studied
nuanced initializers, reweighting and truncation steps, and additional
cost functions [22,23]. Useful comparisons of existing reweighting,
truncation, and cost function variations have been studied in [19,25].
ne of the more broadly recognized improvements to gradient tech-
iques has studied the transition to an amplitude cost function like that
n Eq. (17) as opposed to an intensity cost function like the one shown
in Eq. (16).

𝑙𝑖𝑛𝑡(𝑧) =
1

2𝑀

𝑀
∑

𝑖=1

(

𝑦[𝑖] − |𝐴[𝑖, ∶]𝑧|2
)2 (16)

𝑙𝑎𝑚𝑝(𝑧) =
1

2𝑀

𝑀
∑

𝑖=1

(

√

𝑦[𝑖] − |𝐴[𝑖, ∶]𝑧|
)2

(17)

Despite performance improvements demonstrated in ordinary phase
etrieval by amplitude techniques, the research presented in this paper
xamines unweighted intensity based approaches because the relative
implicity of the intensity cost function seemed a more straightfor-
ard route toward theoretical guarantees via geometric analysis. As
12

p

Fig. 10. Over 256 trials, amplitude and intensity based cost functions solve for
objective variables from phaseless modulated cross-correlation measurements. The
top plot shows the percentage of trials that meet a minimum ground truth error
requirement, and the bottom plot shows the average duration for each gradient descent.

demonstrated in Appendices D and E, the intensity cost function can
e studied in the asymptotic landscape with expectations because its
olynomial admits an expectation when lifted to a tensor inner product.
he amplitude construction cannot be made into a linear inner product
y lifting because it is not constructed from polynomials.
While this paper primarily addresses the efficacy of an intensity

ased cost function presented in Eq. (8), it is worth demonstrating that
amplitude based cost functions present a viable approach to the pulse
characterization problem. To demonstrate this, we devised a head-to-
head comparison of the cost function in Eq. (8) and a cost function
formulated in Eq. (18).

𝑓 (𝑥, 𝑦) = 1
2

𝐼−1
∑

𝑖=0

𝑁−1
∑

𝑘=−𝑀+1

(

√

ℎ𝑖[𝑘] −
√

𝑥𝑇𝛬𝑖[𝑘]𝑦∗𝑥𝐻𝛬∗
𝑖 [𝑘]𝑦

)2
. (18)

e run an experiment on a fixed problem size 𝑀 = 16 for varying
easurement counts 𝐼 and record the error of their solutions as well as
he run-time over many trials. Each experiment is initialized randomly
nd ground truth and measurements are constructed from i.i.d. complex
aussian random variables. Both intensity and amplitude gradient
escents are initialized from precisely the same 𝑥𝑖𝑛𝑖𝑡, 𝑦𝑖𝑛𝑖𝑡. To provide
fair head-to-head for the intensity and amplitude cost functions,
radient is estimated numerically with identical function parameters
sing the L-BFGS-B algorithm in the Scipy optimization library [29]
s equations for amplitude gradient have not yet been verified and
mplemented. The measurements used in this experiment are provided
o each algorithm without noise.
Results of this experiment demonstrated in Fig. 10 show that the

mplitude based cost does marginally improve the percentage of trials
hat converge to ground truth over the intensity based cost function.
mplitude based trials appear to converge on their solution at a faster
ate, typically in about two thirds the amount of time of the intensity
pproach in this experiment. This result encourages future examination
f amplitude based cost functions applied to the pulse characterization

roblem.
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6. DSCAN

DSCAN [16] is a simple time-resolved phaseless auto-convolution
echnique that modulates the spectrum of a pulse with a known phase-
rofile. This pulse is squared in its time domain and the spectral
ntensity is measured at a spectrometer, resulting in the intensity of
odulated pulse spectrum auto-convolution. Our technique is adapted
o this problem where 𝑥0 and 𝑦0 (and conversely, 𝑐, 𝑑) are conjugate
ime reversals of each other.

.1. Prior art comparison

Wilhelm et al. [16] introduce techniques in DSCAN to resolve multi-
ode phase retrieval. Multi-mode retrieval is a generalized problem to
CC in which multiple pulses exist in a pulse train (i.e, multiple 𝑥0, 𝑥1,…
nd 𝑦0, 𝑦1,…) and integrate in the same measurements ℎ𝑖[𝑘]. Multi-
ode may be possible with techniques in this paper, for example by
hanging the rank solved for in iterative algorithms and concatenating
dditional 𝑥, 𝑦 as descent variables, but is not tested in this paper.
When applied to singular modes, as done in this paper, the tech-

ique presented in [16] is an alternating minimization (referred to in
his section as AltMin) that uses a forward and backward model to
terate between applying an average in the pulse spectral domain and
pplying a magnitude constraint in the measurement domain. With a
inor adaptation, our algorithm can be compared directly with this
lgorithm to determine its suitability for pulse retrieval.
Each algorithm was seeded identically, starting with a vector of 𝟏.

ulses of length 𝑁 = 64 were generated with a Gaussian magnitude
nvelope and random spline phase profile. Grating position bounds on
SCAN generation were fixed to 1 mm in each scan direction. With
ixed scan bounds, scan steps span the measurement range uniformly
ith gradually increasing step counts between 20 and 100 grating
ositions. Results presented here are conducted for the noiseless case.
esults comparing error in retrieved 𝑥0 are shown in Fig. 11 against
dentical synthetic data. Results show that Wirtinger descent has more
onsistent success at lower measurement count than AltMin. In Fig. 11,
ome final errors displayed in the histogram for AltMin are lower
han Wirtinger descent different because of the termination criteria
uning. In this experiment, success rates for Wirtinger descent begin
o decline for higher measurement count. It may be that decreasing
istinction between 𝑐𝑖 vectors by decreasing step size (DSCAN grating
oundaries are fixed) complicates convergence, but the cause is still
nder investigation.

.2. Evaluation on real data

Finally, we have applied Wirtinger descent to the single mode data-
et used in [16]. The data set represents a spectrometer intensity
easurement at 500 positions of the grating screen in the DSCAN sys-
em; these positions are symmetric about its zero position and stepped
cross 5 mm in each direction. Grating density 𝑑 is 1400 lines/mm and
ngles in and out of the system were held at 34.05◦. Spectral density
f the measurement permitted a recoverable pulse width of 𝑀 = 320
amples. The initial vector state for both the Wirtinger descent and
ltMin was held as a complex vector of 𝑥 = 𝟏𝑀 . At convergence, the
ecovered vector was able to regenerate the measured dataset to 4.3%
robenius error, with input and recreated data set presented in Fig. 12.
ltMin is able to regenerate measured dataset to 10.1% Frobenius error.
When the ambiguous linear component of the spectral phase is

ubtracted off, the recovered vector highly resembles the AltMin re-
overy and accompanying spectrometer measurement shown in Fig. 13.
he recovered trace comparison in shows the efficacy of the Wirtinger
escent techniques of this paper as a drop in alternative to existing
13

ecovery algorithms.
Fig. 11. Alternating minimization current state-of-the-art is compared with Wirtinger
descent presented in this paper. Final results of each algorithm are binned and displayed
in the top figure; failure and success distributions are on either side of a chosen success
threshold 2−5. Over 64 trials, each algorithm was seeded identically with identical data,
and their ability to return a result below the threshold is displayed against measurement
count 𝐼 in the two middle figures. Their average (over the vertical dimension of the
middle figures) is shown in the bottom two plots.

Fig. 12. Following the practice of pulse recovery papers [8,12,14,16], we show the
measured DSCAN dataset against the forward model for the DSCAN setup on our
recovered spectrum. The two results are nearly identical, and differ in Frobenius norm
by only 4.3%.
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Fig. 13. Two algorithms recover the spectral profile of a pulse from DSCAN measure-
ments. The solid blue line represents the spectrometer measurement of the intensity
of the spectrum of the pulse, a direct measurement of ground truth intensity for the
spectrum. The solid orange line shows the recovery of intensity made by the alternating
minimization algorithm presented in [16]. The broken orange line is the phase of
the recovered pulse. The solid red line is the intensity profile recovered by Wirtinger
descent initialized with Algorithm 6. The broken red line is the recovered pulse phase
sing Wirtinger descent.

. Conclusion

In this paper, we adapted the phase retrieval techniques of Wirtinger
escent to a new intensity of cross-correlation problem. We highlighted
key difference in this problem from existing low-rank phase retrieval
iterature in the lack of phase-coherence between the recovered diag-
nals of the outer product matrix 𝑥𝑦𝐻 . This lack of coherence makes
raditional spectral initializers fail and motivates techniques that are
ble to combine this phase information coherently. We achieved this
sing a novel low-rank tensor initializer based on iterative hard tensor
hresholding. We demonstrated that when used as an initializer to
irtinger descent, low-rank tensor initialization is superior to matrix
lternating minimization and adapted spectral initializers with respect
o measurement count at the expense of greater computational burden.
irtinger descent over intensity based cost functions were demon-
trated to out-perform state-of-the-art matrix alternating-minimization
y inverting ICC problems with fewer measurements for comparable
emory and computational cost. Finally we demonstrate the ability of
ur recovery algorithms to operate on real data, recovering objective
ariables comparable to current state-of-the-art with little adaptation.
Further analysis of the forward operator is in progress, where exam-

nations of the geometric landscape of the Wirtinger objective function
ay lend insight into convergence properties of Wirtinger descent in
he style of [28].
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Appendix A. Cost, gradient, hessian with a single variable

Concatenating the variables 𝑥 and 𝑦 into one vector 𝑧 =
[

𝑥𝑇 , 𝑦𝑇
]𝑇 ∈

C𝑀+𝑁 , we may rewrite the cost function (8) simply as

𝑓 (𝑧) = 1
2
∑

𝑖,𝑘

(

ℎ𝑖[𝑘] − 𝑧𝑇 𝛽𝑖[𝑘]𝑧∗𝑧𝐻𝛽∗𝑖 [𝑘]𝑧
)2

= 1
2
∑

𝑖,𝑘
𝑒𝑖[𝑘]2, (19)

here

𝑖[𝑘] =
(

𝟎𝑀×𝑀 𝛬𝑖[𝑘]
𝟎𝑁×𝑀 𝟎𝑁×𝑁

)

. (20)

his new cost function is quartic with respect to the variable 𝑧 and has a
ell defined Wirtinger gradient and Hessian. Similarly, we may express
𝑖[𝑘] (defined above (8) as 𝑥𝑇𝛬𝑖[𝑘]𝑦∗) in terms of 𝑧 as 𝑔𝑖[𝑘] = 𝑧𝑇 𝛽𝑖[𝑘]𝑧∗.
Producing a Wirtinger gradient will proceed much in the same
anner as [28]. The Wirtinger gradient of 𝑓 (𝑧), with 𝑧 complex-valued,
s defined as

𝑓 (𝑧) =
(

𝜕𝑓
𝜕𝑧

𝜕𝑓
𝜕𝑧∗

)𝐻
. (21)

Note that the partial derivatives in (21) are taken to be row vectors.
Moreover, according to the Wirtinger calculus, the partial derivative 𝜕𝑓

𝜕𝑧
is computed assuming 𝑧∗ (and 𝑧𝐻 ) is fixed, while the partial derivative
𝜕𝑓
𝜕𝑧∗ is computed assuming 𝑧 (and 𝑧

𝑇 ) is fixed [41].
Differentiating 𝑓 (𝑧) in (19) with respect to 𝑧 yields

𝜕𝑓
𝜕𝑧

= 𝜕
𝜕𝑧

1
2
∑

𝑖,𝑘
𝑒𝑖[𝑘]2 = 𝑒𝑖[𝑘]

𝜕𝑒𝑖[𝑘]
𝜕𝑧

, (22)

where
𝜕𝑒𝑖[𝑘]
𝜕𝑧

= −𝑧𝑇
(

𝛽𝑖[𝑘]𝑧∗𝑧𝐻𝛽∗𝑖 [𝑘] + 𝛽
𝐻
𝑖 [𝑘]𝑧∗𝑧𝐻𝛽𝑇𝑖 [𝑘]

)

= −
(

𝑔𝑖[𝑘]𝑧𝐻𝛽∗𝑖 [𝑘] + 𝑔
∗
𝑖 [𝑘]𝑧

𝐻𝛽𝑇𝑖 [𝑘]
)

. (23)

Differentiating with respect to 𝑧∗ yields

𝜕𝑓
𝜕𝑧∗

= 𝜕
𝜕𝑧∗

1
2
∑

𝑖,𝑘
𝑒𝑖[𝑘]2 = 𝑒𝑖[𝑘]

𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

, (24)

where
𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

= −𝑧𝐻
(

𝛽∗𝑖 [𝑘]𝑧𝑧
𝑇 𝛽𝑖[𝑘] + 𝛽𝑇𝑖 [𝑘]𝑧𝑧

𝑇 𝛽𝐻𝑖 [𝑘]
)

= −
(

𝑔∗𝑖 [𝑘]𝑧
𝑇 𝛽𝑖[𝑘] + 𝑔𝑖[𝑘]𝑧𝑇 𝛽𝐻𝑖 [𝑘]

)

. (25)
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Collecting terms, we arrive at the following expression for the
Wirtinger gradient:

∇𝑓 (𝑧) =

(

𝜕𝑓
𝜕𝑧
𝐻

𝜕𝑓
𝜕𝑧∗

𝐻

)

=
∑

𝑖,𝑘
𝑒𝑖[𝑘]

⎛

⎜

⎜

⎝

𝜕𝑒𝑖[𝑘]
𝜕𝑧

𝐻

𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

𝐻

⎞

⎟

⎟

⎠

, (26)

here
𝜕𝑒𝑖[𝑘]
𝜕𝑧

𝐻

𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

𝐻

⎞

⎟

⎟

⎠

= −
(

𝑔𝑖[𝑘]𝛽∗𝑖 [𝑘]𝑧 + 𝑔
∗
𝑖 [𝑘]𝛽

𝑇
𝑖 [𝑘]𝑧

𝑔∗𝑖 [𝑘]𝛽𝑖[𝑘]𝑧
∗ + 𝑔𝑖[𝑘]𝛽𝐻𝑖 [𝑘]𝑧∗

)

.

he Wirtinger Hessian of 𝑓 (𝑧), with 𝑧 complex-valued, is defined as

2𝑓 (𝑧) =

⎛

⎜

⎜

⎜

⎝

𝜕
𝜕𝑧

(

𝜕𝑓
𝜕𝑧

)𝐻 𝜕
𝜕𝑧∗

(

𝜕𝑓
𝜕𝑧

)𝐻

𝜕
𝜕𝑧

(

𝜕𝑓
𝜕𝑧∗

)𝐻 𝜕
𝜕𝑧∗

(

𝜕𝑓
𝜕𝑧∗

)𝐻

⎞

⎟

⎟

⎟

⎠

(27)

Using (26), we have that the individual components of the Wirtinger
Hessian are given by

𝜕
𝜕𝑧

(

𝜕𝑓
𝜕𝑧

)𝐻
=
∑

𝑖,𝑘

𝜕𝑒𝑖[𝑘]
𝜕𝑧

𝐻 𝜕𝑒𝑖[𝑘]
𝜕𝑧

+ 𝑒𝑖[𝑘]
𝜕
𝜕𝑧
𝜕𝑒𝑖[𝑘]
𝜕𝑧

𝐻
, (28)

𝜕
𝜕𝑧∗

(

𝜕𝑓
𝜕𝑧

)𝐻
=
∑

𝑖,𝑘

𝜕𝑒𝑖[𝑘]
𝜕𝑧

𝐻 𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

+ 𝑒𝑖[𝑘]
𝜕
𝜕𝑧∗

𝜕𝑒𝑖[𝑘]
𝜕𝑧

𝐻
, (29)

𝜕
𝜕𝑧

(

𝜕𝑓
𝜕𝑧∗

)𝐻
=
∑

𝑖,𝑘

𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

𝐻 𝜕𝑒𝑖[𝑘]
𝜕𝑧

+ 𝑒𝑖[𝑘]
𝜕
𝜕𝑧
𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

𝐻
, (30)

and

𝜕
𝜕𝑧∗

(

𝜕𝑓
𝜕𝑧∗

)𝐻
=
∑

𝑖,𝑘

𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

𝐻 𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

+ 𝑒𝑖[𝑘]
𝜕
𝜕𝑧∗

𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

𝐻
. (31)

The partial derivatives of 𝑒𝑖[𝑘] with respect to 𝑧 and 𝑧∗ appear in
Eqs. (28)–(31) and have already been computed in Eqs. (23) and (25).
omputing the remaining terms in Eqs. (28)–(31) requires the following
econd derivatives:

𝜕
𝜕𝑧
𝜕𝑒𝑖[𝑘]
𝜕𝑧

𝐻
= − 𝑔𝑖[𝑘]𝛽∗𝑖 [𝑘] − 𝑔

∗
𝑖 [𝑘]𝛽

𝑇
𝑖 [𝑘]

− 𝛽∗𝑖 [𝑘]𝑧𝑧
𝐻𝛽𝑇𝑖 [𝑘] − 𝛽

𝑇
𝑖 [𝑘]𝑧𝑧

𝐻𝛽∗𝑖 [𝑘], (32)

𝜕
𝜕𝑧
𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

𝐻
= − 𝛽𝐻𝑖 [𝑘]𝑧∗𝑧𝐻𝛽𝑇𝑖 [𝑘] − 𝛽𝑖[𝑘]𝑧

∗𝑧𝐻𝛽∗𝑖 [𝑘], (33)

𝜕
𝜕𝑧∗

𝜕𝑒𝑖[𝑘]
𝜕𝑧

𝐻
= − 𝛽∗𝑖 [𝑘]𝑧𝑧

𝑇 𝛽𝑖[𝑘] − 𝛽𝑇𝑖 [𝑘]𝑧𝑧
𝑇 𝛽𝐻𝑖 [𝑘], (34)

𝜕
𝜕𝑧∗

𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

𝐻
= − 𝑔𝑖[𝑘]𝛽𝐻𝑖 [𝑘] − 𝑔∗𝑖 [𝑘]𝛽𝑖[𝑘]

− 𝛽𝑖[𝑘]𝑧∗𝑧𝑇 𝛽𝐻𝑖 [𝑘] − 𝛽𝐻𝑖 [𝑘]𝑧∗𝑧𝑇 𝛽𝑖[𝑘]. (35)

Finally, it is very useful to decompose the Wirtinger Hessian into
two sections based on their structure within the sum. As shown below,
one of these terms is a direct sum of outer products and the other is
a sum that contains several terms that decompose to an outer product.
We have:

∇2𝑓 (𝑧) = 𝐴1 + 𝐴2 (36)

where

𝐴1 =
∑

𝑖,𝑘

⎛

⎜

⎜

⎝

𝜕𝑒𝑖[𝑘]
𝜕𝑧

𝐻 𝜕𝑒𝑖[𝑘]
𝜕𝑧

𝜕𝑒𝑖[𝑘]
𝜕𝑧

𝐻 𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

𝐻 𝜕𝑒𝑖[𝑘]
𝜕𝑧

𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

𝐻 𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

⎞

⎟

⎟

⎠

=
∑

𝑖,𝑘
𝑎1𝑎

𝐻
1

with

𝑎1 =
⎛

⎜

⎜

⎝

𝜕𝑒𝑖[𝑘]
𝜕𝑧

𝐻

𝜕𝑒𝑖[𝑘]
𝜕𝑧∗

𝐻

⎞

⎟

⎟

⎠

= −
(

𝑔𝑖[𝑘]𝛽∗𝑖 [𝑘]𝑧 + 𝑔
∗
𝑖 [𝑘]𝛽

𝑇
𝑖 [𝑘]𝑧

𝑔∗𝑖 [𝑘]𝛽𝑖[𝑘]𝑧
∗ + 𝑔𝑖[𝑘]𝛽𝐻𝑖 [𝑘]𝑧∗

)

,

nd

2 =
∑

𝑒𝑖[𝑘]
⎛

⎜

⎜

𝜕
𝜕𝑧

𝜕𝑒𝑖[𝑘]
𝜕𝑧

𝐻 𝜕
𝜕𝑧∗

𝜕𝑒𝑖[𝑘]
𝜕𝑧

𝐻

𝜕 𝜕𝑒𝑖[𝑘]𝐻 𝜕 𝜕𝑒𝑖[𝑘]𝐻

⎞

⎟

⎟

15

𝑖,𝑘
⎝ 𝜕𝑧 𝜕𝑧∗ 𝜕𝑧∗ 𝜕𝑧∗ ⎠
= −
∑

𝑖,𝑘
𝑒𝑖[𝑘]

(

𝑎2,1𝑎
𝐻
2,1 + 𝑎2,2𝑎

𝐻
2,2 + 𝐴2,3

)

ith

2,1, 𝑎2,2 =
(

𝛽∗𝑖 [𝑘]𝑧
𝛽𝐻𝑖 [𝑘]𝑧∗

)

,
(

𝛽𝑇𝑖 [𝑘]𝑧
𝛽𝑖[𝑘]𝑧∗

)

𝐴2,3 =
(

𝛽𝑇𝑖 [𝑘]𝑔
∗
𝑖 [𝑘] + 𝛽

∗
𝑖 [𝑘]𝑔𝑖[𝑘] 𝟎

𝟎 𝛽𝑖[𝑘]𝑔∗𝑖 [𝑘] + 𝛽
𝐻
𝑖 [𝑘]𝑔𝑖[𝑘]

)

.

ppendix B. Cost function ambiguities

Let 𝑥𝑎 and 𝑦𝑎 be as defined in (11), and note that to prove 𝑓 (𝑥, 𝑦) =
(𝑥𝑎, 𝑦𝑎) for 𝑓 defined in (8), it suffices to prove that
𝑇𝛬𝑖[𝑘]𝑦∗𝑥𝐻𝛬∗

𝑖 [𝑘]𝑦 = 𝑥𝑇𝑎 𝛬𝑖[𝑘]𝑦
∗
𝑎𝑥

𝐻
𝑎 𝛬

∗
𝑖 [𝑘]𝑦𝑎

or all 𝑖, 𝑘. To that end, write
𝑇
𝑎 𝛬𝑖[𝑘]𝑦

∗
𝑎𝑥

𝐻
𝑎 𝛬

∗
𝑖 [𝑘]𝑦𝑎

=
𝑢[𝑘]
∑

𝑟=𝑙[𝑘]

𝑢[𝑘]
∑

𝑠=𝑙[𝑘]
𝑥𝑎[𝑟]𝑐𝑖[𝑟]𝑦∗𝑎[𝑟 + 𝑘]𝑑

∗
𝑖 [𝑟 + 𝑘] ⋅ 𝑥

∗
𝑎[𝑠]𝑐

∗
𝑖 [𝑠]𝑦𝑎[𝑠 + 𝑘]𝑑𝑖[𝑠 + 𝑘]

=
𝑢[𝑘]
∑

𝑟=𝑙[𝑘]

𝑢[𝑘]
∑

𝑠=𝑙[𝑘]
𝑥𝑎[𝑟]𝑥∗𝑎[𝑠]𝑦𝑎[𝑠 + 𝑘]𝑦

∗
𝑎[𝑟 + 𝑘] ⋅ 𝑐𝑖[𝑟]𝑐

∗
𝑖 [𝑠]𝑑𝑖[𝑠 + 𝑘]𝑑

∗
𝑖 [𝑟 + 𝑘]

=
𝑢[𝑘]
∑

𝑟=𝑙[𝑘]

𝑢[𝑘]
∑

𝑠=𝑙[𝑘]

|𝑎|2

|𝑎|2
𝑥[𝑟]𝑥∗[𝑠]𝑦[𝑠 + 𝑘]𝑦∗[𝑟 + 𝑘]𝑒𝑗𝜁 ⋅ 𝑐𝑖[𝑟]𝑐∗𝑖 [𝑠]𝑑𝑖[𝑠 + 𝑘]𝑑

∗
𝑖 [𝑟 + 𝑘]

=
𝑢[𝑘]
∑

𝑟=𝑙[𝑘]

𝑢[𝑘]
∑

𝑠=𝑙[𝑘]
𝑥[𝑟]𝑥∗[𝑠]𝑦[𝑠 + 𝑘]𝑦∗[𝑟 + 𝑘] ⋅ 𝑐𝑖[𝑟]𝑐∗𝑖 [𝑠]𝑑𝑖[𝑠 + 𝑘]𝑑

∗
𝑖 [𝑟 + 𝑘]

= 𝑥𝑇𝛬𝑖[𝑘]𝑦∗𝑥𝐻𝛬∗
𝑖 [𝑘]𝑦,

here the fourth equality follows because

= 𝜙𝑥 − 𝜙𝑥 + 𝜙𝑦 − 𝜙𝑦 + 𝑠𝜓 − 𝑠𝜓 + 𝑟𝜓 − 𝑟𝜓 + 𝑘𝜓 − 𝑘𝜓 = 0.

ppendix C. Adaptation to real solvers

For numerical experiments, expressions for gradient and Hessian
ere provided to Scipy’s minimize function [29]. Because the function
oes not optimize over complex variables, the following translations
rom Wirtinger gradient and Hessian to real and imaginary portions
f the gradient and Hessian are provided in Eqs. (37) and (38) for a
generic complex function 𝑓 (𝑧).

∇𝑓𝑟𝑒𝑎𝑙,𝑖𝑚𝑎𝑔(𝑧) =
(

∇𝑧𝑓 + ∇𝑧∗𝑓
𝑗
(

∇𝑧∗𝑓 − ∇𝑧𝑓
)

)

(37)

∇2𝑓𝑟𝑒𝑎𝑙,𝑖𝑚𝑎𝑔(𝑧) =
(

𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 𝑗
(

𝑓2 + 𝑓4 − 𝑓1 − 𝑓3
)

𝑗
(

𝑓1 + 𝑓2 − 𝑓3 − 𝑓4
)

𝑓1 + 𝑓4 − 𝑓2 − 𝑓3

)

𝑓1, 𝑓2 =
𝜕
𝜕𝑧

(

∇𝑧𝑓
)

, 𝜕
𝜕𝑧∗

(

∇𝑧𝑓
)

𝑓3, 𝑓4 =
𝜕
𝜕𝑧

(

∇𝑧∗𝑓
)

, 𝜕
𝜕𝑧∗

(

∇𝑧∗𝑓
)

(38)

Here, ∇𝑧𝑓,∇𝑧∗𝑓 are the first and second half of the Wirtinger gradi-
ent ∇𝑓 , differentiated respectively with respect to 𝑧, 𝑧∗ then conjugate-
transposed.

Appendix D. Expectation of intensity-based cost function

Determining the expectation of the cost function presented in Eq. (8)
is done by lifting the non-linear function to a linear inner product
between higher-order tensors. The linearity that allows this expecta-
tion to be evaluated is demonstrated in the tensor notation shown in
Section 2.5.3. Here we assume 𝑐𝑖, 𝑑𝑖 are i.i.d. and drawn from  (0, I).
We start from the cost function and gradually replace terms in Eq. (39).
To reduce reuse of outer product operators, throughout this section we

interpret concatenation of tensor objects to be a tensor outer product.
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Recall here that  = 𝑥 ⊗ 𝑦∗ ⊗ 𝑥∗ ⊗ 𝑦, 0 = 𝑥0 ⊗ 𝑦∗0 ⊗ 𝑥∗0 ⊗ 𝑦0, and
𝑘𝑖 = 𝛬∗

𝑖 [𝑘]⊗𝛬𝑖[𝑘].

𝑓 (𝑥, 𝑦) =1
2

𝐼−1
∑

𝑖=0

𝑁−1
∑

𝑘=−𝑀+1

(

ℎ𝑖[𝑘] − 𝑥𝑇𝛬𝑖[𝑘]𝑦∗𝑥𝐻𝛬∗
𝑖 [𝑘]𝑦

)2

=1
2

𝐼−1
∑

𝑖=0

𝑁−1
∑

𝑘=−𝑀+1

(

⟨𝑘𝑖 , 0⟩ − ⟨𝑘𝑖 , ⟩

)2

=1
2

𝐼−1
∑

𝑖=0

𝑁−1
∑

𝑘=−𝑀+1
⟨𝑘𝑖 

𝑘
𝑖 , 00 +  − 0 − 0⟩

=

⟨

1
2

𝐼−1
∑

𝑖=0

𝑁−1
∑

𝑘=−𝑀+1
𝑘𝑖 

𝑘
𝑖 , 00 +  − 0 − 0

⟩

(39)

E [𝑓 (𝑥, 𝑦)] =

⟨

E

[

1
2

𝐼−1
∑

𝑖=0

𝑁−1
∑

𝑘=−𝑀+1
𝑘𝑖 

𝑘
𝑖

]

, 00 + 

⟩

−

⟨

E

[

1
2

𝐼−1
∑

𝑖=0

𝑁−1
∑

𝑘=−𝑀+1
𝑘𝑖 

𝑘
𝑖

]

, 0 + 0

⟩

= ⟨L, 00 +  − 0 − 0⟩ (40)

The expectation of this problem shown in Eq. (40) then solely re-
olves on the expectation of the eighth-order tensor 1

2
∑𝑁−1
𝑘=−𝑀+1(

𝑘
𝑖 

𝑘
𝑖 ).

While the tensor (𝑘𝑖 
𝑘
𝑖 ) has eight indexing variables, each variable is

coupled with another as a function of 𝑘, meaning that the only non-zero
entries of the tensor can be written in Eq. (41).

(𝑘𝑖 
𝑘
𝑖 )[𝑞, 𝑞, 𝑟, 𝑟, 𝑠, 𝑠, 𝑡, 𝑡] = 𝑐∗𝑖 [𝑞]𝑑𝑖[𝑞 + 𝑘]𝑐𝑖[𝑟]𝑑

∗
𝑖 [𝑟 + 𝑘]

× 𝑐∗𝑖 [𝑠]𝑑𝑖[𝑠 + 𝑘]𝑐𝑖[𝑡]𝑑
∗
𝑖 [𝑡 + 𝑘] (41)

𝑞, 𝑟, 𝑠, 𝑡 = [−min(0, 𝑘),… ,min(𝑀,𝑁 − 𝑘) − 1]

The uniform phase distribution of the complex random vectors 𝑐, 𝑑
ives an expectation of zero for any collection of variables that are of
dd conjugate matching. This leaves only three combinations of 𝑞, 𝑟, 𝑠, 𝑡
n Eq. (41) that result in non-zero expectations:

1. 𝑞 = 𝑟 = 𝑠 = 𝑡 which produces 𝐴1 = E
[

|𝑐𝑞|
4
|𝑑𝑞+𝑘|

4] when
E𝑖

[

(𝑘𝑖 ⊗ 𝑘𝑖 )[𝑞, 𝑞, 𝑞, 𝑞, 𝑞, 𝑞, 𝑞, 𝑞]
]

2. 𝑞 = 𝑟 ≠ 𝑠 = 𝑡 which produces 𝐴2 = E
[

|𝑐𝑞|
2
|𝑐𝑠|

2∥𝑑𝑞+𝑘|2𝑑𝑠+𝑘|2
]

when E𝑖
[

(𝑘𝑖 ⊗ 𝑘𝑖 )[𝑞, 𝑞, 𝑞, 𝑞, 𝑠, 𝑠, 𝑠, 𝑠]
]

3. 𝑞 = 𝑡 ≠ 𝑟 = 𝑠 which produces 𝐴2 = E
[

|𝑐𝑞|
2
|𝑐𝑟|

2∥𝑑𝑞+𝑘|2𝑑𝑟+𝑘|2
]

when E𝑖
[

(𝑘𝑖 ⊗ 𝑘𝑖 )[𝑞, 𝑞, 𝑟, 𝑟, 𝑟, 𝑟, 𝑞, 𝑞]
]

Under our assumption that 𝑐, 𝑑 are drawn i.i.d. from  (0, I),
𝐴1, 𝐴2 = 4, 1. Note here that in the expectation, the sum over 𝑖
multiplies now just a multiplication by 𝐼 . Collecting indicator terms, we
arrive at an expression for L in Eq. (42). Here, concatenated 𝑒𝑖 indexing
terms are joined as an outer product.

L =𝐼 (L0 + L1 + L2)

L0 =
𝐴1 − 2𝐴2

2

𝑁−1
∑

𝑘=−𝑀+1

min(𝑀,𝑁−𝑘)−1
∑

𝑞=−min(0,𝑘)
𝑒𝑞 𝑒𝑞+𝑘 𝑒𝑞 𝑒𝑞+𝑘 𝑒𝑞 𝑒𝑞+𝑘 𝑒𝑞 𝑒𝑞+𝑘

L1 =
𝐴2
2

𝑁−1
∑

𝑘=−𝑀+1

min(𝑀,𝑁−𝑘)−1
∑

𝑞=−min(0,𝑘)

min(𝑀,𝑁−𝑘)−1
∑

𝑠=−min(0,𝑘)
𝑒𝑞 𝑒𝑞+𝑘 𝑒𝑞 𝑒𝑞+𝑘 𝑒𝑠 𝑒𝑠+𝑘 𝑒𝑠 𝑒𝑠+𝑘

L2 =
𝐴2
2

𝑁−1
∑

𝑘=−𝑀+1

min(𝑀,𝑁−𝑘)−1
∑

𝑞=−min(0,𝑘)

min(𝑀,𝑁−𝑘)−1
∑

𝑟=−min(0,𝑘)
𝑒𝑞 𝑒𝑞+𝑘 𝑒𝑟 𝑒𝑟+𝑘 𝑒𝑟 𝑒𝑟+𝑘 𝑒𝑞 𝑒𝑞+𝑘

(42)

We note here that in Eq. (42), L0 donates a term to L1 and L2
o simplify the sums and avoid the use of indicator expressions that
revent 𝑞 = 𝑠, 𝑞 = 𝑟 respectively. Evaluating Eq. (40) with 𝐴1, 𝐴2 =
, 1 with the expression for expectation in Eq. (42), we arrive at the
ollowing expectation of the intensity cost function in Eq. (43).

𝐻 2 𝐻 2 2
16

[𝑓 (𝑥, 𝑦)] =𝐼|||𝑥0𝑦0 | − |𝑥𝑦 | ∥𝐹
+ 𝐼
𝑁−1
∑

𝑘=−𝑀+1

(

‖𝑧𝑘0‖
4
2 + ‖𝑧𝑘‖42 − ‖𝑧𝑘0‖

2
2‖𝑧

𝑘
‖

2
2 − |⟨𝑧𝑘0 , 𝑧

𝑘
⟩|

2) (43)

The expression in Eq. (43) is dense with functions over 𝑧𝑘 =
iag(𝑥𝑦𝐻 , 𝑘), 𝑧𝑘0 = diag(𝑥0𝑦𝐻0 , 𝑘) as well as absolute values of point-wise
ultiplications between 𝑥, 𝑦, 𝑥0, 𝑦0, a difficulty that carries on to the
radient of this function.

ppendix E. Gradient of expectation

Derivation of Wirtinger gradient of the expectation of ICC cost
s shown in Eq. (44). Because the expressions are not cleanly repre-
entable as vectors, partial derivatives 𝐹𝑥, 𝐹𝑦 shown in Eqs. (45) and
46) are indexed by 𝑖, 𝑗 respectively. Only 𝐹𝑥 and 𝐹𝑦 are presented here
or brevity; 𝐹𝑥∗ and 𝐹𝑦∗ will be their conjugate respectively as Eq. (40)
s a real valued function. As a shorthand here, we use concatenation to
mply outer products (e.g. 𝑥 ⊗ 𝑦∗ ⊗ 𝑥∗ ⊗ 𝑦 → 𝑥𝑦∗𝑥∗𝑦).

E[𝑓 (𝑥, 𝑦)] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

𝜕
𝜕𝑥E[𝑓 (𝑥, 𝑦)]

)∗
[𝑖]

(

𝜕
𝜕𝑦E[𝑓 (𝑥, 𝑦)]

)∗
[𝑗]

(

𝜕
𝜕𝑥∗ E[𝑓 (𝑥, 𝑦)]

)∗
[𝑖]

(

𝜕
𝜕𝑦∗ E[𝑓 (𝑥, 𝑦)]

)∗
[𝑗]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

𝐹𝑥[𝑖]
𝐹𝑦[𝑗]
𝐹𝑥∗ [𝑖]
𝐹𝑦∗ [𝑗]

⎞

⎟

⎟

⎟

⎟

⎠

(44)

𝑖, 𝑗 = [0, 1,… ,𝑀 − 1], [0, 1,… , 𝑁 − 1]

where

𝐹𝑥[𝑖] =⟨L[𝑖, ∶, ∶, ∶, ∶, ∶, ∶, ∶], 𝑦𝑥𝑦∗(𝑥∗𝑦𝑥𝑦∗ − 𝑥∗0𝑦0𝑥0𝑦
∗
0)⟩

+ ⟨L[∶, ∶, ∶, ∶, 𝑖, ∶, ∶, ∶], (𝑥∗𝑦𝑥𝑦∗ − 𝑥∗0𝑦0𝑥0𝑦
∗
0)𝑦𝑥𝑦

∗
⟩

=2 𝐼 𝑥[𝑖]
(

|𝑥[𝑖]|2‖𝑦‖44 − |𝑥0[𝑖]|
2
‖𝑦0𝑦‖

2
2
)

+ 𝐼 𝑥[𝑖]
𝑁−𝑖−1
∑

𝑘=−𝑖
|𝑦[𝑖 + 𝑘]|2

(

‖𝑧𝑘‖22 − ‖𝑧𝑘0‖
2
2
)

+ 𝐼 𝑥[𝑖]
𝑁−𝑖−1
∑

𝑘=−𝑖
|𝑦[𝑖 + 𝑘]|2‖𝑧𝑘‖22

− 𝐼 𝑥0[𝑖]
𝑁−𝑖−1
∑

𝑘=−𝑖
𝑦[𝑖 + 𝑘]𝑦∗0[𝑖 + 𝑘](𝑧

𝑘𝐻
0 𝑧𝑘) (45)

and

𝐹𝑦[𝑗] =⟨L[∶, ∶, ∶, 𝑗, ∶, ∶, ∶, ∶], 𝑥∗𝑦𝑥(𝑥∗𝑦𝑥𝑦∗ − 𝑥∗0𝑦0𝑥0𝑦
∗
0)⟩

+ ⟨L[∶, ∶, ∶, ∶, ∶, ∶, ∶, 𝑗], (𝑥∗𝑦𝑥𝑦∗ − 𝑥∗0𝑦0𝑥0𝑦
∗
0)𝑥

∗𝑦𝑥⟩

=2 𝐼 𝑦[𝑗]
(

|𝑦[𝑗]|2‖𝑥‖44 − |𝑦0[𝑗]|
2
‖𝑥0𝑥‖

2
2
)

+ 𝐼 𝑦[𝑗]
𝑗
∑

𝑘=𝑗−𝑀+1
|𝑥[𝑗 − 𝑘]|2

(

‖𝑧𝑘‖22 − ‖𝑧𝑘0‖
2
2
)

+ 𝐼 𝑦[𝑗]
𝑗
∑

𝑘=𝑗−𝑀+1
|𝑥[𝑗 − 𝑘]|2‖𝑧𝑘‖22

− 𝐼 𝑦0[𝑗]
𝑗
∑

𝑘=𝑗−𝑀+1
𝑥[𝑗 − 𝑘]𝑥∗0[𝑗 − 𝑘](𝑧

𝑘𝐻𝑧𝑘0). (46)

Determination of where these expressions are positive, negative,
and zero relies on the relationship between 𝑥, 𝑦, 𝑥0, 𝑦0 as well as second-
order cross terms stored in 𝑧𝑘, 𝑧𝑘0 .
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