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Abstract

A simple graph G = (V, E) on n vertices is said to be recursively partitionable (RP)
if G ~ K, or if G is connected and satisfies the following recursive property: for
every integer partition aj,asg,...,a; of n, there is a partition {4y, As,..., Ax} of V
such that each |A4;| = a;, and each induced subgraph G[A4;] is RP (1 < i < k). We
show that if S is a vertex cut of an RP graph G with |S| > 2, then G — S has at
most 3|S| — 1 components. Moreover, this bound is sharp for |S| = 3. We present two
methods for constructing new RP graphs from old. We use these methods to show that
for all positive integers s, there exist infinitely many RP graphs with an s-vertex cut
whose removal leaves 2s + 1 components. Additionally, we prove a simple necessary
condition for a graph to have an RP spanning tree, and we characterise a class of
minimal 2-connected RP graphs.

1 Introduction

Let n be a positive integer. An integer partition of n is a list a4, . .., a; of positive integers
such that a; <as <--- <ag and a; + -+ + ax = n. Let G = (V, E) be a graph of order n.
An (a1, ..., ax)-partition of G is a partition {Ay, ..., Ay} of V such that |A;| = a; for all 7.
We say the partition has connected parts if, for all i € {1,...,k}, the induced subgraphs
G[A;] are connected.

In 1976, Gyori and Lovasz considered the problem of determining when a graph has an
(a1, ...,ax)-partition with connected parts and independently proved the following theorem.

Theorem 1 (Gyori-Lovész [15, 21]). Let G be a graph of order n and ay,...,a; an integer
partition of n. If G is k-connected, then it has an (ay, . .., ay)-partition with connected parts.

We say G is arbitrarily partitionable (or just AP) if, for every integer partition
aiy,...,a of n, there exists an (ay, ..., ax)-partition of V' with connected parts. AP graphs
were introduced in [1], and a polynomial time algorithm for determining whether a subdivi-
sion of K3 is AP was provided.

The graph G is recursively partitionable (RP) if G ~ K, or G is connected and
satisfies the following recursive property: for every integer partition aq,...,a; of n, there
is an (aq,...,ag)-partition {A;,..., Ax} of V such that each G[A;] is RP. RP graphs were
introduced in [6, 7].

In [7], RP trees were characterised (among other results), and in [6], a class of RP
unicyclic graphs was characterised. In both papers, the authors made heavy use of the
following characterisation of RP graphs.

Proposition 2. [6] An n-vertex graph G = (V, E) is RP if and only if it is connected, and:
o G~ Ky, or

e for every partition a,b of n, there is an (a,b)-partition { A, B} of V' such that both G[A]
and G[B] are RP.
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RP graphs were independently introduced (as “partition wonderful graphs”) as a result
of investigations into rainbow-cycle-free edge colorings (such as in [16]), by Peter Johnson,
with the help of Paul Horn, at the MASAMU 2020 workshop.

These graphs arise naturally when considering rainbow-cycle-free edge colorings, which
are of recent interest in their own right (see [13, 17, 20]). A JL-coloring of an n-vertex
graph is an edge coloring using exactly n —1 colors that does not contain any rainbow cycles.
These colorings are studied for K, in [11] and [14], K, ,,, in [19] and complete multipartite
graphs in [18].

In [16], the authors introduced the following standard construction for creating a
JL-coloring of a connected graph G:

1. If n > 1, find a partition V = {A, B} with connected parts,
2. color edges between A and B with a single color that will not be used again,
3. iterate (1) and (2) on G[A] and G[B].
This leads to the main result of [16]:
Theorem 3. [16] Every JL-coloring is obtainable by an instance of the standard construction.

Corollary 4. [16] Every JL-coloring of a connected graph G = (V, E) is the restriction of a
JL-coloring of the complete graph with vertex set V.

Combining Proposition 2, Theorem 3 and Corollary 4 yields the following observation of
Johnson:

Observation 5. A connected graph G = (V, E) of order n is RP if and only if every JL-
coloring ¢ of K, can be restricted to a JL-coloring ¢|g of a copy of G.

The rest of this paper is organised as follows. In Section 2, we define useful graph-
theoretical tools and constructions that will be used throughout the paper. In Section 3, we
list basic observations about the properties of AP and RP graphs. In Section 4, we introduce
recursive constructions of RP graphs, which we later use to find infinite classes of RP graphs
with a given toughness. It is easy to see that if a graph has an AP (RP) spanning tree, then
it is AP (RP). In Section 5, we take a more detailed look at spanning subgraphs of RP graphs
and provide a necessary condition for an RP graph to have a spanning tree homeomorphic
to K. Denote by ¢(G) the number of components of G. We show that if an RP graph has
an RP spanning tree, then for every S C V' we have ¢(G — S) < [S|+2. In Section 6, we find
lower bounds for the maximum possible values of ¢(G — ) for S C V in an RP graph G. In
particular, we show that, for any s, there exists an infinite family of RP graphs, each with
an s-vertex cut whose removal leaves 2s + 1 components. In Section 7, we show that there
exists a finite set of minimal RP graphs for any given possible cut size |S| and ¢(G — S).
In Section 8, we bound ¢(G — §) from above, by showing that in an RP graph G, for any
S CV, we have ¢(G — S) < 3|S| — 1, which shows that every RP graph is %—tough. Finally,
in Section 9, we list a set of open questions.
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2 Additional definitions

2.1 Properties and parameters

For a positive integer k, let Ey denote the empty graph with k vertices and no edges. If G
is a graph, then n(G) or |G| is its order (number of vertices), m(G) its number of edges.
Let a(G) denote the independence number of G (the order k of a maximum induced Ej,
subgraph). A vertex cut of a graph G is a set of vertices whose removal disconnects G,
and the vertex connectivity, or simply connectivity, of G is the minimum cardinality of a
vertex cut. Let

0(G) = min{d(u) + d(v) : u and v are non-adjacent vertices of G}.

A graph is traceable if it has a spanning path (i.e., a Hamiltonian path) and Hamilto-
nian if it has a spanning cycle (i.e., a Hamiltonian cycle).

A perfect matching of a graph is a set M of edges that are pairwise disjoint, such that
every vertex is incident with an edge in M. A near-perfect matching is a set M of edges
that are pairwise disjoint, such that every vertex except for one is incident with an edge in
M. A graph is (near) matchable if it has a (near) perfect matching.

Let Gy = (Vi, E4),...,G, = (V,, E,) be graphs. The sequential join G; + --- + G, is
the graph formed by taking the graph union (V;U---UV,, E; U---U E,) and adding to it
all edges of the form uv, where v € V; and v € V11 (1 <1i < n).

Let G = (V,E) be a graph. In particular, for a connected graph G, if S C V, then
c(G — S) > 2 if and only if S is a cut. The toughness 7(G) of G is

T(G):min{%:SQV,C(G—S)ZQ}.

For a positive real number r, we say G is r-tough if 7(G) > r.

2.2 Graph constructions

In this section, we define graph constructions that we will use throughout the paper. See
Figures 1 and 2 for examples.

Let 1, 1o, ...t be positive integers. The k-pode graph Ty (t1,ta, ..., ;) is the tree that
has one degree k vertex, v, the removal of which leaves k paths having t1,t,, .. .t; vertices.
When k = 3, we say this is a tripode graph and, when it causes no confusion to the reader,
denote it by T'(tq,t2, t3).

Let k be a positive integer, and b;, 1 < i < k be non-negative integers. A generalized
theta graph graph O(by, by, ..., b;) consists of a pair of endvertices joined by k internally
disjoint paths of lengths by, by, ..., by [10]. Note that the authors in [3] refer to these graphs
as balloons.

Let k be a positive integer, and let by, by, ..., br be non-negative integers. The semistar
Ky (b1, b, ..., by) is the graph formed from the disjoint union of (possibly null) cliques Kj,,
Ky, ..., Ky, by adding every possible edge between a vertex of Kj, and a vertex not
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belonging to Kj3,. Symbolically,

k
Ky (b, - b)) = Ky, + (U Kbi) .
=1

Note that K,(0,...,0) ~ Ky(0,...,b,...,0) ~ Kj, and that K, (by,..., b, 0) ~
Kbo(b17 s 7bk)
Throughout the paper, we will use the notation H < GG to mean H is a subgraph G or
H < G tomean H is a proper subgraph of G. Observe that for semistars H = K, (a1, ..., ax)
with a; S i1 for 1 S 1 S k—1and G = Kbo(bl,...,bk) with bz S bi+1 for 1 S 1 S k — 1,
H < G if and only if a; < b; for 0 < i < k, with at least one of these inequalities being strict.
For a semistar Ky, (by, ..., by) and a set of graphs {G;}%_, such that n(G;) = b;, the graph
H is a replacement graph for K, (by, ..., by) with respect to {G;}F_, if

T(1,2,3)

Figure 2: The semistar K5(1,1,1,2,4).

3 Elementary and known results

In this section, we list a number of useful literature results on AP and RP graphs. We
make frequent use of these results and observations, particularly Lemma 6, Theorem 13
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and Observations 15 and 16. We also present a characterisation of AP and RP complete
multipartite graphs.

Lemma 6. [7] If a graph G has an RP (AP) spanning subgraph, then G is itself RP (AP).

Observation 7. [7] Let G be a graph. The following implications for properties of G hold,
and none of their converses hold:

traceable = RP =—> AP = (near) matchable.

The following lemma, by Bondy and Chvatal [9] is a somewhat well-known variation of
Ore’s Hamiltonicity Theorem [23].

Lemma 8. [9] Let G be a graph of order n. If 0(G) > n — 1, then G is traceable.

Theorem 9 (Ore’s Theorem [23]). Let G be a graph of order n. If o(G) > n, then G is
Hamiltonian.

With Lemma 8 we easily prove the following.

Proposition 10. Let G be a graph with o(G) > 2k and order n. If n < 2k + 1, then G is
RP (and therefore AP), and this bound is sharp.

Proof. The graph G is RP since it is traceable (Observation 7 and Lemma 8).

To prove the bound is sharp, consider the complete bipartite graph K} ;2. This graph
has 0 = 2k and order 2k + 2. However Kj 4o does not have a perfect matching, and thus
by Observation 7, it is not RP. [

In [22], Marczyk showed that the above result can be improved for AP graphs with the
extra condition a(G) < [@1

Theorem 11. [22] Let G be a connected graph of order n. If a(G) < [§] and 0(G) > n— 3,
then G is AP.

For G to have a (near) perfect matching, it is clearly necessary that a(G) < (@} For a
large class of graphs, including complete multipartite graphs, this condition is also sufficient.
We summarize these equivalences in Proposition 12.

Note that there is no possible forbidden subgraph characterisation of AP (RP) graphs.
Given any graph G of order n, the graph K,, + G is Hamiltonian, and thus AP (RP).

Proposition 12. Suppose G is a graph of order n such that K., < G < K, + Ey, fora <b
positive integers, or that G is a complete multipartite graph. The following are equivalent:

(1) a(G) < [31,
(i1) G has a (near) perfect matching,
(i1i) G is traceable,

(iv) G is AP,

Published by Digital Commons@Georgia Southern, 2023
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(v) G is RP.
Proof. 1t is easy to verify that (4ii) implies (i) and that (%) implies (i). We now argue that
(i) implies (47). If G is complete multipartite or Ko, < G < K, + E, and a(G) < [5],
then the minimum degree satisfies §(G) > |5]. Consider the join G + {v} and note that
6(G + {v}) > . By Ore’s Theorem (Theorem 9), G + {v} has a spanning cycle C, so
C — v is a spanning path of G. Observation 7 completes the proof. n

In [7], Baudon, Gilbert and Wozniak characterised RP trees. In [3], Baudon, Bensmail,
Foucaud and Pilsniak described some properties of RP generalized theta graphs.

Theorem 13. [7] A tree is RP if and only if it is either a path, the tripode T(2,4,6), or a
tripode T'(a, b, c), where (a,b,c) is one of the triples in Table 1.

(1,1,¢) | ¢ =0 (mod 2) (1,4,¢) | c€{5,6,8,10,13,18}
(1,2,¢) | ¢c=0 (mod 3) or ¢ =1 (mod 3) (1,5,6)
(1,3,¢) | c=0 (mod 2) (1,6,¢) | c€{7,8,10,12,14}

Table 1: Table of triples (1,b,¢), 1 <b < ¢, for which the graph T'(a,b,c) is RP.

Theorem 14. [3] Let B be the generalized theta graph O(by, ..., by) with by < -+ < by. If
B is RP, then k < 5. Further, if B is RP and k € {4,5}, then by < 8 and by < 40, but by,
can be arbitrarily large.

Tripodes and generalized theta graphs are “universal” for RP graphs with connectivity
1 and 2, respectively, as the following observation from [5] shows.

Observation 15. [5] Let S be a vertex cut of a connected graph G, let Cy,...,C} denote
the components of G — S, and let ¢; denote n(C;).

o [f|S|=1 and G is RP (AP), then the k-pode Ty(c1,...,c) is RP (AP),

o If|S| =2 and G is RP (AP), then the generalized theta graph O(c1 +1,..., ¢, + 1) is
RP (AP).

To discuss AP and RP graphs of arbitrary connectivity, we find it easiest to work with
the semistars Ky, (b1, ..., bx), as they are also “universal”.

Observation 16. Let S be an s-vertex cut of a graph G, let C1, . .., C) denote the components
of G — S, and let ¢; denote n(C;). If G is RP (AP), then the semistar K(cq,...,cx) is RP
(AP).

Proof. Notice that G is a spanning subgraph of K(cy,...,c) and apply Lemma 6. O]

Per Observations 15 and 16, the triples (a,b,¢) in Table 1 for which T'(a, b, c) is RP are
also the triples for which K (a,b,c) is RP.

The ‘universality’ of trees and balloons (generalised theta graphs) can be used to bound
the toughness of RP graphs with small cuts. Using Theorem 13, Theorem 14, and Observa-
tion 15, we obtain Proposition 17 below.
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Proposition 17. [3] Let G be an RP graph, and S a subset of V(G).
o [f|S|=1, then ¢(G —S) < 3.

o [f|S| =2, then ¢(G —S) <5.

4 New RP graphs from old

In this section, we present two operations for combining RP graphs to obtain new RP graphs:
the well-known sequential join, and a “subgraph replacement” operation. These construc-
tions, in tandem with Lemma 6, allow us to easily prove that many graphs encountered
in the rest of the paper are RP. Of particular interest is the use of replacement graphs in
Section 6 to construct RP graphs with large vertex cuts that leave many components.

There is a generalisation of the fact that paths are RP. In particular, the sequential join
of RP graphs is RP.

Proposition 18. Let Hy,..., Hy be RP graphs. If G is the sequential join of the graphs H;,
G=H+ -+ H, then G is RP.

Proof. Let n; be the order of H;, and n = ny + --- 4+ n; the order of G. We proceed by
induction on n. The base case n = 1 is trivial, as then G ~ Ky, which is RP.

Let n > 2, assume the proposition is true for all positive integers less than n, and let
G be an n-vertex sequential join of RP graphs Hq, ..., Hy. It suffices to show that for any
a € [1,n — 1], there exists a partition of G into two RP graphs G[A] and G[B] such that
G[A] has order a. To do this, we will pick the subgraph induced by the ‘leftmost’ a vertices
of G in a manner that breaks apart at most one of the graphs H;.

Let mg = 0, and for all i € [1, k], let m; = 2221 n;. Denote by s the largest non-negative
integer such that a > my. Since the graph H, . is RP, it can be partitioned into two RP parts
Hq [ X] and Hsp1]Y], such that | X| = a—m,. We can thus pick A = V(H;)U- - UV (Hg)UX
and B = Y UV (Hgo)U---UV(Hg). Note that G[A] = Hy + -+ + Hs + Hs11[X] and
G[B] = He1|Y]| + Hsio + - - - + Hy. By the induction hypothesis, both G[A] and G[B] are
RP, completing the proof. O

A consequence of Proposition 18 is that the suspension K7 + G of an RP graph G is RP.

Corollary 19. Suppose t is a positive integer. If K, (as,...,a;) and Ky, (b1,...,b;) are RP,
then so is the graph

Ka0+bo+t(a1, vy Qg bl; e ,bj).
Proof. The graph Koy p+t(a1,- .., ax,b1,...,b;) has a spanning subgraph isomorphic to
Kao(al, e ,ak) + Kt + Kbo(bh ey bj),

which is RP by Proposition 18. O
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Let {G;}F_,, k > 2be aset of graphs, J = G+ -+ Gy, and m = min{7(G,) : 1 <i < k}
be the minimum toughness among the graphs G;. Note that 7(J) > % as J contains a path
with a vertex in each GG; and paths are %—tough. Ifm< %, then 7(J) > m. Thus, there are
limitations to how low the toughness of a sequential join of RP graphs can be. However,

replacement graphs can provide RP graphs with high connectivity and low toughness (see
Corollary 25).

Theorem 20 (RP Replacement Theorem). Every replacement graph for an RP semistar
with respect to a set of RP graphs is RP. That is, suppose Ky, (by,...,by) is RP, and {G;}r_,
is a set of RP graphs such that n(G;) = b;. Then the graph H is RP, where

k
H =G+ <U G,-) .

i=1
Proof. We use induction on the order of the replacement graph with RP parts. Clearly every
replacement graph of order at most 3 is RP. Suppose that every replacement graph of order
at most n — 1 for an RP semistar with respect to a set of RP graphs is RP, and let H be
a replacement graph of order n for an RP semistar K = K, (b1, ..., bx) with respect to a
set of RP graphs {G;}¥_,. Let A be any positive integer such that 1 < A\ < n. It suffices to
prove that there is a partition V(H) = {X’, Y’} such that |X'| = X and H[X'], H[Y'] are

both RP.
Since K is RP, there is a partition V(K) = {X, Y} such that |X| = A, and the induced
subgraphs K[X| = K, (x1,...,zx) and K[Y| = Ky (y1, . .., yx) are RP. Note that z;+y; = b;,

and that we may have x; = 0 (y; = 0) for some i. Since G; is RP, it has a partition
V(G;) ={X;,Y:} with | X;| = z; and |Y;| = y; such that G;[X;] and G;[Y;] are RP.

Thus, let
k k
=Jxi and Y=V
=0 i=0
Note that {X’, Y’} is a partition of V(H) such that | X’| = zg+---+x, = | X| = \. Further,
both H[X'] and H[Y’] are replacement graphs for RP semistars with respect to sets of RP
graphs:

H[X'] = Go[Xo] + (UG ) and H[Y'] = Go[Yo] + (UG >

By the induction hypothesis, both H[X'] and H[Y] are RP, so H is RP. O

5 RP spanning subgraphs

It is clear that every graph with an RP (AP) spanning tree is RP (AP). In [7], it was shown
that an AP graph need not have an AP spanning tree. Using the sequential join, it is easy
to construct RP graphs that do not have a spanning tripode T'(a, b, ¢) (and thus do not have
an RP spanning tree). For example, the graph 7'(1,1,2) + K; + T'(1,1,2) is RP but has
no spanning tripode. In this section, we give a necessary condition for a graph to have a
spanning tree homeomorphic to K, (k € N).
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Theorem 21. Let G be a graph, k > 2 a positive integer and S a subset of V(G). If
c(G—9)>|S|+E, then G does not have a spanning subdivision of K .

Proof. Let ¢(G — S) = c and |S| = s. Let G1,Ga, ..., G, denote the components of G — S.
Assume contrary to the theorem statement that there is a subdivision 7" of K ; spanning G,
and that ¢ — s > k. Denote by v the vertex of T" such that dr(v) =k, and let Py, Ps, ..., P
be the £ maximal paths of T"— v. There are two cases to consider. In both cases, we count
the number of components G; that each path P; intersects.
Case 1: v ¢ S.

Assume without loss of generality that v € G;. Let ((P;) = |{j > 2: V(G;) NV (F;) # 0}|
be the number of components (other than G;) that contain a vertex of P,. Between any
two vertices of P; that lie in different components of G — S, there must be a vertex of S.
Therefore, for all i, we have

¢(P) < [SNV(R)|. (1)

Each of the components G, Gs, ..., G, must intersect at least one path P;, so

c—1§ZC(Pi)- (2)

Since the paths P; are disjoint, we have

k

D ISnV(R) =S| =s. (3)

i=1
Combining Inequalities 1, 2 and 3, we obtain the following inequality

k

c=1<) ((B)< ) ISnV(P) =

i=1

But this contradicts the fact that ¢ — s > k > 2.

Case 2: ve S
Let n(P;) = |{j : V(G,) N V(P;) # 0}| be the number of components that contain a vertex
of P;. Between any two vertices of P; from different components of G — S, there must be a
vertex of S N V(P;). However, it is possible that the end vertices of P; are not in S. Thus,
for all 7, the following inequality holds

n(F) < [SNV(P)[+1. (4)

Since every component (5; intersects at least one path P;:

¢ < Z n(P,). (5)
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Since the paths P; are disjoint, and none contain the vertex v € S, we have

k

doISnV(B) =15~ {v}|=s—1. (6)

=1

Putting Inequalities 4, 5 and 6 together, we obtain

k k
c<Y nP) <D ISOV(P)| +k=s—1+F
=1 =1

But this contradicts the fact that ¢ > s + k. O

By Theorem 13, every RP tree on at least 3 vertices is either a path (subdivided K o)
or a subdivided K 3. Further, every RP generalized theta graph is spanned by a subdivided
K, with & <5, per Theorem 14. Thus, we have the following corollary.

Corollary 22. If G = (V, E) contains an RP spanning tree, then every S C V satisfies
co(G—98) <|S|+2. If G is spanned by an RP generalized theta graph, then every S C V
satisfies ¢(G — S) < |S| + 4.

6 Bounding ¢(G — S) from below

Let G be an RP graph and S C V(G). Per Theorem 13 and Observation 15, if |S| = 1,
then ¢(G — S) < 3, and the infinite family of RP tripodes {T'(1, 1, 2k) }ren all achieve this
bound. Theorem 14 and Observation 15 show that if |S| = 2, then ¢(G — §) < 5, and
the RP generalized theta graphs {©(2,2,3,4,2k + 1)}xen achieve this bound [7]. In this
section, we bound the maximum possible value of ¢(G — S) from below. In particular, we
show that for all s, there are infinitely many RP graphs with an s-vertex cut S such that
¢(G — S) = 2s + 1. Further, we prove that there exists an RP graph G with a cut S such
that |S| =3 and ¢(G — 5) = 8.

Lemma 23. The following graphs are RP:
(i) Ki(a,b,c) for (a,b,c) = (2,4,6) and all (a,b,c) in Table 1,
(i) Ky(a,b,c,d) for (a,b,c) = (2,4,6) and all (a,b,c) in Table 1, and for all d € N,
(i1i) Ko(0,...,d,...,0) for alld € N,
(iv) Kp,(b1,...,b;) whenever k < by + 1,
(v) K5(1,1,1,2,4), and K5(1,1,2,3,¢) for all ¢ =0 (mod 2).

Proof. Part (i) follows from Theorem 13 and Observation 16. Part (ii) follows from (),
Proposition 18, and the fact that Ks(a, b, ¢, d) is spanned by K (a, b, ¢)+ K;+ K,4. The graph
Ko(0,...,d,...,0)is a complete graph of order d, from which (7ii) follows. Part (iv) follows
from an application of Observation 7 to the traceable graph Ky, (b1, ..., b;) for k < by + 1.
Finally, (v) is proven in [7]. O
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We begin by finding a convenient infinite family of RP graphs with toughness %
Theorem 24. For all k >0, k € Z, the graph K5(1,1,2,6,k) is RP.

Proof. We first prove that G, = K»3(1,1,2,6,k) is RP for all £k € {1,...,10}. Note that
n(Gy) = 12 + k. Thus, it suffices to prove that for all A € {1,...,[Z#[}, there is a
partition {A, B} of V(Gy) such that |A| = A and Gi[A], Gi[B] are both RP.

Table 2-11 list all the (subgraphs induced by) partitions needed to show that Gy is RP
for £ < 10. All the subgraphs induced by the partitions are RP either by Lemma 23, or
by the previous cases. For example, the |A| = 5 row of Table 2 shows how to partition
V(Gy) = {A, B} so that |A| =5 and G4[A], G1[B] are both RP (see Figure 3).

To prove Gy is RP for £ > 11, we use induction. Let k£ > 11, assume G}, is RP for
all j < k, and let A be any integer in {1,..., [2*|}. Then we can partition V(Gy) into
two parts {A, B} where |A| = A\ by picking A such that Gi[A] = Ky(0,0,0,0,\) ~ K, and
Gi[B] = K2(1,1,2,6,k — A). Gi[A] is RP since it is a complete graph, and G,[B] is RP by
induction, completing the proof. O

Figure 3: V(G,) = {A,B} where |A| = 5, Gi[4] = K;(1,1,2,0,0) and G,[B] =
K;(0,0,0,6,1). The subgraph G;[B] is bolded, and the edges not belonging to either G;[A]
or G1[B| are light grey.

Table 2: Partitions of G; for A < |2 ] =6.

A | Gy[A] G41[B] A | Gi[A] G41|B]
1| K0(0,0,0,0,1) | Ka(1,1,2,6,0) | |2 | K0(0,0,2,0,0) | Ka(1,1,0,6,1)
3 | K.(1,1,0,0,0) | £.(0,0,2,6,1) | | 4] K1(1,0,2,0,0) | K.(0,1,0,6,1)
5 | K1(1,1,2,0,0) | £1(0,0,0,6,1) | | 6| Ko(0,0,0,6,0) | Ka(1,1,2,0,1)
Table 3: Partitions of G, for A < [2222] =7.
A | GolA] G| B] A | GalA] G| B]
<2 | Ko(0,0,0,0,)\) | Ka(1,1,2,6,2—\) | | 3 | %(0,0,0,3,0) | Ko(1,1,2,3,2)
4 | Ki(1,0,2,0,0) | K1(0,1,0,6,2) 5 | K1(1,1,2,0,0) | K£,(0,0,0,6,1)
6 | K0(0,0,0,6,0) | Ka(1,1,2,0,2) 7 1 K.(1,0,2,3,0) | K,(0,1,0,3,2)
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Table 4: Partitions of G3 for A < |[222] =7.

https://digitalcommons.georgiasouthern.edu/tag/vol10/iss2/4
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A | G4 Gs[B] A | Gs[A] G3[B]
<3| K0(0,0,0,0,N) | Ka(1,1,2,6,3 —N) | | 4 | Ko(0,0,0,4,0) | Ko(1,1,2,2,3)
5 | Ki(1,1,2,0,0) | K£,(0,0,0,6,3) 6 | K0(0,0,0,6,0) | Ka(1,1,2,0,3)
7 K1(1,0,2,0,3) | K1(0,1,0,6,0)
Table 5: Partitions of G4 for A < |2H] =8
N TG C.[B] 3 GalA CilB]
<4 | Ko(0,0,0,0,\) | Ko(1,1,2,6,4—\) | |5 | K1(1,1,2,0,0) | K1(0,0,0,6,4)
6 | Ko(0,0,0,6,0) | Ka(1,1,2,0,4) 7 1 K.(1,0,2,0,3) | K,(0,1,0,6,1)
8 K;(1,0,2,0,4) | K1(0,1,0,6,0)
Table 6: Partitions of G5 for A < |252] = 8.
A | Gs[A] G5|B] A | G54 G5(B]
<5 | K£0(0,0,0,0,\) | Ka(1,1,2,6,5—N) | | 6 | Ko(0,0,0,6,0) | Ko(L, 1,2,0,5)
7| K.(1,0,0,0,5) | K£1(0,1,2,6,0) 8 | £1(0,0,2,0,5) | K1(1,1,0,6,0)
Table 7: Partitions of Gg for A < |12:0] =9
A | GelA] G| B] A | GelA G| B]
<6 | K£0(0,0,0,0,N) | Ka(1,1,2,6,6 —N) | | 7 | K:(1,0,2,3,0) | K.(0,1,0,3,6)
8 | K1(1,0,0,0,6) | K1(0,1,2,6,0) 9 | K1(1,1,0,0,6) | K,(0,0,2,6,0)
Table 8: Partitions of Gy for A < |22] =9,
A | Go[A] G7[B] Al Gr[A Gr[B]
<7 | Ko(0,0,0,0,\) | Ka(1,1,2,6,7— ) | | 8 | Ki(1,0,0,6,0) | K:(0,1,2,0,7)
9 K;(1,1,0,6,0) | K1(0,0,2,0,7)
Table 9: Partitions of Gy for A < |2£8] = 10.
A | GglA] Gs|B] A | Gs[4] Gs[B]
<8 | K0(0,0,0,0,\) | Ka(1,1,2,6,8 — ) | | 9| K:(1,1,0,6,0) | K1(0,0,2,0,8)
10 | K1(1,0,2,6,0) | K.(0,1,0,0,8)
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Table 10: Partitions of Gy for A < [1£] = 10.
A | Gol4] Gy[B] A | Gol4] Gy[B]
<9 | Ko(0,0,0,0,\) | K(1,1,2,6,9—A) | | 10 | &1(1,0,2,6,0) | K.(0,1,0,0,9)

Table 11: Partitions of Gyo for A < [&2] = 10.
A Ghol4] Gho[B] A | GiolA] Gho|B]
<10 | K0(0,0,0,0,\) | Ka(1,1,2,6,10 — A) | | 11 | K1(1,0,2,0,7) | k:(0,1,0,6,3)

Using replacement graphs formed from the graphs K»(1,1,2,6,7), j a positive integer,
we can create arbitrarily large RP graphs with arbitrarily large cuts S leaving 2|S| 4 1
components.

Corollary 25. For all s > 1, there exists an infinite family G, of RP graphs such that each
graph G in Gy has a vertex cut S with |S| =s and ¢(G — 5) = 2s + 1.

Proof. For j a positive integer, let Hi(j) = T(1,1,25), and let Hs(j) = K»(1,1,2,6,7).
These graphs are all RP by Theorems 13 and 24. Define H,,5(j) inductively by setting

Hsio(j) = Ko+ (K3 UK, UKy U KgU Hg(5))

By Theorems 20 and 24, the graph H,y5(j) is RP. It’s clear that the graph H,(j) has a
vertex cut S with |S| = s and ¢(G — 5) = 2s + 1 (for example, see Figure 4). To complete
the proof, we let G, = {H(j)}jen- O

o N

Figure 4: The graph H3(1). The vertices of a cut set S with |S| = 3 and ¢(H3(1) — S) =7
are bolded.

Lemma 26. The graphs Ks(1,2,3,4,6) and K»(1,2,2,3,4) are RP.

Proof. The semistar K5(1,2,3,4,6) has 18 vertices. Table 12 below shows that for all A €
{1,...,9}, the graph K5(1,2,3,4,6) has a partition {A, B} such that both parts induce RP
graphs and |A| = A. The parts are RP by Lemma 23 and Theorem 24.
The proof that the 14-vertex graph Ks(1,2,2,3,4) is RP follows similarly by considering
Table 13.
0
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Table 12: Partitions of G = K5(1,2,3,4,6) for A <9.
A | G[A] G|[B] A G[A] G|B]
1| Ko(1,0,0,0,0) | K2(0,2,3,4,6) | | 2 | K0(0,2,0,0,0) | Ks(1,0,3,4,6)
3 | K(0,0,3,0,0) | K5(1,2,0,4,6) 4 | K¢(0,0,0,4,0) | K2(1,2,3,0,6)
5 | K1(1,0,3,0,0) | £,(0,2,0,4,6) | | 6| Ko(0,0,0,0,6) | Ks(1,2,3,4,0)
7| K1(1,2,3,0,0) | £,(0,0,0,4,6) | |8 | K:1(0,0,3,4,0) | K1(1,2,0,0,6)
9 | K,(1,0,3,4,0) | £,(0,2,0,0,6)

Table 13: Partitions of G = K5(1,2,2,3,4) for A < 7.
A | G[A] G|[B] A G[A] G|B]
1| K0(0,1,0,0,0) | Ka(1,1,2,3,4) | |2 | K0(0,2,0,0,0) | Ka(1,0,2,3,4)
3 | K¢(0,0,0,3,0) | K(1,2,2,0,4) 4 | K¢(0,0,0,0,4) | K2(1,2,2,3,0)
5 | K1(1,1,2,0,0) | £,(0,1,0,3,4) | | 6 | K1(0,0,2,3,0) | K1(1,2,0,0,4)
7 | K1(0,0,2,0,4) | K,(1,2,0,3,0)

Theorem 27. The semistar K3(1,1,1,2,2,3,4,6) is RP.

Proof. Let G = K3(1,1,1,2,2,3,4,6), and note that n(G) = 23. Let S denote the cut set
of size 3 in G. We show that for all A < 11, the vertex set V' of G has a partition {A, B}
such that |A| = A, and the induced graphs G[A] = S, and G[B] = T) are RP. Note that the
following cases make use of Lemma 6.

A =1:Let S; = K; be a 1-vertex component of G — S, and 77 = K3(1,1,2,2,3,4,6).
By Theorem 20, Lemma 23 and Lemma 26, we can construct an RP spanning subgraph H
of T1. H is an RP replacement graph made using K;(1,6,14) and K5(1,2,2,3,4):

Ty > H =K, + (K, U Kg U Ky(1,2,2,3,4)).

A = 2: Let Sy = K; be a 2-vertex component of G — S, and Ty = K3(1,1,1,2,3,4,6).
By Theorem 24, the graph K5(1,1,2,6,9) is RP. Thus, we can construct an RP spanning
subgraph H of Ty using K5(1,1,2,6,9) and Ki(1,3,4):

Ty > H =Ky, + (KUK UK, UKgUK;(1,3,4)).

A = 3: Let S5 = K3 be the 3-vertex component of G — S, and T3 = K3(1,1,1,2,2,4,6).
Using K5(1,1,2,6,8) and K;(1,2,4), we construct an RP replacement graph H that spans
T33

Ty>H =K, + (KUK, UK, UKgUK(1,2,4)).

A =4: Let Sy = K, be the 4-vertex component of G — S, and Ty, = K3(1,1,1,2,2,3,6).
We construct an RP spanning subgraph H of T}:
Ty>H=K+ (KiUK, UKyUKgUK;(1,2,3)).

A=05:Let S; =K;(1,1,2) and T5 = K»(1,2,3,4,6).
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DOI: 10.20429/tag.2023.10204 14



Buchanan et al.: Toughness of Recursively Partitionable Graphs

A =6:Let S = Kg and Tg = K3(1,1,1,2,2,3,4). The graph H below is an RP
spanning subgraph of Ty, constructed using K»(1,1,2,3,8) and 77(1,2,4):

T6ZH:K2+(K1UK1UK2UK3UK1(1,2,4))

A=T: Let 57 (]_, 2,3) and T7 = KQ(]_, 1,2,4,6).

A=8:Let Sg = K;(1,2,4) and Ty = K»(1,1,2,3,6).

A=9:Let S = Ki(1,3,4) and Ty = K»(1,1,2,2,6).

A=10: Let S;p = K1(1,2,6) and Ty = K»(1,1,2,3,4).

A=11: Let SH = KQ(l, 1,2,2,3) and TH = K1<1,4, 6) O

7 Minimal RP graphs

Let by, ..., bx be positive integers. Call Ky, (b1,...,b;) a minimal (bg, k) RP semistar if
there do not exist positive integers c, ..., ¢ such that both the following hold:

o Ky (ci,...,c) is RP, and
o Ky (cy,...,cr) is a proper subgraph of Ky, (b1, ..., bx).

It is easy to see that K;(1,1,2) is the unique minimal (1,3) RP semistar. Every (1,3)
semistar G has n(G) > 4, and the only such graph with n(G) = 4 is K; 3. Since it does
not have a (2, 2)-partition, K 3 is not RP. In this section, we show that K5(1,1,2,2,3) and
K3(1,1,1,2,4) are the only minimal (2,5) RP semistars. Thus, every graph G with a 2-
vertex cut S such that ¢(G — S) = 5 has order 11 or more. Further, we show that the RP
semistar K3(1,1,1,2,2,3,4,6) is minimal.

Let G(bo, k) = {Kp,(b1,...,br) : 1 < by < --- < b}. The poset G(by, k) ordered by
subgraph inclusion embeds into N* (with the product order) in the obvious way. (See Sec-
tion 2.2.) Dickson’s Lemma states that the product N¥ contains neither infinite anti-chains,
nor infinite strictly descending sequences [12].

Remark 28. For each pair (by, k) of positive integers, there are finitely many minimal (b, k)
RP semistars.

A well known theorem of Tutte states that a graph G has a perfect matching if and
only if for every vertex cut S of G, the graph G — S has at most |S| odd components [24].
The next lemma shows that this necessary condition can be generalised to partitions with
connected parts of any size.

If S is a finite set, then let | S|, denote the number j in {0,1,..., k—1} such that |S| = j
(mod k). If G is a graph, and S C V(G), then let

wi(G, S) Z{H/ )|k : C a component of G — S}.

The following result is given in [5].

Lemma 29. [5] Let G be a connected graph, S a vertex cut of G with |S| < ¢(G — S), and
k > 2 a positive integer. If G is AP, then

1] + 1> wi(G, 9).
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We give a slight sharpening of this lemma. The proof is similar to the proof in [5], with

care taken to track the term M(@lk

Lemma 30. Let G be a connected graph, S a subset of V(G), and m,k > 1 integers. If G
has a partition into connected parts Ty, Ty, ..., T, such that |T;| =k for alli < m —1, and
|Tm| < k, then

51+ ¥ ( )1“’ > wi(G, S).

Proof. Note that either |T,,| = k or |T,,,| = |V (G)|r. We begin by considering the following
subgraph G’ of G-

= J{GIT] : V(T}) NS # 0} UG[S] U GIT,).

Observe that S C V(G') and |V (G)|x = |V(G")|. Further notice that the vertex set of each
component of G — S is a union of the vertex sets of components of G’ — S, and possibly some
of the sets T;, i < m. Therefore, we get wi(G',S) > wi(G, S).

Consider the subgraph G* = G’ — T,,,, and let S* = S\ V(T,,). Since |V (G*)|r, = 0, and
T, has either k vertices or |V (G')|) vertices, we obtain

(151+ B — (1o EEL) = (1s1+ BN ) — 10

1
_ V@)
k—1
> wi(G', S) — wi(G*, S*)
> ’LUk(G, S) - wk(G*> S*)

To complete the proof, it suffices to show that |S*| > wg(G*, S*). Each component of
G* — 5% is of the form T; — S* for some ¢ < m, and each such T; has exactly k vertices. Thus,
we have G 5]

Further, each vertex of G* is in some T}, i« < m. Each T; has at least one vertex of S*
and at most k — 1 vertices not in S*. Therefore, |G* — S*| < (k — 1)|S*], so

|G* = 5]

| >
§1=

= wk(G*7 S*)v

completing the proof. O
Corollary 31. If G is an AP (RP) graph with S C V(G), and k > 2 a positive integer, then

V(G

[S1+ =7

Theorem 32. The graphs K5(1,1,1,2,4) and Ks(1,1,2,2,3) are the unique minimal (2,5)
RP semistars.
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Proof. Recall from Lemma 23 that K3(1,1,1,2,4), and K5(1,1,2,3,¢) are RP for all ¢ =0
(mod 2). Let G = Ks(by,...,bs) be a minimal (2,5) RP semistar with b; < --- < b;. We
can remove a single vertex of G and still have an RP graph remaining. The vertex removed
cannot be a vertex of the 2-vertex cut, since no (1,5) semistar is RP per Proposition 17.
Thus, by minimality of G, we have b; = 1. Similarly, we can remove two adjacent vertices,
so b; = 2 for some 1.

By Proposition 17, the RP subgraph induced by removing three vertices cannot be K5(1)
or K{1(2). Thus, there are two possibilities for removing three vertices.

Case 1: The RP subgraph induced by the three removed vertices is K;(1,1), so by = 1,
and G = Ks(1,1,2,s,t) for some positive integers s < t. First suppose that s = 1, so
G = K3(1,1,1,2,t) for some positive integer t. Let S = K3(0,0,0,0,0) (so |S| = 2) and let
k = 3, then apply Corollary 31. This yields the inequality

51+ G~ 1 (65). 50

1 1
2—|—§~(7+t mod3)2§+§'(t mod 3)

From this inequality, it follows that ¢ # 2. Again apply Corollary 31 to G, with the same
choice S = K5(0,0,0,0,0), but £ = 2, and obtain the following inequality:

2+ (7T+t mod2) >3+ (t mod 2)

From the above inequality, we see that ¢t must be even, so t ¢ {1,3}. Thus, if s = 1, the
single minimal RP semistar is Ky(1,1,1,2,4).

The semistar K5(1,1,2,2,2) is not RP — apply Corollary 31 with S = K5(0,0,0,0,0)
and k = 3. Thus, if s = 2, then ¢ > 3 and so the only minimal RP semistar is K»(1,1,2,2, 3).
When s > 3, we have K5(1,1,2,2,3) < Ky(1,1,2,s,t), and if s > 4, then K5(1,1,1,2,4) <
K5(1,1,2,s,t), which proves uniqueness in Case 1.

Case 2: The RP subgraph induced by the three removed vertices is a K3, so b; = 3 for
some i. Thus, G = K5(1,2,3,s,t) for some 1 < s <t. An analysis similar to that in Case 1
shows that K»(1,1,2,2,3) is the only minimal RP semistar in Case 2. ]

Corollary 33. Let G be an RP graph of order n. If G has a cut S with |S| = 2 and
c¢(G—S) =05, thenn > 11.

Proposition 34. The graph K3(1,1,1,2,2,3,4,6) is a minimal (3,8) RP semistar.

Proof. Let G = K3(1,1,1,2,2,3,4,6). By Theorem 27, this graph is RP. To prove min-
imality, it suffices to show that G does not have an RP proper subgraph of the form
H = K3(1,1,1,by,bg,b3,b4,b5), where 1 < by < -+ < bs. Assume to the contrary that
it does, and let S = K3(0,0,0,0,0,0,0,0) be the 3-vertex cut of H.
Case 1: by = 1. Apply Corollary 31 to H using the 3-vertex cut S and k = 2 to get
3+ (T+by+bs+by+b;s mod2) >4+ (b mod2)+---+ (bs mod 2),

from which it follows that bs, b3, by and b5 are all even. Thus, by = bs = 2 and by € {2,4}.
Again use Corollary 31 with the cut S but &£ = 3 to obtain

1
2

1 8 1
3+§.(11+b4+b5 mOd3)Z§+ - (by mod3)+§-(b5 mod 3).
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Whether by = 2 or by = 4, this inequality yields a contradiction, completing Case 1.
Case 2: by = 2. Since H < G, we have by = 2 and b3 € {2,3}. Use Corollary 31 with the
3 vertex cut S and k = 3 to get

[NCRIEN|

1
(b mod 3) + ... + 3 (bs mod 3).

N | —

1

If b3 = 2, then the right-hand side of the inequality is at least %, which is impossible.
Therefore b3 = 3. Applying Corollary 31 to the 3-vertex cut S with k = 2, we see that both
by and b5 are even. Thus, by = 4. Since H < G, we have b; = 4. Now use Corollary 31 with

the cut S and k& = 5, to get

1 1
34+ --(21 od 5) > —.
(1 mod5) =
However, this is a contradiction, completing Case 2.
In either case, we derive a contradiction, so G does not have such a subgraph H. O

8 Bounding ¢(G — S) from above

In this section, we show that RP graphs are %—tough. We have seen that there exist RP
graphs with a cut-vertex v such that ¢(G —v) = 3. However, as we show in Theorem 35, for
cuts S of greater size in RP graphs, we must have ¢(G — S) < 3|5/, and this bound is sharp
when |S| =2 or |S| = 3.

We say that an RP graph G of order n is minimal with respect to S, if there is no
(A, n — A)-partition, for any A, of G into RP graphs G; and G, such that G is a proper
induced subgraph of any of the connected components of G —.S. Suppose G is minimal with
respect to S, and G — S does not have a component of size A. If we partition G into two RP
graphs G; and (G5 such that G; has \ vertices, then both G; and G5 contain at least one
vertex of S. In other words, the partition must split the cut S across its two parts.

Theorem 35. Let S be a cut of a graph G with |S| > 2. If ¢(G — S) > 3|5|, then G is not
RP.

Proof. By Proposition 17, the result holds when |S| = s = 2. It is also useful to note that if
|S| =1, then ¢(G — S) < 3 (see Proposition 17). We proceed by strong induction, assuming
the result holds for all integers ¢ such that 2 < i < s.

Suppose that G is RP, and let S be a cut in G, with |S| = s > 3. We can assume that
G is minimal with respect to S (as defined in the paragraph before Theorem 35) — for if
G is not minimal with respect to S, we can repeatedly remove some proper subset T of a
component of G — S so that G — T is RP, until it is no longer possible to do so, resulting in
an RP subgraph of G that is minimal with respect to S. Let Cy, Cs, ..., Cy be the connected
components of G — S, with |Cy| < |Cy] < --- < |Ck|. Suppose that |Cy| = |Cr_1| + 1.
Let A = |Ck| + 1 and find a (A\,n — A)-partition of G into RP graphs G; and Gs. Since
|C;| & {\,n— A} for every 1 < ¢ < k, we must have that both S; = SN Gy and Sy = SN Gy
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are non-empty. Furthermore, since |S| > 3, we cannot have that |S;| = |Se| = 1. Therefore,
by induction, we have

C(G — S) S C(G1 - Sl) + C(Gz — SQ) S 3|Sll + 3|SQ‘ —1= 3‘S| — 1.

Now, suppose that |Cy| # |Cx—1| + 1. Let A = |Cx—1| + 1. Find a (A\,n — A)-partition of G
into graphs GG; and G5, and recall that, by minimality, we cannot have G; < C}. Then, a
similar argument holds. [l

As Theorems 14, 24, 27 and 32 demonstrate, the bound in Theorem 35 is sharp when
|S| € {2, 3}.

Corollary 36. FEvery RP graph is %—tough.

9 Further Questions

We mention a few open questions.

1. Consider all pairs (G, S), where G is an RP graph and S is an s-vertex subset of V (G),
and let ((s) = max{c(G — S) : (G,S)}. When s > 1, Theorem 35 and Corollary 25
show that 2s + 1 < ((k) < 3s — 1. Can either of these bounds be improved? Is the
3s — 1 upper bound sharp?

2. Is there some constant ¢ such that every c-tough graph is AP (RP)?

3. If Kpy(by,ba,...,bg) is RP, is the graph Ky, (b1, ...b;—1,bis1,...,b) also RP for each
ie{l,2,...,k}?

4. In light of Remark 28 and Proposition 34, K3(1,1,1,2,2,3,4,6) is one of finitely many
minimal (3,8) RP semistars. Are there others? If so, what are they?

5. Both minimal (2,5) RP semistars are subgraphs of infinitely many (2,5) RP semis-
tars. For example, K5(1,1,2,2,3) is a subgraph of every Ks(1,1,2,3,k) where k =0
(mod 2) is positive, and K»(1,1,1,2,4) is a subgraph of K5(1,1,2,6, k) where k > 1.
Is K3(1,1,1,2,2,3,4,6) a subgraph of infinitely many (3,8) RP semistars?

6. Do there exist pairs of positive integers (bo, k) for which there exist a finite, but positive
number of (by, k) RP semistars?
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