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Abstract

A simple graph G = (V,E) on n vertices is said to be recursively partitionable (RP)
if G ≃ K1, or if G is connected and satisfies the following recursive property: for
every integer partition a1, a2, . . . , ak of n, there is a partition {A1, A2, . . . , Ak} of V
such that each |Ai| = ai, and each induced subgraph G[Ai] is RP (1 ≤ i ≤ k). We
show that if S is a vertex cut of an RP graph G with |S| ≥ 2, then G − S has at
most 3|S| − 1 components. Moreover, this bound is sharp for |S| = 3. We present two
methods for constructing new RP graphs from old. We use these methods to show that
for all positive integers s, there exist infinitely many RP graphs with an s-vertex cut
whose removal leaves 2s + 1 components. Additionally, we prove a simple necessary
condition for a graph to have an RP spanning tree, and we characterise a class of
minimal 2-connected RP graphs.

1 Introduction

Let n be a positive integer. An integer partition of n is a list a1, . . . , ak of positive integers
such that a1 ≤ a2 ≤ · · · ≤ ak and a1 + · · · + ak = n. Let G = (V,E) be a graph of order n.
An (a1, ..., ak)-partition of G is a partition {A1, . . . , Ak} of V such that |Ai| = ai for all i.
We say the partition has connected parts if, for all i ∈ {1, . . . , k}, the induced subgraphs
G[Ai] are connected.

In 1976, Györi and Lovász considered the problem of determining when a graph has an
(a1, . . . , ak)-partition with connected parts and independently proved the following theorem.

Theorem 1 (Györi-Lovász [15, 21]). Let G be a graph of order n and a1, . . . , ak an integer
partition of n. If G is k-connected, then it has an (a1, . . . , ak)-partition with connected parts.

We say G is arbitrarily partitionable (or just AP) if, for every integer partition
a1, . . . , ak of n, there exists an (a1, . . . , ak)-partition of V with connected parts. AP graphs
were introduced in [1], and a polynomial time algorithm for determining whether a subdivi-
sion of K1,3 is AP was provided.

The graph G is recursively partitionable (RP) if G ≃ K1, or G is connected and
satisfies the following recursive property: for every integer partition a1, . . . , ak of n, there
is an (a1, . . . , ak)-partition {A1, . . . , Ak} of V such that each G[Ai] is RP. RP graphs were
introduced in [6, 7].

In [7], RP trees were characterised (among other results), and in [6], a class of RP
unicyclic graphs was characterised. In both papers, the authors made heavy use of the
following characterisation of RP graphs.

Proposition 2. [6] An n-vertex graph G = (V,E) is RP if and only if it is connected, and:

• G ≃ K1, or

• for every partition a, b of n, there is an (a, b)-partition {A,B} of V such that both G[A]
and G[B] are RP.
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RP graphs were independently introduced (as “partition wonderful graphs”) as a result
of investigations into rainbow-cycle-free edge colorings (such as in [16]), by Peter Johnson,
with the help of Paul Horn, at the MASAMU 2020 workshop.

These graphs arise naturally when considering rainbow-cycle-free edge colorings, which
are of recent interest in their own right (see [13, 17, 20]). A JL-coloring of an n-vertex
graph is an edge coloring using exactly n−1 colors that does not contain any rainbow cycles.
These colorings are studied for Kn in [11] and [14], Kn,m in [19] and complete multipartite
graphs in [18].

In [16], the authors introduced the following standard construction for creating a
JL-coloring of a connected graph G:

1. If n > 1, find a partition V = {A,B} with connected parts,

2. color edges between A and B with a single color that will not be used again,

3. iterate (1) and (2) on G[A] and G[B].

This leads to the main result of [16]:

Theorem 3. [16] Every JL-coloring is obtainable by an instance of the standard construction.

Corollary 4. [16] Every JL-coloring of a connected graph G = (V,E) is the restriction of a
JL-coloring of the complete graph with vertex set V .

Combining Proposition 2, Theorem 3 and Corollary 4 yields the following observation of
Johnson:

Observation 5. A connected graph G = (V,E) of order n is RP if and only if every JL-
coloring φ of Kn can be restricted to a JL-coloring φ|E of a copy of G.

The rest of this paper is organised as follows. In Section 2, we define useful graph-
theoretical tools and constructions that will be used throughout the paper. In Section 3, we
list basic observations about the properties of AP and RP graphs. In Section 4, we introduce
recursive constructions of RP graphs, which we later use to find infinite classes of RP graphs
with a given toughness. It is easy to see that if a graph has an AP (RP) spanning tree, then
it is AP (RP). In Section 5, we take a more detailed look at spanning subgraphs of RP graphs
and provide a necessary condition for an RP graph to have a spanning tree homeomorphic
to K1,k. Denote by c(G) the number of components of G. We show that if an RP graph has
an RP spanning tree, then for every S ⊆ V we have c(G−S) ≤ |S|+2. In Section 6, we find
lower bounds for the maximum possible values of c(G−S) for S ⊆ V in an RP graph G. In
particular, we show that, for any s, there exists an infinite family of RP graphs, each with
an s-vertex cut whose removal leaves 2s + 1 components. In Section 7, we show that there
exists a finite set of minimal RP graphs for any given possible cut size |S| and c(G − S).
In Section 8, we bound c(G − S) from above, by showing that in an RP graph G, for any
S ⊆ V , we have c(G− S) ≤ 3|S| − 1, which shows that every RP graph is 1

3
-tough. Finally,

in Section 9, we list a set of open questions.

2

Theory and Applications of Graphs, Vol. 10, Iss. 2 [2023], Art. 4

https://digitalcommons.georgiasouthern.edu/tag/vol10/iss2/4
DOI: 10.20429/tag.2023.10204



2 Additional definitions

2.1 Properties and parameters

For a positive integer k, let Ek denote the empty graph with k vertices and no edges. If G
is a graph, then n(G) or |G| is its order (number of vertices), m(G) its number of edges.
Let α(G) denote the independence number of G (the order k of a maximum induced Ek

subgraph). A vertex cut of a graph G is a set of vertices whose removal disconnects G,
and the vertex connectivity, or simply connectivity, of G is the minimum cardinality of a
vertex cut. Let

σ(G) = min{d(u) + d(v) : u and v are non-adjacent vertices of G}.

A graph is traceable if it has a spanning path (i.e., a Hamiltonian path) and Hamilto-
nian if it has a spanning cycle (i.e., a Hamiltonian cycle).

A perfect matching of a graph is a set M of edges that are pairwise disjoint, such that
every vertex is incident with an edge in M . A near-perfect matching is a set M of edges
that are pairwise disjoint, such that every vertex except for one is incident with an edge in
M . A graph is (near) matchable if it has a (near) perfect matching.

Let G1 = (V1, E1), . . . , Gn = (Vn, En) be graphs. The sequential join G1 + · · · + Gn is
the graph formed by taking the graph union (V1 ∪ · · · ∪ Vn, E1 ∪ · · · ∪ En) and adding to it
all edges of the form uv, where u ∈ Vi and v ∈ Vi+1 (1 ≤ i < n).

Let G = (V,E) be a graph. In particular, for a connected graph G, if S ⊆ V , then
c(G− S) ≥ 2 if and only if S is a cut. The toughness τ (G) of G is

τ(G) = min

{
|S|

c(G− S)
: S ⊆ V, c(G− S) ≥ 2

}
.

For a positive real number r, we say G is r-tough if τ(G) ≥ r.

2.2 Graph constructions

In this section, we define graph constructions that we will use throughout the paper. See
Figures 1 and 2 for examples.

Let t1, t2, . . . tk be positive integers. The k-pode graph Tk(t1, t2, . . . , tk) is the tree that
has one degree k vertex, v, the removal of which leaves k paths having t1, t2, . . . tk vertices.
When k = 3, we say this is a tripode graph and, when it causes no confusion to the reader,
denote it by T (t1, t2, t3).

Let k be a positive integer, and bi, 1 ≤ i ≤ k be non-negative integers. A generalized
theta graph graph Θ(b1, b2, . . . , bk) consists of a pair of endvertices joined by k internally
disjoint paths of lengths b1, b2, . . . , bk [10]. Note that the authors in [3] refer to these graphs
as balloons.

Let k be a positive integer, and let b0, b1, . . . , bk be non-negative integers. The semistar
Kb0(b1, b2, . . . , bk) is the graph formed from the disjoint union of (possibly null) cliques Kb0 ,
Kb1 , . . . , Kbk by adding every possible edge between a vertex of Kb0 and a vertex not
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belonging to Kb0 . Symbolically,

Kb0(b1, . . . , bk) = Kb0 +

(
k⋃

i=1

Kbi

)
.

Note that Kb(0, . . . , 0) ≃ K0(0, . . . , b, . . . , 0) ≃ Kb, and that Kb0(b1, . . . , bk, 0) ≃
Kb0(b1, . . . , bk).

Throughout the paper, we will use the notation H ≤ G to mean H is a subgraph G or
H < G to meanH is a proper subgraph of G. Observe that for semistars H = Ka0(a1, . . . , ak)
with ai ≤ ai+1 for 1 ≤ i ≤ k − 1 and G = Kb0(b1, . . . , bk) with bi ≤ bi+1 for 1 ≤ i ≤ k − 1,
H < G if and only if ai ≤ bi for 0 ≤ i ≤ k, with at least one of these inequalities being strict.

For a semistar Kb0(b1, . . . , bk) and a set of graphs {Gi}ki=0 such that n(Gi) = bi, the graph
H is a replacement graph for Kb0(b1, . . . , bk) with respect to {Gi}ki=0 if

H = G0 +

(
k⋃

i=1

Gi

)
.

T (1, 2, 3) Θ(2, 2, 3, 3, 4)

Figure 1: The tripode T (1, 2, 3) and the generalized theta graph Θ(2, 2, 3, 3, 4).

Figure 2: The semistar K2(1, 1, 1, 2, 4).

3 Elementary and known results

In this section, we list a number of useful literature results on AP and RP graphs. We
make frequent use of these results and observations, particularly Lemma 6, Theorem 13
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and Observations 15 and 16. We also present a characterisation of AP and RP complete
multipartite graphs.

Lemma 6. [7] If a graph G has an RP (AP) spanning subgraph, then G is itself RP (AP).

Observation 7. [7] Let G be a graph. The following implications for properties of G hold,
and none of their converses hold:

traceable =⇒ RP =⇒ AP =⇒ (near) matchable.

The following lemma, by Bondy and Chvatal [9] is a somewhat well-known variation of
Ore’s Hamiltonicity Theorem [23].

Lemma 8. [9] Let G be a graph of order n. If σ(G) ≥ n− 1, then G is traceable.

Theorem 9 (Ore’s Theorem [23]). Let G be a graph of order n. If σ(G) ≥ n, then G is
Hamiltonian.

With Lemma 8 we easily prove the following.

Proposition 10. Let G be a graph with σ(G) ≥ 2k and order n. If n ≤ 2k + 1, then G is
RP (and therefore AP), and this bound is sharp.

Proof. The graph G is RP since it is traceable (Observation 7 and Lemma 8).
To prove the bound is sharp, consider the complete bipartite graph Kk,k+2. This graph

has σ = 2k and order 2k + 2. However Kk,k+2 does not have a perfect matching, and thus
by Observation 7, it is not RP.

In [22], Marczyk showed that the above result can be improved for AP graphs with the

extra condition α(G) ≤ ⌈n(G)
2

⌉.

Theorem 11. [22] Let G be a connected graph of order n. If α(G) ≤ ⌈n
2
⌉ and σ(G) ≥ n−3,

then G is AP.

For G to have a (near) perfect matching, it is clearly necessary that α(G) ≤ ⌈n(G)
2

⌉. For a
large class of graphs, including complete multipartite graphs, this condition is also sufficient.
We summarize these equivalences in Proposition 12.

Note that there is no possible forbidden subgraph characterisation of AP (RP) graphs.
Given any graph G of order n, the graph Kn +G is Hamiltonian, and thus AP (RP).

Proposition 12. Suppose G is a graph of order n such that Ka,b ≤ G ≤ Ka + Eb for a ≤ b
positive integers, or that G is a complete multipartite graph. The following are equivalent:

(i) α(G) ≤ ⌈n
2
⌉,

(ii) G has a (near) perfect matching,

(iii) G is traceable,

(iv) G is AP,

5
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(v) G is RP.

Proof. It is easy to verify that (iii) implies (ii) and that (ii) implies (i). We now argue that
(i) implies (iii). If G is complete multipartite or Ka,b ≤ G ≤ Ka + Eb, and α(G) ≤ ⌈n

2
⌉,

then the minimum degree satisfies δ(G) ≥ ⌊n
2
⌋. Consider the join G + {v} and note that

δ(G + {v}) ≥ n+1
2
. By Ore’s Theorem (Theorem 9), G + {v} has a spanning cycle C, so

C − v is a spanning path of G. Observation 7 completes the proof.

In [7], Baudon, Gilbert and Woźniak characterised RP trees. In [3], Baudon, Bensmail,
Foucaud and Pilsniak described some properties of RP generalized theta graphs.

Theorem 13. [7] A tree is RP if and only if it is either a path, the tripode T (2, 4, 6), or a
tripode T (a, b, c), where (a, b, c) is one of the triples in Table 1.

(1, 1, c) c ≡ 0 (mod 2) (1, 4, c) c ∈ {5, 6, 8, 10, 13, 18}
(1, 2, c) c ≡ 0 (mod 3) or c ≡ 1 (mod 3) (1, 5, 6)

(1, 3, c) c ≡ 0 (mod 2) (1, 6, c) c ∈ {7, 8, 10, 12, 14}

Table 1: Table of triples (1, b, c), 1 ≤ b ≤ c, for which the graph T (a, b, c) is RP.

Theorem 14. [3] Let B be the generalized theta graph Θ(b1, . . . , bk) with b1 ≤ · · · ≤ bk. If
B is RP, then k ≤ 5. Further, if B is RP and k ∈ {4, 5}, then b1 ≤ 8 and b2 ≤ 40, but bk
can be arbitrarily large.

Tripodes and generalized theta graphs are “universal” for RP graphs with connectivity
1 and 2, respectively, as the following observation from [5] shows.

Observation 15. [5] Let S be a vertex cut of a connected graph G, let C1, . . . , Ck denote
the components of G− S, and let ci denote n(Ci).

• If |S| = 1 and G is RP (AP), then the k-pode Tk(c1, . . . , ck) is RP (AP),

• If |S| = 2 and G is RP (AP), then the generalized theta graph Θ(c1 + 1, . . . , ck + 1) is
RP (AP).

To discuss AP and RP graphs of arbitrary connectivity, we find it easiest to work with
the semistars Kb0(b1, . . . , bk), as they are also “universal”.

Observation 16. Let S be an s-vertex cut of a graph G, let C1, . . . , Ck denote the components
of G− S, and let ci denote n(Ci). If G is RP (AP), then the semistar Ks(c1, . . . , ck) is RP
(AP).

Proof. Notice that G is a spanning subgraph of Ks(c1, . . . , ck) and apply Lemma 6.

Per Observations 15 and 16, the triples (a, b, c) in Table 1 for which T (a, b, c) is RP are
also the triples for which K1(a, b, c) is RP.

The ‘universality’ of trees and balloons (generalised theta graphs) can be used to bound
the toughness of RP graphs with small cuts. Using Theorem 13, Theorem 14, and Observa-
tion 15, we obtain Proposition 17 below.

6

Theory and Applications of Graphs, Vol. 10, Iss. 2 [2023], Art. 4

https://digitalcommons.georgiasouthern.edu/tag/vol10/iss2/4
DOI: 10.20429/tag.2023.10204



Proposition 17. [3] Let G be an RP graph, and S a subset of V (G).

• If |S| = 1, then c(G− S) ≤ 3.

• If |S| = 2, then c(G− S) ≤ 5.

4 New RP graphs from old

In this section, we present two operations for combining RP graphs to obtain new RP graphs:
the well-known sequential join, and a “subgraph replacement” operation. These construc-
tions, in tandem with Lemma 6, allow us to easily prove that many graphs encountered
in the rest of the paper are RP. Of particular interest is the use of replacement graphs in
Section 6 to construct RP graphs with large vertex cuts that leave many components.

There is a generalisation of the fact that paths are RP. In particular, the sequential join
of RP graphs is RP.

Proposition 18. Let H1, . . . , Hk be RP graphs. If G is the sequential join of the graphs Hi,
G = H1 + · · ·+Hk, then G is RP.

Proof. Let ni be the order of Hi, and n = n1 + · · · + nk the order of G. We proceed by
induction on n. The base case n = 1 is trivial, as then G ≃ K1, which is RP.

Let n ≥ 2, assume the proposition is true for all positive integers less than n, and let
G be an n-vertex sequential join of RP graphs H1, . . . , Hk. It suffices to show that for any
a ∈ [1, n − 1], there exists a partition of G into two RP graphs G[A] and G[B] such that
G[A] has order a. To do this, we will pick the subgraph induced by the ‘leftmost’ a vertices
of G in a manner that breaks apart at most one of the graphs Hi.

Let m0 = 0, and for all i ∈ [1, k], let mi =
∑i

j=1 nj. Denote by s the largest non-negative
integer such that a ≥ ms. Since the graphHs+1 is RP, it can be partitioned into two RP parts
Hs+1[X] and Hs+1[Y ], such that |X| = a−ms. We can thus pick A = V (H1)∪· · ·∪V (Hs)∪X
and B = Y ∪ V (Hs+2) ∪ · · · ∪ V (Hk). Note that G[A] = H1 + · · · + Hs + Hs+1[X] and
G[B] = Hs+1[Y ] +Hs+2 + · · · +Hk. By the induction hypothesis, both G[A] and G[B] are
RP, completing the proof.

A consequence of Proposition 18 is that the suspension K1 +G of an RP graph G is RP.

Corollary 19. Suppose t is a positive integer. If Ka0(a1, . . . , ak) and Kb0(b1, . . . , bj) are RP,
then so is the graph

Ka0+b0+t(a1, . . . , ak, b1, . . . , bj).

Proof. The graph Ka0+b0+t(a1, . . . , ak, b1, . . . , bj) has a spanning subgraph isomorphic to

Ka0(a1, . . . , ak) +Kt +Kb0(b1, . . . , bj),

which is RP by Proposition 18.
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Let {Gi}ki=1, k ≥ 2 be a set of graphs, J = G1+· · ·+Gk, and m = min{τ(Gi) : 1 ≤ i ≤ k}
be the minimum toughness among the graphs Gi. Note that τ(J) ≥ 1

2
as J contains a path

with a vertex in each Gi and paths are 1
2
-tough. If m < 1

2
, then τ(J) > m. Thus, there are

limitations to how low the toughness of a sequential join of RP graphs can be. However,
replacement graphs can provide RP graphs with high connectivity and low toughness (see
Corollary 25).

Theorem 20 (RP Replacement Theorem). Every replacement graph for an RP semistar
with respect to a set of RP graphs is RP. That is, suppose Kb0(b1, . . . , bk) is RP, and {Gi}ki=0

is a set of RP graphs such that n(Gi) = bi. Then the graph H is RP, where

H = G0 +

(
k⋃

i=1

Gi

)
.

Proof. We use induction on the order of the replacement graph with RP parts. Clearly every
replacement graph of order at most 3 is RP. Suppose that every replacement graph of order
at most n − 1 for an RP semistar with respect to a set of RP graphs is RP, and let H be
a replacement graph of order n for an RP semistar K = Kb0(b1, . . . , bk) with respect to a
set of RP graphs {Gi}ki=0. Let λ be any positive integer such that 1 ≤ λ < n. It suffices to
prove that there is a partition V (H) = {X ′, Y ′} such that |X ′| = λ and H[X ′], H[Y ′] are
both RP.

Since K is RP, there is a partition V (K) = {X, Y } such that |X| = λ, and the induced
subgraphsK[X] = Kx0(x1, . . . , xk) andK[Y ] = Ky0(y1, . . . , yk) are RP. Note that xi+yi = bi,
and that we may have xi = 0 (yi = 0) for some i. Since Gi is RP, it has a partition
V (Gi) = {Xi, Yi} with |Xi| = xi and |Yi| = yi such that Gi[Xi] and Gi[Yi] are RP.

Thus, let

X ′ =
k⋃

i=0

Xi and Y ′ =
k⋃

i=0

Yi.

Note that {X ′, Y ′} is a partition of V (H) such that |X ′| = x0+ · · ·+xk = |X| = λ. Further,
both H[X ′] and H[Y ′] are replacement graphs for RP semistars with respect to sets of RP
graphs:

H[X ′] = G0[X0] +

(
k⋃

i=1

Gi[Xi]

)
and H[Y ′] = G0[Y0] +

(
k⋃

i=1

Gi[Yi]

)
.

By the induction hypothesis, both H[X ′] and H[Y ′] are RP, so H is RP.

5 RP spanning subgraphs

It is clear that every graph with an RP (AP) spanning tree is RP (AP). In [7], it was shown
that an AP graph need not have an AP spanning tree. Using the sequential join, it is easy
to construct RP graphs that do not have a spanning tripode T (a, b, c) (and thus do not have
an RP spanning tree). For example, the graph T (1, 1, 2) + K1 + T (1, 1, 2) is RP but has
no spanning tripode. In this section, we give a necessary condition for a graph to have a
spanning tree homeomorphic to K1,k (k ∈ N).
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Theorem 21. Let G be a graph, k ≥ 2 a positive integer and S a subset of V (G). If
c(G− S) ≥ |S|+ k, then G does not have a spanning subdivision of K1,k.

Proof. Let c(G − S) = c and |S| = s. Let G1, G2, . . . , Gc denote the components of G − S.
Assume contrary to the theorem statement that there is a subdivision T of K1,k spanning G,
and that c− s ≥ k. Denote by v the vertex of T such that dT (v) = k, and let P1, P2, . . . , Pk

be the k maximal paths of T − v. There are two cases to consider. In both cases, we count
the number of components Gi that each path Pj intersects.

Case 1: v /∈ S.
Assume without loss of generality that v ∈ G1. Let ζ(Pi) = |{j ≥ 2 : V (Gj) ∩ V (Pi) ̸= ∅}|
be the number of components (other than G1) that contain a vertex of Pi. Between any
two vertices of Pi that lie in different components of G − S, there must be a vertex of S.
Therefore, for all i, we have

ζ(Pi) ≤ |S ∩ V (Pi)|. (1)

Each of the components G2, G3, . . . , Gc must intersect at least one path Pi, so

c− 1 ≤
k∑

i=1

ζ(Pi). (2)

Since the paths Pi are disjoint, we have

k∑
i=1

|S ∩ V (Pi)| = |S| = s. (3)

Combining Inequalities 1, 2 and 3, we obtain the following inequality

c− 1 ≤
k∑

i=1

ζ(Pi) ≤
k∑

i=1

|S ∩ V (Pi)| = s.

But this contradicts the fact that c− s ≥ k ≥ 2.
Case 2: v ∈ S

Let η(Pi) = |{j : V (Gj) ∩ V (Pi) ̸= ∅}| be the number of components that contain a vertex
of Pi. Between any two vertices of Pi from different components of G− S, there must be a
vertex of S ∩ V (Pi). However, it is possible that the end vertices of Pi are not in S. Thus,
for all i, the following inequality holds

η(Pi) ≤ |S ∩ V (Pi)|+ 1. (4)

Since every component Gi intersects at least one path Pi:

c ≤
k∑

i=1

η(Pi). (5)
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Since the paths Pi are disjoint, and none contain the vertex v ∈ S, we have

k∑
i=1

|S ∩ V (Pi)| = |S − {v}| = s− 1. (6)

Putting Inequalities 4, 5 and 6 together, we obtain

c ≤
k∑

i=1

η(Pi) ≤
k∑

i=1

|S ∩ V (Pi)|+ k = s− 1 + k.

But this contradicts the fact that c ≥ s+ k.

By Theorem 13, every RP tree on at least 3 vertices is either a path (subdivided K1,2)
or a subdivided K1,3. Further, every RP generalized theta graph is spanned by a subdivided
K1,k with k ≤ 5, per Theorem 14. Thus, we have the following corollary.

Corollary 22. If G = (V,E) contains an RP spanning tree, then every S ⊂ V satisfies
c(G − S) ≤ |S| + 2. If G is spanned by an RP generalized theta graph, then every S ⊂ V
satisfies c(G− S) ≤ |S|+ 4.

6 Bounding c(G− S) from below

Let G be an RP graph and S ⊆ V (G). Per Theorem 13 and Observation 15, if |S| = 1,
then c(G − S) ≤ 3, and the infinite family of RP tripodes {T (1, 1, 2k)}k∈N all achieve this
bound. Theorem 14 and Observation 15 show that if |S| = 2, then c(G − S) ≤ 5, and
the RP generalized theta graphs {Θ(2, 2, 3, 4, 2k + 1)}k∈N achieve this bound [7]. In this
section, we bound the maximum possible value of c(G − S) from below. In particular, we
show that for all s, there are infinitely many RP graphs with an s-vertex cut S such that
c(G − S) = 2s + 1. Further, we prove that there exists an RP graph G with a cut S such
that |S| = 3 and c(G− S) = 8.

Lemma 23. The following graphs are RP:

(i) K1(a, b, c) for (a, b, c) = (2, 4, 6) and all (a, b, c) in Table 1,

(ii) K2(a, b, c, d) for (a, b, c) = (2, 4, 6) and all (a, b, c) in Table 1, and for all d ∈ N,

(iii) K0(0, . . . , d, . . . , 0) for all d ∈ N,

(iv) Kb0(b1, . . . , bk) whenever k ≤ b0 + 1,

(v) K2(1, 1, 1, 2, 4), and K2(1, 1, 2, 3, c) for all c ≡ 0 (mod 2).

Proof. Part (i) follows from Theorem 13 and Observation 16. Part (ii) follows from (i),
Proposition 18, and the fact that K2(a, b, c, d) is spanned by K1(a, b, c)+K1+Kd. The graph
K0(0, . . . , d, . . . , 0) is a complete graph of order d, from which (iii) follows. Part (iv) follows
from an application of Observation 7 to the traceable graph Kb0(b1, . . . , bk) for k ≤ b0 + 1.
Finally, (v) is proven in [7].
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We begin by finding a convenient infinite family of RP graphs with toughness 2
5
.

Theorem 24. For all k ≥ 0, k ∈ Z, the graph K2(1, 1, 2, 6, k) is RP.

Proof. We first prove that Gk = K2(1, 1, 2, 6, k) is RP for all k ∈ {1, . . . , 10}. Note that
n(Gk) = 12 + k. Thus, it suffices to prove that for all λ ∈ {1, . . . , ⌊12+k

2
⌋}, there is a

partition {A,B} of V (Gk) such that |A| = λ and Gk[A], Gk[B] are both RP.
Table 2-11 list all the (subgraphs induced by) partitions needed to show that Gk is RP

for k ≤ 10. All the subgraphs induced by the partitions are RP either by Lemma 23, or
by the previous cases. For example, the |A| = 5 row of Table 2 shows how to partition
V (G1) = {A,B} so that |A| = 5 and G1[A], G1[B] are both RP (see Figure 3).

To prove Gk is RP for k ≥ 11, we use induction. Let k ≥ 11, assume Gk is RP for
all j < k, and let λ be any integer in {1, . . . , ⌊12+k

2
⌋}. Then we can partition V (Gk) into

two parts {A,B} where |A| = λ by picking A such that Gk[A] = K0(0, 0, 0, 0, λ) ≃ Kλ and
Gk[B] = K2(1, 1, 2, 6, k − λ). Gk[A] is RP since it is a complete graph, and Gk[B] is RP by
induction, completing the proof.

Figure 3: V (G1) = {A,B} where |A| = 5, G1[A] = K1(1, 1, 2, 0, 0) and G1[B] =
K1(0, 0, 0, 6, 1). The subgraph G1[B] is bolded, and the edges not belonging to either G1[A]
or G1[B] are light grey.

Table 2: Partitions of G1 for λ ≤ ⌊12+1
2

⌋ = 6.

λ G1[A] G1[B] λ G1[A] G1[B]

1 K0(0, 0, 0, 0, 1) K2(1, 1, 2, 6, 0) 2 K0(0, 0, 2, 0, 0) K2(1, 1, 0, 6, 1)

3 K1(1, 1, 0, 0, 0) K1(0, 0, 2, 6, 1) 4 K1(1, 0, 2, 0, 0) K1(0, 1, 0, 6, 1)

5 K1(1, 1, 2, 0, 0) K1(0, 0, 0, 6, 1) 6 K0(0, 0, 0, 6, 0) K2(1, 1, 2, 0, 1)

Table 3: Partitions of G2 for λ ≤ ⌊12+2
2

⌋ = 7.

λ G2[A] G2[B] λ G2[A] G2[B]

≤ 2 K0(0, 0, 0, 0, λ) K2(1, 1, 2, 6, 2− λ) 3 K0(0, 0, 0, 3, 0) K2(1, 1, 2, 3, 2)

4 K1(1, 0, 2, 0, 0) K1(0, 1, 0, 6, 2) 5 K1(1, 1, 2, 0, 0) K1(0, 0, 0, 6, 1)

6 K0(0, 0, 0, 6, 0) K2(1, 1, 2, 0, 2) 7 K1(1, 0, 2, 3, 0) K1(0, 1, 0, 3, 2)
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Table 4: Partitions of G3 for λ ≤ ⌊12+3
2

⌋ = 7.

λ G3[A] G3[B] λ G3[A] G3[B]

≤ 3 K0(0, 0, 0, 0, λ) K2(1, 1, 2, 6, 3− λ) 4 K0(0, 0, 0, 4, 0) K2(1, 1, 2, 2, 3)

5 K1(1, 1, 2, 0, 0) K1(0, 0, 0, 6, 3) 6 K0(0, 0, 0, 6, 0) K2(1, 1, 2, 0, 3)

7 K1(1, 0, 2, 0, 3) K1(0, 1, 0, 6, 0)

Table 5: Partitions of G4 for λ ≤ ⌊12+4
2

⌋ = 8.

λ G4[A] G4[B] λ G4[A] G4[B]

≤ 4 K0(0, 0, 0, 0, λ) K2(1, 1, 2, 6, 4− λ) 5 K1(1, 1, 2, 0, 0) K1(0, 0, 0, 6, 4)

6 K0(0, 0, 0, 6, 0) K2(1, 1, 2, 0, 4) 7 K1(1, 0, 2, 0, 3) K1(0, 1, 0, 6, 1)

8 K1(1, 0, 2, 0, 4) K1(0, 1, 0, 6, 0)

Table 6: Partitions of G5 for λ ≤ ⌊12+5
2

⌋ = 8.

λ G5[A] G5[B] λ G5[A] G5[B]

≤ 5 K0(0, 0, 0, 0, λ) K2(1, 1, 2, 6, 5− λ) 6 K0(0, 0, 0, 6, 0) K2(1, 1, 2, 0, 5)

7 K1(1, 0, 0, 0, 5) K1(0, 1, 2, 6, 0) 8 K1(0, 0, 2, 0, 5) K1(1, 1, 0, 6, 0)

Table 7: Partitions of G6 for λ ≤ ⌊12+6
2

⌋ = 9.

λ G6[A] G6[B] λ G6[A] G6[B]

≤ 6 K0(0, 0, 0, 0, λ) K2(1, 1, 2, 6, 6− λ) 7 K1(1, 0, 2, 3, 0) K1(0, 1, 0, 3, 6)

8 K1(1, 0, 0, 0, 6) K1(0, 1, 2, 6, 0) 9 K1(1, 1, 0, 0, 6) K1(0, 0, 2, 6, 0)

Table 8: Partitions of G7 for λ ≤ ⌊12+7
2

⌋ = 9.

λ G7[A] G7[B] λ G7[A] G7[B]

≤ 7 K0(0, 0, 0, 0, λ) K2(1, 1, 2, 6, 7− λ) 8 K1(1, 0, 0, 6, 0) K1(0, 1, 2, 0, 7)

9 K1(1, 1, 0, 6, 0) K1(0, 0, 2, 0, 7)

Table 9: Partitions of G8 for λ ≤ ⌊12+8
2

⌋ = 10.

λ G8[A] G8[B] λ G8[A] G8[B]

≤ 8 K0(0, 0, 0, 0, λ) K2(1, 1, 2, 6, 8− λ) 9 K1(1, 1, 0, 6, 0) K1(0, 0, 2, 0, 8)

10 K1(1, 0, 2, 6, 0) K1(0, 1, 0, 0, 8)
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Table 10: Partitions of G9 for λ ≤ ⌊12+9
2

⌋ = 10.

λ G9[A] G9[B] λ G9[A] G9[B]

≤ 9 K0(0, 0, 0, 0, λ) K2(1, 1, 2, 6, 9− λ) 10 K1(1, 0, 2, 6, 0) K1(0, 1, 0, 0, 9)

Table 11: Partitions of G10 for λ ≤ ⌊12+9
2

⌋ = 10.

λ G10[A] G10[B] λ G10[A] G10[B]

≤ 10 K0(0, 0, 0, 0, λ) K2(1, 1, 2, 6, 10− λ) 11 K1(1, 0, 2, 0, 7) K1(0, 1, 0, 6, 3)

Using replacement graphs formed from the graphs K2(1, 1, 2, 6, j), j a positive integer,
we can create arbitrarily large RP graphs with arbitrarily large cuts S leaving 2|S| + 1
components.

Corollary 25. For all s ≥ 1, there exists an infinite family Gs of RP graphs such that each
graph G in Gs has a vertex cut S with |S| = s and c(G− S) = 2s+ 1.

Proof. For j a positive integer, let H1(j) = T (1, 1, 2j), and let H2(j) = K2(1, 1, 2, 6, j).
These graphs are all RP by Theorems 13 and 24. Define Hs+2(j) inductively by setting

Hs+2(j) = K2 + (K1 ∪K1 ∪K2 ∪K6 ∪Hs(j))

By Theorems 20 and 24, the graph Hs+2(j) is RP. It’s clear that the graph Hs(j) has a
vertex cut S with |S| = s and c(G − S) = 2s + 1 (for example, see Figure 4). To complete
the proof, we let Gs = {Hs(j)}j∈N.

Figure 4: The graph H3(1). The vertices of a cut set S with |S| = 3 and c(H3(1) − S) = 7
are bolded.

Lemma 26. The graphs K2(1, 2, 3, 4, 6) and K2(1, 2, 2, 3, 4) are RP.

Proof. The semistar K2(1, 2, 3, 4, 6) has 18 vertices. Table 12 below shows that for all λ ∈
{1, . . . , 9}, the graph K2(1, 2, 3, 4, 6) has a partition {A,B} such that both parts induce RP
graphs and |A| = λ. The parts are RP by Lemma 23 and Theorem 24.

The proof that the 14-vertex graph K2(1, 2, 2, 3, 4) is RP follows similarly by considering
Table 13.

13

Buchanan et al.: Toughness of Recursively Partitionable Graphs

Published by Digital Commons@Georgia Southern, 2023



Table 12: Partitions of G = K2(1, 2, 3, 4, 6) for λ ≤ 9.

λ G[A] G[B] λ G[A] G[B]

1 K0(1, 0, 0, 0, 0) K2(0, 2, 3, 4, 6) 2 K0(0, 2, 0, 0, 0) K2(1, 0, 3, 4, 6)

3 K0(0, 0, 3, 0, 0) K2(1, 2, 0, 4, 6) 4 K0(0, 0, 0, 4, 0) K2(1, 2, 3, 0, 6)

5 K1(1, 0, 3, 0, 0) K1(0, 2, 0, 4, 6) 6 K0(0, 0, 0, 0, 6) K2(1, 2, 3, 4, 0)

7 K1(1, 2, 3, 0, 0) K1(0, 0, 0, 4, 6) 8 K1(0, 0, 3, 4, 0) K1(1, 2, 0, 0, 6)

9 K1(1, 0, 3, 4, 0) K1(0, 2, 0, 0, 6)

Table 13: Partitions of G = K2(1, 2, 2, 3, 4) for λ ≤ 7.

λ G[A] G[B] λ G[A] G[B]

1 K0(0, 1, 0, 0, 0) K2(1, 1, 2, 3, 4) 2 K0(0, 2, 0, 0, 0) K2(1, 0, 2, 3, 4)

3 K0(0, 0, 0, 3, 0) K2(1, 2, 2, 0, 4) 4 K0(0, 0, 0, 0, 4) K2(1, 2, 2, 3, 0)

5 K1(1, 1, 2, 0, 0) K1(0, 1, 0, 3, 4) 6 K1(0, 0, 2, 3, 0) K1(1, 2, 0, 0, 4)

7 K1(0, 0, 2, 0, 4) K1(1, 2, 0, 3, 0)

Theorem 27. The semistar K3(1, 1, 1, 2, 2, 3, 4, 6) is RP.

Proof. Let G = K3(1, 1, 1, 2, 2, 3, 4, 6), and note that n(G) = 23. Let S denote the cut set
of size 3 in G. We show that for all λ ≤ 11, the vertex set V of G has a partition {A,B}
such that |A| = λ, and the induced graphs G[A] = Sλ and G[B] = Tλ are RP. Note that the
following cases make use of Lemma 6.

λ = 1 : Let S1 = K1 be a 1-vertex component of G − S, and T1 = K3(1, 1, 2, 2, 3, 4, 6).
By Theorem 20, Lemma 23 and Lemma 26, we can construct an RP spanning subgraph H
of T1. H is an RP replacement graph made using K1(1, 6, 14) and K2(1, 2, 2, 3, 4):

T1 ≥ H = K1 + (K1 ∪K6 ∪K2(1, 2, 2, 3, 4)) .

λ = 2 : Let S2 = K2 be a 2-vertex component of G − S, and T2 = K3(1, 1, 1, 2, 3, 4, 6).
By Theorem 24, the graph K2(1, 1, 2, 6, 9) is RP. Thus, we can construct an RP spanning
subgraph H of T2 using K2(1, 1, 2, 6, 9) and K1(1, 3, 4):

T2 ≥ H = K2 + (K1 ∪K1 ∪K2 ∪K6 ∪K1(1, 3, 4)) .

λ = 3 : Let S3 = K3 be the 3-vertex component of G− S, and T3 = K3(1, 1, 1, 2, 2, 4, 6).
Using K2(1, 1, 2, 6, 8) and K1(1, 2, 4), we construct an RP replacement graph H that spans
T3:

T3 ≥ H = K2 + (K1 ∪K1 ∪K2 ∪K6 ∪K1(1, 2, 4)) .

λ = 4 : Let S4 = K4 be the 4-vertex component of G− S, and T4 = K3(1, 1, 1, 2, 2, 3, 6).
We construct an RP spanning subgraph H of T4:

T4 ≥ H = K2 + (K1 ∪K1 ∪K2 ∪K6 ∪K1(1, 2, 3)) .

λ = 5 : Let S5 = K1(1, 1, 2) and T5 = K2(1, 2, 3, 4, 6).
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λ = 6 : Let S6 = K6 and T6 = K3(1, 1, 1, 2, 2, 3, 4). The graph H below is an RP
spanning subgraph of T6, constructed using K2(1, 1, 2, 3, 8) and T1(1, 2, 4):

T6 ≥ H = K2 + (K1 ∪K1 ∪K2 ∪K3 ∪K1(1, 2, 4)) .

λ = 7 : Let S7 = K1(1, 2, 3) and T7 = K2(1, 1, 2, 4, 6).
λ = 8 : Let S8 = K1(1, 2, 4) and T8 = K2(1, 1, 2, 3, 6).
λ = 9 : Let S9 = K1(1, 3, 4) and T9 = K2(1, 1, 2, 2, 6).
λ = 10 : Let S10 = K1(1, 2, 6) and T10 = K2(1, 1, 2, 3, 4).
λ = 11 : Let S11 = K2(1, 1, 2, 2, 3) and T11 = K1(1, 4, 6).

7 Minimal RP graphs

Let b0, . . . , bk be positive integers. Call Kb0(b1, . . . , bk) a minimal (b0, k) RP semistar if
there do not exist positive integers c1, . . . , ck such that both the following hold:

• Kb0(c1, . . . , ck) is RP, and

• Kb0(c1, . . . , ck) is a proper subgraph of Kb0(b1, . . . , bk).

It is easy to see that K1(1, 1, 2) is the unique minimal (1, 3) RP semistar. Every (1, 3)
semistar G has n(G) ≥ 4, and the only such graph with n(G) = 4 is K1,3. Since it does
not have a (2, 2)-partition, K1,3 is not RP. In this section, we show that K2(1, 1, 2, 2, 3) and
K2(1, 1, 1, 2, 4) are the only minimal (2, 5) RP semistars. Thus, every graph G with a 2-
vertex cut S such that c(G − S) = 5 has order 11 or more. Further, we show that the RP
semistar K3(1, 1, 1, 2, 2, 3, 4, 6) is minimal.

Let G(b0, k) = {Kb0(b1, . . . , bk) : 1 ≤ b1 ≤ · · · ≤ bk}. The poset G(b0, k) ordered by
subgraph inclusion embeds into Nk (with the product order) in the obvious way. (See Sec-
tion 2.2.) Dickson’s Lemma states that the product Nk contains neither infinite anti-chains,
nor infinite strictly descending sequences [12].

Remark 28. For each pair (b0, k) of positive integers, there are finitely many minimal (b0, k)
RP semistars.

A well known theorem of Tutte states that a graph G has a perfect matching if and
only if for every vertex cut S of G, the graph G − S has at most |S| odd components [24].
The next lemma shows that this necessary condition can be generalised to partitions with
connected parts of any size.

If S is a finite set, then let |S|k denote the number j in {0, 1, . . . , k−1} such that |S| ≡ j
(mod k). If G is a graph, and S ⊆ V (G), then let

wk(G,S) =
1

k − 1
·
∑

{|V (C)|k : C a component of G− S} .

The following result is given in [5].

Lemma 29. [5] Let G be a connected graph, S a vertex cut of G with |S| < c(G − S), and
k ≥ 2 a positive integer. If G is AP, then

|S|+ 1 ≥ wk(G,S).
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We give a slight sharpening of this lemma. The proof is similar to the proof in [5], with

care taken to track the term |V (G)|k
k−1

.

Lemma 30. Let G be a connected graph, S a subset of V (G), and m, k > 1 integers. If G
has a partition into connected parts T1, T2, . . . , Tm such that |Ti| = k for all i ≤ m− 1, and
|Tm| ≤ k, then

|S|+ |V (G)|k
k − 1

≥ wk(G,S).

Proof. Note that either |Tm| = k or |Tm| = |V (G)|k. We begin by considering the following
subgraph G′ of G:

G′ =
⋃

{G[Ti] : V (Ti) ∩ S ̸= ∅} ∪G[S] ∪G[Tm].

Observe that S ⊆ V (G′) and |V (G)|k = |V (G′)|k. Further notice that the vertex set of each
component of G−S is a union of the vertex sets of components of G′−S, and possibly some
of the sets Ti, i < m. Therefore, we get wk(G

′, S) ≥ wk(G,S).
Consider the subgraph G∗ = G′ − Tm, and let S∗ = S \ V (Tm). Since |V (G∗)|k = 0, and

Tm has either k vertices or |V (G′)|k vertices, we obtain(
|S|+ |V (G)|k

k − 1

)
−
(
|S∗|+ |V (G∗)|k

k − 1

)
=

(
|S|+ |V (G′)|k

k − 1

)
− (|S∗|+ 0)

≥ |V (G′)|k
k − 1

≥ wk(G
′, S)− wk(G

∗, S∗)

≥ wk(G,S)− wk(G
∗, S∗).

To complete the proof, it suffices to show that |S∗| ≥ wk(G
∗, S∗). Each component of

G∗−S∗ is of the form Ti−S∗ for some i < m, and each such Ti has exactly k vertices. Thus,
we have

wk(G
∗, S∗) =

|G∗ − S∗|
k − 1

.

Further, each vertex of G∗ is in some Ti, i < m. Each Ti has at least one vertex of S∗

and at most k − 1 vertices not in S∗. Therefore, |G∗ − S∗| ≤ (k − 1)|S∗|, so

|S∗| ≥ |G∗ − S∗|
k − 1

= wk(G
∗, S∗),

completing the proof.

Corollary 31. If G is an AP (RP) graph with S ⊆ V (G), and k ≥ 2 a positive integer, then

|S|+ |V (G)|k
k − 1

≥ wk(G,S).

Theorem 32. The graphs K2(1, 1, 1, 2, 4) and K2(1, 1, 2, 2, 3) are the unique minimal (2, 5)
RP semistars.
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Proof. Recall from Lemma 23 that K2(1, 1, 1, 2, 4), and K2(1, 1, 2, 3, c) are RP for all c ≡ 0
(mod 2). Let G = K2(b1, . . . , b5) be a minimal (2, 5) RP semistar with b1 ≤ · · · ≤ b5. We
can remove a single vertex of G and still have an RP graph remaining. The vertex removed
cannot be a vertex of the 2-vertex cut, since no (1, 5) semistar is RP per Proposition 17.
Thus, by minimality of G, we have b1 = 1. Similarly, we can remove two adjacent vertices,
so bi = 2 for some i.

By Proposition 17, the RP subgraph induced by removing three vertices cannot be K2(1)
or K1(2). Thus, there are two possibilities for removing three vertices.

Case 1: The RP subgraph induced by the three removed vertices is K1(1, 1), so b2 = 1,
and G = K2(1, 1, 2, s, t) for some positive integers s ≤ t. First suppose that s = 1, so
G = K2(1, 1, 1, 2, t) for some positive integer t. Let S = K2(0, 0, 0, 0, 0) (so |S| = 2) and let
k = 3, then apply Corollary 31. This yields the inequality

|S|+ |V (G)|3
2

≥ w3(G,S), so

2 +
1

2
· (7 + t mod 3) ≥ 5

2
+

1

2
· (t mod 3)

From this inequality, it follows that t ̸= 2. Again apply Corollary 31 to G, with the same
choice S = K2(0, 0, 0, 0, 0), but k = 2, and obtain the following inequality:

2 + (7 + t mod 2) ≥ 3 + (t mod 2)

From the above inequality, we see that t must be even, so t /∈ {1, 3}. Thus, if s = 1, the
single minimal RP semistar is K2(1, 1, 1, 2, 4).

The semistar K2(1, 1, 2, 2, 2) is not RP — apply Corollary 31 with S = K2(0, 0, 0, 0, 0)
and k = 3. Thus, if s = 2, then t ≥ 3 and so the only minimal RP semistar is K2(1, 1, 2, 2, 3).
When s ≥ 3, we have K2(1, 1, 2, 2, 3) < K2(1, 1, 2, s, t), and if s ≥ 4, then K2(1, 1, 1, 2, 4) <
K2(1, 1, 2, s, t), which proves uniqueness in Case 1.

Case 2: The RP subgraph induced by the three removed vertices is a K3, so bi = 3 for
some i. Thus, G = K2(1, 2, 3, s, t) for some 1 ≤ s ≤ t. An analysis similar to that in Case 1
shows that K2(1, 1, 2, 2, 3) is the only minimal RP semistar in Case 2.

Corollary 33. Let G be an RP graph of order n. If G has a cut S with |S| = 2 and
c(G− S) = 5, then n ≥ 11.

Proposition 34. The graph K3(1, 1, 1, 2, 2, 3, 4, 6) is a minimal (3, 8) RP semistar.

Proof. Let G = K3(1, 1, 1, 2, 2, 3, 4, 6). By Theorem 27, this graph is RP. To prove min-
imality, it suffices to show that G does not have an RP proper subgraph of the form
H = K3(1, 1, 1, b1, b2, b3, b4, b5), where 1 ≤ b1 ≤ · · · ≤ b5. Assume to the contrary that
it does, and let S = K3(0, 0, 0, 0, 0, 0, 0, 0) be the 3-vertex cut of H.

Case 1: b1 = 1. Apply Corollary 31 to H using the 3-vertex cut S and k = 2 to get

3 + (7 + b2 + b3 + b4 + b5 mod 2) ≥ 4 + (b2 mod 2) + · · ·+ (b5 mod 2),

from which it follows that b2, b3, b4 and b5 are all even. Thus, b2 = b3 = 2 and b4 ∈ {2, 4}.
Again use Corollary 31 with the cut S but k = 3 to obtain

3 +
1

2
· (11 + b4 + b5 mod 3) ≥ 8

2
+

1

2
· (b4 mod 3) +

1

2
· (b5 mod 3).
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Whether b4 = 2 or b4 = 4, this inequality yields a contradiction, completing Case 1.

Case 2: b1 = 2. Since H < G, we have b2 = 2 and b3 ∈ {2, 3}. Use Corollary 31 with the
3 vertex cut S and k = 3 to get

3 +
1

2
· (10 + b3 + b4 + b5 mod 3) ≥ 7

2
+

1

2
· (b3 mod 3) + ...+

1

2
· (b5 mod 3).

If b3 = 2, then the right-hand side of the inequality is at least 9
2
, which is impossible.

Therefore b3 = 3. Applying Corollary 31 to the 3-vertex cut S with k = 2, we see that both
b4 and b5 are even. Thus, b4 = 4. Since H < G, we have b5 = 4. Now use Corollary 31 with
the cut S and k = 5, to get

3 +
1

4
· (21 mod 5) ≥ 18

4
.

However, this is a contradiction, completing Case 2.

In either case, we derive a contradiction, so G does not have such a subgraph H.

8 Bounding c(G− S) from above

In this section, we show that RP graphs are 1
3
-tough. We have seen that there exist RP

graphs with a cut-vertex v such that c(G− v) = 3. However, as we show in Theorem 35, for
cuts S of greater size in RP graphs, we must have c(G− S) < 3|S|, and this bound is sharp
when |S| = 2 or |S| = 3.

We say that an RP graph G of order n is minimal with respect to S, if there is no
(λ, n − λ)-partition, for any λ, of G into RP graphs G1 and G2 such that G1 is a proper
induced subgraph of any of the connected components of G−S. Suppose G is minimal with
respect to S, and G−S does not have a component of size λ. If we partition G into two RP
graphs G1 and G2 such that G1 has λ vertices, then both G1 and G2 contain at least one
vertex of S. In other words, the partition must split the cut S across its two parts.

Theorem 35. Let S be a cut of a graph G with |S| ≥ 2. If c(G− S) ≥ 3|S|, then G is not
RP.

Proof. By Proposition 17, the result holds when |S| = s = 2. It is also useful to note that if
|S| = 1, then c(G− S) ≤ 3 (see Proposition 17). We proceed by strong induction, assuming
the result holds for all integers i such that 2 ≤ i < s.

Suppose that G is RP, and let S be a cut in G, with |S| = s ≥ 3. We can assume that
G is minimal with respect to S (as defined in the paragraph before Theorem 35) — for if
G is not minimal with respect to S, we can repeatedly remove some proper subset T of a
component of G− S so that G− T is RP, until it is no longer possible to do so, resulting in
an RP subgraph of G that is minimal with respect to S. Let C1, C2, . . . , Ck be the connected
components of G − S, with |C1| ≤ |C2| ≤ · · · ≤ |Ck|. Suppose that |Ck| = |Ck−1| + 1.
Let λ = |Ck| + 1 and find a (λ, n − λ)-partition of G into RP graphs G1 and G2. Since
|Ci| /∈ {λ, n− λ} for every 1 ≤ i ≤ k, we must have that both S1 = S ∩G1 and S2 = S ∩G2
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are non-empty. Furthermore, since |S| ≥ 3, we cannot have that |S1| = |S2| = 1. Therefore,
by induction, we have

c(G− S) ≤ c(G1 − S1) + c(G2 − S2) ≤ 3|S1|+ 3|S2| − 1 = 3|S| − 1.

Now, suppose that |Ck| ̸= |Ck−1| + 1. Let λ = |Ck−1| + 1. Find a (λ, n − λ)-partition of G
into graphs G1 and G2, and recall that, by minimality, we cannot have G1 ≤ Ck. Then, a
similar argument holds.

As Theorems 14, 24, 27 and 32 demonstrate, the bound in Theorem 35 is sharp when
|S| ∈ {2, 3}.

Corollary 36. Every RP graph is 1
3
-tough.

9 Further Questions

We mention a few open questions.

1. Consider all pairs (G,S), where G is an RP graph and S is an s-vertex subset of V (G),
and let ζ(s) = max{c(G − S) : (G,S)}. When s > 1, Theorem 35 and Corollary 25
show that 2s + 1 ≤ ζ(k) ≤ 3s − 1. Can either of these bounds be improved? Is the
3s− 1 upper bound sharp?

2. Is there some constant c such that every c-tough graph is AP (RP)?

3. If Kb0(b1, b2, . . . , bk) is RP, is the graph Kb0(b1, . . . bi−1, bi+1, . . . , bk) also RP for each
i ∈ {1, 2, . . . , k}?

4. In light of Remark 28 and Proposition 34, K3(1, 1, 1, 2, 2, 3, 4, 6) is one of finitely many
minimal (3, 8) RP semistars. Are there others? If so, what are they?

5. Both minimal (2, 5) RP semistars are subgraphs of infinitely many (2, 5) RP semis-
tars. For example, K2(1, 1, 2, 2, 3) is a subgraph of every K2(1, 1, 2, 3, k) where k ≡ 0
(mod 2) is positive, and K2(1, 1, 1, 2, 4) is a subgraph of K2(1, 1, 2, 6, k) where k ≥ 1.
Is K3(1, 1, 1, 2, 2, 3, 4, 6) a subgraph of infinitely many (3, 8) RP semistars?

6. Do there exist pairs of positive integers (b0, k) for which there exist a finite, but positive
number of (b0, k) RP semistars?

Acknowledgements

This work is supported by the National Science Foundation under NSF Award 2015425. Any
opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect those of the National Science Foundation.

We thank the organisers and founders of the SAMSA-Masamu program, without whom
this research would not have been possible. Special thanks to Peter Johnson and Hunter
Rehm for their valuable input on the project.

19

Buchanan et al.: Toughness of Recursively Partitionable Graphs

Published by Digital Commons@Georgia Southern, 2023



References

[1] D. Barth, O. Baudon, J. Puech. Decomposable trees: A polynomial algorithm for
tripodes. Discrete Applied Mathematics, 119(3):205–216, 2002.

[2] D. Barth, H. Fournier. A degree bound on decomposable trees. Discrete Mathematics,
306(5):469–477, 2006.

[3] O. Baudon, J. Bensmail, F. Foucaud, M. Pilsniak. Structural properties of recursively
partitionable graphs with connectivity 2. Discussiones Mathematicae: Graph Theory,
37:89–115, 2017.

[4] O. Baudon, J. Bensmail, J. Przybylo, M. Woźniak. Partitioning powers of traceable or
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[15] E. Győri. On division of graphs to connected subgraphs. Colloquium of the Janos Bolyai
Mathematical Society, 18:485–494, 1976.

20

Theory and Applications of Graphs, Vol. 10, Iss. 2 [2023], Art. 4

https://digitalcommons.georgiasouthern.edu/tag/vol10/iss2/4
DOI: 10.20429/tag.2023.10204



[16] D. Hoffman, P. Horn, P. Johnson, A. Owens. On rainbow-cycle-forbidding edge colorings
of finite graphs. Graphs and Combinatorics, 35:1585–1596, 2019.

[17] B. Janzer. The generalized rainbow Turán problem for cycles. SIAM Journal on Discrete
Mathematics, 36:436–448, 2022.

[18] P. Johnson, A. Owens. Edge colorings of complete multipartite graphs forbidding rain-
bow cycles. Theory and Applications of Graphs, 4(2), 2017.

[19] P. Johnson, C. Zhang. Edge colorings of K(m,n) with m + n − 1 colors which forbid
rainbow cycles. Theory and Applications of Graphs, 4(1), 2017.

[20] P. Keevash, D. Mubayi, B. Sudakov, J. Verstraëte. Rainbow Turán problems. Combi-
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