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A B S T R A C T

Ultra-fast optical pulses are the most ephemeral sensing paradigm ever devised, examining events over
incredibly brief timescales with broadband illumination. A consequence of sensing at timescales lower than a
picosecond is that pulse characterization cannot be done with traditional analog-to-digital samplers and must
be ascertained from integrating intensity sensors. Techniques for pulse characterization have been constructed
using combinations of time-invariant and time-variant filter responses to create non-linear but invertible
intensity datasets (Walmsley & Dorrer, 2009). In this paper, we develop a novel high-order phase retrieval
technique to perform pulse characterization from a single-pixel integrating sensor measuring integrated
intensity of auto-convolution (IIAC). We examine gradient descent’s ability to recover signals as a function
of signal dimension and measurement count, and we demonstrate the effective use of iterative hard tensor
thresholding as an initializer. Finally, we demonstrate IIAC recovery in a laboratory setting to recover the time
profile of a complex laser pulse. We assert that the IIAC recovery solution demonstrated here simultaneously
provides the optics community with a pulse characterization technique that scales to low-power microscopy
systems and provides the optimization community with a physically motivated high-order phase retrieval
problem enhanced by low-rank tensor processing.
1. Introduction

Phase retrieval theory has long been motivated by problems in
optics because the vast majority of measurements that are available
in optics are intensity based. Traditionally, the techniques of phase
retrieval have been applied in crystallography [1], coded-diffraction
imaging [2], and ptychographic imaging [3], where dense far-field
images measure the intensity of a scaled objective plane Fourier trans-
form. Phase retrieval of this form constrains recovery against the
Fourier kernel and typically employs known spatial modulation masks
as a set of linear constraint equations to recover complex objective
plane images [4].

Ultra-fast optics is the study of laser pulses that have been con-
centrated in time to durations between 10−12 and 10−18 seconds [5],
offering a mechanism to explore events at small time-scales. The narrow
time duration of these pulses also offers a broad frequency spectrum
with which to study material properties and composition. Attempting
to recover the pulse’s complex spectrum, called pulse characterization,
requires techniques that are more complicated than traditional phase
retrieval. Extremely high bandwidth and unique behavior of light at op-
tical frequencies prevent traditional in-phase/quadrature (IQ) sampling
and motivate phase retrieval from measurements constructed from
time-variant and time-invariant filter sets [6]. A popular technique for

∗ Corresponding author.
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creating time-variant filters at time scales matching the pulse is to
use non-linear optical elements: crystals that produce output pulses
whose phase and amplitude are non-linear functions of input pulses.
These non-linear effects can operate on a single pulse or multiple pulses
and a commonly employed subset of effects, called second harmonic
generating (SHG), are frequently represented as intensity of auto- and
cross- convolution or correlation [7]. In the optimization community,
FROG pulse characterization has recently been studied as a higher-
order phase retrieval problem [8]. This problem was generalized to
recover signals from intensity of cross-correlation and formulated as
a low-rank phase retrieval [9,10] problem which could reliably be
solved with Wirtinger gradient techniques and enhanced with low-rank
structured tensor recovery [11].

We view in-series spectrographic (frequency-resolved) pulse char-
acterization in two categories: those modulated in the time domain,
and those modulated in the frequency (wavelength) domain. Time-
modulation techniques use a probing pulse, either a copy of the pulse-
under-test or a time-locked secondary pulse, to element-wise modulate
the pulse-under-test in a non-linear medium before being measured
by a spectrometer. FROG is the most widely used paradigm of this
type [12]. Frequency-modulation techniques transform the pulse into
vailable online 11 March 2024
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Fig. 1. Three pulse characterization setups. (a) A time-modulated setup that uses
physical delay manipulation of pulses to generate a two-dimensional dataset with a
spectrometer. (b) A frequency-modulated setup that modulates pulses in the wavelength
domain before SHG in a transform domain, generating a two-dimensional dataset over
modulation from the spectrometer. (c) The proposed physical setup which integrates
the spectral measurement into a single one-dimensional measurement that varies with
modulation in the pulse compressor.

a spatial wavelength domain in a pulse compressor where the pulse is
modulated with a mask. The pulse continues out of the pulse compres-
sor and is element-wise-squared in a non-linear medium before being
measured in a spectrometer. Techniques that deploy this include SPARC
and DSCAN [13,14]. When the non-linear medium used is a second-
armonic generating (SHG) medium, time-modulated systems produce
ntensity of cross-correlation measurements and frequency-modulated
ystems produce intensity of auto-convolution measurements. Time-
odulated and frequency-modulated pulse-characterization physical
etups are shown in Fig. 1.
Time-modulated and frequency-modulated measurements both pro-

uce a two-dimensional dataset, one dimension representing spectrum
nd the other representing modulation index. For the purposes of
his paper, we will interpret a two-dimensional dataset to mean that
measurement using one known modulation produces a series of
easurements at the spectrometer, rather than a single measurement.
ime-modulation systems take a series of spectra while physically
hanging pulse overlap. In this case, intensity of cross-correlation is
tored in the axis corresponding to pulse shift, while the spectral axis
aries phasor modulation.
Frequency-modulated systems modulate a pulse in the wavelength

omain before doubling (element-wise square) in the time domain.
his action produces an SHG spectrum representing the intensity of
uto-convolution of the modulated pulse spectrum. New modulations
roduce additional auto-convolutions of modulated spectra. The two
xis dataset is spectrum on one axis and mask index on the second.
For both time- and frequency- modulated systems, a dataset made

rom a fixed index in the cross-correlation or auto-convolution dimen-
ion corresponds to a unique phase retrieval problem whose ground-
ruth generating vector is a diagonal of the outer product between
he pulse and the probe pulse or the pulse and itself, respectively.
2

Fig. 2. The two dimensional intensity datasets typical for frequency-modulated pulse
characterization (a) are indexed in one direction by modulation index 𝑖 and another by
pectrometer pixels around a center 𝑘. Our technique is designed to recover the same
nknown signal sought after by time-resolved pulse characterization using a spectrally
ntegrated form of these measurements shown in (b).

ollecting the results of phase retrieval over all lags of correlation or
onvolution can recover the diagonals of the outer product of interest.
hase retrieval, however, produces estimates of ground-truth that are
lobally phase-ambiguous, producing phase misalignment between the
iagonals of the target outer product matrix. This prevents eigen-
ecomposition from returning the signal of interest and requires a
roader optimization to combine diagonal information into a low-rank
uter product. The problem of recovering a signal from the intensity
f auto-convolution (IAC) or more generally, the intensity of cross-
orrelation (ICC), was studied using Wirtinger gradient descent and
terative hard tensor thresholding [11] and we expand on the this
ramework.
While the ICC problem creates a fascinating connection between

ow-rank phase retrieval and time- and frequency- modulated pulse
haracterization systems, study of the tensor structure of ICC reveals
closely related problem whose solution may produce a new and
owerful tool for optical pulse characterization. We demonstrate that
ulse characterization can be done on frequency-modulated datasets
hat have been integrated along the spectral axis as shown in Fig. 2.
Physically, this corresponds to a frequency-modulated system where

he spectrometer is replaced with a single square-law integrator like
photo-diode or photon-counter, shown in Fig. 1(c). We refer to

his dataset as integrated intensity of auto-convolution (IIAC), and we
riefly discuss a broader definition of the measurement that had not
et been matched to a physical analog (integrated intensity of cross-
orrelation, IICC) in Appendix C. Our efforts have been concentrated
n frequency-modulated systems for two reasons. Firstly, known masks
re used in the wavelength domain to modulate the pulse, as op-
osed to a copy of a potentially unknown pulse in the time domain.
econdly, integration onto a single sensor instead of a spectrometer
nly provides the integrated intensity of auto-correlation for frequency-
odulated systems, and would provide the integrated intensity of
elayed element-wise multiplication for time-modulated systems.
In current pulse characterization systems, it is not uncommon to

mploy spectrometers, cameras, fast-time samplers, or other devices
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that create large redundant datasets leveraging relatively low amounts
of modulation a priori. Our proposed technique creates a single unique
measurement from every modulation and increases the information in
that single measurement relative to ICC. Rather than the typical use
of dense or fast sensors, this approach allows the use of a slow single
channel sensor.

Mathematically, the IIAC recovery problem presents a new struc-
tured high-order phase retrieval problem distinct from both traditional
and low-rank phase retrieval. We demonstrate that the problem is
effectively solved with Wirtinger gradient techniques, yet substan-
tially improved with an iterative hard thresholding initializer exploiting
IIAC’s linear fourth-order tensor structure. Tensors are an effective tool
to create ‘‘lifted’’ linear problems out of phaseless polynomial measure-
ments that can leverage a priori known low-rank of the solution tensor.
This development draws parallels to the development of PhaseLift [15]
in traditional phase retrieval where a phaseless linear problem is lifted
to a low-rank matrix retrieval problem.

We summarize the contributions made in this paper as follows:
a new pulse characterization technique constructed from variation of
frequency-modulated total SHG pulse energy, a gradient technique to
invert these measurements as well as an empirical estimate of required
sampling for probable signal recovery, a demonstration of an effective
initializer technique based on iterative hard tensor thresholding, and
an experimentally demonstrated inversion from laboratory data. To our
knowledge, we are the first to group to perform pulse characterization
with an integrated fourth order total energy measurement and we
present it with connection to structured inverse problems and Wirtinger
gradient optimization.

In Section 2 we present the IIAC recovery problem definition and
describe the structure in vector, matrix, and low-rank tensor forms.
In Section 3 we examine a least-squares cost-function and examine
ts Wirtinger gradient and Hessian. We also form the IIAC problem
s a low-rank tensor recovery and develop an iterative hard tensor
hresholding recovery process. In Section 4 we numerically model
he convergence rate of randomly initialized Wirtinger descents for
enerated IIAC datasets. We then compare this random initialization
o descents that were initialized from the iterative hard tensor thresh-
lding initializer developed in Section 3. We finish Section 4 with a
rief overview of problem complexity and a brief study on the effects
f i additive Gaussian noise. Finally, we demonstrate the IIAC recovery
echnique in a laboratory setting in Section 5 to recover the time delay
etween two pulses.

. Problem definition and variations

In this section, we introduce notation and formulate the IIAC prob-
em in several variations. These variations serve different functions,
xposing single variables for ease of gradient derivation or formulating
he problem as a linear inner product between tensors to demonstrate
he rationale behind tensor iterative hard thresholding.

.1. Notation

These are some common notations that will be used throughout the
aper and is summarized below.

• ◦𝑇 represents the transpose of a vector or a matrix.
• ◦∗ represents the element-wise conjugate of a vector, matrix, or
tensor.

• ◦𝐻 represents the conjugate transpose of a vector or a matrix.
• 𝑎 ⊙ 𝑏 represents the element-wise product of 𝑎, 𝑏.
• ⟨𝑎, 𝑏⟩ represents the complex inner product between 𝑎, 𝑏 which
can be vectors, matrices, or tensors. This complex inner product is
defined as the sum of the element-wise product 𝑎⊙𝑏∗. For vectors

𝐻 𝐻
3

this equates to 𝑏 𝑎, for matrices trace(𝐴𝐵 ). c
• 𝑎𝑎𝐻 represents the outer product of a column vector 𝑎 with the
row vector 𝑎𝐻 .

• 𝑎 ⊗ 𝑎∗ is equivalent to 𝑎𝑎𝐻 , as ⊗ represents the outer product
between two objects and can be used to represent tensors like
𝑎 ⊗ 𝑎 ⊗ 𝑎∗ ⊗ 𝑎∗, a fourth order tensor made by the fourth order
outer product of a single vector.

• 𝑥0 ∈ C𝑀 is the ground-truth objective vector representing the
sampled frequency profile 𝐸[𝜔] of a laser pulse.

• 𝑥 ∈ C𝑀 is current guess or best approximation of 𝑥0.
• 𝑐𝑖 ∈ C𝑀 is a known modulation variable indexed by 𝑖 =
[0, 1,… , 𝐼−1]. In time-modulated systems, 𝑐𝑖[𝑛] is typically a com-
plex exponential over 𝑛 with advancing rate over 𝑖. In frequency-
modulated systems, 𝑐𝑖 is whatever modulation can be placed in
the pulse compressor: typically an attenuating modulation, but
possibly a phase-rotation produced by a spatial light modulator,
for example. Pulse compressors can apply an attenuation mask
at the modulation plane and then add phase modulation by
physically moving the second diffraction grating as done in [14].

• 𝑉𝑖[𝑘] = antidiag(𝑐𝑖𝑐𝑇𝑖 , 𝑘) represents an𝑀×𝑀 matrix whose values
are all zero except for the 𝑘th anti-diagonal (where 𝑘 = 0 is the
main anti-diagonal, 𝑘 = −1 is toward the top-left of the matrix),
which is filled with the lagged product of 𝑐𝑖[𝑛 + 𝑘]𝑐𝑖[𝑀 − 1 − 𝑛].
We will refer to this matrix as the modulation matrix, indexed by
modulation index 𝑖 and lag index 𝑘. This matrix linearly encodes
the action of modulated convolution when used as a quadratic
operator acting on 𝑥0𝑥𝑇0 , shown in Section 2.3.

• 𝑖 =
∑𝑀−1
𝑘=−𝑀+1

(

𝑉 ∗
𝑖 [𝑘]⊗ 𝑉𝑖[𝑘]

)

is the fourth-order tensor whose
entries are zero except where filled as 𝑖[𝑞, 𝑟, 𝑠, 𝑡] =

∑𝑀−1
𝑘=−𝑀+1

(

antidiag(𝑐𝑖𝑐𝑇𝑖 , 𝑘)
∗[𝑞, 𝑟] antidiag(𝑐𝑖𝑐𝑇𝑖 , 𝑘)[𝑠, 𝑡]

)

. We will refer to
this operator as the modulation tensor, indexed by modulation
index 𝑖 and lag index 𝑘. This tensor encodes the action of accumu-
lating the magnitude squared result of 𝑐𝑖 modulated convolution
as a linear operator acting the fourth-order outer product tensor
𝑥0 ⊗ 𝑥0 ⊗ 𝑥∗0 ⊗ 𝑥∗0. This is shown in Section 2.4.

• 0 = 𝑥0 ⊗ 𝑥0 ⊗ 𝑥∗0 ⊗ 𝑥∗0 is the fourth-order outer product tensor
with non-zero entries indexed as 0[𝑞, 𝑟, 𝑠, 𝑡] = 𝑥0[𝑞]𝑥0[𝑟]𝑥∗0[𝑠]𝑥

∗
0[𝑡].

 has an identical construction but with 𝑥 instead of 𝑥0.
• ⟺ denotes the ‘‘if and only if’’ symbol to imply bidirectional
equivalent statements.

.2. IIAC quartic vector definition

To formulate the IIAC function, we first examine ICC adapted
pecifically for frequency-modulated systems measuring intensity of
uto-convolution (IAC) and then define IIAC as the sum of IAC over the
avelength (or 𝑘 axis). In adapting the generalized ICC [11] to IAC we
dapt a forward function ingesting two vectors (cross-correlation) into
forward function of a single variable (auto-convolution). The adapted
AC definition is shown in Eq. (1).

𝑖[𝑘] =
|

|

|

|

|

|

𝑀−1−max(0,𝑘)
∑

𝑛=max(0,−𝑘)
𝑐𝑖[𝑛 + 𝑘]𝑐𝑖[𝑀 − 1 − 𝑛]𝑥0[𝑛 + 𝑘]𝑥0[𝑀 − 1 − 𝑛]

|

|

|

|

|

|

2

+ 𝜂𝑖[𝑘],

= |

|

|

𝑥𝑇0 antidiag(𝑐𝑖𝑐𝑇𝑖 , 𝑘)𝑥0
|

|

|

+ 𝜂𝑖[𝑘]

= |

|

|

𝑥𝑇0 𝑉𝑖[𝑘]𝑥0
|

|

|

2
+ 𝜂𝑖[𝑘]

= 𝑥𝑇0 𝑉𝑖[𝑘]𝑥0 𝑥
𝐻
0 𝑉

∗
𝑖 [𝑘]𝑥

∗
0 + 𝜂𝑖[𝑘] (1)

𝑖 ∈ [0, 1,… , 𝐼 − 1]

ote that the equivalence of the first and second lines in Eq. (1) stems
rom the multiple operations encoded in the structure of the matrix
ntidiag(𝑐𝑖𝑐𝑇𝑖 , 𝑘). The anti-diagonal structure of the matrix encodes
he time reversal and lag shifting required between 𝑥0 and itself for

onvolution, and the matrix also carries the element-wise modulations
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imparted with 𝑐𝑖 and a lag multiplied copy of 𝑐𝑖. Now, a sum over the 𝑘
or wavelength axis yields the expression for IIAC measurements ℎ[𝑖] in
Eq. (2). This form of the IIAC problem will be referred to as the vector
form.

ℎ[𝑖] =
𝑀−1
∑

𝑘=−𝑀+1
ℎ𝑖[𝑘]

=
𝑀−1
∑

𝑘=−𝑀+1

(

𝑥𝑇0 𝑉𝑖[𝑘]𝑥0 𝑥
𝐻
0 𝑉

∗
𝑖 [𝑘]𝑥

∗
0 + 𝜂𝑖[𝑘]

)

,

=
𝑀−1
∑

𝑘=−𝑀+1

(

𝑥𝑇0 𝑉𝑖[𝑘]𝑥0 𝑥
𝐻
0 𝑉

∗
𝑖 [𝑘]𝑥

∗
0
)

+ 𝜂[𝑖], (2)

𝑖 ∈ {0, 1,… , 𝐼 − 1}

We note that the relationship of 𝜂[𝑖] to 𝜂𝑖[𝑘] is a sum over 𝑘, i.e. 𝜂[𝑖] =
∑

𝑘 𝜂𝑖[𝑘]. This vector form is particularly suited for computing the
Wirtinger gradient, which is done in Appendix A.

2.3. IIAC quadratic low-rank matrix definition

The definition of IIAC is very nearly a low-rank phase retrieval
problem [10], however the sum over wavelength or 𝑘 prevents the
problem from adhering to the low-rank phase retrieval structure. This
is shown in Eq. (3) where IIAC is formed as a sum of intensities of inner
products between a low-rank matrix 𝑥0𝑥𝑇0 and a sensing matrix indexed
by 𝑖, 𝑘.

ℎ[𝑖] =
𝑀−1
∑

𝑘=−𝑀+1

|

|

|

𝑥𝑇0 𝑉𝑖[𝑘]𝑥0
|

|

|

2
+ 𝜂[𝑖]

=
𝑀−1
∑

𝑘=−𝑀+1

|

|

|

⟨𝑥0𝑥
𝑇
0 , 𝑉

∗
𝑖 [𝑘]⟩

|

|

|

2
+ 𝜂[𝑖] (3)

Were it not for the sum over 𝑘 in Eq. (3), the problem would fit the
description of low-rank phase retrieval as the ICC and IAC problems
did. While the definition shown in Eq. (3) is a sum over wavelength, it
is possible that the sum could be generalized to a weighted sum or even
a mixing matrix to account for dispersive integrators. This approach is
not considered here for simplicity.

2.4. IIAC linear tensor definition

Although IIAC cannot be viewed as a low-rank phase retrieval
problem, it can be viewed as a low-rank tensor recovery problem. This
owes to the fact that IIAC measurements can be written as linear inner
products between an objective tensor and a series of measurement
tensors as shown in Eq. (4).

ℎ[𝑖] =
𝑀−1
∑

𝑘=−𝑀+1

|

|

|

𝑥𝑇0 𝑉𝑖[𝑘]𝑥0
|

|

|

2
+ 𝜂[𝑖]

=
𝑀−1
∑

𝑘=−𝑀+1
⟨𝑥0𝑥

𝑇
0 , 𝑉

∗
𝑖 [𝑘]⟩⟨𝑥

∗
0𝑥

𝐻
0 , 𝑉𝑖[𝑘]⟩ + 𝜂[𝑖]

=
𝑀−1
∑

𝑘=−𝑀+1
⟨𝑥0 ⊗ 𝑥0 ⊗ 𝑥∗0 ⊗ 𝑥∗0 , 𝑉

∗
𝑖 [𝑘]⊗ 𝑉𝑖[𝑘]⟩ + 𝜂[𝑖]

= ⟨𝑥0 ⊗ 𝑥0 ⊗ 𝑥∗0 ⊗ 𝑥∗0 ,
𝑀−1
∑

𝑘=−𝑀+1
𝑉 ∗
𝑖 [𝑘]⊗ 𝑉𝑖[𝑘]⟩ + 𝜂[𝑖]

= ⟨0, 𝑖⟩ + 𝜂[𝑖] (4)

This tensor formulation shows that IIAC is a structured linear prob-
lem, where measurements are taken against an 𝑀 × 𝑀 × 𝑀 × 𝑀
tensor 0 that is known to be rank-one with outer product symmetry
𝑎 ⊗ 𝑎 ⊗ 𝑎∗ ⊗ 𝑎∗. This structure will be directly exploited later as a
4

condition in an iterative hard tensor thresholding algorithm.
.5. IIAC ambiguities

At best, IIAC measurements can be inverted to an estimate 𝑥 of
0 with unknown, but trivial ambiguities. Specifically, 𝑥 may be off
y an unknown constant phase and frequency (linear phase) offset.
hysically, absolute pulse phase is typically not useful and lost to all
ntensity-based measurements. Frequency offset when estimating the
requency domain of a pulse represents group delay, where unknown
roup delay is a consequence of using an integrating sensor with
on-linear optics to create time-variation that cannot be externally
ynchronized like time gating. Mathematically, frequency and phase
ffsets are unknown in IIAC because of invariance of the IIAC mea-
urement to these ambiguities, i.e. |𝑥𝑇 𝑉𝑖[𝑘]𝑥|

2 = |𝑥𝑇𝑎 𝑉𝑖[𝑘]𝑥𝑎|
2 where

𝑎[𝑛] = 𝜙𝑥[𝑛] exp(𝑗𝑛𝜓) is an ambiguous estimate of 𝑥 as demonstrated
n Eq. (5). Eq. (5) demonstrates the invariance of IIAC measurements
o arbitrary phase and frequency offsets 𝜙, 𝜓 and sets 𝑐𝑖[𝑛] = 1 without
oss of generality. Note that the equivalence from the third to fourth
ine in Eq. (5) stems from the constant amplitude of a complex phase
ffset 𝜙 and lack of interaction between the rate 𝜓 complex exponential
nd the sum variable 𝑛.

𝑥𝑇𝑎 𝑉𝑖[𝑘]𝑥𝑎|
2

=
|

|

|

|

|

|

𝑀−1−max(0,𝑘)
∑

𝑛=max(0,−𝑘)
𝑥𝑎[𝑛 + 𝑘]𝑥𝑎[𝑀 − 1 − 𝑛]

|

|

|

|

|

|

2

=
|

|

|

|

|

|

𝑀−1−max(0,𝑘)
∑

𝑛=max(0,−𝑘)
𝑥[𝑛 + 𝑘]𝑥[𝑀 − 1 − 𝑛]𝜙2 exp (𝑗𝜓(𝑘 +𝑀 − 1))

|

|

|

|

|

|

2

=
|

|

|

|

|

|

𝜙2 exp (𝑗𝜓(𝑘 +𝑀 − 1))
𝑀−1−max(0,𝑘)

∑

𝑛=max(0,−𝑘)
𝑥[𝑛 + 𝑘]𝑥[𝑀 − 1 − 𝑛]

|

|

|

|

|

|

2

=
|

|

|

|

|

|

𝑀−1−max(0,𝑘)
∑

𝑛=max(0,−𝑘)
𝑥[𝑛 + 𝑘]𝑥[𝑀 − 1 − 𝑛]

|

|

|

|

|

|

2

= |𝑥𝑇 𝑉𝑖[𝑘]𝑥|
2 (5)

. Approach

Approaches studied in this paper to recover 𝑥0 from IIAC measure-
ents fall into two categories: Wirtinger gradient descent algorithms,
nd iterative hard tensor based algorithms.

.1. Wirtinger gradient and Hessian

A least-squares intensity cost-function is shown in Eq. (6). Gradient
escent along the Wirtinger derivative of this function forms this
aper’s primary tool for recovering 𝑥 from IIAC measurements. The
irtinger gradient and Hessian definition and derivation are shown in
ppendix A [16].

(𝑥) = 1
2

𝐼−1
∑

𝑖=0

(

ℎ[𝑖] −
𝑀−1
∑

𝑘=−𝑀+1
𝑥𝑇 𝑉𝑖[𝑘]𝑥 𝑥𝐻𝑉 ∗

𝑖 [𝑘]𝑥
∗

)2

(6)

= 1
2

𝐼−1
∑

𝑖=0
𝑒2𝑖

Here, 𝑒𝑖 = ℎ[𝑖]−
∑𝑀−1
𝑘=−𝑀+1 𝑥

𝑇 𝑉𝑖[𝑘]𝑥 𝑥𝐻𝑉 ∗
𝑖 [𝑘]𝑥

∗ will be used represent
the error between measurement ℎ𝑖[𝑘] and the synthesized measurement
generated from the current approximation 𝑥.

The Wirtinger gradient of the cost-function in Eq. (6) is shown in
Eq. (7).

∇𝑓 (𝑥) = −2
∑

𝑒𝑖
𝑀−1
∑

(

(𝑥𝑇 𝑉𝑖[𝑘]𝑥) 𝑉 ∗
𝑖 [𝑘]𝑥

∗

𝑇 ∗

)

(7)

𝑖 𝑘=−𝑀+1 (𝑥 𝑉𝑖[𝑘]𝑥) 𝑉𝑖[𝑘]𝑥
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We can see from the construction that when error is zero (𝑒𝑖 = 0,∀𝑖),
the gradient is zero. The Wirtinger Hessian is shown in Eq. (8).

∇2𝑓 (𝑥) =
∑

𝑖

(

𝑎𝑖𝑎
𝐻
𝑖 − 𝑒𝑖

𝑀−1
∑

𝑘=−𝑀+1
𝐴𝑖,𝑘

)

(8)

𝑎𝑖 = −2
𝑀−1
∑

𝑘=−𝑀+1

(

(𝑥𝑇 𝑉𝑖[𝑘]𝑥) 𝑉 ∗
𝑖 [𝑘]𝑥

∗

(𝑥𝐻𝑉 ∗
𝑖 [𝑘]𝑥

∗) 𝑉𝑖[𝑘]𝑥

)

𝐴𝑖,𝑘 =
(

4𝑉 ∗
𝑖 [𝑘](𝑥

𝑇 𝑉𝑖[𝑘]𝑥∗) 2𝑉 ∗
𝑖 [𝑘](𝑥

𝑇 𝑉𝑖[𝑘]𝑥)
2𝑉𝑖[𝑘](𝑥𝐻𝑉 ∗

𝑖 [𝑘]𝑥
∗) 4𝑉𝑖[𝑘](𝑥𝐻𝑉 ∗

𝑖 [𝑘]𝑥)

)

From this expression we see that when error is zero, the Hessian is the
sum of positive coefficient outer products, meaning that the matrix is
positive semi-definite.

3.2. Tensor IHT

As shown in Eq. (4), the IIAC measurement for every unique mod-
ulation index 𝑖 is the result of a linear inner product between two
structured fourth-order tensors. The objective tensor 0 is known a
priori to be rank-one positive-semidefinite and therefore has structure
that can be exposed using a high-order singular value decomposi-
tion (HoSVD). Iterative hard tensor thresholding (IHT) is an iterative
two step process [17–19]. The first step backprojects error between
a measurement set and measurements synthesized by the current ap-
proximation of ground-truth. The second step enforces a low rank
constraint on the current ground-truth tensor estimate. In IIAC, error
backprojection will be combined with the enforcement of rank-one
tensor structure using HoSVD.

In this paper, we deploy two forms of this algorithm, IHT con-
structed with simple alternating minimization (AltMinIIAC), and IHT
constructed with relaxed averaged alternating reflections (RAARIIAC)
[20]. RAAR has been shown to converge faster for alternating projec-
tion style algorithms and was chosen to improve convergence due to
the high processing time involved in IHT.

AltMinIIAC is outlined in Algorithm 1. Several supporting algo-
rithms are outlined in Appendix B. Algorithm 1 takes as input IIAC
measurements ℎ𝑖 and the known modulation vectors 𝑐𝑖. A rigid index
set (𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙) is generated that organizes modulations into a linear
forward operator along with its pseudo inverse (𝐴,𝐴+). A randomly
initialized rank-one tensor 𝜒 serves as our initial tensor estimate. If the
𝐿2 error between the forward projected approximation and the IIAC
measurements falls below a user determined error or if the maximum
number of iterations has been reached, iteration terminates and the
lead eigenvector 𝑥 is returned as an approximation to 𝑥0.

RAARIIAC is nearly identical to the procedure that is outlined in
Algorithm 1 with the exception that the main iteration loop constructs
reflections and projections into each constraint set. This updated main
iteration loop update is compared with AltMinIIAC in Algorithm 2.

4. Performance

Wirtinger descent algorithms are the most effective and scalable tool
for returning 𝑥 from IIAC measurements we have tested so far. This
section examines randomly initialized and IHT initialized Wirtinger
descents and examines their error statistics as a function of 𝑀, 𝐼 . Both
𝑐𝑖 and 𝑥0 are generated from a complex Gaussian distribution, shown
in Algorithm 11.

Wirtinger gradient descent algorithms converge much faster than
IHT methods primarily because of decreased complexity. The per it-
eration memory and computational complexity of both algorithms are
discussed in Section 4.4. For ICC [11], it was determined that though
gradient methods were more efficient and faster to compute than tensor
methods, tensor methods were able to improve the performance of
gradient methods acting as an initializer in low measurement count
scenarios. To determine the efficacy of tensor methods as an initializer
5

Algorithm 1: IIAC Alternating Minimization (AltMinIIAC)
Data:
𝑐 ∈ C𝐼×𝑀
ℎ[𝑖], 𝑖 = [0, 1, ..., 𝐼 − 1], vectorized IIAC measurements
Parameters:
thresh = 1𝑒 − 3
maxIts = 4000
Result: 𝑥 ∈ C𝑀

1 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙 ← 𝐼𝐼𝐴𝐶𝐼𝑛𝑑𝑒𝑥(𝑀, 𝑁)
2 𝐴 ← 𝟎 ∈ C𝐼×𝑄, 𝑄 =

∑𝑀−1
𝑘=−𝑀+1 (𝑀 − |𝑘|)2

3 for( 𝑖 = [0, 1, ..., 𝐼 − 1] ) {
4 𝐴[𝑖, ∶] ← 𝑐[𝑖, 𝑖𝑖] ∗ 𝑐[𝑖, 𝑗𝑗] ∗ 𝑐∗[𝑖, 𝑘𝑘] ∗ 𝑐∗[𝑖, 𝑙𝑙]
5 }
6 𝐴+ ← 𝑝𝑖𝑛𝑣(𝐴)
7 𝜒 ← 𝐼𝐼𝐴𝐶𝑆𝑡𝑎𝑟𝑡(𝑀,ℎ[𝑖])
/* Main iteration loop */

8 for( 𝑖𝑖 = 0, 1, ..., 𝑚𝑎𝑥𝐼𝑡𝑠 − 1 ) {
9 𝜒𝑏𝑎𝑐𝑘, 𝑒𝑟𝑟𝑜𝑟← 𝐵𝑎𝑐𝑘 − 𝑝𝑟𝑜𝑗𝑒𝑐𝑡(𝜒,𝐴,𝐴+, 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙, ℎ[𝑖])
10 𝜒 ← 𝐼𝐼𝐴𝐶𝑅𝑎𝑛𝑘(𝜒𝑏𝑎𝑐𝑘)
11 if 𝑒𝑟𝑟𝑜𝑟 > 𝑡ℎ𝑟𝑒𝑠ℎ then
12 break
13 }
14 𝑥, 𝑥, 𝑥∗, 𝑥∗ = tucker(𝜒, rank = [1, 1, 1, 1])
15 𝑥 ← 𝑆𝑐𝑎𝑙𝑒𝐼𝐼𝐴𝐶(𝑥, 𝑐, ℎ)

Algorithm 2: AltMinIIAC vs. RAARIIAC update step comparison
Data:
𝜒𝑖, current iteration tensor
Parameters:
𝛼, 𝛽 = .9, .5
Result: 𝜒𝑖+1, next tensor iteration
// Alt Min Iteration:

1 𝜒𝑏𝑎𝑐𝑘, 𝑒𝑟𝑟𝑜𝑟← 𝐵𝑎𝑐𝑘 − 𝑝𝑟𝑜𝑗𝑒𝑐𝑡(𝜒𝑖, 𝐴, 𝐴+, 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙, ℎ[𝑖])
2 𝜒𝑖+1 ← 𝐼𝐼𝐴𝐶𝑅𝑎𝑛𝑘(𝜒𝑏𝑎𝑐𝑘)
// RAAR Iteration:

3 𝑃2, 𝑒𝑟𝑟𝑜𝑟← 𝐵𝑎𝑐𝑘 − 𝑝𝑟𝑜𝑗𝑒𝑐𝑡(𝜒,𝐴,𝐴+, 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙, ℎ[𝑖])
4 𝑅1 ← 2𝑃2 − 𝜒𝑖
5 𝑃1 ← 𝐼𝐼𝐴𝐶𝑅𝑎𝑛𝑘(𝑅1)
6 𝑅2 ← 2𝑃1 − 𝑃2
7 𝜒𝑖+1 ← 𝛽(𝛼𝑅2 + (1 − 𝛼)𝜒𝑖) + (1 − 𝛽)𝑃2

in IIAC we first determine an approximation of the number of measure-
ments 𝐼 required to return a correct solution for randomly initialized
gradient descent as a baseline oversampling requirement. We then
run identical experiments comparing randomly initialized versus IHT
initialized Wirtinger descents to determine if either have an advantage.

The primary metric used to compare algorithms is the normalized
error, specifically the 𝐿2 norm of the error divided by the 𝐿2 norm of
the ground truth, as shown in Eq. (10). Before a difference can be taken
however, global phase and frequency ambiguity needs to be removed.
This is achieved by minimizing the difference between our estimate 𝑥
and the ground truth 𝑥0 over all possible frequency and phase offsets
(Eq. (9)) before taking their difference. In practice, offset correction
is performed by dividing our estimate by the ground truth, estimating
frequency offset as the median phase step over samples, then estimating
phase offset as the angle of the frequency corrected inner product. This
is detailed in Algorithm 10.

𝜃, 𝜙 = argmin
𝜃′ ,𝜙′

∑

𝑛

(

exp(𝑗(𝜙′𝑛 + 𝜃′))𝑥[𝑛] − 𝑥0[𝑛]
)2 (9)

𝑥𝑎[𝑛] = exp(𝑗(𝜙𝑛 + 𝜃))𝑥[𝑛]

𝑒𝑟𝑟𝑜𝑟 =
‖𝑥0 − 𝑥𝑎‖2 (10)
‖𝑥0‖2
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Fig. 3. 10 trials of IIAC Wirtinger descent over measurement count 𝐼 and signal
dimension 𝑀 . Pixels are shaded by percent of trials that converged in relative error
to below .01. The black lines are three fit quadratic functions representing the 25%,
50%, and 75% convergence rates.

With this error metric, we can define another metric employed in
this paper: rate of convergence. For a given problem dimension 𝑀 and
easurement count 𝐼 , we conduct 𝑁 trials of a randomly initialized

IIAC problem set. If a single trial recovers a guess of 𝑥0 that has a
normalized error below a set threshold, the trial is declared a success.
We define the convergence rate as the fraction of successful trials.

4.1. Randomly initialized sampling requirements

To determine sampling requirements (𝐼) for recovering an arbitrary
signal of dimension 𝑀 , we perform a gradient descent convergence
rate test over a grid of 𝑀, 𝐼 values. Each test begins with a randomly
initialized 𝑥0 and modulation set 𝑐𝑖 and an estimate of 𝑥0 is produced
from a randomly initialized Wirtinger descent using only 𝑐𝑖 and the
IIAC dataset ℎ𝑖 generated from 𝑥0 and 𝑐𝑖. The results of this experiment
are shown in Fig. 3. This experiment operates over 10 trials per pixel
(𝐼,𝑀 pair), with Fig. 3 showing the number of trials per pixel that
converged in normalized error to less than .01. This is summarized in
Algorithm 3, and uses Scipy’s [21] minimize function with ‘‘L-BFGS-B’’
solver, 𝑓𝑡𝑜𝑙 = 1𝑒−6, and a maximum of 1000 iterations.

4.2. Convergence rate curve-fitting

Fig. 3 shows a quadratic curve that serves as the 25%, 50%, and
75% convergence rate lines for 𝐼 as a function of 𝑀 for randomly
initialized inversion of IIAC measurements using Wirtinger gradient
descent. To determine this curve, and to determine the function that
best suits the growth of measurements required to recover a signal
reliably, we established the following procedure:

1. For a single 𝑀 over a range of 𝐼 , we fit a generalized logistic
function: 𝑓 (𝐼|𝑀) = (1 + 𝑒𝑥𝑝(−𝑎 ∗ (𝐼 − 𝑏)))−1∕𝑐 . This function is
monotonic with three parameters to estimate the gradual transi-
tion from low rate of convergence to high rate of convergence.
Note the rate 𝑎, center 𝑏, and inflection 𝑐 are functions of 𝑀 .
6

o

Fig. 4. Convergence rates for various 𝑀 are fit to GLF curves 𝑝 = 𝑓 (𝐼|𝑀). 𝐼𝑀 estimates
or a desired rate 𝑝 are determined by solving 𝐼𝑀 = 𝑓−1(𝑝|𝑀). This has been done in
the lower plot with the fit GLF curves for the value 𝑝 = .5.

Table 1
MLE comparison between measured values of 𝐼𝑀 and fit values for functions at
𝑝 = 25%, 50%, 75%.
Function 𝑝 = 25% 50% 75%

Polynomial (Eq. (11)) 17.91 16.23 53.13
Exponential (Eq. (12)) 18.85 16.88 53.2

2. To determine the number of samples required for a desired
convergence rate 𝑝 we solve 𝐼𝑀 = 𝑓−1(𝑝|𝑀).

3. For a given 𝑝, we solve for 𝐼𝑀 over all grid 𝑀 values and fit
various functions 𝑓𝑝(𝑀) to the resulting 𝑀, 𝐼𝑀 set.

The process of fitting convergence rate data to GLF curves and deter-
mining 𝑓−1(.5|𝑀) is shown for 𝑀 = [10, 20, 30] in Fig. 4.

Two candidate functions were considered to determine growth re-
quirements of 𝐼 as a function of 𝑀 : a quadratic function to determine
polynomial fit in Eq. (11) and an exponential in Eq. (12). Variables
, 𝑏, 𝑐, 𝑑 are free variables to adjust fit.

𝑝(𝑀) = 𝑎 ∗𝑀2 + 𝑏 ∗𝑀 + 𝑐 (11)

𝑝(𝑀) = 𝑐 ∗ 𝑒𝑥𝑝(𝑎 ∗𝑀 + 𝑏) + 𝑑 (12)

etermining fit quality was judged with mean least-squares error (MLE)
etween measured 𝐼𝑀 values and fit 𝐼𝑀 values for 𝑝 = [25%, 50%, 75%].
LE for Eqs. (11) and (12) are shown in Table 1.
Both functions fit the dataset well; however, the polynomial fit had a

small advantage. The values of 𝑎, 𝑏, 𝑐 per convergence rate fit are given
in Table 2. From Table 2, we see that the quadratic factor grows fairly
onsistently for increasing convergence rates.

.2.1. Comparison with state-of-the-art
Pulse characterization from one-dimensional IIAC measurements

indexed only by modulation index 𝑖) has no direct comparison with
echniques in the literature that rely on two-dimensional datasets.
e can, however, compare the technique in this paper to the anal-

gous tensor IHT and gradient formulations applied to traditional
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Table 2
Function parameters (Eq. (11)) for polynomial growth fit to 25%, 50%, and 75%
onvergence rate lines.
p a b c

25% .0753 2.13 −5.90
50% .0966 3.15 −3.75
75% .1178 4.73 −6.33

Fig. 5. Comparison of IIAC and ICC median convergence rate 𝑓.5(𝑀) in terms of
nique modulations and measurements. Here a unique modulation is a new mask at
he modulation plane, and a unique measurements is an independent element of the
ata set ℎ𝑖 , ℎ𝑖[𝑘] for IIAC and ICC respectively.

wo-dimensional pulse characterization datasets. In [11], we demon-
trated that gradient and tensor IHT techniques outperformed state-of-
he-art alternating minimization techniques in frequency-modulated,
requency-resolved pulse characterization; gradient techniques pro-
uced correct results with fewer measurements (measurement effi-
iency) than alternating minimization. In this section, we compare the
easurement efficiency of IIAC to the state-of-the-art technique of ICC.
he 50% expected convergence rate lines for IIAC and ICC are listed
elow and plotted in Fig. 5.

• IIAC: 𝐼𝑀 = .0966𝑀2 + 3.15𝑀 − 3.75
• ICC (Two variable): 𝐼𝑀 = (.041𝑀 + 3.7) log(.89𝑀) [11]

From Fig. 5, we see that ICC can recover signals with a higher
odulation efficiency than IIAC. At this point it is important to re-
ember that while ICC requires fewer modulations 𝐼 than IIAC, each
odulation in ICC generates 2𝑀 − 1 measurements. If we compare the
otal number of measurements, IIAC requires fewer total measurements
han ICC. We then see a trade-off between the two system types. If
odulations are typically difficult to generate or calibrate, ICC offers
technique that is more efficient in returning signals from fewer
odulations. If modulations are easy to generate, IIAC offers a smaller
cale optimization than ICC to solve for signals of equivalent size 𝑀 .
e therefore assert that ICC is more information dense per modulation,
nd IIAC is more information dense per measurement. An important
mprovement from ICC to IIAC to reiterate is the simplified system
7

Fig. 6. Tensor initializers (solid lines) are compared to randomly initialized (dashed
lines) Wirtinger gradient descents for the IIAC problem. An experiment is conducted
for various 𝑀 at 𝐼 corresponding to empirically measured 25%, 50%, 75% convergence
rates corresponding the red, green, and blue sets respectively. Nominal rates are
depicted as dotted lines. Wirtinger descents that are initialized with iterative hard
tensor thresholding have a consistently higher convergence rate than their randomly
initialized counter-parts, with exception of the 25% convergence rate remaining about
equal.

setup, as IIAC requires only an integrator instead of a spectrometer.
This not only decreases the complexity of the system, but the required
power to generate measurements.

4.3. Tensor initialization

Testing fourth-order tensor iterative solvers of the type outlined in
Algorithm 1 is very costly in time and compute resources. Instead of
a broad 𝐼, 𝑚 investigation, we aimed to demonstrate whether or not
the technique was effective at increasing convergence rate for gradient
solvers at a small selection of 𝐼, 𝑀 points. Specifically, for identically
generated ground-truth and measurement sets, a randomly initialized
gradient descent and a tensor initialized gradient descent would run
over select 𝑀 for 𝐼 corresponding to the hypothetical 25%, 50%, 75%
convergence rates determined in Section 4.2. This process is outlined in
Algorithm 4. For this experiment,𝑀 = [6, 9, 12, 15, 18, 21, 24, 27]. Results
of this experiment are shown in Fig. 6.

Fig. 6 demonstrates that the convergence rates for descents ini-
tialized with iterative hard tensor thresholding out-perform randomly
initialized descents for identical datasets over 64 trials. The advantage
appears to only be noticeable for 𝐼,𝑀 pairs where randomly initialized
Wirtinger descent would achieve 50% or greater convergence rates.
While expensive to compute and dense in memory, tensor initializers
appear to contribute information complementary to gradient descent.
From Fig. 6 it appears that the tensor initializer for the 50% and 75%
onvergence rates appears to become less effective as 𝑀 increases. We
elieve this is because the termination condition 𝑡ℎ𝑟𝑒𝑠ℎ in Algorithm
compares absolute error in the forward projection, rather than error
hat is normalized by 𝐼 .
While IHT appears to increase the rate of convergence for gradient

ased recovery from IIAC measurements, we do not yet have a compre-
ensive set of theoretical performance guarantees. Previous approaches
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to providing convergence guarantees [18] have relied on sub-Gaussian
and Fourier measurement tensors, which are not as structured as the
ones we face in this paper. Measurement tensors 𝑖 described in this
paper are structured in such a way that much of the signal matrix 0 is
n the null space of 𝑖. This sparse structure prevents much of the signal
ensor from being encoded uniquely in measurements and complicates
uarantees of uniqueness with unwieldy second and fourth order cross-
erm conditions on 𝑥0. Attempts to prove recovery uniqueness and
tability in future works might start from an analysis and bounding
f tensor restricted isometry (TRIP) for the given measurement vec-
ors [18,22]. As a step in that direction, we provide some relevant
nsight below.
The null space of the IIAC operator is confined to any measurement

ver which 𝑥0 and 𝑐𝑖 have a non-overlapping support; i.e. circumstances
nder which 𝑥0 ⊙ 𝑐𝑖 is zero everywhere. To conclude this, we consider
q. (3) in the noiseless case and assert that because ℎ[𝑖] is the sum
f sub-terms that are nonnegative, ℎ[𝑖] is zero when all sub-terms are
ero; i.e. ℎ[𝑖] = 0 ⟺

|

|

|

⟨𝑥0𝑥𝑇0 , 𝑉
∗
𝑖 [𝑘]⟩

|

|

|

2
= 0, ∀𝑘. Trivially, this implies

hat each term inside the absolute value is also zero; ||
|

⟨𝑥0𝑥𝑇0 , 𝑉
∗
𝑖 [𝑘]⟩

|

|

|

2
=

, ∀𝑘 ⟺ ⟨𝑥0𝑥𝑇0 , 𝑉
∗
𝑖 [𝑘]⟩ = 0,∀𝑘. The term ⟨𝑥0𝑥𝑇0 , 𝑉

∗
𝑖 [𝑘]⟩ is the

odulated vector 𝑐𝑖 ⊙ 𝑥0 convolved with itself and evaluated at the
lag. Since this convolution must equal zero everywhere, we note that
he squared Fourier transform of 𝑐𝑖 ⊙𝑥0 must also be zero everywhere;
𝑥0𝑥𝑇0 , 𝑉

∗
𝑖 [𝑘]⟩ = 0,∀𝑘 ⟺  (𝑐𝑖 ⊙ 𝑥0)2[𝜔] = 0,∀𝜔. This implies that the

ourier transform of 𝑐𝑖⊙𝑥0 is also zero;  (𝑐𝑖⊙𝑥0)2[𝜔] = 0,∀𝜔 ⟺  (𝑐𝑖⊙
0)[𝜔] = 0,∀𝜔. Finally, a Fourier transform that is zero everywhere
mplies a signal that is zero everywhere:  (𝑐𝑖 ⊙ 𝑥0)[𝜔] = 0,∀𝜔 ⟺

(𝑐𝑖 ⊙ 𝑥0)[𝑛] = 0∀𝑛. We conclude that ℎ𝑖[0] = 0 and 𝑐𝑖[𝑛]𝑥0[𝑛] = 0,∀𝑛 are
equivalent statements that imply each other. Note that this condition is
more aggressive than mere orthogonality of 𝑐𝑖 and 𝑥0, which does not
guarantee a zero measurement alone.

One interesting property is that, despite the nonlinearity of IIAC
measurements, perturbations of 𝑥0 confined to the null space of IIAC
o not change the measurement ℎ[𝑖]. If we label the IIAC operator
s 𝑖(𝑥0) =

∑𝑀−1
𝑘=−𝑀+1

|

|

|

⟨𝑥0𝑥𝑇0 , 𝑉
∗
𝑖 [𝑘]⟩

|

|

|

2
, we summarize this fact as:

𝑖(𝑥0 + 𝑥𝑎) = 𝑖(𝑥0) if (𝑥𝑎 ⊙ 𝑐𝑖)[𝑛] = 0∀𝑛.
Because the null space of the IIAC operator for measurement 𝑖 is

confined to indices 𝑛 where 𝑐𝑖[𝑛] = 0, constraining 𝑐𝑖[𝑛] ≠ 0,∀𝑛, 𝑖 will
eliminate the non-trivial null space of the IIAC forward operator.

4.4. Complexity

Complexity in this problem breaks down very similarly to the
ICC problem for both the gradient and tensor based approach [11].
Memory storage and compute cost per gradient step and alternating
minimization iteration are summarized in Table 3.

Memory requirements for the gradient method are very light, ben-
efiting from storing the outer product of modulation vectors to have
𝑉𝑖[𝑘] precomputed. This amounts to (𝐼𝑀2) stored complex floats.
Per iteration of gradient descent, a series of 𝐼 quadratic functions
are used to weight the diagonals of added matrices that will be used
to multiply a vector, resulting in (𝐼𝑀2) complex multiply-adds per
gradient calculation.

Memory requirements for the tensor methods are fairly robust, re-
quiring (𝐼𝑀3) values to store the forward and backward operator, and
𝑀4 complex floats to store the structured tensor 𝜒 . Computationally,
back-projection of a vector with a matrix of size 𝐼 ×𝑀3 will require
(𝐼𝑀3) operations while the HoSVD requires (𝑀4) [23] with our rank
known a priori.

Ultimately, the gradient techniques are much more scalable than
tensor techniques because of their low-resource requirements. Ten-
sor techniques, however, may provide a performance boost for low-
measurement scenarios with low signal dimension at the expense of
8

high memory and compute requirements.
Table 3
Order of magnitude compute operations and memory storage requirements for gradient
and tensor based approaches to the IIAC problem.
Algorithm Memory Compute

Gradient (𝐼𝑀2) (𝐼𝑀2)
Tensor (𝐼𝑀3 +𝑀4) (𝐼𝑀3 +𝑀4)

4.5. Robustness to noise

The experiments in this section were conducted in a noiseless
setting, and so a brief examination of the effects of noise is presented
here. Choices of noise models for phase retrieval problems are typically
specified as Gaussian or Poisson [24–26]; we focus on Gaussian noise as
a starting point for studying IIAC inversion. In this experiment, we draw
𝜂[𝑖] from i.i.d. real Gaussian noise over several noise powers and test
the effects of noise on estimate error and rate of convergence. We select
two fixed values for 𝑀 (𝑀 = 10, 16), and allow 𝐼 to vary (𝐼 ∈ [4, 150])
over 64 trials for SNR values of 20, 30, 40, 50, 60, 70, 80 dB. We define
SNR for this problem in Eq. (13). We note that the values of SNR were
confined above 20 dB to maintain the validity of the added Gaussian
noise model. Noise powers much higher than this introduce the chance
of a negative IIAC value and would require additional constraints or a
separate noise model.

𝑆𝑁𝑅 = 10 log10

(

‖𝑥0‖22
‖𝜂‖22

)

(13)

For each experiment, the resulting normalized squared error is
resented in Figs. 7 and 8. Note that for each SNR, there is a bi-
modal distribution of results. We consider the distribution with lower
normalized error to be trials that have successfully converged, while
the distribution with higher normalized error to be trials that have
failed. As Figs. 11 and 12 show below, the successful trials generally
orrespond to those with higher numbers of measurements 𝐼 , and the
failed trials generally correspond to lower 𝐼 . For lower SNR scenarios,
it is clear that these distributions begin to merge. We note that the
normalized squared error (in dB) for successful trials appears to be
linear with the SNR of the signal against additive noise. Another note
is that because the experiments were performed for separate signal di-
mension𝑀 values over identical 𝐼 measurement count, the distribution
of successful trials to unsuccessful trials is different for each experiment
but the location of their concentration is consistent.

For each SNR, we study the effect of increasing noise power on the
rate of convergence, fitting GLF curves to distributions as a function
of 𝐼 and SNR. These results are presented in Figs. 9 and 10. We note
that the threshold selected for all trials to be considered successful is a
normalized squared error of −10 dB, selected because of its consistent
separation between distributions shown in Figs. 7 and 8. We see that
the GLF functions fit to the results show that the shape of the rate of
convergence does not appear to change until approximately 20 dB SNR,
at which point the rate of convergence beings to skew toward more
measurements.

Finally, we present the value of normalized error (geometric mean
over trials) as a function of 𝐼 and SNR. These results are in Figs. 11
and 12. We note that for all values of SNR, normalized recovery error
is inversely related to the number of measurements.

In summary, we observe that normalized squared error is inversely
related to the SNR of the input measurements as well as to the number
of measurements 𝐼 . Results for convergence rate estimates match the
noiseless cases presented throughout the section for SNRs higher than
30 dB.
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Fig. 7. SNR is varied over measurement count 𝐼 for a problem dimension 𝑀 = 10.
hese histograms show the binned normalized squared error for all trials across 𝐼 for
ach SNR level.

Fig. 8. SNR is varied over measurement count 𝐼 for a problem dimension 𝑀 = 16.
hese histograms show the binned normalized squared error for all trials across 𝐼 for
ach SNR level.
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Fig. 9. Curves for estimated rate of convergence lines 𝑝 = 𝑓 (𝐼|𝑀) are given as a
function of SNR for 𝑀 = 10.

Fig. 10. Curves for estimated rate of convergence lines 𝑝 = 𝑓 (𝐼|𝑀) are given as a
unction of SNR for 𝑀 = 16.
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Fig. 11. Normalized error decreases for all SNR as the number of measurements goes
up at 𝑀 = 10.

Fig. 12. Normalized error decreases for all SNR as the number of measurements goes
up at 𝑀 = 16.

5. Experiment

We constructed a laboratory experiment to determine if a complex
pulse spectrum could indeed be recovered from IIAC measurements.
The physical setup of the experiment, calibration process, and results
are described in this section along with potential improvements. The
10

t

Fig. 13. Synthetic measurement sets were generated to test the feasibility of Wirtinger
gradient descent recoveries from IIAC data. The top figure here shows IIAC data
generated for two modulators, an alternator referred to as a SPIFI mask [27] and a
hase modulation called DSCAN caused by physically translating the pulse compressor’s
econd phase screen. The lower image shows the SPIFI mask profile.

enerating mask and measurements, along with results in both wave-
ength and time for a synthetic dataset are shown in Figs. 13 and 14,
espectively. The mask used in these experiments is a spatial frequency
odulated imaging (SPIFI) mask [27–29], a binary continuous cosine
asis mask with a radial chirp profile. SPIFI masks are particularly
seful for encoding position intensity to a frequency in collected data
hen the mask is spun and sampled at a constant rate. The mask is
ell known in the optics community, and used here because of its
tility in physically aligning the system. Compared to complex Gaussian
odulation masks, SPIFI masks may demonstrate slightly degraded
erformance, but represent an easily realizable laboratory setup. This
urely attenuating mask will be combined with a pure phase mask that
esults from moving the second grating in the pulse compressor with
linear actuator (DSCAN [14]). While this SPIFI/DSCAN combination
roduces an IIAC measurement set that is convenient to visualize in two
imensions, it is not a two-dimensional measurement like ICC where
very modulation produces a cross-correlation.

.1. Physical setup

The experimental pulse characterization system is comprised of sev-
ral subsections or ‘‘arms’’: spectral modulation arm, delay control arm,
alibration arm, and IIAC measurement arm. A diagram of the system
s shown in Fig. 15. The source, a ThorLabs FSL1030X1 ytterbium
emtosecond fiber laser, produces pulses with a maximum initial pulse
uration of 250 fs and a center wavelength of 1030 nm. Flip mirrors
labeled as FM in Fig. 15) are used to select which arms of the system
re used without requiring a rebuild and realignment of the system.
he first flip mirror can be left up (reflecting) to send the pulses to
he spectral modulation subsystem, or down to the delay control arm
o generate a copied pair of pulses with a variable time delay. Relative

ime delay is controlled with a Mach–Zehnder interferometer consisting
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Fig. 14. Recovered pulses in red compare to generating pulses in blue in both time
and frequency from the dataset generated in Fig. 13. Frequency measurements have
slight variation, but are barely notable in the time domain. Phase in both figures is
represented with a dashed line.

of two 50/50 beamsplitters, mirrors, and a linear stage motor (New-
port LTA-HS) with a controller (Newport ESP301). This arrangement
changes the total path length of one arm of the interferometer to
produce a pair of pulses with controlled relative delay.

With or without the use of the delay control arm, the beam goes
into the SPIFI modulation arm which is based on a grating and lens pair
Martinez pulse compressor [30] consisting of two 1000 lines/mm grat-
ings (Lightsmyth T-1000-1040-31.8 × 24.8-94) rotated to the Littrow
angle for the center wavelength of the laser (31 degrees) such that the
first diffracted order has the maximum intensity. The first diffracted
order of the center wavelength is coaxial with the lens pair consisting
of two 100 mm focal length achromatic lenses with an appropriate anti-
reflective coating (ThorLabs AC508-100-B-ML). The use of achromatic
lenses is important here due to the broad spectrum of the laser: the
doublet lenses have lower chromatic aberrations and produce a more
consistent focus through the spectrum. At the focal plane between the
two lenses, an image of the spectrum of the laser is produced. At
this plane, a SPIFI [28] mask mounted on a stepper motor (Trinamic
QSH2818) is placed to modulate the spectrum for characterization. The
second grating of the pulse compressor is translated along the pulse
compressor axis with a linear stage motor and controller (Newport LTS-
HS, Newport ESP301) to provide a complex phase modulation to the
pulse along with the attenuation provided by the SPIFI mask.

The second flip mirror is then used to select between two different
measurement systems: the calibration arm, and the frequency doubling
IIAC measurement arm. With the flip mirror down pulses are directed
with an achromatic lens through a fiber coupler to a fiber spectrometer
(Ocean Optics HR4 series) for calibration mapping of the SPIFI mask
indices to particular wavelengths. The IIAC measurement arm uses an
achromatic lens to focus pulses into a beta barium borate (BBO) crystal
for second harmonic generation (Type I phase matching), converting
two photons at 1030 nm to one photon at 515 nm. Collection optics
11

with a filter to block the fundamental 1030 nm light passes the SHG
Fig. 15. Diagram of the experimental system. The first flip mirror (FM1) controls
whether or not the delay control arm is bypassed for calibration. Passing to the delay
control arm creates a duplicate pulse for testing IIAC recovery, bypassing passes a
single pulse. The delay line is a Mach–Zhender interferometer with one arm on a
motorized stage to move the two mirrors axially, changing the path length to delay
a copy of the input pulse. After passing through or bypassing the delay control arm,
the pulse travels through the pulse compressor wavelength modulation arm. The SPIFI
mask is used to attenuate pulse spectrum and linear stepping of the second pulse
compressor grating (GR2) creates a complex phase modulation. The second flip mirror
(FM2) directs a pulse to either a calibration spectrometer or the IIAC measurement
arm. The spectrometer is used to ‘‘image’’ where the laser pulse is modulated by the
SPIFI mask as a function of motor index. M: mirror, FM: flip mirror, BS: 50/50 beam
splitter, GR: grating, AC: achromat, FC: fiber coupler, SPEC: spectrometer, CR: crystal
(SHG), CO: collection optics, F: filter, PD: photodiode.

pulse onto a photodiode. The integrated time intensities are digitized
using a Digilent Analog Discovery Pro (ADP3450) connected via USB
to a PC. Python scripts are used to collect data from the ADP3450 and
HR4 spectrometer while synchronizing acquisition with the motor steps
of the mask stepper motor.

5.2. Calibration

The modulation mask in the spectral modulation arm needs to be
mapped to a measurement index in the collected IIAC dataset. To do
this, the spectrometer in the calibration arm takes an image of the
modulation plane for a given motor index which maps the attenuation
of the SPIFI mask to wavelength.

The phase profile imparted by DSCAN [14] scanning of the second
grating mirror does not change the attenuation profile of the SPIFI mask
over wavelength. As a function of wavelength, the DSCAN imparted
phase profile is known analytically and shown in Eq. (14). Eq. (14)
denotes 𝐿[𝑖] as the position of the reconstructing grating away from
the lens focus. 𝜃[𝑖] is held at the Littrow angle, and 𝑑 is the density
of the diffraction grating (1000 lines per mm). To disambiguate, 𝑐 on
the right hand of Eq. (14) is the speed of light. These modulations are
element-wise multiplied with the attenuation masks produced by the
SPIFI mask.

𝑐𝑖[𝑛] = exp
⎛

⎜

⎜

⎝

𝑗 𝑛𝐿[𝑖]
𝑐

√

1 −
( 2𝜋𝑐
𝑛𝑑

− sin(𝜃[𝑖])
)2⎞

⎟

⎟

⎠

. (14)

To produce the attenuation profile from calibration spectrometer
measurements, we remove the pulse wavelength amplitude profile.
This flattens attenuation and pass band response so we can measure
new spectrum amplitude profiles. The overall calibration procedure is
described here:
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Fig. 16. The top left image is the measurements taken from the diode as a function of DSCAN motor position and SPIFI mask motor index. The right hand picture is taken from
the spectrometer at a 0 DSCAN offset and is interpolated to show the mask attenuation as a function of frequency. Note that this has been divided by the max of the profile over
the motor index axis to remove the pulse profile. In the bottom left, the unwrapped IIAC dataset from above is compared to the dataset that is generated by the pulse recovered
in Fig. 18.
1. Isolate the spectrum illuminated by seeking the left and right
bounds at 5% the intensity peak.

2. Take the per-element max over the motor index direction and
divide the spectra by this set to remove the pulse spectral profile.

3. Interpolate the wavelength domain values to a frequency domain
set, evenly spaced and set by the user for signal dimension 𝑀 .

4. For each motor mask set, create a set of complex profiles im-
parted by DSCAN.

This produces a three dimensional calibration set that is 𝑀 wide,
and has two modulation axes including a motor position and a DSCAN
position. Vectorizing the motor/DSCAN axes into a single set produces
the collection of 𝑐𝑖 required to invert ℎ𝑖 IIAC measurements.

5.3. Recovery

A calibration set was taken for the system described in Section 5.1
bypassing the delay control arm. This baseline was used to generate a
𝑐𝑖 set with the procedure outlined in Section 5.2. An IIAC dataset was
then collected for a pair of pulses spaced 600 fs from each other using
the delay control arm.

SPIFI mask motor indices were confined to 400 to 750, shown in
Fig. 16, and values of the DSCAN motor shift were [−8,−6,−4,−2, 0, 2,
4, 6, 8] mm. This provides a IIAC measurement set with 3150 mea-
surements, more than six times the measurements needed to expect
50% convergence for 𝑀 = 64 with complex Gaussian measurements
(𝐼𝑀=64|𝑝=50% = 594). This oversampling was selected in part because
of the unknown behavior that would result from not using complex
Gaussian 𝑐𝑖. For two separate optimizations, 𝑀 was set to 32,64 and
their results are shown in Figs. 17 and 18, respectively.

The agreement between the two experiments is very encouraging,
and the resulting time domain profile shows two pulses uniquely re-
solved. The two optimizations were initialized randomly and provide
a consistent result over different random initializations. The result-
ing distance between the pulse peaks is approximately 528.8 fs, low
12
possibly because of interference between the two pulses or due to
some experimental error. The path delay error corresponds to a path
difference of 21 um. At least 15 fs of error can be attributed to the delay
stage motor mount, which lists typical position accuracy at 2.2 μm [31]
(4.4 μm total).

5.4. Limitations and future research

From the numerical performance and physical experiments demon-
strated in this paper it is clear that while this technique presents a novel
approach to pulse characterization, it is not without its limitations.
With respect to required measurements for probable inversion, we
demonstrate that the number of required measurements 𝐼 is likely
quadratic with respect to 𝑀 . This implies a limited utility to prob-
lems that are substantially larger than the scale tested in this paper.
While error in estimates of 𝑥0 is inversely related to SNR, it was also
demonstrated that estimate error is inversely related to the number of
measurements; thus, the estimate error is limited only by the number
of measurements 𝐼 . Further research would be required to establish a
robust rate of convergence that models the effects of SNR. While tensor
approaches may improve the ability for a structured recovery, allow for
a domain to enforce sparsity conditions, and allow for recovery from
fewer measurements, the complexity of such techniques scales as the
fourth order of the problem dimension and is extremely limiting for
larger problems.

Limitations may exist experimentally at low laser power and/or at
low nonlinear signal intensities. Lower levels of signal light following
the SHG conversion may be a limitation should the detected intensity
be below the noise floor of the detector being used. Attempts to
adapt this to lower power experiments will dependent on the detec-
tor’s sensitivity, quiescent current, background illumination, and sensor
noise.

The final limitation we face is sensitivity of inversion to the quality
of a priori information regarding modulation patterns, as well as po-
tential sensitivity to the modulation basis chosen. Not all SPIFI motor
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Fig. 17. Double pulse recovered from calibrated setup. 𝑀 = 32 for this recovery. Note
that in both the top and the bottom image, the solid blue line represents the intensity
of the waveform, while the dashed green line represents the phase.

Fig. 18. Double pulse recovered from calibrated setup. 𝑀 = 64 for this recovery.
Markers for pulse peaks have been removed for clarity. Note that in both the top and
the bottom image, the solid blue line represents the intensity of the waveform, while
the dashed green line represents the phase.
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indexes were able to produce stable responses for different random
initializations and 𝑀 . SPIFI motor indices could vary between 0 and
800, and represented fading between the high frequency end of the
mask and the low frequency end of the mask. Toward the low frequency
end, the measurements produced by the largely open sections of mask
were much larger in energy than those toward the mid-indices and
therefore dominated the least-squares descent. Below about 400, the
calibration started to perform poorly as the spectrometer used is a band-
limited fiber that could not pass the full harmonic content of the mask
at the higher spatial frequencies. The usable range of the SPIFI motor
indices then was confined to about 400 to 750. Improved spectrometers
for calibration in the future, or aligning the pulse in the spectral
modulation arm to be locked to a known mask feature may improve
this issue. The motor rotating the SPIFI mask may have also contributed
to some error, as even small error in the angular control of the motor
toward the higher frequencies of the SPIFI mask would contribute mask
phase error. The manufacture lists the step angle accuracy maximum to
be 5% [32], making phase error at higher spatial frequencies probable.

In future work we aim to refine the masks used to include a
broader set of modulations to more closely mimic the complex Gaussian
modulation paradigm for use in a microscopy experiment. We also aim
to create a mask that is stable over the directions we expect actuator
error to produce a more consistent behavior over modulation indexing.

6. Conclusion

In this paper, we demonstrate that Wirtinger descent and iterative
hard tensor thresholding are effective solutions to signal recovery from
integrated intensity of auto-convolution. This problem represents a
previously unstudied approach to pulse characterization in optics and
a new higher-order phase retrieval problem motivating both gradient
and structured tensor techniques. Wirtinger descent in particular has
demonstrated itself to be a scalable solution to recovering complex laser
pulse spectra in a laboratory setting, and the technique may offer a
path to pulse characterization in microscopy for the optics community.
We provide algorithmic documentation to both the IIAC problem and
related IICC problem with the stark belief that new interpretations of
non-linear optics sensing paradigms will be solvable with Wirtinger gra-
dient and lifted tensor approaches. We provide theoretical examination
of null space conditions of the forward operator and numerical analysis
of the techniques performance across problem dimension, measurement
count, and SNR. This technique was demonstrated in the laboratory
to recover complex pulse time profiles with reasonable accuracy, and
plans to improve the technique for use in microscopy are underway.
New techniques in spatiotemporal pulse characterization [7] may also
be possible with similar gradient techniques allowing for imaging and
pulse characterization to happen simultaneously in a calibrated system.
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Appendix A. Derivation of Wirtinger gradient, Hessian

To derive the Wirtinger gradient and Hessian, we start at their
generic definitions [16,33] in Eqs. (15) and (16) and gradually sub-
stitute for expressions.

∇𝑓 (𝑥) =
(

𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑥∗

)𝐻

=
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(
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(15)
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(16)

We now substitute 𝑓 (𝑥) for a sum over error from Eq. (6) and can
ewrite each sub-expression in Eqs. (15) and (16) as functions of error
n Eqs. (17) through (22).
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The six unique expressions differentiating error are broken out and
defined in Eqs. (23) through (28).

𝑒𝑖 = ℎ[𝑖] −
𝑀−1
∑

𝑘=−𝑀+1
𝑥𝑇 𝑉𝑖[𝑘]𝑥 𝑥𝐻𝑉 ∗

𝑖 [𝑘]𝑥
∗

𝜕𝑒𝑖
𝜕𝑥

= −𝑥𝑇
𝑀−1
∑

𝑘=−𝑀+1

(

𝑉𝑖[𝑘] + 𝑉 𝑇
𝑖 [𝑘]

)

𝑥𝐻𝑉 ∗
𝑖 [𝑘]𝑥

∗

= −2𝑥𝑇
𝑀−1
∑

𝑘=−𝑀+1
𝑉𝑖[𝑘] 𝑥𝐻𝑉 ∗

𝑖 [𝑘]𝑥
∗ (23)

𝜕𝑒𝑖
𝜕𝑥∗

= −𝑥𝐻
𝑀−1
∑

𝑘=−𝑀+1

(

𝑉 ∗
𝑖 [𝑘] + 𝑉

𝐻
𝑖 [𝑘]

)

𝑥𝑇 𝑉𝑖[𝑘]𝑥

= −2𝑥𝐻
𝑀−1
∑

𝑘=−𝑀+1
𝑉 ∗
𝑖 [𝑘] 𝑥

𝑇 𝑉𝑖[𝑘]𝑥 (24)

𝜕
𝜕𝑥

𝜕𝑒𝑖
𝜕𝑥

𝐻
= −

𝑀−1
∑

𝑘=−𝑀+1

(

𝑉 ∗
𝑖 [𝑘] + 𝑉

𝐻
𝑖 [𝑘]

)

𝑥𝑇
(

𝑉𝑖[𝑘] + 𝑉 𝑇
𝑖 [𝑘]

)

𝑥∗

= −4
𝑀−1
∑

𝑘=−𝑀+1
𝑉 ∗
𝑖 [𝑘] 𝑥

𝑇 𝑉𝑖[𝑘]𝑥∗ (25)

𝜕
∗
𝜕𝑒𝑖

∗

𝐻
= −

𝑀−1
∑

(

𝑉𝑖[𝑘] + 𝑉 𝑇
𝑖 [𝑘]

)

𝑥𝐻
(

𝑉 ∗
𝑖 [𝑘] + 𝑉

𝐻
𝑖 [𝑘]

)

𝑥

14

𝜕𝑥 𝜕𝑥 𝑘=−𝑀+1
= −4
𝑀−1
∑

𝑘=−𝑀+1
𝑉𝑖[𝑘] 𝑥𝐻𝑉 ∗

𝑖 [𝑘]𝑥 (26)

𝜕
𝜕𝑥∗

𝜕𝑒𝑖
𝜕𝑥

𝐻
= −

𝑀−1
∑

𝑘=−𝑀+1

(

𝑉 ∗
𝑖 [𝑘] + 𝑉

𝐻
𝑖 [𝑘]

)

𝑥𝑇 𝑉𝑖[𝑘]𝑥

= −2
𝑀−1
∑

𝑘=−𝑀+1
𝑉 ∗
𝑖 [𝑘] 𝑥

𝑇 𝑉𝑖[𝑘]𝑥 (27)

𝜕
𝜕𝑥

𝜕𝑒𝑖
𝜕𝑥∗

𝐻
= −

𝑀−1
∑

𝑘=−𝑀+1

(

𝑉𝑖[𝑘] + 𝑉 𝑇
𝑖 [𝑘]

)

𝑥𝐻𝑉 ∗
𝑖 [𝑘]𝑥

∗

= −2
𝑀−1
∑

𝑘=−𝑀+1
𝑉𝑖[𝑘] 𝑥𝐻𝑉 ∗

𝑖 [𝑘]𝑥
∗ (28)

Collecting terms we arrive at the same terms of gradient and Hessian
presented in Eqs. (7) and (8).

∇𝑓 (𝑥) =
∑

𝑖
𝑒𝑖
⎛

⎜

⎜

⎝

𝜕𝑒𝑖
𝜕𝑥

𝐻

𝜕𝑒𝑖
𝜕𝑥∗

𝐻

⎞

⎟

⎟

⎠

= −2
∑

𝑖
𝑒𝑖

𝑀−1
∑

𝑘=−𝑀+1

(

(𝑥𝑇 𝑉𝑖[𝑘]𝑥) 𝑉 ∗
𝑖 [𝑘]𝑥

∗

(𝑥𝐻𝑉 ∗
𝑖 [𝑘]𝑥

∗) 𝑉𝑖[𝑘]𝑥

)

∇2𝑓 (𝑥) =
∑

𝑖

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝜕𝑒𝑖
𝜕𝑧

𝐻

𝜕𝑒𝑖
𝜕𝑧∗

𝐻

⎞

⎟

⎟

⎠

(

𝜕𝑒𝑖
𝜕𝑧

𝜕𝑒𝑖
𝜕𝑧∗

)

+ 𝑒𝑖
⎛

⎜

⎜

⎝

𝜕
𝜕𝑧

𝜕𝑒𝑖
𝜕𝑧

𝐻 𝜕
𝜕𝑧∗

𝜕𝑒𝑖
𝜕𝑧

𝐻

𝜕
𝜕𝑧

𝜕𝑒𝑖
𝜕𝑧∗

𝐻 𝜕
𝜕𝑧∗

𝜕𝑒𝑖
𝜕𝑧∗

𝐻

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

=
∑

𝑖

(

𝑎𝑖𝑎
𝐻
𝑖 − 𝑒𝑖

𝑀−1
∑

𝑘=−𝑀+1
𝐴𝑖,𝑘

)

𝑎𝑖 = −2
𝑀−1
∑

𝑘=−𝑀+1

(

(𝑥𝑇 𝑉𝑖[𝑘]𝑥) 𝑉 ∗
𝑖 [𝑘]𝑥

∗

(𝑥𝐻𝑉 ∗
𝑖 [𝑘]𝑥

∗) 𝑉𝑖[𝑘]𝑥

)

𝐴𝑖,𝑘 =
(

4𝑉 ∗
𝑖 [𝑘](𝑥

𝑇 𝑉𝑖[𝑘]𝑥∗) 2𝑉 ∗
𝑖 [𝑘](𝑥

𝑇 𝑉𝑖[𝑘]𝑥)
2𝑉𝑖[𝑘](𝑥𝐻𝑉 ∗

𝑖 [𝑘]𝑥
∗) 4𝑉𝑖[𝑘](𝑥𝐻𝑉 ∗

𝑖 [𝑘]𝑥)

)

Appendix B. Collected algorithms, IIAC

Presented in this section are helper algorithms used to construct the
larger algorithms throughout the paper.

B.1. Randomly initialized Wirtinger descent experiment

Algorithm 3 details an 𝐼 vs. 𝑀 experiment over multiple trials to
determine an estimate of convergence rate for randomly initialized IIAC
experiments.

Algorithm 3: 𝐼 ×𝑀 convergence tests for randomly initialized
Wirtinger Descent

Data:
𝐼 , measurement count
𝑀 , signal dimension
Result: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, True if 𝑒𝑟𝑟𝑜𝑟 is less than .01
// Generate measurements

1 𝑥0, 𝑐, ℎ = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐼𝐼𝐴𝐶(𝑀, 𝐼)
2 𝑥𝑖𝑛𝑖𝑡 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑀) + 1𝑗 𝑟𝑎𝑛𝑑𝑜𝑚(𝑀)
3 𝑥𝑖𝑛𝑖𝑡 = 𝑥𝑖𝑛𝑖𝑡∕𝑛𝑜𝑟𝑚(𝑥𝑖𝑛𝑖𝑡, 2)
4 𝑥 = min𝑥(Eq. (6), 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = Eq. (7), 𝑖𝑛𝑖𝑡 = 𝑥𝑖𝑛𝑖𝑡)
5 𝑥 = 𝑑𝑖𝑠𝑎𝑚𝑏𝑖𝑔𝑢𝑎𝑡𝑒𝐼𝐼𝐴𝐶(𝑥, 𝑥0)
6 𝑒𝑟𝑟𝑜𝑟 = 𝑛𝑜𝑟𝑚(𝑥 − 𝑥0, 2)∕𝑛𝑜𝑟𝑚(𝑥0, 2)
7 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑒𝑟𝑟𝑜𝑟 < .01

B.2. Comparing randomly initialized vs. tensor initialized Wirtinger descent

Algorithm 4 shows the experimental setup to determine if tensor ini-
ializers showed any advantage over random initializers for Wirtinger
escent against IIAC measurements.
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𝑐

Algorithm 4: 𝐼 × 𝑀 convergence tests comparing randomly
nitialized and tensor initialized Wirtinger Descent
Data:
𝐼 , measurement count
𝑀 , signal dimension
Result: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑟𝑎𝑛𝑑𝑜𝑚, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑡𝑒𝑛𝑠𝑜𝑟, True if 𝑒𝑟𝑟𝑜𝑟𝑟𝑎𝑛𝑑𝑜𝑚, 𝑒𝑟𝑟𝑜𝑟𝑡𝑒𝑛𝑠𝑜𝑟

is less than .01 respectively
// Generate measurements

1 𝑥0, 𝑐, ℎ = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐼𝐼𝐴𝐶(𝑀, 𝐼)
// Randomly Initialized Wirtinger Descent

2 𝑥𝑖𝑛𝑖𝑡 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑀) + 1𝑗 𝑟𝑎𝑛𝑑𝑜𝑚(𝑀)
3 𝑥𝑖𝑛𝑖𝑡 = 𝑥𝑖𝑛𝑖𝑡∕𝑛𝑜𝑟𝑚(𝑥𝑖𝑛𝑖𝑡, 2)
4 𝑥𝑟𝑎𝑛𝑑𝑜𝑚 = min𝑥(Eq. (6), 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = Eq. (7), 𝑖𝑛𝑖𝑡 = 𝑥𝑖𝑛𝑖𝑡)
5 𝑥𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑑𝑖𝑠𝑎𝑚𝑏𝑖𝑔𝑢𝑎𝑡𝑒𝐼𝐼𝐴𝐶(𝑥𝑟𝑎𝑛𝑑𝑜𝑚, 𝑥0)
6 𝑒𝑟𝑟𝑜𝑟𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑛𝑜𝑟𝑚(𝑥𝑟𝑎𝑛𝑑𝑜𝑚 − 𝑥0, 2)∕𝑛𝑜𝑟𝑚(𝑥0, 2)
// Tensor Initialized Wirtinger Descent

7 𝑥𝑖𝑛𝑖𝑡 = 𝑅𝐴𝐴𝑅𝐼𝐼𝐴𝐶(𝑐, ℎ)
8 𝑥𝑡𝑒𝑛𝑠𝑜𝑟 = min𝑥(Eq. (6), 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = Eq. (7), 𝑖𝑛𝑖𝑡 = 𝑥𝑖𝑛𝑖𝑡)
9 𝑥𝑡𝑒𝑛𝑠𝑜𝑟 = 𝑑𝑖𝑠𝑎𝑚𝑏𝑖𝑔𝑢𝑎𝑡𝑒𝐼𝐼𝐴𝐶(𝑥𝑡𝑒𝑛𝑠𝑜𝑟, 𝑥0)
10 𝑒𝑟𝑟𝑜𝑟𝑡𝑒𝑛𝑠𝑜𝑟 = 𝑛𝑜𝑟𝑚(𝑥𝑡𝑒𝑛𝑠𝑜𝑟 − 𝑥0, 2)∕𝑛𝑜𝑟𝑚(𝑥0, 2)
// Threshold

11 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑒𝑟𝑟𝑜𝑟𝑟𝑎𝑛𝑑𝑜𝑚 < .01
12 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑡𝑒𝑛𝑠𝑜𝑟 = 𝑒𝑟𝑟𝑜𝑟𝑡𝑒𝑛𝑠𝑜𝑟 < .01

B.3. IIACRank

Algorithm 5 accepts a mixed-rank fourth-order tensor and returns a
rank-one tensor built from a single fourth-order outer product. Tucker
decomposition is used for the decomposition step.

Algorithm 5: IIAC Rank-one tensor projection (IIACRank)
Data:
𝜒 ∈ C𝑀×𝑀×𝑀×𝑀

Result: 𝜒𝑟𝑎𝑛𝑘
1 𝑋,𝑋2, 𝑋∗

3 , 𝑋
∗
4 = tucker(𝜒, rank = [1, 1, 1, 1])

2 𝜒𝑟𝑎𝑛𝑘 = 𝑋 ⊗𝑋 ⊗𝑋∗ ⊗𝑋∗

B.4. Back-project

Algorithm 6 accepts a fourth-order tensor, forward and backward
operators, and an indexing set to back-project error from measurements
onto the generating fourth-order tensor.

Algorithm 6: Error back-projection (Back-project)
Data:
𝜒 ∈ C𝑀×𝑁×𝑀×𝑁 ,C𝑀×𝑀×𝑀×𝑀

𝐴, forward operator
𝐵, backward operator
𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙, indexing set
ℎ[𝑖], vectorized measurements
Result: 𝜒𝑏𝑎𝑐𝑘, 𝑒 ∈ R Frobenius error

1 𝜒𝑏𝑎𝑐𝑘 ← 𝟎
2 error = ℎ − 𝐴 𝜒[𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙]
3 𝜒𝑏𝑎𝑐𝑘[𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙] = 𝜒[𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙] + 𝐵 error
4 𝑒 = ||error||22

B.5. IIACIndex

Algorithm 7 accepts signal dimension 𝑀 , and produces the index
set 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙 that is used to organize the IIAC forward operator, and
15
provides the four index set for the fourth-order guess tensor 𝜒 that the
forward operator acts on.

Algorithm 7: IIAC Fourth-order index generation (IIACIndex)
Data:
𝑀
Result: 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙, Non-zero indices in IIAC measurement

tensors
1 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙 ← [ ], [ ], [ ], [ ]
2 for( 𝑘 = [−𝑀 + 1, −𝑀 + 2, ... , 𝑀 − 1 ) {
3 𝑙𝑘 = max(0,−𝑘)
4 𝑢𝑘 = min(𝑀,𝑁 − 𝑘) − 1
5 𝑐𝑜𝑙𝑘 = 𝑘 + [𝑙𝑘 ∶ 1 ∶ 𝑢𝑘]
6 𝑟𝑜𝑤𝑘 =𝑀 − 1 − [𝑙𝑘 ∶ 1 ∶ 𝑢𝑘]
7 𝑖𝑖 = [ 𝑖𝑖, 𝑟𝑒𝑝𝑒𝑎𝑡(𝑟𝑜𝑤𝑘, 𝑙𝑒𝑛(𝑐𝑜𝑙𝑘))]
8 𝑗𝑗 = [ 𝑗𝑗, 𝑟𝑒𝑝𝑒𝑎𝑡(𝑐𝑜𝑙𝑘, 𝑙𝑒𝑛(𝑟𝑜𝑤𝑘))]
9 𝑘𝑘 = [ 𝑘𝑘, 𝑡𝑖𝑙𝑒(𝑟𝑜𝑤𝑘, 𝑙𝑒𝑛(𝑐𝑜𝑙𝑘))]
10 𝑙𝑙 = [ 𝑙𝑙, 𝑡𝑖𝑙𝑒(𝑐𝑜𝑙𝑘, 𝑙𝑒𝑛(𝑟𝑜𝑤𝑘))]
11 }

B.6. ScaleIIAC

Algorithm 8 accepts an arbitrary guess 𝑥 of ground-truth 𝑥0 and
produces a scaled 𝑥 that produces the measurements ℎ[𝑖] ∈ R𝐼 from
∈ C𝑀×𝐼 that have the same norm 𝐿2 norm as ℎ[𝑖].

Algorithm 8: Scale IIAC (ScaleIIAC)
Data:
𝑥 ∈ C𝑀
𝑐 ∈ C𝑀×𝐼

ℎ[𝑖], vectorized IIAC measurements
Result: 𝑋 scaled to produce measurements ℎ∗[𝑖] s.t. |ℎ|2 = |ℎ∗|2

1 ℎ∗[𝑖] = 0
2 for( 𝑖 = [0, 1, ..., 𝐼 − 1 ) {

// Written to match Numpy convolve
3 𝑔𝑖 = 𝑐𝑜𝑛𝑣𝑜𝑙𝑣𝑒(𝑥 ∗ 𝑐[𝑖, ∶], 𝑥 ∗ 𝑐[𝑖, ∶], 𝑚𝑜𝑑𝑒 = }𝑓𝑢𝑙𝑙′)
4 ℎ∗[𝑖] = 𝑠𝑢𝑚(|𝑔𝑖|2)
5 }
6 𝑠𝑐𝑎𝑙𝑒 = 𝑚𝑒𝑎𝑛(ℎ∗∕ℎ)1∕4

7 𝑥∕ = 𝑠𝑐𝑎𝑙𝑒

B.7. IIACStart

To initialize an alternating minimization algorithm, Algorithm 9
provides a properly scaled rank-one fourth-order tensor. This tensor is
constructed from a randomly generated 𝑥 ∈ C𝑀 that is scaled to create
measurements with the same norm as those generated by 𝑥0 and then
passed through a structured fourth-order outer product.

Algorithm 9: Random Rank-one IIAC tensor, scaled (IIACStart)
Data:
𝑀
ℎ[𝑖], vectorized IIAC measurements
Result: 𝜒 ∈ C𝑀×𝑀×𝑀×𝑀 rank-one tensor to initialize
iterative algorithms that produce measurements on the same
scale as ℎ[𝑖]

1 𝑥 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑀) + 𝐣 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚(𝑀)
2 𝑐 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝐼,𝑀) + 𝐣 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚(𝐼,𝑀)
3 𝑥 = 𝑆𝑐𝑎𝑙𝑒𝐼𝐼𝐴𝐶(𝑥, 𝑐, ℎ)
4 𝜒 = 𝑥 ⊗ 𝑥 ⊗ 𝑥∗ ⊗ 𝑥∗
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B.8. DisambiguateIIAC

Algorithm 10 aligns phase and frequency offsets between an esti-
mate 𝑥 and ground-truth 𝑥0 so that difference can be estimated without
he phase and frequency ambiguity inherent to IIAC. Frequency offset is
stimated as the median phase step between samples. Resulting phase
ffset is the phase of the inner product between the demixed estimate
nd ground-truth.

Algorithm 10: IIAC estimate disambiguation (disambiguateI-
AC)
Data:
𝑥, estimate of ground-truth
𝑥0, ground-truth
Result: 𝑥, phase and frequency aligned estimate of

ground-truth
// Functions match typical Numpy format and arguments

1 𝑜𝑓𝑓𝑠𝑒𝑡𝑓𝑟𝑒𝑞 = 𝑚𝑒𝑑𝑖𝑎𝑛( 𝑑𝑖𝑓𝑓 ( 𝑢𝑛𝑤𝑟𝑎𝑝( 𝑎𝑛𝑔𝑙𝑒( 𝑥∕𝑥0 ))))
2 𝑥 = 𝑥 ∗ 𝑒𝑥𝑝(−𝐣 𝑜𝑓𝑓𝑠𝑒𝑡𝑓𝑟𝑒𝑞 ∗ 𝑎𝑟𝑎𝑛𝑔𝑒(𝑙𝑒𝑛(𝑥)))
3 𝑜𝑓𝑓𝑠𝑒𝑡𝑝ℎ𝑎𝑠𝑒 = 𝑎𝑛𝑔𝑙𝑒(𝑥𝐻𝑥0)
4 𝑥 = 𝑥 ∗ 𝑒𝑥𝑝(𝐣 ∗ 𝑜𝑓𝑓𝑠𝑒𝑡𝑝ℎ𝑎𝑠𝑒)

B.9. GeneratecomplexGaussianIIAC

Algorithm 11 generates a starting ground-truth and measurement
set, in addition to creating the initial set of measurements.

Algorithm 11: Ground-truth and measurement set generation
(generateComplexGaussianIIAC)

Data:
𝑀 , signal dimension
𝐼 , measurement count
Result: 𝑥0, 𝑐, ℎ[𝑖], a ground-truth signal, complex Gaussian

measurement set, and IIAC measurements
1 𝑥0 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑀) + 𝐣 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚(𝑀)
2 𝑥0∕ = 𝑛𝑜𝑟𝑚(𝑥0, 2)
3 𝑐 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝐼,𝑀) + 𝐣 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚(𝐼,𝑀)
4 ℎ[𝑖] = 𝟎𝐼
5 for( 𝑖 = [0, 1, ..., 𝐼 − 1 ) {

// Written to match Numpy convolve
6 𝑔𝑖 = 𝑐𝑜𝑛𝑣𝑜𝑙𝑣𝑒(𝑥 ∗ 𝑐[𝑖, ∶], 𝑥 ∗ 𝑐[𝑖, ∶], 𝑚𝑜𝑑𝑒 = }𝑓𝑢𝑙𝑙′)
7 ℎ[𝑖] = 𝑠𝑢𝑚(|𝑔𝑖|2)
8 }

Appendix C. Integrated intensity of cross-correlation

The definition of ICC in Eq. (2) is constructed from a modified
form of the intensity of cross-correlation problem, where a technique
designed to recover two vectors is modified to recover a single vector.
This adaptation stems from the fact that in time-resolved systems, a
pulse is multiplied by itself in a transform domain rather than being
probed with another pulse as is the case in frequency resolved systems.
As such, IIAC is a system that recovers a single unknown vector.

Currently, a physical system that uses integrated intensity measure-
ments to recovery two vectors has not been designed and therefore
a technique to recover two vectors from the integrated intensity of
cross-correlation (IICC) has not been physically motivated. However,
it stands to reason that if IIAC recovery techniques are successful in
optical pulse characterization, future research may benefit from having
some established techniques for recovery from IICC as well as IIAC. This
section defines the IICC problem, and outlines modified algorithms for
the recovery of two signals from IICC measurements.
16
C.1. Formulations

The IICC measurement is defined in quartic vector form for two
ground-truth vectors 𝑥0 ∈ C𝑀 , 𝑦0 ∈ C𝑁 in Eq. (29). Here we as-
ume that each vector can receive 𝐼 independent modulations 𝑐𝑖, 𝑑𝑖
espectively.

[𝑖] =
𝑁−1
∑

𝑘=−𝑀+1

|

|

|

𝑥𝑇0 diag(𝑐𝑖𝑑𝐻𝑖 , 𝑘)𝑦
∗
0
|

|

|

2
+ 𝜂[𝑖]

=
𝑁−1
∑

𝑘=−𝑀+1

|

|

|

𝑥𝑇0 𝛬𝑖[𝑘]𝑦
∗
0
|

|

|

2
+ 𝜂[𝑖]

=
𝑁−1
∑

𝑘=−𝑀+1
𝑥𝑇0 𝛬𝑖[𝑘]𝑦

∗
0 𝑥

𝐻
0 𝛬

∗
𝑖 [𝑘]𝑦0 + 𝜂[𝑖] (29)

e will continue to use the notation that 𝛬𝑖[𝑘] = diag(𝑐𝑖𝑑𝐻𝑖 , 𝑘). This
efinition can also be viewed as the sum of phaseless quadratic matrix
nner products as shown in Eq. (30).

[𝑖] =
𝑁−1
∑

𝑘=−𝑀+1

|

|

|

𝑥𝑇0 𝛬𝑖[𝑘]𝑦
∗
0
|

|

|

2
+ 𝜂[𝑖]

=
𝑁−1
∑

𝑘=−𝑀+1

|

|

|

⟨𝑥0𝑦
𝐻
0 , 𝛬

∗
𝑖 [𝑖]⟩

|

|

|

2
+ 𝜂[𝑖] (30)

Finally, IICC can be shown to be the linear inner product between a
eries of modulation fourth-order tensors and a ground-truth fourth-
rder tensor  = 𝑥0 ⊗ 𝑦∗0 ⊗ 𝑥∗0 ⊗ 𝑦0. This adaptation is shown in
q. (31).

[𝑖] =
𝑁−1
∑

𝑘=−𝑀+1

|

|

|

𝑥𝑇0 𝛬𝑖[𝑘]𝑦
∗
0
|

|

|

2
+ 𝜂[𝑖]

=
𝑁−1
∑

𝑘=−𝑀+1
⟨𝑥0𝑦

𝐻
0 , 𝛬

∗
𝑖 [𝑘]⟩⟨𝑥

∗
0𝑦
𝑇
0 , 𝛬𝑖[𝑘]⟩ + 𝜂[𝑖]

=
𝑁−1
∑

𝑘=−𝑀+1
⟨𝑥0 ⊗ 𝑦∗0 ⊗ 𝑥∗0 ⊗ 𝑦0, 𝛬

∗
𝑖 [𝑘]⊗𝛬𝑖[𝑘]⟩ + 𝜂[𝑖]

= ⟨𝑥0 ⊗ 𝑦∗0 ⊗ 𝑥∗0 ⊗ 𝑦0,
𝑁−1
∑

𝑘=−𝑀+1
𝛬∗
𝑖 [𝑘]⊗𝛬𝑖[𝑘]⟩ + 𝜂[𝑖]

= ⟨,𝑖⟩ + 𝜂[𝑖] (31)

.2. Cost-function, gradient, Hessian

With the definition of IICC given in Eq. (29), we construct a least-
quares cost-function in Eq. (32) for estimates of ground-truth 𝑥, 𝑦.

(𝑥, 𝑦) = 1
2

𝐼−1
∑

𝑖=0

(

ℎ[𝑖] −
𝑁−1
∑

𝑘=−𝑀+1
𝑥𝑇𝛬𝑖[𝑘]𝑦∗ 𝑥𝐻𝛬∗

𝑖 [𝑘]𝑦

)2

. (32)

= 1
2

𝐼−1
∑

𝑖=0
𝑒2𝑖

ecause our cost-function is a function of two variables, we construct a
oncatenated vector 𝑧 = [𝑥𝑇 , 𝑦𝑇 ]𝑇 , form the cost-function as a function
f 𝑧, take the Wirtinger gradient and Hessian in identical fashion to Ap-
endix A, and replace 𝑧 with 𝑥, 𝑦 constituents. We have omitted this
erivation for sake of brevity, and we present the results for Wirtinger
radient in Eq. (33) and Wirtinger Hessian in Eq. (35). Note the
horthand for modulated cross-correlation at lag variable 𝑘 is denoted
𝑖[𝑘] = 𝑥𝑇𝛬𝑖[𝑘]𝑦∗. or in sum form as 𝑔𝑖[𝑘] =

∑min(𝑀,𝑁−𝑘)−1
𝑛=max(0,−𝑘) 𝑐𝑖[𝑛]𝑑∗𝑖 [𝑛 +

]𝑥[𝑛]𝑦∗[𝑛 + 𝑘].

𝑓 (𝑥, 𝑦) = −
𝐼−1
∑

𝑖=0

⎛

⎜

⎜

⎜

⎜

𝑒𝑖
𝑁−1
∑

𝑘=−𝑀+1

⎛

⎜

⎜

⎜

⎜

𝑔𝑖[𝑘]𝛬∗
𝑖 [𝑘]𝑦

𝑔∗𝑖 [𝑘]𝛬
𝑇
𝑖 [𝑘]𝑥

𝑔∗𝑖 [𝑘]𝛬𝑖[𝑘]𝑦
∗

𝐻 ∗

⎞

⎟

⎟

⎟

⎟

⎞

⎟

⎟

⎟

⎟

(33)
⎝ ⎝

𝑔𝑖[𝑘]𝛬𝑖 [𝑘]𝑥
⎠⎠
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∇

=
𝐼−1
∑

𝑖=0
𝑒𝑖𝑎𝑖 (34)

2𝑓 (𝑥, 𝑦) =
𝐼−1
∑

𝑖=0

(

𝑎𝑖𝑎
𝐻
𝑖 − 𝑒𝑖

(

𝑏𝑖,𝑘𝑏
𝐻
𝑖,𝑘 + 𝑐𝑖,𝑘𝑐

𝐻
𝑖,𝑘 +𝐷𝑖,𝑘

))

(35)

𝑏𝑖,𝑘, 𝑐𝑖,𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

𝛬∗
𝑖 [𝑘]𝑦
𝟎
𝟎

𝛬𝐻𝑖 [𝑘]𝑥∗

⎞

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎝

𝟎
𝛬𝑇𝑖 [𝑘]𝑥
𝛬𝑖[𝑘]𝑦∗

𝟎

⎞

⎟

⎟

⎟

⎟

⎠

𝐷𝑖,𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

𝟎 𝑔𝑖[𝑘]𝛬∗
𝑖 [𝑘] 𝟎, 𝟎

𝑔∗𝑖 [𝑘]𝛬
𝑇
𝑖 [𝑘] 𝟎 𝟎, 𝟎

𝟎 𝟎 𝟎 𝑔∗𝑖 [𝑘]𝛬𝑖[𝑘]
𝟎 𝟎 𝑔𝑖[𝑘]𝛬𝐻𝑖 [𝑘] 𝟎

⎞

⎟

⎟

⎟

⎟

⎠

C.3. Additional ambiguity

Only one additional ambiguity exists for the IICC problem that is not
present for the IIAC problem, ambiguous scaling between 𝑥, 𝑦. Because
the IICC measurement is a integrated intensity of cross-correlation, no
measurements are made without coupling between 𝑥0, 𝑦0. This means
that the true energy of each cannot be determined, only the energy of
their cross-correlation thus making the scale of 𝑥, 𝑦 ambiguous to one
another.

C.4. Algorithm variation

The tensor alternating minimization algorithm AltMinIIAC can be
modified to initialize the IICC problem, and the resulting AltMinIICC
is shown in Algorithm 12. Helper algorithms IICCStart, ScaleIICC,
IICCRank, and IICCIndex are presented in Algorithms 13, 14, 15, and
16 respectively.

Algorithm 12: IICC Alternating Minimization (AltMinIICC)
Data:
𝑐 ∈ C𝐼×𝑀
𝑑 ∈ C𝐼×𝑁
ℎ[𝑖], 𝑖 = [0, 1, ..., 𝐼 − 1], vectorized IICC measurements
Parameters:
thresh = 1𝑒 − 6
maxIts = 1000
Result: 𝑥 ∈ C𝑀 , 𝑦 ∈ C𝑁

1 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙 ← 𝐼𝐼𝐶𝐶𝐼𝑛𝑑𝑒𝑥(𝑀,𝑁)
2 𝐴← 𝟎 ∈ C𝐼×𝑄, 𝑄 =

∑𝑁−1
𝑘=−𝑀+1 (min(𝑀,𝑁 − 𝑘) − max(0,−𝑘))2

3 for( 𝑖 = [0, 1, ..., 𝐼 − 1] ) {
4 𝐴[𝑖, ∶] ← 𝑐[𝑖, 𝑖𝑖] ∗ 𝑑∗[𝑖, 𝑗𝑗] ∗ 𝑐∗[𝑖, 𝑘𝑘] ∗ 𝑑[𝑖, 𝑙𝑙]
5 }
6 𝐴+ ← 𝑝𝑖𝑛𝑣(𝐴)
7 𝜒 ← 𝐼𝐼𝐶𝐶𝑆𝑡𝑎𝑟𝑡(𝑀,𝑁, ℎ[𝑖])
8 for( 𝑖𝑖 = 0, 1, ..., 𝑚𝑎𝑥𝐼𝑡𝑠 − 1 ) {
9 𝜒𝑏𝑎𝑐𝑘, 𝑒𝑟𝑟𝑜𝑟← 𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑗𝑒𝑐𝑡(𝜒,𝐴,𝐴+, 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙, ℎ[𝑖])
10 𝜒 ← 𝐼𝐼𝐶𝐶𝑅𝑎𝑛𝑘(𝜒𝑏𝑎𝑐𝑘)
11 if 𝑒𝑟𝑟𝑜𝑟 > 𝑡ℎ𝑟𝑒𝑠ℎ then
12 break
13 }
14 𝑥, 𝑦∗, 𝑥∗, 𝑦 = tucker(𝜒, rank = [1, 1, 1, 1])
15 𝑥, 𝑦← 𝑆𝑐𝑎𝑙𝑒𝐼𝐼𝐶𝐶(𝑥, 𝑦, 𝑐, 𝑑, ℎ[𝑖])
17
Algorithm 13: Random Rank-one IICC tensor, scaled (IICCStart)
Data:
𝑀,𝑁
ℎ[𝑖], vectorized IICC measurements
Result: 𝜒 ∈ C𝑀×𝑁×𝑀×𝑁 rank-one tensor to initialize
iterative algorithms that produce measurements on the same
scale as ℎ[𝑖]

1 𝑥 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑀) + 1𝑗 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚(𝑀)
2 𝑦 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑁) + 1𝑗 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚(𝑁)
3 𝑐 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝐼,𝑀) + 1𝑗 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚(𝐼,𝑀)
4 𝑑 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝐼,𝑁) + 1𝑗 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚(𝐼,𝑁)
5 𝑥, 𝑦 = 𝑆𝑐𝑎𝑙𝑒𝐼𝐼𝐶𝐶(𝑥, 𝑦, 𝑐, 𝑑)
6 𝜒 = 𝑥 ⊗ 𝑦∗ ⊗ 𝑥∗ ⊗ 𝑦

Algorithm 14: Scale IICC (ScaleIICC)
Data:
𝑋, 𝑌 ∈ C𝑀 ,C𝑁
𝑐, 𝑑 ∈ C𝑀×𝐼 ,C𝑁×𝐼

ℎ[𝑖], vectorized IICC measurements
Result: 𝑋, 𝑌 scaled to produce measurements on same scale as

ℎ[𝑖]
1 ℎ𝑡𝑚𝑝[𝑖] = 0
2 for( 𝑖 = [0, 1, ..., 𝐼 − 1 ) {

// Written to match Numpy correlate
3 ℎ𝑡𝑚𝑝[𝑖] = 𝑠𝑢𝑚(|𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒(𝑦 ∗ 𝑑[𝑖, ∶], 𝑥 ∗ 𝑐[𝑖, ∶], 𝑚𝑜𝑑𝑒 =′ 𝑓𝑢𝑙𝑙′)|2)
4 }
5 𝑠𝑐𝑎𝑙𝑒 = 𝑚𝑒𝑎𝑛(ℎ𝑡𝑚𝑝∕ℎ)1∕4

6 𝑋∕ = 𝑠𝑐𝑎𝑙𝑒
7 𝑌 ∕ = 𝑠𝑐𝑎𝑙𝑒

Algorithm 15: IICC Rank-one tensor projection (IICCRank)
Data:
𝜒 ∈ C𝑀×𝑁×𝑀×𝑁

Result: 𝜒𝑟𝑎𝑛𝑘
1 𝑋, 𝑌 ∗, 𝑋2, 𝑌2 = tucker(𝜒, rank = [1, 1, 1, 1])
2 𝜒𝑟𝑎𝑛𝑘 = 𝑋 ⊗ 𝑌 ∗ ⊗𝑋∗ ⊗ 𝑌

Algorithm 16: IICC Fourth-order index generation (IICCIndex)
Data:
𝑀,𝑁
Result: 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙, Non-zero indices in IICC measurement

tensors
1 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙 ← [ ], [ ], [ ], [ ]
2 for( 𝑘 = [−𝑀 + 1, −𝑀 + 2, ... , 𝑁 − 1 ) {
3 𝑙𝑘 = max(0,−𝑘)
4 𝑢𝑘 = min(𝑀,𝑁 − 𝑘) − 1
5 𝑟𝑜𝑤𝑘 = [𝑙𝑘 ∶ 1 ∶ 𝑢𝑘]
6 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝑘 = 𝑟𝑒𝑝𝑒𝑎𝑡(𝑟𝑜𝑤𝑠𝑘, 𝑙𝑒𝑛(𝑟𝑜𝑤𝑠𝑘))
7 𝑡𝑖𝑙𝑒𝑑𝑘 = 𝑡𝑖𝑙𝑒(𝑟𝑜𝑤𝑠𝑘, 𝑙𝑒𝑛(𝑟𝑜𝑤𝑠𝑘)
8 𝑖𝑖 = [ 𝑖𝑖, 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝑘]
9 𝑗𝑗 = [ 𝑗𝑗, 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑𝑘 + 𝑘]
10 𝑘𝑘 = [ 𝑘𝑘, 𝑡𝑖𝑙𝑒𝑑𝑘]
11 𝑙𝑙 = [ 𝑙𝑙, 𝑡𝑖𝑙𝑒𝑑𝑘 + 𝑘]
12 }
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