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We develop a novel technique through spectral decompositions to study the gravitational perturbations
of a black hole, without needing to decouple the linearized field equations into master equations and
separate their radial and angular dependence. We first spectrally decompose the metric perturbation in a
Legendre and Chebyshev basis for the angular and radial sectors respectively, using input from the
asymptotic behavior of the perturbation at spatial infinity and at the black hole event horizon. This spectral
decomposition allows us to then transform the linearized Einstein equations (a coupled set of partial
differential equations) into a linear matrix equation. By solving the linear matrix equation for its
generalized eigenvalues, we can estimate the complex quasinormal frequencies of the fundamental mode
and various overtones of the gravitational perturbations simultaneously and to high accuracy. We apply this
technique to perturbations of a nonspinning, Schwarzschild black hole in general relativity and find the
complex quasinormal frequencies of two fundamental modes and their first two overtones. We demonstrate
that the technique is robust and accurate, in the Schwarzschild case leading to relative fractional errors of
<10719-1078 for the fundamental modes, <10~7—107° for their first overtones, <10~7—=10~* for their
second overtones. This method can be applied to any black hole spacetime, irrespective of its Petrov type,
making the numerical technique extremely powerful in the study of black hole ringdown in and outside

general relativity.
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I. INTRODUCTION

The LIGO-Virgo-KAGRA collaboration has success-
fully detected numerous gravitational-wave (GW) signals,
most of which are emitted by binary black hole (BH)
coalescence [1-13]. After the merger, the remnant even-
tually relaxes into a stationary and rotating BH by emitting
GWs with a discrete set of quasinormal mode (QNM)
frequencies, a coalescence stage known as ringdown. These
signals grant us pristine access to the properties of
spacetime in the strong field, most dynamical and nonlinear
regime, as these GWs travel mostly undisturbed, and thus,
carry nondistorted information about their source. Thus far,
all the GWs detected are consistent with general relativity
(GR) [7,11,14-19], indicating that Einstein’s theory has
now also passed the first GW tests. In the near future, the
ongoing improvements in GW detector technology and the
addition of new, next-generation detectors [20,21] with
improved sensitivity will allow us to listen to the Universe
and decipher its physics better.

While GR has passed numerous astrophysical and solar
system tests [22—-29], several theoretical and observational
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issues remain. On the theoretical side, the existence of
spacelike and timelike singularities and the hard-coded
nature of locality in GR begs for a quantum completion of
Einstein’s classical theory that may resolve the BH infor-
mation paradox [30,31] and allow for quantum entangle-
ment even in the presence of horizons. On the observational
side, the matter-antimatter asymmetry of the Universe, its
late-time acceleration [32,33] and galaxy rotation curves
[34,35] require that GR be completed with additional
parity-violating physics (that satisfy the Sakharov condi-
tions [36-39]), an “unnaturally” small cosmological con-
stant [40,41] and a dark matter particle [42—45] yet to be
observed through direct detection particle experiments.
These issues have inspired many modified gravity theories,
such as Einstein-dilaton-Gauss-Bonnet gravity [46-49],
dynamical Chern-Simons gravity [50-52], Einstein-@ther
theory [53-56], Horndeski and beyond Horndeski gravity
[57-59]. In these modified theories, BHs still exist but they
need not be described by their GR counterparts, instead
acquiring certain modifications that may render them more
generic (e.g., of Petrov type I instead of D [60-62]). As a
result of the modified field equations and the non-GR
corrections to BHs in these theories, their QNM spectra can
be quite different than that predicted in GR [63-71], in
principle allowing for new tests with GWs [72-88].

© 2023 American Physical Society
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Ringdown GW tests of modified gravity, however, are
hindered by the intrinsic difficulty in the computation of the
gravitational QNM frequencies of rotating BHs in modified
theories. In principle, the BH QNM frequencies can be
computed by solving the linearized field equations in that
theory, derived by expanding the field equations to
first order in metric perturbations. For a nonspinning BH
background, the linearized field equations are a compli-
cated set of coupled, partial differential equations, which
one decouples to find master equations for its propagating
degrees of freedom through the use of special (Regee-
Wheeler [89] and Zerilli-Moncrief [90,91]) master func-
tions. For a rotating BH, the linearized field equations are
an extremely complicated set of coupled, partial differential
equations, which nobody has yet been able to decouple into
master equations when working directly with metric
perturbations.l Instead, for rotating BHs one can work
with curvature perturbations through the Newman-Penrose
(NP) formalism [94] (in which the field equations are cast
in terms of spinor coefficients, the Weyl scalars and
differential operators) to derive a master function for these
curvature perturbations. In this way, the NP formalism
allows one to derive the Teukolsky master equation (i.e. a
separable wave equation for the NP scalars that represent
propagating degrees of freedom), provided the rotating BH
background is of Petrov-type D and the field equation is
Einstein’s [95-98]. If the theory is not Einstein’s, or if the
BH is not of Petrov-type D, then there is no guarantee that
one can decouple the field equations linearized in curvature
perturbations through the NP formalism.”

This difficulty motivates us to explore new methods to
compute the gravitational QNM frequencies of BH space-
times. One necessary criterion that these new methods must
satisfy is robustness and accuracy, which we can only
assess by implementing them first within GR and compar-
ing results to known gravitational QNM frequencies of
Schwarzschild and Kerr BHs [101]. This is the main focus
of this paper, focusing here on Schwarzschild BHs, a
necessary step before tackling the Kerr case. One can
attempt to construct many new methods that satisfy the
above criteria, but one that has shown some promise in the
past few decades is spectral methods. Spectral decompo-
sition can be an effective method to handle complicated
linearized field equations, as shown in [102-109]. Using
the completeness and orthonormal properties of certain
special functions, like the Chebyshev polynomials and the
Legendre polynomials, we can express any piecewise

lNonetheless, the authors do note that numerical methods have
been explored for solving the inhomogeneous coupled linearized
equations with a source for the perturbed Schwarzschild [92] and
Kerr metric [93].

‘We note that, in parallel with this work, recent progress has
been made to extend the derivation of the Teukolsky equation to
beyond-GR BHs [99,100] by working to leading order in GR
deviations within an effective field theory treatment.

continuous function as a linear combination of these special
functions. The metric perturbations and the coefficient
functions of the linearized field equations are at least C!
outside the horizon, so we can accurately approximate them
by using a finite number of spectral bases, which simplifies
the calculation of QNM frequencies.

Previous works have considered the use of spectral or
pseudospectral collocation methods to study BH perturba-
tions. These studies transformed various BH perturba-
tion problems into (quadratic) eigenvalue problems via
spectral decompositions in different ways and for different
scenarios. One class of such studies focused on scalar
and electromagnetic perturbations of BHs using spectral
decompositions (e.g. [102,110,111]). Another class of
studies used the NP formalism to spectrally decompose
the perturbed NP scalars and the NP equations (some with
[112,113] and some without decoupling them [114-117]).
A third class of studies used spectral or pseudospectral
collocation methods to study the QNM frequencies of
spherically symmetric BHs (e.g. [102—104]). These studies
solved the linearized field equations directly, through
separation of variables with spherical harmonics (focusing
on the zero magnetic number case) and a spectral decom-
position of the radial sector. A final class of studies
explored spectral decompositions of metric perturbations
and the linearized field equations without decoupling (e.g.
[118]). The spectral methods in such studies focused on the
QNMs related to ultraspinning and bar-mode instabilities of
higher-dimensional (Myers-Perry) BHs, and worked with
scalar- and vector-mode perturbations separately [118].?

Building on the work of [102—104], the goal of this paper
is to develop a powerful, adaptable and extendable spectral
method to study the QNMs that are likely to be measured
by actual GW detectors in the near future. In particular, our
spectral method works simultaneously with different sec-
tors (scalar, vector and tensor) of the metric perturbations
and with the linearized field equations of four-dimensional
BHs, without decoupling the latter into master equations.
We begin by deriving the linearized Einstein equations that
govern the metric perturbations of a Schwarzschild BH in
the Regge-Wheeler gauge (Sec. II). We then use a product
decomposition of the metric tensor into radial and angular
functions, together with a spectral decomposition (of the
angular sector in terms of associate Legendre polynomials)
to turn the system of partial differential equations into a
system of ordinary differential equations. By solving this
system of ordinary differential equations asymptotically at
spatial infinity and at the event horizon, we obtain the

3Spectral or pseudospectral collocation methods have also
been used to study BH metric perturbations by transforming
the linearized field equations into an eigenvalue problem (e.g.
[105-107,119]). These studies, however, focused on BH ther-
modynamical properties and stability issues related to higher-
dimensional BHs, which are not strictly relevant to the QNM
frequencies of the ringdown phase of four-dimensional BHs.
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boundary conditions that the radial functions must satisfy
(Sec. III). The asymptotic behavior of the radial functions
allows us to construct a radial Ansatz that corrects the
asymptotic behavior through a spectral sum of Chebyshev
polynomials (Sec. IV).

The full spectral decomposition transforms the linearized
Einstein equations into a system of linear algebraic
equations, whose generalized eigenvalues contain the
QNM frequencies of the Schwarzschild BH. We compute
these QNM frequencies numerically by solving for the
generalized eigenvalues and we devise specific procedures
to identify which generalized eigenvalues correspond to
which QNM frequencies. We show that the reconstruction
of the metric functions through this spectral decomposition
is actually an asymptotic series by calculating its optimal
truncation order (Sec. V). We find that typically keeping 25
basis functions in the Chebyshev and the Legendre sectors
suffices to identify six QNM frequencies, two of which
correspond to fundamental modes, two to the first over-
tones and two to the second overtones. We also find that
these QNM frequencies can be calculated fast and accu-
rately, with relative fractional errors of <10719-1078 for the
fundamental modes, <10~7—107° for their first overtones,
and <1077-107* for their second overtones.

We conclude by analyzing the robustness of our spectral
method (Sec. VI). We first check that our QNM frequency
calculations are independent of the order (m) of the
associated Legendre polynomial basis, an important feature
of gravitational perturbation of spherically symmetric BHs.
We then check that our QNM calculations are independent
of the choice of radial scaling we choose in the Ansatz for
the radial function, further indicating the robustness of the
spectral method. Finally, we check that the calculation of
QNM frequencies is approximately insensitive to the set of
six components of the linearized Einstein equations that we
choose to solve for the six metric perturbation functions.
This flexibility allows us to select the set of equations that is
most convenient and to cross-check our results. Moreover,
our approach allows us to better understand how different
components of the metric perturbations oscillate, without
having to rely on metric reconstruction or a specific set of
components of the linearized equations.

The work presented here is yet another avenue to
calculate QNMs of perturbed BHs, but it is very promising
and interesting for the following reasons. First, since we
work with the metric perturbations directly, there is never a
need to decouple the field equations and find master
functions and equations. This is important because such
a decoupling can be extremely complicated in modified
theories of gravity, especially when the BH background is
spinning and not of Petrov type D. Moreover, since we
work with the metric perturbations directly, we automati-
cally find solutions for all components of the metric itself
without needing any further metric reconstruction. This
could be useful when doing second-order BH perturbation

theory [114,120] and self-force calculations [121,122],
which typically require metric reconstruction. Finally,
the method presented here is fast, computationally efficient,
accurate, robust and able to obtain QNM frequencies of not
just the fundamental modes, but also of its overtones with
similar speed, efficiency, accuracy, and robustness. This is
important because, while some methods, such as [101,123],
can be used to estimate the QNM frequencies of higher
overtones very precisely, the calculation of the higher-
overtone frequencies can sometimes be noisy and not as
accurate as that of the fundamental model using some other
methods, such as direct numerical integration. Section VII
will further elaborate all of these features further and
possible extensions of our work.

Henceforth, we assume the following conventions: x* =
(x% x", x%,x3) = (t,r. . ¢), where y = cos@ and @ is the
azimuthal angle; the signature of the metric tensor is
(=, +, 4, +); gravitational QNMs are labeled in the form
of nlm or (n, I, m), where n is the principal mode number, /
is the azimuthal mode number and m is the magnetic mode
number of the QNMs; Greek letters in index lists stand
for spacetime coordinates; Greek letters in curly braces
{uv} denote the collection of the yv components of the

perturbed Einstein equations, G,(,L> =0. For example,

{trity,td,rr,ry,r¢p} stands for {GS}) =0, GS;) =0,...,
Ggl) = 0}. For the convenience of the reader, we have

presented a list of all definitions and symbols in
Appendix A.

II. LINEARIZED EINSTEIN FIELD EQUATIONS
ABOUT A SCHWARZSCHILD BLACK
HOLE BACKGROUND

In this section, we discuss our representation of the
background Schwarzschild spacetime, present the linear-
ized Einstein field equations for a perturbed Schwarzschild
BH, and then conclude with a quick description of the
spectral decomposition of the metric perturbations.

A. Background spacetime, metric perturbation
and the linearized Einstein equations

The solution to the vacuum Einstein equation G,, =0
that represents a stationary and spherically symmetric

(nonspinning) BH is the Schwarzschild metrics g,(,g). The
line element associated with this metric can be written in
Schwarzschild coordinates as

a’s(zo) = g,(,(,))dx”dx”
dr? r?
= —f(l")dlz +fTI") + 1_—)(261)(2 + }"2(1 —){z)dgbz,
(1)

where M is the BH mass, y = cos 6 with @ the polar angle,
¢ is the azimuthal angle and
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fn=1-2 @
r
is the so-called Schwarzschild factor. For a Schwarzschild
BH in these coordinates, the event horizon is located
at ry = 2M.
We now consider linear perturbations of the metric
tensor, such that

0
9w = gfw) + eh/u/’ (3)

where g,(g) is the background metric of Eq. (1), &, is the

metric perturbation, and € is a bookkeeping parameter for the

perturbations. The metric perturbation is a function of
spacetime coordinates and it can be decomposed into
temporal, radial, and angular components. Under a parity
transformation (i.e., the simultaneous shifts & — 7z — 8 and
¢ — ¢ + &) these components can be classified into odd (or
“axial”) and even (or “polar”) sectors, depending on whether
they pick up a factor of (—1)“*! or (=1)7, respectively. This
allows us to decompose %, as [89-91,124]

R (tr ) = hosd(t,r.x. ) + By (1.1, 1. §), (4)

where”

0 0 —im(1—x*)"hs(r.y) (1—x*)0,hs(r.y)
] imp—iw. 0 _lm(l _){2)_1]1 (rv)() (1 _)(2 a h (rv){)
hodd = eimd=iot 6 276 , (5a)
%k
O 0
and
f(r)h(rx)  ha(rx) 0
- * = hy(r,y 0
Hn = —einbion e NES
* * r (1 —X ) h4(l”,){) 0
* * * ’”2(1 —)(2)h4(r,)()

and where we have made use of the Regge-Wheeler gauge
[89,124]. We have also assumed that both sectors depend
on the same QNM frequency because both the axial and
polar perturbations that are purely ingoing at the event
horizon and outgoing at spatial infinity depend on the same
complex QNM frequencies in GR, a manifestation of
isospectrality. If one were to generalize this method to
beyond-GR theories that break isospectrality, then the
above assumption may have to be relaxed.

With the Ansatz defined, we can now find the system of
equations that the metric perturbations i;(r,y) Vi € (1,6)
must satisfy. Unlike in the case of early studies in BH
perturbations by Regge and Wheeler [89], Zerilli [90], and
Moncrief [91], we do not treat the odd and even perturbations
separately. Considering them simultaneously will allow us,
in the future, to extend the spectral approach to QNMs of Kerr
BHs, where these two parities cannot be separately studied
ealsily.5 Substituting Eq. (5) into the vacuum Einstein
equation, one finds a system of ten coupled, partial differential

*Our choice of signs for h; and hy is different from that in
some of the literature, such as [125].

5Nonetheless, the metric perturbations of the Kerr black hole
of these two parities can be constructed using the procedures
described in [126] based on the Teukolsky equation.

equations to solve for the six unknown functions A;(r,y).
Only six of these equations, however, are independent of each
other, so the remaining four can be eliminated by the use of
perturbed Bianchi identities. In this paper, we will mainly
focus on solving the {rr,ty,t¢,rr,ry,r¢p} components,
because we found empirically that this system is the most
convenient to work with. In Sec. VI C and Appendix. B, we
will show that using a different set of components of the
linearized Einstein equations also allows us to find the
Schwarzschild QNMs.

Let us now massage the linearized Einstein equations.
First, note that the components of the background metric
tensor g,(l?/) in Schwarzschild coordinates, whose line element
is in Eq. (1), are rational functions of r and y. Therefore, the
coefficient functions multiplying the metric perturbations /;
in the linearized Einstein equations must also be rational
functions of r and y, since they can only depend on
background quantities and their derivatives. With this under-
standing, we can always express the ith linearized field
equation,6 after appropriate factorization and multiplying
through the common denominator, as

6Throughout this work, when multiplied by m or @, i stands for

v —1. Otherwise, i stands for one of the components of the
linearized Einstein equations.
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6 at+p<3 2 d, d,
5 —
> Givooaps@ T2 00 =0, (6)
j=1 ap=0 y=0 6=0 6=0
a+p<3 . . . o
where Za.ﬁ:ﬂ is a summation starting from a = 0 and

=0 up to a+ p =3 for all non-negative a and p,
while G, 55,5 18 a complex function of M and m
only. The constants d, and d,, are the degree of r and y
of the coefficient of a given term in the equations
respectively, which depend on the specific equation we
are looking at and can thus be thought of to be
dependent on the summation indices a, 3, i, j. When
factorizing each of the linearized Einstein equations to
obtain the common denominator, there can be prefac-
tors, such as some powers of 1-— v, r and r—ry,
which contain no metric perturbation functions and are
nonzero except at r =ry, r=oo0 and y = £1. Since
these common factors are never zero in the computa-
tional domain (except at the boundaries), we will divide
by them to simplify the equations and improve the
numerical stability of the linearized Einstein equations.
Equation (6) represents a system of coupled, two-
dimensional, third-order partial differential equations.
Notice that the perturbed field equations for the even
perturbations are at most second order, whereas for odd
perturbations, due to d,h; for h; € {hs, he}, the system
of equations is at most third order.

B. Spectral decomposition of the
metric perturbations

In this subsection, we present the spectral decom-
position along the radial and angular coordinates of
our metric perturbations, introduced in the previous
subsection. The metric perturbation functions h;(r,y)
that enter the linearized Einstein equations are func-
tions of r and y. Using separation of variables, we
can write these functions through the product decom-
position

hi(r.x) = yi(r)®i(y), i=1.....6, (7)
with no summation over i implied, where y; are new
functions of r only and ©; are functions of y only.
Let us now determine the angular dependence of the
metric perturbation functions. We express the angular
dependence as a linear combination of spectral function
of y. To determine the explicit spectral basis, we note that
in general, the angular dependence of metric perturba-
tions can be expressed in terms of scalar, vector and
tensor spherical harmonics [124,127,128], whose y part is
the associate Legendre polynomials of y. This is also the
spectral function of y used in the original Regge-Wheeler
[89] and Zerilli-Moncrief calculations [90,91]. Taking all
these into account, we represent the y dependence using

associated Legendre polynomials P”(y) of degree and
order’ (£, m), namely,

0 = > ar Py, (®)
£=|m|

Absorbing the a; , coefficients into the y; functions via
¥/ (r) = a; zy;(r), we then have

hr) = S PG, =16 ()

£=|m|

In practice, only a finite number of associated Legendre
polynomials need to be included in our approximations,
so let N ., represent the maximum number of terms kept
in these sums. In principle, different metric perturbation
functions (i.e. different h;) could be represented by a
different number of terms in the sum (i.e. N , could be
different for different 4; functions), but to maximize
the symmetry of the spectral representation, we choose
the same N, for all i.

With the representation of the angular sector determined,
let us now discuss the radial sector. Using the above
product decomposition of Eq. (9) in the left-hand side of
Eq. (6), we can rewrite any component of the linearized
Einstein equation as

./\/,(Hm\
g,-,y,a.g,a,ﬁ,jwyrﬁfafaﬁ{ > yf(r)P;"oo}

£=|m|
Ny+|m|

= Y H{()P! ().

¢=|m|

(10)

where this equation defines the functions H?(r), and the
repeated indices in the left-hand side of Eq. (10) implicitly
represent the summations used in Eq. (6). Since the
linearized Einstein equations must be satisfied, Eq. (10)
implies that

H{(r) = 0 (11)

for ¢ = |m

m|+1,...N,+|m|and i = {1,6}.

Let us now derive an expression for the H?(r) expres-
sions through the use of the orthogonality properties of the
associated Legendre polynomials. Multiplying Eq. (10) by
another associated Legendre polynomial of different degree
and integrating over y, we find

s

7Though 1, the azimuthal number that labels QNMs, and #, the
degree of the associated Legendre polynomials in the product
decomposition of the metric perturbation functions, are the same
for a Schwarzschild BH background, this is not necessarily the
same in general, which is why we use different symbols for them
here.
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¢,
Hlf(r) = gi.yﬁ,o’,a,/}.jwyrﬁz-j O',OCﬁ’

N, +|m|

loap o[ o
07 = Npw > 0%) /1 APl ox Pl (),

' =|m|
(12)

where, again, the repeated indices represent the summa-
tions used in Eq. (6), and

(¢ —m)!

=2+1)——=. 13
Equation (11) then becomes
Giyooap @ L7 =0, (14)

which can be thought of as a coupled system of ordinary
differential equations for the y? radial functions.

Let us now convert this coupled system of ordinary
differential equations into first-order form. First, we
observe that the linearized Einstein equations can contain
at most second-order radial derivatives of y?; although the a
sum in Eq. (6) ranges up to a + f <3, in practice when
a+ p=3then (a,f) = (0,3),(1,2) or (2,1), so a =2 at
most. To convert this system of ordinary differential
equations to first-order form, we now introduce the
following auxiliary fields:

dy?
dr’

Yl = (15)
where again ¢ = |m|, |m|+1,..., N, + |m|. Let us now
promote these auxiliary fields to free fields and define the
collection of all fields y through the shortcut notation
y = {3/} U {Y?}, or more explicitly,

o m]|m|+1 |m|+N
y_(yl 7y1 ""’yl 17
ceey
|m| _|m|+1 [m|+N,
y6 1y6 "-'7y6 k)

|m| /|m|+1 |m|+N
il oy

ey

yl oyt T (16)

Therefore, the resulting first-order system of ordinary
differential equations of equations can then be written as

dy _

Qalr) dr

R(r)y, (17)

where Q(r) and R(r) are square matrices of order
N, - (6 +6), whose elements are functions of the radial

coordinate r only. The procedure to solve for the QNMs
now reduces to solving the above equation. Before doing
so, however, we will simplify this system by peeling off the
asymptotic behavior of the solution near the event horizon
and spatial infinity in the next section, and then absorbing it
into the radial Ansatz.

Equation (17) depends on m only because of the metric-
perturbation Ansatz and the spectral basis of y that we used.
The original calculations of Regge and Wheeler [89], and
of Zerilli and Moncrief [90,91], however, lead to master
equations that do not explicitly depend on m; this constant
does appear in their metric Ansatz but it is eliminated when
they decouple the perturbed field equations and derive their
master equations. This implies that the QNM frequencies of
a perturbed Schwarzschild BH should be m independent,
which is physically reasonable for gravitational perturba-
tions of a spherically symmetric background spacetime.
Our equations for the QNM frequencies [Eq. (17)], how-
ever, do depend on m, and this is precisely because we are
not decoupling the perturbed field equations to find master
equations. Such m dependence, nonetheless, can be put
to good use: if our numerical calculations are correct,
the QNM frequencies we calculate numerically should be
invariant under shifts of m in Eq. (17), i.e. we should be
able to compute QNM frequencies for any choice of m in
this equation and find the same numerical answer. We apply
this cross-check in Sec. VI A and find that our results for
the QNM frequencies we calculate are indeed m
independent.

III. STUDY OF ASYMPTOTIC BEHAVIOR
OF LINEARIZED FIELD EQUATIONS

To perform a spectral decomposition of the metric
perturbations defined in Sec. V, we need to construct an
Ansatz for the y;(r) functions that appear in Eq. (7). This
Ansatz must satisfy the appropriate boundary conditions at
the BH event horizon and at spatial infinity. In order to
simplify later analysis, we will construct a global Ansatz for
y;(r) by pulling out the asymptotic behavior of the solution
at the two boundaries, similar to what was done in
[102,104]. In this section, we present this asymptotic
analysis. Readers familiar with this topic may wish to skip
to Sec. III B, where we summarize the results of this
asymptotic analysis.

A. Inversion of coefficient matrix

Let us begin by simplifying the first-order differential
system of Eq. (17). Following [102,104], we multiply this
equation by @~!(r) to recast it as

Xy, (18)

where M(r) is another square matrix of order \,, - (6 + 6).
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Null coimn(s) Algebraic variable(s)

o

0
0 dy _
dr

000 ..Jo|l. o] [ |

Null row(s) Algebraic equation(s)

FIG. 1. Schematic illustration of the structure of the system of
ordinary differential equations obtained by spectral decomposi-
tion of the linearized Einstein field equations. The vector y is
related to the amplitude of metric perturbations at a given angular
position. The matrix on the left-hand side is the coefficient matrix
Q(r) of the r derivatives of the system of ordinary differential
equations. The null column (red rectangle) indicates the existence
of algebraic variables, which are those whose r derivatives are not
contained in the differential equations. The null row (blue
rectangle) indicates the existence of algebraic equations in
different components of y (green rectangle).

For a Schwarzschild or Kerr BH background, Q(r) is
singular because some y; are algebraic variables. Such
variables are defined as those whose radial derivative is not
present in the selected ordinary differential equations. If
this is the case, then some columns and rows in Q(r) are
null (see Fig. 1 for a graphical illustration), which renders
Q(r) noninvertible and singular. Algebraic variables can
arise for two reasons. One reason is that the selected
components of the linearized Einstein equations do not
contain any explicit radial derivatives of some components
of the metric perturbation functions. For example, the
{tr 10,1, rr,r0, r¢p} equations do not contain d,h; and
02hs, and therefore y; and Y are algebraic. Another reason
is that, although the selected components of the linearized
Einstein equations do contain radial derivatives of the #;
functions, these can be eliminated by substituting in other
components of the linearized Einstein equations. If the
rank(Q) < NV, - (6 4 6), then the system of ordinary dif-
ferential equations contains V), - (6 + 6) — rank(Q) alge-
braic equations. All variables that are not algebraic (i.e.
those whose radial derivatives are present and cannot be
eliminated from the system of ordinary differential equa-
tions) will be called differential variables.

Though Q(r) is singular, we can still write Eq. (17) in the
form of Eq. (18) through the following procedure:

(1) We first identify N, - (6 + 6) — rank(Q) algebraic
equations through elementary row operations. This
step gives rank(Q) differential equations and some
zero rows of Q.

(2) We then identify the algebraic variable(s) of Eq. (17)
by reading the column(s) of Q(r) that is (are) null.
For, say, N, algebraic variables identified, we then
select N, differential equations. This allows us to
solve for the Ny, algebraic variables in terms of the
differential variables and their first-order derivatives.

These results can be verified to be independent of the
choice of the differential equations made for these
Ny, algebraic variables.

Substituting these solved algebraic variables into
the remaining unsolved equations leaves us with a
system of N, - (6 + 6) — N, differential variables.
For convenience, we represent these \V,, - (6 +6) —
Ny, unsolved differential variables by ¥. Therefore,
the remaining unsolved equations can then be
written as

AN Y =r(.

(19)
where Q(r) and R(r) are two square matrices of
order [N, - (6 +6) — Ny,|. Since N, differential
equations are eliminated, rank(Q) = rank(Q) — N .

(3) Some of the algebraic variables may contain r
derivatives, which upon substitution may convert
some of the algebraic equations into differential
equations. Using elementary row operations, we can
then identify N, - (6 4 6) — Ny, — rank(Q) alge-
braic equations. These algebraic equations allow
us to express AV, - (6 + 6) — Ny, — rank(Q) differ-
ential variables in terms of the remaining rank(Q)
differential variables and possibly the algebraic

variables. We can then eliminate another N, - (6 +

6) — Ny — rank(Q) equations from the system by
differentiating N, - (6 + 6) — N, — rank(Q) dif-
ferential variables and expressing the first-order
radial derivatives of AV, - (6 + 6) — N, — rank(Q)
differential variables with the remaining differential
variables and their first-order radial derivatives. This

leaves us with a system of rank(Q) ordinary differ-

ential equations of rank(Q) differential variables.

We then denote the rank(Q) differential variables

with a rank(Q)-vector z and the resulting system can
then be expressed as

dz_

i M(r)z, (20)

where M(7) is a rank(Q) x rank(Q) square matrix,
such that rank(M) = rank(Q) = rank(Q) — Ny,
The procedure presented above allows us to construct a
differential system without singular matrices, but in order to
calculate the asymptotic behavior of the solution we must
diagonalize it. We will do so through the algorithm presented
in [104], whose essence involves asymptotically expanding
M(r) as a matrix-valued series in (positive or negative)
powers of r at spatial infinity and r — r,; at the event horizon,
both of which are irregular singular points. Explicitly, at
spatial infinity, we asymptotically expand M(r) as
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ZMkr +(’)( ) (21)

k=-1

Here p,, is the Poincaré rank of M(r) at spatial infinity, and
M, are matrices independent of . We have also discarded
terms that decay faster than r~! at r = oo, as they have
negligible effects at spatial infinity. The asymptotic behavior
at the horizon can be studied similarly by a change of
variable. Defining € = (r — ry;)~!, where recall that ry, is the
radial location of the event horizon, the differential system of
Eq. (20) is correspondingly transformed to

dz 1

%: —E—ZM(G‘)Z, (22)
where M(e) = M(r(¢)) is the asymptotic expansion of M(r)
near the event horizon. Since the leading-order term in an
€ < 1 expansion of M, may be nilpotent, we discard the
terms that decay faster than > [104],

ZMke +O< > (23)

k=-2

——M (e) =

where py is the Poincaré rank of e2M(e) at the horizon.
The algorithm in [104] can reduce the Poincaré rank and
consecutively diagonalize every M, through successive
transformations. Once every M, is diagonalized, we
can immediately integrate the system of ordinary dif-
ferential equations to give the asymptotic behavior of z. In
Appendix B, we provide an explicit and concrete example of
the implementation of the above procedure.

Although our spectral analysis formalism essentially
requires the algorithm presented in [102,104], unlike the
previous works, our formalism does not require the
decoupling between the r and y dependence of h;(r,y),
thereby enabling us to estimate the asymptotic behavior of
the metric perturbations without explicitly separating r and
¥, and rendering the spectral method more easily applicable
to non-GR BH spacetimes.

B. Summary of asymptotic behavior

Let us now summarize the results of applying the above
procedure to determine the asymptotic behavior of the
metric perturbation functions. Since we aim to study GW
QNMs, we require purely ingoing boundary conditions at
the horizon r; and purely outgoing boundary conditions at
spatial infinity, such that

e—iwr*
9

hi x { iwr.
e,

where r, is the tortoise coordinate, and for a Schwarzschild
BH in Schwarzschild coordinates is given by

T (24)

r — o0,

r. = r+2Mlog (ﬁ—l). (25)

Applying the above procedure (see Appendix B for a
concrete example), the asymptotic behavior of y? () that is
consistent with these boundary conditions is

elor rzerer( ) Z (43 (26)

lim y? (r) ~ pal
k=0

r—00
R
imyf (r) ~ (r = rg) 7y bp(r—rg)t(27)
r—=ry k=0
where a,; and b, are constants and

(i) {1, for i # 4 and 5,

P = 0, otherwise,

; 1, fori#4

l) ’ )

o = 28
P {O, for i = 4. (28)

Note that the controlling factors, the factors multiplying the
series, do not depend on #. Appendix B shows that this
asymptotic behavior is consistent with that in the literature.

Let us conclude this section by stressing that Eq. (26)
is the asymptotic expansion of the metric perturbations
at spatial infinity and the event horizon [104,129], as we
mentioned before. This is because these expansions are
obtained by solving Eq. (20) with M(r) replaced by its
asymptotic expansion at r = oo and » = ry;. Both of these
expansion points are irregular and singular. One can
therefore show that the approximate solutions satisfy the
criteria of an asymptotic series [130].

IV. SEPARATION OF THE LINEARIZED
EINSTEIN EQUATIONS THROUGH
A SPECTRAL DECOMPOSITION

In this section, we present a spectral decomposition
of the linearized Einstein equations in Eq. (6) through the
use of the product decomposition presented in Eq. (7), or
equivalently Eq. (9). We begin with a refinement of the
radial Ansatz, which we then apply to the linearized
Einstein equations to turn the differential system into a
linear algebra problem.

A. Refinements of the radial functions

Since the radial functions y?(r) must satisfy the appro-
priate boundary conditions at the event horizon and at
spatial infinity, it is convenient to pull out this asymptotic
behavior in the radial Ansatz. Let us then write

yi(r) = Af (r)uf (r). (29)

where A?(r) is the asymptotic controlling factor of the
radial function y?(r) and u? (r) is a correction factor that is

124032-8



SPECTRAL METHOD FOR THE GRAVITATIONAL ...

PHYS. REV. D 107, 124032 (2023)

both bounded and has trivial boundary conditions. Using
Eq. (26), we are motivated to construct A?(r) as

. (i)
. . i — —lory=p,
Af(r) — plor rm)rHergo) r—ryg " , (30)
! r

because then u!(r) approaches to a constant both at the
event horizon and spatial infinity.

Since the computational domain is finite, let us introduce
one more refinement of our Ansatz through compactification.
More specifically, the radial coordinate r is semi-infinite, and
thus, it is computationally inconvenient to perform spectral
decompositions along this coordinate because the decom-
position involves the evaluation of improper integrals. Let us
then reduce the computational complexity by defining the
compactified variable, z [102,104], via

2ry
z=— (31)
so that u; is a bounded function in the finite domain
€ [-1,+1].

Finally, since u?(z) is finite for z € [~1,+1], we can
express uf(z) as a linear combination of a spectral
function of z. In this work, we choose to represent
u?(z) through a Chebyshev polynomials 7,(z) basis,
which is uniformly convergent [131]. These functions
are commonly used in numerical studies of gravitational
physics [102,104,112-114,132-138] for their computa-
tional advantages and accuracy when approximating
certain functions.

Combining all of these refinements, Eq. (9) with
Egs. (29) and (30) and a Chebyshev polynomial expansion

takes the form

hi( @3 T, ()P (r).  (32)
n=0 £=|m|
where v”f are constant coefficients, which one can think of

as the component of u;(r) along the basis of 7,(z) and

P‘;” | (x)- Note that we have dropped the superscript £ from
A;(r), as this quantity is the same for all #, and we have
factorized it out of the summation. Equation (32) gives us
the full spectral decomposition of the metric perturbation
along the angular coordinate y and the compactified spatial
coordinate z.

In practice, however, we will only include a finite number
of spectral bases in our representation of the metric pertur-
bation functions. More precisely, henceforth we will set

N. N, +|m|

SN TP (). (33)

=0 /=n|

hi(r.x) = Ai(r)

where /', and V,, are respectively the number of Chebyshev
polynomials and associated Legendre polynomials included.

In the rest of this paper, we will investigate how our
calculation of the QNM frequencies is affected by choice
of N and V.

Before we substitute Eq. (33) into the linearized Einstein
equations, let us consider what type of series solution
Eq. (33) is. Let us first consider this series expansion near
spatial infinity. Since z = 2r,/r — 1, the Chebyshev poly-

nomials of z are actually power series in r~!. Thus, as
r — oo, Eq. (33) is asymptotic to
. . (i)
hi(Z,){) ~ el“’rrl“’rH‘H’m
azf
x Z( 4 e ) PIG). (34)

where a,, (k=0,1,2,...) are constants. If Eq. (34) is to
agree with Eq. (26), a;, = a,,. Moreover, since Eq. (26) is
an asymptotic expansion of the metric perturbation at
spatial infinity, by the uniqueness of asymptotic expansions
[130], Eq. (33) is also an asymptotic expansion of the
metric perturbations as r — oo.

Let us now study the behavior of the function near the
horizon. As r—ry, z=2ry/r—1~(r—ry)/ry the
Chebyshev polynomials of z are asymptotic to power
series of r — ry as r — ry. Thus, near the event horizon,
Eq. (33) is asymptotic to

elor piomctrn Z[b()f +byp(r—ry) +
Z

1P (),

(35)

hi(z,x) ~

where b;, are constants. If Eq. (35) is to agree with Eq. (27),
then b;, = b;,. Therefore, applying the same uniqueness
argument presented above, Eq. (33) is also an asymptotic
expansion of the metric perturbations as » — ry. In other
words, even though, by itself, the series ., v T,(z)
represents a continuous function that can be approximated
by the Chebyshev polynomials with polynomial conver-
gence [131], as written in Eq. (33), the entire series behaves
like an asymptotic one near the irregular singular points of
the domain, due to the asymptotic nature of the controlling
factor A;(r).

B. The linearized Einstein equations as a linear
algebraic eigenvalue problem

Let us now use the spectral decomposition of the metric
perturbation functions of Eq. (32) in the linearized Einstein
equations to transform the latter into a system of linear
algebraic equations. First, we note that the first or second
radial derivatives of the asymptotic controlling factor are
proportional to the product of a rational function of r and
the controlling factor itself. Therefore, on substituting
Eq. (33) into the linearized Einstein equations, we can
factorize the partial differential equations as
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S
’Ci,yﬁ,ﬂ.a,/},jwyz )(0

TP} =0 G0

Here d, and d,, are the degree of z and y of the coefficient of

the partial derivative 0%d;{---} in the equations respec-
tively, while KC; , 5., 5.,j is @ complex number that depends
on M and m. As Eq. (36) now involves only ordinary
derivatives of the spectral functions with respect to the
respective coordinates, we make use of their defining

equations to factor and simplify Eq. (36), namely

ST, 1 (dr,
= — —n s
2 1-7% ‘ dz "

To simplify our notation, we now rewrite the left-hand
side of Eq. (36) in terms of the spectral functions as

N, N,+|m|

Z Z w”fT

=0 /=n|

)P (y) =0, (38)

where w* is hiding much of the complexity of Eq. (36).
The orthogonality of Tn(z)PL'," () implies that wi? = 0 for
every i, n and . Comparing Eqs. (10) and (36), we can

relate W to "¢ by a linear combination,

6 N. N,+|m|

=3 >

J=1 n'=0 ¢'=|m|

nf n’f’ ij U? = O (39)

where D, (@) are quadratic matrix polynomials of w,

dZP\m\ 1 dP‘ml m 2 m
=1 <2;( =t 1P - Pl )
A X 2 X nfn )f” Z [an n'cy o’ (40)
(37)
These equations allow us to pull out more factors of and D,,,, , are constant 6 x 6 matrices, whose ijth
1 —y% 1=z or 1 + z, further simplifying Eq. (36). element is given by
o mi 5 mi
uvweoly =N [z [ et = 27T @PE 0K T ()P ),
Doty =N / d / (1= )T, QP (K g 2 BT (PE 1)
+l -7 Im| sy plml
Buewealy =N | dz (1= 27T, (2 P GOK: 256,024 020 [T (2) Py ()] (41)
|
Here the repeated indices implicitly represent the summation ~ Then Eq. (39) can be written as
defined in Eq. (39) (except for y), and the prefactor A is
N. N+lm|
2f;r1 ((§+m))" if n#0 W, = Z Z Do (@)Vyp =0, (44)
N = sprl (Eom)l (42) n'=0 ¢'=|m|
2 (e E =0

Equation (39) can be cast into a quadratic eigenvalue
problem with the QNM frequencies of the perturbed
Schwarzschild BH being its generalized eigenvalues. To
see this, we first introduce the following vector notation:

Var = (0103 ol o )T,

Wae = (7w il )T (43)

where the D,/ matrix is now dotted into our new vector
v,»¢. Furthermore, let us define a vector v and w, which
respectively stores all v,, and w,,,,

_ 1T T T T T T
V—{VOO,VOI,...,V()N,...,VIN "“’V/\/,N,} ,
¢ o0l nl nl ol ol
an—(v{‘,vg,vg’,vﬁ,vg‘,vg). (45)

and the following block matrix,
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Bojm.ofm| Bojml.0(1+{m)) Bojml.on, Dojm|, 16 Dojm| A £
Bocim.ofm Boi-+jm)).o01+/m|) Bo(14mp).ox, Bo(1m)).1,mae Bo(1m) N e
Blw) = DO(NI'Jrllr'nD.O\m\ DO(N),H.m‘I?,O(IHmI) Dowxiwr'n\),om Dowl.ﬂnf\),lfmax D0<NX+_\»T1|.),N/,W
D1, 00ml D14,0.0014|m|) DMW,ONI Digy 1 Dl/\/’l,/\fzfmax
DA £ 00 01| DA £ 0014 |m)) DA £ 0N, DA e 1 men DA e N

Then, the system of linear vector equations [Eq. (39)] can
be more compactly written as
D(w)v = [Dy + Do + Dyw?]v = 0, (47)
which is a quadratic eigenvalue problem. Since v # 0 in the
ringdown, det[D(w)] = 0 for QNM frequencies.
Numerically solving this quadratic eigenvalue equation,

however, is computationally demanding. We can improve
the numerical efficiency if we define

= ()

so that the quadratic eigenvalue problem is transformed®
into a generalized eigenvalues problem that is linear in @
[102,104,139,140], namely

* (48)

wV

Do
0

D,

M()X:—C()M]X, MOI ( ]

(40)

[

The QNM frequencies of the Schwarzschild BH are then
the generalized eigenvalues of Eq. (49). The converse,
however, is not true: not every generalized eigenvalue of
Eq. (49) is a QNM frequency. As we will see in the next
section, many surplus eigenvalues, which are not physically
meaningful, will emerge, but we will develop a systematic
method to identify the meaningful ones.

To explicitly illustrate how one can derive Eq. (47) from
Eq. (44), let us consider an example with N, =1 and

N, = 0. In this example, the only components of w,,, are

Wo2 = D02 (@) Von + Dpp 12(@) vy, = 0,

Wio = Dy 00(@)Voy + Dy p2(@)vyn = 0. (50)
Hence, as a block matrix, l]j)(w) can be written as
- D w) D 10}
B(w) = ( 02.02(@) Do 1o( )) (51)
Dipp(®) Do)

0 D
M] == < 2>. (49) -
-1 0 Explicitly, the nonzero elements of D(w) are
|
5,4(0) = o n(T = 2i0),  Bygl@) = w80+ 30), By 10(@) = o2 (x+ inw), By () = ~en(80 - )
) = —T — Zlw), ) = ——1mlow 1), )= —\& intw), W) =—_——-7mw\ow—1),
1.4 35 1.6 35 1,10 35 112 35
- 216x - 288 - 288w - 1087
21(0))_?, 23(@) ——577(40)—1), D, 4(®) ~ 35 i, D, ¢(@) = - 35 2,7(‘0):¥’
- () 1447w
o) —
2.9 35
- 288izrw - 288zw - 367 - 9ix - 187
s1(@) = 35 33(0) = 35 34(0’)—§, 36(0)):—7, D3,10(a))=§,
- 18in
) =
3.12(@) 35 "

¥In numerical linear algebra, such a transformation is more commonly known as “linearization” [139,140]. However, through this paper,

the name linearization has been reserved solely for the linearization of

the Einstein equation. To avoid confusion, we call the process that

casts a quadratic eigenvalue problem into a generalized eigenvalue problem a “transformation.”

124032
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~ 9 . - 187w ~ 9 . ~ 27w
D4,1 (Cl)) = gﬂd)(ga) + l), |D4,3(Cl)) = ? s |D4,4(a)) = —%ﬂ(2566{)2 —Siw — 8), |D4,6(a)) = —TO s
- 18 . ~ 9 ) ~ Irw
Dy7(w) = _gﬂa’(&o - i), ID’4,10((0) = 280 (7 + Binw), D4,12(“’) = 0’
- 9 ) - 18 . ~ 9 .
Dsyz(ﬂ)) = —%H(ISZC{)Z - 54l(1) + 19), D5’5((1)) = gﬂ'w(4w ‘I— l), Dsﬁg(a)) = %T[(Swz + 61a) - 1),
. 14470*
|D5,11(w) == 35
~ 72rxw? - 18 - 36 ~ 9
D =— D = _—2(160* — 1 D = rw(dw-1i), D -z
Bya(@) = o 79+ 8iw),  Brg() = onldo — i), Bryo() = e a(31 - 4io)
7.4\ —3571' ), 7.6\@0 —3577.' w 1), 7,10 14077,' ),
- 9 .
D, 12(w) = —mﬂ(Sw +9i),
- 108~ - 18 . - 1087 - 187w ~ 144
Dg (@) = =5 Dg3(w) = g”(gw —i), Dgs(w) = =5 Dgo(w) = 35 Dyg 10(@) = ~ 35 o,
- 1447w
DS,IZ(w) == 35
~ 187 ~ 18ix - 144irw ~ 144rw ~ 187
Do 4(@) = 35 Do ¢(@) = 35 D7 (@) = 35 Do o (@) = 35 Dy 1o(w) = 35
- 8lir
Do 15(w) = ~ a0
- 36 . ~ 97(21 + 64iw - 9 .
Dy (@) = —g”w(“w —i), Dj4(w) = % Dyos(@) = %”(80’ - 3i),
- 9 , - orw - 97(1024w* — 76iw — 25)
107(0) = mnw(Sa) +7i), Digo(w) = 0 Dig,10(@) = — 4480 ,
- (4w + i)
D =
Biis(®) = o 7(802 + Siw— 1), Byy5(@) = —sero(8o - i)
na2(w —7071' 0) 0] , 1s5l@) = 3571'0) w—1),
- 9 . ~ 9 .
lDll.S(w) = —%7[(200602 - 70lCU + 9), |D11_11(a)) = gﬂQ)(z(U + l),
- 18 . - 9 - 9 . ~ 9
|D12,2(60) = gﬂw(Sw =3i), Dyps(w) = ~70° DIZ,S(w) = —%”0)(40) +5i), Dpy(w) = %”(32602 —-1).
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By reading the coefficient of different terms, we can read Dy, D, and D,, and we find

0 0 0o ¥ ¢ =z 9 0 0 Z=2 o -1z
N 0 % o 0 0 0 0
0 0 0 ¥ o -2 o 0 0 ¥ oo U=z
0 0 0o Z 0 0O 0 0 0 % 0 0
o -z 0 0 0 0 0 -2 0 0 0 0
B, — 0 0 0 o0 -l 0A o o0 o0 o0 -2 0. |
0 0 o 8 o %z o o o 2z o -8
%z 0 -8 o 0 0 % o 0 0 0 0
0 0 o0 ¥ o -8Bz o o o B o -8
0 0 0 F o -F oo 0 0 & 0 -5
o -2 0 0 0 o o -8 0 0 o0 o0
0 0 o 0 -2 o0 0 0 0 0 -2 0
0 0 0 Bz 9 -Z= 0 0 0 Zz o Uiz
o o0 -—Zz 8z o B o o W o o0 0
Bz g B 0o 0 0 0 0 0 0 0
0 2Bz 0 0o B o 0 = 0 0 0 0
B, — 0 0 0 Q 0o o0 0 =%z 9 o' 0 0 |
0 0 0 Zz o Mz o 0 0 -% o -U
o o ¥ o o o0 o0 0 - _lMz o _li
0 0 0 o o0 0 M= o W o o 0
00 % 0 5 % 0 % MmO -
0o % 0 o0 8= o o % 0 0 % 9
0 -3z 0 o o o0 o -2 0 0 0 0
0 0 0 0 0 0 0 0 0 O 0 0
0 0 0 0 0 0 0 0 0 O 0 0
0 0 0 0 0 0 0 0 0 O 0 0
Zz. 0 0 -4z o o -% o 0 o0 0 0
0o -4z o0 o Zz 9 o0 ¥ o o -M=z 9
5, 0 -Z o o % o o YW o o 0 0
0 0 0 O 0 0 0 0 0 0 0 0
0 0 0 0 0 0 O 0 0 O 0 0
0 0 0 0 0 0 O 0 0 O 0 0
~ 9 0 0 0 0 % o o0 -Z o0 o
o ¥ o o0 -Wo o -%£2909 o B 9
0 4= o0 0 0o 0 o0 =¥ o0 o Y 0
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From this example, we see that D, D, and D, are sparse,
singular and nonsymmetric. With these matrices in hand,
one can now straightforwardly calculate the generalized
eigenvalues of Eq. (49), a subset of which will represent the
QNMs of a Schwarzschild BH.

V. EXTRACTION OF THE QUASINORMAL
FREQUENCIES

In this section, we present our numerical analysis of the
solutions to Eq. (49) for the QNM frequencies of a
Schwarzschild BH. We begin with a description of the
numerical setup, followed by the distribution of eigenval-
ues and the presentation of a method to identify the modes
obtained.

A. Numerical setup

To simplify our discussion, from here on we assume
N,=N,=N and denote the eigenvalues computed

using N x N spectral functions by A(N). Therefore, D(w)

becomes a 6(N + 1)? square matrix and M, and M, are

12(N + 1)? square matrices. For a given (mp&)pg_})) we

solve Eq. (49) for its generalized eigenvalues (from now just
“eigenvalues”) using the function Eigenvalues of
Mathematica with double precision; this algorithm is suffi-
cient for our purposes because the background spacetime is
spherically symmetric and the modulus of the coefficients
[Kiys.0.ap; of Eq. (36)] are roughly of the same order of
magnitude. We have checked that our results are not
significantly affected by increasing the working precision
in Mathematica beyond double. Since Schwarzschild BHs
are stable, the imaginary part of their QNM frequencies is
negative, so we only study the eigenvalues of the negative
imaginary part and the positive real part.

Since we are working in spherical symmetry, the
QNM frequencies should be independent of the m index
of spherical harmonics. For concreteness, we hereafter set
m = 2 (exceptin Sec. VI A, in which we check whether our
results are truly independent of m), with the understanding
that the QNM frequencies of the Schwarzschild black hole
do not depend on m (e.g. @4y = W42 = Doaa)-

B. Possible sources of inaccuracies

Although the error in approximating a continuous
function by a spectral function decreases with N, one
should not expect that the accuracy of the QNM frequen-
cies computed using the spectral basis will always increase
with N. We have identified three possible sources of
inaccuracies, which we list below:

(1) Asymptotic nature.—As mentioned earlier, Eq. (32)
is an asymptotic expansion with an asymptotic basis
constructed from spectral functions. Typically,
asymptotic expansions diverge if a large number of
terms are included in the expansion [130]. Thus, the

accuracy of the QNM frequencies estimated using
Eq. (33) cannot be improved indefinitely as N is
increased.

(2) Numerical precision.—Any numerical calculation is
always an approximation to the exact answer that is
limited by the precision with which we perform the
calculation. Within a given precision, the accuracy
of the eigenvalues computed using a spectral method
can deteriorate with unsuitably many spectral func-
tions included. Nonetheless, as mentioned before,
we have checked that the results of our calculations
are not affected by precision error (i.e. there are other
sources of inaccuracies that dominate).

(3) Transformation inaccuracies.—This is the error
induced by transforming the quadratic eigenvalue
problem [Eq. (47)] into a generalized eigenvalue
problem [Eq. (49)]. In fact, given a quadratic eigen-
value problem, there exist infinite transformations that
cast the problem into a generalized eigenvalue prob-
lem. Each transformation has its own numerical
sensitivity and stability issues [139,140]. The specific
transformation used in this work is chosen following
[102,104], where it was found to be accurate for
computing BH QNM frequencies. But to improve the
numerical condition of the matrices we work with,
through this work, we scale D, and D, such that their
two-norm is one, as proposed and used in [141,142],
before calculating the generalized eigenvalues. We
refer the reader to Appendix. D for the details of the
scaling.

With all these three types of possible errors taken into
account, one should expect the estimated QNM frequencies
to be the most accurate at an optimal N, with the accuracy
deteriorating as N is increased further. In the subsequent
sections, we will show that this deterioration of accuracy
indeed emerges in our calculations, but, through the scheme
we prescribe below, we can still accurately extract the
QNM frequencies with a surprisingly high relative frac-
tional precision.

C. Distribution of the generalized eigenvalues

Let us now solve the {tr,ty,tp, rr,ry, r¢p} linearized
Einstein equations and show how the eigenvalues emerge
as we increase N. Figure 2 shows the distribution of the
eigenvalues in the complex plane from N =4 to N = 25 in
four panels. In general, the modulus of the eigenvalues
ranges from ~0 to 10°. For QNM studies, we focus on
eigenvaluesin therange 0.2 < Red < 0.6 and -1 < Imd <0,
which is also the range of the complex plane covered
by Fig. 2.

Figure 2 allows us to make several observations. As we
begin to increase N starting at N = 4, groups of eigenval-
ues begin to cluster around certain areas in the complex
plane. As N is increased further to ~20, these clusters
shrink to tiny areas, indicating that the eigenvalues are
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FIG. 2. The distribution of the eigenvalues in the complex plane for 4 < N <25, where N is the number of spectral functions used in
the spectral decomposition (see Sec. IV B). Observe that the eigenvalues of the system of equations start to group together at certain
points in the complex plane as N is increased. For comparison, we have also shown the corresponding QNM frequency calculated with
Leaver’s method [101], using black crosses. The labels near the crosses follow a (n,l, m) notation, where n is the principal mode
number, [ is the azimuthal mode number and m is the magnetic mode number. Since the QNM frequencies of the Schwarzschild BH do
not depend on m, we have left this quantity unspecified in the labels. An animated version of these plots is available in the Supplemental

Material [143].

beginning to approach to certain values. Each tiny cluster-
ing area contains several slightly different eigenvalues, with
relative differences in the real and imaginary parts of
~1077. The distances between these slightly different
eigenvalues are much smaller than the typical distances
between the clustering areas. Once the eigenvalues begin to
cluster inside some small areas, any surplus eigenvalue
begins to disappear as N is increased, indicating that these
surplus eigenvalues have no physical meaning.

As we further increase N above ~20, surplus eigenvalues
emerge again, indicating that the aforementioned sources of
inaccuracies begin to affect the calculations. There is
therefore an optimal N at which the eigenvalues have
gotten as close as possible to the exact answer. These
optimal eigenvalues coincide almost exactly with the
Schwarzschild QNM frequencies computed by solving
the Teukolsky equation, which we marked with crosses
in Fig. 2. We will discuss later, in Sec. VI, what the relative
fractional accuracy of the QNM frequencies computed with
the spectral method is relative to other numerical solutions.

The above observations suggest a method for the
identification of the QNM frequencies. In essence, the
QNM frequencies can be identified by searching for
repeatedly emerging eigenvalues of the matrix equation
before the accuracy deteriorates. In the next section, we will
explain this method in more detail and explain how it can
be used to accurately identify different QNMs.

D. Mode search

As shown in the previous subsection, not all eigen-
values represent actual QNM frequencies. For a
Schwarzschild or Kerr background, we could determine
which eigenvalues are correct by comparing them to
known solutions found through other methods, such as
Leaver’s method [101]. In modified gravity, theories,
however, such other solutions may not be known, and
thus, it would be ideal to find a self-contained method to
identify which eigenvalues correspond to physical QNM
frequencies. In essence, this method must answer the
following question: What complex number is a given
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cluster of eigenvalues approaching and does it correspond
to an actual QNM frequency?

The answer to this question can be deduced from Fig. 2,
which suggests that QNM frequencies can be identified by
studying the cluster of eigenvalues that appear repeatedly in
a small area in the complex plane for various choices of N.
More explicitly, we propose the following search method:

(1) Since not every eigenvalue is physical, keep only the
eigenvalues in a region in the complex plane where
QNM frequencies are expected to reside. In this
work, we keep eigenvalues whose real part is 0.2 <
Rel <0.6 and imaginary part —1 <Im < 0. In gen-
eral, this region can be adjusted based on the BH
spacetime that needs to be studied.

(2) Compute the distance of the ith eigenvalue obtained
using N x N spectral functions, 1;(N), and the jth
eigenvalue using (N +1)x (N+1) functions,
A;(N +1). If 4;(N) and A;(N + 1) are approaching
a QNM frequency, their distance in the complex
plane should be small. Thus, store all eigenvalues
that satisfy

|4;(N) = 2;(N + 1)| < threshold, (52)

where the threshold is a small number, which we
choose here to be 1073, This number corresponds to
an error much smaller than the current relative
uncertainty in the QNM frequency measurement of
the detected ringdown signals [7,10,11,75,77-84,87].

(3) As pointed out in Sec. V C, the stored eigenvalues
may be slightly different from each other, and yet
approach the same QNM frequency, because the
separation between them in the complex plane is
much smaller than the separation between different
nlm QNM frequencies. We thus select the average of
these slightly different eigenvalues as the QNM
frequency of mode ¢ = nlm and denote it w,(N).

(4) Finally, just before the accuracy deteriorates, the
difference of a mode-frequency between successive
basis numbers, |@q(N + 1) — @q(N)], should reach
its minimum. Thus, we select the optimally9 trun-
cated QNM frequencies as

wzpt = Wy (Nopt)’

Nop = arg n}\}n|wq(N +1)- a)q(N)|, (53)

where we note that N, depends on the mode g.
Let us give an example of this search method in action by
focusing on the ¢ = 02 mode. For any given N > 4, we find
various eigenvalues clustered around Mw, ~ 0.37 — 0.1i.
For example, at N = 4 we find a cluster with the following
eigenvalues:

“The optimal N discussed here concerns the calculations of w,
not the asymptotic expansion of the metric perturbations.

A(4) = {0.3737202242 — 0.0886296139i,
0.3729295055 — 0.0899641035i},  (54)

whose average is
;4 = 0.37332486485 — 0.0892968587i.  (55)

Similarly, at N = 5 we find a cluster with the eigenvalues

A(5) = {0.3740968407 — 0.08880694041,
0.3737492335 — 0.088943824i} (56)

whose average is
;> = 0.3739230371 — 0.0888753822i.  (57)

As we increase N, we find that the difference between the
values of wg, for adjacent values of N first decreases, until
N ~ 20, after which point the difference between adjacent
averaged eigenvalues begins to increase. More concretely,
we find that

) — @3] =3.19 x 1078,
|33 — w3l = 9.04 x 1072,
033 — 03| = 1.67 x 1078,
w23 — w3 =3.47 x 1078,

(58)

From this sequence, we see that the optimal truncation is at
N = 21, and the optimal eigenvalue is

a)ggt = 0.3736716790 — 0.08896231511, (59)

which demonstrates concretely how our search method
works.

E. Mode identification

Once the QNM frequencies have been found through the
search method of the previous subsection, we must now
figure out which n/m mode has been found. Again, for
QNMs of a Schwarzschild or Kerr BH, this identification is
easy, since we can compute the QNM frequencies through
other robust methods. In modified gravity, however, such
methods are typically not available, so one must create a
robust procedure that answers the following question:
Which QNMs (i.e. which n/m?) do the optimally truncated
frequencies correspond to?

Before we can establish an identification procedure, we
need to first understand some general properties of the
QNMs we are studying. To determine n and [, we notice the
following. For a fixed n, the real part of the QNM
frequencies is much more sensitive to / than the imaginary
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part. Similarly, for a fixed /, the imaginary part of the QNM
frequencies is much more sensitive to n than the real part
[101]. Although these trends hold strictly in GR, we expect
them to also hold in effective-field-theory-like modified
theories in which BH solutions can be treated as small
deformations of Schwarzschild and Kerr BHs with a
continuous GR limit [63-66,68-70].

We can understand this dependence from the eikonal
approximation [128,144-147] (valid when /> 1) and the
geodesic analogy. In this approximation, the real part of the
QNM frequency is roughly proportional to /L,,, where
Q,, is the orbital frequency of the photon ring around the
BH. Similarly, the imaginary part of the QNM frequency is
roughly proportional to the Lyapunov exponent of photon
ring, which does not sensitively depend on [ [128].

With this understanding, let us now answer the question
above by proposing the following identification procedure:

(1) We divide the optimally truncated frequencies into
groups of similar imaginary parts.

(2) The group with the least negative imaginary parts
takes n = 0, and the group with the second least
negative imaginary parts takes n = 1. We repeat this
assignment of n until we exhaust all the groups.

(3) Ina given group, the frequency with the smallest real
part takes [ = 2, and the frequency with the second-
smallest real part takes / = 3. We repeat this assign-
ment of / until we exhaust all the frequencies in the
same group.

Let us provide a concrete example of this procedure.

When N = 24, we have the following frequencies:

o = {0.3736716813 — 0.0889623387i,
0.5994432887 — 0.09270304861,
0.3467101908 — 0.27390445201,
0.5826436957 — 0.28129784021,
0.3010607141 — 0.47831918641,

0.5517068087 — 0.4790929296i}.  (60)
We immediately see that this list of optimally truncated
frequencies can be divided into three groups of similar
imaginary parts, namely, the first group consisting of the
first and second frequencies, the second group of the third
and fourth and the third of the fifth and sixth. Since the first
group has the least negative imaginary parts, it takes n = 0,
corresponding to the fundamental modes. Amongst the first
group, the frequency with the smallest real part takes the
smallest azimuthal mode number, i.e. [ = 2, hence

wgp = 0.3736716813 — 0.0889623387i, (61)

and the frequency with a larger real part takes the next
azimuthal mode number, i.e. [ = 3,

g3 = 0.5994432887 — 0.0927030486i. (62)
Then, we move on to the second group with more negative
imaginary parts, which takes the next principal mode
number, i.e. n = 1, and the last group takes n = 2. The
azimuthal number of the frequencies in these groups can
be labeled as we did for the first group. Explicitly, the
frequencies of the second and third groups are labeled as

w1, = 0.3467101908 — 0.27390445204i,
w3 = 0.5826436957 — 0.2812978402i,
Wy, = 0.3010607141 — 0.47831918641,

wy3 = 0.5517068087 — 0.4790929296i. (63)

Following this procedure, we can confidently identify six
QNMs (g = {02, 03,12,13,22, 23}), which is a smaller
number than what was shown in Fig. 2. The reason that we
cannot confidently identify the remaining modes (although
they seem to clearly correspond to g = {32,33,43,42}) is
that the absolute difference in any one of these clusters of
eigenvalues is not yet smaller than the threshold defined in
Eq. (52). If we had gone to higher N, then this difference
would continue to decrease and we would have been able to
confidently make the remaining identifications.

F. Accuracy quantification

Let us now assess the accuracy of the QNMs we have
just calculated. To do so, let us define the following four
accuracy measures:

(1) Difference over successive calculations,

DN) = [ (N + 1) - o (V)] (64)
which characterizes how the QNMs approach a
given answer as N is increased, until a given optimal
truncation order is achieved, after which point the
estimates deteriorate.

(2) The absolute error between the QNM frequencies
computed using the spectral method, w(spectral),
and Leaver’s method to solve for the QNM modes
(L),

E(N) = |w(spectral) — w(L)|. (65)

(3) The relative fractional error in the real and imaginary

parts of the QNM frequencies computed using the
spectral method and Leaver’s method [101],

R/ (spectral)

Re/Im _ |1 _
A 1 a)Re/Im (L) ’

(66)

where @R®/™™(spectral) and @R*/™ (L) stand for the
real and imaginary parts of @(spectral) and w(L)
respectively.
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(4) Numerical uncertainty due to the deterioration of the accuracy with increasing N, J, defined as

max (|@(N oy +1)=@(Nop) || (Nop ) =0 (N —1)])

5Re/1m —
‘W(Nopl)_w(}vopt—l)l
‘wRe/lm (NOle

This quantity gauges how the accuracy of the

spectral method is limited by the possible sources

of inaccuracies mentioned in Sec. V B. This measure

will be useful to estimate the performance of the

spectral method when applied to different systems of
equations, as we do in Sec. VL

To compute the above measures, we solve the Teukolsky

equation in the zero-spin limit using Leaver’s method of

continued fractions [101] to find w(L). Specifically, (L) is

computed using Leaver’s method with 1000 terms in the

continued fractions. We find that ~200 terms are already

enough to converge to 14 digits of accuracy for the

fundamental mode frequencies. Using 1000 terms, the first
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if Nopi < Nppax
(67)
if Nopt = Nmax-

16 digits of the real and imaginary parts of the QNM
frequencies also converge for all modes studied here. For
the convenience of the reader, we list the QNM frequencies
obtained through this method below:

(L) = 0.37367168441804 — 0.088962315688941,

w3 (L) = 0.59944328843749 — 0.092703047944951,

1, (L) = 0.34671099687916 — 0.27391487529123,

w3(L) = 0.58264380303330 — 0.281298113435041,

5, (L) = 0.30105345461237 — 0.478276983223071,
(L)

w3 (L) = 0.55168490077845 — 0.47909275096696i. (63)
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The top, left panel shows the absolute difference between the QNM frequencies computed with adjacent N,

D(N) = |w(N + 1) — w(N)|, with the threshold 10~ denoted by the horizontal solid black line. The N that minimizes D(N),

N

opt corresponds to the optimal truncation order and selects the optimal approximation @(N ) to the QNM frequency (circled symbol).

To gauge the accuracy of the spectral method, we compare the QNM frequencies computed using this spectral method at various
N [w(spectral)] to those computed through Leaver’s method [101] [w(L)]. The top, right panel shows the absolute error

E(N) = |w(spectral) — w(L)|

as a function of N, while the bottom panels show the relative fractional error in the real

[ARe = |1 — wRe(spectral) /@R (L)|] and imaginary [A™ = |1 — @™ (spectral)/w™(L)| right panel] parts. Observe that the QNM
frequencies calculated with the spectral method are highly accurate for the fundamental mode and its overtones.
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We note that the above frequencies are identical to the
frequencies published in [123], except for differences in
rounding off of the last digits.

The first three measures defined above are presented in
Fig. 3 as a function of N. The top left, right and bottom
panels respectively show the base-10 logarithms of D(N),
E(N), ARe (bottom left) and A™ (bottom right) of the
QNM frequencies as a function of N. In general, all three
measures first decrease as N increases from N = 10 to a
QNM-dependent N. This indicates that our QNM fre-
quency calculations become increasingly accurate as N
increases. Beyond the QNM-dependent N, all three mea-
sures begin to increase, indicating the emergence of effects
due to possible sources of numerical inaccuracies, consis-
tent with our observations of Fig. 2. The optimal truncation
order, Ny, minimizes D(N) and also approximately

minimizes £(N) and 68/™, as we show with a circle in
the figure. Observe that the relative fractional error of the
optimal truncation is very small for all six QNM frequen-
cies computed. Observe also that the higher the mode
number, the fewer the errors we can present and the less
accurate the QNM frequencies are. This is because the
higher the mode number, the more the number of basis
terms that are required for the eigenvalues to be within the
threshold tolerance we selected.

VI. ROBUSTNESS OF QUASINORMAL
FREQUENCY EXTRACTION

In this section, we study the robustness of the calcu-
lations presented in the previous section. In particular, we
first focus on the m independence of the QNM frequencies,
which ought to hold for perturbations of a Schwarzschild
background. We then study the effects of our choice of
boundary conditions for the p function on the QNM
calculation. Finally, we consider the use of other combi-
nations of linearized Einstein equations.

vm' =0 v
= -1 . m =1
j<l (]
Tl —51 o [
\§§/ X i
m'fmf —6 v
| —T7 1 ;E
—
= —84 X
20
)
=~ _94 [ ]
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(0,2) (0,3) (1,2) (1,3) (2,2) (2,3)

(n,1)

A. m independence of the quasinormal spectrum

One important feature of gravitational perturbations of
spherically symmetric BHs is the independence of the
QNM spectra on m. Our matrix equations, however,
explicitly depend on m because we have not decoupled
the linearized Einstein equations to find master equations.
Therefore, validating the m independence of our QNM
frequency calculations constitutes a nontrivial test of the
robustness of our spectral method.

Before comparing the QNMs computed by setting m to
different values, let us comment on the structure of the
linearized Einstein equations when m = 0. We have derived
the linearized Einstein equations for general m, so when we
take the m = 0 limit, we find that each linearized Einstein
field equations can be factorized with an additional term that
is a power of (1 —y?). Following Sec. II, it is usually
desirable to divide such prefactors out (since they are never
zero for a BH) to simplify the equations and potentially
improve the accuracy and stability of the numerical calcu-
lations. Doing so then yields a somewhat simpler D(w)
matrix, whose generalized eigenvalues contain the QNM
frequencies of a Schwarzschild BH.

With that in hand, let us now compute the QNM
frequencies by solving the linearized Einstein equations
setting m = 0 and m = 1 and compare them to the results
we obtained above when we set m = 2. We find that these
two sets of QNM frequencies are very close to each other.
Figure 4 shows the relative fractional difference between
the real (left) and imaginary (right) parts of the m=2
frequencies and the m = 0 (blue inverse triangles) and
m= 1 frequencies (red triangles) for different (n, /). Observe
that this relative fractional difference ranges from 1070 to
10~*. Comparing the relative differences with the numerical
uncertainty of the m = 2 frequencies (green squares), we see
that the relative fractional differences are smaller or approx-
imately equal to the numerical uncertainty, which suggests
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—4{ " ) @
Sl
S =5 n &
“% \E] o) ]{ v =
E e —
Aoy 6 . e
| 7 L4
=
S —8 1 A
ERNN
= 9
—10 T T T T T T
(02)  (03) (12) (13 (22) (23

(n,1)

FIG. 4. Base-10 logarithm of the relative fractional differences between the real (left) and imaginary parts (right) of the QNM
frequencies when setting m = 0 and m = 2, both computed using our spectral method of at most 25 x 25 spectral functions. The relative
fractional difference for different QNMs is between 1079 and 107, which is smaller than, or at worst approximately equal to, the
numerical uncertainty of the m = 2 frequencies (green squares). Thus, effectively, the QNM frequencies computed by setting m to
different values in our spectral method are the same. Such m independence of our results is a nontrivial verification of the correctness and
robustness of the spectral method.
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Numerical uncertainty of the real (left) and imaginary parts (right) of different QNM frequencies [68/™™, see Eq. (67)]

(i) (i)

computed using the spectral method with at most 25 x 25 spectral functions and assuming different p,; and ps boundary conditions.
Observe that the accuracy of our series solution, computed with different boundary conditions, is approximately the same, indicating the

robustness of the spectral method.

that the differences between the m =0 or the m =1
frequencies and the m = 2 frequencies are due to numerical
uncertainty. Thus, effectively, the spectral method obtains the
same QNM frequency for a given n and [ regardless of the
value of m we choose in our calculations.

B. Effects of py and p,

The asymptotic behavior of the metric perturbation
functions obtained in Sec. III B depends on the component
of metric perturbations. We find that the extracted QNMs
are not affected if we assume p%) and pffo) to be the same
number for all i, provided that the assumed pg_;) >

maxi<;<e p%) and p&) > max << pgﬁ,). To illustrate this
property, Fig. 5 shows &R¢/Im of the six previously
identified QNMs, obtained by numerically solving the
linearized Einstein equations, using 25 x 25 spectral

functions and assuming that for all i:
1) p;_[) pﬁo =1 (inverted blue triangles),
Gi) pi) =1.p% =2 (red triangles),
(ii1) () =2 pgo) =1 (green squares), and
(iv) ‘ ) — 2, pl) = 2 (black circles).

Figure 5 shows that if we assume a p(H) and pﬁ? that is larger

than the exponents obtained by our asymptotic analysis in

Sec. III, we can still accurately extract the QNMs of the

Schwarzschild BH. As the figure shows the minimal §R¢/I™

of different QNM frequencies depends on p(f? and p&), but
we leave further analysis of this relation to future work.

The extremely mild dependence of the QNM frequencies

(i)

on p,; and pﬁ? is actually reasonable and can be understood

as follows. Let us focus first on the pl(,j,) = pg,) =1 case.
Even if we assume these boundary conditions, the boun-
dary conditions obtained in Sec. III for all A; are still
satisfied, except when i = 4. When i = 4, Sec. III B tells us

that the “correct” Ansatz for y, is

—r

) . r —iwry corr
ya(r) = oo ( H) W, (69)

(corr

where u, ) (r) is the finite part of y, that we must calculate

numerically. If we assume p%) = pg)) = 1 instead, we are
actually imposing the Ansatz

— —iwry—1
ya(r) = eiorpiontl (_ ’H) W™ (), (70)
r
(asum) . .
where u,  (r) is now the finite part of y,. If these two

Ansdtze are to agree, we must have that

r—ryl

ugasum) (}") _ - ; ué(forr) (}")

(71)
Hence, r € [ry. ), u{™"™ (r) is bounded if u\ ™™ (r) is
also bounded because (r—ry)/r* is finite. Thus, the
spectral decomposition can still be applied regardless of
our assumptions on the boundary conditions for p. This
argument also applies for an even larger py and p,.
This independence of our calculations on the choice of
p%) and pffo) has three advantages. First, it can simplify the
prescriptions of the boundary conditions for numerical
computations because we can simply use the same p(é)
pg)IO)‘ . .
our calculations for different values of pgf,) and p(o'o). If the
QNM frequencies are properly extracted, the same complex

and
Second, we can cross-check our results by repeating

numbers should emerge regardless of the choice of pg) and
p(o'o). Third, this property may allow us to bypass the
estimate of the asymptotic behavior when studying the
boundary conditions. This simplification could be wel-
comed when dealing with more sophisticated BHs, for
which the estimation of the asymptotic behavior of the

solution may be much more difficult.
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FIG. 6. Numerical uncertainty in the real (left) and imaginary parts (right) of different QNM frequencies by spectrally decomposing
different sets of components of the linearized Einstein equations. In all cases, we use at most 25 x 25 spectral functions when computed
the QNM frequencies. Observe that the accuracy of the QNM frequencies calculated is approximately independent of the choice of
components of the linearized Einstein equations that we choose to solve.

C. Other combination of the linearized equations

We have thus focused on the {7, ty, tp, rr, ry, r¢p} set of
linearized Einstein equations, but what if we had chosen a
different set? We find that if we select a different set of
linearized equations, we can still accurately estimate
the QNM frequencies. Figure 6 compares the 5R/™ of
the QNM frequencies computed by solving the following
systems'":

G)  A{tr.ty,rr oy, xx. x¢p} (red triangles),

()  {tr, ey tp, rr, yx, xd} (green circles),
and {tr,ty,tp,rr,ry, ¢} (inverted blue triangles, the
system we have been focusing on) solved using at most
25 x 25 spectral functions. Observe that the choice of the
components of the linearized Einstein equations one works
with does not affect our ability to solve for the QNM
frequencies. This flexibility allows us to cross-check our
results by computing the QNM frequencies using different
sets of linearized Einstein equations.

This flexibility is also an interesting result in its own
right. Previous calculations of Schwarzschild QNM
frequencies relied on solving certain master equations,
which are computed by simplifying and eliminating various
components of the Einstein tensor [89,124,125,148]. To
keep the calculations tractable, those derivations naturally
make use of the simplest linearized Einstein tensor com-
ponents. Here, we show that different choices of the
components of the linearized Einstein equations that
one solves also lead to the accurate computation of
Schwarzschild QNM frequencies.

""This list of linearized Einstein equations is by no means
exhaustive. We also calculated various Schwarzschild QNM
frequencies by solving other sets, but we found that a larger
number of basis functions would then be required to obtain an
accurate result.

VII. CONCLUDING REMARKS

In this paper, we have developed a spectral method to
systematically study gravitational perturbations of a non-
rotating BH. We first apply spectral decompositions to
study the asymptotic behavior of gravitational perturba-
tions at spatial infinity and at the BH event horizon. Using
this asymptotic behavior, we then construct an Ansatz for
the metric perturbations. The Ansatz allows us to spec-
trally decompose the linearized Einstein field equations
along both the radial and polar coordinates, thereby
transforming the linearized field equations into a linear
eigenvalue problem. By solving the matrix equation for
the generalized eigenvalues, and through the development
of a procedure to identify the QNMs these eigenvalues
correspond to, we can calculate the frequency of many
QNMs with excellent accuracy. For example, using our
numerical scheme, we can simultaneously compute six
QNM frequencies of the Schwarzschild BH with a relative
error always better than (and sometimes much better than)
<10™. We thoroughly investigate the computational
uncertainty of our spectral method, concluding that our
calculations are highly accurate and the QNM identifica-
tion procedures are robust. Our approach allows us to
verify that, as expected, the QNM frequencies of a
perturbed Schwarzschild BH are independent of the set
of components of the linearized field equations that one
uses to calculate them.

The spectral method contains several advantages over
the existing approaches to studying gravitational perturba-
tions of a BH. First, the spectral method can, in principle,
be applied to any BH spacetimes irrespective of their
classification under the Petrov scheme [149]. Unlike the
derivation of the Teukolsky equation, our method does not
require the background spacetime to be vacuum (i.e., no
matter) and Petrov-type D [96]. This advantage enables us
to apply the spectral method to other more complicated and
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generic BH spacetimes that cannot be easily studied
through the Newman-Penrose formalism.

Second, the spectral method does not require simplifi-
cations of the linearized field equations into master
equations through special master functions. The derivation
of the Regee-Wheeler, the Zerilli-Moncrief, or the
Teukolsky equation requires the simplification of the
perturbed (metric or curvature) equations into several
decoupled master equations, obtained through various
transformations or redefinitions of perturbation variables.
These transformations and redefinitions usually need to be
modified for non-Schwarzschild or Kerr BHs, and precisely
how to do so can be quite difficult [150,151]. By applying
the spectral method, we have a unified framework to
accurately estimate the QNM frequencies without such
simplifications or decouplings, bypassing the difficulties of
deriving the necessary transformations or redefinition.

Third, the spectral method is computationally straight-
forward. When computing the QNM frequencies by solv-
ing the Teukolsky equation, one also needs to solve for the
angular separation constants. The spectral method focuses
on calculations of only the QNM frequencies, avoiding the
need to compute these separation constants. Moreover,
previous work had found that more than 100 spectral
functions in the radial and angular coordinates are needed
to compute higher-mode frequencies by spectrally decom-
posing the Teukolsky equation, even for the case of the
Schwarzschild BH (a = 0) [1 12].ll In contrast, the spectral
method presented here requires a much smaller set of basis
functions (~25) for the accurate estimation of six QNM
frequencies. These features aid in making the numerical
computations more straightforward and convenient.

Finally, the spectral method does not involve the calcu-
lation of the Weyl scalars, making the studies of gravita-
tional perturbations more direct, and perhaps, more
physically intuitive. The Teukolsky equation expresses
all gravitational perturbations in terms of curvature pertur-
bations that are encoded in perturbed Weyl scalars.
Therefore, if one wishes to find the gravitational metric
perturbations using solutions to the Teukolsky equation,
one needs to reconstruct the metric from the Weyl scalars
through a lengthy procedure [126,153,154]. The spectral
method we presented here avoids all of these complications
because it works directly with metric perturbations.

To fully realize the potential of the spectral method we
presented here, we need to further develop it so that it can
be applied to more sophisticated BH spacetimes. Our
immediate next step is to apply the spectral method to
spinning BH backgrounds, and more concretely to the Kerr
background metric. When doing so, it may be beneficial to
consider other basis functions for the spectral decomposi-
tion, instead of the associated Legendre polynomials for the

""We note that the number of spectral functions required may
be reduced using a new sparse spectral method [152].

angular sector and the Chebyshev polynomials for the
radial sector that we used here. One option would be to use
spheroidal harmonics or spin-weighted spherical harmonics
for the angular sector, while one could use a rational
polynomial basis for the radial sector. We have started this
exploration already and have found some encouraging
results, but their detailed presentation will be shown else-
where. Moreover, thus far we have focused on the Regge-
Wheeler gauge, which should be applicable to a wide range
of modified BHs. But to make the spectral method more
generally applicable, we also need to explore different
gauges. One could also further investigate how exactly the
sources of numerical inaccuracies, mentioned in Sec. V B,
affect the quasinormal frequencies, and how to improve
their precision.

Other than rotating BHs, one still needs to explore the
application of our spectral method to beyond-GR BHs
whose metric is irrational (e.g. [155]) or numerical (e.g.
[156-161]). For irrational BH solutions, a change of
variables may rationalize the metric, which allows straight-
forward applications of our spectral method. Numerical BH
solutions are commonly expressed in terms of spectral
functions when the solutions are being calculated, and thus,
our spectral method directly applies. Alternatively, we can
also fit numerical BH solutions using spectral functions or
by numerically evaluating their derivatives to derive the
linearized field equations. Once the linearized field equa-
tions are obtained, even via numerical means, our spectral
method still applies. In the future, we plan to explore
various modifications to adapt our spectral method to
irrational or numerical BHs.

Once the spectral method has been generalized and
developed further, it could be applied to a plethora of
problems. The most obvious one is perhaps the calculation
of QNM frequencies in modified gravity theories, such as
in dynamical Chern-Simons gravity [63—-66] or scalar-
Gauss-Bonnet gravity [68—70]. In such theories, and in
almost all other theories known to date, QNM frequencies
are only known in the slow-rotation limit, a limitation that
could be lifted with the spectral method. Another possible
application of our spectral method is the study of BH
spectral instabilities. Typically, the criterion of spectral
instability is characterized by modifications to an effective
potential [162—-165]. In the spectral method, however,
the notion of the effective potential is not manifest, as
the method does not need master equations governing the
gravitational perturbations. To apply the spectral method to
study spectral instabilities, we would need to reconcile it
with the notion of an effective potential.
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APPENDIX A: SYMBOLS

The calculations presented in this paper involved
numerous symbols. For convenience of the reader, we
provide a list of the symbols and their definitions in this
appendix.

(i)  AY(r) is the asymptotic prefactor of the ith
perturbation variable, first defined in Eq. (30).
d, is the degree of r of the coefficient of the partial
derivative of the linearized Einstein equations,
first defined in Eq. (6)

d, is the degree of y of the coefficient of the partial
derivative of the linearized Einstein equations,
first defined in Eq. (6).

d, is the degree of z of the coefficient of the partial
derivative of the compactified linearized Einstein
equations, first defined in Eq. (36).

D(N) is the modulus difference of the optimally
truncated quasinormal-mode frequency over suc-
cessive iterations, first defined in Eq. (64).

D(w) is the coefficient matrix of spectral decom-
position, from one particular basis to another, first
defined in Eq. (39).

D(w) is the augmented matrix of the coefficients of
spectral decomposition, first defined in Eq. (46).
SRe/Im is the numerical uncertainty of the real and
imaginary parts of the QNM frequencies com-
puted using the spectral method, first defined
in Eq. (67).

ARe/Im i the relative fractional error in the real
and imaginary parts of the QNM frequencies
computed using the spectral method and the
Teukolsky equations, first defined in Eq. (66).
E(N) is the absolute error between the QNM
frequencies computed using the spectral method,
w(spectral), and Leaver’s method to solve for the
QNM modes w(L), first defined in Eq. (65).
Giysoap is the coefficient of w/rPy?dtd,h; of
the linearized Einstein equations of h;, first
defined in Eq. (6).

(i)

(iii)

(iv)

)

(vi)

(vii)

(viii)

(ix)

x)

(xi)

(xii)

(xiii)

(xiv)

(xv)

(xvi)

(xvii)

(xviii)

(xix)

(xx)

(xx1)

(xxii)

(xxiii)

(xx1v)

(xxv)

(xxvi)

(xxvii)

(xxviii)
(XXiX)
(xxx)

(xxxi)

(xxxii)
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hi(r,y) are the functions of metric perturbations,
first defined in Eqgs. (5a) and (5b).

i the subscript is the component of the metric
perturbation functions and i =1, ..., 6, first de-
fined in Egs. (5a) and (5b).

Ki.apys0, i the coefficient of @” 2929, (- - -) of
the linearized Einstein equations in z and y, first
defined in Eq. (36).

[ is the azimuthal mode number of the gravita-
tional QNMs, first defined in Sec. L.

¢ is the degree of associate Legendre polynomial
used in spectral decomposition, first defined
in Eq. (8).

A(N) is the generalized eigenvalue of the linear
matrix equation, Eq. (49), obtained using N
Chebyshev and associated Legendre polynomials,
first defined in Eq. (52).

M is the BH mass, which is taken to be M =1
throughout this work, first defined in Eq. (1).
M(r) is the coefficient matrix of the system of
ordinary differential equations, first defined in
Eq. (20).

M, is the coefficient matrix of r* term of the
asymptotic expansion of M(r), first defined in
Eq. (21).

m is the azimuthal number of the metric pertur-
bations, first defined in Egs. (5a) and (5b).

N is the number of the Chebyshev and associated
Legendre polynomials used in the full spectral
decomposition, first defined in Sec. VA.

Ngp is the optimal truncation order for the
frequency computation, first defined in
Eq. (53).

N is the normalization factor of spectral decom-
position, first defined in Eq. (42).

N, is the number of the associated Legendre
polynomials included in the spectral decomposi-
tion, first defined in Eq. (33).

N, is the number of the Chebyshev polynomials
included in the spectral decomposition, first de-
fined in Eq. (33).

ry = 2M is the radial coordinate of the position of
the event horizon of the Schwarzschild BH, first
defined below Eq. (2).

r, 1s the tortoise coordinate, first defined in
Eq. (25).

pu is the Poincaré rank of —e>M(e) at r = ry,
first defined in Eq. (22).

Do 1s the Poincaré rank of M(r) at r = oo, first
defined in Eq. (20).

Q is the coefficient matrix of dy/dr of the system
of ordinary differential equations, first defined
in Eq. (17).

Q is the coefficient matrix of dy/dr of the system
of ordinary differential equations, after algebraic
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variables have been removed, first defined in
Eq. (19).

R is the coefficient matrix of y of the system of
ordinary differential equations, first defined
in Eq. (17).

R is the coefficient matrix of y of the system of
ordinary differential equations, after algebraic var-
iables have been removed, first defined in Eq. (19).
pffo) and pg) are the parameters that characterize the
boundary conditions of 4; in spatial infinity and at
the horizon, first defined in Eqgs. (26) and (27).
w,(L) is the frequency of the QNM ¢ computed
using the Leaver method, first defined in Eq. (68).
(xxxviil) wg™ is the optimally truncated frequency of the
QNM q, first defined in Eq. (53).

(xxxviii) y/ is the component of h;(r,y) projected along
PLZ”‘, first defined in Eq. (9).

(xXxxix) z = 2:“ 1 is the variable that maps r into a finite
domain, first defined in Eq. (31).

(xxxiii)

(XXX1V)

(XXXV)

(xxxvi)

APPENDIX B: AN EXPLICIT EXAMPLE OF THE
ASYMPTOTIC BEHAVIOR AT THE EVENT
HORIZON AND SPATIAL INFINITY

In this appendix, we explicitly apply the procedures
described in Sec. III to obtain the asymptotic behavior of
the metric variables for a Schwarzschild BH, setting its
mass M = 1 and m = 2 for simplicity.

To estimate the asymptotic behavior, we need to spe-
cifically study six equations out of the ten linearized
Einstein equations. In this example, we focus on
{tr 1y, 1, rr,ry, r¢p} because these six equations contain
the second-order r derivative of only one perturbation
function, hs(r,y). Thus, we have the Y5 element but no

0 0 0 00 Zidw 0
0 0 0 -2A00 0 0
0 0 ZiA 0 00 O 0
-2 0 0 0 00 -Zc o0
0 24 o0 0 00 0 24
-2iA4 0 0 0 00 -%i4a o0
Q) = 0 0o 0 0 00 O 4.o
0 0 0 0 00 0 fide
0 0 A 0 00 0 0
0 0 0 %A 00 0 0
0 -2 0 0 00 0 -%c
-4 0 0 0 00 -%A 0
0 -%A 0 0 00 0 -%A
0 o 0 0 00 O 0

other Y5 elements in y. Other choices of six equations
contain the second-order r derivatives of more perturbation
functions, making the calculations less convenient. To limit
the length of this example, we only include two associate
Legendre polynomials (N v =2),

Zyl

The resulting system of ordinary differential equations
contains

(PP (). (B1)

hi(r.y) =

d*y?
dr?’

To keep the system of ordinary differential equations first
order, we write

d*y?

and 5 .

dr

dys dys
dr dr
y is a 14-vector [14 =2 x (6 + 1)],

=Y? and =Y3.

Hence,
y = 033,93, 93,9333, 3,
Vi, Y2y v, v, Y2, YT (B2)

For the sake of clarity, we define the following expressions
which are recurring in the coefficient matrices:

A= (r- 2)1’2
B=(r-2)?
C=r"-3r+2
D=ro. (B3)
In terms of A, B, C and D,
0 0 0 0 0
0 0 -ZAw 0 Zia 0
0 0 0 iAo 0 2A
0 0 0 0 0 0
-Zp 0 0 0 0 0
0 2ip 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0 (B4)
0 0 0 —3Aw 0 FiA
0 0 —f%idw 0 -%A 0
0 0 0 0 0 0
0 -3iD 0 0 0 0
-%iD 0 0 0 0 0
0 1 0 0 0 0
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We now perform the procedures described in Sec. III to the system of ordinary differential equations. The quantity Q(r) is
a 14 x 14 matrix but has a rank of 10. Thus, we should have 14 — rank(Q) = 4 algebraic equations. After a few elementary
row operations, we simplify Q(r) into

0 0 0 0O 00 %iAa) 0 0 0 0 0 0
0o 0 0 -2400 0 0 0 0 -240 0 2iA o0
0 0 Za 0 00 0 0 0 0 0  Qiaw 0 LA
—%B 0 0 0O 00 —%C 0 0 0 0 0 0 0
0 %4 0 0 00 0 2A -2p o 0 0 0 0
0 0 0 0O 00 0 0 0 %ir*%w 0 0 0 0
a(r) = 0 0 0 0O 00 0 0 1 0 0 0 0 0 (BS)
0 0 0 0O 00 0 %iAw 0 0 0 0 0 0
0o 0 0 0 00 O 0 0 0 0 —PAw 0 iA
o 0 0 0 00 O 0 0 0 -l o -la o
0 0 0 0O 00 O 0 0 0 0 0 0 0
0 0 0 0 00 O 0 0 0 0 0 0 0
0 0 0 0 00 O 0 0 0 0 0 0 0
0 0 0 0O 00 0 0 0 0 0 0 0 0
|
The nonzero elements of the corresponding R(r) after the Rys(r) = — 12 P
elementary row operations are S R
36(r—2 12
R13(r):7(r7 ), R37(}") :_77”3(1),
12 80
Rys(r) :7i(r—2)ra), R310(r) =—(3r—1),
12 0.
Ri7(r) ——7i(r—3)ra), R3pp(r) = ——i(r-2)ro,
40 36
Roy(r) = = Ry (r) = = (r=2),
7 7
24
RZG(r) :__ir3w, R43(7‘) —71'(}’—2)1‘(0,
12
Rys(r) = == ire, Ras(r) = ——(r-2),
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Ro(r) =2 (r= ).

24
Rso(r) = —7”20%

12
R511<l") :7i(r3a)2 —4r+8),

12
RGl(r) = 71"(21" + 3),

12(RPw? -3
R&(”):i( o ),

12ir(r*w? — 2r* + 3r + 3)

|]%67(’”):_ 7(1"—2)

40 .
Rﬁ 10(}") = 71}’260,

20
R612(r) = 7(7’3&)2 - 10r+ 20),

R73(r) =1,

Rgy(r) = 8(r —2),
Rge(r) = gi(r -2)rw,

4
Rgg(r) = —§l<r— 3)7'(0,

Ry 10(r) = 51 i(3r = 1),

Ry (r) = %("2)"0,
Rigo(r) =12 (2= %),
Rig11(r) %i(”—z)r&
Ryi2(r) —§<—51’+—+7>,
R, 4(r) = 4i(r 23):2;;@2 6)’
Ry () = 4(r*w* - S;i +9r+3)
Rijg(r) =—2(r-2)w.

’

’

4i(r =2)(rPw* —4r+8)
512 ’

Ry (r) =

16i(rPw? - 3)

16r(r*w? — 21> + 3r + 3)
150-=2) ’

Ripq(r) = -

32 .
R139(r) = —Elrza),

=3 5

3(r*w? —2r* +3r +3)

R147(”) = 5(r—2)r2a) ,

2
Rig10(r) = .

i(FPw?—10r + 20
Rizia(r) = ( Po )’

Rigia(r) = 1.

By reading the fifth and sixth column of Q(r), we identify
two algebraic variables, y3 and y3. By solving the ordinary
differential equations represented by the first and second row
of Q(r) and R(r) for y3 and y3, we have

3i (r=13)
2 _ 2
73 ra)y2+ r—2

dyi
dr’

Vit

V3= 5Pwy; +3r*(r—2) a3

3 5P 4 dr
d 2 d 2 d 3

+ ir((r -2) (3rw% + 6(0% + Sr%) + 10y3>

+ (12 - 18r)y§). (B6)
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As all algebraic variables have been expressed in terms of the
differential variables and at most their first-order r derivative,
the system of ordinary differential equations remains first
order if we substitute the algebraic variables back into the
system.

0 0 24 o e g
~2p 0 o 0 22 9
0 2A 0 L 0 DA
o 0 0 0 0 0
o 0 0 0 0 0
am=| © 0 0 -3B 0 jide
o 0 0 0 0 0
o 0 0 0 0 0
o 0 0 0 0 0
o 0 0 0 0 0
o 0 0 0 0 0
o 0 0 0 0 0

and the corresponding R has the following nonzero
elements:

. 12
RB(I") = —7”’(37’—!— 2),

PR2r-35w
Ris(r) == oo

(1) = =2 (=),
i(r— rPw? —
Ry (r) = 2200 23
Rys(r) = = (Pw® —3r+17),

20i(r'a? +2r —2)
Trw

I]%34(7) ==

’

We substitute y3 and y3 back to the system of ordinary
differential equations. Now ¥ is a 12 vector (2 = 14 —2),
and Q(r) and R(r) are 12 x 12 matrices. After some
elementary row operations to simplify Q(r), we have

0 0 0 DiAw 0 DA
0 0 0 0 0 0
2o Zic 0 20
0 2D 0 0 0
1 0 0 0 0 0
0 0 -%iBow 0 siB 0 | (B7)
0 0 0 -$A0 0 A
0 0 -1l 0 14 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
- 20
36(r) = —7(V— Dr,
~ 24(r*w?* = 3r* +5r =2
Ry (r) = - A 3
e
~ (r) = 12i(r*w? — 6r* + 14r — 4)
W)= Tr ’
~ 12
R41(r) = 7”"(27"" 3),
. 12(Peo* - 3)
R =,
x3(r) 7o
- 12ir(r*w? — 212 + 3r + 3)
4s(r) = — )
7(r—2)
~ 40

_ V.0
48(”) 7 rw,

20
R410(}’) = 7(7’3(1)2 — IOI”—I— 20),
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6
(2r+3),

~ 1
RIOI(r):Er

~ 4
R66(”) = —glr(ZF—S)a),
~ 8i(3r — 8r+4) . 16i(FPw? = 3)
R67(r) = Tv R103(r) = — Go s
- 8(r—2)w - 16r(r*w* — 2r2 +3r +3)
R = R —
69(r) 5r ’ IOS(r) 15( _2) )
_ 4. i )
Rs(r) =5 iBr=1), Ryy7(r) = _%iﬂw,
" 3 .
710(r)—3(r—2)rw, Ryjo(r) = =z (FPo® —4r +8),
- 32 ) .
() = _E(3r —2) Ry (r) = giﬁw,
: 32, 6r +9
g8(r) =—i(r—2)rm, R - _
15 121(”) 520
Rop(r) =2 (=5r+2+7). Ryps(r) = o =
3 r 23T 5 532
= 4i(r=2)(rew* -6 - 3(r*w? —2r% +3r +3)
fos(r) =1 3)r(2a) 3 Rios() == e
~ 2
R __z
128(r) e

Ry (r) = ~3 (r=2)o,

’

- i(Pw® - 10r + 20)
Riz10(r) = .

n11212(7) =1

~ 4i(r=2)(RPw?* —4r+38
Rog(r) = ( )(Srz )

Now the ninth to 12th row of Q(r) are all zeros. By
reading the corresponding rows of R(r), we obtain the

- 4
Royi(r) = 5(7—2)70”
following four algebraic equations:

4(5i(r =2)(rPw? = 6)y3 = 5r(5r* = Tr — 6)wy; + Sro(r*w? — 5r* +9r + 3)y3}

+3(r =2)w(i(FPo? — 4r + 8)yZ + roY? — 2r’wy?)) =0,

16(i(r = 2)(FPw? = 3)y3 + r(=2r* + r + 6)wy? + ro(r*e? — 2r* +3r + 3)y3) =0,
(P@? —4r +8)y: — irfwY? + 2irfwy? =0

3.2
(B8)

3i(r=2)(re* -

3)ys = 3r(2r* — r — 6)wy? + 3ro(r*w? — 2r* + 3r + 3)y?}
+5i(r =2)o((FPe? — 10r + 20)y} — irfwY?: + 2irfwY3) = 0.

These algebraic equations allow us to express four differential variables in terms of the remaining eight (= 12 —4)
differential variables in 81 different combinations. Each of these 81 combinations leads to a M(r) of 0 < p, <2

Eventually, we solve the algebraic equations for y3, y3, y2 and y3,
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= (r=2)(r2r +3)ayi —i(rw* = 3)y3)
+ ro(r(rPw?* —2r+3) + 3)

s

5 (r=2)(r(5r + 3wy; —i(rPw* —6)y3)
Y ro(r(rPw* —5r+9) + 3)

’

2yt i(Pe? —4r +8)yZ

3 ’

2
Ys =
r r’e

2y i(Pw? - 10r +20)y;

drastically reduces the difficulty to diagonalize M(r) and
study the asymptotic behavior of y for larger p.. Second,
this combination eliminates all the differential variables
concerning the second-order r derivative of the metric
perturbation functions, which are less relevant to our
studies as no metric perturbations are expressed as the r
derivatives of h;.

We now have a system of ordinary differential equa-
tions of the form of Eq. (20) concerning rank(Q) — N.
10 — 2 = 8 differential variables, with

alg =

_ s
Yg — T - r3w ’ (Bg)
(w2 V3 02 w3 v2 v3 w2 o3\ T
for two advantages. First, eliminating these four variables 2= (VY12 Y2, Y5 Y5 Yo Ye) - (B10)
leads to a M(r) of p,, =0, with both M, and M_,;
diagonalizable. This is a crucial advantage because it  The nonzero elements of M(r) are
|
Pw* —4r*e* +4r* = 12r + 6
My (r) =
(r=2)r(r*e* = 2r* +3r +3)’
i(FPw* — 4r*a? + 4r30? + 12 (90 + 6) — 24r + 24
M13(”):—l(rw ro*+4re +r(a)+ ) —24r+ )’ (B11)
(r =2)ro(r*@w* = 2r* + 3r + 3)
P’ —4r*e* +7r* = 18r +6
Moy (r) =
(r=2)r(r*'e* =5r* +9r +3)’
i(rPo* — 10r*@? + 16r°@” + r*(9w? + 30) — 120r + 120
M4 (r) = ( ( ) ) (B12)
(r =2)ro(r*@w* = 5r* + 9r + 3)
[
(32
iro(r‘e® —4r* + 4r 4+ 9) Migs () = _ire 10r+20),
M3, (r) = — Po
(r=2)(r*w? =2r* +3r +3)’
)
Po?—4r*e0* +r -6 __ o
Ms3(r) = Mys(r) ro27
(r=2)r(r*'e* =2r* +3r +3)°
iro(r*w? —10r2 + 16r +9) My (r) = — S
My (r) = — (r=2)r
(r=2)(r*w?* =5r* +9r +3)°
5.2 4.2 2 iro
ro* —4r*w* +4r° —6r—=6 Mg (r) = — 5
My (r) = (r-2)
(r=2)r(r*e* = 5r* + 9r +3)’
2
Mss(r) =2, M) =5y
i(Pa? —4r + 8) At r = oo, we express M(r) as a power series of r and
Ms;(r) = - 3 ’ discard terms that drop faster than O(r72),

M_,

M(r) Mo +—. (B13)
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0 0 —iw 0 0 O 0 O 1 0 —2iwm O 0 0 00
0 0 0 —iw O O O O 0 1 0 2w O 0 00
—-io 0 0 0 O O 0 O —2io 0 1 0 0 0 00
0 i 0O 0 O O 0 O 0 —2iw O 1 0 0 00
My = ) and M_, = (B14)
0O 0 0O 0 0 0 —-iwm O 0 0 0 0 2 0 00
0o 0 0O 0 0 0 0 —-iw 0 0 0 0 0 2 00
0 0 0 0O —iw O 0 O 0 0 0 0 —4iw 0 00O
0O 0 0 0O 0 —-iw 0 O 0 0 0 0 0 —4iw00
Both M, and M_, are diagonalizable. We first diagonalize M, by writing My = I]j’lfk/l]((;)ﬂj’l‘1 such that
—io 0 0 0 0 0 0 O 0001 0 0 0 -1
0 —-im O 0 0 0 0 O 0010 0 0 -1 0
0 0 —-iw O 0 0 0 O 0001 0 0 0 1
() 0 0 0 —-iw 0 O 0 O 0010 0 0 1 O
My’ = ) and Py = (B15)
0 0 0 0 iw 0O O O 01 00 O -1 0 O
0 0 0 0 0 iw 0 O 1 000 -1 0 0 O
0 0 0 0 0 0 im O 0100 O 1 0 O
0 0 0 0 0 0 0 iw 1 000 1T 0 0 O
We change z into z(!) = Pz, which satisfies another system of ordinary differential equations,
dz(V
P M (r)zM,
MO () = PRIM(AP, — P o0 — gD 4 ML)
o ! Vogr 0 r
1 -2iw 0 0 0 2iw — 1 0 0 0
0 1 -2iw 0 0 0 2iw — 1 0 0
0 0 1 -2iw 0 0 0 0 0
M(_lf _ 0 0 0 1 -2iw 0 0 0 0 (B16)
—2iw — 1 0 0 0 2iw + 1 0 0 0
0 —2iw—1 0 0 0 2iw + 1 0 0
0 0 0 0 0 0 2iw + 1 0
0 0 0 0 0 0 0 2iw + 1

We can diagonalize M(_ll) while keeping M(()l) unchanged by further changing z(!) into z® = P,z("), where P, = 1 + £

r’
provided that X satisfies the matrix equation
D_, =M" + Dy, 3. (B17)

(1)

Here Dy and D_; are respectively the diagonal part of Mél) and M. The matrix equation gives
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0 0 0
0 0 0
0 0 0
1 0 0 0
>
20 | i(—2iw—1) 0 0
0 i(=2io—1) 0
0 0 0
0 0 0

0 —i(2iw—1) 0 00
0 0 —iQ2iw—1) 0 0
0 0 0 00
0 0 0 00
(B18)
0 0 0 00
0 0 0 00
0 0 0 00
0 0 0 00

With this P,, z? satisfies the system of ordinary differential equations whose coefficient matrix M®)(r) is given by

1220 jg 0 0 0
0 1= — jg 0 0
0 0 1210 _ jg) 0
M) = 0 0 0 12l jg)
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Since M®)(r) is now diagonal, we can readily solve the
system of ordinary differential equations for z(?),

c r1—2ia)e—ia)r
c2r1—2iwe—iwr
c3 r1—2iwe—imr
cy rl —Ziu)e—imr

(B20)

Cs rl +2iw e+iwr

Co rl +2iw€+iwr

l+21a)€+lwr

cqr
cs rl +2iw€+i(ur
where ¢, ¢,, ..., cg are constants. The asymptotic behavior
of z can be obtained by the inverse transformations
z=P,P,z?. (B21)
As QNMs correspond to GWs that are purely outgoing at
spatial infinity, we can just set ¢c; = ¢, = ¢3 = ¢4 = 0. By
setting these constants to be zero, using the algebraic
equations and the relations between the algebraic variables
and differential variables, we find

r1+2iweiwr for i ;é 4’

B22
for i = 4. ( )

yf:m(r - +00) x {

r2iweiwr

0 0 0 0
0 0 0 0
0 0 0 0
v ! ! ! (B19)
i 2t 0 0 0
0 i 4 2ot 0 0
0 i+ 2t 0
0 iw + el

Equation (B20) makes good physical sense. First, we
simultaneously obtain the ingoing and outgoing asymptotic
behavior at spatial infinity. This is consistent with the wave
nature of the metric perturbations, since these can be
ingoing and outgoing at spatial infinity. Second, we
recognize that p2i@ gFier—iot o phior.—iof gt gpatial infinity,
which implies that the waves are propagating at the speed
of light relative to observers at spatial infinity. Finally, we
observe that Eq. (B22) does not depend on . We confirm
this observation by extending our calculations to N, = 19
(thus 20 associated Legendre polynomials are included)
and we obtain the same asymptotic behavior. The inde-
pendence on Z is consistent with the existing calculations of
the asymptotic behavior of the gravitational perturbations
around a Schwarzschild BH.

The asymptotic behavior of y* at the event horizon can
be similarly obtained. We shall omit the details of the
calculations at the horizon as they are completely analo-
gous to the above, and simply report the asymptotic
behavior, which is purely ingoing at the horizon,

(r—ry)~'7%® fori#4and5,

‘ B23
(r_rH)—Zzw fori=4and>5. ( )

Y|

We would like to point out the flexibility of our estimates
of the asymptotic behavior of the metric perturbation
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functions. We can eliminate the algebraic variables by
solving two differential equations, such as those corre-
sponding to the first and the fifth row. We can also eliminate
different differential variables using the obtained algebraic
equations. One can show that eliminating other differential

Z = (y}. o} vi i vE v vt (B24)

According to Eq. (B9), Z and z are related by a trans-
formation matrix,

variables will not affect the QNM frequencies. To see this, 7 = [|3>( r,o)z, (B25)
.. £=23 . .
we go back to step four and eliminate y, instead, which
leads to another vector, where
|
1 0 0 0 0 0 0 O
0 1 0 0 0 0 0 O
(r=2)(r(2r+3)w (r=2)(rPw?-3)
ol a=2r3)43) 0 T a2 ) 0 0000
_ (r=2)(r(5r4+3)w) _ (r=2)(i(PP0*—6))
[P’(r’ a)) = 0 ro(r(rw?=5r+9)+3) 0 ! ro(r(ro*=5r+9)+3) 0000 (B26)
0 0 0 0 1 0 0 O
0 0 0 0 01 0 O
0 0 0 0 0 010
0 0 0 0 0 0 0 1

Thus, the system of ordinary differential equations satisfied
by Z and that by z,

o= M(r, )z,
d
d—j = M(r, w)z, (B27)
is related by
_ o _ 4P
M =P MP-P1 . (B28)
r

In other words, the two systems of ordinary differential
equations are equivalent, even though the p and py of M
and M may be different. Moreover, both systems of
ordinary differential equations admit the same QNM
frequencies, even though M and M are seemingly different,
because @ is not altered through the transformation of P.
We have checked that all these changes eventually lead to
the same asymptotic behavior of the perturbation functions,
despite the calculations in the middle being slightly differ-
ent. This flexibility allows us to adjust the details of the
calculations to make them the most convenient.

Finally, using the above calculations, we can derive the
ODE satisfied by every yf::ﬁimﬁ. The explicit equations are
contained in a Mathematica notebook which is available
upon request. A key feature of these differential equations is
that those governing yfjlz‘fw“ contain only y’fjﬁf .4 and

those governing yszg contain only yf::;'; . This property is

[
consistent with the fact that, for perturbations of a
Schwarzschild BH, the odd- and even-parity modes
decouple.

APPENDIX C: COMPARISON WITH THE
EXISTING CALCULATIONS

In this appendix, we check the validity of our calcu-
lations by comparing their details to those in the existing
literature [89,124,125,166]. We find that the first equation
in Eq. (B6) is equivalent to

dK(r) 1

ar ;HO(F> a M

wr?

12r—3r,
r2(r—ry)

Hy(r) + K(r) =0,

(C1)

in the literature, where 1 = #(¢ + 1) — 2, and the definition
of K, Hy and H| is given by [90,104,124,166]. The second
equation in Eq. (B6) is seemingly different from Eq. (C1),
but substituting the ordinary differential equations into
Eq. (B6), both equations are simplified to

=, ()
which is equivalent to
Ho(r) = Hy(r) (C3)

in the existing literature. We note also that the first two lines
of Eq. (B9) correspond to
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TABLE 1.
those in the existing literature [89-91,166].

Comparison of the metric perturbation variables and asymptotic behavior derived in this paper and

In this paper

In the existing literature

Symbols ) r—ry Symbols r— o r—ry

hl r1+2iweiwr (r _ rH)—l—Ziw _[_I0 r1+2iweiwr (r _ rH)—l—Ziw
h2 r1+2iweiwr (I’ _ rH)—l—Zia) [_]1 rl+2i(ueiwr (F _ rH)—l—Zia)
h3 rl+2iweiwr (r _ rH)—l—Ziw H2 rl+2iweiwr (r _ rH)—l—Zia)
h4 r2imeimr (}" _ rH)—Zim K r2imeimr (I’ _ rH)—Zim
hS rl+2iweiwr (r _ rH)—Ziw hO rl+2iweiwr (r _ rH)—Ziw
hé r1+2iweimr (I" _ rH)—l—Zia) hl rl+2iweimr (l’ _ rH)—l—Ziw

where

<3:H + 2/1) Ho(r) + (W - 2i“’r>Hl (r)

r

n 318 + 2ry (22— 1)r — 4217 + 4a*r*

2r(r—ry) k(r) =0.

(C4)

This relation is consistent with previous calculations of
even-parity perturbations of Schwarzschild BHs [125]. We
have checked that our calculations are consistent with
Egs. (C1), (C3), and (C4) as we expand our calculations to
N, =20. Finally, we compare the asymptotic behavior
obtained in this paper with those in the existing literature,
as listed in Table I. Our calculations of the asymptotic
behavior are clearly consistent with that of previous
calculations.

APPENDIX D: NORMWISE SCALING OF
QUADRATIC EIGENVALUE PROBLEM

For the completeness of this paper, we briefly summarize
the procedures of normwise scaling of the quadratic
eigenvalue problem. We refer the reader for the details
of this scaling to [141,142].

Consider a quadratic eigenvalue problem,

[[@0 + [f)la) + D2w2]v = 0 (Dl)
This quadratic eigenvalue problem is equivalent to
[MO + M]CD + Mzwz]v = 0, (DZ)

- Dyll, =
it = [Bolz 5,
1B

1 -

r\71]1 =T
[1Boll2 1D,

- D
MO = ~ 0
| Dy

(D3)

)
2

where ||Al], is the two-norm of the matrix A, defined as

[AX[,
[[A[l, = sup : (D4)
x#0 (X[
and ||x]|, is the two-norm of the vector x. It is shown that
this definition is equivalent to [167]

IA]l; = y/max |A(ATA)], (Ds)
where max [A(ATA)| stands for the maximum modulus of
the eigenvalue of the Hermitian matrix A"A. Equation (D5)
is also how we computed the two-norm of D, D; and
D, for the scaling before computing the generalized
eigenvalues.

[1] B.P. Abbott et al. (LIGO Scientific, Virgo Collabora-
tions), Observation of Gravitational Waves from a
Binary Black Hole Merger, Phys. Rev. Lett. 116,
061102 (2016).

[2] B.P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
GW151226: Observation of Gravitational Waves from a

22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev.
Lett. 116, 241103 (2016).

[3] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
GW170104: Observation of a 50-Solar-Mass Binary Black
Hole Coalescence at Redshift 0.2, Phys. Rev. Lett. 118,
221101 (2017); 121, 129901(E) (2018).

124032-33


https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.121.129901

CHUNG, WAGLE, and YUNES

PHYS. REV. D 107, 124032 (2023)

[4] B.P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
GW170608: Observation of a 19-solar-mass binary black
hole coalescence, Astrophys. J. Lett. 851, L35 (2017).

[5] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
GW170814: A Three-Detector Observation of Gravita-
tional Waves from a Binary Black Hole Coalescence, Phys.
Rev. Lett. 119, 141101 (2017).

[6] B.P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
GW170817: Observation of Gravitational Waves from a
Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101
(2017).

[7] B.P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Tests of General Relativity with GW150914, Phys. Rev.
Lett. 116, 221101 (2016); 121, 129902(E) (2018).

[8] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Binary Black Hole Mergers in the First Advanced
LIGO Observing Run, Phys. Rev. X 6, 041015 (2016);
8, 039903(E) (2018).

[9] B. P. Abbott et al. (KAGRA, LIGO Scientific, and Virgo
Collaborations), Prospects for observing and localizing
gravitational-wave transients with Advanced LIGO, Ad-
vanced Virgo and KAGRA, Living Rev. Relativity 21, 3
(2018).

[10] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
GWTC-1: A Gravitational-Wave Transient Catalog of
Compact Binary Mergers Observed by LIGO and Virgo
during the First and Second Observing Runs, Phys. Rev. X
9, 031040 (2019).

[11] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Tests of general relativity with the binary black hole signals
from the LIGO-Virgo catalog GWTC-1, Phys. Rev. D 100,
104036 (2019).

[12] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
GW190412: Observation of a binary-black-hole coalescence
with asymmetric masses, Phys. Rev. D 102, 043015 (2020).

[13] R. Abbott et al. (LIGO Scientific, Virgo), GW190814:
Gravitational waves from the coalescence of a 23 solar
mass black hole with a 2.6 solar mass compact object,
Astrophys. J. Lett. 896, L44 (2020).

[14] R. Abbott et al. (LIGO Scientific, Virgo, KAGRA Col-
laborations), Tests of general relativity with GWTC-3,
arXiv:2112.06861 [Phys. Rev. D (to be published)].

[15] T. Gupta, M. Herrero-Valea, D. Blas, E. Barausse, N.
Cornish, K. Yagi, and N. Yunes, New binary pulsar
constraints on FEinstein-@ther theory after GW170817,
Classical Quantum Gravity 38, 195003 (2021).

[16] S.E. Perkins, R. Nair, H. O. Silva, and N. Yunes, Improved
gravitational-wave constraints on higher-order curvature
theories of gravity, Phys. Rev. D 104, 024060 (2021).

[17] A. Cardenas-Avendano, S. Nampalliwar, and N. Yunes,
Gravitational-wave versus x-ray tests of strong-field grav-
ity, Classical Quantum Gravity 37, 135008 (2020).

[18] S. Perkins and N. Yunes, Probing screening and the
graviton mass with gravitational waves, Classical Quantum
Gravity 36, 055013 (2019).

[19] K. Chamberlain and N. Yunes, Theoretical physics im-
plications of gravitational wave observation with future
detectors, Phys. Rev. D 96, 084039 (2017).

[20] E. Barausse et al., Prospects for fundamental physics with
LISA, Gen. Relativ. Gravit. 52, 81 (2020).

[21] S.E. Perkins, N. Yunes, and E. Berti, Probing fundamental
physics with gravitational waves: The next generation,
Phys. Rev. D 103, 044024 (2021).

[22] C. M. Will, The confrontation between general relativity
and experiment, Living Rev. Relativity 17, 4 (2014).

[23] 1. H. Stairs, Testing general relativity with pulsar timing,
Living Rev. Relativity 6, 5 (2003).

[24] N. Wex and M. Kramer, Gravity tests with radio pulsars,
Universe 6, 156 (2020).

[25] N. Yunes and X. Siemens, Gravitational-wave tests of
general relativity with ground-based detectors and pulsar
timing-arrays, Living Rev. Relativity 16, 9 (2013).

[26] K. Yagi and L. C. Stein, Black hole based tests of general
relativity, Classical Quantum Gravity 33, 054001 (2016).

[27] E. Berti, K. Yagi, and N. Yunes, Extreme gravity tests with
gravitational waves from compact binary coalescences: (I)
inspiral-merger, Gen. Relativ. Gravit. 50, 46 (2018).

[28] R. Nair, S. Perkins, H. O. Silva, and N. Yunes, Funda-
mental Physics Implications for Higher-Curvature Theo-
ries from Binary Black Hole Signals in the LIGO-Virgo
Catalog GWTC-1, Phys. Rev. Lett. 123, 191101 (2019).

[29] E. Berti, K. Yagi, H. Yang, and N. Yunes, Extreme gravity
tests with gravitational waves from compact binary coa-
lescences: (II) ringdown, Gen. Relativ. Gravit. 50, 49
(2018).

[30] S. W. Hawking, Breakdown of predictability in gravita-
tional collapse, Phys. Rev. D 14, 2460 (1976).

[31] S. W. Hawking, The information paradox for black holes,
arXiv:1509.01147.

[32] S. Perlmutter et al. (Supernova Cosmology Project Col-
laboration), Measurements of € and A from 42 high
redshift supernovae, Astrophys. J. 517, 565 (1999).

[33] A.G. Riess et al. (Supernova Search Team), Observational
evidence from supernovae for an accelerating universe and
a cosmological constant, Astron. J. 116, 1009 (1998).

[34] Y. Sofue and V. Rubin, Rotation curves of spiral galaxies,
Annu. Rev. Astron. Astrophys. 39, 137 (2001).

[35] G. Bertone and D. Hooper, History of dark matter, Rev.
Mod. Phys. 90, 045002 (2018).

[36] A.D. Sakharov, Violation of CP invariance, C asymmetry,
and baryon asymmetry of the universe, Pis’ma Zh. Eksp.
Teor. Fiz. 5, 32 (1967).

[37] K. Petraki and R. R. Volkas, Review of asymmetric dark
matter, Int. J. Mod. Phys. A 28, 1330028 (2013).

[38] M. Gell-Mann and J.B. Hartle, Time symmetry and
asymmetry in quantum mechanics and quantum cosmol-
ogy, in 4th International Conference on lon Sources
(Cambridge University Press, Cambridge, 1991), arXiv:
ar-qc/9304023.

[39] S.H.S. Alexander, M. E. Peskin, and M. M. Sheikh-
Jabbari, Leptogenesis from Gravity Waves in Models of
Inflation, Phys. Rev. Lett. 96, 081301 (2006).

[40] S. Nojiri and S.D. Odintsov, Introduction to modified
gravity and gravitational alternative for dark energy, eConf
C0602061, 06 (2006).

[41] S. Tsujikawa, Modified gravity models of dark energy,
Lect. Notes Phys. 800, 99 (2010).

[42] R. D. Peccei and H. R. Quinn, Constraints imposed by CP
conservation in the presence of pseudoparticles, Phys. Rev.
D 16, 1791 (1977).

124032-34


https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevX.8.039903
https://doi.org/10.1007/s41114-018-0012-9
https://doi.org/10.1007/s41114-018-0012-9
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevD.100.104036
https://doi.org/10.1103/PhysRevD.100.104036
https://doi.org/10.1103/PhysRevD.102.043015
https://doi.org/10.3847/2041-8213/ab960f
https://arXiv.org/abs/2112.06861
https://doi.org/10.1088/1361-6382/ac1a69
https://doi.org/10.1103/PhysRevD.104.024060
https://doi.org/10.1088/1361-6382/ab8f64
https://doi.org/10.1088/1361-6382/aafce6
https://doi.org/10.1088/1361-6382/aafce6
https://doi.org/10.1103/PhysRevD.96.084039
https://doi.org/10.1007/s10714-020-02691-1
https://doi.org/10.1103/PhysRevD.103.044024
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.12942/lrr-2003-5
https://doi.org/10.3390/universe6090156
https://doi.org/10.12942/lrr-2013-9
https://doi.org/10.1088/0264-9381/33/5/054001
https://doi.org/10.1007/s10714-018-2362-8
https://doi.org/10.1103/PhysRevLett.123.191101
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1103/PhysRevD.14.2460
https://arXiv.org/abs/1509.01147
https://doi.org/10.1086/307221
https://doi.org/10.1086/300499
https://doi.org/10.1146/annurev.astro.39.1.137
https://doi.org/10.1103/RevModPhys.90.045002
https://doi.org/10.1103/RevModPhys.90.045002
https://doi.org/10.1142/S0217751X13300287
https://arXiv.org/abs/gr-qc/9304023
https://arXiv.org/abs/gr-qc/9304023
https://doi.org/10.1103/PhysRevLett.96.081301
https://doi.org/10.1142/S0219887807001928
https://doi.org/10.1142/S0219887807001928
https://doi.org/10.1007/978-3-642-10598-2
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791

SPECTRAL METHOD FOR THE GRAVITATIONAL ...

PHYS. REV. D 107, 124032 (2023)

[43] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40,
223 (1978).

[44] F. Wilczek, Problem of Strong p and t Invariance in the
Presence of Instantons, Phys. Rev. Lett. 40, 279 (1978).

[45] L. Roszkowski, E. M. Sessolo, and S. Trojanowski, WIMP
dark matter candidates and searches—Current status and
future prospects, Rep. Prog. Phys. 81, 066201 (2018).

[46] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E.
Winstanley, Dilatonic black holes in higher curvature
string gravity, Phys. Rev. D 54, 5049 (1996).

[47] K.-i. Maeda, N. Ohta, and Y. Sasagawa, Black hole
solutions in string theory with Gauss-Bonnet curvature
correction, Phys. Rev. D 80, 104032 (2009).

[48] T.P. Sotiriou and S.-Y. Zhou, Black Hole Hair in Gener-
alized Scalar-Tensor Gravity, Phys. Rev. Lett. 112, 251102
(2014).

[49] S. Mignemi and N.R. Stewart, Charged black holes in
effective string theory, Phys. Rev. D 47, 5259 (1993).

[50] S. Alexander and N. Yunes, Chern-Simons modified
general relativity, Phys. Rep. 480, 1 (2009).

[51] R. Jackiw and S.Y. Pi, Chern-Simons modification of
general relativity, Phys. Rev. D 68, 104012 (2003).

[52] S.H.S. Alexander and S. J. Gates, Jr., Can the string scale
be related to the cosmic baryon asymmetry?, J. Cosmol.
Astropart. Phys. 06 (2006) 018.

[53] C. Eling, T. Jacobson, and D. Mattingly, Einstein-&ther
theory, in Deserfest: A Celebration of the Life and Works of
Stanley Deser (World Scientific Publishing, 2004), pp. 163—
179, arXiv:gr-qc/0410001.

[54] T. Jacobson, Einstein-@ther gravity: Theory and observa-
tional constraints, in 4th Meeting on CPT and Lorentz
Symmetry (2008), pp. 92-99, 10.1142/6678.

[55] M. Campista, R. Chan, M. F. A. da Silva, O. Goldoni, V. H.
Satheeshkumar, and J. E. V. da Rocha, Vacuum solutions in
the Einstein-ather theory, Can. J. Phys. 98, 917 (2020).

[56] Z. Haghani, T. Harko, H. R. Sepangi, and S. Shahidi, The
scalar Einstein-@ther theory, arXiv:1404.7689.

[57] G. W. Horndeski, Second-order scalar-tensor field equa-
tions in a four-dimensional space, Int. J. Theor. Phys. 10,
363 (1974).

[58] T. Kobayashi, Horndeski theory and beyond: A review,
Rep. Prog. Phys. 82, 086901 (2019).

[59] S. Jana, C. Dalang, and L. Lombriser, Horndeski theories
and beyond from higher dimensions, Classical Quantum
Gravity 38, 025003 (2021).

[60] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E.
Winstanley, Dilatonic black holes in higher curvature
string gravity, Phys. Rev. D 54, 5049 (1996).

[61] P. Kanti, Black holes in theories with large extra dimen-
sions: A review, Int. J. Mod. Phys. A 19, 4899 (2004).

[62] C.B. Owen, N. Yunes, and H. Witek, Petrov type,
principal null directions, and Killing tensors of slowly
rotating black holes in quadratic gravity, Phys. Rev. D 103,
124057 (2021).

[63] P. Wagle, N. Yunes, and H. O. Silva, Quasinormal modes
of slowly rotating black holes in dynamical Chern-Simons
gravity, Phys. Rev. D 105, 124003 (2022).

[64] M. Srivastava, Y. Chen, and S. Shankaranarayanan, Ana-
Iytical computation of quasinormal modes of slowly

rotating black holes in dynamical Chern-Simons gravity,
Phys. Rev. D 104, 064034 (2021).

[65] V. Cardoso and L. Gualtieri, Perturbations of Schwarzs-
child black holes in dynamical Chern-Simons modified
gravity, Phys. Rev. D 80, 064008 (2009); 81, 089903(E)
(2010).

[66] N. Yunes and C. F. Sopuerta, Perturbations of Schwarzs-
child black holes in Chern-Simons modified gravity, Phys.
Rev. D 77, 064007 (2008).

[67] D. Langlois, K. Noui, and H. Roussille, Black hole pertur-
bations in modified gravity, Phys. Rev. D 104, 124044
(2021).

[68] J. L. Blazquez-Salcedo, F. S. Khoo, and J. Kunz, Quasi-
normal modes of Einstein-Gauss-Bonnet-dilaton black
holes, Phys. Rev. D 96, 064008 (2017).

[69] L. Pierini and L. Gualtieri, Quasinormal modes of rotating
black holes in Einstein-dilaton Gauss-Bonnet gravity: The
first order in rotation, Phys. Rev. D 103, 124017 (2021).

[70] L. Pierini and L. Gualtieri, Quasinormal modes of rotating
black holes in Einstein-dilaton Gauss-Bonnet gravity:
The second order in rotation, Phys. Rev. D 106, 104009
(2022).

[71] C. Molina, P. Pani, V. Cardoso, and L. Gualtieri, Gravita-
tional signature of Schwarzschild black holes in dynamical
Chern-Simons gravity, Phys. Rev. D 81, 124021 (2010).

[72] G. Carullo et al., Empirical tests of the black hole no-hair
conjecture using gravitational-wave observations, Phys.
Rev. D 98, 104020 (2018).

[73] G. Carullo, G. Riemenschneider, K. W. Tsang, A. Nagar,
and W. Del Pozzo, GW150914 peak frequency: A novel
consistency test of strong-field general relativity, Classical
Quantum Gravity 36, 105009 (2019).

[74] R. Brito, A. Buonanno, and V. Raymond, Black-hole
spectroscopy by making full use of gravitational-wave
modeling, Phys. Rev. D 98, 084038 (2018).

[75] M. Isi, M. Giesler, W. M. Farr, M. A. Scheel, and S. A.
Teukolsky, Testing the No-Hair Theorem with GW 150914,
Phys. Rev. Lett. 123, 111102 (2019).

[76] M. H.-Y. Cheung, L. W.-H. Poon, A.K.-W. Chung, and
T. G. F. Li, Ringdown spectroscopy of rotating black holes
pierced by cosmic strings, J. Cosmol. Astropart. Phys. 02
(2021) 040.

[77] H.O. Silva, A. Ghosh, and A. Buonanno, Black-hole
ringdown as a probe of higher-curvature gravity theories,
Phys. Rev. D 107, 044030 (2023).

[78] A. Ghosh, R. Brito, and A. Buonanno, Constraints on
quasinormal-mode frequencies with LIGO-Virgo binary—
black-hole observations, Phys. Rev. D 103, 124041 (2021).

[79] G. Carullo et al., Empirical tests of the black hole no-hair
conjecture using gravitational-wave observations, Phys.
Rev. D 98, 104020 (2018).

[80] G. Carullo, G. Riemenschneider, K. W. Tsang, A. Nagar,
and W. Del Pozzo, GW150914 peak frequency: A novel
consistency test of strong-field general relativity, Classical
Quantum Gravity 36, 105009 (2019).

[81] G. Carullo, W. Del Pozzo, and J. Veitch, Observational
black hole spectroscopy: A time-domain multimode analy-
sis of GW 150914, Phys. Rev. D 99, 123029 (2019); 100,
089903(E) (2019).

124032-35


https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1088/1361-6633/aab913
https://doi.org/10.1103/PhysRevD.54.5049
https://doi.org/10.1103/PhysRevD.80.104032
https://doi.org/10.1103/PhysRevLett.112.251102
https://doi.org/10.1103/PhysRevLett.112.251102
https://doi.org/10.1103/PhysRevD.47.5259
https://doi.org/10.1016/j.physrep.2009.07.002
https://doi.org/10.1103/PhysRevD.68.104012
https://doi.org/10.1088/1475-7516/2006/06/018
https://doi.org/10.1088/1475-7516/2006/06/018
https://arXiv.org/abs/gr-qc/0410001
https://doi.org/10.1142/6678
https://doi.org/10.1139/cjp-2019-0321
https://arXiv.org/abs/1404.7689
https://doi.org/10.1007/BF01807638
https://doi.org/10.1007/BF01807638
https://doi.org/10.1088/1361-6633/ab2429
https://doi.org/10.1088/1361-6382/abc272
https://doi.org/10.1088/1361-6382/abc272
https://doi.org/10.1103/PhysRevD.54.5049
https://doi.org/10.1142/S0217751X04018324
https://doi.org/10.1103/PhysRevD.103.124057
https://doi.org/10.1103/PhysRevD.103.124057
https://doi.org/10.1103/PhysRevD.105.124003
https://doi.org/10.1103/PhysRevD.104.064034
https://doi.org/10.1103/PhysRevD.80.064008
https://doi.org/10.1103/PhysRevD.81.089903
https://doi.org/10.1103/PhysRevD.81.089903
https://doi.org/10.1103/PhysRevD.77.064007
https://doi.org/10.1103/PhysRevD.77.064007
https://doi.org/10.1103/PhysRevD.104.124044
https://doi.org/10.1103/PhysRevD.104.124044
https://doi.org/10.1103/PhysRevD.96.064008
https://doi.org/10.1103/PhysRevD.103.124017
https://doi.org/10.1103/PhysRevD.106.104009
https://doi.org/10.1103/PhysRevD.106.104009
https://doi.org/10.1103/PhysRevD.81.124021
https://doi.org/10.1103/PhysRevD.98.104020
https://doi.org/10.1103/PhysRevD.98.104020
https://doi.org/10.1088/1361-6382/ab185e
https://doi.org/10.1088/1361-6382/ab185e
https://doi.org/10.1103/PhysRevD.98.084038
https://doi.org/10.1103/PhysRevLett.123.111102
https://doi.org/10.1088/1475-7516/2021/02/040
https://doi.org/10.1088/1475-7516/2021/02/040
https://doi.org/10.1103/PhysRevD.107.044030
https://doi.org/10.1103/PhysRevD.103.124041
https://doi.org/10.1103/PhysRevD.98.104020
https://doi.org/10.1103/PhysRevD.98.104020
https://doi.org/10.1088/1361-6382/ab185e
https://doi.org/10.1088/1361-6382/ab185e
https://doi.org/10.1103/PhysRevD.99.123029
https://doi.org/10.1103/PhysRevD.100.089903
https://doi.org/10.1103/PhysRevD.100.089903

CHUNG, WAGLE, and YUNES

PHYS. REV. D 107, 124032 (2023)

[82] D. Laghi, G. Carullo, J. Veitch, and W. Del Pozzo,
Quantum black hole spectroscopy: Probing the quantum
nature of the black hole area using LIGO-Virgo ringdown
detections, Classical Quantum Gravity 38, 095005 (2021).

[83] G. Carullo, D. Laghi, J. Veitch, and W. Del Pozzo,
Bekenstein-Hod  Universal Bound on Information
Emission Rate is Obeyed by LIGO-Virgo Binary Black
Hole Remnants, Phys. Rev. Lett. 126, 161102 (2021).

[84] G. Carullo, D. Laghi, N. K. Johnson-McDaniel, W. Del
Pozzo, O.J.C. Dias, M. Godazgar, and J.E. Santos,
Constraints on Kerr-Newman black holes from merger-
ringdown gravitational-wave observations, Phys. Rev. D
105, 062009 (2022).

[85] A.K.-W. Chung and T.G.F. Li, Phenomenological in-
clusion of alternative dispersion relations to the Teukolsky
equation and its application to bounding the graviton mass
with gravitational-wave measurements, Phys. Rev. D 99,
124023 (2019).

[86] A.K.-W. Chung, J. Gais, M. H.-Y. Cheung, and T. G. F. Li,
Searching for ultralight bosons with supermassive black
hole ringdown, Phys. Rev. D 104, 084028 (2021).

[87] R. Brito, A. Buonanno, and V. Raymond, Black-hole
spectroscopy by making full use of gravitational-wave
modeling, Phys. Rev. D 98, 084038 (2018).

[88] V. Cardoso and P. Pani, Testing the nature of dark compact
objects: A status report, Living Rev. Relativity 22, 4
(2019).

[89] T. Regge and J. A. Wheeler, Stability of a Schwarzschild
singularity, Phys. Rev. 108, 1063 (1957).

[90] F.J. Zerilli, Gravitational field of a particle falling in a
Schwarzschild geometry analyzed in tensor harmonics,
Phys. Rev. D 2, 2141 (1970).

[91] V. Moncrief, Gravitational perturbations of spherically
symmetric systems. I. The exterior problem, Ann. Phys.
(N.Y.) 88, 323 (1974).

[92] L. Barack and C.O. Lousto, Perturbations of Schwarzs-
child black holes in the Lorenz gauge: Formulation and
numerical implementation, Phys. Rev. D 72, 104026
(2005).

[93] S.R. Dolan and L. Barack, Self-force via m-mode regu-
larization and 2+1D evolution: III. Gravitational field on
Schwarzschild spacetime, Phys. Rev. D 87, 084066
(2013).

[94] E. Newman and R. Penrose, An approach to gravitational
radiation by a method of spin coefficients, J. Math. Phys.
(N.Y.) 3, 566 (1962).

[95] S. A. Teukolsky, Rotating Black Holes—Separable Wave
Equations for Gravitational and Electromagnetic Pertur-
bations, Phys. Rev. Lett. 29, 1114 (1972).

[96] S. A. Teukolsky, Perturbations of a rotating black hole. 1.
Fundamental equations for gravitational electromagnetic
and neutrino field perturbations, Astrophys. J. 185, 635
(1973).

[97] W.H. Press and S.A. Teukolsky, Perturbations of a
rotating black hole. II. Dynamical stability of the Kerr
metric, Astrophys. J. 185, 649 (1973).

[98] S. A. Teukolsky and W.H. Press, Perturbations of a
rotating black hole. III—Interaction of the hole with
gravitational and electromagnet ic radiation, Astrophys.
J. 193, 443 (1974).

[99] D. Li, P. Wagle, Y. Chen, and N. Yunes, Perturbations of
spinning black holes beyond general relativity: Modified
Teukolsky equation, arXiv:2206.10652.

[100] A.Hussain and A. Zimmerman, An approach to computing
spectral shifts for black holes beyond Kerr, Phys. Rev. D
106, 104018 (2022).

[101] E. W. Leaver, An analytic representation for the quasinor-
mal modes of Kerr black holes, Proc. R. Soc. A 402, 285
(1985).

[102] A. Jansen, Overdamped modes in Schwarzschild-de Sitter
and a Mathematica package for the numerical computation
of quasinormal modes, Eur. Phys. J. Plus 132, 546 (2017).

[103] D. Langlois, K. Noui, and H. Roussille, Black hole
perturbations in modified gravity, Phys. Rev. D 104,
124044 (2021).

[104] D. Langlois, K. Noui, and H. Roussille, Asymptotics of
linear differential systems and application to quasinormal
modes of nonrotating black holes, Phys. Rev. D 104,
124043 (2021).

[105] R. Monteiro, M. J. Perry, and J. E. Santos, Semiclassical
instabilities of Kerr-AdS black holes, Phys. Rev. D 81,
024001 (2010).

[106] O.J.C. Dias, P. Figueras, R. Monteiro, J. E. Santos, and
R. Emparan, Instability and new phases of higher-
dimensional rotating black holes, Phys. Rev. D 80,
111701 (2009).

[107] O.J.C. Dias, P. Figueras, R. Monteiro, H. S. Reall, and
J. E. Santos, An instability of higher-dimensional rotating
black holes, J. High Energy Phys. 05 (2010) 076.

[108] V. Cardoso, O.]J.C. Dias, G.S. Hartnett, L. Lehner, and
J.E. Santos, Holographic thermalization, quasinormal
modes and superradiance in Kerr-AdS, J. High Energy
Phys. 04 (2014) 183.

[109] V. Ferrari, L. Gualtieri, and S. Marassi, A new approach to
the study of quasinormal modes of rotating stars, Phys.
Rev. D 76, 104033 (2007).

[110] E.C. Eperon, B. Ganchev, and J.E. Santos, Plausible
scenario for a generic violation of the weak cosmic
censorship conjecture in asymptotically flat four dimen-
sions, Phys. Rev. D 101, 041502 (2020).

[111] O.J.C. Dias, H. S. Reall, and J. E. Santos, Strong cosmic
censorship for charged de Sitter black holes with a charged
scalar field, Classical Quantum Gravity 36, 045005 (2019).

[112] J.L. Ripley, Computing the quasinormal modes and
eigenfunctions for the Teukolsky equation using horizon
penetrating, hyperboloidally compactified coordinates,
Classical Quantum Gravity 39, 145009 (2022).

[113] V. Cardoso, O.]J.C. Dias, G.S. Hartnett, L. Lehner, and
J.E. Santos, Holographic thermalization, quasinormal
modes and superradiance in Kerr-AdS, J. High Energy
Phys. 04 (2014) 183.

[114] J.L. Ripley, N. Loutrel, E. Giorgi, and F. Pretorius,
Numerical computation of second order vacuum perturba-
tions of Kerr black holes, Phys. Rev. D 103, 104018
(2021).

[115] O.J. C. Dias, M. Godazgar, and J. E. Santos, Linear Mode
Stability of the Kerr-Newman Black Hole and Its Quasi-
normal Modes, Phys. Rev. Lett. 114, 151101 (2015).

[116] O.J.C. Dias, M. Godazgar, J. E. Santos, G. Carullo, W.
Del Pozzo, and D. Laghi, Eigenvalue repulsions in the

124032-36


https://doi.org/10.1088/1361-6382/abde19
https://doi.org/10.1103/PhysRevLett.126.161102
https://doi.org/10.1103/PhysRevD.105.062009
https://doi.org/10.1103/PhysRevD.105.062009
https://doi.org/10.1103/PhysRevD.99.124023
https://doi.org/10.1103/PhysRevD.99.124023
https://doi.org/10.1103/PhysRevD.104.084028
https://doi.org/10.1103/PhysRevD.98.084038
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/10.1103/PhysRevD.2.2141
https://doi.org/10.1016/0003-4916(74)90173-0
https://doi.org/10.1016/0003-4916(74)90173-0
https://doi.org/10.1103/PhysRevD.72.104026
https://doi.org/10.1103/PhysRevD.72.104026
https://doi.org/10.1103/PhysRevD.87.084066
https://doi.org/10.1103/PhysRevD.87.084066
https://doi.org/10.1063/1.1724257
https://doi.org/10.1063/1.1724257
https://doi.org/10.1103/PhysRevLett.29.1114
https://doi.org/10.1086/152444
https://doi.org/10.1086/152444
https://doi.org/10.1086/152445
https://doi.org/10.1086/153180
https://doi.org/10.1086/153180
https://arXiv.org/abs/2206.10652
https://doi.org/10.1103/PhysRevD.106.104018
https://doi.org/10.1103/PhysRevD.106.104018
https://doi.org/10.1098/rspa.1985.0119
https://doi.org/10.1098/rspa.1985.0119
https://doi.org/10.1140/epjp/i2017-11825-9
https://doi.org/10.1103/PhysRevD.104.124044
https://doi.org/10.1103/PhysRevD.104.124044
https://doi.org/10.1103/PhysRevD.104.124043
https://doi.org/10.1103/PhysRevD.104.124043
https://doi.org/10.1103/PhysRevD.81.024001
https://doi.org/10.1103/PhysRevD.81.024001
https://doi.org/10.1103/PhysRevD.80.111701
https://doi.org/10.1103/PhysRevD.80.111701
https://doi.org/10.1007/JHEP05(2010)076
https://doi.org/10.1007/JHEP04(2014)183
https://doi.org/10.1007/JHEP04(2014)183
https://doi.org/10.1103/PhysRevD.76.104033
https://doi.org/10.1103/PhysRevD.76.104033
https://doi.org/10.1103/PhysRevD.101.041502
https://doi.org/10.1088/1361-6382/aafcf2
https://doi.org/10.1088/1361-6382/ac776d
https://doi.org/10.1007/JHEP04(2014)183
https://doi.org/10.1007/JHEP04(2014)183
https://doi.org/10.1103/PhysRevD.103.104018
https://doi.org/10.1103/PhysRevD.103.104018
https://doi.org/10.1103/PhysRevLett.114.151101

SPECTRAL METHOD FOR THE GRAVITATIONAL ...

PHYS. REV. D 107, 124032 (2023)

quasinormal spectra of the Kerr-Newman black hole, Phys.
Rev. D 105, 084044 (2022).

[117] O.J.C. Dias, M. Godazgar, and J. E. Santos, Eigenvalue
repulsions and quasinormal mode spectra of Kerr-
Newman: An extended study, J. High Energy Phys. 07
(2022) 076.

[118] O.J. C. Dias, G. S. Hartnett, and J. E. Santos, Quasinormal
modes of asymptotically flat rotating black holes, Classical
Quantum Gravity 31, 245011 (2014).

[119] J.E. Santos and B. Way, Neutral Black Rings in Five
Dimensions are Unstable, Phys. Rev. Lett. 114, 221101
(2015).

[120] N. Loutrel, J.L. Ripley, E. Giorgi, and F. Pretorius,
Second-order perturbations of Kerr black holes: Formalism
and reconstruction of the first-order metric, Phys. Rev. D
103, 104017 (2021).

[121] L. Barack, Gravitational self-force in extreme mass-
ratio inspirals, Classical Quantum Gravity 26, 213001
(2009).

[122] V. Toomani, P. Zimmerman, A. Spiers, S. Hollands, A.
Pound, and S.R. Green, New metric reconstruction
scheme for gravitational self-force calculations, Classical
Quantum Gravity 39, 015019 (2022).

[123] G.B. Cook and M. Zalutskiy, Gravitational perturbations
of the Kerr geometry: High-accuracy study, Phys. Rev. D
90, 124021 (2014).

[124] E. Berti, Black Hole Perturbation Theory, in Black Hole
Perturbation Therory: Lectures Notes of ICTS Summer
School (2016).

[125] E.J. Zerilli, Effective Potential for Even Parity Regge-
Wheeler Gravitational Perturbation Equations, Phys. Rev.
Lett. 24, 737 (1970).

[126] P.L. Chrzanowski, Vector potential and metric perturba-
tions of a rotating black hole, Phys. Rev. D 11, 2042
(1975).

[127] P. Pani, Advanced methods in black-hole perturbation
theory, Int. J. Mod. Phys. A 28, 1340018 (2013).

[128] M. Coleman Miller and N. Yunes, Gravitational Waves in
Physics and Astrophysics (10P, Bristol, UK, 2021).

[129] W. Wasow, Asymptotic Expansions for Ordinary Differ-
ential Equations, Dover Books on Mathematics (Dover
Publications, New York, 2018).

[130] C. Bender, S. Orszag, and S. Orszag, Advanced Math-
ematical Methods for Scientists and Engineers I: Asymp-
totic Methods and Perturbation Theory, Advanced
Mathematical Methods for Scientists and Engineers
(Springer, New York, 1999).

[131] M. Chugunova and D. Pelinovsky, On the uniform con-
vergence of the Chebyshev interpolants for solitons, Math.
Comput. Simul. 80, 794 (2009).

[132] R. Monteiro, M. J. Perry, and J. E. Santos, Semiclassical
instabilities of Kerr-AdS black holes, Phys. Rev. D 81,
024001 (2010).

[133] O.J.C. Dias, P. Figueras, R. Monteiro, J. E. Santos, and R.
Emparan, Instability and new phases of higher-dimen-
sional rotating black holes, Phys. Rev. D 80, 111701
(2009).

[134] O.J.C. Dias, P. Figueras, R. Monteiro, H. S. Reall, and
J. E. Santos, An instability of higher-dimensional rotating
black holes, J. High Energy Phys. 05 (2010) 076.

[135] V. Ferrari, L. Gualtieri, and S. Marassi, A new approach to
the study of quasinormal modes of rotating stars, Phys.
Rev. D 76, 104033 (2007).

[136] L. E. Kidder, M. A. Scheel, S. A. Teukolsky, E. D. Carlson,
and G. B. Cook, Black hole evolution by spectral methods,
Phys. Rev. D 62, 084032 (2000).

[137] P. Grandclement and J. Novak, Spectral methods for
numerical relativity, Living Rev. Relativity 12, 1 (2009).

[138] J.P. Boyd, The rate of convergence of Chebyshev
polynomials for functions which have asymptotic power
series about one endpoint, Math. Comput. 37, 189
(1981).

[139] N.J. Higham, D. S. Mackey, F. Tisseur, and S. D. Garvey,
Scaling, sensitivity and stability in the numerical solution
of quadratic eigenvalue problems, Int. J. Numer. Methods
Eng. 73, 344 (2008).

[140] F. Tisseur and K. Meerbergen, The quadratic eigenvalue
problem, SIAM Rev. 43, 235 (2001).

[141] H.-Y. Fan, W.-W. Lin, and P. Van Dooren, Normwise
scaling of second order polynomial matrices, SIAM J.
Matrix Anal. Appl. 26, 252 (2004).

[142] D. Kressner and I. Sain Glibi¢, Singular quadratic eigen-
value problems: Linearization and weak condition num-
bers, arXiv:2204.07424.

[143] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.107.124032 for an ani-
mated version of Fig. 2.

[144] H. Yang, D. A. Nichols, F. Zhang, A. Zimmerman, Z.
Zhang, and Y. Chen, Quasinormal-mode spectrum of Kerr
black holes and its geometric interpretation, Phys. Rev. D
86, 104006 (2012).

[145] Z. Mark, H. Yang, A. Zimmerman, and Y. Chen, The
Eikonal quasinormal modes of Kerr-Newman black holes,
in APS April Meeting Abstracts, APS Meeting Abstracts
(2015), Vol. 2015, p. Y7.001.

[146] V. Ferrari and B. Mashhoon, New approach to the quasi-
normal modes of a black hole, Phys. Rev. D 30, 295 (1984).

[147] V. Cardoso, A.S. Miranda, E. Berti, H. Witek, and V. T.
Zanchin, Geodesic stability, Lyapunov exponents and
quasinormal modes, Phys. Rev. D 79, 064016 (2009).

[148] E. Berti, V. Cardoso, and A.O. Starinets, Quasinormal
modes of black holes and black branes, Classical Quantum
Gravity 26, 163001 (2009).

[149] A.Z. Petrov, The classification of spaces defining gravi-
tational fields, Gen. Relativ. Gravit. 32, 1661 (2000).

[150] P. Wagle, N. Yunes, and H. O. Silva, Quasinormal modes
of slowly-rotating black holes in dynamical Chern-Simons
gravity, Phys. Rev. D 105, 124003 (2022).

[151] D. Li, P. Wagle, Y. Chen, and N. Yunes, Perturbations of
spinning black holes beyond general relativity: Modified
Teukolsky equation, arXiv:2206.10652.

[152] S. Olver and A. Townsend, A practical framework for
infinite-dimensional linear algebra, in Proceedings of the
1st Workshop for High Performance Technical Computing
in Dynamic Languages—HPTCDL ‘14 (IEEE, 2014).

[153] L. S. Kegeles and J. M. Cohen, Constructive procedure
for perturbations of spacetimes, Phys. Rev. D 19, 1641
(1979).

[154] N. Yunes and J. A. Gonzalez, Metric of a tidally perturbed
spinning black hole, Phys. Rev. D 73, 024010 (2006).

124032-37


https://doi.org/10.1103/PhysRevD.105.084044
https://doi.org/10.1103/PhysRevD.105.084044
https://doi.org/10.1007/JHEP07(2022)076
https://doi.org/10.1007/JHEP07(2022)076
https://doi.org/10.1088/0264-9381/31/24/245011
https://doi.org/10.1088/0264-9381/31/24/245011
https://doi.org/10.1103/PhysRevLett.114.221101
https://doi.org/10.1103/PhysRevLett.114.221101
https://doi.org/10.1103/PhysRevD.103.104017
https://doi.org/10.1103/PhysRevD.103.104017
https://doi.org/10.1088/0264-9381/26/21/213001
https://doi.org/10.1088/0264-9381/26/21/213001
https://doi.org/10.1088/1361-6382/ac37a5
https://doi.org/10.1088/1361-6382/ac37a5
https://doi.org/10.1103/PhysRevD.90.124021
https://doi.org/10.1103/PhysRevD.90.124021
https://doi.org/10.1103/PhysRevLett.24.737
https://doi.org/10.1103/PhysRevLett.24.737
https://doi.org/10.1103/PhysRevD.11.2042
https://doi.org/10.1103/PhysRevD.11.2042
https://doi.org/10.1142/S0217751X13400186
https://doi.org/10.1016/j.matcom.2009.08.034
https://doi.org/10.1016/j.matcom.2009.08.034
https://doi.org/10.1103/PhysRevD.81.024001
https://doi.org/10.1103/PhysRevD.81.024001
https://doi.org/10.1103/PhysRevD.80.111701
https://doi.org/10.1103/PhysRevD.80.111701
https://doi.org/10.1007/JHEP05(2010)076
https://doi.org/10.1103/PhysRevD.76.104033
https://doi.org/10.1103/PhysRevD.76.104033
https://doi.org/10.1103/PhysRevD.62.084032
https://doi.org/10.12942/lrr-2009-1
https://doi.org/10.1090/S0025-5718-1981-0616371-3
https://doi.org/10.1090/S0025-5718-1981-0616371-3
https://doi.org/10.1002/nme.2076
https://doi.org/10.1002/nme.2076
https://doi.org/10.1137/S0036144500381988
https://doi.org/10.1137/S0895479803434914
https://doi.org/10.1137/S0895479803434914
https://arXiv.org/abs/2204.07424
http://link.aps.org/supplemental/10.1103/PhysRevD.107.124032
http://link.aps.org/supplemental/10.1103/PhysRevD.107.124032
http://link.aps.org/supplemental/10.1103/PhysRevD.107.124032
http://link.aps.org/supplemental/10.1103/PhysRevD.107.124032
http://link.aps.org/supplemental/10.1103/PhysRevD.107.124032
http://link.aps.org/supplemental/10.1103/PhysRevD.107.124032
http://link.aps.org/supplemental/10.1103/PhysRevD.107.124032
https://doi.org/10.1103/PhysRevD.86.104006
https://doi.org/10.1103/PhysRevD.86.104006
https://doi.org/10.1103/PhysRevD.30.295
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1023/A:1001958823984
https://doi.org/10.1103/PhysRevD.105.124003
https://arXiv.org/abs/2206.10652
https://doi.org/10.1103/PhysRevD.19.1641
https://doi.org/10.1103/PhysRevD.19.1641
https://doi.org/10.1103/PhysRevD.73.024010

CHUNG, WAGLE, and YUNES

PHYS. REV. D 107, 124032 (2023)

[155] E-L. Lin and S. Takeuchi, Hawking flux from a black hole
with nonlinear supertranslation hair, Phys. Rev. D 102,
044004 (2020).

[156] A. Sullivan, N. Yunes, and T. P. Sotiriou, Numerical black
hole solutions in modified gravity theories: Spherical
symmetry case, Phys. Rev. D 101, 044024 (2020).

[157] A. Sullivan, N. Yunes, and T. P. Sotiriou, Numerical black
hole solutions in modified gravity theories: Axial sym-
metry case, Phys. Rev. D 103, 124058 (2021).

[158] P.G.S. Fernandes and D. J. Mulryne, A new approach and
code for spinning black holes in modified gravity, arXiv:
2212.07293.

[159] O.J.C. Dias, T. Ishii, K. Murata, J. E. Santos, and B. Way,
Superradiance and black resonator strings encounter hel-
ical black strings, arXiv:2302.09085.

[160] O.]J.C. Dias, T. Ishii, K. Murata, J. E. Santos, and B. Way,
Gregory-Laflamme and superradiance encounter black
resonator strings, J. High Energy Phys. 02 (2023) 069.

[161] W.D. Biggs and J.E. Santos, Black tunnels and ham-
mocks, J. High Energy Phys. 11 (2022) 021.

[162] M. Ho-Yeuk Cheung, K. Destounis, R. Panosso Macedo,
E. Berti, and V. Cardoso, Destabilizing the Fundamental
Mode of Black Holes: The Elephant and the Flea, Phys.
Rev. Lett. 128, 111103 (2022).

[163] K. Destounis, R. Panosso Macedo, E. Berti, V. Cardoso, and
J.L. Jaramillo, Pseudospectrum of Reissner-Nordstrom
black holes: Quasinormal mode instability and universality,
Phys. Rev. D 104, 084091 (2021).

[164] J. L. Jaramillo, R. P. Macedo, and L. A. Sheikh, Pseudo-
spectrum and Black Hole Quasinormal Mode Instability,
Phys. Rev. X 11, 031003 (2021).

[165] J. L. Jaramillo, R. P. Macedo, and L. A. Sheikh, Gravita-
tional Wave Signatures of Black Hole Quasinormal Mode
Instability, Phys. Rev. Lett. 128, 211102 (2022).

[166] M. Maggiore, Gravitational Waves (Oxford University
Press, Oxford, 2008), Ist ed.

[167] C. Meyer, Matrix Analysis and Applied Linear Algebra,
Other Titles in Applied Mathematics (Society for Industrial
and Applied Mathematics, Philadelphia, 2000).

124032-38


https://doi.org/10.1103/PhysRevD.102.044004
https://doi.org/10.1103/PhysRevD.102.044004
https://doi.org/10.1103/PhysRevD.101.044024
https://doi.org/10.1103/PhysRevD.103.124058
https://arXiv.org/abs/2212.07293
https://arXiv.org/abs/2212.07293
https://arXiv.org/abs/2302.09085
https://doi.org/10.1007/JHEP02(2023)069
https://doi.org/10.1007/JHEP11(2022)021
https://doi.org/10.1103/PhysRevLett.128.111103
https://doi.org/10.1103/PhysRevLett.128.111103
https://doi.org/10.1103/PhysRevD.104.084091
https://doi.org/10.1103/PhysRevX.11.031003
https://doi.org/10.1103/PhysRevLett.128.211102

