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Untargeted Bayesian search of anisotropic gravitational-wave backgrounds
through the analytical marginalization of the posterior
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We develop a method to perform an untargeted Bayesian search for anisotropic gravitational-wave
backgrounds that can efficiently and accurately reconstruct the background intensity map. Our method
employs an analytic marginalization of the posterior of the spherical-harmonic components of the intensity
map, without assuming the background possesses any specific angular structure. The key idea is that the
likelihood function of the spherical-harmonic components is a multivariate Gaussian when the intensity
map is expressed as a linear combination of the spherical-harmonic components and the noise is stationary
and Gaussian. If a uniform and wide prior of these spherical-harmonic components is prescribed, the
marginalized posterior and the Bayes factor can be well approximated by a high-dimensional Gaussian
integral. The analytical marginalization allows us to regard the spherical-harmonic components of the
intensity map of the background as free parameters and to construct their individual marginalized posterior
distribution in a reasonable time, even though many spherical-harmonic components are required. The
marginalized posteriors can, in turn, be used to accurately construct the intensity map of the background.
By applying our method to mock data, we show that we can recover precisely the angular structures of
various simulated anisotropic backgrounds, without assuming prior knowledge of the relation between the
spherical-harmonic components predicted by a given model. Our method allows us to bypass the time-
consuming numerical sampling of a high-dimensional posterior, leading to a more model-independent and

untargeted Bayesian measurement of the angular structures of the gravitational-wave background.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs)
emitted by compact binary coalescence (CBC) is a mile-
stone in GW astrophysics [1-10]. The detection of a
GW background (GWB), formed by the random and
incoherent superposition of numerous individually unre-
solvable GW signals emitted by different types of sources,
may be the milestone that can be achieved next, in the
foreseeable future [11-15]. The North American Nanohertz
Observatory for Gravitational Waves collaboration has
just published ~4¢ significance evidence of the detection
of a GWB by analyzing its 15-year dataset [16—19]. This
discovery immediately opens up new directions of astro-
nomical research [20,21]. Astrophysical sources, including
CBCs [22-25], rapidly rotating asymmetric neutron stars
[26-30], and core-collapse supernova [31-34], can gen-
erate GWs that form a GWB. Alternatively, a GWB can
also be generated by GWs emitted by cosmological
sources, like cosmological inflation [35-42], the phase
transitions that may have occurred in the early Universe
[43-52], and cosmic strings [53-61], if they exist. A GWB
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may even be generated by physics that has yet to be fully
explored, such as ultralight bosons [62-66] and primordial
black holes [67—70], which are candidates to explain dark
matter. As a GWB can be formed by sources significantly
different from those generating individually detectable GW
signals, detecting a GWB constitutes a unique probe of the
Universe [15].

While a GWB is expected to be dominantly isotropic, it
should also contain angular structures. In general, different
sources and generation mechanisms could form GWBs
with different angular structures [25,59,71-78]. This source
and mechanism dependence suggests that accurately map-
ping the angular structure of the GWB could be very
informative, allowing us to pinpoint GWB sources and
deduce their properties [79]. To this end, several methods
have been developed to extract the angular distribution of
the GWB power spectrum. Broadly speaking, these meth-
ods can be classified as either frequentist or Bayesian.
The frequentist approach amounts to constructing some
maximum-likelihood estimator with different basis to
characterize GWB anisotropies. Examples of the frequent-
ist approach include radiometer search [80] and spherical-
harmonic decomposition [81], which have been widely
used in analyzing the actual data measured by the LIGO
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and Virgo detectors [82]. The Bayesian approach amounts
to constructing the posterior of random variables related to
GWRB anisotropies, such as done very recently in [83,84].

These two approaches are useful in probing GWB
anisotropies, but they also have limitations. For example,
since the radiometer search works in the pixel basis, it is
not suitable for searching for extended sources [85,86].
Working in the spherical-harmonic basis, one can use a
spherical-harmonic decomposition to search for wide-
spread sources and probe the anisotropies in a model-
independent way, but it may lead to some nonphysical
maximum likelihood estimates, such as complex estimates
for some coefficients that, on physical grounds, should
be real.

One way to remedy the drawback of the spherical-
harmonic decomposition is to perform a model-independent
Bayesian search for an anisotropic GWB. However, to
describe an anisotropic GWB without assuming any source
models, one needs a model-independent framework that is
typically characterized by many parameters, such as (the
formally infinite number of) the spherical-harmonic compo-
nents required in the spherical-harmonic decomposition.
This large number of variables makes the construction of
the posterior of these variables computationally untenable,
even if the posterior is estimated through numerical
sampling [87]. Thus, the Bayesian search of an anisotropic
GWB has been restricted to either a targeted Bayesian
analysis [83], inferring the overall amplitude of a GWB
whose angular structures are given by a specific model, ortoa
model-independent framework characterized by only a few
parameters [84].

The goal of this paper is to develop a computationally
efficient, fast and untargeted Bayesian search that can
construct the Bayesian marginalized posterior of the
spherical-harmonic components of the angular structure
of the anisotropic GWB without prior knowledge of the
relation among the spherical harmonic components. We
start with a spherical-harmonic decomposition of the
intensity map of the GWB. This decomposition allows
us to express the energy flux of the GWB as a function of
the sky direction through linear combinations of the
spherical harmonic components. If the noise is stationary
and Gaussian, then the likelihood function of the spherical-
harmonic components is a multivariate Gaussian function.
Thus, the marginalized posterior of a specific spherical-
harmonic component and the Bayes factor (between an
anisotropic GWB and a nondetection hypotheses) can be
well approximated by a high-dimensional Gaussian integral.
After evaluating this integral, the marginalized posterior of
the real or imaginary part of a particular spherical-harmonic
component is also a Gaussian function, whose mean and
variance are given by the convolution between the cross-
spectral density of the data [i.e. the product of the frequency-
domain data measured by a detector and the complex
conjugate of the frequency-domain data measured by another

detector, see Eq. (22)] and the spherical-harmonic compo-
nent of the overlap reduction function.

To fully illustrate the power of our analysis, we apply
our scheme to mock data containing (i) no GWB
signal, (ii) a time-independent dipole GWB signal, and
(iii) a GWB formed by Galactic plane binaries. We show
that our analysis is capable of extracting the angular
structures of all of these signals, despite each type
corresponding to different levels of anisotropy. In par-
ticular, we show that, in the strong signal-to-noise ratio
limit, our analysis can recover an accurate sky map that is
almost identical to the simulated Galactic plane signal
without bias. Through our Bayes factor calculations, we
show that the data can be used to infer the suitable angular
length scale of anisotropies that should be included in the
analysis.

Our marginalization scheme has several advantages
compared to other existing search methods of anisotropic
GWaBs. First, the analytical formulae derived in this work
allow us to reconstruct the intensity map of a GWB
extremely accurately and rapidly, and compute the Bayes
factors efficiently, completely bypassing the numerical
sampling of an extremely high-dimensional posterior,
which creates severe computational challenges. Second,
since our analysis does not require prior knowledge about
the relationship between various spherical-harmonic com-
ponents, our work represents a major step toward a model-
independent search for anisotropic GWBs, which is crucial
for understanding the properties of their sources.

The remainder of this paper presents the details of the
calculations summarized above, and it is organized as
follows. Section II lays the foundation of our analysis
by first reviewing the basic properties of GWBs. Section III
explains the method we develop and defines different
probability distribution functions and hypothesis ranking
for the Bayesian search of GWBs. Section IV presents the
details of the analytic marginalization and of the evaluation
of the Bayes factor. Section V applies the marginalization
to mock data. Section VI concludes and points to future
research. Throughout this paper, we adopt the following
conventions: bold lowercase characters represent a vector;
bold uppercase characters represent a square matrix, and
their corresponding italic unbolded characters with sub-
script(s) represent the elements of this matrix. Complex
conjungation of a number is denoted by an asterisk. For
example, a; is the ith element of the vector a, A;; is
the (i,j)th element of the square matrix A, and a* is
the complex conjugate of a. Following [11,12,82,88],
we take the value of the Hubble constant to be Hy =
67.9 kms~! Mpc~!, which is the Planck 2015 value [89],
although our conclusions will not depend on this choice.
While the analysis presented in this paper can be performed
in any coordinate system, in this work we define the sky
position Q and analyze the anisotropy in celestial coor-
dinates (in right accession and declination).
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II. PROPERTIES OF ANISOTROPIC
GRAVITATIONAL-WAVE BACKGROUND

In this section, we will briefly review the properties and
Bayesian analysis of an anisotropic GWB. Only GW
properties that are strictly relevant to our work will be
reviewed. We refer the reader to, for example, [43,81,90]
for a more detailed and exhaustive review of aniso-
tropic GWB.

In general, metric perturbations at a given spacetime
position can be written as a sum of contributions coming
from all directions in the sky through a plane-wave
expansion [90-92],

/’lij(t,x): Z /mdf/dZQEA(f,Q)eg(é)e—zmﬂz—ﬁ.x)’
A=+ xV/ —®
(1)

where A = + and x stand for the GW polarization, Q is a
unit vector pointing in a sky direction, e?j(fz) are the GW
polarization tensors, and the overhead tilde stands for the
Fourier transform. Without loss of generality, the expect-
ation value' of A; ; produced by a GWB is usually assumed
to be zero [93],

(hij(t,x)) = 0. (2)

However, the quadratic expectation value of %, is not
zero [90],

(a1 QR (. €)= o(F = )P0, Q)50 H(f. )
(3)

where () and &°(+) are one- and two-dimensional Dirac
delta functions, respectively, 54, is a Kronecker delta, and
H(f. Q) is a function of frequency and the sky position Q
that is related to the one-sided strain power spectral density
(PSD) of the GWB via [81,90,91],

1) = 5, [ QM. ), @)

4

In other words, H(f,€) characterizes the angular distri-
bution of the GWB power in different sky directions. The
one-sided PSD is related to the dimensionless energy
density (also known as the “spectrum”) of the GWB via

'"To be more specific, if one assumes ergodicity, then the
expectation value is equivalent to the ensemble average, which is
also the spatial average or the temporal average, see, e.g. [15,90]
for a more detailed review.

_ [ dpow _ 87
pe df  3H}

Qaw (/) £8i(f). (5)

where dpgy is the energy density of GWs of frequencies
between f and f 4 df, p. is the cosmological critical
energy density (p. = 3H3/ 87G).2 Closely related to
Qgw(f) is the power of the GWB per unit frequency
per unit solid angle [86,90,94],

3
F(£.0) = L5 PHL.Q). (6)

where c is the speed of light and G is Newton’s gravita-
tional constant. As one would expect then, F(f,®) has
units of WHz ' sr7!.

In general, the spectral content and the anisotropy of a
GWB are correlated. However, the correlation may be
difficult to measure with existing ground-based detectors,
like advanced LIGO, advanced Virgo and KAGRA
[82,85,94]. Hence, following past search on anisotropic
GWRBs [82,85,86,94], we assume [81,83,90,91]

H(f. Q) = H(f)P(Q), (7)

where H(f) represents the spectral shape of the GWB and
P(L) encapsulates the strength and angular distribution of
the intensity of the GWB, a function of the sky position. As
in any other GWB search, we need to specify the spectral
shape of the GWB, H(f), that we are trying to detect.
Within the sensitivity band of ground-based detectors, the
energy spectrum of many GWBs can be well approximated
by a power law in frequency [11-14], which means we can
choose H(f) to also have a power law structure, namely

HU) =) = (1) ®)

ref

where f . is a reference frequency and « is the tilt index.
Following the existing search of GWB from the actual data,
we will fix a and infer P(Q) Throughout this paper, we
also follow the existing LIGO/Virgo search of a GWB and
choose fr.s =25 Hz, a = 0,2/3 or 3 [11-14]. The choice
of f . does not affect the rest of the analysis at all because it
just provides the overall normalization for Qgy.

To extract the angular structure of the GWB from data,
we perform a spherical-harmonic decomposition to express
P(Q) as a linear combination of (scalar) spherical har-
monics Y,,,(Q),

*Note that the normalization convention of S, (f) is different
from that in some of the literature, like [82,83,85,86,90,94]. Here,
we include a factor of (4z)~! so that for the monopole part of
GWB, we have S, (f) = Hoo(f), where Hoy(f) is the monopole
part of H(f;Q).
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fmux

+7
P<Q) = Z Z meYfm(Q)v (9)

=0 m=-¢

where P,,, are referred to as spherical-harmonic compo-
nents of the spectrum of the GWB, in units of
strain? Hz~! rad™!. In principle, this sum must include an
infinite number of ¢ terms, but in practice, one must
truncate the sum at some £ = ¢,,. The value of £,,,, will
be specified in subsequent calculations. From Eq. (9), we
notice two things. First, upon sky averaging (i.e. integration
over sky angle), all terms vanish except Py,. This implies
that

:Sh(fref)_ 31—1(2) QGW(fref). (10)

Var B 27? fef Var

Second, the real nature of P(Q) and Y, and the complex
conjugation property of Y, ,, imply that

POO

YKOGR:>/PK()€R,
Yz,”,—m = (_1)my;m = Pf,—m = (_1>m'P;m' (11)
These requirements imply that, in order to specify the

angular distribution of a GWB, we only need (£, + 1)?
real numbers,

7)00,7310, ceey ’P,f;o,
Re Re Re
P Pars o Pogys
Im Im Im
PII’PZI""’me’ (12)

where PR and P are, respectively, the real and imagi-
nary parts of Pg,,. For the sake of clarity, we introduce a
(Zmax + 1)2-vector to denote these numbers,

w = (Poo. P19- ---» Pros

Pl PE P
P PR, .. PI)T. (13)

III1. BASICS OF BAYESIAN SEARCH FOR
GRAVITATIONAL-WAVE BACKGROUND

Searching for an anisotropic GWB amounts to determin-
ing the spherical-harmonic components of the intensity
map from the data. In the presence of overwhelming noise,
the spherical-harmonic components, just as the estimation
of the parameters of other GW signals, should be deter-
mined by Bayesian inference. This section is devoted to
reviewing the basics of a Bayesian search for an anisotropic
GWB. Before we explain the Bayesian strategy we pro-
pose, we will first state the assumptions and simplifications
we make for the calculations, and then we will justify them.
Then, we will define the likelihood, prior and posterior for

the Bayesian search. In terms of the spherical-harmonic
components defined in the last section, we will explicitly
write down the likelihood function as a Gaussian of the real
and imaginary parts of the spherical-harmonic components
of the GWB. Finally, we also define the Bayes factor,
which competes the hypothesis that an anisotropic GWB is
detected against that hypothesis that the data consists of
only noises.

A. Approximations and simplifications

To construct various probability distribution functions
that will be used in our Bayesian GWB analysis, we make
the following assumptions and approximations:

(A.1) The GWB signal is weak, in the sense that the
autocorrelated power and the cross-correlated power
of the GWB signal are much smaller than that of the
detector noise. This assumption is justified because
the current observational constraints on the strength
of GWB indicates that, if a GWB is present at all, it
must be weak [82,88].

(A.2) The instrumental noise is stationary and Gaussian.
In practice, this assumption is not always realistic
as individual GW signals or non-Gaussian noise
transients, known as glitches, will occasionally be
present. Nonetheless, data segments containing non-
Gaussian transients will be removed by applying
data cuts [95]. Hence, in our analysis, we can assume
that the detector response is Gaussian.

(A.3) The noise across different detectors is not correlated.
This assumption is realistic because the existing
ground-based detectors are spatially well separated.

(A.4) We assume that different segments of the data are
independent (uncorrelated in time and frequency) to
simplify the statistical calculations. This assumption
implies that the likelihood function can be written as
a product of the likelihood over different time and
frequency segments. In practice, the segments are
correlated for two reasons. First, the serial depend-
ence in the entire segment of the time-domain data
introduces autocorrelations over time and frequency.
Second, when we transform time-domain data seg-
ments into the frequency domain, the data segments
are windowed. To make full use of the windowed
data, the time-domain data segments need to over-
lap, which introduces correlations between them.
In practice, to address these correlations, Eq. (53)
(one of our key results) should first be applied to
each individual segment (with appropriate window-
ing factors multiplied), and then optimally combined
[96-98]. Reference [99], however, has shown that,
after taking all these correlations into account, the
optimally combined results from all data seg-
ments agree well with predictions obtained from a
likelihood that assumes the data segments are
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independent of each other. Such consistency justifies
the simplifications used in this paper.

B. Likelihood and posterior in Bayesian GWB analysis

When a GWB is present, it induces responses on GW
detectors that force the latter to measure strain data
consisting of two parts:

5:(f.1) = 7y (f. 1) + hy(f. 1), (14)

where I labels the detector and 3;(f,7) is the finite- or
short-time Fourier transform of the time-domain data in
detector I, s;(¢), within a time interval [t —7/2,t + 7/2],

% — /2 drw(r N p=2infr 15
51(£:1) tw(r)s, ()0 (15)
t

-7/2

with w(¢) a windowing function. Similarly, 7;(f, ) and
h;(f.t) are the short-time Fourier transform of the instru-
mental noise, n;(¢), and of the GWB-induced response,
h;(1), of detector 1, respectively. The time-domain GWB-
induced response on detector [ is related to the metric
perturbations of the GWB [Eq. (1)] via

hy(t) = Djjh,»j(t, X;), (16)

where D} is a tensor (known as the detector response
tensor) that encapsulates the geometry and orientations
geometry of detector /, and x; is the position vector of
detector 1.

The expectation value of the GWB-induced response
satisfies

(hi(f.1)) =0, (17)

which descends directly from Eq. (2). As k;(f, t) is random
and has zero mean, the GWB-induced response just looks
like noise within individual detectors. However, the
responses induced on two GW detectors, say / and J,
should be proportional to each other (in the time domain),
which means that they should be correlated across among
detectors [81],

(i DR 0)) = 5 HalF) Y1) (.0 Pewe (1)

‘m

where 7 is the time length of the data segment analyzed and

y%ﬁ (f.t) is the spherical-harmonic components of the
overlap reduction function (ORF) of detectors / and J,
defined by [90]

Y (f,1,Q) = ZR (.. QRY (.. Q)"
0 = [ @R )Y (@) (19)
where A = +,x stands for the GW polarization, and

Rﬁp (f.1.Q) is the polarization-basis response function of
detector /. The latter depends on time because of Earth’s

rotation. As the definition suggests, y%) (f, 1) encapsulates
information about the detectors’ geometry, location, ori-
entation, and antenna pattern, and they should not be
confused with the spherical-harmonic components of the
spectrum of the GWB, P,,,. Instrumental noise, on the
other hand, has very different properties: if / and J
are well separated, their instrumental noise should be
uncorrelated,

(A, (f. ) (f. 1)) = 0. (20)

By the same token

(/1)

(i (f OR5(f. 1)) = (fy(f. 1)
h; = (i, (f, 0)hj(f.1)) =0.  (21)

= (i (f. 0)hi (f. 1))

These correlation properties suggest that a GWB can be
searched for by cross-correlating the strain data measured
by different detectors. To this end, we define the cross-
spectral density, C(f, t), between two detectors, / and J, via

C(f.1) ==5,(f.1)5;

25050 22)

If a GWB is present, then the expectation value of C(f, ¢)
is [81]

< (ft Z}/fm f tpfm (23)

‘m

We can also derive the (approximate) variance of C(f, t) for
a weak GWB signal by considering the covariance
matrix,

Cov(f.1:f.1) = (C(f,)C*(f'. 1)) = (C(f, OUC* (f'. 1)),

R(C(f,0C(f. 1)), (24)
where we have dropped the term (C(f,1)){(C*(f’,1))
because it corresponds to a second-order contribution in

the weak-signal approximation (cf. A.l). Then, using
Egs. (14) and (20)—(22), we have

Cov(f.t; f'.1') = 8pp0,w N/ (f. )N, (f. 1), (25)

where N;;(f,t) is the one-sided PSD of the output of
detectors I and J. We remind the reader that the derivation
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is valid only if we assume A.1. Reference [100] has verified
that Eq. (25) gives an accurate estimate of the variance of
the cross-correlation for the search of isotropic GWBs.
Since anisotropic GWBs is an extension of an isotropic
GWB search, we expect that Eq. (25) remains accurate in
this case as well.

The Bayesian search of an anisotropic GWB amounts to
determining the posterior of w, given the cross-spectral
density, of all data segments {C}. According to Bayes’s
theorem, the posterior is related to the likelihood by

p(WIH)p({C}|w, H)
p({C}H)

Here, p(w|{C}, H) is the posterior of w, given the cross-
spectral density and the hypothesis H [e.g. that the
measured data contain a GWB signal, which will be more
precisely defined in Eq. (30)]. The quantity p({C}|H) is
the Bayesian evidence, which is a normalization constant
of the posterior. The quantity p(w|H) is the prior of w,
prescribed according to our hypothesis. The quantity
p({C}|w, H) is the likelihood that we will measure {C},
given that there is a GWB with spherical-harmonic com-
ponents w. Using the weak-signal approximation, and the
expectation value and the variance derived above, the
likelihood p({C}|w, H) can be modeled by [81,83,90]

p(W{C}. H) = (26)

IC(f (f) ,47’ ?
(27)

where ) ., stands for summation over frequency bins and
the center times of the short-timed Fourier transform, A\ is
a proportionality constant that does not depend on P,,,, and
¥uPy is shorthand notation for

o £

Pﬂ = Z Z yfm(f’ I)mev (28)

=0 m=—

where y = (#,m) labels the mode, and A s the
maximum ¢ that we include in the inference analysis.

When searching for an anisotropic GWB, Eq. (26)
represents a high-dimensional posterior probability distri-
bution function, which is difficult to visualize. Thus, it is
very convenient to present the marginalized posterior of a
particular spherical-harmonic component. To this end, one
can marginalize the posterior [Eq. (26)] over all compo-
nents of w that one is not interested in (at the moment) to
obtain the marginalized posterior of, say, w;,

plwlc) ) =] [ dwptwiteyan.  @9)

J#

The lower and upper limit of the integral involved in the
marginalization depends on p(w|H), which will be pre-
scribed in Sec. IV.

C. The Bayes factor

Other than constructing the marginalized posterior,
Bayesian theory also provides a framework to compute
the so-called Bayes factor. The latter is a measure that
allows one to compare two hypotheses in light of the data
within Bayesian inference. In the context of GWBs, the
Bayes factor can be used to quantify whether an anisotropic
GWRB has been detected or not by comparing the following
two hypotheses:

H, : the data {C} contain a GWB signal whose
Ps . # 0 for at least one m €

{_l’ﬂmax’ _Lﬂmax + 17 ) fmax - l’l’ﬁmax]’ and

H,: the data {C} contain only noise. (30)

In Bayesian inference, we can compare these two hypoth-
eses by computing their odds ratio, namely, the ratio of their
respective evidences given the data:

p(H,, HC}H) _ p(Hs, )p({C}H,,, )
p(Hul{C})  p(Hya) P{CHH )

The term p(H,_)/p(Hyu) is known as the prior odds,
and it represents our prior belief of one hypothesis over the
other. The second term in the above equation is known as
the Bayes factor,

O({max) =

(31)

p({C}H,,,)
p({CHHnull) 7

which implies that the odds ratio is nothing but the product
of the prior odds with the Bayes factor.

One can think of the Bayes factor as the odds ratio
between two hypotheses under the assumption of equal
prior belief between them. As we have no information
about whether we have detected a GWB before we analyze
the data, we naturally assume the two hypotheses are
equally likely. Thus,

B(lmax) = (32)

p(Hfm.dx) = P(Hnull) = O(l/ﬂmax) = B(fmdx) (33)
If B(Zmax) > 1, then hypothesis H, is favored over
hypothesis H,,;, which implies it is more likely that we
have detected a GWB than not; the opposite is true, of
course, if B(Zna) < 1. For convincing evidence that we
have indeed detected a GWB, one typically requires that
B(€max) > 1, where precisely how much larger than unity
this requirement must depend on the statistician’s definition
of “convincing” [90].
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IV. ANALYTIC MARGINALIZATION OF THE
POSTERIOR AND BAYES FACTOR

As pointed out in the last section, the posterior of the
spherical-harmonic components is a probability distribu-
tion function of high dimension. In principle, one can
numerically sample the posterior using nested sampling or
Markov chain Monte Carlo techniques. But given the
high dimensionality of the distribution, both sampling
approaches will take an extremely long time to complete
in the GWB case. In this section, we will show that, if a
wide-enough uniform prior is prescribed, the marginalized
posterior and Bayes factor for the search for an anisotropic
GWRB can be analytically evaluated as a high-dimensional
Gaussian integral, with the former also a Gaussian
function.

A. Marginalized posterior

Let us begin by explicitly writing down the exponent of
the likelihood as a quadratic form of w. To start, we rewrite
the likelihood as

p({C}w, H ) o< exp {_%;%}’ Y

where R(f, 1) stands for the residual
Oy

Z Z yfm me (35)

=0 m=—

R(f.0)=C

Explicitly writing out the summation over # and m,
we have

(mf)

o Loy, max +7
Z Z Yem(f ) Pem = Z?’fo(f Pr +ZZ Yem ([ O)Pem +7e-m(f ) Pr—nl,
=0 m=-¢ =0 m=
Loy Coay A
= Z?’fo(f Pr +ZZ Yem(FoO)Pem + (1)1, (f )P, (36)
=0 m=

where, in the last line, we have used Egs. (B1) and (B4) of [81], namely

Vim(fs1)
Py

= (=) (.1,
m = (=1)"Pr . (37)

We further decompose y,,, P, into its real and imaginary parts,

mf mf)
Cman 2

yfmpzf’m Z 7f0 PKO + i Z
Cona, Lo +C
yfmpzf’m 27f0 7)),‘70 + Z Z 1 - \T

=0 m=

These expressions can be more compactly expressed if we define two (Zmay + 1)? vectors,

R[R(f,1)]
S[R(f.1)]
where
u(f. 1) = Ha(f) (55 716 - 755: [+ (=1
[1+ (=125,
v(f. 1) = Ha(F)(ros 718, - e, [1 = (=D'IAT,
(1= (=123, - [1 = (=) Ty, [1

[+ (DA =1+ (DA =1+ (D

- (=Dt 1

yfm(f t)me_yfm(f t)P ]

Nrem(f- P8, + ven (£ OPE]. (38)

i) u(f. ) and v(f, ), such that

=C(f.0) —ul(f.1) - w,
=C(f. 1) =VI(f.0) - W, (39)

Sl D)

= (CDraf - = (S0 )T (40)

043032-7



ADRIAN KA-WAI CHUNG and NICOLAS YUNES

PHYS. REV. D 108, 043032 (2023)

Note that u(f, ) and v(f, r) depend only on the ORF of the
detectors, but each element of u(f,¢) and v(f,7) is a
function of f and ¢ because they inherit the frequency and
time dependence from H(f) and y,,,(f,1).

With u and v defined, the square of the modulus of
R(f,t) can be computed as a quadratic function of w

R(f.0)R*(f.1)
= C(f.)C(fo) = 28" (Fo1) - W+ W K(f.1) - W

(41)
where g(f,1) is a (fgﬁi) + 1)? vector,

g(f.1) = Cx(f.u(f.0) + C(f.0)v(f. 1), (42)

and K(f,r) is a symmetric-square matrix of order of

(fﬁrif;? + 1), whose elements are given by
Kii(f.t) = wu; + v;v;. (43)

Note that while g(f, 7) depends on the data via the real and
imaginary parts of C(f.t), K;; depends solely on the
detectors’ geometry via the dependence on the ORF.
Similarly, we can also write the exponent of the likelihood
as a quadratic function of w,

_ IC(f,1)I?
B ;Nl(f’ HON,(f, 1)

=20 w+wl-Q-w, (44)

where j is a [£im) 4 1]2-vector and Q is another sym-

metric-square matrix of order of [fgf;i) + 1], Explicitly,
their elements are
9i (fa t)
Ji = ,
2NN,
Ki <f7 t)
0, = . 45
1E 2N 0N, (1 )

Recall that g depends on the data, and so does j. Even
though K does not depend on data, Q does because it
contains the PSD of the data. Unlike g and K, j, and Q are
constant. In terms of j, w, and Q, the likelihood and
posterior are, respectively, given by

- 1
PUCYW H ) = W exp (i w=JwT-Q-w)
P(WIH )
pP({C}H jun)

X exp (jT~W—%WT-Q'W>, (46)

p(W{C}. H ) =N

where

Yo C(f. )P
N_Nexp< 2ZN, (70N, (. t>> “

At this point, let us summarize and remind the reader that g,
Jj» and Q depend on the data, whereas u, v, and K depend
only on the geometry of the detectors via the ORF. Thus, u,
v, and K can be precomputed and stored for given detectors
to speed up the analysis.

We are now ready to marginalize the posterior. If we are
particularly interested in knowing the posterior of w;, then
the argument of the exponential of the posterior can be
written as

.] W_%WT Q W= Qu
+) |:Jk wi(Qpi + sz>:|
k#i
- —Z Zkaleh (48)
k#i  1#i

where the index i in the first two terms, j;w; and Q;w?,

does not imply summation. To facilitate subsequent calcu-
mt)

lations, we define the following ([£max + 1]*> — 1)-vectors
and square matrices of order [[ffﬁgf() + 12 -1
w() = the vector w with the ith element removed,
b() = the vector j with the ith element removed,
al) = a vector whose kth element is
ay = Q. (for k # i given i)
n() = bl —y,al),

(2(") = the matrix Q with theith row and the ith
column removed,

M = the inverse of Q)

Note that, except w, all these vectors and matrices depend
on the data. The vectors b and n depend on the data
because j depends on the data [cf. Eq. (45)]. The vector a
and the matrices Q) and M) all depend on the data
because Q depends on the PSD of the data. Note also that,
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since Q) is symmetric, so is M(), The argument of the
exponential of the posterior can then be more compactly
written as

1 , A
=Jiwi — 5 Q;iwi +nT . wl)

_ %W(OT QU ),

1
jT~w—§wT-Q-w

(49)

where we recall that n() depends on both the index i and

w;, and the repeated subscript i does not imply summation.
The posterior can be analytically marginalized if we

choose a prior for w with the following properties:

(3) Whenw; = A0, jT-w—1wl. Q- wis very neg-
ative, regardless of the value of the other w;. This
condition can always be met if we choose a large
enough A() such that

P{CYw; = £AY. H ) % 0. (51)

This prior corresponds to a square centered at the origin in
the complex P,,, plane for (£, m) # 0. One may think that
a more natural prior would be one that is uniform for, say,
|Psml < A with some A > 0, which corresponds to a circle

centered at the origin in the complex plane. However, if A is
large enough, both the square and circle priors will lead to
similar parameter estimation results. This is because, in the
region between the square and the circle priors, the argu-
ment of the exponential in the posterior is very negative,
and thus, the contribution to the posterior can be well
approximated by zero. This condition is not contradictory
to the weak signal approximation, because it can be met by
a smaller A, corresponding to a weaker signal if we have
more data.

With these properties in place, the marginalized posterior
of w; can be evaluated as

(1) The prior is factorized as a product of the prior of
individual w;,

[ (inf) +1]2

p(WIH ) = H piwilH o). (50)

where p;(w;|H ) is the prior of w;. By choosing a
factorized prior for w, we are assuming that different
w; are independent of each other.

) Each pi(wilH ) is uniform for w; € [~ AN, AD],
where A() > 0'1s the width of the prior of w;.

pORIC) H ) = [ dFOp(WI{C).H i),

SN ||/Al dw;p(w|H)p({C}w, H )
- W w W, in 3
PUCHH ) i J-a0 b P £

1 A0 d
:p({C}IH M)H/ 20 PACHW: H )

1 | ~ )
de exp .]lWl Q”W + n( ) W(’) — _W<1)T Q(l) . W(l) S
_ 2 2
Jaez
teo . 1 2 DT (i) LT @) i
~ H dwjexp | jw [—EQiiwi +n0T. w0 —Ew(” QY . wli)
1 .
& exp < Q”W += 2 () M<l> : n) P
1, .. . . . )
= ( Q,,w 4 5 (b(‘) — w,-a(’))T M@ . (b<l> — Wia(’))>
. . 1 . ,
x exp [ MO b, - 2 (0; — a7 - MO a@)w%], (52)

|
where in going from the fourth to the fifth line we have i
made use of the third property of the uniform prior of w,
and from the sixth to the seventh line we have used that
M) is symmetric, so that b()T- M) . a() =a(T. M) . b,
We again remind the reader that the repeated index

does not imply summation. We see that the
marginalized posterior of w; is a Gaussian function of w;.
The mean, y;, and the standard deviation, ¢;, of w; can be
read from the marginalized posterior of w; readily,
namely
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ji—a®T. M) . p)
0. —alT . MO . a0
6; = (Q;; —a®T . M) . a))=, (53)

Hi =

El

Note that, throughout the marginalization procedure, we do
not ignore the correlations among the components of w;;
these correlations are encoded in the off-diagonal elements
of Q. If one neglects the correlations among the w;s, one sets
the off-diagonal elements of Q to zero, resulting in a
diagonal Q" and M),

Equation (53) can be more compactly written as

pi_ <A B)—l B ( (A -BD-!C)™!
~\c D/  \-D!C(A-BD'C)!

o; = [Q7'fi (54)

using the inverse formulas of a block matrix. To see this, we
first consider the case of i = 1 and write Q as a block
matrix and j as

_(9n alhT . (i
Q= (am on ) 17w ) O
Then, we compute the inverse of Q using the block-inverse
formula. For a block matrix P [101],

—(A-BD"'C)"'BD"! >
D' +D'C(A-BD'C)"'BD! J°

Taking A = 0, B=a)T, C = a®, and D = Q", we find

o - ( (0), —aT. M . a0)"!

_MD - a(Q,, —a® T. N . a0)"!

Reading the first row of Q7' - j and the (1,1) element of
Q7! we find that

o j—aT M0
[Q : .”1 - Q]] _a(l)T M(l) ] a“) = M1,

Q7' = (@ —aWT- MW al)) =67 (58)

The above arguments can be generalized to other i # 1. A
convenient way to generalize the argument is rearranging Q
and j into

Q; alT . Ji
Q- (am Q) ) = <b<i>>‘ (59)

Computing [Q~" - j], and Q! through the above procedure
can then prove the case for i # 1. The marginalization
procedure described above, and in particular Eq. (54) [or
Eq. (53)], are some of the key results of this paper.

We shall conclude this subsection by discussing the
relation between our analysis and the Fisher information
matrix analysis. First, the matrix Q is actually a Fisher
information matrix, which can be seen by realizing that

2

Qi = log p(W{C}, H jm). (60)

- awlaw] max
Second, the maximum-likelihood estimation obtained by
the Fisher information matrix analysis, which amounts to

solving the equations

—(0); —aD T . MM . a0)=1a() TR
MO 4 M

. (57
. a(Q,, —a® T. MO . a0) a0 T. Mm) (57)

|
0

Wi

log p(WH{C}.H ) [y, =05 Q- =J. (61)

is actually identical to the u; given by Eq. (54). Moreover,
following from the usual Fisher information matrix analy-
sis, the measurement uncertainty of w; is given by the
square root of the (i, i) element of the inverse of the Fisher
information matrix,

Aw, = [Q71], (62)

which is just ¢;, as given in Eq. (54). In other words,
Eq. (54) recovers exactly the maximum-likelihood estimate
and the measurement uncertainty of w obtained using a
Fisher information matrix analysis. This is reasonable,
because p(w|H fs‘:fx)) is a constant, which implies that

the posterior is proportional to likelihood. Hence, the
maximum-posterior w and maximum-likelihood w are
the same, and so is the measurement uncertainty.
Another consequence of this connection is that y;, being
the w; that maximizes the marginalized posterior, is also a
component of the maximum-posterior w, the latter of which
is defined as

Wyp = arg max p(w|{C}. Hy).  (63)
Recovering the results obtained through the Fisher infor-

mation matrix analysis proves the correctness of our
marginalization.
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B. Bayes factor

Given a large enough A(), the Bayes factor between the two hypotheses defined in Eq. (30) can also be analytically
evaluated in a similar manner. To calculate the Bayes factor, we need to evaluate p({C}|H ) and p({C}|Hyyy). We first

evaluate p({C}|H ) using Bayes’s theorem,

i

PUCHH ) = [ dwp((C) w0 )p(wi ).

(inf

_Nmaﬁwz /Am aw;
N a0 2A0)

i=1

(¢ +1)?

max

1
exp (jT-W—EWT-Q'W>,

- +o0 .
~ N H / dW’_ exp(jT-w—le-Q-W>,

i=1

o 2A0)

2

(e 412

_ N AN Lor, —1.->
NG 6) " ewlamer) o

where from the third to the fourth line we have again made
use of the third property of the uniform prior of w, |Q| is the
determinant of Q, and

[ +112

Alew) =[] av. (65)
i=1

When the hypothesis is H,,,, the evidence simplifies
significantly, as we show below:

P({CY o) = / W p({CY W, Hou) p (W] Hou).

— [ awp{CHw = 0.H gy p(wlH 1),

= p({CHw = 0.H ).

=N. (66)
Thus, the Bayes factor can be analytically evaluated as

[t,(inf)+].2

1 max
T 1Q[2A (A0 (5>
I, .
X exp <§JT-Q 1'J>- (67)

Bt [{ADY})

At this junction, a word of caution is necessary.
Equation (67) is valid only if a large enough A is chosen,
because otherwise one cannot extend the limits of integra-
tion in the fifth line of Eq. (52) and in the third equality of
Eq. (64). Apart from this criterion, the width of the prior of
w is arbitrary, which means that the Bayes factor is also,
in this sense, arbitrary. This is because the Bayes factor

|

depends on the prior volume of the parameters that
characterize the hypothesis that is being compared.
Thus, when computing the Bayes factor using Eq. (67),
one should also be careful of and report the chosen A().
This is also the reason why the Bayes factor in Eq. (67) is

written as B(fgf;m{A(")}) to emphasize its dependence on

both f&g? and A(), both specified according to our
hypothesis. As we will show in the next section, however,
for any reasonably large-enough choice of A(¥), the effects
of the value of A¥) on the Bayes factor is not significant and
will not affect the ranking between the two hypotheses.
Therefore, whether we choose A/ = 1 or A) = 10, both
of which are much larger than the astrophysically motivated
value of Py, corresponding to |Pg, |~ O(10™), our
conclusions will be unaffected.

Let us conclude this section by pointing out that the
above calculations can be easily extended to a detector
network that contains more detectors. To apply the method
to a detector network, one just sums over the detector pairs
when calculating the following quantities [102]

HULD

I J>I

Q=> > QW) (68)

I J>I

where j(/) and QU/) are respectively the j vector and Q of
the detectors I and J [cf. Eq. (45)].

V. MOCK DATA ANALYSIS

In this section, we illustrate the accuracy of our analysis
in extracting the angular structures of a GWB by applying
it to mock data. We will first explain the general setup of
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different mock data analyses. Then, we will apply our
analysis to different sets of mock data, each corresponding
to a different level of anisotropy. We will show that our
analysis can extract the angular structure of different types
of anisotropic sources with excellent accuracy.

A. General setup

As the likelihood [Eq. (27)] does not explicitly depend
on the strain data measured by individual detectors but on
their correlation, we follow [83] and directly simulate the
cross-spectral density of data segments in the frequency
domain,

mJ
max

ZZwmsz“”.

=0 m=-¢

1nj( [)_ ft +H

(69)

In this expression, £ and P, mJ are the maximum # and
the spherical-harmonic components of the simulated GWB

contained in the mock data, respectively. Note that z,”nl,ax is

in general different from fr(nax) because the maximum £ that

a GWB corresponds to can, in general, be different from the
maximum ¢ that we choose to infer. Through the mock data
analyses, we choose 551129 =1,2,.
fggi) can be freely adjusted for analyzmg actual data. Note
also that by directly simulating the cross-spectral density in
the frequency domain, we are assuming A.4 and ignoring
the cross- and autocorrelations present in the time-domain
data. In practice, the analysis should thus be applied to
individual (windowed) segments and then optimally com-
bine the result from individual segments to address the
cross- and autocorrelations. Nonetheless, as pointed out
when assuming that condition A.4 holds; if the windowing
and optimal combinations are properly executed, the final
results should agree well with calculations that use the
likelihood and ignores these correlations, as shown in [99].

We study the effects of noise fluctuations by including
C,(f,1) in the injected cross-spectral density of data
segments in Eq. (69). In particular, C,(f,) represents
the cross-spectral density of the stationary Gaussian noise
contained in the data. We simulate C,,(f, t) by generating a
random complex frequency sequence of zero mean and
variance that satisfies [83]

., 10, but in general

NP (L ONT (f.1)
|<Cn(f’t)>|2"’ ! TAfJ s

(IC.(f.0P) - (70)

where recall that 7 is the length of the data segments, Af is

the frequency resolution, and NSHJ) (f. ) are the noise PSDs
of the detectors / and J, respectively. Since the measured
strain data contain both the instrumental noise and the
signal when a GWB presents, the PSD of the strain data

measured by individual detectors will contain both the

instrumental-noise PSD, Nﬁ“) (f, 1), and the autocorrelated
power of the responses due to a GWB,

Niy(for) = NYJ(Fo1) + Su(f. 1) (71)

Hence, in practice, this Nﬁ”} is not the same as the PSD in

Eq. (27). These two PSDs are extremely difficult to
separate in an actual detection. Since we expect the signal
to be weak, we just regard the measured strain PSD as the
noise PSDs for the evaluation of the likelihood, at the cost
of slightly reducing our search sensitivity [103]. To account
for this effect, in our mock-data analyses we include both
PSDs in our search when evaluating the likelihood and

marginalized posteriors, but we only include Nﬁ"} (f, 1)
when simulating C,, (f, 1).

Other properties of the injection are chosen to remain in
line with current GWB searches with advanced LIGO and
Virgo detectors [82,94]. More specifically, for each mock
analysis, we simulate data that consist of segments of equal
time length 7 =192 s. Since these mock data analyses
are meant to represent proof-of-principle demonstrations,
we only simulate data measured by the advanced LIGO
Hanford and Livingston detectors at their design sensitivity.
The PSD of the detectors is estimated with the exact
frequency resolution of the cross-spectral density segments
to avoid the need for coarse-graining data [11-14]. As the
mock data contain only stationary Gaussian noise and the
responses induced by the simulated stationary GWB,
we drop the time dependence of the PSDs, so that
Nyj(f.t) =N;;(f) and we do not notch the data at
particular frequency bins. We assume the data start at
the starting time of the third observing run of the advanced
LIGO and Virgo detectors. We also focus on simulating and
searching for GWB with @ = 0, 2/3, and 3 because GWBs
characterized by these a are under extensive search and
correspond to astrophysical interesting sources. More
explicitly, @ = 0 describes the GWB produced by cosmic
strings formed during the end of cosmological inflation
[35-51,53-61]. The spectral tilt @« = 2/3 characterizes the
GWB produced by CBCs [22-25], and @ = 3 approxi-
mately describe the GWB produced by supernova [31-34].
The explicit value of the spherical-harmonic components of
the simulated GWBs will be given individually in the
corresponding sections below.

To gauge the accuracy of measuring w; from the
simulated data, for different i, we define two measures.
The first measure is the error of a specific w; relative to o,

(inj)

51' - lu_i — Wi ) (72)

(2]

where recall that y; is the mean of the marginalized
posterior of w;, while o; is its variance. By examining
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The measurement bias §; [left, see Eq. (72) in the main text] and measurement uncertainty o; (right) of some P,,,, obtained by

(inf)

applying our analysis to one year of mock data, which contain solely stationary Gaussian noise, as a function of om0, assuming
a = 2/3. Note that §; has been scaled by o; in its definition. For the purpose of illustration, we only show §; and o; for Py, P;¢, P11, and
P,. Observe that |5;] < 3 for all Py, indicating that the results are consistent with the fact that the mock data contain no signal to 3¢;

(inf)

confidence. Observe also that, as Zmax approaches 10, drysg [see Eq. (73) for definition] approaches to ~1 steadily, indicating that

overall, the recovered w; is consistent with zero within ~1o.

0;, we can study the effects of f[(rl,[;i) on measurement

accuracy of w;. If §; = N, then the best-fit w; is No away
from the injected value. Therefore, when 9; is close to zero,
then the recovered w; is perfectly consistent with the
injected w\™. However, due to the presence of noise
fluctuations, we expect that |§;| can occasionally be as
large as ~3 (see e.g. [82], where the SNR of a GWB is 3.6,
but one still cannot claim a detection). In what follows, we
calculate the marginalized posterior of many parameters,
but we will only show results (e.g. §; and ;) for a subset of
them. In the Supplemental Material [104], we present all
results obtained by our mock data analysis.

The second measure is the root mean square error
(RMSE),

(73)

1
_ 2
ORMSE = \/(f(inf) 1) Z"iv

where ) ; stands for summation over the index i that labels

the vector w;, corresponding to P, for 0 <7 < ffﬁ,‘;i).

Heuristically, dgysg gives the averaged deviation of the
measured w; from the simulated w; relative to o;. Therefore,
unlike J;, Srpmsg measures the overall accuracy of all w;.

B. Pure-noise injection

We first apply our formalism to 365 days of mock data
that contain only pure noise. The left panel of Fig. 1 shows
0; and the right panel the base-10 logarithm of ¢;, both as a
function of fﬁg(). To illustrate, we show only the margin-
alized posterior of P, P1o, Pif., P}, Phs, and Ph3. Since
the results of different a are quantitatively the same, for
illustration, we only show a = 2/3, corresponding to the

GWB formed by CBCs. First, we observe that for all fgf >,
|6;] < 3; this means that y; is consistent with wi =0 to

]

30;, indicating that we can accurately pinpoint the fact that
the mock data contain no GWB. Second, we observe that o;
increases with f&?,z and it is expected. Increasing fglg()
introduces more (unnecessary) free parameters whose
measure uncertainty correlates with those associated with
the spherical-harmonic components of smaller Z, deterio-
rating the overall measurement accuracy.

We also check that Q1) is numerically well conditioned

because the evaluation of y; and o, involves the inverse of
Q(i). To this end, we compute the individual condition
number k; of the matrix Q. which is defined by3

min
_ )’i

T amax’
A’i

K; (74)
where 2" and 4™ are the eigenvalues of Q) that have the
smallest and largest modulus, respectively. A larger «;
implies that Q') is easier to invert numerically and k; = 0
means that Q“) is singular. Then, we define the overall
condition number x as

K = mink;. (75)

1

Since « is essentially the lower bound of «;, a larger
implies that Q') is easier to numerically invert for all i.

*This is not the usual definition of the condition number of a
matrix, which is defined as the ratio between the eigenvalue of the
largest modulus and that of the least modulus. The definition in
this paper follows the convention in the literature of the search of
anisotropic GWB, e.g., [81,105].
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FIG. 2. The overall condition number [x, defined by Eq. (75)]
of Q i) [defined below Eq. (48)], whose inverse is required for the

f)
evaluation of the marginalized posterior, as a functlon of fnigx for
is more numeri-

a=0,2/3, and 3. A larger x implies that Q)
cally invertible for all i. Observe that x > 107 for fﬁ,m) = 10 and

all a, implying that Q(i) for all i and « can be inverted within
double precision.

Figure 2 shows « as a function of f,(ff;i) fora =0,2/3, and
3. Observe that, for ¢ =0,2/3 and 3, x> 107 for

fﬁ,ﬂ;) = 10, the upper limit of fmax considered throughout

the paper. This means that Q) for all i and a can be
inverted within double precision without numerical issues.”
To further check that Q1) is properly inverted, we compute
the max norm, the maximum of the modulus of the
elements of a matrix, of the following error matrix,

E0 =1 -QM), (76)

which should be a zero matrix if M) is exactly equal
to the inverse of Q). We find that the max norm of E ;1s at

most 10710 for different i and «, confirming that Q)
can be inverted within double precision without numerical
issues.

C. Time-independent dipole

We now validate our method by recovering a simulated
time-independent dipole with @ =0,2/3, and 3 from
365 days of mock data. The simulated dipole signals are
motivated by the dipole produced by the peculiar motion of
the Solar System barycenter relative to the cosmic rest frame.

“In principle, a regularization scheme, such as that presented

in [81,90,106], can also be applied when inverting Q(i), but such
regularlzatlon may bias results [80,81,107-110].

>The orbit of the Earth around the Solar System barycenter
induces a smaller time-dependent kinematic dipole signal, even
though it is routine to analyze the stochastic GWB from the
perspective of the solar system barycenter. This requires special
approaches to extract [99,111,112].

For all a, the nonzero spherical-harmonic components from
the mock data injections are

P — 4,69 x 1074,
P — _1.16 x 10747,

P — (6.60 + 1.41i) x 1074, (77)
and ffﬁ?,z = 1. These spherical-harmonic components are
chosen so that their value is significantly larger than the
corresponding measurement uncertainty, facilitating the val-
idation of our analysis. The monopole signal is included so
that the intensity map is positive in all sky directions.
Figure 3 shows &; and o, for Py, Py, PRE, PIT, PXs, and
P with a = 2/3, obtained by analyzing the mock data
with the simulated dipole signal. Observe that |§;| < 3 for

different fﬁﬁ?, which shows the robustness of our analysis
in two ways. First, our analysis can correctly infer different
Psm to 30, confidence. In other words, our analysis does

not mistake the angular structure of 7 < fﬁr‘fgf with the

angular structure of f&?x <7< fflﬁ? Second, choosing

different fmax does not significantly affect our measure-

ment of P, (") Thus, one can adjust ) for the search of

different GWB without having to worry that the results will
be significantly affected by this choice. Note that the
measurement uncertainty for different i is slightly larger
than those shown in Fig. 1 due to the contribution of the
detectors’ PSD from the monopole of the simulated GWB.

D. Galactic plane distribution

Our last mock data analysis concerns the GWB emitted
by sources populating the galactic plane. For the mock-data
challenge of the galactic-plane signal, we focus on @ = 2/3
because we expect that the results obtained with other
choices of a will be quantitatively similar. We choose to
focus on @ = 2/3 because this spectral index corresponds
to the background due to CBCs, the only type of GW
sources that the Advanced LIGO and Virgo detectors have
detected so far. To investigate the performance of our
analysis when extracting anisotropic GWB signals of
different signal-to-noise ratio (SNR, p), we simulate galac-
tic-plane signals of different SNRs but we reduce the total
time length of the mock data of each SNR to 30 days. The
measurement results from analyzing data of longer time
length can be estimated by scaling the SNR, which is
proportional to the square root of the integration time. The
Pz, of the galactic-plane signal that we simulate are

Plni) — ¢plGP) (78)

where € controls the overall amplitude (and SNR) of the
galactic-plane signal and P;(,}np) are explicitly given in the
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Same as Fig. 1 but with mock data that contains a simulated time-independent dipole (i.e. Pgs,, = 0). Observe that |5;]| < 3

for different P,,,, indicating that our analyses can accurately measure different P,,, to 3o confidence. Moreover, comparing the §; and o;

of Py and P, with those of P,, suggests that our analysis is unlikely to mistake a spherical-harmonic component of £ < 7 (";,2 with

another spherical-harmonic component of # > z,”f,lf;?)z

that overall, the recovered w; is consistent with wE'"j)

(inj)

Appendix. When choosing these me , We set £max =
following [83], because this is sufficient to capture the flne
angular structures of such a galactic-plane signal.

The intensity map of the simulated galactic signal is
visualized in the top left panel of Fig. 4, produced using
HEALPix [113,114]. The brightness of the color map in all
panels represents the intensity, and the intensity of all maps
is scaled by a number such that the maximum intensity of
each panel is normalized to one. The top-right, middle-left,
middle-right, bottom-left, and bottom-right panels show
intensity maps when e = 1,10%3,10',10'3, 102, respec-
tively, constructed using our analysis, with the spherical
harmonic components of the recovered background taken
to be the y; of Eq. (53). As we increase ¢, the SNR of the
signal increases (see the top horizon axis of Fig. 5 for the
monopole SNR of each ¢), and the reconstructed intensity
map is increasingly consistent with the simulated intensity
map. At € = 107, the reconstructed intensity map shows
almost no visual differences from the original intensity
map. The close consistency between the simulated and
recovered intensity maps demonstrates the ability of our
formalism to resolve detailed and sophisticated angular
structures of GWBs.

Despite the close visual consistency, we also quantita-
tively assess the consistency between the simulated and
reconstructed intensity maps by defining the match,

i
NCRIRvowrs

M:

(79)

where wl(-in” is the value of the real or imaginary parts of

7)(;:1,5) corresponding to the index i, and y; is the recovered
value, given by Eq. (5§3). A match closer to unity implies a

within ~16.

(inf)

Observe also that, as #i,x approaches 10, Sgmse approaches 1 steadily, indicating

more faithful recovery. If the reconstructed intensity map is
identical to the simulated intensity map, then M = 1.
Figure 5 shows M of the simulated galactic-plane signal as
a function of €, with the top horizontal axis denoting the
SNR of the monopole part of the simulated background of
the corresponding €. Observe that M increases to ~1 as €
increases. This is reasonable because, as the background
SNR increases, the angular structures of the simulated
anisotropic background can also be more clearly detected.
Moreover, when the SNR reaches ~400, which is an SNR
that can be achieved within about a year if we detect a
GWB of Qgw(frer) ~ 10710 with the next-generation
detectors [99,115], our analysis can recover the intensity
map with a match very close to one, indicating its
applicability to the realistic detection of a GWB.

Besides the reconstruction of the intensity map, we also
compute the Bayes factor between the hypotheses that there
is an anisotropic GWB in the signal and that there is only
noise [see Eq. (30)], given an injection of an anisotropic
GWB from the mock galactic-plane signal. The left panels
of Fig. 6 show the natural logarithm of the Bayes factor as a
function of ffmx) , obtained by analyzing the galactic-plane
signals of different e, choosing A) =1 (inverted blue
triangles) and A() =10 (red triangles). Both of these
choices of A(¥) correspond to a prior of width much larger
than the astrophysically motivated value of w;, which
should be of O(107*) (see Figs. 1 and 3). The dashed

vertical line denotes the pay i) of the simulated galactic-

plane signal. Observe that in general, for all e,
log B(¢ Hﬂi |A = 1) is slightly larger than B(fnlfii |A
10) because it has a narrower prior. Nonetheless, desplte

these slight differences, both choices of A Jead to a
similar Bayes factor. This suggests that, for a reasonably

large A, the explicit choice of the prior width does not
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Injected galactic-plane intensity map Recovered intensity map (e = 1)

Normalized intensity Normalized intensity

Recovered intensity map Recovered intensity map (e = 1017)

(e =10%)

Normalized intensity Normalized intensity

. . . . 5
Recovered intensity map Recovered intensity map (e = 10%)

(e =10'9)
A“‘m‘ge\ti\'u =1

Normalized intensity Normalized intensity

FIG. 4. The top, left panel shows the angular distribution of gravitational-wave backgrounds produced by sources populating the
galactic plane, which we simulate assuming a = 2/3 and that the signal lasts for 30 sidereal days. The rest of the figures are
the recovered intensity maps from mock data containing signals of different strengths, as characterized by e [see Eq. (78) for definition].
The intensity maps are presented in the equatorial coordinate system. The brightest spot (on the left) is the galactic center. All figures are
visualized by Mollweide projections and contain 1200 pixels (Ngqe = 10). The number N qqq4ye at the top right corner is the number of
pixel of the recovered map which has negative intensity. The signal-to-noise ratio of the monopole of the background when ¢ = 1is 15.9
and that when e = 10? is 1050. To show the intensity contrast across different sky directions, the brightness of the color in all panels
represents the intensity, and the intensity of all maps is scaled by a number such that the maximum intensity of the simulated map is
normalized to one. Observe that, as the signal-to-noise ratio of the gravitational-wave background increases, our analysis can recover an
intensity map that is increasingly accurate and consistent with the simulated angular distribution. Moreover, when the signal-to-noise
ratio of the monopole part of the background has reached ~103, the reconstructed intensity maps show almost no visual difference
relative to the simulated map. This close consistency shows that our formalism is capable of resolving detailed and sophisticated angular
structures of a gravitational-wave background.
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FIG. 5. The match between the simulated intensity map of the

gravitational-wave background and that recovered using the
untargeted Bayesian search [see Eq. (79) for the definition].
The lower horizontal axis represents the base-10 logarithm of €, a
proportionality constant that regulates the amplitude of the
simulated gravitational-wave background. The upper horizontal
axis represents the signal-to-noise ratio of the monopole of the
simulated background of the corresponding €. On top of the
signal-to-noise ratio, we also include the value of Qgw(f;¢€) at
the corresponding e for reference. A match closer to one indicates
a more faithful recovery of the intensity map of the gravitational-
wave background using our analysis. Observe that as € increases
(or equivalently, as the signal-to-noise ratio increases), M also
increases, showing that the recovered intensity map is increas-
ingly accurate for louder signals. Moreover, the match is close
to one when the monopole signal-to-noise ratio is about 400,
which can be achieved within approximately a year using next-
generation detectors if a gravitational-wave background of
Qaw (frer) ~ 10719 is present. This suggests that our untargeted
Bayesian search can indeed be applied to actual gravitational-
wave detection in the future.

significantly affect the Bayes factor and the hypothesis
ranking for the search of anisotropic GWBs. In this sense,
our analysis is robust against different choices of A,
provided that A() is reasonably large. Individually, we
observe that for a given e, the Bayes factor first increases
until it reaches a maximum at a given fﬁiﬁ?, and then it

decreases. Let us denote the fg‘;fx) that maximizes the Bayes
factor 5, and show it on Fig. 6 with a dotted vertical line.
Observe further that #5,, depends on e. For a larger e,
corresponding to a louder signal, ¢5.. is more consistent
with 250 until eventually 75, coincides with AU i the
high signal-to-noise ratio scenario. This behavior is rea-
sonable if one interprets the £5,, as the maximal resolvable
angular scale of the background. As we increase fg?li) until
£B.., we are introducing more parameters in the model that
are necessary for a more faithful description of the

detectable anisotropic GWB signal. More precisely, even
if we increase the number of inference parameters, the
increase in the marginalized likelihood (the numerator of
the Bayes factor) still compensates for the increase in the
prior volume. Thus, the hypothesis that the detected GWB
has nonzero Pz ,, for at least one m between -8B, and

B, is increasingly favored by the data. But as we further

increase f,({ﬂﬁf(), the new model parameters are redundant
because the detected background shows no resolvable
angular structures of the corresponding angular scale.

The hypothesis that a GWB signal of f,ﬁ';; > 8., is
detected in the data is now no longer better supported
by the data than the hypothesis that the signal contains only
up to £5,., which explains the decrease. Finally, if the
signal is louder, then we can naturally detect the finer
angular structures (corresponding to a larger #) of the
simulated background more confidently. This explains

. . . inf
the increasing consistency between fﬁiﬁ,) and 78, as e

increases until £5,, essentially coincides with f,(;f,g( in the

high SNR limit, when ¢ is large. This behavior could be

used to decide which f,(;‘;Q is suitable for a particular
search, which is also consistent with the discussion in [83].
Apart from competing H o against Hyy, we can also

. —(inf) .

compete H n) - against H?(inf), where f[(;]';x) is another
max max

maximum angular scale included in the inference. This

can be done by computing the Bayes factor between H,

and H; which is simply
s P{C}HHzm) B G, )
£ - C\|\H = (inf) (80)
w p({CHH ) B

It Bf‘““ > 1, then Hm is favored by the data.

(inf)
max de

The right panels of Fig. 6 show log Bf",’:f* for fﬁ;f;;) =

4, and 7 as a function of z,”max, obtained by analyzing the
galactic-plane signal of ¢ = 1 (top right), 10 (middle right),
and 10? (bottom right). We only show the results when

A" =1 because the log Bf'““ of AW

(inf)

=10 are qualita-

de

tively the same. From these panels, we observe the

(mf)
following four patterns in the behavior of logB meoas a

f (inf)

max

(inf)

function of fmax
l

(1) logB e increases with fnﬁgfx e.g. when e =1,

(inf)
max

indicating that H, () is better preferred by

f(mf
the data
—(inf)
2) logB "};‘f‘ decreases with ffndx), e.g. for log Bf",‘:f* !
mdx ?Jﬁl?)
= o) —4

when ¢ = 10 and for logB i =1 and logB a

(inf) (inf)
max max
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FIG. 6. To rank the hypotheses that we have detected a gravitational-wave background having angular structures up to the angular
scale ffmx) (H i) from the data and that the data contain pure noise (H ), we compute the Bayes factor between H i) and H (left
panels) and that between H, (nh) and H (o0 (right panels), assuming different widths of the prior (A()). To facilitate the reading of the

figures, we represent the max1mal angular scale of the simulated background, fni?ﬂx = 7, with a dashed vertical llne and the angular scale

at which the Bayes factor is maximized, #5,,, with a dotted vertical line. Observe that assuming different A() does not significantly
affect the resulting logarithm of the Bayes factor, indicating that our analysis is robust against the choice of prior. Observe also that as the
amplitude of the background increases, as characterized by €, £5,, is increasingly consistent with t’r(:g() until they eventually coincide in
the high signal-to-noise ratio scenario. This feature is reasonable if we interpret £2,, as the maximum resolvable angular scale of the
background. This pattern suggests that we can determine the angular scale that should be included in the inference analysis by locating

the angular scale at which the Bayes factor is maximized, which is consistent with the finding of [83].
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when e = 10, indicating that H ) is better

V>7
preferred by the data.

3) log Bf"};‘f‘ first decreases, then increases wnh f&ﬁ?
(inf

m’\X
and changes sign at some intermediate ¢ max ,e.g. for

mt

log B max

(inf)
qu

preferred over H-,

7 when € = 10, indicating that H i) is

an). In other words, H ) 18 not the

max de

Iz
hypothesis most preferred by the data.

1nl
(inf)
4 logB T:f“) first decreases, then increases with fmax
)
7 —4
but remains non-negative, e.g. for log Bf”};‘[‘) when

max

mdx (inf

€ = 10 and for log Bf'““

mI

when e = 107, indicating

that H-, 7 is the hypothesw that is best supported by

the data.
By analyzing these patterns in the behavior of the log Bayes
factor ratio shown in the right panels of Fig. 6, we again

conclude that B( mdx) peaks at an angular scale that is
increasingly consistent with the maximum angular scale
contained in the injected background, which is consistent
with what we observed from Fig. 5 and the left panel
of Fig. 6.

VI. CONCLUDING REMARKS

In this paper, we presented a novel formalism to
analytically marginalize the posterior of the spherical-
harmonic components of the intensity map of a GWB in
an untargeted Bayesian search. By prescribing a wide
uniform prior for the real and imaginary parts of the
spherical-harmonic components, we approximated the
marginalized posterior (or likelihood) and Bayes factor
as a Gaussian integral. The resulting marginalized pos-
terior is also a Gaussian function. By reading off the mean
and variance of the marginalized posterior, we can
immediately determine the individual maximum posterior
value of many spherical-harmonic components of the
angular distribution of a GWB and gauge the associated
measurement uncertainties. We validated our formalism
by applying it to recover various anisotropic GWBs
injections. For each simulated anisotropic GWB, our
analysis accurately extracted the angular structures of
the GWB within a 3¢ interval. Furthermore, we are able to
immediately evaluate the Bayes factor, which is largely
unaffected by the width of the uniform prior. We showed
that the Bayes factor is a reliable indicator of the angular
scale that should be included in inference studies in a
self-consistent way, which is also consistent with the
findings of [83]. As the data products required for our
analysis are similar and closely related to those used for
existing spherical-harmonic decompositions of the actual
data [81,82,85,86,90,116], we expect that, with minor

modifications, our analysis can be applied to actual data
to efficiently extract GWB anisotropies along with other
existing pipelines. Our analysis can also be applied to
cross-check the results produced by other existing pipe-
lines that search for anisotropic GWBs.

Our formalism presents several advantages in the detec-
tion of GWBs. First, our scheme makes possible Bayesian
inference of a larger number of spherical-harmonic com-
ponents of the angular distribution of a GWB in a
reasonable timescale, leading to a much more model-
independent Bayesian search of anisotropic GWBs. Prior
to this work, in principle, we could treat all the spherical-
harmonic components of interest as free parameters and
attempt to infer them through Bayesian methods, but the
computational cost and time needed to numerically sample
the posterior would be huge [87]. To keep the computa-
tional time reasonable, previous Bayesian searches of
anisotropic backgrounds either limited the number of
spherical-harmonic components inferred (such as in [84])
or precomputed the spherical-harmonic components
according to a given model and only inferred the overall
amplitude of the anisotropic background (such as in [83]).
By analytically marginalizing the posterior, we transform
the problem into that of evaluating Gaussian integrals,
greatly reducing the time needed to construct the margin-
alized posterior of spherical-harmonic components and
compute the Bayes factor through Bayesian inference.
The marginalized posterior of individual spherical-
harmonic components can be used to construct an accurate
intensity map of the GWB. The recovered intensity map
can be compared with different GWB models, making the
studies of GWBs more efficient. Second, our formalism is
sufficiently flexible that it can be modified for the search of
GWRBs in various situations. Although this paper lays out
the formalism of our method and presents a proof-of-
principle analysis of synthetic data, considering only the
joint detection of the LIGO Hanford and Livingston
detectors, our approach can be straightforwardly extended
to a network of detectors. Moreover, although this paper
focused on searching for the GWB of a power-law
spectrum, our approach can easily be adapted to the search
for anisotropic GWBs of more sophisticated energy den-
sities, such as those described by a broken-power law (such
as in [117]).

Several aspects of our mock-data analyses differ from
those carried out in real searches, but these differences
do not undermine the performance of our method when
applied to a future search. First, in our mock-data analyses,
we only considered observations with the LIGO Hanford
and Livingston detectors. In an actual search, the Virgo
detector is operational, and while KAGRA is currently
under development, this detector will join the network
soon. Moreover, next-generation detectors, such as Cosmic
Explorer [118] and Einstein Telescope [119], are also being
planned. Our formalism can be easily extended to include
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these detectors in a future analysis. With Virgo and future
detectors included, the actual search sensitivity for the
detection of a GWB will be greatly improved (assuming the
LIGO-Virgo detectors are operating at their design sensi-
tivity), which will also improve the accuracy and perfor-
mance of our analysis. Hence, the results reported in this
paper can be regarded as conservative estimates of what the
future may hold. Second, when performing the short-time
Fourier transform of the actual data in the time domain,
this data will be Hann windowed to avoid spectral leakage
[81,99]. To account for the windowing, we need to multiply
the mean and variance by windowing factors [120]. The
full use of the windowed data will then require that any
windowed segment has an overlap of 50% with the Hann
window and then be optimally combined. In this paper,
since we are simulating the data in the frequency domain,
we did not need to apply these procedures. By simulating
the data directly in the frequency domain, we are effectively
ignoring cross- and autocorrelations due to the serial
dependence of the time-domain data. However, if the
windowing and optimal combinations are correctly imple-
mented, the results of the time-domain analysis should
agree well with results that use the likelihood [Eq. (27)],
which ignores these correlations, as shown in [99]. Third,
the noise we considered in our mock-data challenges was
stationary. In realistic data, nonstationary and/or non-
Gaussian noise transients, also commonly known as
“glitches,” may occasionally occur and individual GW
signals from CBCs may be present. When analyzing the
actual data, data segments containing glitches and individ-
ual GW signals will be removed upon applying data-quality
cuts [95,121-125]. Once these data segments are removed,
our formalism can be applied as explained in this paper.
Fourth, to fully demonstrate the accuracy of resolving the
angular structures of GWBs with our method, we assumed
strong GWB signals. In an actual detection scenario, we
expect that GWBs to be much weaker. Nonetheless, the
signal-to-noise ratio of a GWB detection is approximately
proportional to the square root of the detection time
[90,91]. Thus, in an actual detection, as the integration
time is long enough, in principle, we can accumulate a
sufficiently large signal-to-noise ratio so that the angular
structures of the GWB can be accurately resolved by our
analysis.

Several adaptations or explorations of our method can be
carried out in the future to facilitate its implementation and
improve its efficiency in the search for anisotropic GWBs
in actual data. First, when no confident detection of a
stochastic background is made, it is insightful to derive the
95% upper limit on the angular power spectrum, i.e. the
95% confidence region of

2213\ 1 <
C, = ref Re |2 Im |2 . 81
13 ( SH(Z) > 27 +1 m;f prm‘ + |me| ] ( )

Since the individual P and P! follow a Gaussian
marginalized posterior whose mean is nonzero in general,
as shown by our calculations, C, follows a generalized
chi-squared distribution, which does not admit a simple
closed-form analytic expression for its cumulative probability
distribution function. Instead, numerical means are still
required for constructing the cumulative probability distri-
bution function of a generalized chi-squared distribution.
Further effort must be devoted to either derive analytic results
or to develop efficient numerical schemes that rapidly recon-
struct the upper limit on C, when there is no GWB detection.

Second, to analytically marginalize the posterior, we
prescribe a wide prior for the spherical harmonic compo-
nents. Within the prior space, some spherical harmonic
components actually correspond to an intensity map of
negative intensity along some sky directions, which is not
physical. Prescribing wide priors also makes our analysis
suboptimal, in the sense that it may need much higher SNR
to detect or resolve the angular structure of a GWB. One
possible way to improve the method is to prescribe a
conjugate normal prior for the spherical-harmonic compo-
nents, which does not require the prior to be wide, thereby
reducing the prior space that corresponds to negative
intensity. However, the marginalized posterior and Bayes
factor will then depend on the properties of the conjugate
normal prior. Another possible way to improve the method
is to make use of Clebsch-Gordan coefficients to para-
meterize the intensity map of a GWB [84]. However, the
exponent of the likelihood in terms of Clebsch-Gordan
coefficients becomes quartic in the relevant parameters.
The analytical marginalization of such a posterior may be
possible through an appropriate change of variables, but
this requires further exploration.

Third, our analysis uses a spherical harmonic basis,
which is well-suited for the search of wide-spread GWB
sources. However, pointlike sources, such as nearby galaxy
superclusters, may also contribute to anisotropic GWBs.
These sources can be more adequately described using the
pixel basis [80]. To include these pointlike sources in our
search, we should explore extending our work to incorpo-
rate such a basis. Working with the pixel basis may require
many more parameters to characterize GWB anisotropies
than the spherical-harmonic basis. Therefore, in future
work, one could explore how to perform the analysis with
the pixel basis within a reasonable time frame.

Fourth, the marginalization of the likelihood in joint
inferences of a GWB and individually resolvable GW
signals requires further investigation. As mentioned here
and also pointed out by [84], a motivation to measure
the angular structure of GWBs in a Bayesian way is its
integration with the existing search of other GW signals,
such the those emitted by CBCs. One formalism that is
capable of simultaneously searching for GWBs and indi-
vidual GW signals is the “master-likelihood” method
(also known as the hyper-likelihood approach) [126,127].
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The marginalization of the master likelihood over the
spherical harmonic components is certainly worth exploring
to unite the search approaches of different types of GW
signals for search efficiency reasons.

Finally, our formalism essentially assumes that we are
searching for stationary GWBs. However, the kinematic
dipole of a GWB induced by the proper motion of the Earth
around the Solar System barycenter, a guaranteed aniso-
tropic signal of GWBs [91,111,112], is time-dependent and
requires a specially targeted method to implement in a search
[99]. As this type of GWB signal varies over a timescale that
is much longer than a sidereal day, we expect that our
formalism can be straightforwardly adapted, say, by includ-
ing this mild time dependence of the signal into the like-
lihood [Eq. (27)] before marginalization, to search for these
GWB signals. Nonetheless, more exploration is still needed
to determine the optimal way to modify our formalism to
search for GWB signals with time dependence.
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APPENDIX: P,,, OF THE GALACTIC-PLANE
SIGNAL INJECTION

Below we provide the P, for the mock galactic plane
signals that we simulated. The P,,, numbers are stored by
m, in accordance with the convention of HEALPix. The
relative intensity map is not alternated if one scales all P,
by the same constant:

PP — 6.24 x 1074,
PP = _1.92 x 1070,
PP — 128 x 1074,
PP = —1.78 x 107¥,

PSP = 103 x 107,

P = _8.89 x 107,

PP — _3.63 x 107,

PP — 4,82 x 10750,

PO = _2.90 x 10752 — 5.54 x 10-50;,
PP = 29.05 x 104 — 1.20 x 107,
Pg(fp) = —1.39 x 1079 +2.90 x 10~%%;,
P = =572 x 107 49,50 x 10797,
P =6.89 x 1075 = 6.96 x 1074,
PP — 386 x 105 — 4.58 x 1079,
P = =210 x 1070 4 332 x 107%;,
PP — _9.05 x 1049 — 2,92 x 10-i,
PO = 870 x 107 — 1.36 x 1074,
P‘(SP) =3.92x 107 +8.90 x 107},
PO =752 x 10750 — 2.21 x 107,
Pég’P) =331 x 107% —2.03 x 107,
PP — 346 x 107 — 5.64 x 1079,
P%}P) =—1.85x 10759 4+ 1.53 x 10759,
P‘(gm =5.59 x 107 +9.57 x 107},
PAY = 114 x 1070 — 1.19 x 1077,
Pé?)) =1.69 x 107% = 1.29 x 107},
P = =430 x 107 4 1.01 x 107%,
Pla’) =346 x 1074 +2.89 x 107,
P = 1.00 x 107 + 1.47 x 1074,
PO — 550 x 1049 — 1.33 x 10-9i,
ngm = —1.68 x 1070 +5.37 x 10759},
P =129 % 107 + 1.42 x 1074,
PP = 335 % 1074 — 1.58 x 107,
chsm =—-7.04 x 1079 - 4.37 x 107!},
PO — 1 66 x 10-% — 1.51 x 10-i,
PO = 3.05x 10750 — 1.95 x 1074,
735313) =554 x 107" = 1.72 x 1074
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