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1. Introduction

The Fejér-Riesz factorization was first shown for matrix polynomials by Rosenblatt
[24] and Helson [19]. Its version on the real line is the following: given a matrix polynomial
Q(x) = Z?;"b Q;z* with Q; Hermitian and Q(z) positive semidefinite for all x € R, we
can factorize it as

where G(z) = Y i° G;z". In 1964, Gohberg generalized this factorization to certain
operator-valued polynomials [13]. Later it was further generalized to operator-valued
polynomials in general form [25]. The multivariable case has also been studied, e.g. in
[22]. For an overview of the work done with the operator-valued Fejér-Riesz theorem,
see [8]. Fejér-Riesz factorization has applications in H*-control [10], in the construction
of compactly supported wavelets [5, Chapter 6], filter design [12], determinantal repre-
sentations [16], and prediction theory [6, Chapter XII], [11,27]. In some cases, one may
want to insist on having a real factorization. Indeed, our motivation for finding a real
factorization came from an interest in constructing real symmetric solutions to A. Horn’s
problem, where the eigenvalues of two real symmetric matrices are prescribed, as well
as the eigenvalues of their sum. Adjusting the techniques in [2] to the real case required
finding a real Fejér-Riesz factorization.

In this paper, we provide a constructive proof of the real analog of the Fejér-Riesz
factorization of matrix-valued polynomials. In particular, given a matrix polynomial
Qz) = Z?;no ;o' with Q; n x n real symmetric, Q(z) positive semidefinite for all
z € R, and det(Q(z)) equal to the square of a nonzero real polynomial, we show that
Q(x) admits the factorization

Q(z) = G(z)"G(x),

where G(z) = >°I" Gia® with G; real n x n matrices. This result was first shown by
Hanselka and Sinn [18] using methods from projective algebraic geometry and number
theory. We provide an alternative, linear algebraic proof, inspired by the proof of the
Fejér-Riesz factorization presented in Section 2.7 of [1]. That proof, in turn, was taken
from [9,17]. For earlier work on factorizations of real symmetric matrix polynomials (not
necessarily positive semidefinite), see e.g. [23].

A key part of the Fejér-Riesz factorization proof we follow requires finding a Hermitian
solution to an algebraic Riccati equation

XDX + XA+ A*X —C =0, (%)

where D and C are Hermitian. Reducing a factorization problem to solving a Riccati
equation is a technique that has been used in many other papers as well (see, e.g., [3],
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[10], [20, Chapter 19] and references therein). This technique is useful because Riccati
equations have been studied extensively. Early work was done by Willems [26] and Coppel
[4] in analyzing properties of solutions of continuous algebraic Riccati equations. Another
key paper was [7] where Riccati equations were used to solve H,-control problems. For
an in depth analysis of algebraic Riccati equations, please see the book by Lancaster and
Rodman [20].

For the current real factorization problem, we end up needing to find a real skew-
symmetric solution to an equation of the form

XSX -XR+R'X+P=0, (¥%)

where P and S are real symmetric. This is not quite an algebraic Riccati equation of the
form () and thus we call it a modified algebraic Riccati equation. In general, to find a
skew-Hermitian solution X, one often considers instead X, which is Hermitian; however,
we want real solutions and thus this method is not applicable here. Thus we instead follow
the same steps presented in [20] for finding a real symmetric solution to the real algebraic
Riccati equation (x) and amend them to our current situation. This is the topic of
Section 2, which culminates in giving sufficient conditions for a skew-symmetric solution
of our modified Riccati equation (). In Section 3 we provide additional background on
matrix polynomials necessary for our main result, the real factorization of a symmetric
positive semidefinite matrix polynomial, presented in Section 4. The major advantage
of our proof compared to that by Hanselka and Sinn [18] is that ours is constructive.
Thus we provide an explicit algorithm for finding the factorization, along with examples
illustrating the construction.

2. A modified algebraic Riccati equation

The goal of this section is to provide necessary and sufficient conditions for the exis-
tence of a real skew-symmetric solution X to the modified algebraic Riccati equation

XSX -XR+R'X+P=0, (1)

where P, R, S are real n x n matrices with P and S real symmetric. In Chapter 8 of the
book Algebraic Riccati Equations [20], Lancaster and Rodman show conditions for which
there is a real symmetric solution X to the continuous time algebraic Riccati equation

XDX + XA+ ATX —C =0,

where A, C, D are real n x n matrices with C and D real symmetric. We amend these
results to the present situation. Define the 2n x 2n real matrices

_[R -5 ~ o I [P RT
e I A o ERE R S PR
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Then both fIT and H, are real symmetric. Also
H.M,=M"H, and  H.M,=M'H,.

Using terminology from [20, Section 2.6], we say M, is both H,-symmetric and H,-
symmetric. Next, we define the graph subspace of a real n x n matrix X by

)=t [] = (] o).

We can now give a condition for a real solution of eq. (1) to exist.

Proposition 2.1. X is a real solution of eq. (1) if and only if the graph subspace G(X) is
M,-invariant, where M, is defined as in eq. (2).

Proof. If G(X) is M,-invariant, then

R -S| |I 1

EINEHE ®
for some n X n matrix Z. The first block row gives Z = R — SX and the second gives
P+ RTX = XZ. Combining the two gives

P+ R'X = X(R - SX).

Thus X solves eq. (1). Conversely, if X solves eq. (1), then eq. (3) holds for Z = R—SX
and thus G(X) is M,-invariant. O

More than just a real solution, though, we want a skew-symmetric solution. Thus we
next strive to give a condition for such a solution. For this we first need a few definitions
(see [20, Section 2.6]). For z,y € R™, we use the notation (z,y) to mean the usual inner
product yTx.

Definition 2.2. Let H be an n x n invertible real symmetric matrix. A subspace M of
R™ is called

1. H-nonnegative if (Hx,x) > 0 for all z € M.
2. H-nonpositive if (Hx,z) <0 for all z € M.
3. H-neutral if (Hx,z) =0 for all z € M.

Proposition 2.3.

1. For H, as defined in eq. (2), X € R™*" is skew-symmetric if and only if the graph
subspace G(X) is H,-neutral.
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2. Let X be a real solution of eq. (1). Then for H, as defined in eq. (2), G(X) is
H,.-nonpositive if and only if (XT + X)(R — SX) is negative semi-definite.

Proof. 1. G(X) is H,-neutral if and only if for all z € R",

(0 [1)-[£]9)-»

Rewriting the lefthand side, we have

(1 [4]= 1] == )i [ omex

Thus G(X) is H,-neutral if and only if X + X7 =0, i.e. X is skew-symmetric.
2. G(X) is Hy-nonpositive if and only if for all z € R™,

(1) 1)<

Rewriting the lefthand side, we have

e =[] ) = [ 5[]

=2'[P+R"X + XTR - XT5X]z
=2T[XR—-XSX+X"R—-X"SX]z  byeq. (1)
=2T(XT + X)(R - §X)z.

Thus G(X) is H,-nonpositive if and only if (XT + X)(R — SX) is negative semidef-
inite. O

Proposition 2.3 shows that in order to get a real skew-symmetric solution X to the eq. (1),
we need an H,-neutral subspace G(X) of dimension n. We consider now conditions for
such a subspace to exist. For this we first state a few known results (see [20, Section 2.6]).

Definition 2.4. Let A be a square matrix and A; be an eigenvalue of A. We call the sizes
of the Jordan blocks of \; the partial multiplicities of \;.

Theorem 2.5. [20, Part of Theorem 2.6.3] Let A be a real n x n H-symmetric matriz
(meaning H is symmetric and HA = ATH ). Suppose the partial multiplicities of the
real eigenvalues of A are all even. Then there exists an A-invariant H-neutral subspace
of dimension k — p where k is the number of positive eigenvalues of H (counting alge-
braic multiplicities) and p is the number of distinct pairs of non-real complex conjugate
eigenvalues of A with odd algebraic multiplicity.
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Lemma 2.6. /20, p. 56] Let H be a real symmetric matriz. A real subspace M is H-neutral
if and only if (Hz,y) =0 for all x,y € M.

Proof. This follows from the relation

(Hz,y) = - (H(z +y),z +y) — (Hr,z) — (Hy,y)). O

1
2
Now we are ready for the following new result.

Lemma 2.7. Let eq. (2) hold with P and S real symmetric. Among the following state-
ments, the implications (i) = (it) = (i) hold.

(i) There exists an n-dimensional M,-invariant H,-neutral subspace.
(i) There exists an n-dimensional M,.-invariant H, -neutral subspace.
(#ii) All real eigenvalues of M, have even partial multiplicities and all non-real eigen-

values of M, have even algebraic multiplicity.
If in addition M, is invertible, then we also have (i) = (i7).
Proof. Assume (iii). By Theorem 2.5, there is an n-dimensional M,-invariant H,-neutral
subspace (since p = 0 and H, has k = n positive eigenvalues). Thus (7ii) = (ii). Next,
since H, = H, M, it follows by Lemma 2.6 that (i) = (¢). Finally, if M, is invertible,
H, = H,.M: " and thus again by Lemma 2.6, (i) = (ii). O

We need one more result before the main theorem of this section. For this result, we first
recall a definition (see, e.g., [20, Section 4.1]).

Definition 2.8. Let A be a real n x n matrix and B be a real n x m matrix. The pair
(A, B) is said to be controllable if

rank[B AB A?B ... A"_lB]:n.

For an n x n real symmetric matrix S, we use the notation S > 0 to mean S is positive
definite and the notation S > 0 to mean S is positive semidefinite.

Lemma 2.9. Let eq. (2) hold with P and S real symmetric. Assume that S > 0 and
the pair (R, S) is controllable. Let L be an n-dimensional M,.-invariant H,.-nonnegative
subspace of R?". Then L is a graph subspace, i.e.

conf]

for some real n x n matriz X.
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Proof. For £ as defined in the statement, write

_ X1
L =1Im [XJ

for some real n x n matrices X; and X5. We shall show that X is invertible. First, since

row [ =[]

for some n x n matrix 7. Thus,

L is M,-invariant,

RX, — SX, = X|T, (4)
PX, 4+ RTX, = XoT. (5)

Next, since £ is H,-nonnegative, we know
T
(X7 X7] [Z RS} {2] = XTPX, + XTRTX, + XTRX, — XTSX,>0. (6)
Let K = ker X;. By eq. (6), for every z € K,
0< 2" X{PXix+ 2" XTI R Xon + 2" X] RX 2 — 27 XTI S Xow = —27 XT S Xou.

Since S > 0, Xox € ker S, so

XolC C ker S.
Then, eq. (4) implies
TK C K.
Consequently, eq. (5) gives
RTX,K C XoK.

All together, we have
RTX5K C ker S.
By induction, we get

(RT)" X,K C ker S, r=0,1,2,...
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Now for every z € K,

S
SRT

S(R'l.")nfl

Since (R, S) is controllable, we must have Xox = 0. The only n-dimensional vector x for
which X1z = Xoz = 0 is the zero vector (otherwise dim £ < n). Thus K = {0} and X;
is invertible. Hence

I
Ezlm{X},

where X = Xngl. Thus L is a graph subspace. O

Now we put everything together to get necessary and sufficient conditions for the exis-
tence of a real skew-symmetric solution of eq. (1).

Theorem 2.10. Let eq. (2) hold with P and S real symmetric. Assume that S > 0 and
the pair (R, S) is controllable. Then the following are equivalent.

(i) Equation (1) has a real skew-symmetric solution.
(ii) There exists an n-dimensional M,-invariant H,-neutral subspace.

Proof. By Proposition 2.1 and Proposition 2.3, we know that if X is a real skew-
symmetric solution to eq. (1), then G(X) is an n-dimensional M,-invariant H,-neutral
subspace. Thus (i) = (i7). Finally, assume there exists an n-dimensional M, -invariant
ﬁr-neutral subspace, say L. Since H, = ﬁTMT, L is also an n-dimensional M, .-invariant
H,-neutral subspace. Clearly £ is an H,.-nonnegative subspace, so by Lemma 2.9, £ is a
graph subspace. Since £ = G(X) is M,-invariant, X is a real solution of eq. (1) by Propo-
sition 2.1. Since £ = G(X) is also H,-neutral, by Proposition 2.3, X is skew-symmetric.
Thus (i) = (). O

3. Matrix polynomials

Building toward our goal of factorizing a real symmetric positive semidefinite matrix
polynomial, we next state a few relevant results on matrix polynomials (see [15]).

Definition 3.1. For n x n matrices P;, we define an n x n matriz polynomial P(x) of
degree m by

P(x) = Z Pzt
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e The matrix polynomial is called real if all P; are real matrices.

e The matrix polynomial is called monic if P, = I,.

o The matrix polynomial is called self-adjoint if P; = P}, its conjugate transpose, for
all 4.

o The matrix polynomial is called symmetric if P, = P for all i.

o The matrix polynomial is called positive semidefinite (also nonnegative) if for all
x € R, P(z) is positive semidefinite.

o The matrix polynomial is called regular if det(P(x)) is not identically zero.

Following [21], where the spectrum and Jordan canonical form of a quadratic matrix
polynomial were defined, we define these concepts for any degree matrix polynomial in
the following ways.!

Definition 3.2. Let P(z) be a regular matrix polynomial. Then the set of eigenvalues of
P, i.e. the spectrum, is

o(P) :={xz € C : det(P(z)) = 0}.

Definition 3.3. Let P(z) = >\ Piz’ be a degree m matrix polynomial with P, non-
singular. The Jordan canonical form for P(x) is defined to be that of the companion

matrix
0 I, 0 0
0 0 I, 0
Cp:= : : . . :
0 0 0 I,
—P;'Py —P;'P, .-+ —P;'Pn_y —P.'P,_,

Theorem 3.4. [15, part of Theorem 12.8] For a monic self-adjoint matriz polynomial
P(z), the following statements are equivalent.

(i) P(z) is nonnegative.
(ii) The partial multiplicities of P(x) for real points of the spectrum are all even.

In the previous section, we found that if all real eigenvalues of M, have even partial
multiplicities and all non-real eigenvalues of M,. have even algebraic multiplicity, then our
eq. (1) has the desired real skew-symmetric solution. Next, using the notion of lineariza-
tion, we will associate the matrix M, with a monic non-negative matrix polynomial. For
this we begin with a few definitions from [15, Section 1.1].

1 Note that the partial multiplicities of an eigenvalue of a matrix polynomial are often defined as powers of
the elementary divisors; however, these partial multiplicities are the same as the sizes of the Jordan blocks
of our companion matrix. See the Appendix of [15] for a more in depth understanding of matrix polynomial
equivalences, linearizations, partial multiplicities and elementary divisors.
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Definition 3.5. Two matrix polynomials Mj(x) and Ms(x) of size n x n are called equiv-
alent (notated My (x) ~ My(x)) if

M, () = E(z)Ms(z) F ()
for some n x n matrix polynomials F(z) and F(x) with constant nonzero determinants.

Definition 3.6. Let P(x) be an n X n monic matrix polynomial of degree m. A linear
matrix polynomial x1,,, — A is called a linearization of P(zx) if

P(x) 0

Note that 21 — Cp is a linearization of P(z). For any linearization zI — A, the partial
multiplicities in every eigenvalue of A and P(x) are the same [15, Section 1.1].

Lemma 3.7. Let Q(x) = Z?ZLO Q;x? be an n x n real symmetric matriz polynomial of
degree 2m with Qo = I,. If m =1, set

_lQl _In
M, = 2 .
[Q —1Q? éQll

Otherwise, define the 2nm X 2nm matriz as

[ 3@ I
I, 0 0
I, 0 0
I, 0 0
M, =
" Q2 — Q7 Qs -301 I,
1Qs Qi1 305 0 I,
%QQm,—l In,
L %Q%nfl QQm 0 ]
Then for
2m 2m—1
) 9 )
reVQ(Q?) = Z Qme’L—‘II’J =T mIn + Z Qmeixzv
=0 =0

we have
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I2nm—n

ey — M, ~ [rev%}(x) 0 ] .

Proof. If m =1,
In *xIn - %Ql 0 In 7Q2 - :L'Ql - xQIn 0
I 0 (‘TI2TL - Mr) = 1 .

It is clear then
wly — M, ~ [revg(“) }ﬂ .

Now assume m > 2. We begin by defining Mj(x) as a permutation of the rows and

columns of xI — M,..

[ 0o 0 I,
0 I, 0 0 r I, -
: 0
0 I, 0 0 In
My (x):= (xI — M,)
L 0 - 00 I,
0 0 L 0 0
0 L I, |
K 0 L 0 |
[ —Qam —3Qom—1 0 zI, 1
xl, —1I, 0
zly I, 0
o xly + 501 I,
-1Qs 1Q3-Q2 |2l +3Q1 —I.
—Qa -1Qs zl,
| -3Q2m-1  —Qam-2 —3Qam-3 oly  —In |

Clearly,
xl — M, ~ My(z).

Next, define W, Vq, ..., V_o by
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1
W = _ixm_QQS _ (Em_lQQ _ mel _ xm-{-l]n

1 1
Vi= —§$m73Q5 — 2™ ?Qy — §xm71Q3

1 1
Vo = *§$m74Q7 — 2" Qg — §$m72Q5

1 1
_ 2 3
Vin—s = —§$Q2m73 — 2°Qom—4 — PR Q2m—5
1 1
2
Vin2 = _§Q2m—1 — 2Q2m—2 — 2% Q2m—3-
Then set
Ly | am=2W + 02 am =27, o SW o S am i e aW Ve W | —am  ah +3Q) e e 2P, al,
V(.T) — |0 Lo 0
0 ‘ 0 ‘ L

Noting that

m—2
1 .
—Q2m — il’sz—l + (meW + Z IEmQZVi) = —revQ(x),

=1

we get

Since V() has constant nonzero determinant, zI — M, ~ V()M (x). It is evident now
that

rev Q(z) 0
M, ~ |G

IQnmfn

Tlonm — O

4. Real factorization of non-negative matrix polynomial

We are now ready for the main result. While the following theorem was previously
proven by Hanselka and Sinn [18], we provide a new constructive proof following that
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of the complex analogue presented in the monograph by Bakonyi and Woerdeman [I,
Section 2.7].

Theorem 4.1. Let Q(z) = Z?:O Q;z? be an n x n real symmetric positive semidefinite
matriz polynomial of degree 2m with Qo > 0. Then the roots of det(Q(x)) all have even
multiplicity if and only if there exists an n X n real matriz polynomial G(x) = Z;n:o Gl
of degree m such that

Q(z) = G(z)" G(x).

Proof. First assume Q(z) = G(z)TG(x). Then det(Q(z)) = det(G(x))?, so clearly all
roots have even multiplicity. On the other hand, assume the roots of det(Q(z)) all have
even multiplicity. Without loss of generality, assume Qo = I,, (otherwise, take Q(z) :=

al/QQ(aﬂ) 51/2). Consider the (m + 1)n x (m + 1)n real symmetric matrix

In %Ql

Q1 Q2
Fy

%Q2m—1

3Qom-1  Qam

Given an nm x nm real skew-symmetric matrix X, let

— Onmxn X Oanm On
FX—F”{ 0, omm}‘{ X onm]'

It should be noted that in the above line, the matrix decompositions are different; e.g.
the X block and the —X block overlap in general. We want to solve

Xopt = argmin rank (F'x)  such that Fx > 0.

Let

A= , ) e Rrmxnm and B=| .| eRMmxm
I, 0, On,
Then (A, B) is controllable,

[ X Onmxn]_{XB XA } and
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Onm Xn ATX

OTL O'I'L Xnm

I:Onmxn X :l _ I: Onxn BTX:l )
Split Fy into four blocks as follows,

[ In %Ql

Iy

1 -
QQI QQ o In F12
T Tar Tog |

%Q2m—l

L 1Qom-1  Qam |

Noting F1T2 =T'9; and T'9s is real symmetric, we can recast the condition F'x > 0 as

In F12+BTAXF >0
FTQ—XB Too + ATX — XA| =

Consider the Schur complement with respect to I,,,
Iop + ATX — XA — (TL, - XB)I;}(I';y + BTX).

Setting this equal to zero, we get the modified algebraic Riccati equation

P+RTX - XR+XS5X =0,

where

P =Ty —T],Is,
R=A— BI'ys,

S = BBT.
Note P = PT and S = ST with S > 0. In this case, the associated M, matrix is

A — Bl'ys -BBT

M, =
Ty —IT,Iyy AT —T7,BT
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[ _%Ql _In
I, 0 0
I, 0 0
Q2 — 1Q7 3Qs —3Q1 I
1Q3 Q4 0
%QQm—l In
L %QZm—l QQm 0 i

By Lemma 3.7, I — M, is a linearization of rev @Q(z). Since Q(z) > 0 for all z € R,
revQ(z) = 2*™Q (%) > 0 for all nonzero z € R. Thus by continuity, rev @(z) > 0 for all
z € R. Then by Theorem 3.4, the partial multiplicities of every real eigenvalue of rev Q(z)
are all even. Since zI — M, is a linearization of rev Q(x), all the partial multiplicities of
every eigenvalue of M, and rev@Q(x) are the same, so the partial multiplicities of every
real eigenvalue of M, are all even. Now since all roots of det(Q(x)) have even multiplicity,
all roots of det(rev @(x)) have even multiplicity (note the multiplicity of zero as a root
is also known to be even since @(x) has even degree). Then since

det(xI — M,) = det(rev Q(x)),

all eigenvalues of M, have even algebraic multiplicity. In particular, all non-real eigen-
values of M, have even algebraic multiplicity. Hence by Lemma 2.7 and Theorem 2.10,
there is a skew-symmetric solution, X of eq. (7). Then since the Schur complement with
respect to I,, is zero, we know

I, s+ BTX
- — - = ~ >
E {FQ—XB Iao + ATX — XA 20,

and

I, '+ BTX

rank(FX):rank<[F{2_)~(B FQQ—FATX—XA

}) =rank I, = n.

We can factorize

) Gr
o In _ T+ BTX | _
E {FQ—XB F22+ATX—XA} | LG Cml,
GT

with Gy = I,, and G; real n x n matrices for i = 1,2,...,m. Then,
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I,
xl,,
Qx)=[I, I, --- 2mI,]F% .
I'W;In
T In
Go zl,,
=, =, - a™L]| : |[Go -+ Gp]
T :
G ™1,

Thus for G(z) = Z;’;O Gijzl, Q(z) = G(z)TG(z). O
Theorem 4.1 required Qg > 0. We can relax this condition as follows.

Corollary 4.2. Let Q(x) = Z?ZO Qjmj be a real n X n reqular symmetric positive semidef-
inite matriz polynomial of degree 2m. Then all roots of det(Q(x)) have even multiplicity
if and only if there exists an n X n real matriz polynomial G(x) = Z?:O G;x? of degree
m such that

Qz) = G(2)"G(a).
Proof. First, assume Q(r) = G(x)TG(z). Then det(Q(z)) = det(G(z))?, so clearly all
roots have even multiplicity. On the other hand, assume all roots of det(Q(z)) have even

multiplicity. Let 29 € R be such that det(Q(zo)) # 0 (note such zy exists since Q(z) is
regular, i.e. the determinant is not identically zero). Consider

P(z) := Q(xg — ).
Then P(z) is an n X n real symmetric matrix polynomial of degree 2m such that
P(0) =Q(zg) >0 and det(P(z)) = det(Q(zo — T)).

Thus the roots of det(P(z)) all have even multiplicity, so by Theorem 4.1, there is an
n X n real matrix polynomial H(z) = Z;n:o H;x7 of degree m such that

P(z) = H(z)"H(x).
Define
G(x) := H(xo — x).
Then G(z) = 377", G2 is an n x n real matrix polynomial such that

Q(z) = P(xo — ) = H(zo — 2) T H(xo — ) = G(2)TG(z). D
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5. M ,.-invariant IfIT-neutral subspace

The proof of Theorem 4.1 is constructive. It hinges on finding the real skew-symmetric
solution X to the modified algebraic Riccati equation. Back in Section 2, we found such
a solution by constructing an mn-dimensional M,-invariant H,-neutral subspace. Fol-
lowing the proof of Theorem 2.5, found in [20, Theorem 2.6.3], also to be found in
Gohberg, Lancaster, and Rodman’s later book Indefinite Linear Algebra and Applica-
tions [14, Theorem 1.3.21], to find such a subspace, we must first convert M, to its real
Jordan form. For this, assume there are k Jordan blocks corresponding to real eigenval-
ues Ai, Ag, ..., A\x (note some eigenvalues may be repeated as they can occur in multiple
blocks). The block corresponding to eigenvalue A; has size r; and is denoted by

J(\;) = c R™IX7i
J( J) )\j 1
Aj

Next, assume there are £ real Jordan blocks corresponding to pairs of non-real eigenvalues
a1 if1, a1, ..., ap1ife (note again some eigenvalues may be repeated as they can
occur in multiple blocks). The block corresponding to the pair of eigenvalues «; =+ if;
has size 2s; and is denoted by

Clay, B;) I
Jas (0 £iB;) = € R255%2s5
ZSJ( J ]) C(aj75j) I
Clay, B5)
where C(aj,B;) = { e ﬂj] .
=B
Then for some real invertible matrix S,
M, =SJS™!,
where
J=Jp (M) @B ® Jry(Ar) ® Jas, (a1 £ 1) B - - B Jos, (e £if4). (8)

We will form the desired mn-dimensional M,-invariant H,-neutral subspace by extract-
ing nm columns of S and putting these columns together to form a 2nm x nm matrix Y.
The desired M,-invariant H,-neutral subspace is then the column space of this matrix
Y. The construction of Y is outlined as follows.
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Construction of Y:

1. For each Jordan block .J,., (\;) of a real eigenvalue, there are r; corresponding columns
in S. Note r; is known to be even. Take the first %J of those columns.

2. For each real Jordan block Ja,, (oj +i3;) of a complex conjugate pair of eigenvalues,
there are 2s; corresponding columns in S. If s; is even, take the first s; of those
columns.

3. Each remaining real Jordan block Jas,(a; & if3;) of a complex conjugate pair of
eigenvalues has 2s; corresponding columns in .S, where s; is odd. Since the algebraic
multiplicity of each eigenvalue is even, we can pair up each of these blocks with
another such block of the same eigenvalue, say Jos, (a; ;) pairs with Jos, (o, i)
where o; = o, and 8; = ;. Take the first s; —1 of the columns of S corresponding to
Jas; (oj £if;) and the first s, —1 of the columns of S corresponding to Jas, (o +i/3,).
Lastly, take
(a) The s;th column of S corresponding to Jas, (o +if3;) plus the s, + Ist column

of S corresponding to Jo,, (ay £ i8p).
(b) The s;+ 1st column of S corresponding to Jas, (a; £43;) minus the s,th column
of S corresponding to Jo,, (ay £ i8p).

Putting these columns together to form a 2nm x nm matrix Y, we get that the desired
M, -invariant H,-neutral subspace as the column space of this matrix Y. The reason why
this works hinges on the following theorem.

Theorem 5.1. [20, Theorem 2.6.1] Let H be a nonsingular real n X n symmetric matrix
and let A be a real H-symmetric matriz. Then there exists an invertible real matrixz S

such that J := STYAS can be written as in eq. (8) and P := S*HS has the form

P=¢P,® - ®erPr, ® Pas, &+ D Pag,,

where A1,..., A, a1,...,00, and Bi,...,B¢ are positive numbers; €; = *1,j =
1,2,...,k; P; is the j X j reversal matriz, i.e.
1
Pj = e RI*V,
1

Moreover, the canonical form (J, P) of (A, H) is uniquely determined by (A, H) up to
permutation of blocks (J,,(N;),€;Py;) for j = 1,...,k and (Jos,(cj £ iB3;), Pas;) for
j=1,... 0

This theorem tells us that when we write

M, =SJS™ !,
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we also have
H,=8"*PS™,

where P is as defined in the theorem and S=* = (S*)~!. We illustrate three cases
with simple examples. First assume J = J,., (A1), where we know r; is even. Then by
Theorem 5.1, P = € P, where ¢; = &1. Let Y be the matrix formed from the first 3
columns of S. We claim that the column space of Y is M, -invariant and ]flr—neutral.
Indeed,

MY = SJS7'Y = SJ [éﬂ =Y, 2(M1),

and

* * Q—* - 07’1 P?”l 17’1
Y HTY =Y'5 61PT1$ 1Y =€ [Irl/2 Orl/Q] |:PT1//22 07"1//22:| |:07"1ﬁz:| -0

Next assume J = Jas, (a; £i01), where s7 is even. Then by Theorem 5.1, P = Pag,. Let
Y be the matrix formed from the first s; columns of S. Then the column space of Y is
M,-invariant and ﬁ,«—neutral. Indeed,

MY = SJSTY =Y J,, (o £iB),

and
Y H,Y = Y*S*Pyy, 57V = [I,, 0] [051 PSI} {181} —0.
Finally, assume

J = Jos, (a1 £ if1) @ Jos, (a2 = i52)

where s1 and sy are odd, a; = as, and 51 = B2. Form the (2s1 + 255) X (81 + $2) matrix
Y using columns 1,2,...,s1 — 1 and 2s1 + 1,2s1 + 2,251 + s9 — 1 from S. Additionally,
form the second to last column of Y as column s; of S plus column 2s; + s3 + 1 of
S. Finally, form the last column of Y as column s; + 1 of S minus column 2s; + s of
S. Then the column space of Y is M,-invariant and H,-neutral. Indeed, let S; denote
column j of S. Let @« = a3 = as and 8 = 1 = B2. Then

Y = [Sl tee Ssl—l S251+1 Tt 5251+52—1 Ssl + 5251—1-52-&-1 Ssl+l - 5231+52] .

Letting 0; denote the j X j zero matrix (and generic 0 may represent a zero matrix whose
size can be inferred in the context of the other elements of the matrix), we have
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(g, —1 0 0 07
0 0 1 0
0 0 0 1
Ceremivwr 00 0 0
MY =SJ57Y =5J | 7% I,. 0 0
0 0 0 -1
0 0 1 0
0 051 0 0|
[Js,—1(a £ i) 0 * *
0 0 « 15}
0 0 -8«
g 05,1 0 0 0
0 Jey—1(a+if)  x * |
0 0 b -«
0 0 « I}
L 0 Os,—1 0 0 |

so Y is M,-invariant. Next, by Theorem 5.1, we know H, = S~*PS~! where
P = Py, & Pos,.
Then

Y*H,YY = Y*S™*(Pas, @ Py,)S”'Y

Iy 00 0,y O 0 0 0
I, o
=10 10 0 B0 1 %Pk
0 01 0 0 -10 0
I, 0 0 07
0 0 1 0
0 0 0 1
051 00 0
0 I, 0 0
0 0 0 -1
0 0 1 0
L 0 05,01 O O
061 0 0 07
0 0 0 1
I,1 00 0,y O 0 0 O 0 0 1 0
|0 00 0 I, 0 0 Oyaf|Pyt 0 0 0| _,
1o 10 0 0 0 1 0 0 Oy O O 7
0 01 0 0 -10 0 0 0 1 0
0 0 0 -1
. 0 Py, 0 0|

These three cases together show why the general procedure for picking columns of S

generates the desired subspace.
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6. Algorithm

Now that we have the construction of the invariant subspace, we can put everything
together to get an explicit algorithm as outlined below. To the best of our knowledge, no
algorithm for finding the real factorization Q(x) = G(x)TG(z) exists in the literature.

Algorithm 1: Real Factorization of PSD Matrix Polynomial.

Input: A real n X n regular symmetric positive semidefinite matrix polynomial Q(z) = Zf;"o Qj z?
for which det(Q(x)) has only roots of even multiplicity.
1. Fix 29 € R such that det(Q(zo)) # 0.

2. Set P(x) = Q(zo — z) =: Z?Z‘D Pj.rj.
3. Set P(z) = Py /2 P(z) Py M/? = Y2 Pl
4. Set
[ —1p ~1I, 1
I, 0 0
I, 0 0
Mr=1p—1P? 1P, -iP I,
1py Py 0
1Pyt IR
L 1 Pym_1 P, (.

ot

. Find the real Jordan canonical form M, = SJS™!.
6. Choose columns of the matrix S to form a 2nm X nm matrix Y as outlined under ‘Construction
of Y’ in the previous section.

7. Define the nm X nm matrices X; and X5 by Y = [%ﬂ and compute X = Xngl.
8. Set

I, P

Fy 3P P +[0nmm X ]_[On&nm 0, }

n 0n Xnm Onm Xn

1
L 5P2m—1
§P2m71 Pop,

9. By construction, Fx is positive semidefinite of rank n, so factorize as

Hy'
Fx=| 1 |[[Ho -+ Hpn]
HT

m

)

where H; is real n x n for all j.
10. Set H(z) = 3 7L, Hja’.

11. Set G(z) = .7 Py/* Hj(zo — w)7 =: 3.7 Gl

Output: A real n X n matrix polynomial G(z) = 37, G 27 such that Q(z) = G(z)T G(x).
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6.1. Examples

Let us illustrate the above ideas in a few examples. Note that the Jordan canonical
factorization in the algorithm relies on exact computation, so the examples were com-
puted in Maple. The first example is the real eigenvalue case. The second example is the
non-real eigenvalue case with even s;.

Example 6.1. Take
22?422 4+1 422 -3z ] [1 0 2 -3 2 2 —4
Q)= 1" 2 30 s24dzr1|=]0 1| T%| 23 4 |T2 |y s |

Then M, = SJS~! for

2 37 =5 17

9 54 18 B4

01 0 O I 10 5 10
J— 00 0 O g— |9 27 18 27
{00 =3 1|77 |=1 =19 -5 19
00 0 -3 18 54 36 54

1 19 =5 19

9 108 36 108

We have J = J5(0) @ J2(—3), so r1 = ro = 2. Thus we take the 1st column of S
corresponding to the first Jordan block as well as the 1st column of S corresponding to
the second Jordan block.

2 =5
9 18
1 5
9 18| _. |Xu
-1 =5| | Xy
18 36
1 =5
9 36

Our invariant subspace is thus

Then,

Thus



S. Gift, H.J. Woerdeman / Linear Algebra and its Applications 683 (2024) 125-150 147

We factorize as

1 0
0 1]t 0o 1 -2
Fx=11 {0 1 -1 2]
2 9
Thus
10 1 -2
G0_|:0 1:|, Gl_[—l 2:|, G(LE):G0+£CG1

We can verify Q(z) = G(z)TG(z).

Example 6.2. Take now

22242241 z? + 2z 1o 2 2 22 1
Q(”J")—{ 2420 13a44z+1] |0 1) T2 4] T 1 13)

Then M, = SJS~! for

-3 I 1 0 4 —2/11 1 5/11

2 2 i1 11 2 242

VAT R 0 1 o S VA S Y V4

J— 2 2 g | T 11 121
0 0 -3 1|’ =6 =211 (j =—12V11

2 2 11 11 121

0 0 =V -3 -8 4/l 6V

2 3 1 11 121

We have J = J, (% ii@), so s1 = 2. Thus we take the first two columns of S
corresponding to the first and only Jordan block.

4 —2V/11

11 11

-3 —VII

11 11 . X1
—6 —2y/I1 T Xe |
11 11

-8 4/l

11 11

Our invariant subspace is thus

Then,
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Thus
1 O 1 3
0 X 0 0 o 1 -1 2
FXZFO*{O 0}‘{){ o]: 1 -1 2 1
3 2 1 13
We factorize as
1 0
o 1|t o 1 3
Fx=11 {0 1 -1 2}
3 2

Thus

1 1
GO{O ?] Gl[_l g] G(z) = Go + 2Gh.

We can verify Q(z) = G(z)TG(z).
6.2. Numerical considerations

Note that the algorithm presented here relies on being able to compute the real Jordan
canonical form of a matrix. This is not numerically stable and thus the algorithm assumes
exact computation. However, if all eigenvalues have algebraic multiplicity 2 and geometric
multiplicity 1 (i.e. ineq. (8),r; =2, =1,2,...,kand s; = 2,5 =1,2,...,¢), we can
still find the required M, -invariant H,-neutral subspace. Indeed, for size 2 blocks of real
eigenvalues, our algorithm says to take the first column of S associated with that block.
This is simply the eigenvector associated with that eigenvalue. Similarly, for a size 4
block of a pair of non-real eigenvalues, our algorithm says to take the first two columns
of S associated with that block. These are the real and imaginary parts of the eigenvector
associated with that eigenvalue pair. In short, all we need here are the eigenvectors of
the M, matrix.

We tested a numerical implementation of our algorithm in MATLAB by running 100
trials. In each trial, a random matrix size n and degree m were chosen between 2 and 8.
A matrix polynomial G(z) = " G;x' of size n x n and degree m was created by taking
Gy = I, and randomly generating G4, ...G,,. Then the coefficients Qq, @1, .- ., Q2 of
the matrix polynomial Q(z) = S°2™ Q" were computed by setting Q(z) = G(z)TG(x).
Operating under the assumption that all eigenvalues have algebraic multiplicity 2 and
geometric multiplicity 1, Algorithm 1 was implemented, where the matrix Y in step 6 was
formed from the eigenvectors of M,. as outlined in the previous paragraph. The algorithm
outputted coefficients G; for the matrix polynomial G(z) = 3.7 Gz, We computed
coefficients Q; for the matrix polynomial Q(m) = é(x)Té(x) Since in application, only
Q(z) and not G(z) would be known before the implementation of the algorithm, the
error of the trial was calculated as the maximum absolute entry of
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Qo Q1 - Qam]—[Q0 Q1 - Qom]-

The overall worst error among all 100 trials was on the order of 1076, It is important
to note, though, that for particular examples where the multiplicities of eigenvalues are
higher, the algorithm does not work in any reliable way.

Finally, one can also use numerical methods to conclude reliably that if an eigenvalue
of M, has algebraic multiplicity equal to one, then the corresponding matrix polynomial
Q(z) will not have a real factorization.
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