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1. Introduction

The Fejér-Riesz factorization was first shown for matrix polynomials by Rosenblatt 
[24] and Helson [19]. Its version on the real line is the following: given a matrix polynomial 
Q(x) =

∑2m
i=0 Qix

i with Qi Hermitian and Q(x) positive semidefinite for all x ∈ R, we 
can factorize it as

Q(x) = G(x)∗G(x),

where G(x) =
∑m

i=0 Gix
i. In 1964, Gohberg generalized this factorization to certain 

operator-valued polynomials [13]. Later it was further generalized to operator-valued 
polynomials in general form [25]. The multivariable case has also been studied, e.g. in 
[22]. For an overview of the work done with the operator-valued Fejér-Riesz theorem, 
see [8]. Fejér-Riesz factorization has applications in H∞-control [10], in the construction 
of compactly supported wavelets [5, Chapter 6], filter design [12], determinantal repre-
sentations [16], and prediction theory [6, Chapter XII], [11,27]. In some cases, one may 
want to insist on having a real factorization. Indeed, our motivation for finding a real 
factorization came from an interest in constructing real symmetric solutions to A. Horn’s 
problem, where the eigenvalues of two real symmetric matrices are prescribed, as well 
as the eigenvalues of their sum. Adjusting the techniques in [2] to the real case required 
finding a real Fejér-Riesz factorization.

In this paper, we provide a constructive proof of the real analog of the Fejér-Riesz 
factorization of matrix-valued polynomials. In particular, given a matrix polynomial 
Q(x) =

∑2m
i=0 Qix

i with Qi n × n real symmetric, Q(x) positive semidefinite for all 
x ∈ R, and det(Q(x)) equal to the square of a nonzero real polynomial, we show that 
Q(x) admits the factorization

Q(x) = G(x)T G(x),

where G(x) =
∑m

i=0 Gix
i with Gi real n × n matrices. This result was first shown by 

Hanselka and Sinn [18] using methods from projective algebraic geometry and number 
theory. We provide an alternative, linear algebraic proof, inspired by the proof of the 
Fejér-Riesz factorization presented in Section 2.7 of [1]. That proof, in turn, was taken 
from [9,17]. For earlier work on factorizations of real symmetric matrix polynomials (not 
necessarily positive semidefinite), see e.g. [23].

A key part of the Fejér-Riesz factorization proof we follow requires finding a Hermitian 
solution to an algebraic Riccati equation

XDX + XA + A∗X − C = 0, (∗)

where D and C are Hermitian. Reducing a factorization problem to solving a Riccati 
equation is a technique that has been used in many other papers as well (see, e.g., [3], 
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[10], [20, Chapter 19] and references therein). This technique is useful because Riccati 
equations have been studied extensively. Early work was done by Willems [26] and Coppel 
[4] in analyzing properties of solutions of continuous algebraic Riccati equations. Another 
key paper was [7] where Riccati equations were used to solve H∞-control problems. For 
an in depth analysis of algebraic Riccati equations, please see the book by Lancaster and 
Rodman [20].

For the current real factorization problem, we end up needing to find a real skew-
symmetric solution to an equation of the form

XSX − XR + RT X + P = 0, (∗∗)

where P and S are real symmetric. This is not quite an algebraic Riccati equation of the 
form (∗) and thus we call it a modified algebraic Riccati equation. In general, to find a 
skew-Hermitian solution X, one often considers instead iX, which is Hermitian; however, 
we want real solutions and thus this method is not applicable here. Thus we instead follow 
the same steps presented in [20] for finding a real symmetric solution to the real algebraic 
Riccati equation (∗) and amend them to our current situation. This is the topic of 
Section 2, which culminates in giving sufficient conditions for a skew-symmetric solution 
of our modified Riccati equation (∗∗). In Section 3 we provide additional background on 
matrix polynomials necessary for our main result, the real factorization of a symmetric 
positive semidefinite matrix polynomial, presented in Section 4. The major advantage 
of our proof compared to that by Hanselka and Sinn [18] is that ours is constructive. 
Thus we provide an explicit algorithm for finding the factorization, along with examples 
illustrating the construction.

2. A modified algebraic Riccati equation

The goal of this section is to provide necessary and sufficient conditions for the exis-
tence of a real skew-symmetric solution X to the modified algebraic Riccati equation

XSX − XR + RT X + P = 0, (1)

where P, R, S are real n × n matrices with P and S real symmetric. In Chapter 8 of the 
book Algebraic Riccati Equations [20], Lancaster and Rodman show conditions for which 
there is a real symmetric solution X to the continuous time algebraic Riccati equation

XDX + XA + AT X − C = 0,

where A, C, D are real n × n matrices with C and D real symmetric. We amend these 
results to the present situation. Define the 2n × 2n real matrices

Mr =
[

R −S
P RT

]
, Ĥr =

[
0 I
I 0

]
, Hr =

[
P RT

R −S

]
. (2)
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Then both Ĥr and Hr are real symmetric. Also

ĤrMr = MT
r Ĥr and HrMr = MT

r Hr.

Using terminology from [20, Section 2.6], we say Mr is both Hr-symmetric and Ĥr-
symmetric. Next, we define the graph subspace of a real n × n matrix X by

G(X) := Im
[

In

X

]
=

{[
In

X

]
x : x ∈ Rn

}
.

We can now give a condition for a real solution of eq. (1) to exist.

Proposition 2.1. X is a real solution of eq. (1) if and only if the graph subspace G(X) is 
Mr-invariant, where Mr is defined as in eq. (2).

Proof. If G(X) is Mr-invariant, then
[

R −S
P RT

] [
I
X

]
=

[
I
X

]
Z (3)

for some n × n matrix Z. The first block row gives Z = R − SX and the second gives 
P + RT X = XZ. Combining the two gives

P + RT X = X(R − SX).

Thus X solves eq. (1). Conversely, if X solves eq. (1), then eq. (3) holds for Z = R −SX

and thus G(X) is Mr-invariant. �
More than just a real solution, though, we want a skew-symmetric solution. Thus we 
next strive to give a condition for such a solution. For this we first need a few definitions 
(see [20, Section 2.6]). For x, y ∈ Rn, we use the notation 〈x, y〉 to mean the usual inner 
product yT x.

Definition 2.2. Let H be an n × n invertible real symmetric matrix. A subspace M of 
Rn is called

1. H-nonnegative if 〈Hx, x〉 ≥ 0 for all x ∈ M.
2. H-nonpositive if 〈Hx, x〉 ≤ 0 for all x ∈ M.
3. H-neutral if 〈Hx, x〉 = 0 for all x ∈ M.

Proposition 2.3.

1. For Ĥr as defined in eq. (2), X ∈ Rn×n is skew-symmetric if and only if the graph 
subspace G(X) is Ĥr-neutral.
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2. Let X be a real solution of eq. (1). Then for Hr as defined in eq. (2), G(X) is 
Hr-nonpositive if and only if (XT + X)(R − SX) is negative semi-definite.

Proof. 1. G(X) is Ĥr-neutral if and only if for all z ∈ Rn,
〈

Ĥr

[
I
X

]
z,

[
I
X

]
z

〉
= 0.

Rewriting the lefthand side, we have
〈

Ĥr

[
I
X

]
z,

[
I
X

]
z

〉
= zT

[
I XT

]
Ĥr

[
I
X

]
z = zT (X + XT )z.

Thus G(X) is Ĥr-neutral if and only if X + XT = 0, i.e. X is skew-symmetric.
2. G(X) is Hr-nonpositive if and only if for all z ∈ Rn,

〈
Hr

[
I
X

]
z,

[
I
X

]
z

〉
≤ 0.

Rewriting the lefthand side, we have
〈

Hr

[
I
X

]
z,

[
I
X

]
z

〉
= zT

[
I XT

] [
P RT

R −S

] [
I
X

]
z

= zT [P + RT X + XT R − XT SX]z

= zT [XR − XSX + XT R − XT SX]z by eq. (1)

= zT (XT + X)(R − SX)z.

Thus G(X) is Hr-nonpositive if and only if (XT + X)(R − SX) is negative semidef-
inite. �

Proposition 2.3 shows that in order to get a real skew-symmetric solution X to the eq. (1), 
we need an Ĥr-neutral subspace G(X) of dimension n. We consider now conditions for 
such a subspace to exist. For this we first state a few known results (see [20, Section 2.6]).

Definition 2.4. Let A be a square matrix and λi be an eigenvalue of A. We call the sizes 
of the Jordan blocks of λi the partial multiplicities of λi.

Theorem 2.5. [20, Part of Theorem 2.6.3] Let A be a real n × n H-symmetric matrix 
(meaning H is symmetric and HA = AT H). Suppose the partial multiplicities of the 
real eigenvalues of A are all even. Then there exists an A-invariant H-neutral subspace 
of dimension k − p where k is the number of positive eigenvalues of H (counting alge-
braic multiplicities) and p is the number of distinct pairs of non-real complex conjugate 
eigenvalues of A with odd algebraic multiplicity.
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Lemma 2.6. [20, p. 56] Let H be a real symmetric matrix. A real subspace M is H-neutral 
if and only if 〈Hx, y〉 = 0 for all x, y ∈ M.

Proof. This follows from the relation

〈Hx, y〉 = 1
2 (〈H(x + y), x + y〉 − 〈Hx, x〉 − 〈Hy, y〉) . �

Now we are ready for the following new result.

Lemma 2.7. Let eq. (2) hold with P and S real symmetric. Among the following state-
ments, the implications (iii) =⇒ (ii) =⇒ (i) hold.

(i) There exists an n-dimensional Mr-invariant Hr-neutral subspace.
(ii) There exists an n-dimensional Mr-invariant Ĥr-neutral subspace.

(iii) All real eigenvalues of Mr have even partial multiplicities and all non-real eigen-
values of Mr have even algebraic multiplicity.

If in addition Mr is invertible, then we also have (i) =⇒ (ii).

Proof. Assume (iii). By Theorem 2.5, there is an n-dimensional Mr-invariant Ĥr-neutral 
subspace (since p = 0 and Ĥr has k = n positive eigenvalues). Thus (iii) =⇒ (ii). Next, 
since Hr = ĤrMr, it follows by Lemma 2.6 that (ii) =⇒ (i). Finally, if Mr is invertible, 
Ĥr = HrM−1

r and thus again by Lemma 2.6, (i) =⇒ (ii). �
We need one more result before the main theorem of this section. For this result, we first 
recall a definition (see, e.g., [20, Section 4.1]).

Definition 2.8. Let A be a real n × n matrix and B be a real n × m matrix. The pair 
(A, B) is said to be controllable if

rank
[
B AB A2B · · · An−1B

]
= n.

For an n × n real symmetric matrix S, we use the notation S > 0 to mean S is positive 
definite and the notation S ≥ 0 to mean S is positive semidefinite.

Lemma 2.9. Let eq. (2) hold with P and S real symmetric. Assume that S ≥ 0 and 
the pair (R, S) is controllable. Let L be an n-dimensional Mr-invariant Hr-nonnegative 
subspace of R2n. Then L is a graph subspace, i.e.

L = Im
[

I
X

]

for some real n × n matrix X.
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Proof. For L as defined in the statement, write

L = Im
[

X1
X2

]

for some real n × n matrices X1 and X2. We shall show that X1 is invertible. First, since 
L is Mr-invariant,

[
R −S
P RT

] [
X1
X2

]
=

[
X1
X2

]
T

for some n × n matrix T . Thus,

RX1 − SX2 = X1T, (4)

PX1 + RT X2 = X2T. (5)

Next, since L is Hr-nonnegative, we know

[
XT

1 XT
2

] [
P RT

R −S

] [
X1
X2

]
= XT

1 PX1 + XT
1 RT X2 + XT

2 RX1 − XT
2 SX2 ≥ 0. (6)

Let K = ker X1. By eq. (6), for every x ∈ K,

0 ≤ xT XT
1 PX1x + xT XT

1 RT X2x + xT XT
2 RX1x − xT XT

2 SX2x = −xT XT
2 SX2x.

Since S ≥ 0, X2x ∈ ker S, so

X2K ⊂ ker S.

Then, eq. (4) implies

T K ⊂ K.

Consequently, eq. (5) gives

RT X2K ⊂ X2K.

All together, we have

RT X2K ⊂ ker S.

By induction, we get

(RT )rX2K ⊂ ker S, r = 0, 1, 2, . . .
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Now for every x ∈ K,

⎡
⎢⎢⎣

S
SRT

...
S(RT )n−1

⎤
⎥⎥⎦ (X2x) = 0.

Since (R, S) is controllable, we must have X2x = 0. The only n-dimensional vector x for 
which X1x = X2x = 0 is the zero vector (otherwise dim L < n). Thus K = {0} and X1
is invertible. Hence

L = Im
[

I
X

]
,

where X = X2X−1
1 . Thus L is a graph subspace. �

Now we put everything together to get necessary and sufficient conditions for the exis-
tence of a real skew-symmetric solution of eq. (1).

Theorem 2.10. Let eq. (2) hold with P and S real symmetric. Assume that S ≥ 0 and 
the pair (R, S) is controllable. Then the following are equivalent.

(i) Equation (1) has a real skew-symmetric solution.
(ii) There exists an n-dimensional Mr-invariant Ĥr-neutral subspace.

Proof. By Proposition 2.1 and Proposition 2.3, we know that if X is a real skew-
symmetric solution to eq. (1), then G(X) is an n-dimensional Mr-invariant Ĥr-neutral 
subspace. Thus (i) =⇒ (ii). Finally, assume there exists an n-dimensional Mr-invariant 
Ĥr-neutral subspace, say L. Since Hr = ĤrMr, L is also an n-dimensional Mr-invariant 
Hr-neutral subspace. Clearly L is an Hr-nonnegative subspace, so by Lemma 2.9, L is a 
graph subspace. Since L = G(X) is Mr-invariant, X is a real solution of eq. (1) by Propo-
sition 2.1. Since L = G(X) is also Ĥr-neutral, by Proposition 2.3, X is skew-symmetric. 
Thus (ii) =⇒ (i). �
3. Matrix polynomials

Building toward our goal of factorizing a real symmetric positive semidefinite matrix 
polynomial, we next state a few relevant results on matrix polynomials (see [15]).

Definition 3.1. For n × n matrices Pi, we define an n × n matrix polynomial P (x) of 
degree m by

P (x) =
m∑

Pix
i.
i=0
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• The matrix polynomial is called real if all Pi are real matrices.
• The matrix polynomial is called monic if Pm = In.
• The matrix polynomial is called self-adjoint if Pi = P ∗

i , its conjugate transpose, for 
all i.

• The matrix polynomial is called symmetric if Pi = P T
i for all i.

• The matrix polynomial is called positive semidefinite (also nonnegative) if for all 
x ∈ R, P (x) is positive semidefinite.

• The matrix polynomial is called regular if det(P (x)) is not identically zero.

Following [21], where the spectrum and Jordan canonical form of a quadratic matrix 
polynomial were defined, we define these concepts for any degree matrix polynomial in 
the following ways.1

Definition 3.2. Let P (x) be a regular matrix polynomial. Then the set of eigenvalues of 
P , i.e. the spectrum, is

σ(P ) := {x ∈ C : det(P (x)) = 0}.

Definition 3.3. Let P (x) =
∑m

i=0 Pix
i be a degree m matrix polynomial with Pm non-

singular. The Jordan canonical form for P (x) is defined to be that of the companion 
matrix

CP :=

⎡
⎢⎢⎢⎢⎣

0 In 0 · · · 0
0 0 In · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 In

−P −1
m P0 −P −1

m P1 · · · −P −1
m Pm−2 −P −1

m Pm−1

⎤
⎥⎥⎥⎥⎦ .

Theorem 3.4. [15, part of Theorem 12.8] For a monic self-adjoint matrix polynomial 
P (x), the following statements are equivalent.

(i) P (x) is nonnegative.
(ii) The partial multiplicities of P (x) for real points of the spectrum are all even.

In the previous section, we found that if all real eigenvalues of Mr have even partial 
multiplicities and all non-real eigenvalues of Mr have even algebraic multiplicity, then our 
eq. (1) has the desired real skew-symmetric solution. Next, using the notion of lineariza-
tion, we will associate the matrix Mr with a monic non-negative matrix polynomial. For 
this we begin with a few definitions from [15, Section 1.1].

1 Note that the partial multiplicities of an eigenvalue of a matrix polynomial are often defined as powers of 
the elementary divisors; however, these partial multiplicities are the same as the sizes of the Jordan blocks 
of our companion matrix. See the Appendix of [15] for a more in depth understanding of matrix polynomial 
equivalences, linearizations, partial multiplicities and elementary divisors.
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Definition 3.5. Two matrix polynomials M1(x) and M2(x) of size n × n are called equiv-
alent (notated M1(x) ∼ M2(x)) if

M1(x) = E(x)M2(x)F (x)

for some n × n matrix polynomials E(x) and F (x) with constant nonzero determinants.

Definition 3.6. Let P (x) be an n × n monic matrix polynomial of degree m. A linear 
matrix polynomial xInm − A is called a linearization of P (x) if

xInm − A ∼
[

P (x) 0
0 In(m−1)

]
.

Note that xI − CP is a linearization of P (x). For any linearization xI − A, the partial 
multiplicities in every eigenvalue of A and P (x) are the same [15, Section 1.1].

Lemma 3.7. Let Q(x) =
∑2m

j=0 Qjxj be an n × n real symmetric matrix polynomial of 
degree 2m with Q0 = In. If m = 1, set

Mr :=
[

−1
2Q1 −In

Q2 − 1
4Q2

1 −1
2Q1

]
.

Otherwise, define the 2nm × 2nm matrix as

Mr :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2Q1 −In

In 0 0
In 0 0

. . .
. . .

. . .

In 0 0

Q2 − 1
4Q2

1
1
2Q3 −1

2Q1 In

1
2Q3 Q4

1
2Q5 0 In

1
2Q5 Q6

. . . 0
. . .

. . .
. . . 1

2Q2m−1
. . . In

1
2Q2m−1 Q2m 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then for

rev Q(x) :=
2m∑
i=0

Q2m−ix
i = x2mIn +

2m−1∑
i=0

Q2m−ix
i,

we have
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xI2nm − Mr ∼
[

rev Q(x) 0
0 I2nm−n

]
.

Proof. If m = 1,

[
In −xIn − 1

2Q1

0 In

] [
0 In

In 0

]
(xI2n − Mr) =

[
−Q2 − xQ1 − x2In 0

xIn + 1
2Q1 In

]
.

It is clear then

xI2n − Mr ∼
[

rev Q(x) 0
0 In

]
.

Now assume m ≥ 2. We begin by defining M1(x) as a permutation of the rows and 
columns of xI − Mr.

M1(x):=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 In

0 In

... 0 0

. .
.

. .
.

. .
. ...

0 In 0 · · · 0

In 0 · · · 0 0

0 0
... In 0

...
. . . 0

. . .
. . .

0 · · · 0 In 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(xI − Mr)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In

. .
.

In

0

0
In

. . .
In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q2m −1
2Q2m−1 0 xIn

xIn −In 0
. . .

. . . . .
.

. . .
. . .

xIn −In 0

xIn + 1
2Q1 In

−1
2Q3

1
4Q2

1 − Q2 xIn + 1
2Q1 −In

. .
. −Q4 −1

2Q3 xIn
. . .

. .
.

. .
.

. .
. . . .

. . .

−1
2Q2m−1 −Q2m−2 −1

2Q2m−3 xIn −In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Clearly,

xI − Mr ∼ M1(x).

Next, define W, V1, . . . , Vm−2 by
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W = −1
2xm−2Q3 − xm−1Q2 − xmQ1 − xm+1In

V1 = −1
2xm−3Q5 − xm−2Q4 − 1

2xm−1Q3

V2 = −1
2xm−4Q7 − xm−3Q6 − 1

2xm−2Q5

...

Vm−3 = −1
2xQ2m−3 − x2Q2m−4 − 1

2x3Q2m−5

Vm−2 = −1
2Q2m−1 − xQ2m−2 − 1

2x2Q2m−3.

Then set

V (x) :=

⎡
⎢⎢⎢⎢⎣

In xm−2W +
∑m−2

i=1 xm−2−iVi xm−3W +
∑m−3

i=1 xm−3−iVi · · · xW + V1 W −xm−1(xIn + 1
2Q1) xm−1In · · · x2In xIn

0 In(m−1) 0

0 0 Inm

⎤
⎥⎥⎥⎥⎦.

Noting that

−Q2m − 1
2xQ2m−1 + x

(
xm−2W +

m−2∑
i=1

xm−2−iVi

)
= − rev Q(x),

we get

V (x)M1(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− rev Q(x)
−In 0

∗ . . .
−In

0

∗ In

−In 0
∗ . . .

−In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since V (x) has constant nonzero determinant, xI − Mr ∼ V (x)M1(x). It is evident now 
that

xI2nm − Mr ∼
[

rev Q(x) 0
0 I2nm−n

]
. �

4. Real factorization of non-negative matrix polynomial

We are now ready for the main result. While the following theorem was previously 
proven by Hanselka and Sinn [18], we provide a new constructive proof following that 
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of the complex analogue presented in the monograph by Bakonyi and Woerdeman [1, 
Section 2.7].

Theorem 4.1. Let Q(x) =
∑2m

j=0 Qjxj be an n × n real symmetric positive semidefinite 
matrix polynomial of degree 2m with Q0 > 0. Then the roots of det(Q(x)) all have even 
multiplicity if and only if there exists an n ×n real matrix polynomial G(x) =

∑m
j=0 Gjxj

of degree m such that

Q(x) = G(x)T G(x).

Proof. First assume Q(x) = G(x)T G(x). Then det(Q(x)) = det(G(x))2, so clearly all 
roots have even multiplicity. On the other hand, assume the roots of det(Q(x)) all have 
even multiplicity. Without loss of generality, assume Q0 = In (otherwise, take Q̃(x) :=
Q

−1/2
0 Q(x)Q−1/2

0 ). Consider the (m + 1)n × (m + 1)n real symmetric matrix

F0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In
1
2Q1

1
2Q1 Q2

. . .

. . .
. . . 1

2Q2m−1

1
2Q2m−1 Q2m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Given an nm × nm real skew-symmetric matrix X, let

FX = F0 +
[

0nm×n X
0n 0n×nm

]
−

[
0n×nm 0n

X 0nm×n

]
.

It should be noted that in the above line, the matrix decompositions are different; e.g. 
the X block and the −X block overlap in general. We want to solve

Xopt = arg min rank (FX) such that FX ≥ 0.

Let

A =

⎡
⎢⎢⎣

0n

In 0n

. . .
. . .
In 0n

⎤
⎥⎥⎦ ∈ Rnm×nm and B =

⎡
⎢⎢⎣

In

0n

...
0n

⎤
⎥⎥⎦ ∈ Rnm×n.

Then (A, B) is controllable,

[
0n×nm 0n

X 0

]
=

[
0n×n 0n×nm

XB XA

]
, and
nm×n
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[
0nm×n X

0n 0n×nm

]
=

[
0n×n BT X

0nm×n AT X

]
.

Split F0 into four blocks as follows,

F0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

In
1
2Q1

1
2Q1 Q2

. . .

. . .
. . . 1

2Q2m−1

1
2Q2m−1 Q2m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=:
[

In Γ12
Γ21 Γ22

]
.

Noting ΓT
12 = Γ21 and Γ22 is real symmetric, we can recast the condition FX ≥ 0 as

[
In Γ12 + BT X

ΓT
12 − XB Γ22 + AT X − XA

]
≥ 0.

Consider the Schur complement with respect to In,

Γ22 + AT X − XA − (ΓT
12 − XB)I−1

n (Γ12 + BT X).

Setting this equal to zero, we get the modified algebraic Riccati equation

P + RT X − XR + XSX = 0, (7)

where

P = Γ22 − ΓT
12Γ12,

R = A − BΓ12,

S = BBT .

Note P = P T and S = ST with S ≥ 0. In this case, the associated Mr matrix is

Mr =
[

A − BΓ12 −BBT

Γ − ΓT Γ AT − ΓT BT

]

22 12 12 12
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2Q1 −In

In 0 0
. . .

. . .
. . .

In 0 0

Q2 − 1
4Q2

1
1
2Q3 −1

2Q1 In

1
2Q3 Q4

. . . 0
. . .

. . .
. . . 1

2Q2m−1
. . . In

1
2Q2m−1 Q2m 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By Lemma 3.7, xI − Mr is a linearization of rev Q(x). Since Q(x) ≥ 0 for all x ∈ R, 
rev Q(x) = x2mQ 

( 1
x

)
≥ 0 for all nonzero x ∈ R. Thus by continuity, rev Q(x) ≥ 0 for all 

x ∈ R. Then by Theorem 3.4, the partial multiplicities of every real eigenvalue of rev Q(x)
are all even. Since xI − Mr is a linearization of rev Q(x), all the partial multiplicities of 
every eigenvalue of Mr and rev Q(x) are the same, so the partial multiplicities of every 
real eigenvalue of Mr are all even. Now since all roots of det(Q(x)) have even multiplicity, 
all roots of det(rev Q(x)) have even multiplicity (note the multiplicity of zero as a root 
is also known to be even since Q(x) has even degree). Then since

det(xI − Mr) = det(rev Q(x)),

all eigenvalues of Mr have even algebraic multiplicity. In particular, all non-real eigen-
values of Mr have even algebraic multiplicity. Hence by Lemma 2.7 and Theorem 2.10, 
there is a skew-symmetric solution, X̃ of eq. (7). Then since the Schur complement with 
respect to In is zero, we know

FX̃ =
[

In Γ12 + BT X̃
ΓT

12 − X̃B Γ22 + AT X̃ − X̃A

]
≥ 0,

and

rank (FX̃) = rank
([

In Γ12 + BT X̃
ΓT

12 − X̃B Γ22 + AT X̃ − X̃A

])
= rank In = n.

We can factorize

FX̃ =
[

In Γ12 + BT X̃
ΓT

12 − X̃B Γ22 + AT X̃ − X̃A

]
=

⎡
⎢⎣

GT
0
...

GT
m

⎤
⎥⎦ [G0 · · · Gm ] ,

with G0 = In and Gi real n × n matrices for i = 1, 2, . . . , m. Then,
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Q(x) = [In xIn · · · xmIn ] FX̃

⎡
⎢⎢⎣

In

xIn

...
xmIn

⎤
⎥⎥⎦

= [In xIn · · · xmIn ]

⎡
⎢⎣

GT
0
...

GT
m

⎤
⎥⎦ [G0 · · · Gm ]

⎡
⎢⎢⎣

In

xIn

...
xmIn

⎤
⎥⎥⎦ .

Thus for G(x) =
∑m

j=0 Gjxj , Q(x) = G(x)T G(x). �
Theorem 4.1 required Q0 > 0. We can relax this condition as follows.

Corollary 4.2. Let Q(x) =
∑2m

j=0 Qjxj be a real n ×n regular symmetric positive semidef-
inite matrix polynomial of degree 2m. Then all roots of det(Q(x)) have even multiplicity 
if and only if there exists an n × n real matrix polynomial G(x) =

∑m
j=0 Gjxj of degree 

m such that

Q(x) = G(x)T G(x).

Proof. First, assume Q(x) = G(x)T G(x). Then det(Q(x)) = det(G(x))2, so clearly all 
roots have even multiplicity. On the other hand, assume all roots of det(Q(x)) have even 
multiplicity. Let x0 ∈ R be such that det(Q(x0)) �= 0 (note such x0 exists since Q(x) is 
regular, i.e. the determinant is not identically zero). Consider

P (x) := Q(x0 − x).

Then P (x) is an n × n real symmetric matrix polynomial of degree 2m such that

P (0) = Q(x0) > 0 and det(P (x)) = det(Q(x0 − x)).

Thus the roots of det(P (x)) all have even multiplicity, so by Theorem 4.1, there is an 
n × n real matrix polynomial H(x) =

∑m
j=0 Hjxj of degree m such that

P (x) = H(x)T H(x).

Define

G(x) := H(x0 − x).

Then G(x) =
∑m

j=0 Gjxj is an n × n real matrix polynomial such that

Q(x) = P (x0 − x) = H(x0 − x)T H(x0 − x) = G(x)T G(x). �



S. Gift, H.J. Woerdeman / Linear Algebra and its Applications 683 (2024) 125–150 141
5. Mr-invariant Ĥr-neutral subspace

The proof of Theorem 4.1 is constructive. It hinges on finding the real skew-symmetric 
solution X to the modified algebraic Riccati equation. Back in Section 2, we found such 
a solution by constructing an mn-dimensional Mr-invariant Ĥr-neutral subspace. Fol-
lowing the proof of Theorem 2.5, found in [20, Theorem 2.6.3], also to be found in 
Gohberg, Lancaster, and Rodman’s later book Indefinite Linear Algebra and Applica-
tions [14, Theorem I.3.21], to find such a subspace, we must first convert Mr to its real 
Jordan form. For this, assume there are k Jordan blocks corresponding to real eigenval-
ues λ1, λ2, . . . , λk (note some eigenvalues may be repeated as they can occur in multiple 
blocks). The block corresponding to eigenvalue λj has size rj and is denoted by

Jrj
(λj) =

⎡
⎢⎢⎣

λj 1
. . .

. . .
λj 1

λj

⎤
⎥⎥⎦ ∈ Rrj×rj .

Next, assume there are � real Jordan blocks corresponding to pairs of non-real eigenvalues 
α1 ± iβ1, α2 ± iβ2, . . . , α� ± iβ� (note again some eigenvalues may be repeated as they can 
occur in multiple blocks). The block corresponding to the pair of eigenvalues αj ± iβj

has size 2sj and is denoted by

J2sj
(αj ± iβj) =

⎡
⎢⎢⎣

C(αj , βj) I2
. . .

. . .
C(αj , βj) I2

C(αj , βj)

⎤
⎥⎥⎦ ∈ R2sj×2sj ,

where C(αj , βj) =
[

αj βj

−βj αj

]
.

Then for some real invertible matrix S,

Mr = SJS−1,

where

J = Jr1(λ1) ⊕ · · · ⊕ Jrk
(λk) ⊕ J2s1(α1 ± iβ1) ⊕ · · · ⊕ J2s�

(α� ± iβ�). (8)

We will form the desired mn-dimensional Mr-invariant Ĥr-neutral subspace by extract-
ing nm columns of S and putting these columns together to form a 2nm ×nm matrix Y . 
The desired Mr-invariant Ĥr-neutral subspace is then the column space of this matrix 
Y . The construction of Y is outlined as follows.
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Construction of Y :

1. For each Jordan block Jrj
(λj) of a real eigenvalue, there are rj corresponding columns 

in S. Note rj is known to be even. Take the first rj

2 of those columns.
2. For each real Jordan block J2sj

(αj ± iβj) of a complex conjugate pair of eigenvalues, 
there are 2sj corresponding columns in S. If sj is even, take the first sj of those 
columns.

3. Each remaining real Jordan block J2sj
(αj ± iβj) of a complex conjugate pair of 

eigenvalues has 2sj corresponding columns in S, where sj is odd. Since the algebraic 
multiplicity of each eigenvalue is even, we can pair up each of these blocks with 
another such block of the same eigenvalue, say J2sj

(αj ±iβj) pairs with J2sp
(αp±iβp)

where αj = αp and βj = βp. Take the first sj −1 of the columns of S corresponding to 
J2sj

(αj ±iβj) and the first sp −1 of the columns of S corresponding to J2sp
(αp ±iβp). 

Lastly, take
(a) The sjth column of S corresponding to J2sj

(αj ± iβj) plus the sp + 1st column 
of S corresponding to J2sp

(αp ± iβp).
(b) The sj +1st column of S corresponding to J2sj

(αj ± iβj) minus the spth column 
of S corresponding to J2sp

(αp ± iβp).

Putting these columns together to form a 2nm × nm matrix Y , we get that the desired 
Mr-invariant Ĥr-neutral subspace as the column space of this matrix Y . The reason why 
this works hinges on the following theorem.

Theorem 5.1. [20, Theorem 2.6.1] Let H be a nonsingular real n × n symmetric matrix 
and let A be a real H-symmetric matrix. Then there exists an invertible real matrix S
such that J := S−1AS can be written as in eq. (8) and P := S∗HS has the form

P = ε1Pr1 ⊕ · · · ⊕ εkPrk
⊕ P2s1 ⊕ · · · ⊕ P2s�

,

where λ1, . . . , λk, α1, . . . , α�, and β1, . . . , β� are positive numbers; εj = ±1, j =
1, 2, . . . , k; Pj is the j × j reversal matrix, i.e.

Pj =

⎡
⎣ 1

. .
.

1

⎤
⎦ ∈ Rj×j .

Moreover, the canonical form (J, P ) of (A, H) is uniquely determined by (A, H) up to 
permutation of blocks (Jrj

(λj), εjPrj
) for j = 1, . . . , k and (J2sj

(αj ± iβj), P2sj
) for 

j = 1, . . . , �.

This theorem tells us that when we write

Mr = SJS−1,
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we also have

Ĥr = S−∗PS−1,

where P is as defined in the theorem and S−∗ = (S∗)−1. We illustrate three cases 
with simple examples. First assume J = Jr1(λ1), where we know r1 is even. Then by 
Theorem 5.1, P = ε1Pr1 where ε1 = ±1. Let Y be the matrix formed from the first r1

2
columns of S. We claim that the column space of Y is Mr-invariant and Ĥr-neutral. 
Indeed,

MrY = SJS−1Y = SJ

[
Ir1/2
0r1/2

]
= Y Jr1/2(λ1),

and

Y ∗ĤrY = Y ∗S−∗ε1Pr1S−1Y = ε1 [Ir1/2 0r1/2 ]
[

0r1/2 Pr1/2
Pr1/2 0r1/2

] [
Ir1/2
0r1/2

]
= 0.

Next assume J = J2s1(α1 ± iβ1), where s1 is even. Then by Theorem 5.1, P = P2s1 . Let 
Y be the matrix formed from the first s1 columns of S. Then the column space of Y is 
Mr-invariant and Ĥr-neutral. Indeed,

MrY = SJS−1Y = Y Js1(α1 ± iβ1),

and

Y ∗ĤrY = Y ∗S−∗P2s1S−1Y = [Is1 0s1 ]
[

0s1 Ps1
Ps1 0s1

] [
Is1
0s1

]
= 0.

Finally, assume

J = J2s1(α1 ± iβ1) ⊕ J2s2(α2 ± iβ2)

where s1 and s2 are odd, α1 = α2, and β1 = β2. Form the (2s1 + 2s2) × (s1 + s2) matrix 
Y using columns 1, 2, . . . , s1 − 1 and 2s1 + 1, 2s1 + 2, 2s1 + s2 − 1 from S. Additionally, 
form the second to last column of Y as column s1 of S plus column 2s1 + s2 + 1 of 
S. Finally, form the last column of Y as column s1 + 1 of S minus column 2s1 + s2 of 
S. Then the column space of Y is Mr-invariant and Ĥr-neutral. Indeed, let Sj denote 
column j of S. Let α = α1 = α2 and β = β1 = β2. Then

Y = [S1 · · · Ss1−1 S2s1+1 · · · S2s1+s2−1 Ss1 + S2s1+s2+1 Ss1+1 − S2s1+s2 ] .

Letting 0j denote the j ×j zero matrix (and generic 0 may represent a zero matrix whose 
size can be inferred in the context of the other elements of the matrix), we have
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MrY = SJS−1Y = SJ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Is1−1 0 0 0
0 0 1 0
0 0 0 1

0s1−1 0 0 0
0 Is2−1 0 0
0 0 0 −1
0 0 1 0
0 0s2−1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Js1−1(α ± iβ) 0 ∗ ∗
0 0 α β
0 0 −β α

0s1−1 0 0 0
0 Js2−1(α ± iβ) ∗ ∗
0 0 β −α
0 0 α β
0 0s2−1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

so Y is Mr-invariant. Next, by Theorem 5.1, we know Ĥr = S−∗PS−1 where

P = P2s1 ⊕ P2s2 .

Then

Y ∗ĤrY = Y ∗S−∗(P2s1 ⊕ P2s2)S−1Y

=

⎡
⎢⎣

Is1−1 0 0 0s1−1 0 0 0 0
0 0 0 0 Is2−1 0 0 0s2−1
0 1 0 0 0 0 1 0
0 0 1 0 0 −1 0 0

⎤
⎥⎦ (P2s1 ⊕ P2s2)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Is1−1 0 0 0
0 0 1 0
0 0 0 1

0s1−1 0 0 0
0 Is2−1 0 0
0 0 0 −1
0 0 1 0
0 0s2−1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

=

⎡
⎢⎣

Is1−1 0 0 0s1−1 0 0 0 0
0 0 0 0 Is2−1 0 0 0s2−1
0 1 0 0 0 0 1 0
0 0 1 0 0 −1 0 0

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0s1−1 0 0 0
0 0 0 1
0 0 1 0

Ps1−1 0 0 0
0 0s2−1 0 0
0 0 1 0
0 0 0 −1
0 Ps2−1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

These three cases together show why the general procedure for picking columns of S

generates the desired subspace.
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6. Algorithm

Now that we have the construction of the invariant subspace, we can put everything 
together to get an explicit algorithm as outlined below. To the best of our knowledge, no 
algorithm for finding the real factorization Q(x) = G(x)T G(x) exists in the literature.

Algorithm 1: Real Factorization of PSD Matrix Polynomial.
Input: A real n × n regular symmetric positive semidefinite matrix polynomial Q(x) = ∑2m

j=0 Qjxj

for which det(Q(x)) has only roots of even multiplicity.
1. Fix x0 ∈ R such that det(Q(x0)) �= 0.
2. Set P̂ (x) = Q(x0 − x) =:

∑2m
j=0 P̂jxj .

3. Set P (x) = P̂
−1/2
0 P̂ (x)P̂

−1/2
0 =:

∑2m
j=0 Pjxj .

4. Set

Mr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2 P1 −In

In 0 0
. . .

. . .
. . .

In 0 0

P2 − 1
4 P 2

1
1
2 P3 − 1

2 P1 In

1
2 P3 P4

. . . 0
. . .

. . .
. . . 1

2 P2m−1
. . . In

1
2 P2m−1 P2m 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

5. Find the real Jordan canonical form Mr = SJS−1.
6. Choose columns of the matrix S to form a 2nm × nm matrix Y as outlined under ‘Construction

of Y ’ in the previous section.
7. Define the nm × nm matrices X1 and X2 by Y =

[
X1
X2

]
and compute X = X2X−1

1 .
8. Set

FX =

⎡
⎢⎢⎢⎢⎣

In
1
2 P1

1
2 P1 P2

. . .

. . .
. . . 1

2 P2m−1
1
2 P2m−1 P2m

⎤
⎥⎥⎥⎥⎦ +

[ 0nm×n X
0n 0n×nm

]
−

[ 0n×nm 0n
X 0nm×n

]
.

9. By construction, FX is positive semidefinite of rank n, so factorize as

FX =

⎡
⎢⎣

HT
0
...

HT
m

⎤
⎥⎦ [H0 · · · Hm ] ,

where Hj is real n × n for all j.
10. Set H(x) = ∑m

j=0 Hjxj .
11. Set G(x) = ∑m

j=0 P
1/2
0 Hj(x0 − x)j =:

∑m
j=0 Gjxj .

Output: A real n × n matrix polynomial G(x) = ∑m
j=0 Gjxj such that Q(x) = G(x)T G(x).
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6.1. Examples

Let us illustrate the above ideas in a few examples. Note that the Jordan canonical 
factorization in the algorithm relies on exact computation, so the examples were com-
puted in Maple. The first example is the real eigenvalue case. The second example is the 
non-real eigenvalue case with even sj .

Example 6.1. Take

Q(x) =
[

2x2 + 2x + 1 −4x2 − 3x
−4x2 − 3x 8x2 + 4x + 1

]
=

[
1 0
0 1

]
+ x

[
2 −3

−3 4

]
+ x2

[
2 −4

−4 8

]
.

Then Mr = SJS−1 for

J =

⎡
⎢⎣

0 1 0 0
0 0 0 0
0 0 −3 1
0 0 0 −3

⎤
⎥⎦ , S =

⎡
⎢⎢⎢⎢⎣

2
9

37
54

−5
18

17
54

1
9

10
27

5
18

−10
27

−1
18

−19
54

−5
36

19
54

1
9

19
108

−5
36

−19
108

⎤
⎥⎥⎥⎥⎦ .

We have J = J2 (0) ⊕ J2 (−3), so r1 = r2 = 2. Thus we take the 1st column of S

corresponding to the first Jordan block as well as the 1st column of S corresponding to 
the second Jordan block.

⎡
⎢⎢⎢⎢⎣

2
9

−5
18

1
9

5
18

−1
18

−5
36

1
9

−5
36

⎤
⎥⎥⎥⎥⎦ =:

[
X1
X2

]
.

Our invariant subspace is thus

Im
[

X1
X2

]
= Im

[
I

X2X−1
1

]
.

Then,

X = X2X−1
1 =

[ 0 −1
2

1
2 0

]
.

Thus

FX = F0 +
[

0 X
0 0

]
−

[
0 0
X 0

]
=

⎡
⎢⎣

1 0 1 −2
0 1 −1 2
1 −1 2 −4

⎤
⎥⎦ .
−2 2 −4 8
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We factorize as

FX =

⎡
⎢⎣

1 0
0 1
1 −1

−2 2

⎤
⎥⎦ [

1 0 1 −2
0 1 −1 2

]
.

Thus

G0 =
[

1 0
0 1

]
, G1 =

[
1 −2

−1 2

]
, G(x) = G0 + xG1.

We can verify Q(x) = G(x)T G(x).

Example 6.2. Take now

Q(x) =
[

2x2 + 2x + 1 x2 + 2x
x2 + 2x 13x2 + 4x + 1

]
=

[
1 0
0 1

]
+ x

[
2 2
2 4

]
+ x2

[
2 1
1 13

]
.

Then Mr = SJS−1 for

J =

⎡
⎢⎢⎢⎢⎢⎣

−3
2

√
11
2 1 0

−
√

11
2

−3
2 0 1

0 0 −3
2

√
11
2

0 0 −
√

11
2

−3
2

⎤
⎥⎥⎥⎥⎥⎦ , S =

⎡
⎢⎢⎢⎢⎢⎣

4
11

−2
√

11
11

1
2

5
√

11
242

−3
11

−
√

11
11 0 5

√
11

121
−6
11

−2
√

11
11 0 −12

√
11

121
−8
11

4
√

11
11 0 6

√
11

121

⎤
⎥⎥⎥⎥⎥⎦ .

We have J = J4

(
3
2 ± i

√
11
2

)
, so s1 = 2. Thus we take the first two columns of S

corresponding to the first and only Jordan block.

⎡
⎢⎢⎢⎢⎢⎣

4
11

−2
√

11
11

−3
11

−
√

11
11

−6
11

−2
√

11
11

−8
11

4
√

11
11

⎤
⎥⎥⎥⎥⎥⎦ =:

[
X1
X2

]
.

Our invariant subspace is thus

Im
[

X1
X2

]
= Im

[
I

X2X−1
1

]
.

Then,

X = X2X−1
1 =

[
0 2

−2 0

]
.
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Thus

FX = F0 +
[

0 X
0 0

]
−

[
0 0
X 0

]
=

⎡
⎢⎣

1 0 1 3
0 1 −1 2
1 −1 2 1
3 2 1 13

⎤
⎥⎦ .

We factorize as

FX =

⎡
⎢⎣

1 0
0 1
1 −1
3 2

⎤
⎥⎦ [

1 0 1 3
0 1 −1 2

]
.

Thus

G0 =
[

1 0
0 1

]
, G1 =

[
1 3

−1 2

]
, G(x) = G0 + xG1.

We can verify Q(x) = G(x)T G(x).

6.2. Numerical considerations

Note that the algorithm presented here relies on being able to compute the real Jordan 
canonical form of a matrix. This is not numerically stable and thus the algorithm assumes 
exact computation. However, if all eigenvalues have algebraic multiplicity 2 and geometric 
multiplicity 1 (i.e. in eq. (8), rj = 2, j = 1, 2, . . . , k and sj = 2, j = 1, 2, . . . , �), we can 
still find the required Mr-invariant Ĥr-neutral subspace. Indeed, for size 2 blocks of real 
eigenvalues, our algorithm says to take the first column of S associated with that block. 
This is simply the eigenvector associated with that eigenvalue. Similarly, for a size 4 
block of a pair of non-real eigenvalues, our algorithm says to take the first two columns 
of S associated with that block. These are the real and imaginary parts of the eigenvector 
associated with that eigenvalue pair. In short, all we need here are the eigenvectors of 
the Mr matrix.

We tested a numerical implementation of our algorithm in MATLAB by running 100 
trials. In each trial, a random matrix size n and degree m were chosen between 2 and 8. 
A matrix polynomial G(x) =

∑m
i=0 Gix

i of size n ×n and degree m was created by taking 
G0 = In and randomly generating G1, . . . Gm. Then the coefficients Q0, Q1, . . . , Q2m of 
the matrix polynomial Q(x) =

∑2m
i=0 Qix

i were computed by setting Q(x) = G(x)T G(x). 
Operating under the assumption that all eigenvalues have algebraic multiplicity 2 and 
geometric multiplicity 1, Algorithm 1 was implemented, where the matrix Y in step 6 was 
formed from the eigenvectors of Mr as outlined in the previous paragraph. The algorithm 
outputted coefficients Ĝi for the matrix polynomial Ĝ(x) =

∑m
i=0 Ĝix

i. We computed 
coefficients Q̂i for the matrix polynomial Q̂(x) = Ĝ(x)T Ĝ(x). Since in application, only 
Q(x) and not G(x) would be known before the implementation of the algorithm, the 
error of the trial was calculated as the maximum absolute entry of
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[Q0 Q1 · · · Q2m ] −
[
Q̂0 Q̂1 · · · Q̂2m

]
.

The overall worst error among all 100 trials was on the order of 10−6. It is important 
to note, though, that for particular examples where the multiplicities of eigenvalues are 
higher, the algorithm does not work in any reliable way.

Finally, one can also use numerical methods to conclude reliably that if an eigenvalue 
of Mr has algebraic multiplicity equal to one, then the corresponding matrix polynomial 
Q(x) will not have a real factorization.
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