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Abstract

Fear conditioning is a behavioral paradigm of learning to predict aversive events.
It is a form of associative learning that memorize an undesirable stimulus (e.g., an
electrical shock) and a neutral stimulus (e.g,, a tone), resulting in a fear response
(such as running away) to the originally neutral stimulus. The association of
concurrent events is implemented by strengthening the synaptic connection between
the neurons. In this paper, with an analogous methodology, we reproduce the classic
fear conditioning experiment of rats using mobile robots and a neuromorphic system.
In our design, the acceleration from a vibration platform substitutes the undesirable
stimulus in rats. Meanwhile, the brightness of light (dark vs. light), is used for a
neutral stimulus, which is analogous to the neutral sound in fear conditioning
experiments in rats. The brightness of the light is processed with sparse coding in the
Intel Loihi chip. The simulation and experimental results demonstrate that our
neuromorphic robot successfully, for the first time, reproduces the fear conditioning
experiment of rats with a mobile robot. The work exhibits a potential online learning
paradigm with no labeled data required. The mobile robot directly memorizes the
events by interacting with its surroundings, essentially different from data-driven
methods.

Keywords: Neuromorphic Computing, Associative Memory Learning, Mobile Robot,
Hebbian Learning, Fear conditioning.

1 Introduction

Associative memory learning is a ubiquitous online learning paradigm in animals
[1-3]. Unlike the data-driven learning schemes of current Artificial Intelligence (Al),
animals have the capability of memorizing the events that occur at the same time or
within a certain time interval. The underlying memorization mechanism in the
nervous system is the synaptic connection will be strengthened under the stimulus of
the firing neurons evoked by concurrent events. The strengthened synaptic
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connection enables the response neurons at the conditional pathway to receive a
larger amount of the synaptic transmitter. As a result, the response neuron in the
conditional signal pathway will fire, even though it originally did not become active.
In other words, the memorization of the relationship between concurrent events is
achieved by signal pathway modification rather than backpropagation. The signal
pathway modification is accomplished by synaptic plasticity. An Al system with
associative memory potentially provides an alternative way of active self-learning by
constantly interacting with environments. The signal pathway modification can be
accomplished with a few training processes leading to less dependence on large size
datasets. For data-driven deep learning, e.g., Deep Neural Networks (DNNs), the large
datasets prolong training time and increase energy demands. Consequently, the
application of deep learning is highly reliant on bulky supercomputers that are not
feasible and applicable to scenarios that require Size, Weight, and Power (SWaP)
constraints [4, 5]. In addition, massive and labeled data is costly to build, or even not
practical to collect, such as the Lunar and Martian terrain data [5].

Numerous studies have implemented associative memory with neuromorphic
systems [2, 6-13]. However, these studies merely complete a small-scale association
with a few neurons in simulation environments. It is far away from the capability of
associative memory learning to enable animals to self-learning and independent
exploration in an unknown environment. In an addition, pretraining processes with
labeled datasets are still required for these studies [9-13]. In order to resolve these
limitations of studies on associative learning, we design several experiments of
associative memory in real-world scenarios using a mobile robot and neuromorphic
chips. Our system of associative memory is validated by reproducing one of the classic
associative memory learning in rats: fear conditioning. In fear conditioning
experiments, the rats learn to associate a particular neutral Conditional Stimulus (CS),
e.g., tone, with an aversive Unconditional Stimulus (US), such as an electrical foot
shock, and show a fear response, freezing or running away. The rats learn fear
conditioning after several training sessions and exhibit long-lasting behavioral
change. Several brain regions have been proven to be involved in the learning
process, including frontotemporal amygdala, hippocampus, etc. The process of fear
conditioning cannot be reproduced by other state-of-the-art associative memory
models [2, 6-13] due to their limited neural network sizes. The simple neural network
models cannot process informative signals, such as visual signals. These informative
signals are processed with large-scale neural assemblies rather than simply a few
neurons in the brains [14-19]. To resolve these limitations, in our design, we use
large-scale biological plausible neurons to process the visual signals. Specifically, in
our system and experimental designs, the mobile robot with sensors serves as the
substitute for the rats in fear conditioning experiments. The neuromorphic chip (Intel
Loihi) provides a computational platform for the associative memory learning
operation. In our experiment, the brightness of a light emulates the visual stimulus,
and the vibration signals from the accelerometer mimic the shock signals to the rats.
Thus, the vibration signals are the unpleasant stimulus and light is the neutral
stimulus. The movement of the mobile robot emulates the fear response. The
perception of the light and the vibration are separately processed within two
different neural assemblies. Two neural assemblies connect to the response neuron,
which stimulates the movement of the robot, with two signal pathways. One signal
pathway with a weak synaptic connection serves as the conditional signal pathway,
while another one with a stronger synaptic connection is the unconditional signal
pathway. Thanks to the mobile robot providing a platform directly interacting with
the environment, we for the first time, to our best knowledge, implement associative
memory as real-time online learning with no pretrained procedure. The
contributions of this paper are summarized as follows:
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1) Compared to other state-of-the-art works [9-13], we implemented associative
memory learning with a mobile robot for an online learning scenario using an
Intel Loihi chip.

2) The work reproduces the classic fear conditioning of rats with solid biological
rationales from a cellular level (Hebbian learning) to the behavior level (neural
assembly).

3) Aiming signal pathway modification as the neural network training purpose,
which is a novel learning paradigm of associative memory learning.

4) No labeled datasets are required.

2 Research Background

This work aims to develop a novel self-learning paradigm by emulating associative
memory learning of animals. Thus, the study is built upon the reverse engineering of
brain function. In specific, the large-scale computational models of associative
memory learning are implemented by a neuromorphic system. In this section, we first
introduce the state-of-the-art development of neuromorphic computing and systems.
Then, the mechanism of associative memory learning at both macroscopic and
microscopic levels is analyzed.

2.1 Neuromorphic System

Neuromorphic system emulates nervous systems, such as human brains, aiming
at implementing Artificial Intelligence [20-25]. Human brains have the capability of
executing sophisticated missions in unbelievably ultra-low energy. The average
power of human brains is as small as ~20 watts [1]. In addition, unlike the training
process required for Artificial Neural Networks (ANNs) using big data, the nervous
systems can adjust their responses by constantly interacting with their surroundings.
This learning process is referred to as associative memory learning [1]. These
incredible capabilities of nervous systems are attributed to their parallelization, high
degree of connectivity, adjustable network topology, the colocation of data memory
computation, and spike-based information representation.

Human brains consist of billions of neurons and trillions of synapses forming a
high-degree and three-dimensional neural network. Through this extraordinarily
complex network, an individual neuron can communicate with more than ten
thousand other neurons simultaneously. Within this complex neural network,
neurons are mainly signal processing units and the synapse between neurons is
connecting organs. As computing units, the neurons integrate the received spiking
signals in their cell body and send another sequence of spiking signals to other
neurons through synapses. The signal strength received by other neurons is
depended on the connection strength of the synapses. The connection strength
among neurons can be adjusted. This feature is named as synaptic plasticity [1, 26,
27]. In specific, the connection strength among neurons becomes strong if the
presynaptic neuron and postsynaptic neuron are firing together. This synaptic
connection strength change inspired a learning paradigm known as Hebbian learning
[28-31].

In addition, the computational units (neurons) and the memory units (synapses)
are located in close proximity. This structure eliminates one of the biggest
inefficiencies in von Neumann architecture that separates computing units and
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memory at different locations. The physical separation leads to data needing to be
constantly transferred back and forth between memory and central processing units
(CPUs). Furthermore, neuromorphic systems use sparse and event-based
computation, meaning that only a small percentage of the available computing
resources are active for a given task, and they’re only activated and consuming power
as needed in response to present events. Neuromorphic computing attempts to
exploit these useful properties by modeling the architecture, neuron and synaptic
cells, and the way of learning observed in the brain, enabling a new era of computers
and Al [32].

Neuromorphic systems utilize specialized neuromorphic chips with artificial
neurons. These chips are generally used to operate spiking neural networks (SNNs),
which encode the information with a sequence of spikes just like nervous systems. In
an SNN, neurons communicate with each other with discrete “spike” signals. There
are various types of neuromorphic chips, such as Intel’s Loihi [33, 34]. Unlike
traditional GPUs and CPUs built upon von Neumann architecture operating on digital
information, Loihi chips are specifically designed for neuromorphic computing and
asynchronous SNNs. To date, two generations of Loihi chips have been released. The
first generation of Loihi chip was revealed in 2017 [33, 34]. Loihi-1 chips consist of
130,000 electronic neurons and 130 million synapses at 128 neuromorphic cores.
The advanced 14 nm process of Intel renders the area of the Loihi-1 chip as small as
60 mm?. Loihi-1 chips implement the digital leaky-and-fire neurons located on 128
cores. At each core, the communication among neurons is organized in a mesh
configuration. The synapses in Loihi-1 chips are fully configurable and further
support weight-sharing and compression features. The plasticity of synapses can be
manipulated with various biologically plausible learning rules, such as Hebbian rules,
STDP, and reward-modulated rules [33, 34]. The firing behavior of neurons in Loihi
chips is implemented when received spikes accumulate to a threshold value in a
certain time, the neurons will fire off their own spikes to their connected neurons.

Loihi-1 chips are offered with several neuromorphic platforms providing distinct
interfaces for integrating the Loihi-1 chip with other computer systems or Field-
Programmable Gate Array (FPGA) devices. Kapoho bay includes 1-2 Loihi chips with
a USB interface. Nahuku is a 32-chip Loihi board with a standard FPGA Mezzanine
Card (FMC) connector. The FMC connector allows the Nahuku system to
communicate with the Arria FPGA development board. Pohoiki Spring is a large-scale
Loihi chip with 100 million neurons equipped as a server for remote access. The
second generation of the Loihi chips, namely Loihi-2, was introduced in late 2021
[35]. Loihi-2 is fabricated in Intel 4 process, previously referred to as 7 nm
technology. Powered by this advanced technology, the area of the Loihi-2 reduces to
31 mm? from 60 mm? of the first generation Loihi chips. Unlike the rigid neuron
models in the last generation of Loihi chips, Loihi-2 realizes fully programmable
neuron models. In Loihi-2, the specific behavior of the neurons can be programmed
with microcode instructions. The microcode instructions support basic bitwise and
math operations that can be used to specify custom neuron models. Loihi-2 chip is
dedicatedly designed for neuromorphic computing and edge devices with parallel
computations achieving high computational and energy efficiency. The comparison
between two generations of Loihi chips is summarized in Table 1.

Table 1: Introduction to Loihi and Loihi 2 chips

Feature Loihi-1 [33, 34]. Loihi-2 [35]
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Technology Intel 14 nm Intel 4 (7 nm)
Die Area 60 mm? 31 mm?
Max # Neurons/Chip 128,000 1 million
Max # Synapses/Chip 128 million 120 million
Neuron Model Generalized digital LIF Fully programmable

2.2 Associative Memory Learning

Animals have the capability of memorizing different events if they occur at the
same time or with a small-time lag. The capability is referred to as associative
memory [1]. Associative memory learning is first studied by Ivan Pavlov in the 1890s
when he was studying salivation reflex actions in dogs [1]. During Pavlov’s
experiments, the dogs originally had a salivation reflex to the presence of food,
instead of the sound of whistles. However, if these two signals were presented
together several times, the dogs salivated even if they only listened to the sound of a
whistle with no food provided. This means the dogs can memorize the sound of
whistles as a sign of food [1, 6, 36] through a learning/memorizing process. Through
a series of experiments, Pavlov concluded that dogs have the capability of associating
two originally irrelevant signals together through a training process, which is
referred to as associative memory learning later. In general, two types of stimuli exist
in associative memory learning: unconditional stimuli (US) and conditional stimuli
(CS). The unconditional stimuli evoke the response with no training required. On the
contrary, conditional stimuli demand an associative learning process to acquire
corresponding reactions. For instance, in Pavlov’s experiments, the presence of food
is the unconditional stimulus, and the sound of whistles is a conditional stimulus (CS).
After dogs, further studies demonstrate that associative memory learning is a self-
learning paradigm of a large variety of animals such as rats, bats, sea slugs [1].
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Figure 1: Illustration of associative memory learning of Aplysia.
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The studies in neuroscience exhibit that signal pathway modification and synaptic
plasticity are highly related to associative memory learning [1, 22]. In a nervous
system, the shapes of the spiking signals are almost identical (spikes) whatever the
signals come from the sensation of light or hearing. Thus, neuroscientists hypothesize
that the brains distinguish these signals by the signal pathways they are traveling to
rather than their shapes. This hypothesis is much more straightforward in
invertebrates that have simple nervous systems. Figure 1 illustrates part of the
nervous system of Aplysia that has two signal pathways from siphon to gill and from
tail to the gill, separately.

With these two signal pathways, Aplysia can accomplish a simple version of
associative memory learning by memorizing the touch on the tail and stimulus from
the siphon. When the tail of an Aplysia is touched, its gill shrinks, demonstrating an
unconditional signal pathway. On the contrary, the gill does not shrink if the siphon
is cut, exhibiting a conditional signal pathway. By applying a touch to the tail and
stimulus on the siphon at the same time several times, the gill motor neuron becomes
more responsive to the touch on the siphon alone. At the cellular level, the concurrent
stimulus on the siphon and tail leads to a spiking signal overlapping when the
stimulus is applied at the same time, shown in Figure 1. As a result, the synaptic
connection among neurons, from the siphon to the gill, becomes stronger than the
original state. This means the signal pathway from the siphon to the gill becomes
unimpeded from blocked. These experiments on Aplysia demonstrate two critical
factors for associative memory learning: (1) signal pathway modification; and (2)
synaptic plasticity.

For more complicated animals, such as rats, the sensation signals are processed
not in individual neurons but in a group of neurons. These groups of neurons are
referred to as neural assemblies [29, 37-39]. For example, fear conditioning
experiments in rats involve two types of stimuli: electric shock on the food and a
sound as neutral stimuli. These two types of signals are processed at different neural
regions: auditory thalamus and somatosensory thalamus. The experimental goal is to
let the rats associate the neutral sound with undesired electric shock by applying
these two stimuli at the same time. Thus, it is one type of associative memory learning
scheme. The studies have strong experimental evidence showing that signal pathway
modification potentially occurs in lateral nucleus because the output signals from the
auditory thalamus and somatosensory thalamus converge at the lateral nucleus [1].
This hypothesizes that associative memory learning in higher animals is
accomplished via the association of two, or several, neural assemblies together,
rather than individual neurons.

3 Reproducing Fear Conditioning using Mobile Robots

In this section, we introduce our experimental design for reproducing fear
conditioning using mobile robots. In specific, we select visual signals, the brightness
of light as the conditional stimulus, and vibration signals as the unconditional
stimulus. Vibration signals emulate electric shock applied on the foot of rats in fear
conditioning experiments while light signals serve as a neutral stimulus. We select
the Leaky Integrate and Fire (LIF) neuron model to build neural assemblies for both
UC and CS signal pathways due to its simplicity. In our experiments, the Nengo
simulator was used to implement the system [40]. Our mobile robot is controlled with
the Robot Operating System (ROS) [41].
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3.1 Neuron Model

In our experiment, a mobile robot is placed on a vibration platform and
unconditionally responds to the acceleration signals, which will be detected with
an inertial measurement unit (IMU). The acceleration signals emulate the unpleasant
stimulus in the fear conditioning experiment in rats. The conditional stimulus is
mimicked with the brightness of a light. Two neural assemblies will be built for
processing these UC and CS signals. At last, the movement of a mobile robot is
controlled by the motion neurons. We design several specific neurons for precepting
the brightness of lights, detecting vibrations, and controlling mobile robots. All these
neurons are customized from classic Leaky Integrate and Fire (LIF) neurons, which
are characterized using the following equations [42]:

dv,,
Cm? = GL(E, — Vi) + A * Ly, )
if Vip > Vi then Vo = Vigger,

Tre = Cn/GL, (2)

where C,, is the membrane capacitance, V,, is the membrane potential, G, is the leak
conductance, 4 is the input signal gain, E, is the leak potential, /,,, is the input
current, and 7. is the RC time constant. The specific values of these parameters in
our design are summarized in Table 2.

Table 2: LIF neuron parameters

Neuron Types Tre A Vireset (V) Vin(V)
Vibration neuron 0.02 13 0.6 1.0
Brightness neuron 0.02 0.3 -1.0 1.0
Movement neuron 0.02 1.0 0.01 1.0

For all the neurons in Table 2, the membrane potential is fixed at 1 V and input
gain is modified instead. They all use the Nengo LIF model’s default 74, of 0.02
seconds because it was sufficient for our desired functionality. The other two
parameters are calculated and optimized based on our experimental setups so that
they can produce the desired responses for their respective uses. In specific, for the
vibration detection neuron, gain (A) and bias ( V,.s.;) were empirically derived so
that it fires with vibration stimulus input instead of a small sudden move. The
movement response neuron is a typical LIF configured to spike whenever it receives
any sustained input spikes, either from vibration neurons or brightness neurons. The
brightness neuron is the Layer 3 neuron in Table 3 and is a LIF neuron with
empirically derived gain and bias so that it fires only when the Light Feature neurons
have a high enough collective output. More details regarding how these neurons work
will be introduced in subsequent sections.

3.2 Vibration Perception

The accelerometer within the onboard IMU of the mobile robot is used to measure
the acceleration. In our experiment design, acceleration is used for evaluating the
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degree of vibration. Our vibration platform generates vibration signals with 1.2 mm
amplitude at 25 Hz. In general, the IMU measures three dimensional accelerations
from x, y and z directions as shown in Figure 2 (a). In Figure 2 (a), the acceleration in
the z-axis (vertical) has the largest magnitude as it includes the intrinsic gravity of
the earth (9.8 m/s2). Because the mobile robot should only count the acceleration
from vibration platform, the gravity effect is removed from z-direction by subtracting
the standard gravity (9.8 m/s?2). Thus, the resultant acceleration, which is used for
evaluating the vibration states, is calculated by the equation:

Aros = \/axz +a,? + (a, — 9.8)?%, 3

where @, is the resultant acceleration, a,, a,, a, are the accelerations in Y-axis, Y-axis,
and Z-axis, respectively. The resultant acceleration measured by our mobile robot is
depicted in Figure 2 (b). The resultant acceleration is imported into the vibration detection
neuron. A vibration detection neuron, implemented with LIF, is connected to the
accelerometer, and it fires if the detected acceleration is larger than its threshold (shown in
Figure 3). At last, a movement neuron is specifically design to control our mobile robot
moving away from the vibration platform with specific direction and speed. The motion
neuron is also implemented by a LIF neuron. The parameters of motion neuron are listed in
Table 2. The active motion neuron will trigger a specific movement (escape) response that
commands the mobile robot to move away from the vibration platform at a speed of 0.3 m/s.

Vibration Acceleration Data Resultant Acceleration
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— Y-Axis 100
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A i et g
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Figure 2: (a) Acceleration data of IMU for three dimensions denoted as X-axis
(blue), Y-axis (orange), and Z-axis (green). (b) Resultant acceleration.
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Figure 3: Vibration detection neuron response to the acceleration input: (a)
input vibration signals; (b) membrane potential of the vibration detection
neuron; (c) output spiking signals of the vibration detection neuron.

3.3 Visual Perception with Sparse Coding and Locally Competitive
Algorithm

In order to process visual stimuli, we designed an artificial neural network (ANN)
activating the output neuron if the light is on. Figure 4 illustrates the brightness of the
light captured by the stereo camera equipped with our mobile robot. The stream of
visual signals captured by the camera is sent to the computer via ROS. As the images
arrive, their resolution is 24x48 pixels, and the pixel brightness is normalized to the
range between -1 and 1.

(@) (b)

Figure 4: Sights of the light off and on.

An ANN model based on 2D sparse coding is used for detecting the brightness of
lights to further determine whether the light is on or off. The goal of sparse coding is
to represent an input vector with a linear combination of features from a dictionary.
This can be modeled by the LASSO optimization function:

E=-lx—@-al}+ A-lall, (4)

a* = argminE (a), (5)
a

where the features @; are columns of the dictionary matrix ®, and the sparse code a*
is the set of coefficients a; for which the reconstruction (® - a) of the input x minimizes
the cost (E). The sparsity penalty A reduces the amount of non-zero terms in a by
penalizing its 1-norm.

24x48 Pixel Input Image Divided into 9 Regions Center Region Patch Contains
Contains 16 Patches 9 Pixels

Figure 5: Image region layout and patch structure

Typically, the sparse code a* is used to reconstruct x, or as the input to a classifier.
In 2D image sparse coding, we divided the image into patches the size of the features
®@;. Thus, each patch is a sparse coding optimization problem. As shown in Figure 5,
the light image is divided into 9 sub-regions which are further partitioned into
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patches. The Spiking Locally Competitive Algorithm (LCA) model [43] is used to solve
Eq. (6) and Eq. (7):

U= %(@Tx—u—(th(p—I)-a),a: Ty (u) (6)
Ty(w) =0ifu<ielseTy(u) =u—1 (7)

where a; is the firing rate of neuron i, u; is the average soma current, 7 is the discrete
time step, and T is the thresholding function that determines if neuron i will fire.

Inhibitory Competitive Connections
T
—(®; - ®)a;

Patch Feature Neurons

Excitatory Stimulus Connections
CIJ?- - X

Input Stimulus
Neurons

Figure 6: LCA network for one patch including input neurons (Layer 1) and path
neurons (Layer 2)

Figure 6 illustrates a spiking LCA network for solving one image patch (Figure 5).
The model consists of the first layer for the input x and the second layer for the sparse
code a* The firing rates of each neuron are the coefficients a;. The neurons in the
second layer are referred to as feature neurons as each of them is associated with one
feature @i. Typically, an overcomplete dictionary is used in sparse coding, resulting
in a having a larger size than x. Our model represents each patch with only two
features, light and dark. Thus, the dictionary in Figure 6 only contains two features.
The dictionary could be made complete by having more feature neurons than the size
of x, 9 in this case. There could be copies or variations of light and dark features to
make the dictionary overcomplete.
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Figure 7: Neural network for light detection in the center region. Note: The dark
feature neurons in Layer 2 are not shown.

The convolutional stride between the image patches is equal to the width of one
patch (3 pixels) resulting in no overlap between them. This simplifies the LCA model
by removing connections between feature neurons in overlapping patches. The
neural network contains a third layer with one neuron for each of the 9 regions in the
image as illustrated in Figure 7. The third layer has one neuron as an output neuron
integrating the light feature neurons of every patch. In Figure 7, each neuron at layer
1 simply has a firing rate proportional to the pixel intensity it represents, serving as
a spike generator. The neurons at layer 2 and layer 3 are Integrate and Fire neurons
with the parameters listed in Table 3. The layer 2 neurons are the LCA neurons in a
single-layer LCA configuration. The parameters of the Integrate and Fire LCA feature
neuron in Layer 2 is implemented via the V,,,; parameter, which was empirically
adjusted until the desired response was achieved from the feature neurons. The other
parameters are assigned according to the LCA model [43]. The neurons in Layer 3
have the parameters derived for brightness neurons from Table 2.

Table 3: LCA neuron parameters in Layer 2 and 3

LCA Neuron
TRC (5) A Vreset (V) Vrh (V)
Layer
Layer 2 oo 1.0 -A1=0.85 1.0
Layer 3 0.02 0.3 -1.0 1.0

When the high brightness signals of the light (Figure 4 (a)) enter the network, the
light feature neurons in the center patches start to fire. The light-off image (Figure 4
(b)) subsequently reduces the activity in the neurons. These images are alternately
presented as inputs, shown in Figure 8. This causes the neurons in layer 3 to fire for
the center region from the time periods Os to 2s and 4s to 6s, as shown in Figure 9.
That is the time the light is on in our experiment.
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Figure 8: Membrane potential of light feature neurons (Layer 2) in center
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Figure 9: Spiking signals of Layer 3 neuron.

The sparse coding network operates at Intel Loihi neuromorphic chip for power
and energy estimation. Our associative memory neural networks are implemented
with Nengo simulator and further deployed into Loihi chips by Intel’'s NxSDK as a
backend [44]. The NxSDK contains a built-in LCA network implementation, which can
be connected to the rest of the SNN. The parameters from Table 3 were used to create
the same LCA network from Nengo for deployment on Loihi. In Loihi chip, the
synaptic weights only have a 4-bit resolution, instead of a 24-bit resolution in typical
computational platforms. Thus, the time of one simulation is reduced from 1 ms to 20
ms at the Loihi platform. The measured powers are shown in Figure 10. The average
VDD power is 30 mW and the average VDDM power is 29 mW. In Figure 10, the VDDIO
has a relatively negligible contribution to the total power, while VDD and VDDM have
effectively equal contributions. The power is measured and reported with the average
consumption across every 8 timesteps while the experiment is under operation.
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Figure 10: Power consumption for sparse coding network with Loihi chip. The
VDD represents the compute logic, VDDM is the SRAMs, and VDDIO is the 10
interface.

3.4 Associative Memory Learning Experiment and Results

Figure 11 illustrates the comparison of signal pathway modification between our
SLN system and fear conditioning of rats. In our design, the brightness signal from
light serves as a conditional stimulus and the acceleration from the vibration platform
is the unconditional stimulus. These two signals emulate the electric shock and sound
signals in fear conditioning experiments. The movement of our mobile robot away
from the vibration platform emulates the fear response of rats. The red arrows
(Figure 11) represent the weak synaptic connections in the conditional signal
pathway while the blue arrows represent the unconditional pathway with weaker
synaptic connections. During associative memory learning, the synaptic connection
(red arrow) will be strengthened by Hebbian learning.

Sensory neurons assembly:
Firing with the light inputs

Light
(Cs)

Moving the robot away from

Light (CS) the vibration platform
Vibration
(Us) p
' Sensory neuron Assembly: Response Neurons:
Vibration (US) Firing with the vibration Firing to move the robot
. (@)
one . -
. - AT
Stimulus  s—] Q;,ji} qf\irt;f‘
. . g
78 T Audit Auit ~ A s
> one uditory uditory [ =\ ﬁ NN # T
) . IS NES! ] v eR
y é signals Thalamus Cortex ‘,‘;i\;; *(;\‘\6’
S L oN,
T — :&&\ﬁ}, Lateral Central Run Away
~ Shock O Nucleus Nucleus or Freeze
Shock signals Somatosensory
Stimulus Thalamus

> Conditional > Unconditional

signal pathway signal pathway
(b)

Figure 11: (a) Our SLN system for associative memory learning
implementation. (b) fear conditioning in rats.

In the brains of rats, shock signals and tone signals are processed at different
neural regions: auditory thalamus and somatosensory thalamus. The output signals
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from these two regions converge at lateral nucleus [1]. Originally, the rat has no fear
reaction to a neutral tone. However, when the tone is presented with a foot shock
associated with tone signals, the rat starts memorizing the relationship between the
tone and the shock. After multiple times, the tone alone will stimulate a fear response
indicating the accomplishment of the associative memory learning [1].

Camera

Vibration

platform Neutral

location

Vibration platform

(@ (b)

Figure 12: Fear conditioning imitation experimental setup with the mobile
robot: (a) top view; (b) side view.

Our experimental setup to emulate fear conditioning using our mobile robot is
shown in Figure 12. The mobile robot is placed on a testing platform, which is
constructed with 9 wooden boxes. The dimension of each box is 23 in (L) x 23 in (W)
x 8 in (H). A vibration plate is installed underneath the center platform, which is
marked in red square in Figure 12 (a). The vibration plate can provide vibration
signals (15-40 Hz) emulating an unpleasant stimulus (the electrical shock) in fear
learning on the rats. The other eight platforms with no installed vibration plate are
marked in green-dashed squares in Figure 12.

For the fear response, the robot is expected to move away from the vibration
platform to the neutral location if unpleasant stimuli, such as vibration, are applied.
The specific experimental procedures aiming to reproduce the experimental process
of rats in fear conditioning are:

1) Turn on the light, expecting no response (testing conditional signal pathway).

2) Turn on the vibration platform, and the robot moves (testing the unconditional
signal pathway).

3) Reset the robot position.

4) Turn on the light, and then turn on the vibration platform, the robot moves
(conducting the associative memory learning process that the conditional and
unconditional stimulus is provided at the same time).

5) Reset the robot position.

6) Turn on the light alone, and the robot moves, indicating that associative memory
learning is accomplished successfully.

The synaptic weights are modified based on Hebbian learning [42, 45]. Hebbian
learning states that when the pre-and postsynaptic neurons are both active at the
same time, the synaptic weights between them will be modified using the equations
[42, 45]:

w = 7, 3
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where the r; and 7; are firing rates of pre-and postsynaptic neurons, respectively, and
the n is the learning rate, determining the changing rate of synaptic weight. In our
experiment, the learning rate n is 2 x 10™*. Figure 13 shows the initial synaptic
weights between the brightness detection neuron (CS) and the movement neuron are
small. Consequently, the brightness stimulus of the light cannot be delivered to the
movement neuron to stimulate it to fire. As a result, the synaptic weights between the
brightness detection neuron and movement neuron stay constant. When the
vibration (US) is applied to the vibration detection neuron, the movement neuron
starts to fire. When the vibration and light are applied to the system, both the
brightness detection neuron and the movement neuron are active, resulting in the
synaptic weight’s increase. Figure 13 illustrates that the synaptic weights increase
when the vibration and light stimulus are both applied. However, the first
overlapping time frame is not long enough to establish a significant synaptic weight
modification. Thus, a sequence of weak spiking signals is observed from the response
neuron after the vibration is removed, which is marked in Figure 13. In contrast, the
second overlapping period is longer than the first one which leads to a larger increase
in synaptic weights. Thereby, after learning, the response neuron (movement
detection neuron) will fire with a visual stimulus (light) even with no vibration
stimulus. This demonstrates an accomplishment of associative memory learning.

Associative Memory with Hebbian Learning
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Figure 13: Change of synaptic weight during associative memory learning.

In the experiments, the synaptic weights between the brightness detection neuron
and the movement neurons are modified during the training process. As a result,
after associative memory learning the mobile robot will move away from the
vibration platform under the stimulus of light, even with no vibration signal
presented, demonstrating successful online learning in real-time. Compared to other
state-of-the-art associative memory works listed in Table 4, we reproduce the classic
fear conditioning experiments of rats using a mobile robot and Loihi chip rather than
simply simulation. In addition, the scales of our neural networks outperform other
works.

)



IntechOpen

Table 4: Comparison of scale and association capability with other state-of-
the-art works

Learning Biology
Neuron Synapse Dataset Scheme Scenarios
[9] 6 3 N/A Simulation N/A
[10] 3 1 N/A Simulation N/A
[11] 5 6 N/A Simulation N/A
[12] 3 1 N/A Simulation N/A
[46] 3 1 N/A Simulation N/A
[47] 3 2 N/A Simulation N/A
Cellular
[48] 3 2 N/A Simulation Association in
Aplysia
Pretrained . .
[6] 20 100 with datasets Simulation N/A
Fear
This work 1419 1420 No data§eF for Experiment conditioning
pretraining of rats

4. Conclusion

In this paper, we implement a classic self-learning paradigm in rats: associative
memory learning (fear conditioning) using a mobile robot and a neuromorphic
system (Loihi chip) in an online learning scenario. In specific, we use a mobile robot
as the substitute for the rats in fear conditioning experiments. Two signal pathways
are assigned for conditional and unconditional stimulus. In our experiments,
vibration signals emulate unconditional stimuli, while brightness of lights is assigned
as conditional stimuli. Originally, the mobile robot only moves when it detects
vibration signals. After providing these two signals at the same time several times,
the robot performs a movement when light signals are present alone. The detections
of lights and vibrations are implemented with Integrate and Fire Neurons. In addition,
the movement of the robot is controlled by the specific-designed response neurons.
The signal pathway modification during associative memory learning is implemented
with Hebbian learning. Compared to other state-of-the-art, our work successfully
reproduces the fear conditioning of rats in a real-world scenario with no labeled data
and pretraining process.
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