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Abstract	

Fear	conditioning	is	a	behavioral	paradigm	of	learning	to	predict	aversive	events.	
It	 is	a	 form	of	associative	 learning	that	memorize	an	undesirable	stimulus	(e.g.,	an	
electrical	 shock)	 and	 a	 neutral	 stimulus	 (e.g.,	 a	 tone),	 resulting	 in	 a	 fear	 response	
(such	 as	 running	 away)	 to	 the	 originally	 neutral	 stimulus.	 The	 association	 of	
concurrent	events	is	implemented	by	strengthening	the	synaptic	connection	between	
the	neurons.	In	this	paper,	with	an	analogous	methodology,	we	reproduce	the	classic	
fear	conditioning	experiment	of	rats	using	mobile	robots	and	a	neuromorphic	system.	
In	our	design,	the	acceleration	from	a	vibration	platform	substitutes	the	undesirable	
stimulus	 in	 rats.	 Meanwhile,	 the	 brightness	 of	 light	 (dark	 vs.	 light),	 is	 used	 for	 a	
neutral	 stimulus,	 which	 is	 analogous	 to	 the	 neutral	 sound	 in	 fear	 conditioning	
experiments	in	rats.	The	brightness	of	the	light	is	processed	with	sparse	coding	in	the	
Intel	 Loihi	 chip.	 The	 simulation	 and	 experimental	 results	 demonstrate	 that	 our	
neuromorphic	robot	successfully,	for	the	first	time,	reproduces	the	fear	conditioning	
experiment	of	rats	with	a	mobile	robot.	The	work	exhibits	a	potential	online	learning	
paradigm	with	no	 labeled	data	required.	The	mobile	robot	directly	memorizes	 the	
events	by	 interacting	with	 its	 surroundings,	 essentially	different	 from	data-driven	
methods.	
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1 Introduction 

Associative	memory	learning	is	a	ubiquitous	online	learning	paradigm	in	animals	
[1-3].	Unlike	the	data-driven	learning	schemes	of	current	Artificial	Intelligence	(AI),	
animals	have	the	capability	of	memorizing	the	events	that	occur	at	the	same	time	or	
within	 a	 certain	 time	 interval.	 The	 underlying	 memorization	 mechanism	 in	 the	
nervous	system	is	the	synaptic	connection	will	be	strengthened	under	the	stimulus	of	
the	 firing	 neurons	 evoked	 by	 concurrent	 events.	 The	 strengthened	 synaptic	



 

 

connection	 enables	 the	 response	 neurons	 at	 the	 conditional	 pathway	 to	 receive	 a	
larger	amount	of	 the	synaptic	 transmitter.	As	a	 result,	 the	 response	neuron	 in	 the	
conditional	signal	pathway	will	fire,	even	though	it	originally	did	not	become	active.	
In	other	words,	the	memorization	of	the	relationship	between	concurrent	events	is	
achieved	 by	 signal	 pathway	modification	 rather	 than	 backpropagation.	 The	 signal	
pathway	 modification	 is	 accomplished	 by	 synaptic	 plasticity.	 An	 AI	 system	 with	
associative	memory	potentially	provides	an	alternative	way	of	active	self-learning	by	
constantly	 interacting	with	environments.	The	signal	pathway	modification	can	be	
accomplished	with	a	few	training	processes	leading	to	less	dependence	on	large	size	
datasets.	For	data-driven	deep	learning,	e.g.,	Deep	Neural	Networks	(DNNs),	the	large	
datasets	 prolong	 training	 time	 and	 increase	 energy	 demands.	 Consequently,	 the	
application	of	deep	learning	is	highly	reliant	on	bulky	supercomputers	that	are	not	
feasible	 and	 applicable	 to	 scenarios	 that	 require	 Size,	Weight,	 and	 Power	 (SWaP)	
constraints	[4,	5].	In	addition,	massive	and	labeled	data	is	costly	to	build,	or	even	not	
practical	to	collect,	such	as	the	Lunar	and	Martian	terrain	data	[5].		

Numerous	 studies	 have	 implemented	 associative	 memory	 with	 neuromorphic	
systems	[2,	6-13].	However,	these	studies	merely	complete	a	small-scale	association	
with	a	few	neurons	in	simulation	environments.	It	is	far	away	from	the	capability	of	
associative	 memory	 learning	 to	 enable	 animals	 to	 self-learning	 and	 independent	
exploration	in	an	unknown	environment.		In	an	addition,	pretraining	processes	with	
labeled	datasets	are	still	required	for	these	studies	[9-13].	In	order	to	resolve	these	
limitations	 of	 studies	 on	 associative	 learning,	 we	 design	 several	 experiments	 of	
associative	memory	in	real-world	scenarios	using	a	mobile	robot	and	neuromorphic	
chips.	Our	system	of	associative	memory	is	validated	by	reproducing	one	of	the	classic	
associative	 memory	 learning	 in	 rats:	 fear	 conditioning.	 In	 fear	 conditioning	
experiments,	the	rats	learn	to	associate	a	particular	neutral	Conditional	Stimulus	(CS),	
e.g.,	 tone,	with	 an	 aversive	Unconditional	 Stimulus	 (US),	 such	 as	 an	 electrical	 foot	
shock,	 and	 show	 a	 fear	 response,	 freezing	 or	 running	 away.	 The	 rats	 learn	 fear	
conditioning	 after	 several	 training	 sessions	 and	 exhibit	 long-lasting	 behavioral	
change.	 Several	 brain	 regions	 have	 been	 proven	 to	 be	 involved	 in	 the	 learning	
process,	including	frontotemporal	amygdala,	hippocampus,	etc.	The	process	of	fear	
conditioning	 cannot	 be	 reproduced	 by	 other	 state-of-the-art	 associative	 memory	
models	[2,	6-13]	due	to	their	limited	neural	network	sizes.	The	simple	neural	network	
models	cannot	process	informative	signals,	such	as	visual	signals.	These	informative	
signals	 are	processed	with	 large-scale	neural	 assemblies	 rather	 than	 simply	a	 few	
neurons	 in	 the	 brains	 [14-19].	 To	 resolve	 these	 limitations,	 in	 our	 design,	we	use	
large-scale	biological	plausible	neurons	to	process	the	visual	signals.	Specifically,	in	
our	system	and	experimental	designs,	 the	mobile	robot	with	sensors	serves	as	the	
substitute	for	the	rats	in	fear	conditioning	experiments.	The	neuromorphic	chip	(Intel	
Loihi)	 provides	 a	 computational	 platform	 for	 the	 associative	 memory	 learning	
operation.	In	our	experiment,	the	brightness	of	a	light	emulates	the	visual	stimulus,	
and	the	vibration	signals	from	the	accelerometer	mimic	the	shock	signals	to	the	rats.	
Thus,	 the	 vibration	 signals	 are	 the	 unpleasant	 stimulus	 and	 light	 is	 the	 neutral	
stimulus.	 The	 movement	 of	 the	 mobile	 robot	 emulates	 the	 fear	 response.	 The	
perception	 of	 the	 light	 and	 the	 vibration	 are	 separately	 processed	 within	 two	
different	neural	assemblies.	Two	neural	assemblies	connect	to	the	response	neuron,	
which	stimulates	the	movement	of	the	robot,	with	two	signal	pathways.	One	signal	
pathway	with	a	weak	synaptic	connection	serves	as	the	conditional	signal	pathway,	
while	another	one	with	a	 stronger	 synaptic	 connection	 is	 the	unconditional	 signal	
pathway.	Thanks	to	the	mobile	robot	providing	a	platform	directly	interacting	with	
the	environment,	we	for	the	first	time,	to	our	best	knowledge,	implement	associative	
memory	 as	 real-time	 online	 learning	 with	 no	 pretrained	 procedure.	 The	
contributions	of	this	paper	are	summarized	as	follows:		



 

 

1) Compared	to	other	state-of-the-art	works	[9-13],	 	we	implemented	associative	
memory	learning	with	a	mobile	robot	 for	an	online	 learning	scenario	using	an	
Intel	Loihi	chip.			

2) The	work	reproduces	the	classic	 fear	conditioning	of	rats	with	solid	biological	
rationales	from	a	cellular	level	(Hebbian	learning)	to	the	behavior	level	(neural	
assembly).		

3) Aiming	 signal	 pathway	 modification	 as	 the	 neural	 network	 training	 purpose,	
which	is	a	novel	learning	paradigm	of	associative	memory	learning.		

4) No	labeled	datasets	are	required.		

2 Research Background 

This	work	aims	to	develop	a	novel	self-learning	paradigm	by	emulating	associative	
memory	learning	of	animals.	Thus,	the	study	is	built	upon	the	reverse	engineering	of	
brain	 function.	 In	 specific,	 the	 large-scale	 computational	 models	 of	 associative	
memory	learning	are	implemented	by	a	neuromorphic	system.	In	this	section,	we	first	
introduce	the	state-of-the-art	development	of	neuromorphic	computing	and	systems.	
Then,	 the	 mechanism	 of	 associative	 memory	 learning	 at	 both	 macroscopic	 and	
microscopic	levels	is	analyzed.		

2.1 Neuromorphic System  

Neuromorphic	system	emulates	nervous	systems,	such	as	human	brains,	aiming	
at	implementing	Artificial	Intelligence	[20-25].	Human	brains	have	the	capability	of	
executing	 sophisticated	 missions	 in	 unbelievably	 ultra-low	 energy.	 The	 average	
power	of	human	brains	is	as	small	as	~20	watts	[1].	In	addition,	unlike	the	training	
process	required	for	Artificial	Neural	Networks	(ANNs)	using	big	data,	the	nervous	
systems	can	adjust	their	responses	by	constantly	interacting	with	their	surroundings.	
This	 learning	 process	 is	 referred	 to	 as	 associative	 memory	 learning	 [1].	 These	
incredible	capabilities	of	nervous	systems	are	attributed	to	their	parallelization,	high	
degree	of	connectivity,	adjustable	network	topology,	the	colocation	of	data	memory	
computation,	and	spike-based	information	representation.		

Human	brains	consist	of	billions	of	neurons	and	trillions	of	synapses	forming	a	
high-degree	 and	 three-dimensional	 neural	 network.	 Through	 this	 extraordinarily	
complex	 network,	 an	 individual	 neuron	 can	 communicate	 with	 more	 than	 ten	
thousand	 other	 neurons	 simultaneously.	 Within	 this	 complex	 neural	 network,	
neurons	 are	 mainly	 signal	 processing	 units	 and	 the	 synapse	 between	 neurons	 is	
connecting	organs.	As	computing	units,	 the	neurons	 integrate	 the	received	spiking	
signals	 in	 their	 cell	 body	 and	 send	 another	 sequence	 of	 spiking	 signals	 to	 other	
neurons	 through	 synapses.	 The	 signal	 strength	 received	 by	 other	 neurons	 is	
depended	 on	 the	 connection	 strength	 of	 the	 synapses.	 The	 connection	 strength	
among	neurons	can	be	adjusted.	This	feature	is	named	as	synaptic	plasticity	[1,	26,	
27].	 In	 specific,	 the	 connection	 strength	 among	 neurons	 becomes	 strong	 if	 the	
presynaptic	 neuron	 and	 postsynaptic	 neuron	 are	 firing	 together.	 This	 synaptic	
connection	strength	change	inspired	a	learning	paradigm	known	as	Hebbian	learning	
[28-31].		

In	addition,	the	computational	units	(neurons)	and	the	memory	units	(synapses)	
are	 located	 in	 close	 proximity.	 This	 structure	 eliminates	 one	 of	 the	 biggest	
inefficiencies	 in	 von	 Neumann	 architecture	 that	 separates	 computing	 units	 and	



 

 

memory	at	different	 locations.	The	physical	separation	leads	to	data	needing	to	be	
constantly	transferred	back	and	forth	between	memory	and	central	processing	units	
(CPUs).	 Furthermore,	 neuromorphic	 systems	 use	 sparse	 and	 event-based	
computation,	 meaning	 that	 only	 a	 small	 percentage	 of	 the	 available	 computing	
resources	are	active	for	a	given	task,	and	they’re	only	activated	and	consuming	power	
as	 needed	 in	 response	 to	 present	 events.	 Neuromorphic	 computing	 attempts	 to	
exploit	 these	useful	properties	by	modeling	 the	 architecture,	 neuron	and	 synaptic	
cells,	and	the	way	of	learning	observed	in	the	brain,	enabling	a	new	era	of	computers	
and	AI	[32].		

Neuromorphic	 systems	 utilize	 specialized	 neuromorphic	 chips	 with	 artificial	
neurons.	These	chips	are	generally	used	to	operate	spiking	neural	networks	(SNNs),	
which	encode	the	information	with	a	sequence	of	spikes	just	like	nervous	systems.	In	
an	SNN,	neurons	communicate	with	each	other	with	discrete	“spike”	signals.	There	
are	 various	 types	 of	 neuromorphic	 chips,	 such	 as	 Intel’s	 Loihi	 [33,	 34].	 Unlike	
traditional	GPUs	and	CPUs	built	upon	von	Neumann	architecture	operating	on	digital	
information,	Loihi	chips	are	specifically	designed	for	neuromorphic	computing	and	
asynchronous	SNNs.	To	date,	two	generations	of	Loihi	chips	have	been	released.	The	
first	generation	of	Loihi	chip	was	revealed	in	2017	[33,	34].	Loihi-1	chips	consist	of	
130,000	electronic	neurons	and	130	million	synapses	at	128	neuromorphic	 cores.	
The	advanced	14	nm	process	of	Intel	renders	the	area	of	the	Loihi-1	chip	as	small	as	
60	mm2.	Loihi-1	chips	implement	the	digital	leaky-and-fire	neurons	located	on	128	
cores.	 At	 each	 core,	 the	 communication	 among	 neurons	 is	 organized	 in	 a	 mesh	
configuration.	 The	 synapses	 in	 Loihi-1	 chips	 are	 fully	 configurable	 and	 further	
support	weight-sharing	and	compression	features.	The	plasticity	of	synapses	can	be	
manipulated	with	various	biologically	plausible	learning	rules,	such	as	Hebbian	rules,	
STDP,	and	reward-modulated	rules	[33,	34].	The	firing	behavior	of	neurons	in	Loihi	
chips	 is	 implemented	when	 received	 spikes	 accumulate	 to	 a	 threshold	 value	 in	 a	
certain	time,	the	neurons	will	fire	off	their	own	spikes	to	their	connected	neurons.	

Loihi-1	chips	are	offered	with	several	neuromorphic	platforms	providing	distinct	
interfaces	 for	 integrating	 the	 Loihi-1	 chip	with	 other	 computer	 systems	 or	 Field-
Programmable	Gate	Array	(FPGA)	devices.	Kapoho	bay	includes	1-2	Loihi	chips	with	
a	USB	interface.	Nahuku	is	a	32-chip	Loihi	board	with	a	standard	FPGA	Mezzanine	
Card	 (FMC)	 connector.	 The	 FMC	 connector	 allows	 the	 Nahuku	 system	 to	
communicate	with	the	Arria	FPGA	development	board.		Pohoiki	Spring	is	a	large-scale	
Loihi	 chip	with	 100	million	 neurons	 equipped	 as	 a	 server	 for	 remote	 access.	 The	
second	generation	of	 the	Loihi	 chips,	namely	Loihi-2,	was	 introduced	 in	 late	2021	
[35].	 Loihi-2	 is	 fabricated	 in	 Intel	 4	 process,	 previously	 referred	 to	 as	 7	 nm	
technology.	Powered	by	this	advanced	technology,	the	area	of	the	Loihi-2	reduces	to	
31	mm2	 from	 60	mm2	of	 the	 first	 generation	 Loihi	 chips.	 Unlike	 the	 rigid	 neuron	
models	 in	 the	 last	 generation	 of	 Loihi	 chips,	 Loihi-2	 realizes	 fully	 programmable	
neuron	models.	In	Loihi-2,	the	specific	behavior	of	the	neurons	can	be	programmed	
with	microcode	instructions.	The	microcode	instructions	support	basic	bitwise	and	
math	operations	that	can	be	used	to	specify	custom	neuron	models.	Loihi-2	chip	is	
dedicatedly	 designed	 for	 neuromorphic	 computing	 and	 edge	devices	with	parallel	
computations	achieving	high	computational	and	energy	efficiency.	The	comparison	
between	two	generations	of	Loihi	chips	is	summarized	in	Table	1.		

Table	1:	Introduction	to	Loihi	and	Loihi	2	chips	

Feature Loihi-1 [33,	34]. Loihi-2 [35] 



 

 

Technology Intel 14 nm Intel 4 (7 nm) 

Die Area 60 mm2 31 mm2 

Max # Neurons/Chip 128,000 1 million 

Max # Synapses/Chip 128 million 120 million 

Neuron Model Generalized digital LIF Fully programmable 

2.2 Associative Memory Learning 

Animals	have	the	capability	of	memorizing	different	events	 if	 they	occur	at	 the	
same	 time	 or	 with	 a	 small-time	 lag.	 The	 capability	 is	 referred	 to	 as	 associative	
memory	[1].	Associative	memory	learning	is	first	studied	by	Ivan	Pavlov	in	the	1890s	
when	 he	 was	 studying	 salivation	 reflex	 actions	 in	 dogs	 [1].	 During	 Pavlov’s	
experiments,	 the	 dogs	 originally	 had	 a	 salivation	 reflex	 to	 the	 presence	 of	 food,	
instead	 of	 the	 sound	 of	 whistles.	 However,	 if	 these	 two	 signals	 were	 presented	
together	several	times,	the	dogs	salivated	even	if	they	only	listened	to	the	sound	of	a	
whistle	 with	 no	 food	 provided.	 This	 means	 the	 dogs	 can	memorize	 the	 sound	 of	
whistles	as	a	sign	of	food	[1,	6,	36]	through	a	learning/memorizing	process.	Through	
a	series	of	experiments,	Pavlov	concluded	that	dogs	have	the	capability	of	associating	
two	 originally	 irrelevant	 signals	 together	 through	 a	 training	 process,	 which	 is	
referred	to	as	associative	memory	learning	later.	In	general,	two	types	of	stimuli	exist	
in	associative	memory	learning:	unconditional	stimuli	(US)	and	conditional	stimuli	
(CS).	The	unconditional	stimuli	evoke	the	response	with	no	training	required.	On	the	
contrary,	 conditional	 stimuli	 demand	 an	 associative	 learning	 process	 to	 acquire	
corresponding	reactions.	For	instance,	in	Pavlov’s	experiments,	the	presence	of	food	
is	the	unconditional	stimulus,	and	the	sound	of	whistles	is	a	conditional	stimulus	(CS).	
After	dogs,	 further	studies	demonstrate	that	associative	memory	learning	is	a	self-
learning	paradigm	of	a	large	variety	of	animals	such	as	rats,	bats,	sea	slugs	[1].	

	
Figure	1:	Illustration	of	associative	memory	learning	of	Aplysia.	



 

 

The	studies	in	neuroscience	exhibit	that	signal	pathway	modification	and	synaptic	
plasticity	 are	 highly	 related	 to	 associative	memory	 learning	 [1,	 22].	 In	 a	 nervous	
system,	the	shapes	of	the	spiking	signals	are	almost	identical	(spikes)	whatever	the	
signals	come	from	the	sensation	of	light	or	hearing.	Thus,	neuroscientists	hypothesize	
that	the	brains	distinguish	these	signals	by	the	signal	pathways	they	are	traveling	to	
rather	 than	 their	 shapes.	 This	 hypothesis	 is	 much	 more	 straightforward	 in	
invertebrates	 that	 have	 simple	 nervous	 systems.	 Figure	 1	 illustrates	 part	 of	 the	
nervous	system	of	Aplysia	that	has	two	signal	pathways	from	siphon	to	gill	and	from	
tail	to	the	gill,	separately.		

With	 these	 two	 signal	 pathways,	 Aplysia	 can	 accomplish	 a	 simple	 version	 of	
associative	memory	learning	by	memorizing	the	touch	on	the	tail	and	stimulus	from	
the	siphon.	When	the	tail	of	an	Aplysia	is	touched,	its	gill	shrinks,	demonstrating	an	
unconditional	signal	pathway.	On	the	contrary,	the	gill	does	not	shrink	if	the	siphon	
is	 cut,	 exhibiting	a	 conditional	 signal	pathway.	By	applying	a	 touch	 to	 the	 tail	 and	
stimulus	on	the	siphon	at	the	same	time	several	times,	the	gill	motor	neuron	becomes	
more	responsive	to	the	touch	on	the	siphon	alone.	At	the	cellular	level,	the	concurrent	
stimulus	 on	 the	 siphon	 and	 tail	 leads	 to	 a	 spiking	 signal	 overlapping	 when	 the	
stimulus	 is	 applied	 at	 the	 same	 time,	 shown	 in	 Figure	 1.	 As	 a	 result,	 the	 synaptic	
connection	among	neurons,	 from	the	siphon	to	the	gill,	becomes	stronger	than	the	
original	 state.	This	means	 the	 signal	pathway	 from	 the	 siphon	 to	 the	gill	 becomes	
unimpeded	 from	blocked.	 These	 experiments	 on	Aplysia	 demonstrate	 two	 critical	
factors	 for	 associative	memory	 learning:	 (1)	 signal	 pathway	modification;	 and	 (2)	
synaptic	plasticity.	 

For	more	complicated	animals,	such	as	rats,	the	sensation	signals	are	processed	
not	 in	 individual	neurons	but	 in	a	group	of	neurons.	These	groups	of	neurons	are	
referred	 to	 as	 neural	 assemblies	 [29,	 37-39].	 For	 example,	 fear	 conditioning	
experiments	 in	 rats	 involve	 two	 types	of	 stimuli:	 electric	 shock	on	 the	 food	and	a	
sound	as	neutral	stimuli.	These	two	types	of	signals	are	processed	at	different	neural	
regions:	auditory	thalamus	and	somatosensory	thalamus.	The	experimental	goal	is	to	
let	 the	 rats	 associate	 the	neutral	 sound	with	undesired	electric	 shock	by	applying	
these	two	stimuli	at	the	same	time.	Thus,	it	is	one	type	of	associative	memory	learning	
scheme.	The	studies	have	strong	experimental	evidence	showing	that	signal	pathway	
modification	potentially	occurs	in	lateral	nucleus	because	the	output	signals	from	the	
auditory	thalamus	and	somatosensory	thalamus	converge	at	the	lateral	nucleus	[1].	
This	 hypothesizes	 that	 associative	 memory	 learning	 in	 higher	 animals	 is	
accomplished	 via	 the	 association	 of	 two,	 or	 several,	 neural	 assemblies	 together,	
rather	than	individual	neurons.		

3 Reproducing Fear Conditioning using Mobile Robots 

In	 this	 section,	 we	 introduce	 our	 experimental	 design	 for	 reproducing	 fear	
conditioning	using	mobile	robots.	In	specific,	we	select	visual	signals,	the	brightness	
of	 light	 as	 the	 conditional	 stimulus,	 and	 vibration	 signals	 as	 the	 unconditional	
stimulus.	Vibration	signals	emulate	electric	shock	applied	on	the	foot	of	rats	in	fear	
conditioning	experiments	while	light	signals	serve	as	a	neutral	stimulus.	We	select	
the	Leaky	Integrate	and	Fire	(LIF)	neuron	model	to	build	neural	assemblies	for	both	
UC	 and	 CS	 signal	 pathways	 due	 to	 its	 simplicity.	 In	 our	 experiments,	 the	 Nengo	
simulator	was	used	to	implement	the	system	[40].	Our	mobile	robot	is	controlled	with	
the	Robot	Operating	System	(ROS)	[41].		



 

 

3.1 Neuron Model  

In	 our	 experiment,	 a	 mobile	 robot	 is	 placed	 on	 a	 vibration	 platform	 and	
unconditionally	 responds	 to	 the	 acceleration	 signals,	 which	will	 be	 detected	with	
an	inertial	measurement	unit	(IMU).	The	acceleration	signals	emulate	the	unpleasant	
stimulus	 in	 the	 fear	 conditioning	 experiment	 in	 rats.	 The	 conditional	 stimulus	 is	
mimicked	 with	 the	 brightness	 of	 a	 light.	 Two	 neural	 assemblies	 will	 be	 built	 for	
processing	 these	 UC	 and	 CS	 signals.	 At	 last,	 the	 movement	 of	 a	 mobile	 robot	 is	
controlled	by	the	motion	neurons.	We	design	several	specific	neurons	for	precepting	
the	brightness	of	lights,	detecting	vibrations,	and	controlling	mobile	robots.	All	these	
neurons	are	customized	from	classic	Leaky	Integrate	and	Fire	(LIF)	neurons,	which	
are	characterized	using	the	following	equations	[42]:		

	 𝐶!
𝑑𝑉!
𝑑𝑡 = 𝐺"(𝐸" − 𝑉!) + 𝐴 ∗ 𝐼#$$,	

𝑖𝑓	𝑉! > 𝑉%&	𝑡ℎ𝑒𝑛	𝑉! = 𝑉'()(% ,	
(1)	

	 𝜏*+ =	𝐶!/𝐺" ,	 (2)	

where	𝐶!	is	the	membrane	capacitance,	𝑉!	is	the	membrane	potential,	𝐺"is	the	leak	
conductance,	 A	 is	 the	 input	 signal	 gain,	𝐸" is	 the	 leak	 potential,	 𝐼#$$ 	is	 the	 input	
current,	and	𝜏*+ 	is	the	RC	time	constant.	The	specific	values	of	these	parameters	in	
our	design	are	summarized	in	Table	2.		

Table	2:	LIF	neuron	parameters	

Neuron Types 𝜏!"  A Vreset (V) Vth(V) 

Vibration neuron 0.02 1.3 0.6 1.0 

Brightness neuron 0.02 0.3 -1.0 1.0 

Movement neuron 0.02 1.0 0.01 1.0 

For	all	the	neurons	in	Table	2,	the	membrane	potential	is	fixed	at	1	V	and	input	
gain	 is	 modified	 instead.	 They	 all	 use	 the	 Nengo	 LIF	 model’s	 default	𝜏*+ 	of	 0.02	
seconds	 because	 it	 was	 sufficient	 for	 our	 desired	 functionality.	 The	 other	 two	
parameters	are	calculated	and	optimized	based	on	our	experimental	setups	so	that	
they	can	produce	the	desired	responses	for	their	respective	uses.	In	specific,	for	the	
vibration	detection	neuron,	gain	(A)	and	bias	 (	𝑉'()(%)	were	empirically	derived	so	
that	 it	 fires	 with	 vibration	 stimulus	 input	 instead	 of	 a	 small	 sudden	 move.	 The	
movement	response	neuron	is	a	typical	LIF	configured	to	spike	whenever	it	receives	
any	sustained	input	spikes,	either	from	vibration	neurons	or	brightness	neurons.	The	
brightness	 neuron	 is	 the	 Layer	 3	 neuron	 in	 Table	 3	 and	 is	 a	 LIF	 neuron	 with	
empirically	derived	gain	and	bias	so	that	it	fires	only	when	the	Light	Feature	neurons	
have	a	high	enough	collective	output.	More	details	regarding	how	these	neurons	work	
will	be	introduced	in	subsequent	sections.	

3.2 Vibration Perception 

The	accelerometer	within	the	onboard	IMU	of	the	mobile	robot	is	used	to	measure	
the	 acceleration.	 In	our	 experiment	design,	 acceleration	 is	used	 for	 evaluating	 the	



 

 

degree	of	vibration.	Our	vibration	platform	generates	vibration	signals	with	1.2	mm	
amplitude	at	25	Hz.	 In	general,	 the	 IMU	measures	three	dimensional	accelerations	
from	x,	y	and	z	directions	as	shown	in	Figure	2	(a).	In	Figure	2	(a),	the	acceleration	in	
the	z-axis	(vertical)	has	the	largest	magnitude	as	it	includes	the	intrinsic	gravity	of	
the	earth	 (9.8	m/s2).	Because	 the	mobile	robot	should	only	count	 the	acceleration	
from	vibration	platform,	the	gravity	effect	is	removed	from	z-direction	by	subtracting	
the	standard	gravity	(9.8	m/s2).	Thus,	 the	resultant	acceleration,	which	is	used	for	
evaluating	the	vibration	states,	is	calculated	by	the	equation:			

	 𝑎'() =	:𝑎,- + 𝑎.- + (𝑎/ − 9.8)-,	 (3)	

where 𝑎'() is the resultant acceleration, 𝑎,, 𝑎., 𝑎/ are the accelerations in Y-axis, Y-axis, 
and Z-axis, respectively.   The resultant acceleration measured by our mobile robot is 
depicted in Figure 2 (b). The resultant acceleration is imported into the vibration detection 
neuron. A vibration detection neuron, implemented with LIF, is connected to the 
accelerometer, and it fires if the detected acceleration is larger than its threshold (shown in 
Figure 3). At last, a movement neuron is specifically design to control our mobile robot 
moving away from the vibration platform with specific direction and speed. The motion 
neuron is also implemented by a LIF neuron. The parameters of motion neuron are listed in 
Table 2. The active motion neuron will trigger a specific movement (escape) response that 
commands the mobile robot to move away from the vibration platform at a speed of 0.3 m/s.   

	

	
Figure	2:	(a)	Acceleration	data	of	IMU	for	three	dimensions	denoted	as	X-axis	
(blue),	Y-axis	(orange),	and	Z-axis	(green).	(b)	Resultant	acceleration.		

	



 

 

Figure	3:	Vibration	detection	neuron	 response	 to	 the	 acceleration	 input:	 (a)	
input	 vibration	 signals;	 (b)	 membrane	 potential	 of	 the	 vibration	 detection	
neuron;	(c)	output	spiking	signals	of	the	vibration	detection	neuron.		

3.3 Visual Perception with Sparse Coding and Locally Competitive 
Algorithm 

In	order	to	process	visual	stimuli,	we	designed	an	artificial	neural	network	(ANN)	
activating	the	output	neuron	if	the	light	is	on.	Figure	4	illustrates	the	brightness	of	the	
light	captured	by	the	stereo	camera	equipped	with	our	mobile	robot.	The	stream	of	
visual	signals	captured	by	the	camera	is	sent	to	the	computer	via	ROS.	As	the	images	
arrive,	their	resolution	is	24x48	pixels,	and	the	pixel	brightness	is	normalized	to	the	
range	between	-1	and	1.	

	
Figure	4:	Sights	of	the	light	off	and	on.			

An	ANN	model	based	on	2D	sparse	coding	is	used	for	detecting	the	brightness	of	
lights	to	further	determine	whether	the	light	is	on	or	off.	The	goal	of	sparse	coding	is	
to	represent	an	input	vector	with	a	linear	combination	of	features	from	a	dictionary.	
This	can	be	modeled	by	the	LASSO	optimization	function:	

	
𝐸 = 0

-
‖𝑥 − Φ ∙ 𝑎‖-- + 	𝜆 ∙ ‖𝑎‖0, (4) 

	 𝑎∗ = argmin
#

𝐸(𝑎), (5) 

where	the	features	Φ2 	are	columns	of	the	dictionary	matrix	Φ,	and	the	sparse	code	a⃰		
is	the	set	of	coefficients	ai	for	which	the	reconstruction	(Φ ∙ 𝑎)	of	the	input	x	minimizes	
the	cost	 (E).	The	sparsity	penalty	λ	reduces	 the	amount	of	non-zero	 terms	 in	a	by	
penalizing	its	1-norm.		

 

Figure	5:	Image	region	layout	and	patch	structure	

Typically,	the	sparse	code	a⃰			is	used	to	reconstruct	x,	or	as	the	input	to	a	classifier.	
In	2D	image	sparse	coding,	we	divided	the	image	into	patches	the	size	of	the	features	
Φ3 .	Thus,	each	patch	is	a	sparse	coding	optimization	problem.	As	shown	in	Figure	5,	
the	 light	 image	 is	 divided	 into	 9	 sub-regions	 which	 are	 further	 partitioned	 into	



 

 

patches.	The	Spiking	Locally	Competitive	Algorithm	(LCA)		model	[43]	is	used	to	solve	
Eq.	(6)	and	Eq.	(7):			

	
𝑢̇ = 	

1
𝜏
(Φ4𝑥 − 𝑢 − (Φ4𝜙 − 𝐼) ∙ 𝑎), 𝑎 = 	𝑇5(𝑢) (6) 

	 𝑇5(𝑢) = 0	𝑖𝑓	𝑢 ≤ 𝜆, 𝑒𝑙𝑠𝑒	𝑇5(𝑢) = 𝑢 − 𝜆 (7) 

where	ai	is	the	firing	rate	of	neuron	i,	ui	is	the	average	soma	current,	τ	is	the	discrete	
time	step,	and	Tλ	is	the	thresholding	function	that	determines	if	neuron	i	will	fire.	

 

Figure	6:	LCA	network	for	one	patch	including	input	neurons	(Layer	1)	and	path	
neurons	(Layer	2)	

Figure	6	illustrates	a	spiking	LCA	network	for	solving	one	image	patch	(Figure	5).	
The	model	consists	of	the	first	layer	for	the	input	x	and	the	second	layer	for	the	sparse	
code	a∗.	The	 firing	rates	of	each	neuron	are	 the	coefficients	𝑎2 .	The	neurons	 in	 the	
second	layer	are	referred	to	as	feature	neurons	as	each	of	them	is	associated	with	one	
feature	Φi.	Typically,	an	overcomplete	dictionary	is	used	in	sparse	coding,	resulting	
in	 a	 having	 a	 larger	 size	 than	 x.	 Our	model	 represents	 each	 patch	with	 only	 two	
features,	light	and	dark.	Thus,	the	dictionary	in	Figure	6	only	contains	two	features.	
The	dictionary	could	be	made	complete	by	having	more	feature	neurons	than	the	size	
of	x,	9	in	this	case.	There	could	be	copies	or	variations	of	light	and	dark	features	to	
make	the	dictionary	overcomplete.	



 

 

 

Figure	7:	Neural	network	for	light	detection	in	the	center	region.	Note:	The	dark	
feature	neurons	in	Layer	2	are	not	shown.	

The	convolutional	stride	between	the	image	patches	is	equal	to	the	width	of	one	
patch	(3	pixels)	resulting	in	no	overlap	between	them.	This	simplifies	the	LCA	model	
by	 removing	 connections	 between	 feature	 neurons	 in	 overlapping	 patches.	 The	
neural	network	contains	a	third	layer	with	one	neuron	for	each	of	the	9	regions	in	the	
image	as	illustrated	in	Figure	7.	The	third	layer	has	one	neuron	as	an	output	neuron	
integrating	the	light	feature	neurons	of	every	patch.	In	Figure	7,	each	neuron	at	layer	
1	simply	has	a	firing	rate	proportional	to	the	pixel	intensity	it	represents,	serving	as	
a	spike	generator.	The	neurons	at	layer	2	and	layer	3	are	Integrate	and	Fire	neurons	
with	the	parameters	listed	in	Table	3.	The	layer	2	neurons	are	the	LCA	neurons	in	a	
single-layer	LCA	configuration.	The	parameters	of	the	Integrate	and	Fire	LCA	feature	
neuron	 in	Layer	2	 is	 implemented	via	 the	𝑉'()(% 	parameter,	which	was	empirically	
adjusted	until	the	desired	response	was	achieved	from	the	feature	neurons.	The	other	
parameters	are	assigned	according	to	the	LCA	model	[43].	The	neurons	in	Layer	3	
have	the	parameters	derived	for	brightness	neurons	from	Table	2.		

Table	3:	LCA	neuron	parameters	in	Layer	2	and	3	

LCA Neuron 
Layer 

𝜏!" 	(s) A Vreset (V) Vth (V) 

Layer 2 ∞ 1.0 -𝜆 = 0.85 1.0 

Layer 3 0.02 0.3 -1.0 1.0 

When	the	high	brightness	signals	of	the	light	(Figure	4	(a))	enter	the	network,	the	
light	feature	neurons	in	the	center	patches	start	to	fire.	The	light-off	image	(Figure	4	
(b))	subsequently	reduces	the	activity	in	the	neurons.	These	images	are	alternately	
presented	as	inputs,	shown	in	Figure	8.	This	causes	the	neurons	in	layer	3	to	fire	for	
the	center	region	from	the	time	periods	0s	to	2s	and	4s	to	6s,	as	shown	in	Figure	9.	
That	is	the	time	the	light	is	on	in	our	experiment.		



 

 

 

Figure	 8:	 Membrane	 potential	 of	 light	 feature	 neurons	 (Layer	 2)	 in	 center	
region	image	patches.		

 

Figure	9:	Spiking	signals	of	Layer	3	neuron.	

The	sparse	coding	network	operates	at	Intel	Loihi	neuromorphic	chip	for	power	
and	energy	estimation.	Our	associative	memory	neural	networks	are	 implemented	
with	Nengo	simulator	and	 further	deployed	 into	Loihi	 chips	by	 Intel’s	NxSDK	as	a	
backend	[44].	The	NxSDK	contains	a	built-in	LCA	network	implementation,	which	can	
be	connected	to	the	rest	of	the	SNN.	The	parameters	from	Table	3	were	used	to	create	
the	 same	 LCA	 network	 from	 Nengo	 for	 deployment	 on	 Loihi.	 In	 Loihi	 chip,	 the	
synaptic	weights	only	have	a	4-bit	resolution,	instead	of	a	24-bit	resolution	in	typical	
computational	platforms.	Thus,	the	time	of	one	simulation	is	reduced	from	1	ms	to	20	
ms	at	the	Loihi	platform.	The	measured	powers	are	shown	in	Figure	10.	The	average	
VDD	power	is	30	mW	and	the	average	VDDM	power	is	29	mW.	In	Figure	10,	the	VDDIO	
has	a	relatively	negligible	contribution	to	the	total	power,	while	VDD	and	VDDM	have	
effectively	equal	contributions.	The	power	is	measured	and	reported	with	the	average	
consumption	across	every	8	timesteps	while	the	experiment	is	under	operation.	



 

 

 

Figure	10:	Power	consumption	for	sparse	coding	network	with	Loihi	chip.	The	
VDD	represents	 the	compute	 logic,	VDDM	is	 the	SRAMs,	and	VDDIO	 is	 the	 IO	
interface.	

3.4 Associative Memory Learning Experiment and Results 

Figure	11	illustrates	the	comparison	of	signal	pathway	modification	between	our	
SLN	system	and	fear	conditioning	of	rats.	In	our	design,	the	brightness	signal	from	
light	serves	as	a	conditional	stimulus	and	the	acceleration	from	the	vibration	platform	
is	the	unconditional	stimulus.	These	two	signals	emulate	the	electric	shock	and	sound	
signals	 in	fear	conditioning	experiments.	The	movement	of	our	mobile	robot	away	
from	 the	 vibration	 platform	 emulates	 the	 fear	 response	 of	 rats.	 The	 red	 arrows	
(Figure	 11)	 represent	 the	 weak	 synaptic	 connections	 in	 the	 conditional	 signal	
pathway	while	 the	blue	arrows	represent	 the	unconditional	pathway	with	weaker	
synaptic	connections.	During	associative	memory	learning,	the	synaptic	connection	
(red	arrow)	will	be	strengthened	by	Hebbian	learning.		

	
Figure	 11:	 (a)	 Our	 SLN	 system	 for	 associative	 memory	 learning	
implementation.	(b)	fear	conditioning	in	rats.	

In	 the	 brains	 of	 rats,	 shock	 signals	 and	 tone	 signals	 are	 processed	 at	 different	
neural	regions:	auditory	thalamus	and	somatosensory	thalamus.	The	output	signals	



 

 

from	these	two	regions	converge	at	lateral	nucleus	[1].	Originally,	the	rat	has	no	fear	
reaction	to	a	neutral	 tone.	However,	when	the	tone	 is	presented	with	a	 foot	shock	
associated	with	tone	signals,	the	rat	starts	memorizing	the	relationship	between	the	
tone	and	the	shock.	After	multiple	times,	the	tone	alone	will	stimulate	a	fear	response	
indicating	the	accomplishment	of	the	associative	memory	learning	[1].		

 

Figure	 12:	 Fear	 conditioning	 imitation	 experimental	 setup	 with	 the	 mobile	
robot:	(a)	top	view;	(b)	side	view.		

Our	experimental	 setup	 to	emulate	 fear	conditioning	using	our	mobile	robot	 is	
shown	 in	 Figure	 12.	 The	 mobile	 robot	 is	 placed	 on	 a	 testing	 platform,	 which	 is	
constructed	with	9	wooden	boxes.	The	dimension	of	each	box	is	23	in	(L)	×	23	in	(W)	
×	8	 in	 (H).	A	 vibration	plate	 is	 installed	underneath	 the	 center	platform,	which	 is	
marked	 in	 red	 square	 in	Figure	12	 (a).	 	The	vibration	plate	 can	provide	vibration	
signals	 (15-40	Hz)	emulating	an	unpleasant	 stimulus	 (the	electrical	 shock)	 in	 fear	
learning	on	the	rats.	The	other	eight	platforms	with	no	installed	vibration	plate	are	
marked	in	green-dashed	squares	in	Figure	12.		

For	 the	 fear	 response,	 the	 robot	 is	 expected	 to	move	 away	 from	 the	 vibration	
platform	to	the	neutral	location	if	unpleasant	stimuli,	such	as	vibration,	are	applied.	
The	specific	experimental	procedures	aiming	to	reproduce	the	experimental	process	
of	rats	in	fear	conditioning	are:		

1) Turn	on	the	light,	expecting	no	response	(testing	conditional	signal	pathway).		
2) Turn	on	the	vibration	platform,	and	the	robot	moves	(testing	the	unconditional	

signal	pathway).	
3) Reset	the	robot	position.		
4) Turn	 on	 the	 light,	 and	 then	 turn	 on	 the	 vibration	 platform,	 the	 robot	 moves	

(conducting	 the	associative	memory	 learning	process	 that	 the	conditional	and	
unconditional	stimulus	is	provided	at	the	same	time).		

5) Reset	the	robot	position.		
6) Turn	on	the	light	alone,	and	the	robot	moves,	indicating	that	associative	memory	

learning	is	accomplished	successfully.		

The	synaptic	weights	are	modified	based	on	Hebbian	learning	[42,	45].	Hebbian	
learning	states	 that	when	 the	pre-and	postsynaptic	neurons	are	both	active	at	 the	
same	time,	the	synaptic	weights	between	them	will	be	modified		using	the	equations	
[42,	45]:		

	 𝑤 = 	𝜂𝑟2𝑟3 ,	 (8)	



 

 

where	the	𝑟2 	and	𝑟3 	are	firing	rates	of	pre-and	postsynaptic	neurons,	respectively,	and	
the	𝜂	is	 the	 learning	rate,	determining	the	changing	rate	of	synaptic	weight.	 In	our	
experiment,	 the	 learning	 rate	𝜂 	is	2 × 1067 .	 Figure	 13	 shows	 the	 initial	 synaptic	
weights	between	the	brightness	detection	neuron	(CS)	and	the	movement	neuron	are	
small.	Consequently,	the	brightness	stimulus	of	the	light	cannot	be	delivered	to	the	
movement	neuron	to	stimulate	it	to	fire.	As	a	result,	the	synaptic	weights	between	the	
brightness	 detection	 neuron	 and	 movement	 neuron	 stay	 constant.	 	 When	 the	
vibration	 (US)	 is	applied	 to	 the	vibration	detection	neuron,	 the	movement	neuron	
starts	 to	 fire.	 When	 the	 vibration	 and	 light	 are	 applied	 to	 the	 system,	 both	 the	
brightness	detection	neuron	and	the	movement	neuron	are	active,	resulting	 in	the	
synaptic	weight’s	 increase.	Figure	13	 illustrates	 that	 the	synaptic	weights	 increase	
when	 the	 vibration	 and	 light	 stimulus	 are	 both	 applied.	 However,	 the	 first	
overlapping	time	frame	is	not	long	enough	to	establish	a	significant	synaptic	weight	
modification.	Thus,	a	sequence	of	weak	spiking	signals	is	observed	from	the	response	
neuron	after	the	vibration	is	removed,	which	is	marked	in	Figure	13.	In	contrast,	the	
second	overlapping	period	is	longer	than	the	first	one	which	leads	to	a	larger	increase	
in	 synaptic	 weights.	 Thereby,	 after	 learning,	 the	 response	 neuron	 (movement	
detection	 neuron)	 will	 fire	 with	 a	 visual	 stimulus	 (light)	 even	 with	 no	 vibration	
stimulus.	This	demonstrates	an	accomplishment	of	associative	memory	learning.		

	
Figure	13:	Change	of	synaptic	weight	during	associative	memory	learning.		

In	the	experiments,	the	synaptic	weights	between	the	brightness	detection	neuron	
and	 the	movement	neurons	are	modified	during	 the	 training	process.	 	As	a	 result,	
after	 associative	 memory	 learning	 the	 mobile	 robot	 will	 move	 away	 from	 the	
vibration	 platform	 under	 the	 stimulus	 of	 light,	 even	 with	 no	 vibration	 signal	
presented,	demonstrating	successful	online	learning	in	real-time.	Compared	to	other	
state-of-the-art	associative	memory	works	listed	in	Table	4,	we	reproduce	the	classic	
fear	conditioning	experiments	of	rats	using	a	mobile	robot	and	Loihi	chip	rather	than	
simply	simulation.	In	addition,	the	scales	of	our	neural	networks	outperform	other	
works.		

	



 

 

	

Table	4:	Comparison	of	scale	and	association	capability	with	other	state-of-
the-art	works	

	 Neuron	 Synapse	 Dataset	 Learning	
Scheme	

Biology	
Scenarios	

[9]	 6	 3	 N/A	 Simulation	 N/A	

[10]	 3	 1	 N/A	 Simulation	 N/A	

[11]	 5	 6	 N/A	 Simulation	 N/A	

[12]	 3	 1	 N/A	 Simulation	 N/A	

[46]	 3	 1	 N/A	 Simulation	 N/A	

[47]	 3	 2	 N/A	 Simulation	 N/A	

[48]	 3	 2	 N/A	 Simulation	
Cellular	

Association	in	
Aplysia	

[6]	 20	 100	 Pretrained	
with	datasets	 Simulation	 N/A	

This	work	 1419	 1420	 No	dataset	for	
pretraining	 Experiment	

Fear	
conditioning	

of	rats	

4.	Conclusion	

In	this	paper,	we	implement	a	classic	self-learning	paradigm	in	rats:		associative	
memory	 learning	 (fear	 conditioning)	 using	 a	 mobile	 robot	 and	 a	 neuromorphic	
system	(Loihi	chip)	in	an	online	learning	scenario.	In	specific,	we	use	a	mobile	robot	
as	the	substitute	for	the	rats	in	fear	conditioning	experiments.	Two	signal	pathways	
are	 assigned	 for	 conditional	 and	 unconditional	 stimulus.	 In	 our	 experiments,	
vibration	signals	emulate	unconditional	stimuli,	while	brightness	of	lights	is	assigned	
as	 conditional	 stimuli.	 Originally,	 the	 mobile	 robot	 only	 moves	 when	 it	 detects	
vibration	signals.	After	providing	these	two	signals	at	the	same	time	several	times,	
the	robot	performs	a	movement	when	light	signals	are	present	alone.	The	detections	
of	lights	and	vibrations	are	implemented	with	Integrate	and	Fire	Neurons.	In	addition,	
the	movement	of	the	robot	is	controlled	by	the	specific-designed	response	neurons.	
The	signal	pathway	modification	during	associative	memory	learning	is	implemented	
with	 Hebbian	 learning.	 Compared	 to	 other	 state-of-the-art,	 our	work	 successfully	
reproduces	the	fear	conditioning	of	rats	in	a	real-world	scenario	with	no	labeled	data	
and	pretraining	process.		
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