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Abstract

We obtain upper bounds on the number of nodal domains of Laplace eigenfunctions
on chain domains with Neumann boundary conditions. The chain domains consist of
a family of planar domains, with piecewise smooth boundary, that are joined by thin
necks. Our work does not assume a lower bound on the width of the necks in the chain
domain. As a consequence, we prove an upper bound on the eigenvalue of Courant
sharp eigenfunctions that is independent of the widths of the necks.
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1 Introduction

A long-studied question is to what extent the spectrum of the Laplacian interacts
with the geometry of the domain on which it is defined [17]. In this article, we study
chain domains which consist of a family of disjoint bounded planar domains, with
piecewise smooth boundaries, that are connected by thin necks (see Fig. 2). For these
chain domains, we prove bounds on the number of nodal domains of the associated
Laplace eigenfunctions when Neumann boundary conditions are imposed.
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Let @ C R? be a bounded domain with piecewise smooth boundary and write
0 =1 < o <...forthe Laplace eigenvalues of the Neumann problem

Auy = —mlm, in Q,

1
Opum =0, on 0. M

The Courant Nodal Domain Theorem [6] asserts that forallm = 1,2, ...,
V() < m, 2)

where v(u,,) is the number of nodal domains of u,,. That is, v(u,,) is the number of
connected components of {x € Q : u,,(x) # 0}. If v(u,,) = m, then u,, is said to be
a Courant sharp eigenfunction and u,, a Courant sharp eigenvalue.

In this article, we study the case in which € is a chain domain and prove an
asymptotic upper bound on v(u,,) that, in particular, provides an upper bound on the
values of 1, that can be Courant sharp. The bound we prove is independent of a lower
bound of the widths of the necks in the chain domain, hence notably does not depend
upon the cut-distance of 9£2.

A chain domain consists of a family of disjoint bounded planar domains, {@g}?”: 1
and a family of thin necks joining the domains. The planar domains have smooth
boundaries except for a finite number of vertices.

Since we are interested in understanding how our estimates respond to the width
of the necks shrinking to zero, we actually think of a chain domain as a structure built
around a skeleton comprised of the domains {95}2”: | joined by a family of curves
{I”,~}IN= |- Then, the skeleton is “thickened" into what we call a base domain, €2, by
turning each curve I'; into a neck that joins two domains. Formally, associated to
each curve T'; there is a smooth homotopy ¥%; : [0, L;] x [—1, 1] — R2 such that
I'; = %0, L;] x {0}) and each of the arcs ¢4; ({0} x [—1, 1)) and %; ({L;} x [—1, 1])
belong to the boundaries of the two domains being joined by I';. The curve I'; is
then thickened to the neck .4/ := % ([0, L;] x (=1, 1)). The base domain is the set
Q= Ué”: 2 U,N:1 ;. See Definition 2.2 for a detailed description.

Given a base domain €2, we allow for the width of each neck to vary by working
with a family of neck widths w := {Ii}lN: |» where the interval I; C [—1, 1] for each .
Indeed, we define each neck as A4} (w) := ¥; ([0, L;] x I;). The chain domain is then

M N
Qw) = Jz.u A w).
=1 i=l1

Note that this definition of a chain domain includes polygonal figures with smooth
edges. A toy model with a single neck is depicted in Fig. 1. See Definition 2.3 for a
precise definition of a chain domain and Fig. 2 for an illustration of such.

Our main result is the following.

@ Springer



Uniform Upper Bounds on Courant Page3of39 262

Fig.1 A simple chain domain,
Qw)=21UN U, in
which two squares, 71, %5 of 9 @
side length 2 are joined by the

neck .4 := [0, 2] x w, with 1 I 2
w=(—w/2,w/2)

Fig.2 An exampl'e.of a domain J1/1271 (w)
Q (w) from Definition 2.3

Moo (w)

M3 (w)

Theorem 1.1 Let Q2 be a base domain. There exists C > 0 such that for every family of
neck widths, w, the following holds. If {u, (w)},, and {, (w)}, are an orthonormal
basis of Neumann eigenfunctions and eigenvalues for the chain domain Q2 (w), then

fim sup e < M?D)' )

Moreover, for every Courant sharp eigenvalue i, (w),
Area(Q2(w))un, (w) < C. (@)

Here, 11 (D) is the first Dirichlet eigenvalue of the unit disc, D C R2. 1t is known
that A1 (D) = j& 1» Where jo 1 is the first positive zero of the Bessel function Jp. Since
4/x1(D) =~ 0.692 < 1, the upper bound in (3) implies that there are only finitely many
Courant sharp eigenfunctions. The estimate in (4) then gives an upper bound on the
eigenvalue of such an eigenfunction, independent of the choice of neck-widths w.

Remark 1.1 In Section 2.1 we introduce five geometric constants p*, k*, §*, 7*, w*
associated to the geometry of the base domain €2. The constant C in (4) depends only
on p*, k*, 8%, t*, w*. The same constant C can be used for all chain domains whose
associated base domains, €2, have geometric constants controlled by p*, «*, §*, t*, w*
as explained in Remark 2.1. This implies that the number and structure of the planar
domains and necks comprising €2 only play a role in controlling the Courant sharp

eigenvalues through how they impact these five geometric constants.
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There are several articles that study eigenfunction nodal domain count under various
boundary conditions (see Section 1.1 for an account of these). Directly related to our
main result is the work of Gittins and Léna [9], who also give a bound on Area(2) s,
when p,, is Courant sharp. However, applying their result would require imposing a
lower bound on the widths of the connecting necks in the chain. A strength of our work
is that we prove bounds on the nodal domain counting function that are independent
of the width of the necks, and hence obtain that the oscillatory behavior of the Courant
sharp eigenfunctions is driven by the geometry of the planar domains that make up
the chain, as stated in (4). The bound in (3) was proved by Polterovich [21] when
Q C R? has piecewise real analytic boundary and by Léna [18] when the boundary is
C!1. Theorem 1.1 extends their work to more general domains, including polygonal
regions with smooth edges.

When working with a chain domain on which Dirichlet boundary conditions are
imposed, the spectrum of the Laplacian approaches the spectrum of the disjoint union
of the individual planar domains as the widths of the necks connecting the domains
decrease to 0. The corresponding eigenfunctions do not ‘see’ the thin necks and become
localized to the connecting planar domains, for example, see [7]. In contrast, when
Neumann boundary conditions are imposed, the behavior of the low-energy eigen-
functions is influenced by the presence of the thin necks. Indeed, in this case, the
eigenfunctions for the chain behave like the restricted eigenfunctions on the individ-
ual smooth domains, but are ‘connected’ along each neck by a function that, to leading
order, is an eigenfunction of a one-dimensional Schrodinger operator [1, 14-16].

In this work, instead of studying low-energy eigenfunctions, we ask whether the
intermediate to high energy eigenfunctions have oscillatory behavior that is more
closely related to the geometry of the family of planar domains in the chain than to
the structure of the thin necks connecting them. Theorem 1.1 shows that the behavior
of Courant sharp eigenfunctions is driven by that of the planar domains and ignores
the structure of the connecting necks. Interestingly, the oscillatory behavior of eigen-
functions has been known to be unstable to domain perturbations for some time, see
[24, 25]. Indeed, in previous work, the authors explored how boundary perturbations
can lower the number of nodal domains of low energy eigenfunctions [2]. It is thus
natural to think that, in general, it should be more challenging to have many internal
oscillations in chain domains than in the piecewise smooth domains themselves, but
we do not address that question here.

The problem we study has a natural geometric interpretation of a community detec-
tion problem in data analysis. Many data sets have the structure of stochastic block
models, which consist of clusters of sub-networks that are strongly connected with
weak connections between them. It is a natural question in learning and community
detection algorithms to determine the number of communities that one should actually
look for in a data set. This study is a first step in understanding how the spectrum of the
Laplacian with Neumann boundary conditions may be used to explore such a question
in a continuum setting, which can in many ways be seen as a model for large data
sets with manifold structure, see [22, 23]. Indeed, we conjecture that a chain domain
of k planar domains connected in a line will have its first k eigenfunctions saturating
Courant’s nodal domain bound by oscillating as much as possible, while the eigen-
functions with sufficiently large eigenvalues will not saturate the bound. This article
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works towards this conjecture, by giving bounds on the nodal domain count that are
independent of the thin connections between domains.

1.1 Prior Results

While we will focus on planar domains with Neumann boundary conditions, the
Courant Nodal Domain Theorem (see equation (2)) also holds for eigenfunctions
with Dirichlet boundary conditions. In [20], Pleijel proved that for planar domains
with Dirichlet boundary conditions, there are only a finite number of Courant sharp
eigenfunctions. This was extended by Peetre in [19] to domains on Riemannian sur-
faces, and by Bérard and Meyer [4] to n-dimensional Riemannian manifolds that are
compact or have smooth boundary. In each case, the result is achieved by obtaining an
asymptotic upper bound on the ratio between the number of nodal domains of the m-th
Dirichlet eigenfunction, v,,, and its index m. In two dimensions, this upper bound is

)

. v(vm) 4
lim sup < )
m—00 m A1)

the same as in Theorem 1.1. Since A; (D) = j&l and 4/j§,1 ~ 0.692 < 1, the upper
bound in (5) immediately implies that there are only finitely many Courant sharp
Dirichlet eigenfunctions.

A key step in the proof of (5) is to obtain a lower bound on the area of a nodal
domain using the Faber-Krahn Theorem. This theorem can be used in the Dirichlet
case because the restriction of a Dirichlet eigenfunction to a nodal domain is the
first Dirichlet eigenfunction of that domain. When Neumann boundary conditions are
imposed, this is no longer true for nodal domains that touch the boundary. However, by
using a different method to count nodal domains near the boundary, Polterovich [21]
in the two-dimensional case with piecewise real analytic boundaries, and Léna [18] in
n-dimensions with C!-!-boundaries, showed that (5) continues to hold for Neumann
eigenfunctions, and Robin eigenfunctions with non-negative Robin parameter. This
was extended to any sign of the Robin parameter, for domains with C!-!-boundaries,
in the recent work [11].

While the above results guarantee that there are only finitely many eigenvalues
with a Courant sharp eigenfunction, they do not provide an upper bound on the corre-
sponding eigenvalue in terms of geometric quantities of the underlying domain. For a
planar bounded domain €2, a bound on Area(£2), when A is a Courant sharp Dirichlet
eigenvalue, was established by Bérard and Helffer [3]. Such a bound is given in terms
of dilation invariant quantities involving Area(€2) and supy. %MQ (), where

Mg (8) := Area ({x € Q : dist(x, 9R2) < §}). (6)
For an open set 2 C R" of finite Lebesgue measure, van den Berg and Gittins [26]
obtain an upper bound on a Courant sharp Dirichlet eigenvalue in terms of Area(2)
and Mq(8). For a planar domain with C2-boundary, Gittins and Léna prove an upper

bound on Area(£2)u, when p is a Courant sharp Neumann eigenvalue [9]. This bound
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is given in terms of an upper bound on Area(£2), the isoperimetric ratio, the curvature
of €2, and a lower bound on the cut-distance

inf sup {3 - dist (y(t) +sn(D), asz) — s forall s € [0, 3]} .
te[0,L] s~

Here,y : [0, L] — R2isa parameterization of d€2 and n(¢) is the unit inward normal
at y ().

Note that as the width w shrinks to 0, the chain domain 2 (w) from Fig. 1 does not
fit into the results of Gittins and Léna in [9]. This is because the cut-distance of the
neck, [0, 2] x (—w/2, w/2), shrinks to zero when w approaches 0. Moreover, the sharp
corners in 2 (w) mean that the curvature of the boundary is not bounded from above.
Therefore, a major part of our study of the Courant sharp Neumann eigenfunctions of
such a chain domain will be focused on the behavior of Neumann eigenfunctions in
thin necks and near the vertices of the domain.

Recently, De Ponti, Farinelli, and Violo [8] proved the Pleijel limit for Dirichlet and
Neumann eigenfunctions of RCD(K, N) spaces, which are metric measure spaces
with a synthetic notion of Ricci curvature bounded below by K € R and dimension
bounded above by N € N. As a corollary, they showed that the Pleijel limit holds for
the Neumann eigenfunctions of N-dimensional uniform domains, which is a class of
subsets of R which includes Lipschitz domains. They proved these results using dif-
ferent techniques, by directly showing that even nodal domains touching the boundary
satisfy a Faber-Krahn inequality and avoiding using a reflection argument. For fixed
widths w, the chain domains 2 (w) that we study are uniform domains. However, the
constant C in the definition of a uniform domain cannot be chosen uniformly as the
widths w tend to O (see Definition 3.1 in [8]), and so the results in [8] do not give
uniform control as the neck widths shrink.

2 Chain Domains

As described in the introduction, we study the Neumann eigenvalues and eigenfunc-
tions of a class of planar domains consisting of a number of piecewise smooth domains
joined by thin necks. We now give the precise definition of the chain domains under
consideration. See Fig. 2 for an example of such a domain.

We define the family of chain domains in three steps. First, we introduce the skeleton
consisting of a finite number of piecewise smooth connected regions, joined by smooth
curves. We then define a base domain, by using homotopies to replace the smooth
curves by fixed necks. Finally, we restrict the domains of these homotopies to allow
for a full family of necks, of arbitrarily small width.

Definition 2.1 (Skeleton) Let M € N, {Ki,j}?,/[jzl C N. Then, the skeleton domain
. is given by the disjoint union

M Kij
S = (U @g) U U U Lijk
=1

1<i<j<M k=1
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e For 1 < ¢ < M, each %, is a bounded planar domain with smooth boundary
except for a finite number of vertices. The domains &, are pairwise disjoint.

e Forl <i <j<Mandl <k < Kjj, I';j x is a smooth neck curve joining Z;
and Z;, parameterized by arc-length,

Ciji o [0, Lij il — R?,
with I';; £ (0) € 0%; and I';j x (L;j x) € 0Z;. The linking curves are also pairwise

disjoint, and transverse of 0%;, 0%; at their endpoints.

Next, we endow a skeleton . with a family of homotopies that encode how the
curves {I';; «} are thickened into necks.

Definition 2.2 (Base domain) Let . be a skeleton domain as in Definition 2.1. The
base domain 2 associated to .# is the disjoint union

M Kij
Q= (U %) ul U U0 L x 10,
=1

I<i<j<M k=1
where for each i, j, k,
Gijk [0, Lijul x [-1,1] > R?

is a smooth homotopy with the following properties:
o Gijik(s,0) =Tjr(s) for all s € [0, Lij il
o 4,10,1) €% and ¥ i (Lij k. 1) € 09;,forallt € [—1, 1], and not coinciding
with any vertex of Z; or Z;;
o det[0;%; i (s, 1), 0s%j k(s,1)] # O for all (s, 1), i.e. the Jacobian for this coordi-
nate system is non-degenerate;
e theimages of the &}; ; are disjoint, and disjoint from the interiors of all the domains

Dy.

Note that since det[0,%;; (s, 1), 0s%;jx(s,1)] # O for all (s,¢), each curve
ik (-, 1) meets 07; and 99; transversally. We are now ready to introduce the chain
domains, in which we allow the widths of the necks to become arbitrarily small.

Definition 2.3 (Chain domain) Let Q be a base domain as in Definition 2.2. We define
a collection of widths w by

w={ljx: 1<i,j,<M, 1 =<k=Kj},

where each /;; x is an open interval in (—1, 1) containing 0. The chain domain €2 (w)
is then given by the disjoint union

M Kij
Qw) = (U %) ul U YA
=1

1<i<j<M k=1
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Here 4;; i (w) is a neck joining Z; and &; given by
N ew) =95 1 ([0, Lij k1 % Iij o).
A measure of the minimum width of the neck .4;; x (w) is defined by

Wiik:= min |%;i(s,) —%; (s, t 7
ij.k SG[O,L,-j.k]| lj,k( 2) l],k( 1)| ()

for lij x = (11, 12).
The above definition includes the case M = 1, K;; = 0, where Q(w) = 2 is
a bounded domain, with piecewise smooth boundary except for a finite number of

vertices, and with no w dependence. We define the interval /;; ; to contain O to ensure
that the chain domain 2 (w) always contains the skeleton ..

2.1 Geometric Constants

Let 2 be a base domain as in Definition 2.2. We define

A* = Z Area(%)
¢

and

L*— Xe: Length(0 %) + 2 2;{ max, Length(%; £ ([0, Lij &1 x {£})).
L, ],

We will bound the Courant sharp Neumann eigenvalues of 2 in terms of the five
geometric constants, p*, k™, 8%, T*, w* defined as follows.

e Isoperimetric ratio constant, p*: We define p* > 0 to be the isoperimetric ratio,

*

0

B (L*)2
=

e Normalized curvature constant, k*: We define «* > 0 so that the curvature of each
smooth segment of 9%, and the slices ¢;; ([0, L;j ] x {t}) are bounded above
by «*/L* for all t € [—1, 1] and for all choices of ¢, i, j, k.

e Vertex control constant, §*: The constant §* > 0 is defined so that the following
holds. For all ¢ and each vertex p € 3%, we have that the connected component
of B(p, L*§*) N 92 containing p consists of two smooth curves joined at p, and
after possibly rotating, we may assume that their tangent lines at p agree with the

lines 6 = 5 + 970 for some 0 < 6y < m. These are graphs with respect to the
x1-axis, contained within the lines 6§ = % + %" and 6 = % + %, and with slope
bounded by 1/8*. Moreover, the same properties hold at the points where the sides

of 0%;,9%; meetacurve % (-, 1), forany t € [—1, 1], and all choices of i, j, k.
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e Normalized cut-distance constant, T*: The constant 7* is defined so that, for n <
L*8* and all £, the cut-distance, given by

inf sup {8 . dist ()/(u) +sn(u), a.@@) — s forall s € [0, 5]},
ueky.e 50

is bounded from below by t*n. Here, y : K, ¢ — R? is a parameterization of
09, with the parts of 37, in the discs of radius 7 centered at each vertex of 9%,
excluded, for a union of intervals K, ¢, and n(u) is the inward unit normal at
y(u) € 0%.

e Neck-width constant, w*: The constant w™* is defined to provide control on the
widths and regularity of the necks so that for all choices of i, j, k,

min;e[—1,1] 10:%; k(s )|

* * *
>w*,  w' <09k, )] < 1/w",
s maXe—1,1] 10:%j .k (s, )] Y

_|det[8:%;; k (s, 1), 85%;j 1 (s, D]

min > w*. (8)
.0 10/ k(s D05 1 (s, 1)

Our main result, Theorem 1.1, produces a bound for a Courant sharp eigenvalue
m (w) of the form |Q (w)|w,, (w) < C, where C only depends on p*, *, §*, 7%, w*.
Since these control quantities are invariant under dilations of the base domain €2, the
constant C in the theorem can also be chosen uniformly over dilations of the domain.

More generally, we have the following remark.

Remark 2.1 (Uniform control over base domains Q) The constant C in (4) in Theo-
rem 1.1 can be taken to be the same for every chain domain Q2(w) whose associated
base domain 2 has geometric constants p*, k*, 8%, 7%, w™* satisfying

/5*5/0*’ Iz*fK*, 8*>5*, ¥ > * ﬁ)*iw*

’

where p*, k*, 8%, t*, w* are the geometric constants associated to the base domain
Q.

2.1.1 Uniformity Over Q(w) as w Changes

Next, we explain how the geometric constants for a base domain €2 are uniform as one
varies the width of the necks for the associated chain domains Q (w).

Let 2 be a base domain with geometric constants p*, «*, §*, ™, w*. Then, for any
collection of widths w = {/;; «}, we have | (w)| > A* and L(w) < L*, where

|Q(w)| := Area(2(w)) and L(w) := Length(0Q2(w)).

Therefore, we observe the following control on the geometry of 2 (w):

(1) Isoperimetric ratio. The isoperimetric ratio L(w)? /12 (w)] of Q(w) is bounded
above by p*.

@ Springer



262 Page 10 0f 39 T.Becketal.

(2) Normalized curvature. The curvature of each smooth segment of 92 (w) is
bounded above by «*/L(w).

(3) Vertex control. The vertex control constant §* provides the same control on the
boundary of Q(w) as for 9€2, with L* replaced by L(w) and [—1, 1] replaced by
I;j k. In particular, there is a lower bound on the interior and exterior angle of each
vertex of 92 (w) in terms of §*, and the number of vertices of €2 (w) is bounded
by 1/8*.

(4) Normalized cut-distance. For n < L(w)8™* and all ¢, the cut-distance, given by

inf sup{S - dist (y(u) +sn(u), 8%) — s forall s € [0, 5]},
ueky ¢ 5-0

is bounded from below by t*1. As above, y : K, ¢ — R? is a parameterization
of 9%, with the parts of 0%, in the discs of radius 5 centered at each vertex of
09, excluded, for a union of intervals K, ¢, and n(u) is the inward unit normal at
y(u) € 09.

(5) Neck-width. The constant w* provides control on the ratio between the maximum
and minimum width of the neck .4;; x(w) for all choices of i, j, k, in the sense
that

mingey.., |0:%;; k (s, t
min Sy 1091545, D) >w', w9 (s 0] < 1/w¥,

s maxtEI{j1k|atgij,k(s9t)|
_|det[8;%; k(5. 1), 8% k (s, D)]]

min
.0 10:% k (s, DI0sG;j 1 (s, )]

> w*. )

Remark 2.2 (Uniform control in w) Our main result, Theorem 1.1, produces a bound
for a Courant sharp eigenvalue u,, (w) of the form |2 (w)|u,, (w) < C, where C only
depends on p*, k*, §*, T*, w*. The reason for this being possible is that the constant
C depends only on the geometric features of €2 (w) described in points (1)—(5) above.

For the domains 2 (w) from Fig. 1, with 0 < w < 1, we can take
0¥ =50, k*=0, =L, '=1 w'=1
Remark 2.3 (Notation) From now on, all constants C*, C7, etc., appearing may depend
on p*, k*, 8%, *, w*, but will be independent of the collection of widths w = {/;; x}

and any other geometric quantities involving €2 (w). Constants C, C| without asterisks
will be absolute constants, independent of Q2 (w).

3 Strategy and Ingredients for the Proof of Theorem 1.1
In Sect. 3.1 below, we describe an outline for the proof of Theorem 1.1. The proof relies
on introducing a partition of the chain domain into several regions and on classifying

the nodal domains of an eigenfunction in terms of which regions they touch. The
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partition is introduced in Sect. 3.2 and the classification of the domains is presented
in Sect. 3.3

3.1 Outline of the Proof of Theorem 1.1

Let Q(w) be a chain domain as in Definition 2.3, and let {u;(w)}; and {ur(w)}; be
the Neumann eigenfunctions and eigenvalues for Q2 (w) introduced in (1). In order to
prove Theorem 1.1, we will use the same underlying strategy of proof as the various
Pleijel-type results described in the introduction: we will establish upper and lower
bounds on the Neumann counting function

Ny (1) 1= #{k : pue(w) < (10)

when i = pu, (w) is a Courant sharp eigenvalue; that is, v(u,, (w)) = m, where we
continue to write v(u,, (w)) for the number of nodal domains of u,, (w).

In this Courant sharp case, pr(w) # u,, (w) for k < m, and so Ng(w) (m(w)) =
m — 1. We therefore have

Ng(w)(um(w)) +1=m=vu,(w)). an

We find an upper bound on v(u,, (w)) of the form Ci",um(w)|§2(w)| + O ((um (w)]
Q (w)|)3/ 4) from deriving lower bounds on the area of a nodal domain of u,, (w) (See
Sect. 3.1.1). At the same time, a Weyl law with an explicit bound on the remain-
der then gives a lower bound on J\/g(w) (1 (w)) of the form C3 iy (w)|Q2(w)| +

O ((m (w)|2(w))¥*) (See Sect. 3.1.2). The constants C}, C; are explicit enough
that we can argue C; > C| and hence derive from (11) that

Area(Q(w))u,(w) < C*

as claimed. The detailed proof of Theorem 1.1 is done in Sect. 7. The upper bound on
v(uy (w)) will hold for any (not necessarily Courant sharp) Neumann eigenfunction,
and will imply the limit in (3).

3.1.1 Strategy for Obtaining the Asymptotic Upper Bound on v(up, (w))

To obtain lower bounds on the area of a nodal domain, we will adapt the strategy from
[9] and [18] by splitting each nodal domain D of u,, into four different categories,
depending on where the L?(D)-mass of u,, is concentrated. Roughly speaking, we
will estimate the number of nodal domains of u,, in each of the following four cases:

i) the majority of the mass is concentrated away from the necks .4 i.k(w) and the
boundaries of the domains Z;
ii) some of the mass is concentrated away from the necks ./4;; x(w) and near the
smooth parts of the boundary of the domains Z;;
iii) some of the mass is concentrated near a vertex of &, or the ends of the necks
Nij e (w);
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iv) some of the mass is concentrated in the necks .4;;  (w).

Using the same techniques as in [9] and [18], cases i) and ii) can be handled using the
Faber-Krahn Theorem together with a reflection argument across the smooth part of
the boundary of 2 (w). We will recall this argument and define the above partitioning
of the nodal domains in Sects. 4 and 3.2 respectively.

The novelty of our work lies in the remaining cases. For case iii), in Sect. 5 we
will exploit properties of a Neumann eigenfunction near a corner in order to bound
the number of such nodal domains near each vertex in 2 (w). Finally for case iv),
in Sect. 6 we will prove a non-sharp version of the Faber-Krahn Theorem for thin
cylinders in order to obtain a lower bound on the area of nodal domains contained in
the neck. In particular, for sufficiently large eigenvalues w,, (w), the number of nodal
domains in cases ii), iii), and iv) will be small compared to case 1i).

3.1.2 Strategy for Obtaining the Lower Bound on Ng’zv(w) (Um(w))

For the lower bound on (11), we will use a Weyl law with an explicit bound on
the remainder. This comes from a Weyl remainder estimate given in [26] involving
Mg w)(8), as defined in (6). We then bound Mq ) () in terms of & and the five
geometric constants p*, «*, §*, T*, w*. This estimate will be given in Sect. 7.1.

3.2 Partition of the Chain Domains

Let Q2(w) be a chain domain as in Definition 2.3. As outlined in Sect. 3.1.1, we
estimate the number of nodal domains by splitting our study into a series of cases.
This is achieved by partitioning the domain. In this section, we define the partition,
establish its required properties, and use it to define bulk, boundary, corner, and neck
nodal domains.

Given § > 0, we partition 2(w) into U?’:o Q‘; (w). Roughly speaking,

Q2 (w) is the part of 2 (w) a distance § away from the boundary;

Qg(w) is a §-neighborhood of the smooth part of 92 (w);

- Qé(w) is a §-neighborhood of the vertices of 7.

25 (w) is the part of each neck domain that is distance § from the ends of the necks
(when w;; x is sufficiently small relative to 8).

- Qi(w) contains a §-neighborhood of the ends of each neck domain (when w;; x is
sufficiently small relative to §).

In what follows, we continue to write w; 4 for the minimum neck widths introduced
in (7).

When § is small compared to the minimum width w;; x of the neck N .k (w), then
Qg(w) also contains a §-neighborhood of the vertices where the neck 4 i (w) is
joined to the domains Z;, Z;. However, when § is large compared to the minimum
width w;; x of the neck 4;; x(w), then Qi(w) contains a §-neighborhood of these
vertices, and Qg(w) then contains the rest of the neck .4;; i (w).
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Throughout, we will work with § > 0 satisfying

5 < min {LL(w)(S* L(w)} (12)
< % : :

K*T*

with §*, k*, T* the vertex control, normalized curvature, and normalized cut-distance
constants of Q(w). Recall that L(w)&* gives a lower bound on the distance between
vertices of Uy Dy, and this bound on § guarantees that we can cleanly separate a §
neighborhood of each vertex p in 9Q2(w) from the rest of its connected component
in B(p, L*§*) N dQ(w). The upper bound L(w)/(x*t*) on § will also ensure that,
after excluding a disc of radius § centered at each vertex of &, the cut-distance of
the remaining part of 3%, is bounded from below by t*8. This will be important
because it will allow us to apply a diffeomorphism to straighten this resulting part of
the boundary.
We proceed to give the precise definition of the partition.

Definition 3.1 (§-partition of a chain domain) Let Q(w) be a chain domain as in
Definition 2.3 and § > 0 satisfy (12). Then, the §-partition for €2 (w) is defined as

4
Q) = jw),
j=0

where the following holds:

1) Qg (w) contains the intersection of €2 (w) with a disc of radius § around each vertex
of Yy foralll <¢ < M.
2) Foreachl <i < j <M, 1 <k < K;; one of the following holds.

i) If Wij k > 46, then
° Qg(w) contains the intersection of Q(w) with a disc of radius § around
each vertex formed by the neck .4;; (w) and the domains %;, %;;
° Q‘; (w) contains the part of .4;;  (w) near its boundary, given by

[x e Axaw) s distcr, 047 4 w)) < Je*s |\ @i (w).

ii) If w;j x < 46, then
° Qﬁ(w) contains the §-neighborhood of the ends of the neck ¥;; « ({0} x
lij k) and 9 e ({Lij k) < Lijx);
° Qg (w) then contains the rest of the neck, J%j’k(w)\Qﬁ(w).

3) Q‘f (w) includes

fre

(=

Dy - dist(x, 32 (w)) < %1*8}\ (2B w) U Qi (w)).

(=1
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() () ()
%% ) 0 (w)
() Q2 (w) () 0 (w)

Fig. 3 The two §-partitions of the chain domain Q(w) introduced in Fig. 1 with w;; ; > 44 (left) and
wjj k < 48 (right)

4) Q) (w) is defined by
Q) (w) = Q(w)\ (2 (w) U5 (w) U QS (w) U Q4 (w)).

See Fig. 3 for an example of the possible §-partitions for the model domain 2 (w)
introduced in Fig. 1, depending on the relative size of §, and the neck width w.

We will later work with a partition of unity adapted to the §-partition of a chain
domain. Before introducing it, we present the reader with a lemma that allows us to
straighten the boundary of the domain. This lemma will allow us to define the partition
of unity and will also be used in Sect. 4.

Lemma 3.1 Let Q(w) be a chain domain. Fix n > 0 with n < L(w) min {8*, #}
Given a side of 9y, denote by by the part of this side a distance at least n from the
vertices of Dy. Letting {y (s) : s € 1} be a parameterization of by, and n(s) be the
unit inward normal to 9% at y (s), a neighborhood of b, in P, can be straightened
in the following sense.

The function

F:Ix[0,3t"0 = P, (5,0 > (x,y) = y(s) + tn(s),

is a diffeomorphism onto its image. Moreover, the Jacobian of this change of variables
is bounded from above and below by

L3l e <], 1= 3L 't = g
respectively.
Proof By the definition of the normalized cut-distance constant t*, since n < L(w)§*,
the cut-distance of b, is bounded from below by 7*#. The proof of this lemma then
follows in an identical way to the argument in Section 3 of [9], and so we omit the

details. O

Remark 3.1 For each neck .47; (w), we define the diffeomorphism F;; i by
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Fiji [0, Lij k] x (=wij g, wij k) —> Aijr(w)
Fiji(s,t) =Gk (s, 01+ (¢t + wij o)l lij k] /Quwij i)

where we recall #1 < 0 defines an endpoint of the interval /;; ;. By the definition of
w;j k in (7) and the neck-width constant w*, [9;%;; (s, t)| is bounded from above
and below by w;; /|1;; x| multiplied by constants depending only on w*. Therefore,
the Jacobian of Fj; j is bounded in terms of the neck-width constant w*, and so in
particular this can be used to straighten the top and bottom boundaries of .4;;  (w).

We proceed to introduce the partition of unity associated to the §-partition of a
chain domain.

Lemma 3.2 Let Q(w) be a chain domain. There exists a constant C* > 0 such that the
following holds. For each § > 0 satisfying (12) there exist smooth functions { X?}é}:o

associated to the §-partition {Q‘; (w)}‘}:0 of Q(w) such that

(xf)251 on Q(w),
0

4

/:

xf =1lon Qi.(w)forj =0,3,
§/2

X0 =10 Q) (w),

X =1on @ w) for j =2.4,

X? e H'(Q(w)) with ’VX}” <C*$ Vae onQw)forj=0,...,4

KN b o~

Proof This result follows from the definition of the §-partition, and the straightening
of the smooth parts of the boundary given in Lemma 3.1 above:

First, the cut-off function Xés is straightforward to define as a sum of radial functions,
centered at the points used to define Qg(w), and on a length scale comparable to §.

To define X{S, we use the upper bound on § from (12). This allows us to apply Lemma
3.1 above with = §. Using the diffeomorphism F from this lemma straightens each
part of the side of & in Q‘? (w), via a change of variables with a bounded Jacobian. We
can also use the diffeomorphism from Remark 3.1 to straighten the top and bottom
boundaries of .4;; x(w) in the case where w;; x > 44. It is then straightforward to
define the cut-off function Xf with the desired properties.

This straightening of the sides of & and the necks .#;; « (w) also allows for the func-
tion Xjf to be defined on a length scale comparable to §, with the required properties.
Note that since the neck and sides are straightened using two different diffeomor-
phisms, we can use them to define a continuous cut-off function Xjf in HY(Q(w)),
with a possibly discontinuous derivative at the intersection of their supports. This is
the reason for the almost everywhere nature of the pointwise bound stated in (4) above.

The function Xés is then defined with support in the necks .4;; x (w) with w;; , < 46,
and so that

O + (x$)? = 1 on A i (w).
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Finally, x is defined so that Z‘;:O( X ?)2 = 1 on Q(w) as required. i

3.3 Classification of the Nodal Domains

Let u be a Neumann eigenfunction of € (w), not necessarily Courant sharp, with
eigenvalue u, and let D be one of its nodal domains. Fix ¢, > 0. We will use ¢
to measure the extent to which the L2(D)-mass of u is concentrated away from the
boundary. As in Definition 3.1, § is used to partition the neighborhoods of different
parts of the boundary of Q2 (w). We will eventually choose 6 in terms of the area of
Q(w) and the eigenvalue p. We follow a similar framework to that in [18] and [9],
but with more regions.

Let { X? }A}zo be the associated partition of unity to the §-partition {Qi.(w)}‘}zo of
Q(w) (see Lemma 3.2). We decompose

So, ug is localized in the interior, u#] is localized near the smooth part of the boundary,
uy is localized near corners of Z;, and when w;; x < 48, u3 is localized near necks
N ik (w), and uy is localized near where the necks are joined to the domains Dp.

For ¢ > 0 and § > O, the collection of bulk, boundary, corner, and neck nodal
domains will be denoted by

Vi(e;u), Vi(esu), Vi(esu), V(e u), (13)

respectively, and defined in the following way:

e bulk nodal domains: D € Vg (g;u) if
luol72py = (1= )lullZs - (14)
e boundary nodal domains: D € V{S (g;u) if
172y = Gelll 7o - (15)
e corner nodal domains: D € Vg (e; u) if
w2012y = 3elulliapy o8 uallfaprs, g = gellUliagpy  (16)
e neck nodal domains: D € Vés (e; u) if
> gél

7)

2 1 2 2 2
||u3||L2(D) = ZSHMHLZ(D) or ”u4||L2(D0Ui,j,kt/%j,k(w)) |””L2(D)'
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For j =0, 1, 2, 3 we write
V(e u) = #V) (&5 u) (18)

for the number of domains in each class.
Note that a given nodal domain may fall into more than one of these categories, but
we always have that the total number of nodal domains for « is bounded by

3
v(u) < Zv?(s; ). (19)

Jj=0
3.3.1 Green’s Formula for Nodal Domains

A key ingredient in bounding the number of each type of nodal domain will be to
obtain an upper bound on the first Dirichlet eigenvalue of a region of area comparable
to a given nodal domain, and then apply the Faber-Krahn Theorem. In order to obtain
this upper bound, we will need that the following Green’s formula holds for each nodal
domain.

Lemma 3.3 Any nodal domain D of a Neumann eigenfunction u of Q (w), with eigen-

value u, satisfies
/ |Vu|2=u/ u’.
D D

Proof To prove the lemma, we will use the following version of Green’s identity, given
in [10, Lemma 1.5.3.8]: Let  be a bounded, open set in R?, with boundary 92 given
by a C!! curvilinear polygon. Then, for v; € H2(Q), v, € H(RQ),

8111

/(Avl)v2 = —/ Vv1~Vv2+/ —). (20)
Q Q aq OV

In the case where the nodal domain D does not contain a corner of 2(w), then the
eigenfunction u is smooth in D. Moreover, since Q2 (w) is planar, the boundary of
D is piecewise C! and meets at equal angles in the interior and on the boundary.
Therefore, we have sufficient regularity to apply (20) with v = vo = u and Q = D.
Since Au = —puu, and u satisfies Neumann boundary conditions on 92, together
with Dirichlet boundary conditions on the rest of d D, this gives the equality in the
statement of the lemma.

To handle the case where d D contains a vertex of €2 (w), we need to use the regularity
of the Neumann eigenfunction u at the vertex. Let 6 be the interior angle of a given
vertex. Then, by the theorem in Section 1 of [27], u satisfies these estimates in a
neighborhood of the vertex:

1) if @ < m,thenuis C lina neighborhood of the vertex;
ii) if & > m, then u is Holder continuous, with exponent /6, in a neighborhood of
the vertex, and lim sup,_, , 7' ~/?|Vu| < oo, where r is the distance to the vertex.
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In particular, since 6 < 2, this ensures that Vu € L4,

We now define Dy to be the set formed by removing from D with discs of radius & >
0 centered at the corners of 2 (w). We can choose the sequence ¢, with limg_, o, € =
0, so that the domains Dy are C!-!-curvilinear polygons. Moreover, u is smooth in
Dy, and so applying (20), with v| = vy = u, we obtain

d
—/ y,|u|2=—/ |Vu|2+/ —uu.
Dy, Dy oDy v

By the boundary conditions satisfied by u, the only contribution to the boundary
integral is from arcs of the circles of radius &; centered at the corners of Q(w). By
the regularity of # and Vu, these contributions go to 0 as &; tends to 0. Therefore,
taking the limit & — 0, we obtain the equality in the statement of the lemma, and
this completes the proof. O

Remark 3.2 As we are working in two dimensions, the nodal domain D has a Lipschitz
boundary, and meets the smooth part of the boundary of €2 (w) at non-zero angles. For
smooth components of the boundary this is proven in Theorem 2.3 in [12], and at
corners it is proven in Theorem 2.6 in [12]. We will also assume that D N {u; # 0}
has these same properties for 0 < j < 4, which can be achieved by replacing § by a
sequence 8, — § if necessary.

4 Estimates on Bulk and Boundary Nodal Domains

In this section, we bound the number of bulk and boundary nodal domains. See Sect. 3.3
for the classification and (18) for the notation.

4.1 Number of Bulk Nodal Domains

We recall that for §, ¢ fixed and u being a Neumann eigenfunction for the chain domain,
a bulk nodal domain, D € Vg (e, u),is one for which (14) holds. As introduced in (18),
we continue to denote the corresponding number of bulk nodal domains by vg (e; u).
Our main result is the following.

Proposition 4.1 (Number of bulk nodal domains) Let 2(w) be a chain domain. There
exists a constant C§ > 0 such that for all 0 < & < % and ) < B < % the following
holds. If u is a Neumann eigenfunction of Q2(w) with eigenvalue v and |2 (w)|pn >
(CHYP, then

1 141
(iusz(w)mw scsusz(w)m)zﬂ) 1)

(e u) <

i) \1—¢ 1—¢

for§ = |Qw)|' /2 Pup.
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Proof Tobound the number of bulk nodal domains of u, we follow exactly the argument
that was used to derive [9, equation (16)] and [18, equation (2.3)], using the properties
of the §-partition from Lemma 3.2, provided § satisfies (12). This involves applying
the Faber-Krahn Theorem to each bulk domain, where we use ug = Xgu as a test
function to obtain an upper bound on its first Dirichlet eigenvalue. This argument
gives the estimate on the area of a bulk nodal domain, D € Vg (¢, u), of the form

l4¢ [pIVuldx 1+ HCs

MMy D7t < )
MDD < 7 [y uldx (1 — )8

(22)

for a constant 6’6‘. Using Lemma 3.3, this gives an upper bound on the number of such
bulk nodal domains of

1 1+e 14+1
S(esu) < ECESTE] IQw). 23
"0(8’”)—m(m)(1_g“+1_8 ; )| (w)] (23)
The result would then hold once we show that the upper bound on § from (12) holds.
To see this, note that the isoperimetric inequality yields |Q (w)|~'/?L(w) > 27'/2.
Thus, setting

c3:22n1/2min{‘s—* 1 }
we have

s = (W~ < ¢ < IR@I P L@min . A @4

Ox
200 k*t*

as needed, provided | (w)|p > ()~ /7. O

We will later choose ¢ > 0 small so that % is sufficiently close to 1, and 8 = 3/8
so that the lower bound on |2 (w)|ux can be written as simply C.

The first term in the estimate in Proposition 4.1 will be the leading order term in
the count of the number of nodal domains. It is therefore important that the second

term is sub-linear in |2 (w)|u for 0 < 8 < %

4.2 Number of Boundary Nodal Domains

We recall that for §, ¢ fixed and u being a Neumann eigenfunction for the chain domain,
a boundary nodal domain, D € Vf (e, u), is one for which (15) holds. As introduced
in (18), we write v‘ls(s; u) for the number of boundary nodal domains of u.

In order to bound v‘f (¢; u), we use the argument leading to [9, Equation (18)] and
[18, Equation (2.13)]. The first step in the proof is the following result.

Lemma 4.1 Let Q(w) be a chain domain. There exist constants ¢*, C* such that the
following holds. Let § > 0 satisfy (12), ¢ > 0, and u be a Neumann eigenfunction of
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Q(w) with eigenvalue |u. For each D € Vf (e, u) there are a set Vp, with a Lipschitz
boundary, and a function v € HO1 (Vp) with the following properties:

Area(Vp) < C* Area({x € D : dist(x, Q(w)) < %1*8}), (25)

and
/ 2> e, / Vol < C* i+ (£*8)2).
Vb Vp

Proof Lemma 4.1 follows from the straightening results of Lemma 3.1 (with n = §)
and Remark 3.1, using an identical argument to the proof of the estimates (13), (15),
and (17) in Section 5 of [9], and so we omit the details of the proof here. In particular,
this proof relies upon the Lipschitz properties of D N {# # 0} from Remark 3.2. O

When bounding v‘f (e, u), we will use Lemma 4.1 along with the Faber-Krahn
Theorem to obtain that vf (e, u) is bounded by a multiple of Mg(w)(%r*S), where
Mgqw)(?) is as defined in (6). To deal with this new upper bound, we will use the
following lemma.

Lemma4.2 Let Q(w) be a chain domain. There exists C* > 0 such that
Mg () < C*L(w)t,
fort < %L(w)min {z*s*, Kl*}
Proof To bound Mg ) (t), we will break the function into three parts:
1) the contribution from the part of the necks {.4;; x (w)} that are a distance of at least
t from the vertices of Q(w),
2) the contribution from the parts of {9 Z;} with an appropriate neighborhood of each
vertex excluded,
3) the contribution from neighborhoods of the vertices of 2 (w).
We will denote the contribution to Mg ) (¢) from each of these parts of €2 (w) by
Ms(zj()w) (1), so that

3

Moy () = Y M, @),
j=1

To handle 1), we use the diffeomorphisms Fj; x from Remark 3.1 to straighten the
upper and lower boundaries of each neck .4 7.k(w). Then, there exists a constant C *,
depending only on the neck-width constant w* such that

K
Myl (@ < C* Y Y Length(d.47 x(w)r < C*L(w)r. (26)
I<i<j<M k=1
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For 2), we exclude an 7 neighborhood of each vertex of Z,, with n given by
n = %(t*)’lt. The upper bound on ¢ from the statement of the lemma then ensures

that n < L(w) min {8*, K*17 } Therefore, we can apply Lemma 3.1 with this value of
n to obtain a diffeomorphism that straightens this part of the boundary of %;. Since
this change of variables has a Jacobian bounded by %, we obtain

M
MGy (1) < 3> Length(9Z0)t < FL(w)r. 27
=1

Finally, since, by the definition of the vertex control constant, €2 (w) has at most 1/8*
vertices, the remaining contribution to

{x € Q(w) : dist(x, 0Q(w)) < t}
is contained within 1/8§* discs of radius 27. Therefore,

y®

o <4 = Greh T @) 7 (28)

Combining (26), (27), and (28), using the upper bound on ¢ gives the desired estimate
on Mg(w) (1). O

Our main result in this section, which bounds the number of boundary nodal
domains for an eigenfunction u, is the following.

Proposition 4.2 (Number of boundary nodal domains) Let Q2(w) be a chain domain.
There exists a constant C{ > 0 such that for all 0 < & < % and ) < B < % the

following holds. If u is a Neumann eigenfunction of Q(w) with eigenvalue i and
IQw)|pn > (CHVP, then

vi(ew) < Cle™ Q)" P
fors =1Q)|'*~F P,
Proof Let D € Vf (e,u) andlet V,, C RZandv € Hé (V,,) be asin Lemma 4.1. Then,
Area(V,)) < C* Area({x € D : dist(x, 0Q(w)) < %T*S}). (29)

On the other hand, writing A1 (Dy, ) for the first Dirichlet eigenvalue of the disc of
area equal to that of V,), the Faber-Krahn Theorem yields

) Vo~ = 21Dy,)

|Vvl|?
<MV, < fva_Uz < C*e! (M + (r*a)*z). (30)
VD
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We conclude from (29) that there is C* such that, for every D € Vf (e, u),

-1
¢ (M n (1*5)—2) < C*Area({x € D : dist(x, 0Q(w)) < 37°8}).
We then conclude
V(esu) < C¥e (u + (z*s)*z) M) (3*8). 31)

As explained in (24), § = |Q (w)|'/?>~# =P satisfies (12) for (|Q(w)|w)'/? suffi-
ciently large, and so we can apply Lemma 4.2 with ¢t = %r*(S to obtain

Mo (3778) < 3C*T* L(w)8 = 3C*T* L(w) |2 (w)| ™2 1Q (w) (12 (w)|) P

<30T (M A1) (1Q W) | w P,

Here p* is the isoperimetric ratio constant. In addition,

n+ @972 = 2@ (IR + @) (RWIWF),

and so the result follows from (31). O

5 Estimates on Corner Nodal Domains

In this section, we will obtain an upper bound on the number of corner nodal domains.

Let Q (w) be a chain domain, 8, ¢ > 0, and u be a Neumann eigenfunction for Q (w).

We recall that a corner nodal domain, D € V‘2s (e, u), is one for which (16) holds. As

introduced in (18), we write vg (¢; u) for the number of corner nodal domains of u.
We write

S (8) ={(r,0) € Q(w) : r <4, |0] < 6p/2},

where we use polar coordinates. The first step in controlling vg (&; u) is the following
analogue of Lemma 4.1.

Lemma 5.1 Let Q(w) be a chain domain. There exist constants c*, C* such that the
following holds. Let § > 0 satisfy (12), ¢ > 0, and u be a Neumann eigenfunction of
Q(w) with eigenvalue . Let D € Vg (e, u) such that

21172y = Gellul 7o -
Then, there are a vertex vy of Q(w) with interior angle 6y, a set V. C Sp,(8) with a
Lipschitz boundary and a function v € HY\(V), withv=00ndV N Se, (8), and the

following properties:

Area(V) < C* Area({x € D : Xgu # 0, dist(x, vg) < 8}), (32)
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and
e < / W2 < CF / IVul? < C* (u +5—2) . (33)
\%4 v

Proof By the definition of the vertex control constant §*, the number of vertices of
Q2 (w) is bounded by 1/§*. Therefore, since ||u2||i2(D) > %s”ulliz(m, there exists a
vertex vg, opening angle 6y, such that

85*/ u’.
D

We now apply a transformation to u» to translate and straighten the sides of 2 (w)
meeting at vg. This will give us a function v defined on Sg,(6) which is smooth away
from the origin, and vanishes on the portion of the boundary of its support in the
interior of the sector (i.e., v = 0 on dV N Sg,(8)). The transformation is constructed
as follows:

By the upper bound on § from (12), and using the definition of the vertex control
constant §*, we can rotate and translate so that, without loss of generality, the vertex
vo is at the origin, and in a disc of radius 205 centered at the vertex, this part of the
boundary of 92 (w) can be written as y = f1(x) for £x > 0. Moreover, there exists
a constant 6%, depending only on §*, such that the opening angle 8y of each vertex
satisfies 0* < 6y < 2w — 0*. Therefore, the rotation can be chosen to ensure that
lim,_, o+ fr(x)/x = ax, with

u%i

Bl

/Dﬂ{dist(x,vo)<5}

¢ <lax] <C*, < |fe(@)/x| = C* |fi(0)] =C,

for constants ¢* and C* only depending on §*.
Next, there exists a subset S of a rotation of Sy, (6) such that the function

f:l:(s)t)7
a

+S

F:S5— Q(w), (s,1) —> <s,

is a Lipschitz homeomorphism onto its image (and a diffeomorphism away from
s = 0), with the image containing the part of Q (w) in the disc of radius § centered at
vg.

By Lemmas 3.2 and 3.3, the function u; satisfies

/ |w2|2=/ IV (du) | < C*(u +572).
D D

Therefore, we set v = up o F, and V = F~1(D N {dist(x, vo) < 8, u» # 0}), which
by Remark 3.2 we may take to be Lipschitz. To complete the proof of the lemma, it is
sufficient to show that the Jacobian of this change of variables is bounded from above
and below, and that the off-diagonal entries are bounded. This Jacobian is given by
the determinant of
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I SfL(s) — f(s)
t—2
ats

0 fi(s)_ ’
a+s

and so by the properties of f1 (s)/s, we just need to bound the off-diagonal term. For

some [¢[, [&] € (0,5) we have fi(s) = axs + 5s* f1(¢), and fi(s) = ax + sf{(€).
Therefore, it is sufficient to show that

lLfLOI+1tfLE)] < C* (34)

for a constant C*. Since f| (x) is bounded, and the curvature of the two sides of €2 (w)
is bounded from above by x*/L(w), we obtain

IfL)] < C**/L(w).

Combining this with the upper bound on § from (12), and since |¢| < §, it implies (34)
and completes the proof of the lemma. O

We are now ready to state and prove the main bound on the number of corner nodal
domains.

Proposition 5.1 (Number of corner nodal domains) Let Q(w) be a chain domain.
There exists a constant C5 > 0 such that for all 0 < & < % and 0 < B < % the

following holds. If u is a Neumann eigenfunction of Q(w) with eigenvalue  and
1Q(w)| = (CH)'P, then

v (e,u) < Cye™* (1 (w)|p)* %,

for 8 = 1Q(w)[2 PP,

Proof Throughout, we assume that (]2(w)|u)? is sufficiently large so that § satisfies
(12), and in particular Lemmas 4.1 and 5.1 apply. The proof of the bound is divided
into two cases, depending on whether we are counting nodal domains D € Vg (e, u)
for which either

(A) llu2llapy = 1elullapy o B) lualfapry, o) = g1l p)-
In Case 1 below, we prove that
#{(D € V5 (e, u) : (A)holds} < Cie™* (|Q(w)|u)> %, (35)

and we explain how to do the same with (A) replaced by (B) in Case 2 (see (44)). The
bound on vg (e, u) then follows from these two estimates.
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Casel: D e Vés (e,u)is suchthat (A) holds.

First, we claim that there exist constants c¢*, C;, and a vertex vp, such that, if
1 w)|u > (C5)VP, then

Area (D N Bs(vp)) > c*e*|Q(w)| (|2 (w)|w)*F 3. (36)

Here Bs(vg) is the disc of radius § centered at the vertex vg. Since Bs(vg) has area
7872 = w|Q(w)|' "2 1 =2P the bound in (36) yields (35) as claimed.

We next proceed to prove the claim in (36). Let v, V be as in Lemma 5.1. By the
lower bound in (33), there exists x*, with |x*| < § such that

y2
/ v(x*, )2 dy > Sc*es !, (37)
Y1

where y; = inf J(x*), yo = sup J(x*), with J(x*) = {y e R : (x*,y) € V}. We
now extend v identically by zero outside of V. Note that this does not give a function
in H'(R?), because v does not satisfy Dirichlet boundary conditions on the part of
dV coinciding with the sector 8 = :I:%@o. However, denoting this extension of v by
w, for each x* such that (x*, y) is in V, we do have

w(-, y) € H'([x*, x* + 8]), (38)

with

h2) X*+8
f / \Vw|>dx | dy < C*(u + 872). (39)
Y1 x*

This is because for all such y, the interval (x*, x* + §) is contained in the interior of
the infinite sector |6] < %90. Therefore, since v vanishes on the portion of dV in the
interior of the infinite sector, its extension by 0 satisfies (38), w(-, ¥) is continuous on
(x*, x*48), and (39) follows from the second estimate in (33). In particular, d; w(t, y)
is integrable for ¢ € (x*, x* 4 §), and this means that by the fundamental theorem of
calculus

X

w(x,y)=w<x*,y>+/ dow(t, y) d

X

for x € (x*, x* 4+ 8). We can write

x 1/2
< |x —x*|'/2 (f 19, w(t, y>|2dt) ,
.X*

X
/ dqw(t, y)dt
X

X
and so
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x x 2
w(x, )2 = wx*, y)? + 2w(x*, y)f dqw(r, y)dt + (f dw(r, y) dr)
x* x*

X 2
> Jw(x*, y)* — </ dw(t, y) dt)
x*

X
= sw(*, )% =[x =¥ / |dw (. y)I dr.
.

Integrating in y and using (37) this implies that

/)2 w(x, y) dy> zec* [x —x |/ (/ [0:w(t, y)| dt) y. (40)
i

Using the estimate from (39) in (40) then gives
»
/ wx, y)rdy > fec*s™! — C*lx — x*|(u +872).
i
So,
» »
/ v(x, y)>dy =/ w(x, y)*dy > gc*es™! (41)
y yi

1

forallx > x* with |x —x*| < £e*e871(C*) ™! (u+872)~1. For simplicity, we define
the new parameter

S=c* (s (4872

Note that we have set § = |Q(w)|"/2Au=F, and s08 ~ 8yl = |Qw)|/?
(192 (w)| )P~ for large |Q2(w)|n and 0 < B < 5. In particular, § < § for large
12 (w)]pe.

Now let x = x (x, y) be a smooth cut-off function, equal to 1 on the set

[+ d5e8. 2" + dgsd + cted] x . vl

and vanishing outside a cSeS neighborhood of this set, with first derivatives bounded
by Cg e~1571. Here ¢y > 0 and Cj are chosen, depending only on the interior angle
Op at the vertex (which is bounded from below by a constant which only depends on
8*), so that the support of x is contained within the interior of the sector. Using (41),
this will ensure that

/ x2w? > c*e?557!
1%
for a constant ¢* > 0. Here, and from now on, the constants ¢*, C* may change from

line-to-line (but will depend only on the five geometric constants of (w)). Let W),
be the support of x. Then, the definition of x and (33) also ensures that
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/ IV (xw)|? < C*(u+ 82 +8272).
VW,

Since W, is contained in the interior of the sector, y w vanishes on the boundary of
V N W,. This implies that the first Dirichlet eigenvalue of V N W, is bounded by a
multiple of

Jvew, IV (xw)?

- <C e 25 s(u4 82 +52%72). (42)
fvmWX Xow

Since § = |Qw)|'/2 PP, for0 < B < %, and for (|2 (w)|n)? > C* sufficiently

large, the right hand side of (42) can be bounded from above by

Cre 461 = C* e~ Qw) | (1Qw) ) . (43)
Therefore, using the Faber-Krahn Theorem as in (30),
Area(V N W,) > c*e*|Q(w)| (12 (w) )P,

completing the proof of the claim in (36).
Case2: D € Vg(s, u)issuchthat (B) holds.

In this case, some of the mass of u is contained in the intersection of the support
of x4 with a particular domain %y (near where % and a neck .4;; (w) are joined).
Then, we straighten the part of d %, using Lemma 4.1 to again obtain, after a rotation,
a Lipschitz set V contained in the half-plane {x > 0}, and a function v € H'(V) with

Area(V) < C*Area({x € DN Py : x2u # 0)),

and

e < / w2 < C*, / IVul? < C* (M+3—2).
|4 |4

Moreover, v can be taken to vanish on dV N {x > 0}. This then allows us to replicate
the proof of Case 1) and show that

#(D € Vi(e, u) : (B)holds} < Cie™* (1Q(w)|u)>~%F (44)

as needed to finish the proof of the proposition. O

6 Estimates on Neck Nodal Domains

In this section, we will obtain an upper bound on the number of neck nodal domains.
Let Q(w) be a chain domain, 8, ¢ > 0, and u be a Neumann eigenfunction for Q (w).
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We recall that a neck nodal domain, D € Vg (e, u), is one for which (17) holds. As
introduced in (18), we write vg (¢; u) for the number of neck nodal domains of u.
This section is divided into three parts. Given D € Vg (e, u),in Sect. 6.1 we explain
how to find a neck NV for which there is a lower bound on the area of A’ N D. This
lower bound will be given in the form of Area(V) where V is a subset of a flat cylinder
or a strip into which the neck has been straightened. Then, in Sect. 6.2 we explain how
to find a lower bound on Area(V'), when V is a subset of a cylinder, in terms of its first
Dirichlet eigenvalue. Finally, in Sect. 6.3 we state and prove the bound on vg (e; u).

6.1 Straightening Lemmas

Givenanodal domain D € V§ (&, u), we know that one of the following two inequalities
hold:

A) Nu3lfapy = zelullizpy  or  (B) Muallfapog s,y = gElHN72 545

In the following lemmas, we explain how to find a neck N for which there is a lower
bound on the area of A" N D in both the (A) and (B) cases.

Lemma 6.1 Let Q(w) be a chain domain. There exist constants c*, C* such that the
following holds. Let § > 0 satisfy (12), ¢ > 0, and u be a Neumann eigenfunction of
Q(w) with eigenvalue 1. Let D € Vgs (¢, u) such that (A) holds. Then, there exist a
neck N;j  (w), a set V with a Lipschitz boundary that is a subset of a flat cylinder of
circumference 4wj; x, and a function v € HO1 (V) with the following properties:

Area(V) < C*Area({x e DN N k() Xésu # 0}) (46)

and
ce 5/ W2 <, / VP < CH(u+872). @7)
14 Vv

Proof As 1/8* is an upper bound on the number of vertices of Q(w), and each
neck contributes four vertices, €2(w) has at most 1/(48*) necks. Since ||u3||

2
LX(Dy’

2
LZ(D) Z

}18 lu]| there therefore exists a neck .4;  (w) such that

/ u% > 88*/ u?.
DO i (w) D

We note that the support of the neck cut-off function Xés only intersects a neck .47}  (w)
when w;; r < 46 (see Definition 3.1). Recall that w;; x is the minimum width of the
neck A; ik (w).

As we commented in Remark 3.1, by the definition of the neck .4;; x(w), there
exists a diffeomorphism Fj; x,
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Fiji [0, Lij k] x (—wjj g, wij k) —> Aijx(w)
Fiji(s, 1) =Gk (s, t1 + (¢ + wij o)l lij xl/ Qwij i) -

The Jacobian of F;; x is bounded from above and below by a constant depending only
on the neck-width constant w*. Then, we define the function it := u3 o Fj; x and set

V given by

Fi (D 0 {uz # 0)) C 0, Lij ] x (=wij k, wij i)
Note that V has Lipschitz boundary and meets the lines 1 = +w; j,k atnon-zero angles,
by Remark 3.2. We now reflect i and V across the line 1 = w; k> and glue across the

line t = —wj;; x. This gives a subset V of a cylinder of circumference 4w;; x, with
Lipschitz boundary, and a function v € HO1 (V), with the required properties. O

Lemma 6.2 Ler Q(w) be a chain domain. There exist constants ¢*, C* such that the
following holds. Let § > 0 satisfy (12), ¢ > 0, and u be a Neumann eigenfunction of
Q(w) with eigenvalue 1. Let D € Vés (e, u) such that (B) holds. Then, there exist a
neck Aij x(w), a set V with a Lipschitz boundary that is a subset of a strip of width
2w;j k and length C*8, and a function v € H'(V) with the following properties:

Area(V) < C* Area({x € DN Aj x(w) : xJu # 0})

and
e < [ v? < C*, / [Vo]? < C*(u + 872). (48)
\%4 \%

Proof This lemma follows using the same idea as for the proof of Lemma 6.1: There
exists a neck .4 i (w) such that the lower bound

/ uﬁ dx > %85*/ u® dx
DO i (w) D

holds. We can use the same diffeomorphism F;; x to transform this neck to an exact strip
of width 2w;; x, with a bounded Jacobian. Since the cut-off function x jf is supported in
a §-neighborhood of the ends of the neck ¢;; ({0} x I;; x) and %;; x ({L;j x} X Lij k),
the function v = u4 o Fjj; and set V = I’Jlk(D N A k(w) N {ug # 0}) satisfy
the estimates given in the statement of the lemma. In particular, as we commented in
Remark 3.2, this ensures that the set V has Lipschitz boundary. O

6.2 Controlling the Area of a Subset of a Cylinder

Given D € Vés (&, u) satisfying (A), Lemma 6.1 gives the existence of a neck .4;; i (w)
so that the area of .4;; x (w) N D can be bounded below by the area Area(V') where V
is a subset of a flat cylinder. In this section we explain how to obtain a lower bound
on Area(V) in terms of the first Dirichlet eigenvalue for V.
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Lemma 6.3 Let 6, be the flat infinite cylinder with circumference P > 0, and let V
be a Lipschitz set on 6, with first Dirichlet eigenvalue equal to \. Then,

Area(V) > min{zA; (D)A~L, PA (D)/21~1/2).

Proof To prove the lemma, we use the classical proof of the Faber-Krahn Theorem in
the case of constant sectional curvature k = 0 (see [5]). However, instead of using the
isoperimetric inequality in R?, we use the following inequality on the flat cylinder [13,
Theorem 6]: Let W be a region on the cylinder ¢, enclosing area A and of perimeter
L. Then,

) L=2V7A if A<lpP? 2) L=2P if A=1P? (49

with equality only when W is an isometric embedding of a round disc on the cylinder
in the first case, and the region between two cross-sections of ¢, in the second case.

Letv € H& (V) be anon-negative first Dirichlet eigenfunction of V', with eigenvalue
. We then build a comparison function with circular level sets as follows: Let D(¢) C
R be the disc of radius r(¢), such that 7r(1)> = |D(¢)| = Area({v > }). Note that
r : [0,19] — [0, r(0)], with g = maxv and r(0) = Area(V), is continuous and
strictly decreasing.

Next, let W = r—!, and define F : D(0) — R by F(p) = V(|pl|). Note that by the
co-area formula

/{ } ﬁda, = —4L(Area({v > s)))| _, = —27r(®)F (1), (50)
v=t

where doy is the measure on the level set {v = ¢t} C V. Therefore, since t = W (r(¢)),

fo
/ 2 dv, :[ IZ/ W—lv‘dotdt
D 0 {v=t}

1
—27 O(\If(r(t)))zr(t)r/(t)dt = / |F|?dv. (51)
0 D(0)

Here we have used dv, and dv to denote the area measure on V and R? respec-
tively. Next, notice that by Cauchy-Schwartz ( f{v:t} |Vl_v|d0f) ( f{v:t} |Vv|dat) >
Length({v = t})z. Thus, by (50) we have

—_ 2
/ |Vvldo, > _w‘
{v=t) 2rr(t)r' (1)

Using again the co-area formula

) " 3 o Length({v = 1})?
Vo dvg = \Voldo,dt > mak LUl A
D 0o Jp=n 0 2r(t)r'(t)
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We now split into two cases depending on the relative size of Area({v > t}) and the
circumference P of the cylinder €,,.

Case 1. Suppose that the area of V satisfies
Area(V) < Lp2.
Then, since Area({v > t}) < Area(V), case 1) in (49) implies that
Length({v =¢}) > 2\/7TT(I) =2mr(t).

Thus, using that W’ (r())r’(¢) = 1, the bound in (52) yields

Io 2
/ Vo2 dvg > —/ )
D o 1)

1
= —/02m(¢)(\p’(r(t)))2r’(t)dt =/ IVF>dv.  (53)
0 D(0)

From (51) and (53) we have

A= 1 (D0) = ﬁ(v)kl(ﬂ)), (54)

which can be rearranged to give Area(V) > A (D)A~!.

Case 2. Suppose now that the area of V instead satisfies
Area(V) > %PZ.

Set A(t) = Area({v > t}). Then, the isoperimetric inequality in (49) implies that
. ) P
Length({v = £}) > min {2P, 2 nA(t)} = min {— 1} 277 (1)
wr(t)

P
= «/nArea(V)zﬂr(t).

P _P_ _ P
ar(t) — 7r(0) T /mArea(V)’
L < 1. Thus, using that W’ (r ())r’(¢) = 1, the bound in (52) yields

JmArea(V)
P? 0 2mr(t
/ Vo dvg > — / @ 4,
D wArea(V) Jo (1)

P? 10 / ),
N ‘m/o 2 () (W' (r (1)) r' (Dt

p? 2
- IVF|?dv. (55)
nArea(V) D(0)

To get the last inequality we used that

together with
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From (51) and (55) we have

A= a1 @0) =

> Area(v) A (D). (56)

Area( V)2

This can be rearranged to give Area(V) > PX; (D)!/20~1/2_ Since either (54) or (56)
must hold, this completes the proof of the proposition. O

Remark 6.1 We do not expect the second lower bound in Lemma 6.3 to be sharp: The
first lower bound of Area(V) > i1 (D)A ! is the same as the lower bound from the
Faber-Krahn Theorem for the disc. For the section S4 on the cylinder 4, of area A, the
first Dirichlet eigenfunction is sin (P Z X ), with eigenvalue A = P2r2A72, Therefore,
in this case, we have the equality Area(S4) = Pra~ 12,

Motivated by this, we conjecture that

Area(V) > min{nkl(]]])))»_l, Pn)\_l/z},

with the minimizer given by a disc on 6, if A > A1 (D)2P~2, and a section of 6,
if A < A1(D)2P~2. The second lower bound on Area(V) from the proposition is off
from this conjectured sharpest lower bound by a factor of

D) =]~ 1.306.

As this factor is independent of A and P, Lemma 6.3 is sufficient for our nodal domain
count estimate.

6.3 Number of Neck Nodal Domains

We are now ready to state and prove our main result for this section.

Proposition 6.1 (Number of neck nodal domains) Let Q(w) be a chain domain.
There exists a constant C3 > 0 such that for all 0 < & < % and ) < B < % the

following holds. If u is a Neumann eigenfunction of Q2 (w) with eigenvalue | and
QW) = (CHVP, then

Wi u) = €5 [N IR0 + e (2w,

for§ = |Qw)|' /2 Pub.

Proof Throughout, we assume that (|2 (w)| w)P is sufficiently large so that § satisfies
(12), and in particular Lemmas 6.1 and 6.2 apply. The collection of neck nodal domains
Vg (&, u) is split into those who satisfy either (A) or ([3) in (45). We proceed to prove
that the upper bound we claim on vg (&; u) holds in each case.
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Casel: D € Vés (e,u)issuchthat (A) holds.

In this case, by Lemma 6.1, there exist a neck 4" (w) = 4; x(w), of minimum
width w := w;; x and a Lipschitz set V that is a subset of a flat cylinder of circumfer-
ence 4w such that

Area(V) < C* Area({x € DN A (w) : xlu # 0)).

Here, to simplify notation, we have dropped the i j, k subscripts. Therefore, Lemma 6.3
yields

min{mr i1 (D)2, PA (D)2 712) < C* Area(fx € DN A (w) : x3u # 0)),
where A is the first Dirichlet eigenvalue for V. By (47), we have
A< Ce N (u+682) = C*y,
and so
L8 woy—1 -1 1/2.,-1/2

Area({x € DN A (w) : x3u # 0}) > (C*)” min{w A D)y ", 4wr (D) /<y }
for a constant C* that may increase from line-to-line. The area of the neck .4 (w) is
bounded by a constant depending only on the neck-width constant w* multiplied by
wL(w). Therefore,

#{(D € V2(e,u) : (A)holds}) < C*wL(w) max{y, w™'y!/?}. (57)
For 8 = |Q(w)|"/2~# =P, we have

y =7 IR@) ! (IR@I + (2@W)w>).

By Definition 3.1, as the support of X;f intersects .4 (w), we must have w < 48.
Therefore, since the isoperimetric ratio L(w)?/|2(w)] is bounded from above by p*,
we have

wLw)y < 45L(w)y = 4Lw)|Qw)| "'/
(12w~ e (12wln + (2wl )

= 42! (12w )~ + (2w)w?)
and
1/2
wL@w 'y = Lw)Qw) 2 (12wl + (2w *)

1/2
= ()27 2 (IRl + (2@ )
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Using these bounds in (57), together with 0 < 8 < %, implies that
#{D € V3(e,u) : (A) holds} < C*¢™" ((|s2<w)|u)“ﬂ + (|sz<w>|u)‘/2) . (58)

Since % <l—pgforB < %, the quantity in (58) therefore satisfies the estimate in the
statement of the proposition.
Case2: D e Vés (¢,u) is such that (B) holds.

In this case, by Lemma 6.2 there exist a neck .4 (w) = 4;; x(w), of minimum
width w := wj;; x, a Lipschitz set V' that is a subset of a strip of width 2w and length
C*8, and a function v € H'(V) such that

Area(V) < C* Area({x € DN A (w) : xlu # 0))

and fV v2 > c*e. In particular, we can find x* such that
/ v(x*, y)2dy > " (C*)les . (59)
VN{x=x*}

We now integrate to the left or right of the strip, as in the proof of Proposition 5.1
from (37) to (43), using (48) and (59) in place of (33) and (37), this time applying a
cut-off function in the x-variable. This provides a Lipschitz set W which is a subset
of the infinite strip R x [—w, w], and a function v € H l(W) such that v vanishes on
the part of dW in the interior of the strip. Moreover, Area(W) < Area(V), and, for
(192 (w)|w)? sufficiently large, the function ¥ satisfies

Jw IVO]?
Jw ¥?

for a constant C* that may increase from line-to-line. By reflecting across the line
y = w, we therefore get a set W on a cylinder of circumference 4w, with Area(W) =
2 Area(W), and so that its first Dirichlet eigenvalue, A = A1 (W), satisfies

A< CreTds* )’ = C*y.

Area(W) < C* Area({x € D N (w) : xju #0}),
by Lemma 6.3 we obtain
Area({x € DN A (w) : xlu # 0}) = (C*) ' min{m i1 (D)y !, 4wr (D)2 =172},
By Definition 3.1, and the definition of the neck-width constant w*, the area of the

part of the neck .4 (w) in the support of Xjf is bounded by a constant C* multiplied
by wé. Therefore,
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#(D e Vi(e, u) : (B)holds} < C*ws max{y, w™'y!/?}. (60)

Setting § = |Q(w)|'/2~P =P gives
y =e Q)PP Y = e )T @uw .
Using 0 < B < %, and w < 44, the quantity in (60) therefore satisfies
#{D € Vi(e,w) : (B)holds) < C*e~*((1Qw)w)* % + (12 w)|0)** 7).

This satisfies the estimate given in the statement of the proposition, and finishes the
proof. O
7 Proof of Theorem 1.1
This section is dedicated to the proof of Theorem 1.1. The upper bound on v (u,, (w)),
the number of nodal domains for the m-th eigenfunction u,, (w), will follow from the
control on {vf. (&, upm(w)) }3’.:0 that we developed in previous sections for appropriately
chosen §, €. Atthe same time, when u,, (w) is Courant sharp, we know that v (u,, (w)) =
m is bounded below by the number of Neumann eigenvalues under u,, (w). Therefore,

we prove Theorem 1.1 in Sect. 7.2 after first establishing a lower bound on the Neumann
counting function in Sect. 7.1.

7.1 A Lower Bound on the Neumann Counting Function

In this section, we obtain a lower bound on the Neumann counting function
Ng(w) (u) =#{j : uj(w) < p}, using a Weyl remainder estimat

Proposition 7.1 Let Q2 (w) be a chain domain. There exists C* > 0, such that
Ny ) — = 1Qw) | = —C* (1Qw)|w**

whenever |Q(w)|u > C*.

Proof of Proposition 7.1 By the min-max characterization of eigenvalues p,, (w) <
Am(w), where A, (w) is the m-th Dirichlet eigenvalue of €2 (w). Therefore,

Ny ) = Ny (1),
where N, é)(w) (w) is the Dirichlet counting function. Next, let
R (1) = 7= Q)| — N, ().
By [26, Equation (13)], in dimension 2, we obtain, for any ¢ > 0,

Rogw) (1) < 7= Mo ) (V2e)1 + |2 (w)|(v2e) ' '/, (61)
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For ¢ satisfying
t < 3L(w)min {T*s*, L}, (62)
we can apply Lemma 4.2, so that
Mo w)(t) < C*L(w)t,
for a constant C*. Therefore, setting ¢ = 2./¢, from (61) we obtain the estimate
Row) (W) < C*Lw)tp + Q)| /2, (63)
provided (62) continues to hold. Defining r > 0 by
2 = (€7 Iw)l/ L2, (64)
in order to minimize the right hand side of (63), gives

Raqw) () < 2(CHY2L(w)' 21 (w) |23/

Note that from (64) and the isoperimetric inequality,

( t )42 (€722 w)|/L(w)?)?
L(w) 192 (w)|
_@eH?Em
192 (w)|

Therefore, there exists a constant C* such that, for |€2(w)|x > C*, this choice of
satisfies (62). Since

Ny (1) = 2= 1Qw) |1 = NF ) (1) — 7212 W) |1 = —Ro ) (1),

the estimate in (65) thus completes the proof of the proposition. O

7.2 Proof of Theorem 1.1

We now combine the estimates on the nodal domain counts from the previous sections
with Proposition 7.1 in order to prove Theorem 1.1.

Let u,, (w) be the m-th Neumann eigenfunction of Q2 (w) with eigenvalue 1, (w).
To prove the theorem, we can assume that |2 (w)|u,, (w) is sufficiently large so that
the estimates in Propositions 4.1,4.2,5.1, 6.1, and 7.1 all hold with u = p;, (w). We
will use these estimates to then show that | (w) |, (w) < C* for a constant C*.

@ Springer



Uniform Upper Bounds on Courant Page370f39 262

Let
=3 s:=QwlPu Pt

By Propositions 4.1, 4.2, 5.1, and 6.1, there exists a constant C* such that for each
O0<e< %, by (19) the number of nodal domains of u,, (w) satisfies

3
V(W) <D V3 (e, () (66)
j=0
1 1+¢ ~
< QW) (W) + C* e (|2 W) | (w))*, (67
al(D)1—e
provided that |2 (w)|un > C*. Since Nglzv(w) (m(w)) < m — 1, by Proposition 7.1,

1
m—1 = QW) (w) = —C* (192 () | (w)) ¥4, (68)

provided that |2 (w)|u > C*.
When u,, (w) is Courant sharp, we have v(u,, (w)) = m. Therefore, combining (66)
and (68) implies, in the Courant sharp case, that 1, (w) satisfies

1 1+¢
1 e 3/4
17 | |wm (w) — C7 (|2 (w) | (W)™ < D) 1= 8|Q(w)lum(w)

+ C* e (12 (W) | pm (w)** . (69)

We fix a small absolute constant ¢ > 0 so that

1 1+e¢ 1

@) 1 —¢  4n’

which we can do since 4/A1 (D) < 1. Then, we can rearrange (69) to guarantee that
|2 (w) | pm (w) < CY

for a constant depending only on C*, C* and this value of ¢. This establishes the

second part of the theorem. To prove the first part of the theorem, we see from (66)
that for any eigenfunction u,, (w),

Vam@) _ 1 14e [Q@)lun®) 6*8_4(|sz<w>mm(w)>3/4_
m al(D)1—e¢ m m

Using (68), we therefore have
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v(um(w))< dr 14«

;
TSP oo™, T = D) T — 6

for any ¢ > 0. Letting ¢ — 0 then completes the proof of the theorem.
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