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Abstract
We obtain upper bounds on the number of nodal domains of Laplace eigenfunctions
on chain domains with Neumann boundary conditions. The chain domains consist of
a family of planar domains, with piecewise smooth boundary, that are joined by thin
necks. Our work does not assume a lower bound on the width of the necks in the chain
domain. As a consequence, we prove an upper bound on the eigenvalue of Courant
sharp eigenfunctions that is independent of the widths of the necks.
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1 Introduction

A long-studied question is to what extent the spectrum of the Laplacian interacts
with the geometry of the domain on which it is defined [17]. In this article, we study
chain domains which consist of a family of disjoint bounded planar domains, with
piecewise smooth boundaries, that are connected by thin necks (see Fig. 2). For these
chain domains, we prove bounds on the number of nodal domains of the associated
Laplace eigenfunctions when Neumann boundary conditions are imposed.
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Let � ⊂ R
2 be a bounded domain with piecewise smooth boundary and write

0 = μ1 < μ2 ≤ . . . for the Laplace eigenvalues of the Neumann problem

{
�um = −μmum, in �,

∂num = 0, on ∂�.
(1)

The Courant Nodal Domain Theorem [6] asserts that for all m = 1, 2, . . .,

ν(um) ≤ m, (2)

where ν(um) is the number of nodal domains of um . That is, ν(um) is the number of
connected components of {x ∈ � : um(x) �= 0}. If ν(um) = m, then um is said to be
a Courant sharp eigenfunction and μm a Courant sharp eigenvalue.

In this article, we study the case in which � is a chain domain and prove an
asymptotic upper bound on ν(um) that, in particular, provides an upper bound on the
values ofμm that can be Courant sharp. The bound we prove is independent of a lower
bound of the widths of the necks in the chain domain, hence notably does not depend
upon the cut-distance of ∂�.

A chain domain consists of a family of disjoint bounded planar domains, {D�}M�=1,
and a family of thin necks joining the domains. The planar domains have smooth
boundaries except for a finite number of vertices.

Since we are interested in understanding how our estimates respond to the width
of the necks shrinking to zero, we actually think of a chain domain as a structure built
around a skeleton comprised of the domains {D�}M�=1 joined by a family of curves
{�i }Ni=1. Then, the skeleton is “thickened" into what we call a base domain, �, by
turning each curve �i into a neck that joins two domains. Formally, associated to
each curve �i there is a smooth homotopy Gi : [0, Li ] × [−1, 1] → R

2 such that
�i = Gi ([0, Li ] × {0}) and each of the arcs Gi ({0} × [−1, 1]) and Gi ({Li } × [−1, 1])
belong to the boundaries of the two domains being joined by �i . The curve �i is
then thickened to the neck Ni := Gi ([0, Li ] × (−1, 1)). The base domain is the set
� =⋃M

�=1D� ∪⋃N
i=1Ni . See Definition 2.2 for a detailed description.

Given a base domain �, we allow for the width of each neck to vary by working
with a family of neck widths w := {Ii }Ni=1, where the interval Ii ⊂ [−1, 1] for each i .
Indeed, we define each neck asNi (w) := Gi ([0, Li ] × Ii ). The chain domain is then

�(w) =
M⋃

�=1

D� ∪
N⋃
i=1

Ni (w).

Note that this definition of a chain domain includes polygonal figures with smooth
edges. A toy model with a single neck is depicted in Fig. 1. See Definition 2.3 for a
precise definition of a chain domain and Fig. 2 for an illustration of such.

Our main result is the following.
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Fig. 1 A simple chain domain,
�(w) = D1 ∪ N ∪ D2, in
which two squares, D1,D2 of
side length 2 are joined by the
neckN := [0, 2] × w, with
w = (−w/2, w/2)

Fig. 2 An example of a domain
�(w) from Definition 2.3

Theorem 1.1 Let� be a base domain. There exists C > 0 such that for every family of
neck widths, w, the following holds. If {um(w)}m and {μm(w)}m are an orthonormal
basis of Neumann eigenfunctions and eigenvalues for the chain domain �(w), then

lim sup
m→∞

ν(um(w))

m
≤ 4

λ1(D)
. (3)

Moreover, for every Courant sharp eigenvalue μm(w),

Area(�(w))μm(w) < C . (4)

Here, λ1(D) is the first Dirichlet eigenvalue of the unit disc, D ⊂ R
2. It is known

that λ1(D) = j20,1, where j0,1 is the first positive zero of the Bessel function J0. Since
4/λ1(D) ≈ 0.692 < 1, the upper bound in (3) implies that there are only finitely many
Courant sharp eigenfunctions. The estimate in (4) then gives an upper bound on the
eigenvalue of such an eigenfunction, independent of the choice of neck-widths w.

Remark 1.1 In Section 2.1 we introduce five geometric constants ρ∗, κ∗, δ∗, τ ∗, w∗
associated to the geometry of the base domain �. The constant C in (4) depends only
on ρ∗, κ∗, δ∗, τ ∗, w∗. The same constant C can be used for all chain domains whose
associated base domains, �̃, have geometric constants controlled by ρ∗, κ∗, δ∗, τ ∗, w∗
as explained in Remark 2.1. This implies that the number and structure of the planar
domains and necks comprising � only play a role in controlling the Courant sharp
eigenvalues through how they impact these five geometric constants.
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There are several articles that study eigenfunction nodal domain count under various
boundary conditions (see Section 1.1 for an account of these). Directly related to our
main result is the work of Gittins and Léna [9], who also give a bound on Area(�)μm

when μm is Courant sharp. However, applying their result would require imposing a
lower bound on the widths of the connecting necks in the chain. A strength of our work
is that we prove bounds on the nodal domain counting function that are independent
of the width of the necks, and hence obtain that the oscillatory behavior of the Courant
sharp eigenfunctions is driven by the geometry of the planar domains that make up
the chain, as stated in (4). The bound in (3) was proved by Polterovich [21] when
� ⊂ R

2 has piecewise real analytic boundary and by Léna [18] when the boundary is
C1,1. Theorem 1.1 extends their work to more general domains, including polygonal
regions with smooth edges.

When working with a chain domain on which Dirichlet boundary conditions are
imposed, the spectrum of the Laplacian approaches the spectrum of the disjoint union
of the individual planar domains as the widths of the necks connecting the domains
decrease to 0. The corresponding eigenfunctions donot ‘see’ the thin necks andbecome
localized to the connecting planar domains, for example, see [7]. In contrast, when
Neumann boundary conditions are imposed, the behavior of the low-energy eigen-
functions is influenced by the presence of the thin necks. Indeed, in this case, the
eigenfunctions for the chain behave like the restricted eigenfunctions on the individ-
ual smooth domains, but are ‘connected’ along each neck by a function that, to leading
order, is an eigenfunction of a one-dimensional Schrödinger operator [1, 14–16].

In this work, instead of studying low-energy eigenfunctions, we ask whether the
intermediate to high energy eigenfunctions have oscillatory behavior that is more
closely related to the geometry of the family of planar domains in the chain than to
the structure of the thin necks connecting them. Theorem 1.1 shows that the behavior
of Courant sharp eigenfunctions is driven by that of the planar domains and ignores
the structure of the connecting necks. Interestingly, the oscillatory behavior of eigen-
functions has been known to be unstable to domain perturbations for some time, see
[24, 25]. Indeed, in previous work, the authors explored how boundary perturbations
can lower the number of nodal domains of low energy eigenfunctions [2]. It is thus
natural to think that, in general, it should be more challenging to have many internal
oscillations in chain domains than in the piecewise smooth domains themselves, but
we do not address that question here.

The problemwe study has a natural geometric interpretation of a community detec-
tion problem in data analysis. Many data sets have the structure of stochastic block
models, which consist of clusters of sub-networks that are strongly connected with
weak connections between them. It is a natural question in learning and community
detection algorithms to determine the number of communities that one should actually
look for in a data set. This study is a first step in understanding how the spectrum of the
Laplacian with Neumann boundary conditions may be used to explore such a question
in a continuum setting, which can in many ways be seen as a model for large data
sets with manifold structure, see [22, 23]. Indeed, we conjecture that a chain domain
of k planar domains connected in a line will have its first k eigenfunctions saturating
Courant’s nodal domain bound by oscillating as much as possible, while the eigen-
functions with sufficiently large eigenvalues will not saturate the bound. This article
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works towards this conjecture, by giving bounds on the nodal domain count that are
independent of the thin connections between domains.

1.1 Prior Results

While we will focus on planar domains with Neumann boundary conditions, the
Courant Nodal Domain Theorem (see equation (2)) also holds for eigenfunctions
with Dirichlet boundary conditions. In [20], Pleijel proved that for planar domains
with Dirichlet boundary conditions, there are only a finite number of Courant sharp
eigenfunctions. This was extended by Peetre in [19] to domains on Riemannian sur-
faces, and by Bérard and Meyer [4] to n-dimensional Riemannian manifolds that are
compact or have smooth boundary. In each case, the result is achieved by obtaining an
asymptotic upper bound on the ratio between the number of nodal domains of them-th
Dirichlet eigenfunction, vm , and its index m. In two dimensions, this upper bound is

lim sup
m→∞

ν(vm)

m
≤ 4

λ1(D)
, (5)

the same as in Theorem 1.1. Since λ1(D) = j20,1 and 4/ j20,1 ≈ 0.692 < 1, the upper
bound in (5) immediately implies that there are only finitely many Courant sharp
Dirichlet eigenfunctions.

A key step in the proof of (5) is to obtain a lower bound on the area of a nodal
domain using the Faber-Krahn Theorem. This theorem can be used in the Dirichlet
case because the restriction of a Dirichlet eigenfunction to a nodal domain is the
first Dirichlet eigenfunction of that domain. When Neumann boundary conditions are
imposed, this is no longer true for nodal domains that touch the boundary. However, by
using a different method to count nodal domains near the boundary, Polterovich [21]
in the two-dimensional case with piecewise real analytic boundaries, and Léna [18] in
n-dimensions with C1,1-boundaries, showed that (5) continues to hold for Neumann
eigenfunctions, and Robin eigenfunctions with non-negative Robin parameter. This
was extended to any sign of the Robin parameter, for domains with C1,1-boundaries,
in the recent work [11].

While the above results guarantee that there are only finitely many eigenvalues
with a Courant sharp eigenfunction, they do not provide an upper bound on the corre-
sponding eigenvalue in terms of geometric quantities of the underlying domain. For a
planar bounded domain �, a bound on Area(�)λ, when λ is a Courant sharp Dirichlet
eigenvalue, was established by Bérard and Helffer [3]. Such a bound is given in terms
of dilation invariant quantities involving Area(�) and supδ>0

1
δ
M�(δ), where

M�(δ) := Area ({x ∈ � : dist(x, ∂�) < δ}) . (6)

For an open set � ⊂ R
n of finite Lebesgue measure, van den Berg and Gittins [26]

obtain an upper bound on a Courant sharp Dirichlet eigenvalue in terms of Area(�)

and M�(δ). For a planar domain with C2-boundary, Gittins and Léna prove an upper
bound on Area(�)μ, when μ is a Courant sharp Neumann eigenvalue [9]. This bound
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is given in terms of an upper bound on Area(�), the isoperimetric ratio, the curvature
of ∂�, and a lower bound on the cut-distance

inf
t∈[0,L] supδ>0

{
δ : dist

(
γ (t) + sn(t), ∂�

)
= s for all s ∈ [0, δ]

}
.

Here, γ : [0, L] → R
2 is a parameterization of ∂� and n(t) is the unit inward normal

at γ (t).
Note that as the width w shrinks to 0, the chain domain �(w) from Fig. 1 does not

fit into the results of Gittins and Léna in [9]. This is because the cut-distance of the
neck, [0, 2]×(−w/2, w/2), shrinks to zerowhenw approaches 0.Moreover, the sharp
corners in �(w) mean that the curvature of the boundary is not bounded from above.
Therefore, a major part of our study of the Courant sharp Neumann eigenfunctions of
such a chain domain will be focused on the behavior of Neumann eigenfunctions in
thin necks and near the vertices of the domain.

Recently, De Ponti, Farinelli, and Violo [8] proved the Pleijel limit for Dirichlet and
Neumann eigenfunctions of RCD(K , N ) spaces, which are metric measure spaces
with a synthetic notion of Ricci curvature bounded below by K ∈ R and dimension
bounded above by N ∈ N. As a corollary, they showed that the Pleijel limit holds for
the Neumann eigenfunctions of N -dimensional uniform domains, which is a class of
subsets ofRN which includes Lipschitz domains. They proved these results using dif-
ferent techniques, by directly showing that even nodal domains touching the boundary
satisfy a Faber-Krahn inequality and avoiding using a reflection argument. For fixed
widths w, the chain domains �(w) that we study are uniform domains. However, the
constant C in the definition of a uniform domain cannot be chosen uniformly as the
widths w tend to 0 (see Definition 3.1 in [8]), and so the results in [8] do not give
uniform control as the neck widths shrink.

2 Chain Domains

As described in the introduction, we study the Neumann eigenvalues and eigenfunc-
tions of a class of planar domains consisting of a number of piecewise smooth domains
joined by thin necks. We now give the precise definition of the chain domains under
consideration. See Fig. 2 for an example of such a domain.

We define the family of chain domains in three steps. First, we introduce the skeleton
consisting of a finite number of piecewise smooth connected regions, joined by smooth
curves. We then define a base domain, by using homotopies to replace the smooth
curves by fixed necks. Finally, we restrict the domains of these homotopies to allow
for a full family of necks, of arbitrarily small width.

Definition 2.1 (Skeleton) Let M ∈ N, {Ki, j }Mi, j=1 ⊂ N. Then, the skeleton domain
S is given by the disjoint union

S =
(

M⋃
�=1

D�

)
∪
⎛
⎝ ⋃

1≤i≤ j≤M

Ki j⋃
k=1

�i j,k

⎞
⎠ .
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• For 1 ≤ � ≤ M , each D� is a bounded planar domain with smooth boundary
except for a finite number of vertices. The domains D� are pairwise disjoint.

• For 1 ≤ i ≤ j ≤ M and 1 ≤ k ≤ Ki j , �i j,k is a smooth neck curve joining Di

and D j , parameterized by arc-length,

�i j,k : [0, Li j,k] → R
2,

with �i j,k(0) ∈ ∂Di and �i j,k(Li j,k) ∈ ∂D j . The linking curves are also pairwise
disjoint, and transverse of ∂Di , ∂D j at their endpoints.

Next, we endow a skeleton S with a family of homotopies that encode how the
curves {�i j,k} are thickened into necks.

Definition 2.2 (Base domain) Let S be a skeleton domain as in Definition 2.1. The
base domain � associated toS is the disjoint union

� =
(

M⋃
�=1

D�

)
∪
⎛
⎝ ⋃

1≤i≤ j≤M

Ki j⋃
k=1

Gi j,k([0, Li j,k] × (−1, 1))

⎞
⎠ ,

where for each i, j, k,

Gi j,k : [0, Li j,k] × [−1, 1] → R
2

is a smooth homotopy with the following properties:

• Gi j,k(s, 0) = �i j,k(s) for all s ∈ [0, Li j,k];
• Gi j,k(0, t) ∈ ∂Di and Gi j,k(Li j,k, t) ∈ ∂D j , for all t ∈ [−1, 1], and not coinciding
with any vertex of Di or D j ;

• det[∂tGi j,k(s, t), ∂sGi j,k(s, t)] �= 0 for all (s, t), i.e. the Jacobian for this coordi-
nate system is non-degenerate;

• the images of theGi j,k are disjoint, and disjoint from the interiors of all the domains
D�.

Note that since det[∂tGi j,k(s, t), ∂sGi j,k(s, t)] �= 0 for all (s, t), each curve
Gi j,k(·, t) meets ∂Di and ∂D j transversally. We are now ready to introduce the chain
domains, in which we allow the widths of the necks to become arbitrarily small.

Definition 2.3 (Chain domain) Let� be a base domain as in Definition 2.2.We define
a collection of widths w by

w = {Ii j,k : 1 ≤ i, j,≤ M, 1 ≤ k ≤ Ki j },

where each Ii j,k is an open interval in (−1, 1) containing 0. The chain domain �(w)

is then given by the disjoint union

�(w) =
(

M⋃
�=1

D�

)
∪
⎛
⎝ ⋃

1≤i≤ j≤M

Ki j⋃
k=1

Ni j,k(w)

⎞
⎠ .
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HereNi j,k(w) is a neck joining Di and D j given by

Ni j,k(w) = Gi j,k([0, Li j,k] × Ii j,k).

A measure of the minimum width of the neck Ni j,k(w) is defined by

wi j,k := min
s∈[0,Li j,k ]

|Gi j,k(s, t2) − Gi j,k(s, t1)| (7)

for Ii j,k = (t1, t2).

The above definition includes the case M = 1, K11 = 0, where �(w) = D1 is
a bounded domain, with piecewise smooth boundary except for a finite number of
vertices, and with now dependence. We define the interval Ii j,k to contain 0 to ensure
that the chain domain �(w) always contains the skeleton S .

2.1 Geometric Constants

Let � be a base domain as in Definition 2.2. We define

A∗ :=
∑

�

Area(D�)

and

L∗ :=
∑

�

Length(∂D�) + 2
∑
i, j,k

max
t∈[−1,1]Length(Gi j,k([0, Li j,k] × {t})).

We will bound the Courant sharp Neumann eigenvalues of � in terms of the five
geometric constants, ρ∗, κ∗, δ∗, τ ∗, w∗ defined as follows.

• Isoperimetric ratio constant, ρ∗: We define ρ∗ > 0 to be the isoperimetric ratio,

ρ∗ = (L∗)2

A∗ .

• Normalized curvature constant, κ∗: We define κ∗ > 0 so that the curvature of each
smooth segment of ∂D� and the slices Gi j,k([0, Li j,k] × {t}) are bounded above
by κ∗/L∗ for all t ∈ [−1, 1] and for all choices of �, i, j, k.

• Vertex control constant, δ∗: The constant δ∗ > 0 is defined so that the following
holds. For all � and each vertex p ∈ ∂D�, we have that the connected component
of B(p, L∗δ∗) ∩ ∂� containing p consists of two smooth curves joined at p, and
after possibly rotating, we may assume that their tangent lines at p agree with the
lines θ = π

2 ± θ0
2 for some 0 < θ0 < π . These are graphs with respect to the

x1-axis, contained within the lines θ = π
2 ± θ0

4 and θ = π
2 ± 3θ0

4 , and with slope
bounded by 1/δ∗. Moreover, the same properties hold at the points where the sides
of ∂Di , ∂D j meet a curve Gi j,k(·, t), for any t ∈ [−1, 1], and all choices of i, j, k.
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• Normalized cut-distance constant, τ ∗: The constant τ ∗ is defined so that, for η ≤
L∗δ∗ and all �, the cut-distance, given by

inf
u∈Kη,�

sup
δ>0

{
δ : dist

(
γ (u) + sn(u), ∂D�

)
= s for all s ∈ [0, δ]

}
,

is bounded from below by τ ∗η. Here, γ : Kη,� → R
2 is a parameterization of

∂D� with the parts of ∂D� in the discs of radius η centered at each vertex of ∂D�

excluded, for a union of intervals Kη,�, and n(u) is the inward unit normal at
γ (u) ∈ ∂D�.

• Neck-width constant, w∗: The constant w∗ is defined to provide control on the
widths and regularity of the necks so that for all choices of i, j, k,

min
s

mint∈[−1,1] |∂tGi j,k(s, t)|
maxt∈[−1,1] |∂tGi j,k(s, t)| ≥ w∗, w∗ ≤ |∂sGi j,k(s, t)| ≤ 1/w∗,

min
(s,t)

∣∣det[∂tGi j,k(s, t), ∂sGi j,k(s, t)]
∣∣

|∂tGi j,k(s, t)||∂sGi j,k(s, t)| ≥ w∗. (8)

Our main result, Theorem 1.1, produces a bound for a Courant sharp eigenvalue
μm(w) of the form |�(w)|μm(w) < C , where C only depends on ρ∗, κ∗, δ∗, τ ∗, w∗.
Since these control quantities are invariant under dilations of the base domain �, the
constant C in the theorem can also be chosen uniformly over dilations of the domain.
More generally, we have the following remark.

Remark 2.1 (Uniform control over base domains �) The constant C in (4) in Theo-
rem 1.1 can be taken to be the same for every chain domain �̃(w) whose associated
base domain �̃ has geometric constants ρ̃∗, κ̃∗, δ̃∗, τ̃ ∗, w̃∗ satisfying

ρ̃∗ ≤ ρ∗, κ̃∗ ≤ κ∗, δ̃∗ ≥ δ∗, τ̃ ∗ ≥ τ ∗, w̃∗ ≥ w∗,

where ρ∗, κ∗, δ∗, τ ∗, w∗ are the geometric constants associated to the base domain
�.

2.1.1 Uniformity OverÄ(w) asw Changes

Next, we explain how the geometric constants for a base domain� are uniform as one
varies the width of the necks for the associated chain domains �(w).

Let � be a base domain with geometric constants ρ∗, κ∗, δ∗, τ ∗, w∗. Then, for any
collection of widths w = {Ii j,k}, we have |�(w)| > A∗ and L(w) < L∗, where

|�(w)| := Area(�(w)) and L(w) := Length(∂�(w)).

Therefore, we observe the following control on the geometry of �(w):

(1) Isoperimetric ratio. The isoperimetric ratio L(w)2/|�(w)| of �(w) is bounded
above by ρ∗.
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(2) Normalized curvature. The curvature of each smooth segment of ∂�(w) is
bounded above by κ∗/L(w).

(3) Vertex control. The vertex control constant δ∗ provides the same control on the
boundary of �(w) as for ∂�, with L∗ replaced by L(w) and [−1, 1] replaced by
Ii j,k . In particular, there is a lower bound on the interior and exterior angle of each
vertex of ∂�(w) in terms of δ∗, and the number of vertices of ∂�(w) is bounded
by 1/δ∗.

(4) Normalized cut-distance. For η ≤ L(w)δ∗ and all �, the cut-distance, given by

inf
u∈Kη,�

sup
δ>0

{
δ : dist

(
γ (u) + sn(u), ∂D�

)
= s for all s ∈ [0, δ]

}
,

is bounded from below by τ ∗η. As above, γ : Kη,� → R
2 is a parameterization

of ∂D� with the parts of ∂D� in the discs of radius η centered at each vertex of
∂D� excluded, for a union of intervals Kη,�, and n(u) is the inward unit normal at
γ (u) ∈ ∂D�.

(5) Neck-width. The constant w∗ provides control on the ratio between the maximum
and minimum width of the neck Ni j,k(w) for all choices of i, j, k, in the sense
that

min
s

mint∈Ii j,k |∂tGi j,k(s, t)|
maxt∈Ii j,k |∂tGi j,k(s, t)| ≥ w∗, w∗ ≤ |∂sGi j,k(s, t)| ≤ 1/w∗,

min
(s,t)

∣∣det[∂tGi j,k(s, t), ∂sGi j,k(s, t)]
∣∣

|∂tGi j,k(s, t)||∂sGi j,k(s, t)| ≥ w∗. (9)

Remark 2.2 (Uniform control in w) Our main result, Theorem 1.1, produces a bound
for a Courant sharp eigenvalue μm(w) of the form |�(w)|μm(w) < C , where C only
depends on ρ∗, κ∗, δ∗, τ ∗, w∗. The reason for this being possible is that the constant
C depends only on the geometric features of �(w) described in points (1)–(5) above.

For the domains �(w) from Fig. 1, with 0 < w < 1, we can take

ρ∗ = 50, κ∗ = 0, δ∗ = 1
40 , τ ∗ = 1, w∗ = 1.

Remark 2.3 (Notation) From now on, all constantsC∗,C∗
1 , etc., appearingmay depend

on ρ∗, κ∗, δ∗, τ ∗, w∗, but will be independent of the collection of widths w = {Ii j,k}
and any other geometric quantities involving�(w). ConstantsC ,C1 without asterisks
will be absolute constants, independent of �(w).

3 Strategy and Ingredients for the Proof of Theorem 1.1

In Sect. 3.1 below,we describe an outline for the proof of Theorem1.1. The proof relies
on introducing a partition of the chain domain into several regions and on classifying
the nodal domains of an eigenfunction in terms of which regions they touch. The
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partition is introduced in Sect. 3.2 and the classification of the domains is presented
in Sect. 3.3

3.1 Outline of the Proof of Theorem 1.1

Let �(w) be a chain domain as in Definition 2.3, and let {uk(w)}k and {μk(w)}k be
the Neumann eigenfunctions and eigenvalues for �(w) introduced in (1). In order to
prove Theorem 1.1, we will use the same underlying strategy of proof as the various
Pleijel-type results described in the introduction: we will establish upper and lower
bounds on the Neumann counting function

N N
�(w)(μ) := #{k : μk(w) < μ}, (10)

when μ = μm(w) is a Courant sharp eigenvalue; that is, ν(um(w)) = m, where we
continue to write ν(um(w)) for the number of nodal domains of um(w).

In this Courant sharp case, μk(w) �= μm(w) for k < m, and so N N
�(w)(μm(w)) =

m − 1. We therefore have

N N
�(w)(μm(w)) + 1 = m = ν(um(w)). (11)

We find an upper bound on ν(um(w)) of the form C∗
1μm(w)|�(w)| + O ((μm(w)|

�(w)|)3/4) from deriving lower bounds on the area of a nodal domain of um(w) (See
Sect. 3.1.1). At the same time, a Weyl law with an explicit bound on the remain-
der then gives a lower bound on N N

�(w)(μm(w)) of the form C∗
2μm(w)|�(w)| +

O
(
(μm(w)|�(w)|)3/4) (See Sect. 3.1.2). The constants C∗

1 ,C
∗
2 are explicit enough

that we can argue C∗
2 > C∗

1 and hence derive from (11) that

Area(�(w))μm(w) < C∗

as claimed. The detailed proof of Theorem 1.1 is done in Sect. 7. The upper bound on
ν(um(w)) will hold for any (not necessarily Courant sharp) Neumann eigenfunction,
and will imply the limit in (3).

3.1.1 Strategy for Obtaining the Asymptotic Upper Bound on �(um(w))

To obtain lower bounds on the area of a nodal domain, we will adapt the strategy from
[9] and [18] by splitting each nodal domain D of um into four different categories,
depending on where the L2(D)-mass of um is concentrated. Roughly speaking, we
will estimate the number of nodal domains of um in each of the following four cases:

i) the majority of the mass is concentrated away from the necks Ni j,k(w) and the
boundaries of the domains D�;

ii) some of the mass is concentrated away from the necks Ni j,k(w) and near the
smooth parts of the boundary of the domains D�;

iii) some of the mass is concentrated near a vertex of D� or the ends of the necks
Ni j,k(w);
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iv) some of the mass is concentrated in the necks Ni j,k(w).

Using the same techniques as in [9] and [18], cases i) and ii) can be handled using the
Faber-Krahn Theorem together with a reflection argument across the smooth part of
the boundary of �(w). We will recall this argument and define the above partitioning
of the nodal domains in Sects. 4 and 3.2 respectively.

The novelty of our work lies in the remaining cases. For case iii), in Sect. 5 we
will exploit properties of a Neumann eigenfunction near a corner in order to bound
the number of such nodal domains near each vertex in �(w). Finally for case iv),
in Sect. 6 we will prove a non-sharp version of the Faber-Krahn Theorem for thin
cylinders in order to obtain a lower bound on the area of nodal domains contained in
the neck. In particular, for sufficiently large eigenvalues μm(w), the number of nodal
domains in cases ii), iii), and iv) will be small compared to case i).

3.1.2 Strategy for Obtaining the Lower Bound onN N
Ä(w)

(�m(w))

For the lower bound on (11), we will use a Weyl law with an explicit bound on
the remainder. This comes from a Weyl remainder estimate given in [26] involving
M�(w)(δ), as defined in (6). We then bound M�(w)(δ) in terms of δ and the five
geometric constants ρ∗, κ∗, δ∗, τ ∗, w∗. This estimate will be given in Sect. 7.1.

3.2 Partition of the Chain Domains

Let �(w) be a chain domain as in Definition 2.3. As outlined in Sect. 3.1.1, we
estimate the number of nodal domains by splitting our study into a series of cases.
This is achieved by partitioning the domain. In this section, we define the partition,
establish its required properties, and use it to define bulk, boundary, corner, and neck
nodal domains.

Given δ > 0, we partition �(w) into
⋃4

j=0 �δ
j (w). Roughly speaking,

– �δ
0(w) is the part of �(w) a distance δ away from the boundary;

– �δ
1(w) is a δ-neighborhood of the smooth part of ∂�(w);

– �δ
2(w) is a δ-neighborhood of the vertices of D�.

– �δ
3(w) is the part of each neck domain that is distance δ from the ends of the necks

(when wi j,k is sufficiently small relative to δ).
– �δ

4(w) contains a δ-neighborhood of the ends of each neck domain (when wi j,k is
sufficiently small relative to δ).

Inwhat follows, we continue towritewi j,k for theminimumneckwidths introduced
in (7).

When δ is small compared to the minimum width wi j,k of the neckNi j,k(w), then
�δ

2(w) also contains a δ-neighborhood of the vertices where the neck Ni j,k(w) is
joined to the domains Di , D j . However, when δ is large compared to the minimum
width wi j,k of the neck Ni j,k(w), then �δ

4(w) contains a δ-neighborhood of these
vertices, and �δ

3(w) then contains the rest of the neck Ni j,k(w).
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Throughout, we will work with δ > 0 satisfying

δ ≤ min

{
1

20
L(w)δ∗, L(w)

κ∗τ ∗

}
, (12)

with δ∗, κ∗, τ ∗ the vertex control, normalized curvature, and normalized cut-distance
constants of �(w). Recall that L(w)δ∗ gives a lower bound on the distance between
vertices of ∪�D�, and this bound on δ guarantees that we can cleanly separate a δ

neighborhood of each vertex p in ∂�(w) from the rest of its connected component
in B(p, L∗δ∗) ∩ ∂�(w). The upper bound L(w)/(κ∗τ ∗) on δ will also ensure that,
after excluding a disc of radius δ centered at each vertex of D�, the cut-distance of
the remaining part of ∂D� is bounded from below by τ ∗δ. This will be important
because it will allow us to apply a diffeomorphism to straighten this resulting part of
the boundary.

We proceed to give the precise definition of the partition.

Definition 3.1 (δ-partition of a chain domain) Let �(w) be a chain domain as in
Definition 2.3 and δ > 0 satisfy (12). Then, the δ-partition for �(w) is defined as

�(w) =
4⋃
j=0

�δ
j (w),

where the following holds:

1) �δ
2(w) contains the intersection of�(w)with a disc of radius δ around each vertex

of D� for all 1 ≤ � ≤ M .
2) For each 1 ≤ i ≤ j ≤ M , 1 ≤ k ≤ Ki j one of the following holds.

i) If wi j,k > 4δ, then
• �δ

2(w) contains the intersection of �(w) with a disc of radius δ around
each vertex formed by the neck Ni j,k(w) and the domains Di , D j ;

• �δ
1(w) contains the part ofNi j,k(w) near its boundary, given by

{
x ∈ Ni j,k(w) : dist(x, ∂Ni j,k(w)) < 3

4τ
∗δ
}
\�δ

2(w).

ii) If wi j,k ≤ 4δ, then
• �δ

4(w) contains the δ-neighborhood of the ends of the neck Gi j,k({0} ×
Ii j,k) and Gi j,k({Li j,k} × Ii j,k);

• �δ
3(w) then contains the rest of the neck, Ni j,k(w)\�δ

4(w).

3) �δ
1(w) includes

{
x ∈

M⋃
�=1

D� : dist(x, ∂�(w)) < 3
4τ

∗δ
}
\ (�δ

2(w) ∪ �δ
4(w)

)
.
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Fig. 3 The two δ-partitions of the chain domain �(w) introduced in Fig. 1 with wi j,k > 4δ (left) and
wi j,k ≤ 4δ (right)

4) �δ
0(w) is defined by

�δ
0(w) = �(w)\ (�δ

1(w) ∪ �δ
2(w) ∪ �δ

3(w) ∪ �δ
4(w)

)
.

See Fig. 3 for an example of the possible δ-partitions for the model domain �(w)

introduced in Fig. 1, depending on the relative size of δ, and the neck width w.
We will later work with a partition of unity adapted to the δ-partition of a chain

domain. Before introducing it, we present the reader with a lemma that allows us to
straighten the boundary of the domain. This lemmawill allow us to define the partition
of unity and will also be used in Sect. 4.

Lemma 3.1 Let �(w) be a chain domain. Fix η > 0 with η ≤ L(w)min
{
δ∗, 1

κ∗τ∗
}
.

Given a side of D�, denote by bη the part of this side a distance at least η from the
vertices of D�. Letting {γ (s) : s ∈ I } be a parameterization of bη, and n(s) be the
unit inward normal to ∂D� at γ (s), a neighborhood of bη in D� can be straightened
in the following sense.

The function

F : I × [0, 3
4τ

∗η] → D�, (s, t) 
→ (x, y) = γ (s) + tn(s),

is a diffeomorphism onto its image. Moreover, the Jacobian of this change of variables
is bounded from above and below by

1 + 3
4 L(w)−1τ ∗κ∗η ≤ 7

4 , 1 − 3
4 L(w)−1τ ∗κ∗η ≥ 1

4

respectively.

Proof By the definition of the normalized cut-distance constant τ ∗, since η ≤ L(w)δ∗,
the cut-distance of bη is bounded from below by τ ∗η. The proof of this lemma then
follows in an identical way to the argument in Section 3 of [9], and so we omit the
details. ��
Remark 3.1 For each neck Ni j,k(w), we define the diffeomorphism Fi j,k by
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Fi j,k : [0, Li j,k] × (−wi j,k, wi j,k) → Ni j,k(w)

Fi j,k(s, t) = Gi j,k
(
s, t1 + (t + wi j,k)|Ii j,k |/(2wi j,k)

)
,

where we recall t1 < 0 defines an endpoint of the interval Ii j,k . By the definition of
wi j,k in (7) and the neck-width constant w∗, |∂tGi j,k(s, t)| is bounded from above
and below by wi j,k/|Ii j,k | multiplied by constants depending only on w∗. Therefore,
the Jacobian of Fi j,k is bounded in terms of the neck-width constant w∗, and so in
particular this can be used to straighten the top and bottom boundaries of Ni j,k(w).

We proceed to introduce the partition of unity associated to the δ-partition of a
chain domain.

Lemma 3.2 Let�(w) be a chain domain. There exists a constant C∗ > 0 such that the
following holds. For each δ > 0 satisfying (12) there exist smooth functions {χδ

j }4j=0

associated to the δ-partition {�δ
j (w)}4j=0 of �(w) such that

4∑
j=0

(
χδ
j

)2 ≡ 1 on �(w),

1. χδ
j ≡ 1 on �δ

j (w) for j = 0, 3,

2. χδ
1 ≡ 1 on �

δ/2
1 (w),

3. χδ
j ≡ 1 on �

δ/4
j (w) for j = 2, 4,

4. χδ
j ∈ H1(�(w)) with

∣∣∇χδ
j

∣∣ ≤ C∗δ−1 a.e. on �(w) for j = 0, . . . , 4.

Proof This result follows from the definition of the δ-partition, and the straightening
of the smooth parts of the boundary given in Lemma 3.1 above:

First, the cut-off functionχδ
2 is straightforward to define as a sumof radial functions,

centered at the points used to define �δ
2(w), and on a length scale comparable to δ.

To defineχδ
1 , we use the upper bound on δ from (12). This allows us to apply Lemma

3.1 above with η = δ. Using the diffeomorphism F from this lemma straightens each
part of the side ofD� in�δ

1(w), via a change of variables with a bounded Jacobian.We
can also use the diffeomorphism from Remark 3.1 to straighten the top and bottom
boundaries of Ni j,k(w) in the case where wi j,k > 4δ. It is then straightforward to
define the cut-off function χδ

1 with the desired properties.
This straightening of the sides ofD� and the necksNi j,k(w) also allows for the func-

tion χδ
4 to be defined on a length scale comparable to δ, with the required properties.

Note that since the neck and sides are straightened using two different diffeomor-
phisms, we can use them to define a continuous cut-off function χδ

4 in H1(�(w)),
with a possibly discontinuous derivative at the intersection of their supports. This is
the reason for the almost everywhere nature of the pointwise bound stated in (4) above.

The function χδ
3 is then definedwith support in the necksNi j,k(w)withwi j,k ≤ 4δ,

and so that

(χδ
3 )

2 + (χδ
4 )

2 ≡ 1 on Ni j,k(w).
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Finally, χδ
0 is defined so that

∑4
j=0(χ

δ
j )
2 ≡ 1 on �(w) as required. ��

3.3 Classification of the Nodal Domains

Let u be a Neumann eigenfunction of �(w), not necessarily Courant sharp, with
eigenvalue μ, and let D be one of its nodal domains. Fix ε, δ > 0. We will use ε

to measure the extent to which the L2(D)-mass of u is concentrated away from the
boundary. As in Definition 3.1, δ is used to partition the neighborhoods of different
parts of the boundary of �(w). We will eventually choose δ in terms of the area of
�(w) and the eigenvalue μ. We follow a similar framework to that in [18] and [9],
but with more regions.

Let {χδ
j }4j=0 be the associated partition of unity to the δ-partition {�δ

j (w)}4j=0 of
�(w) (see Lemma 3.2). We decompose

u2 =
4∑
j=0

u2j , u j := χδ
j u.

So, u0 is localized in the interior, u1 is localized near the smooth part of the boundary,
u2 is localized near corners of D�, and when wi j,k ≤ 4δ, u3 is localized near necks
Ni j,k(w), and u4 is localized near where the necks are joined to the domains D�.

For ε > 0 and δ > 0, the collection of bulk, boundary, corner, and neck nodal
domains will be denoted by

Vδ
0(ε; u), Vδ

1(ε; u), Vδ
2(ε; u), Vδ

3(ε; u), (13)

respectively, and defined in the following way:

• bulk nodal domains: D ∈ Vδ
0(ε; u) if

‖u0‖2L2(D)
≥ (1 − ε)‖u‖2L2(D)

. (14)

• boundary nodal domains: D ∈ Vδ
1(ε; u) if

‖u1‖2L2(D)
≥ 1

4ε‖u‖2L2(D)
. (15)

• corner nodal domains: D ∈ Vδ
2(ε; u) if

‖u2‖2L2(D)
≥ 1

4ε‖u‖2L2(D)
or ‖u4‖2L2(D∩∪�D�)

≥ 1
8ε‖u‖2L2(D)

. (16)

• neck nodal domains: D ∈ Vδ
3(ε; u) if

‖u3‖2L2(D)
≥ 1

4ε‖u‖2L2(D)
or ‖u4‖2L2(D∩∪i, j,kNi j,k (w))

≥ 1
8ε‖u‖2L2(D)

. (17)
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For j = 0, 1, 2, 3 we write

νδ
j (ε; u) := #Vδ

j (ε; u) (18)

for the number of domains in each class.
Note that a given nodal domain may fall into more than one of these categories, but

we always have that the total number of nodal domains for u is bounded by

ν(u) ≤
3∑
j=0

νδ
j (ε; u). (19)

3.3.1 Green’s Formula for Nodal Domains

A key ingredient in bounding the number of each type of nodal domain will be to
obtain an upper bound on the first Dirichlet eigenvalue of a region of area comparable
to a given nodal domain, and then apply the Faber-Krahn Theorem. In order to obtain
this upper bound, wewill need that the following Green’s formula holds for each nodal
domain.

Lemma 3.3 Any nodal domain D of a Neumann eigenfunction u of �(w), with eigen-
value μ, satisfies ∫

D
|∇u|2 = μ

∫
D
u2.

Proof To prove the lemma, wewill use the following version of Green’s identity, given
in [10, Lemma 1.5.3.8]: Let � be a bounded, open set in R2, with boundary ∂� given
by a C1,1 curvilinear polygon. Then, for v1 ∈ H2(�), v2 ∈ H1(�),∫

�

(�v1)v2 = −
∫

�

∇v1 · ∇v2 +
∫

∂�

∂v1

∂ν
v2. (20)

In the case where the nodal domain D does not contain a corner of �(w), then the
eigenfunction u is smooth in D. Moreover, since �(w) is planar, the boundary of
D is piecewise C1 and meets at equal angles in the interior and on the boundary.
Therefore, we have sufficient regularity to apply (20) with v1 = v2 = u and � = D.
Since �u = −μu, and u satisfies Neumann boundary conditions on ∂�, together
with Dirichlet boundary conditions on the rest of ∂D, this gives the equality in the
statement of the lemma.

Tohandle the casewhere ∂D contains a vertex of�(w),weneed to use the regularity
of the Neumann eigenfunction u at the vertex. Let θ be the interior angle of a given
vertex. Then, by the theorem in Section 1 of [27], u satisfies these estimates in a
neighborhood of the vertex:

i) if θ < π , then u is C1 in a neighborhood of the vertex;
ii) if θ > π , then u is Hölder continuous, with exponent π/θ , in a neighborhood of

the vertex, and lim supr→0 r
1−π/θ |∇u| < ∞, where r is the distance to the vertex.
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In particular, since θ < 2π , this ensures that ∇u ∈ L4.
Wenowdefine Dk to be the set formedby removing from Dwith discs of radius εk >

0 centered at the corners of�(w). We can choose the sequence εk , with limk→∞ εk =
0, so that the domains Dk are C1,1-curvilinear polygons. Moreover, u is smooth in
Dk , and so applying (20), with v1 = v2 = u, we obtain

−
∫
Dk

μ|u|2 = −
∫
Dk

|∇u|2 +
∫

∂Dk

∂u

∂ν
u.

By the boundary conditions satisfied by u, the only contribution to the boundary
integral is from arcs of the circles of radius εk centered at the corners of �(w). By
the regularity of u and ∇u, these contributions go to 0 as εk tends to 0. Therefore,
taking the limit εk → 0, we obtain the equality in the statement of the lemma, and
this completes the proof. ��
Remark 3.2 Aswe are working in two dimensions, the nodal domain D has a Lipschitz
boundary, and meets the smooth part of the boundary of �(w) at non-zero angles. For
smooth components of the boundary this is proven in Theorem 2.3 in [12], and at
corners it is proven in Theorem 2.6 in [12]. We will also assume that D ∩ {u j �= 0}
has these same properties for 0 ≤ j ≤ 4, which can be achieved by replacing δ by a
sequence δn → δ if necessary.

4 Estimates on Bulk and Boundary Nodal Domains

In this section,webound the number of bulk andboundary nodal domains. SeeSect. 3.3
for the classification and (18) for the notation.

4.1 Number of Bulk Nodal Domains

We recall that for δ, ε fixed and u being aNeumann eigenfunction for the chain domain,
a bulk nodal domain, D ∈ Vδ

0(ε, u), is one for which (14) holds. As introduced in (18),
we continue to denote the corresponding number of bulk nodal domains by νδ

0(ε; u).
Our main result is the following.

Proposition 4.1 (Number of bulk nodal domains) Let�(w) be a chain domain. There
exists a constant C∗

0 > 0 such that for all 0 < ε < 1
2 and 0 < β < 1

2 the following
holds. If u is a Neumann eigenfunction of �(w) with eigenvalue μ and |�(w)|μ ≥
(C∗

0 )
1/β , then

νδ
0(ε; u) ≤ 1

πλ1(D)

(
1 + ε

1 − ε
(|�(w)|μ) + 1 + 1

ε

1 − ε
C∗
0 (|�(w)|μ)2β

)
(21)

for δ = |�(w)|1/2−βμ−β .
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Proof Tobound the number of bulk nodal domains ofu,we followexactly the argument
that was used to derive [9, equation (16)] and [18, equation (2.3)], using the properties
of the δ-partition from Lemma 3.2, provided δ satisfies (12). This involves applying
the Faber-Krahn Theorem to each bulk domain, where we use u0 = χδ

0u as a test
function to obtain an upper bound on its first Dirichlet eigenvalue. This argument
gives the estimate on the area of a bulk nodal domain, D ∈ Vδ

0(ε, u), of the form

πλ1(D)|D|−1 ≤ 1 + ε

1 − ε

∫
D |∇u|2dx∫
D |u|2dx + (1 + 1

ε
)C̃∗

0

(1 − ε)δ2
. (22)

for a constant C̃∗
0 . Using Lemma 3.3, this gives an upper bound on the number of such

bulk nodal domains of

νδ
0(ε; u) ≤ 1

πλ1(D)

(
1 + ε

1 − ε
μ + 1 + 1

ε

1 − ε
C̃∗
0δ

−2

)
|�(w)|. (23)

The result would then hold once we show that the upper bound on δ from (12) holds.
To see this, note that the isoperimetric inequality yields |�(w)|−1/2L(w) ≥ 2π1/2.
Thus, setting

c∗
0 := 2π1/2 min

{
δ∗
20 ,

1
κ∗τ∗

}
,

we have

δ|�(w)|−1/2 = (|�(w)|μ)−β ≤ c∗
0 ≤ |�(w)|−1/2L(w)min

{
δ∗
20 ,

1
κ∗τ∗

}
, (24)

as needed, provided |�(w)|μ ≥ (c∗
0)

−1/β . ��
We will later choose ε > 0 small so that 1+ε

1−ε
is sufficiently close to 1, and β = 3/8

so that the lower bound on |�(w)|μ can be written as simply C∗
0 .

The first term in the estimate in Proposition 4.1 will be the leading order term in
the count of the number of nodal domains. It is therefore important that the second
term is sub-linear in |�(w)|μ for 0 < β < 1

2 .

4.2 Number of Boundary Nodal Domains

We recall that for δ, ε fixed and u being aNeumann eigenfunction for the chain domain,
a boundary nodal domain, D ∈ Vδ

1(ε, u), is one for which (15) holds. As introduced
in (18), we write νδ

1(ε; u) for the number of boundary nodal domains of u.
In order to bound νδ

1(ε; u), we use the argument leading to [9, Equation (18)] and
[18, Equation (2.13)]. The first step in the proof is the following result.

Lemma 4.1 Let �(w) be a chain domain. There exist constants c∗, C∗ such that the
following holds. Let δ > 0 satisfy (12), ε > 0, and u be a Neumann eigenfunction of
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�(w) with eigenvalue μ. For each D ∈ Vδ
1(ε, u) there are a set VD, with a Lipschitz

boundary, and a function v ∈ H1
0 (VD) with the following properties:

Area(VD) ≤ C∗ Area({x ∈ D : dist(x, ∂�(w)) < 3
4τ

∗δ}), (25)

and ∫
VD

v2 ≥ c∗ε,
∫
VD

|∇v|2 ≤ C∗(μ + (τ ∗δ)−2).

Proof Lemma 4.1 follows from the straightening results of Lemma 3.1 (with η = δ)
and Remark 3.1, using an identical argument to the proof of the estimates (13), (15),
and (17) in Section 5 of [9], and so we omit the details of the proof here. In particular,
this proof relies upon the Lipschitz properties of D ∩ {u1 �= 0} from Remark 3.2. ��

When bounding νδ
1(ε, u), we will use Lemma 4.1 along with the Faber-Krahn

Theorem to obtain that νδ
1(ε, u) is bounded by a multiple of M�(w)(

3
4τ

∗δ), where
M�(w)(t) is as defined in (6). To deal with this new upper bound, we will use the
following lemma.

Lemma 4.2 Let �(w) be a chain domain. There exists C∗ > 0 such that

M�(w)(t) ≤ C∗L(w)t,

for t ≤ 3
4 L(w)min

{
τ ∗δ∗, 1

κ∗
}
.

Proof To bound M�(w)(t), we will break the function into three parts:

1) the contribution from the part of the necks {Ni j,k(w)} that are a distance of at least
t from the vertices of �(w),

2) the contribution from the parts of {∂D�}with an appropriate neighborhood of each
vertex excluded,

3) the contribution from neighborhoods of the vertices of �(w).

We will denote the contribution to M�(w)(t) from each of these parts of ∂�(w) by

M ( j)
�(w)(t), so that

M�(w)(t) =
3∑
j=1

M ( j)
�(w)(t).

To handle 1), we use the diffeomorphisms Fi j,k from Remark 3.1 to straighten the
upper and lower boundaries of each neckNi j,k(w). Then, there exists a constant C∗,
depending only on the neck-width constant w∗ such that

M (1)
�(w)(t) ≤ C∗ ∑

1≤i≤ j≤M

K∑
k=1

Length(∂Ni j,k(w))t ≤ C∗L(w)t . (26)
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For 2), we exclude an η neighborhood of each vertex of D�, with η given by
η = 4

3 (τ
∗)−1t . The upper bound on t from the statement of the lemma then ensures

that η ≤ L(w)min
{
δ∗, 1

κ∗τ∗
}
. Therefore, we can apply Lemma 3.1 with this value of

η to obtain a diffeomorphism that straightens this part of the boundary of D�. Since
this change of variables has a Jacobian bounded by 7

4 , we obtain

M (2)
�(w)(t) ≤ 7

4

M∑
�=1

Length(∂D�)t ≤ 7
4 L(w)t . (27)

Finally, since, by the definition of the vertex control constant, �(w) has at most 1/δ∗
vertices, the remaining contribution to

{x ∈ �(w) : dist(x, ∂�(w)) < t}

is contained within 1/δ∗ discs of radius 2η. Therefore,

M (3)
�(w)(t) ≤ 4π(δ∗)−1η2 = 64

9 π(δ∗)−1(τ ∗)−2t2. (28)

Combining (26), (27), and (28), using the upper bound on t gives the desired estimate
on M�(w)(t). ��

Our main result in this section, which bounds the number of boundary nodal
domains for an eigenfunction u, is the following.

Proposition 4.2 (Number of boundary nodal domains) Let �(w) be a chain domain.
There exists a constant C∗

1 > 0 such that for all 0 < ε < 1
2 and 0 < β < 1

2 the
following holds. If u is a Neumann eigenfunction of �(w) with eigenvalue μ and
|�(w)|μ ≥ (C∗

1 )
1/β , then

νδ
1(ε; u) ≤ C∗

1ε
−1 (|�(w)|μ)1−β

for δ = |�(w)|1/2−βμ−β .

Proof Let D ∈ Vδ
1(ε, u) and let VD ⊂ R

2 and v ∈ H1
0 (VD ) be as in Lemma 4.1. Then,

Area(VD ) ≤ C∗ Area({x ∈ D : dist(x, ∂�(w)) < 3
4τ

∗δ}). (29)

On the other hand, writing λ1(DVD
) for the first Dirichlet eigenvalue of the disc of

area equal to that of VD , the Faber-Krahn Theorem yields

πλ1(D)|VD|−1 = λ1(DVD
)

≤ λ1(VD ) ≤
∫
VD

|∇v|2∫
VD

v2
≤ C∗ε−1

(
μ + (τ ∗δ)−2

)
. (30)
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We conclude from (29) that there is C∗ such that, for every D ∈ Vδ
1(ε, u),

ε
(
μ + (τ ∗δ)−2

)−1 ≤ C∗ Area({x ∈ D : dist(x, ∂�(w)) < 3
4τ

∗δ}).

We then conclude

νδ
1(ε; u) ≤ C∗ε−1

(
μ + (τ ∗δ)−2

)
M�(w)(

3
4τ

∗δ). (31)

As explained in (24), δ = |�(w)|1/2−βμ−β satisfies (12) for (|�(w)|μ)1/β suffi-
ciently large, and so we can apply Lemma 4.2 with t = 3

4τ
∗δ to obtain

M�(w)

( 3
4τ

∗δ
) ≤ 3

4C
∗τ ∗L(w)δ = 3

4C
∗τ ∗L(w)|�(w)|−1/2|�(w)|(|�(w)|μ)−β

≤ 3
4C

∗τ ∗(ρ∗)1/2|�(w)|(|�(w)|μ)−β.

Here ρ∗ is the isoperimetric ratio constant. In addition,

μ + (τ ∗δ)−2 = |�(w)|−1
(
|�(w)|μ + (τ ∗)−2(|�(w)|μ)2β

)
,

and so the result follows from (31). ��

5 Estimates on Corner Nodal Domains

In this section, we will obtain an upper bound on the number of corner nodal domains.
Let �(w) be a chain domain, δ, ε > 0, and u be a Neumann eigenfunction for �(w).
We recall that a corner nodal domain, D ∈ Vδ

2(ε, u), is one for which (16) holds. As
introduced in (18), we write νδ

2(ε; u) for the number of corner nodal domains of u.
We write

Sθ0(δ) = {(r , θ) ∈ �(w) : r < δ, |θ | < θ0/2},

where we use polar coordinates. The first step in controlling νδ
2(ε; u) is the following

analogue of Lemma 4.1.

Lemma 5.1 Let �(w) be a chain domain. There exist constants c∗, C∗ such that the
following holds. Let δ > 0 satisfy (12), ε > 0, and u be a Neumann eigenfunction of
�(w) with eigenvalue μ. Let D ∈ Vδ

2(ε, u) such that

‖u2‖2L2(D)
≥ 1

4ε‖u‖2L2(D)
.

Then, there are a vertex v0 of �(w) with interior angle θ0, a set V ⊂ Sθ0(δ) with a
Lipschitz boundary and a function v ∈ H1(V ), with v ≡ 0 on ∂V ∩ Sθ0(δ), and the
following properties:

Area(V ) ≤ C∗ Area({x ∈ D : χδ
2u �= 0, dist(x, v0) < δ}), (32)
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and

c∗ε ≤
∫
V

v2 ≤ C∗,
∫
V

|∇v|2 ≤ C∗ (μ + δ−2
)

. (33)

Proof By the definition of the vertex control constant δ∗, the number of vertices of
�(w) is bounded by 1/δ∗. Therefore, since ‖u2‖2L2(D)

≥ 1
4ε‖u‖2

L2(D)
, there exists a

vertex v0, opening angle θ0, such that∫
D∩{dist(x,v0)<δ}

u22 ≥ 1
4εδ

∗
∫
D
u2.

We now apply a transformation to u2 to translate and straighten the sides of �(w)

meeting at v0. This will give us a function v defined on Sθ0(δ) which is smooth away
from the origin, and vanishes on the portion of the boundary of its support in the
interior of the sector (i.e., v ≡ 0 on ∂V ∩ Sθ0(δ)). The transformation is constructed
as follows:

By the upper bound on δ from (12), and using the definition of the vertex control
constant δ∗, we can rotate and translate so that, without loss of generality, the vertex
v0 is at the origin, and in a disc of radius 20δ centered at the vertex, this part of the
boundary of ∂�(w) can be written as y = f±(x) for ±x > 0. Moreover, there exists
a constant θ∗, depending only on δ∗, such that the opening angle θ0 of each vertex
satisfies θ∗ < θ0 < 2π − θ∗. Therefore, the rotation can be chosen to ensure that
limx→0± f±(x)/x = a±, with

c∗ ≤ |a±| ≤ C∗, c∗ ≤ | f±(x)/x | ≤ C∗, | f ′±(x)| ≤ C∗,

for constants c∗ and C∗ only depending on δ∗.
Next, there exists a subset S of a rotation of Sθ0(δ) such that the function

F : S → �(w), (s, t) 
→
(
s,

f±(s)

a±s
t

)
,

is a Lipschitz homeomorphism onto its image (and a diffeomorphism away from
s = 0), with the image containing the part of �(w) in the disc of radius δ centered at
v0.

By Lemmas 3.2 and 3.3, the function u2 satisfies∫
D

|∇u2|2 =
∫
D

∣∣∇ (χδ
2u
)∣∣2 ≤ C∗(μ + δ−2).

Therefore, we set v = u2 ◦ F , and V = F−1(D ∩ {dist(x, v0) < δ, u2 �= 0}), which
by Remark 3.2 we may take to be Lipschitz. To complete the proof of the lemma, it is
sufficient to show that the Jacobian of this change of variables is bounded from above
and below, and that the off-diagonal entries are bounded. This Jacobian is given by
the determinant of
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⎛
⎜⎜⎝
1 t

s f ′±(s) − f±(s)

a±s2

0
f±(s)

a±s
.

⎞
⎟⎟⎠ ,

and so by the properties of f±(s)/s, we just need to bound the off-diagonal term. For
some |ζ |, |ξ | ∈ (0, s) we have f±(s) = a±s + 1

2 s
2 f ′′±(ζ ), and f ′±(s) = a± + s f ′′±(ξ).

Therefore, it is sufficient to show that

|t f ′′±(ζ )| + |t f ′′±(ξ)| ≤ C∗ (34)

for a constant C∗. Since f ′±(x) is bounded, and the curvature of the two sides of�(w)

is bounded from above by κ∗/L(w), we obtain

| f ′′±(x)| ≤ C∗κ∗/L(w).

Combining this with the upper bound on δ from (12), and since |t | ≤ δ, it implies (34)
and completes the proof of the lemma. ��

We are now ready to state and prove the main bound on the number of corner nodal
domains.

Proposition 5.1 (Number of corner nodal domains) Let �(w) be a chain domain.
There exists a constant C∗

2 > 0 such that for all 0 < ε < 1
2 and 0 < β < 1

2 the
following holds. If u is a Neumann eigenfunction of �(w) with eigenvalue μ and
|�(w)|μ ≥ (C∗

2 )
1/β , then

νδ
2(ε, u) ≤ C∗

2ε
−4 (|�(w)|μ)3−6β ,

for δ = |�(w)|1/2−βμ−β .

Proof Throughout, we assume that (|�(w)|μ)β is sufficiently large so that δ satisfies
(12), and in particular Lemmas 4.1 and 5.1 apply. The proof of the bound is divided
into two cases, depending on whether we are counting nodal domains D ∈ Vδ

2(ε, u)

for which either

(A) ‖u2‖2L2(D)
≥ 1

4ε‖u‖2L2(D)
or (B) ‖u4‖2L2(D∩∪�D�)

≥ 1
8ε‖u‖2L2(D)

.

In Case 1 below, we prove that

#{D ∈ Vδ
2(ε, u) : (A) holds} ≤ C∗

2ε
−4 (|�(w)|μ)3−6β , (35)

and we explain how to do the same with (A) replaced by (B) in Case 2 (see (44)). The
bound on νδ

2(ε, u) then follows from these two estimates.
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Case 1 : D ∈ Vδ
2(ε, u) is such that (A) holds.

First, we claim that there exist constants c∗, C∗
2 , and a vertex v0, such that, if

|�(w)|μ ≥ (C∗
2 )

1/β , then

Area (D ∩ Bδ(v0)) ≥ c∗ε4|�(w)|(|�(w)|μ)4β−3. (36)

Here Bδ(v0) is the disc of radius δ centered at the vertex v0. Since Bδ(v0) has area
πδ−2 = π |�(w)|1−2βμ−2β , the bound in (36) yields (35) as claimed.

We next proceed to prove the claim in (36). Let v, V be as in Lemma 5.1. By the
lower bound in (33), there exists x∗, with |x∗| < δ such that

∫ y2

y1
v(x∗, y)2 dy ≥ 1

2c
∗εδ−1, (37)

where y1 = inf J (x∗), y2 = sup J (x∗), with J (x∗) = {y ∈ R : (x∗, y) ∈ V }. We
now extend v identically by zero outside of V . Note that this does not give a function
in H1(R2), because v does not satisfy Dirichlet boundary conditions on the part of
∂V coinciding with the sector θ = ± 1

2θ0. However, denoting this extension of v by
w, for each x∗ such that (x∗, y) is in V , we do have

w(·, y) ∈ H1([x∗, x∗ + δ]), (38)

with

∫ y2

y1

(∫ x∗+δ

x∗
|∇w|2 dx

)
dy ≤ C∗(μ + δ−2). (39)

This is because for all such y, the interval (x∗, x∗ + δ) is contained in the interior of
the infinite sector |θ | ≤ 1

2θ0. Therefore, since v vanishes on the portion of ∂V in the
interior of the infinite sector, its extension by 0 satisfies (38), w(·, y) is continuous on
(x∗, x∗ +δ), and (39) follows from the second estimate in (33). In particular, ∂tw(t, y)
is integrable for t ∈ (x∗, x∗ + δ), and this means that by the fundamental theorem of
calculus

w(x, y) = w(x∗, y) +
∫ x

x∗
∂tw(t, y) dt

for x ∈ (x∗, x∗ + δ). We can write

∣∣∣∣
∫ x

x∗
∂tw(t, y) dt

∣∣∣∣ ≤ |x − x∗|1/2
(∫ x

x∗
|∂tw(t, y)|2 dt

)1/2
,

and so
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w(x, y)2 = w(x∗, y)2 + 2w(x∗, y)
∫ x

x∗
∂tw(t, y) dt +

(∫ x

x∗
∂tw(t, y) dt

)2

≥ 1
2w(x∗, y)2 −

(∫ x

x∗
∂tw(t, y) dt

)2

≥ 1
2w(x∗, y)2 − |x − x∗|

∫ x

x∗
|∂tw(t, y)|2 dt .

Integrating in y and using (37) this implies that

∫ y2

y1
w(x, y)2 dy ≥ 1

4εc
∗δ−1 − |x − x∗|

∫ y2

y1

(∫ x

x∗
|∂tw(t, y)|2 dt

)
dy. (40)

Using the estimate from (39) in (40) then gives

∫ y2

y1
w(x, y)2 dy ≥ 1

4εc
∗δ−1 − C∗|x − x∗|(μ + δ−2).

So, ∫ y2

y1
v(x, y)2 dy =

∫ y2

y1
w(x, y)2 dy ≥ 1

8c
∗εδ−1 (41)

for all x ≥ x∗ with |x − x∗| ≤ 1
8c

∗εδ−1(C∗)−1(μ+ δ−2)−1. For simplicity, we define
the new parameter

δ̃ = c∗(C∗)−1δ−1(μ + δ−2)−1.

Note that we have set δ = |�(w)|1/2−βμ−β , and so δ̃ ∼ δ−1μ−1 = |�(w)|1/2
(|�(w)|μ)β−1 for large |�(w)|μ and 0 < β < 1

2 . In particular, δ̃ < δ for large
|�(w)|μ.

Now let χ = χ(x, y) be a smooth cut-off function, equal to 1 on the set

[
x∗ + 1

16εδ̃, x
∗ + 1

16εδ̃ + c∗
0εδ̃
]

× [y1, y2]

and vanishing outside a c∗
0εδ̃ neighborhood of this set, with first derivatives bounded

by C∗
0ε

−1δ̃−1. Here c∗
0 > 0 and C∗

0 are chosen, depending only on the interior angle
θ0 at the vertex (which is bounded from below by a constant which only depends on
δ∗), so that the support of χ is contained within the interior of the sector. Using (41),
this will ensure that ∫

V
χ2w2 ≥ c∗ε2δ̃δ−1

for a constant c∗ > 0. Here, and from now on, the constants c∗, C∗ may change from
line-to-line (but will depend only on the five geometric constants of �(w)). Let Wχ

be the support of χ . Then, the definition of χ and (33) also ensures that
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∫
V∩Wχ

|∇ (χw)|2 ≤ C∗(μ + δ−2 + δ̃−2ε−2).

Since Wχ is contained in the interior of the sector, χw vanishes on the boundary of
V ∩ Wχ . This implies that the first Dirichlet eigenvalue of V ∩ Wχ is bounded by a
multiple of

∫
V∩Wχ

|∇ (χw)|2∫
V∩Wχ

χ2w2
≤ C∗ε−2δ̃−1δ(μ + δ−2 + δ̃−2ε−2). (42)

Since δ = |�(w)|1/2−βμ−β , for 0 < β < 1
2 , and for (|�(w)|μ)β ≥ C∗ sufficiently

large, the right hand side of (42) can be bounded from above by

C∗ε−4δ4μ3 = C∗ε−4|�(w)|−1(|�(w)|μ)3−4β. (43)

Therefore, using the Faber-Krahn Theorem as in (30),

Area(V ∩ Wχ ) ≥ c∗ε4|�(w)|(|�(w)|μ)4β−3,

completing the proof of the claim in (36).
Case 2 : D ∈ Vδ

2(ε, u) is such that (B) holds.
In this case, some of the mass of u is contained in the intersection of the support

of χ4 with a particular domain D� (near where D� and a neck Ni j,k(w) are joined).
Then, we straighten the part of ∂D� using Lemma 4.1 to again obtain, after a rotation,
a Lipschitz set V contained in the half-plane {x > 0}, and a function v ∈ H1(V ) with

Area(V ) ≤ C∗Area({x ∈ D ∩ D� : χδ
4u �= 0}),

and

c∗ε ≤
∫
V

v2 ≤ C∗,
∫
V

|∇v|2 ≤ C∗ (μ + δ−2
)

.

Moreover, v can be taken to vanish on ∂V ∩ {x > 0}. This then allows us to replicate
the proof of Case 1) and show that

#{D ∈ Vδ
2(ε, u) : (B) holds} ≤ C∗

2ε
−4 (|�(w)|μ)3−6β , (44)

as needed to finish the proof of the proposition. ��

6 Estimates on Neck Nodal Domains

In this section, we will obtain an upper bound on the number of neck nodal domains.
Let �(w) be a chain domain, δ, ε > 0, and u be a Neumann eigenfunction for �(w).
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We recall that a neck nodal domain, D ∈ Vδ
3(ε, u), is one for which (17) holds. As

introduced in (18), we write νδ
3(ε; u) for the number of neck nodal domains of u.

This section is divided into three parts. Given D ∈ Vδ
3(ε, u), in Sect. 6.1 we explain

how to find a neck N for which there is a lower bound on the area of N ∩ D. This
lower bound will be given in the form of Area(V )where V is a subset of a flat cylinder
or a strip into which the neck has been straightened. Then, in Sect. 6.2 we explain how
to find a lower bound on Area(V ), when V is a subset of a cylinder, in terms of its first
Dirichlet eigenvalue. Finally, in Sect. 6.3 we state and prove the bound on νδ

3(ε; u).

6.1 Straightening Lemmas

Given anodal domainD ∈ Vδ
3(ε, u),weknow that oneof the following two inequalities

hold:

( Ã) ‖u3‖2L2(D)
≥ 1

4ε‖u‖2L2(D)
or (B̃) ‖u4‖2L2(D∩∪Ni j,k (w))

≥ 1
8ε‖u‖2L2(D)

.(45)

In the following lemmas, we explain how to find a neck N for which there is a lower
bound on the area of N ∩ D in both the ( Ã) and (B̃) cases.

Lemma 6.1 Let �(w) be a chain domain. There exist constants c∗, C∗ such that the
following holds. Let δ > 0 satisfy (12), ε > 0, and u be a Neumann eigenfunction of
�(w) with eigenvalue μ. Let D ∈ Vδ

3(ε, u) such that ( Ã) holds. Then, there exist a
neckNi j,k(w), a set V with a Lipschitz boundary that is a subset of a flat cylinder of
circumference 4wi j,k , and a function v ∈ H1

0 (V ) with the following properties:

Area(V ) ≤ C∗ Area({x ∈ D ∩ Ni j,k(w) : χδ
3u �= 0}) (46)

and

c∗ε ≤
∫
V

v2 ≤ C∗,
∫
V

|∇v|2 ≤ C∗(μ + δ−2). (47)

Proof As 1/δ∗ is an upper bound on the number of vertices of �(w), and each
neck contributes four vertices, �(w) has at most 1/(4δ∗) necks. Since ‖u3‖2L2(D)

≥
1
4ε‖u‖2

L2(D)
, there therefore exists a neck Ni j,k(w) such that

∫
D∩Ni j,k (w)

u23 ≥ εδ∗
∫
D
u2.

Wenote that the support of the neck cut-off functionχδ
3 only intersects a neckNi j,k(w)

when wi j,k ≤ 4δ (see Definition 3.1). Recall that wi j,k is the minimum width of the
neck Ni j,k(w).

As we commented in Remark 3.1, by the definition of the neck Ni j,k(w), there
exists a diffeomorphism Fi j,k ,
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Fi j,k : [0, Li j,k] × (−wi j,k, wi j,k) → Ni j,k(w)

Fi j,k(s, t) = Gi j,k
(
s, t1 + (t + wi j,k)|Ii j,k |/(2wi j,k)

)
.

The Jacobian of Fi j,k is bounded from above and below by a constant depending only
on the neck-width constant w∗. Then, we define the function ũ := u3 ◦ Fi j,k and set
Ṽ given by

F−1
i j,k(D ∩ {u3 �= 0}) ⊂ [0, Li j,k] × (−wi j,k, wi j,k).

Note that Ṽ has Lipschitz boundary andmeets the lines t = ±wi j,k at non-zero angles,
by Remark 3.2. We now reflect ũ and Ṽ across the line t = wi j,k , and glue across the
line t = −wi j,k . This gives a subset V of a cylinder of circumference 4wi j,k , with
Lipschitz boundary, and a function v ∈ H1

0 (V ), with the required properties. ��
Lemma 6.2 Let �(w) be a chain domain. There exist constants c∗, C∗ such that the
following holds. Let δ > 0 satisfy (12), ε > 0, and u be a Neumann eigenfunction of
�(w) with eigenvalue μ. Let D ∈ Vδ

3(ε, u) such that (B̃) holds. Then, there exist a
neck Ni j,k(w), a set V with a Lipschitz boundary that is a subset of a strip of width
2wi j,k and length C∗δ, and a function v ∈ H1(V ) with the following properties:

Area(V ) ≤ C∗ Area({x ∈ D ∩ Ni j,k(w) : χδ
4u �= 0})

and

c∗ε ≤
∫
V

v2 ≤ C∗,
∫
V

|∇v|2 ≤ C∗(μ + δ−2). (48)

Proof This lemma follows using the same idea as for the proof of Lemma 6.1: There
exists a neck Ni j,k(w) such that the lower bound

∫
D∩Ni j,k (w)

u24 dx ≥ 1
2εδ

∗
∫
D
u2 dx

holds.Wecanuse the samediffeomorphism Fi j,k to transform this neck to an exact strip
of width 2wi j,k , with a bounded Jacobian. Since the cut-off function χδ

4 is supported in
a δ-neighborhood of the ends of the neck Gi j,k({0} × Ii j,k) and Gi j,k({Li j,k} × Ii j,k),
the function v = u4 ◦ Fi j,k and set V = F−1

i j,k(D ∩ Ni j,k(w) ∩ {u4 �= 0}) satisfy
the estimates given in the statement of the lemma. In particular, as we commented in
Remark 3.2, this ensures that the set V has Lipschitz boundary. ��

6.2 Controlling the Area of a Subset of a Cylinder

Given D ∈ Vδ
3(ε, u) satisfying ( Ã), Lemma 6.1 gives the existence of a neckNi j,k(w)

so that the area ofNi j,k(w) ∩ D can be bounded below by the area Area(V ) where V
is a subset of a flat cylinder. In this section we explain how to obtain a lower bound
on Area(V ) in terms of the first Dirichlet eigenvalue for V .
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Lemma 6.3 Let CP be the flat infinite cylinder with circumference P > 0, and let V
be a Lipschitz set on CP with first Dirichlet eigenvalue equal to λ. Then,

Area(V ) ≥ min{πλ1(D)λ−1, Pλ1(D)1/2λ−1/2}.

Proof To prove the lemma, we use the classical proof of the Faber-Krahn Theorem in
the case of constant sectional curvature κ = 0 (see [5]). However, instead of using the
isoperimetric inequality inR2, we use the following inequality on the flat cylinder [13,
Theorem 6]: Let W be a region on the cylinder CP , enclosing area A and of perimeter
L . Then,

1) L ≥ 2
√

π A if A ≤ 1
π
P2, 2) L ≥ 2P if A ≥ 1

π
P2, (49)

with equality only when W is an isometric embedding of a round disc on the cylinder
in the first case, and the region between two cross-sections of CP in the second case.

Let v ∈ H1
0 (V ) be a non-negative firstDirichlet eigenfunction of V , with eigenvalue

λ. We then build a comparison function with circular level sets as follows: LetD(t) ⊂
R
2 be the disc of radius r(t), such that πr(t)2 = |D(t)| = Area({v > t}). Note that

r : [0, t0] → [0, r(0)], with t0 = max v and r(0) = Area(V ), is continuous and
strictly decreasing.

Next, let � = r−1, and define F : D(0) → R by F(p) = �(|p|). Note that by the
co-area formula∫

{v=t}
1

|∇v|dσt = − d
ds

(
Area({v > s}))∣∣s=t = −2πr(t)r ′(t), (50)

where dσt is the measure on the level set {v = t} ⊂ V . Therefore, since t = �(r(t)),

∫
D

v2 dvg =
∫ t0

0
t2
∫

{v=t}
1

|∇v|dσt dt

= −2π
∫ t0

0
(�(r(t)))2r(t)r ′(t)dt =

∫
D(0)

|F |2dv. (51)

Here we have used dvg and dv to denote the area measure on V and R
2 respec-

tively. Next, notice that by Cauchy-Schwartz
(∫

{v=t}
1

|∇v|dσt

) (∫
{v=t} |∇v|dσt

)
≥

Length({v = t})2. Thus, by (50) we have

∫
{v=t}

|∇v|dσt ≥ −Length({v = t})2
2πr(t)r ′(t)

.

Using again the co-area formula

∫
D

|∇v|2 dvg =
∫ t0

0

∫
{v=t}

|∇v|dσt dt ≥ −
∫ t0

0

Length({v = t})2
2πr(t)r ′(t)

dt . (52)
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We now split into two cases depending on the relative size of Area({v > t}) and the
circumference P of the cylinder CP .

Case 1. Suppose that the area of V satisfies

Area(V ) ≤ 1
π
P2.

Then, since Area({v > t}) ≤ Area(V ), case 1) in (49) implies that

Length({v = t}) ≥ 2
√

π A(t) = 2πr(t).

Thus, using that � ′(r(t))r ′(t) = 1, the bound in (52) yields

∫
D

|∇v|2 dvg ≥ −
∫ t0

0

2πr(t)

r ′(t)
dt

= −
∫ t0

0
2πr(t)(� ′(r(t)))2r ′(t)dt =

∫
D(0)

|∇F |2 dv. (53)

From (51) and (53) we have

λ ≥ λ1(D(0)) = π

Area(V )
λ1(D), (54)

which can be rearranged to give Area(V ) ≥ πλ1(D)λ−1.

Case 2. Suppose now that the area of V instead satisfies

Area(V ) ≥ 1
π
P2.

Set A(t) = Area({v > t}). Then, the isoperimetric inequality in (49) implies that

Length({v = t}) ≥ min
{
2P, 2

√
π A(t)

}
= min

{
P

πr(t)
, 1

}
2πr(t)

≥ P√
πArea(V )

2πr(t).

To get the last inequality we used that P
πr(t) ≥ P

πr(0) = P√
πArea(V )

, together with
P√

πArea(V )
≤ 1. Thus, using that � ′(r(t))r ′(t) = 1, the bound in (52) yields

∫
D

|∇v|2 dvg ≥ − P2

πArea(V )

∫ t0

0

2πr(t)

r ′(t)
dt

= − P2

πArea(V )

∫ t0

0
2πr(t)(� ′(r(t)))2r ′(t)dt

= P2

πArea(V )

∫
D(0)

|∇F |2 dv. (55)
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From (51) and (55) we have

λ ≥ P2

πArea(V )
λ1(D(0)) = P2

Area(V )2
λ1(D). (56)

This can be rearranged to give Area(V ) ≥ Pλ1(D)1/2λ−1/2. Since either (54) or (56)
must hold, this completes the proof of the proposition. ��

Remark 6.1 We do not expect the second lower bound in Lemma 6.3 to be sharp: The
first lower bound of Area(V ) ≥ πλ1(D)λ−1 is the same as the lower bound from the
Faber-Krahn Theorem for the disc. For the section SA on the cylinderCP of area A, the
first Dirichlet eigenfunction is sin

( Pπx
A

)
, with eigenvalue λ = P2π2A−2. Therefore,

in this case, we have the equality Area(SA) = Pπλ−1/2.
Motivated by this, we conjecture that

Area(V ) ≥ min{πλ1(D)λ−1, Pπλ−1/2},

with the minimizer given by a disc on CP if λ ≥ λ1(D)2P−2, and a section of CP

if λ ≤ λ1(D)2P−2. The second lower bound on Area(V ) from the proposition is off
from this conjectured sharpest lower bound by a factor of

πλ1(D)−1/2 = π j−1
0,1 ≈ 1.306.

As this factor is independent of λ and P , Lemma 6.3 is sufficient for our nodal domain
count estimate.

6.3 Number of Neck Nodal Domains

We are now ready to state and prove our main result for this section.

Proposition 6.1 (Number of neck nodal domains) Let �(w) be a chain domain.
There exists a constant C∗

3 > 0 such that for all 0 < ε < 1
2 and 0 < β < 1

2 the
following holds. If u is a Neumann eigenfunction of �(w) with eigenvalue μ and
|�(w)|μ ≥ (C∗

3 )
1/β , then

νδ
3(ε; u) ≤ C∗

3

[
ε−1(|�(w)|μ)1−β + ε−4(|�(w)|μ)3−6β

]
,

for δ = |�(w)|1/2−βμ−β .

Proof Throughout, we assume that (|�(w)|μ)β is sufficiently large so that δ satisfies
(12), and in particular Lemmas 6.1 and 6.2 apply. The collection of neck nodal domains
Vδ
3(ε, u) is split into those who satisfy either ( Ã) or (B̃) in (45). We proceed to prove

that the upper bound we claim on νδ
3(ε; u) holds in each case.
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Case 1 : D ∈ Vδ
3(ε, u) is such that ( Ã) holds.

In this case, by Lemma 6.1, there exist a neck N (w) := Ni j,k(w), of minimum
width w := wi j,k and a Lipschitz set V that is a subset of a flat cylinder of circumfer-
ence 4w such that

Area(V ) ≤ C∗ Area({x ∈ D ∩ N (w) : χδ
3u �= 0}).

Here, to simplify notation, we have dropped the i j, k subscripts. Therefore, Lemma 6.3
yields

min{πλ1(D)λ−1, Pλ1(D)1/2λ−1/2} ≤ C∗ Area({x ∈ D ∩ N (w) : χδ
3u �= 0}),

where λ is the first Dirichlet eigenvalue for V . By (47), we have

λ ≤ C∗ε−1(μ + δ−2) =: C∗γ,

and so

Area({x ∈ D ∩ N (w) : χδ
3u �= 0}) ≥ (C∗)−1 min{πλ1(D)γ −1, 4wλ1(D)1/2γ −1/2}

for a constant C∗ that may increase from line-to-line. The area of the neck N (w) is
bounded by a constant depending only on the neck-width constant w∗ multiplied by
wL(w). Therefore,

#{D ∈ Vδ
3(ε, u) : ( Ã) holds} ≤ C∗wL(w)max{γ,w−1γ 1/2}. (57)

For δ = |�(w)|1/2−βμ−β , we have

γ = ε−1|�(w)|−1
(
|�(w)|μ + (|�(w)|μ)2β

)
.

By Definition 3.1, as the support of χδ
3 intersects N (w), we must have w ≤ 4δ.

Therefore, since the isoperimetric ratio L(w)2/|�(w)| is bounded from above by ρ∗,
we have

wL(w)γ ≤ 4δL(w)γ = 4L(w)|�(w)|−1/2

(|�(w)|μ)−β ε−1
(
|�(w)|μ + (|�(w)|μ)2β

)
≤ 4(ρ∗)1/2ε−1

(
(|�(w)|μ))1−β + (|�(w)|μ)β

)
and

wL(w)w−1γ 1/2 = L(w)|�(w)|−1/2ε−1/2
(
|�(w)|μ + (|�(w)|μ)2β

)1/2
≤ (ρ∗)1/2ε−1/2

(
|�(w)|μ + (|�(w)|μ)2β

)1/2
.
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Using these bounds in (57), together with 0 < β < 1
2 , implies that

#{D ∈ Vδ
3(ε, u) : ( Ã) holds} ≤ C∗ε−1

(
(|�(w)|μ)1−β + (|�(w)|μ)1/2

)
. (58)

Since 1
2 < 1− β for β < 1

2 , the quantity in (58) therefore satisfies the estimate in the
statement of the proposition.
Case2 : D ∈ Vδ

3(ε, u) is such that (B̃) holds.
In this case, by Lemma 6.2 there exist a neck N (w) := Ni j,k(w), of minimum

width w := wi j,k , a Lipschitz set V that is a subset of a strip of width 2w and length
C∗δ, and a function v ∈ H1(V ) such that

Area(V ) ≤ C∗ Area({x ∈ D ∩ N (w) : χδ
4u �= 0})

and
∫
V v2 ≥ c∗ε. In particular, we can find x∗ such that

∫
V∩{x=x∗}

v(x∗, y)2 dy ≥ c∗(C∗)−1εδ−1. (59)

We now integrate to the left or right of the strip, as in the proof of Proposition 5.1
from (37) to (43), using (48) and (59) in place of (33) and (37), this time applying a
cut-off function in the x-variable. This provides a Lipschitz set W which is a subset
of the infinite strip R × [−w,w], and a function ṽ ∈ H1(W ) such that ṽ vanishes on
the part of ∂W in the interior of the strip. Moreover, Area(W ) ≤ Area(V ), and, for
(|�(w)|μ)β sufficiently large, the function ṽ satisfies

∫
W |∇ṽ|2∫
W ṽ2

≤ C∗ε−4δ4μ3,

for a constant C∗ that may increase from line-to-line. By reflecting across the line
y = w, we therefore get a set W̃ on a cylinder of circumference 4w, with Area(W̃ ) =
2Area(W ), and so that its first Dirichlet eigenvalue, λ = λ1(W̃ ), satisfies

λ ≤ C∗ε−4δ4μ3 =: C∗γ.

As

Area(W̃ ) ≤ C∗ Area({x ∈ D ∩ N (w) : χδ
4u �= 0}),

by Lemma 6.3 we obtain

Area({x ∈ D ∩ N (w) : χδ
4u �= 0}) ≥ (C∗)−1 min{πλ1(D)γ −1, 4wλ1(D)1/2γ −1/2}.

By Definition 3.1, and the definition of the neck-width constant w∗, the area of the
part of the neck N (w) in the support of χδ

4 is bounded by a constant C∗ multiplied
by wδ. Therefore,
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#{D ∈ Vδ
3(ε, u) : (B̃) holds} ≤ C∗wδmax{γ,w−1γ 1/2}. (60)

Setting δ = |�(w)|1/2−βμ−β gives

γ = ε−4|�(w)|2−4βμ3−4β = ε−4|�(w)|−1 (�(w)μ)3−4β .

Using 0 < β < 1
2 , and w ≤ 4δ, the quantity in (60) therefore satisfies

#{D ∈ Vδ
3(ε, u) : (B̃) holds} ≤ C∗ε−4((|�(w)|μ)3−6β + (|�(w)|μ)3/2−3β).

This satisfies the estimate given in the statement of the proposition, and finishes the
proof. ��

7 Proof of Theorem 1.1

This section is dedicated to the proof of Theorem 1.1. The upper bound on ν(um(w)),
the number of nodal domains for the m-th eigenfunction um(w), will follow from the
control on {νδ

j (ε, um(w))}3j=0 that we developed in previous sections for appropriately
chosen δ, ε.At the same time,whenum(w) isCourant sharp,weknow that ν(um(w)) =
m is bounded below by the number of Neumann eigenvalues underμm(w). Therefore,
weproveTheorem1.1 inSect. 7.2 after first establishing a lower boundon theNeumann
counting function in Sect. 7.1.

7.1 A Lower Bound on the Neumann Counting Function

In this section, we obtain a lower bound on the Neumann counting function
N N

�(w)(μ) = #{ j : μ j (w) < μ}, using a Weyl remainder estimat

Proposition 7.1 Let �(w) be a chain domain. There exists C∗ > 0, such that

N N
�(w)(μ) − 1

4π |�(w)|μ ≥ −C∗ (|�(w)|μ)3/4

whenever |�(w)|μ ≥ C∗.
Proof of Proposition 7.1 By the min-max characterization of eigenvalues μm(w) ≤
λm(w), where λm(w) is the m-th Dirichlet eigenvalue of �(w). Therefore,

N N
�(w)(μ) ≥ N D

�(w)(μ),

where N D
�(w)(μ) is the Dirichlet counting function. Next, let

R�(w)(μ) = 1
4π |�(w)|μ − N D

�(w)(μ).

By [26, Equation (13)], in dimension 2, we obtain, for any ε > 0,

R�(w)(μ) ≤ 1
4π M�(w)(

√
2ε)μ + |�(w)|(√2ε)−1μ1/2. (61)
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For t satisfying

t ≤ 3
4 L(w)min

{
τ ∗δ∗, 1

κ∗
}
, (62)

we can apply Lemma 4.2, so that

M�(w)(t) ≤ C∗L(w)t,

for a constant C∗. Therefore, setting t = 2
√

ε, from (61) we obtain the estimate

R�(w)(μ) ≤ C∗L(w)tμ + |�(w)|t−1μ1/2, (63)

provided (62) continues to hold. Defining t > 0 by

t2 = (C∗)−1|�(w)|/L(w)μ−1/2, (64)

in order to minimize the right hand side of (63), gives

R�(w)(μ) ≤ 2(C∗)1/2L(w)1/2|�(w)|1/2μ3/4

≤ 2(C∗)1/2(ρ∗)1/4(|�(w)|μ)3/4. (65)

Note that from (64) and the isoperimetric inequality,

(
t

L(w)

)4
= (C∗)−2(|�(w)|/L(w)2)3

|�(w)|μ
≤ (C∗)−2(4π)−3

|�(w)|μ .

Therefore, there exists a constant C̃∗ such that, for |�(w)|μ ≥ C̃∗, this choice of t
satisfies (62). Since

N N
�(w)(μ) − 1

4π |�(w)|μ ≥ N D
�(w)(μ) − 1

4π |�(w)|μ = −R�(w)(μ),

the estimate in (65) thus completes the proof of the proposition. ��

7.2 Proof of Theorem 1.1

We now combine the estimates on the nodal domain counts from the previous sections
with Proposition 7.1 in order to prove Theorem 1.1.

Let um(w) be the m-th Neumann eigenfunction of �(w) with eigenvalue μm(w).
To prove the theorem, we can assume that |�(w)|μm(w) is sufficiently large so that
the estimates in Propositions 4.1, 4.2, 5.1, 6.1, and 7.1 all hold with μ = μm(w). We
will use these estimates to then show that |�(w)|μm(w) ≤ C∗ for a constant C∗.
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Let

β := 3
8 , δ := |�(w)|1/2−βμ−β.

By Propositions 4.1, 4.2, 5.1, and 6.1, there exists a constant C̃∗ such that for each
0 < ε < 1

2 , by (19) the number of nodal domains of um(w) satisfies

ν(um(w)) ≤
3∑
j=0

νδ
j (ε, um(w)) (66)

≤ 1

πλ1(D)

1 + ε

1 − ε
|�(w)|μm(w) + C̃∗ε−4 (|�(w)|μm(w))3/4 , (67)

provided that |�(w)|μ ≥ C̃∗. Since N N
�(w)(μm(w)) ≤ m − 1, by Proposition 7.1,

m − 1 − 1

4π
|�(w)|μm(w) ≥ −C∗ (|�(w)|μm(w))3/4 , (68)

provided that |�(w)|μ ≥ C∗.
When um(w) is Courant sharp, we have ν(um(w)) = m. Therefore, combining (66)

and (68) implies, in the Courant sharp case, that μm(w) satisfies

1
4π |�(w)|μm(w) − C∗ (|�(w)|μm(w))3/4 ≤ 1

πλ1(D)

1 + ε

1 − ε
|�(w)|μm(w)

+ C̃∗ε−4 (|�(w)|μm(w))3/4 . (69)

We fix a small absolute constant ε > 0 so that

1

πλ1(D)

1 + ε

1 − ε
<

1

4π
,

which we can do since 4/λ1(D) < 1. Then, we can rearrange (69) to guarantee that

|�(w)|μm(w) ≤ C∗
1

for a constant depending only on C∗, C̃∗ and this value of ε. This establishes the
second part of the theorem. To prove the first part of the theorem, we see from (66)
that for any eigenfunction um(w),

ν(um(w))

m
≤ 1

πλ1(D)

1 + ε

1 − ε

|�(w)|μm(w)

m
+ C̃∗ε−4 (|�(w)|μm(w))3/4

m
.

Using (68), we therefore have
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lim supm→∞
ν(um(w))

m
≤ 4π

πλ1(D)

1 + ε

1 − ε

for any ε > 0. Letting ε → 0 then completes the proof of the theorem.
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