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Abstract

The development of molecular models with quantum-mechanical accuracy for predictive sim-

ulations of biomolecular systems has been a long standing goal in the field of computational

biophysics and biochemistry. As a first step towards a transferable force field for biomolecules

entirely derived from “first principles”, we introduce a data-driven many-body energy (MB-

nrg) potential energy function (PEF) for N-methyl acetamide (NMA), a peptide bond capped

by two methyl groups that is commonly used as a proxy for the protein backbone. The MB-

nrg PEF is shown to accurately describe the energetics and structural properties of an iso-

lated NMA molecule, including the normal modes of both cis and trans isomers and the en-

ergy variation along the isomerization path, as well as the multidimensional potential energy

landscape of the NMA–H2O dimer in the gas phase. Importantly, we show that the MB-nrg

PEF is fully transferable, enabling molecular dynamics simulations of NMA in solution with

quantum-mechanical accuracy. Comparisons with results obtained with a popular pairwise-

additive force field for biomolecules and a classical polarizable PEF demonstrate the ability of

the MB-nrg PEF to accurately represent many-body effects in NMA–H2O interactions at both

short and long distances, which is key to guaranteeing full transferability from the gas to the

liquid phase.
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INTRODUCTION

Water plays an active role in mediating most biological processes.1 It is thus not surprising that

significant effort has been made to identify possible correlations between the structure, dynamics,

and function of biomolecules in solution and the properties of the surrounding water’s hydrogen-

bond network.2 These efforts have led to the development of several fundamental concepts in

biomolecular hydration, including hydrophobicity, crowding, and confinement.

Proteins are among the most important biomolecules. They are made up of unique sequences of

amino acids, which determine both their structures and functions.3 In these sequences, each amino

acid is connected to its neighbors by peptide bonds.4 Proteins play key roles in nearly all biological

processes taking place in living systems, from catalyzing metabolic reactions5 and replicating

DNA6 to responding to stimuli7 and transporting molecules from one location to another.8

The hydration properties of a protein can have a considerable impact on how the protein folds

into a three-dimensional shape and carries out its biological functions in solution.9–11 For exam-

ple, some proteins tend to form aggregates and self-assemble under specific thermodynamic condi-

tions,12–14 while other proteins, which lack hydrophobic cores, contain extensive regions that are

intrinsically disordered.15 Understanding how proteins interact with water at the molecular level

is thus key to conceptualizing how proteins fold and function, which in turn provides insight into

fundamental biological processes.16,17

Since the first computer simulation of a protein,18 molecular dynamics (MD),19 Monte Carlo

(MC),20 and coarse-grained (CG)21 simulations have been extensively used to model the structural,

thermodynamic, and dynamical properties of proteins. Recent advances in computer hardware and

algorithms have made it possible to simulate larger and more complex proteins on increasingly

long time scales,22 often providing molecular insights that are difficult to obtain by other means.

Although computer simulations play a central role in the study of biological systems,23 there are

still several challenges that must be overcome to improve their realism and predictive power, in-

cluding the need for more accurate molecular models to represent the underlying multidimensional

free-energy landscape24 as well as more efficient algorithms to sample conformational changes that
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take place over long time scales.

Pairwise-additive force fields (FFs) have been the workhorse of molecular simulations of pro-

teins since the introduction of the “consistent force field” (CFF).25,26 Building upon these pi-

oneering efforts, AMBER,27 CHARMM,28 OPLS,29 and GROMOS30 are currently among the

most commonly used FFs in biomolecular simulations. These pairwise-additive FFs are based on

relatively simple energy functions that aim to represent both the (intramolecular) distortion of a

biomolecule and the (intermolecular) biomolecule–water and water–water interactions. In general,

the energy functions adopted by pairwise-additive FFs are empirically parameterized to reproduce

a set of experimental data, which are sometimes supplemented by data derived from quantum-

mechanical calculations.

Although pairwise-additive FFs offer a computationally inexpensive representation of biomolec-

ular systems, they are by construction unable to describe many-body effects, which drastically

limits their transferability and predictive power.24,31 To overcome these limitations, several po-

larizable FFs have been developed to capture many-body electrostatic interactions with classical

expressions. Some polarizable FFs adopt the fluctuating charge approach, which determines many-

body polarization by optimizing the total electrostatic energy with electronegativity equalization

along different bonds.32 A second method to account for many-body electrostatic interactions em-

ploys the Drude oscillator model as in the polarizable version of the CHARMM force field.33,34

The Drude oscillator model attaches a virtual, partially charged, and massless site to each polar-

izable atom which, vibrating about the corresponding atom, effectively mimics the polarization

of the electron cloud due to the surrounding electric field.35–37 Other polarizable FFs, including

AMOEBA32,38 and the polarizable version of the AMBER force field,39 explicitly account for

induced dipoles on each (polarizable) molecule. Although relatively computationally more ex-

pensive than the Drude oscillator model, the induced-dipole model has been shown to be more

accurate in reproducing the non-additive and directional nature of many-body polarization.38

Over the past decade, machine learning (ML) has gained popularity in molecular sciences,

and, as a consequence, several neural network FFs derived from ab initio data have been reported
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in the literature.40 In general terms, neural network FFs fall into two main categories, depend-

ing on whether they rely on predefined descriptors for the target molecular system or they learn

the descriptors from the data during the training process.41 ANI,42,43 DeePMD,44 Tensormol,45

EANN,46 BpopNN47 and 4G-HDNNP48 are examples of neural network FFs with predefined

descriptors, which utilize parameters in a preset functional form for characterizing atomic geome-

tries, typically decomposing the energies into atomic contributions.49 Some neural network FFs

represent the energy of a molecule as a sum of intrinsic bond energies such as BIM-NN,50 or use

an atomic-pairwise framework to represent molecular interactions, such as AP-Net.51 PhysNet,52

HIP-NN,53 SchNet,54,55 and AIMNet56 are neural network FFs that learn a descriptor from struc-

tural information of the training systems without prior knowledge of the functional forms of the

descriptor. Although neural network FFs represent a promising avenue to more realistic biomolecu-

lar simulations, their transferability across different phases and thermodynamic conditions remains

challenging.57

In parallel with the development of neural network FFs, the last decade has witnessed the emer-

gence of hybrid data-driven/physics-based potential energy functions (PEFs) that encode the cor-

rect physics of many-body interactions while using ML algorithms to “learn” short-range quantum-

mechanical interactions directly from electronic structure data.58 In this context, the many-body

energy (MB-nrg) theoretical/computational framework,59 which exploits the “nearsightedness” of

electronic matter60 to rigorously represent the energy of a given molecular system in terms of indi-

vidual many-body contributions,61 has successfully been applied to model the properties of various

molecular systems across different phases, including water,62–89 ammonia,90 carbon dioxide,91,92

methane,93,94 halide and alkali-metal ions in water,,95–104 nitrogen pentoxide in water,105,106 and

alkanes.107 In this study, we present the first step towards the development of a general data-driven

many-body FF for proteins by introducing an MB-nrg PEF for N-methyl acetamide (NMA) that is

commonly used as a proxy of the protein backbone. Besides its relevance in the development of

biomolecular FFs, NMA is also important because, given its high boiling point and low toxicity, it

is used in several industrial processes.108 In addition, NMA is used as a starting material in the syn-
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thesis of other chemicals, such as pharmaceuticals and polymers, as well as a non-toxic alternative

to traditional solvents.109,110 The hydration structure, solvation energetics, vibrational spectra, and

isomerization of NMA have been studied, both experimentally and theoretically.111–115 Recently,

molecular models for the trans and cis isomers of gas-phase NMA have been developed using full

and fragmented permutationally invariant polynomials (PIPs).116–118

Building upon the accuracy and predictive power of the MB-nrg PEFs, we introduce here a

transferable MB-nrg PEF that accurately represents the structure and energetics of NMA, including

the isomerization path, both in the gas phase and in solution. Given the generality and modularity

of the MB-nrg PEFs, our results suggest that the MB-nrg theoretical/computational framework

represents a viable approach to developing a comprehensive and transferable data-driven many-

body force field that can accurately predict the structure and energetics of biomolecules across

different phases.

METHODS

Many-body potential energy functions

The many-body expansion (MBE) of the energy allows for rigorously expressing the total energy

of an N-body system as a sum of n-body energy contributions (1≤ n≤ N) according to:61

EN(1, . . . ,N) =
N

∑
i=1

ε
1B(i)+

N

∑
i< j

ε
2B(i, j)+

N

∑
i< j<k

ε
3B(i, j,k)+ . . .+ ε

NB(1, . . . ,N) (1)

Here, the 1-body energy, ε1B(i), refers to the distortion energy of the ith monomer relative to its

minimum-energy geometry, i.e., ε1B(i) = E(i)−Eeq(i), where E(i) and Eeq(i) are the energies for

the distorted and equilibrium geometries, respectively. For n ≥ 2, the n-body (nB) energies are

6



defined recursively through the following expression:

ε
nB(1, . . . ,n) = En(1, . . . ,n)−

n

∑
i=1

ε
1B(i)−

n

∑
i< j

ε
2B(i, j)

−
n

∑
i< j<k

ε
3B(i, j,k)− . . .−

n

∑
i< j<k<...

ε
(n−1)B(i, j,k, . . .)

(2)

Since the MBE converges quickly for nonmetallic systems,119–122 eq 1 provides a rigorous and ef-

ficient theoretical/computational framework for the development of full-dimensional PEFs where

each n-body energy term is fitted to reproduce the corresponding reference values obtained from

electronic structure calculations.62–64,90–93,95,96,102,104,105,107,123–127 Examples of many-body PEFs

derived from eq 1 are the Thole-type-model energy (TTM-nrg)95,96 and many-body energy (MB-

nrg)95,96 PEFs for generic solutes in water. In both TTM-nrg and MB-nrg PEFs, water–water inter-

actions are represented by MB-pol,62–64 which has been shown to accurately predict the properties

of water,70 from small clusters in the gas phase66–69,75–80,84,86 to liquid water,65,72,81,87,89,128–130

the air/water interface,,71,88,131–133 and ice.73,74,82,83 Both MB-nrg and TTM-nrg PEFs are built

upon an underlying many-body polarizable model supplemented by a 2-body dispersion energy

term. The difference between the TTM-nrg and MB-nrg PEFs lays on the representation of short-

range interactions, with the former using a sum of (2-body) Born-Mayer potentials,134,135 and the

latter using multidimensional PIPs at the 2-body level and, in some cases, at the 3-body level as

well.95,96 In this study, we introduce a slight variation of the MB-nrg framework in which the

2-body PIP is implemented on top of the 2-body Born-Mayer potentials.

Briefly, the TTM-nrg and MB-nrg NMA–H2O PEFs approximate eq 1 as

EN(r1, ..,rN) =
N

∑
i=1

ε
1B(i)+

N

∑
i> j

ε
2B(i, j)+Vpol (3)

In both types of PEFs, the NMA 1-body energy, ε1B, describing the distortion of an NMA molecule

from its equilibrium geometry, is represented by a PIP fitted to 1-body reference energies. A PIP

of the 66 distances between all pairs of atoms in an NMA molecule, containing 30 first-degree
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monomials, 538 second-degree monomials, and 7471 third-degree monomials, was found to pro-

vide the optimal compromise between accuracy and computational efficiency. The point charges

of the NMA atoms, which are used to calculate NMA–H2O permanent electrostatic interactions

(eq 4), were calculated for the equilibrium geometry of NMA using the Charge Model 5 (CM5)

method136 as implemented in Q-Chem 5.137 The CM5 calculations were carried out with the hy-

brid, range-separated, meta-GGA ωB97M-V138 functional in combination with the aug-cc-pVTZ

basis set.139 All NMA atoms were also assigned dipole polarizabilities, which are used to calculate

NMA–H2O polarization energy represented by Vpol in eq 3. The dipole polarizabilities were deter-

mined at the ωB97M-V/aug-cc-pVTZ level of theory according to the Exchange Dipole Moment

(XDM) model140–142 implemented in Q-Chem 5.137

The NMA–H2O 2-body energy, ε2B, is expressed as:

ε
2B =V 2B

sr +Velec +Vdisp (4)

In the TTM-nrg PEF, the short-range term, V 2B
sr , describing 2-body NMA–H2O repulsive interac-

tions, is represented by a sum of pairwise Born-Mayer potentials between all atoms of the two

molecules,143

V 2B
sr = ∑

α∈NMA
β∈water

Aαβ e−bαβ Rαβ (5)

Here, α and β are atom indexes within the NMA and H2O molecules, and Aαβ and bαβ are fitting

parameters.

In the MB-nrg PEF, V 2B
sr is represented by the same sum of pairwise Born-Mayer potentials

adopted by the TTM-nrg PEF which is supplemented by a third-degree PIP, V 2B
PIP, that is smoothly

switched to zero as the NMA–H2O distance becomes larger than a predefined cutoff set to 8.0 Å. It

has been shown that V 2B
PIP effectively recovers quantum-mechanical short-range 2-body interactions

(e.g., exchange-repulsion, charge transfer, and charge penetration) that arise from the overlap of

the electron densities of the two molecules within the dimer.144 Due to the relatively large number

of atoms in an NMA molecule, the development of an accurate, yet computationally efficient, V 2B
PIP
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poses new challenges relative to other MB-nrg PEFs developed for small solutes in water. For

example, the full third-degree NMA–H2O PIP contains 36763 terms, which makes the associated

computational cost effectively unaffordable for MD simulations of NMA in solution. In the present

MB-nrg NMA–H2O PEF, the number of terms in V 2B
PIP was reduced from 36763 to 2209 by apply-

ing multiple filters which removed terms involving variables that were found to be irrelevant for

the accurate representation of the NMA–H2O 2-body potential energy landscape. In addition, V 2B
PIP

only includes the heavy atoms of NMA along with the hydrogen atom of the amide group. Addi-

tional filters were applied to remove all terms that only include intramolecular distances within the

NMA monomer, since they are accurately described by the 1-body PIP. In the subsequent step, the

distances of all intermolecular pairs were calculated, and all PIP terms of degree 3 or higher were

removed if they contained a pair whose average distance is larger than 2.0 Åsince their interactions

are accurately described by Vpol. A complete description of the filters applied in the development

of V 2B
PIP is reported in the Supporting Information.

In eq 4, Velec describes permanent electrostatics that is calculated from Coulomb interactions

between the point charges located on the NMA and water molecules within a dimer. As discussed

in the original references,62,63 the MB-pol point charges were fitted to reproduce the ab initio

dipole moment of an isolated water molecule.145 The last term of eq 4, Vdisp, describes the 2-body

dispersion energy and is expressed as:

Vdisp =− ∑
α∈NMA
β∈water

f (δαβ Rαβ )
C6,αβ

R6
αβ

(6)

where α and β are atom indexes within the NMA and water molecules, C6,αβ is the associated

dispersion coefficient, and f (δαβ Rαβ ) is the Tang-Toennies damping function146 with damping

parameter δαβ :

f (δαβ ,Rαβ ) = 1− exp(−δαβ Rαβ )

6

∑
n=0

(δαβ Rαβ )
n

n!
(7)

Similar to the MB-nrg PEFs for carbon dioxide91,92 and methane,93 δαβ was set to be equal to bαβ
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in eq 5, and all C6,αβ coefficients were calculated at the ωB97M-V/aug-cc-pVTZ level of theory

using the XDM model140–142 as implemented in Q-Chem 5.137

Finally, Vpol in eq 1 is a classical many-body polarization term based on a modified version of

the Thole-type model that includes induced dipoles on all atoms as implemented in MB-pol62,63

and previous MB-nrg PEFs.90,91,93,95,96,105

The 1-body and 2-body energy terms of the TTM-nrg and MB-nrg PEFs were fitted separately

using the MB-Fit software90 which minimizes the weighted sum of squared errors:

χ
2 = ∑

k∈S
wk

[
ε

nB(k)− ε
nB
ref (k)

]2
+Γ

2∑
l

A2
l (8)

Here, εnB(k) and εnB
ref (k) are the model (TTM-nrg or MB-nrg) and reference n-body energies,

respectively, for the kth configuration of the corresponding n-body training sets. Γ2
∑l A2

l is a

regularization term,147 favoring smaller linear fitting parameters Al with magnitude determined

by the regularization parameter Γ2. The weights wk were calculated to bias the fit in favor of

low-energy configurations:

wk =

(
δE

εnB(k)− εnB
min +δE

)2

(9)

where εnB
min is the minimum εnB in the corresponding n-body training set, and δE is a parameter that

ensures less weighing on more distorted (i.e., high energy) configurations. All nonlinear fitting pa-

rameters entering the TTM-nrg and MB-nrg expressions for εnB were optimized using the simplex

algorithm, where the linear parameters were determined at each step using ridge regression.147 All

technical details of the fitting procedure are discussed in ref 90.

The atomic charges and dipole polarizabilities, as well as Born-Mayer and dispersion coeffi-

cients for the TTM-nrg and MB-nrg NMA–H2O PEFs are reported in the Supporting Information.

Both TTM-nrg and MB-nrg NMA–H2O PEFs are available in MBX.148
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Training and test sets

Selecting appropriate training configurations is a nontrivial task in the development of data-driven

PEFs. While a well-chosen training set is expected to maximize the coverage over the target n-

body potential energy landscape, an “incomplete” training set may result in “holes” in the TTM-nrg

and MB-nrg representations of the corresponding n-body energies, i.e., regions where the TTM-

nrg and MB-nrg PEFs predict nonphysical n-body energies due to insufficient coverage in the

corresponding n-body training sets. In the present study, the generation of the 1-body and 2-body

training sets was performed with the MB-Fit software,149 following the procedure described in ref

90.

The NMA 1-body training set contains 15000 configurations generated from normal-mode

sampling carried out with the corresponding quantum distribution at 298.15 K (12500 configura-

tions) and 5000 K (2500 configurations). Sampling at a high temperature allowed for generating

higher molecular distortions that are necessary to guarantee “complete” coverage of the 1-body

(b) cis-NMA(a) trans-NMA

(c) TS-down (d) TS-up (e) TS-pl

C4

H1

H2

H3

C7

C9

N5

H6

O8

H10

H11

H12

Figure 1: Geometries for the tran, cis, and three saddle-point structures of NMA reported in ref
150. The geometry optimizations were carried out at DF-MP2/AVQZ level of theory.

11



energy landscape. An additional set of 5000 configurations was generated from normal-mode

sampling carried out at 298.15 K with the corresponding classical distribution. An equal number

of configurations was generated from normal-mode sampling carried out for both the trans and cis

structures of NMA (Figure 1a-b), as well as for the three saddle-point structures identified in ref

150 (Figure 1c-e).

An additional set of 13742 configurations extracted from metadynamics simulations151 of an

isolated NMA molecule was added to the 1-body training set. The metadynamics simulations were

carried out with the PLUMED (v2.6) interface152 for the LAMMPS (v2021.9.29) package,153 us-

ing the Generalized AMBER Force Field (GAFF)154,155 to describe the NMA molecule. The

collective variable chosen for the metadynamics simulations was the C9-C7-N5-C4 dihedral angle

that is part of the cis-trans isomerization path (see atom labels in Figure 1). In total, the final

1-body training set contains 33742 configurations. The corresponding 1-body test set contains

2000 configurations extracted from normal-mode sampling, and 3311 configurations extracted

from metadynamics simulations.

The 2-body NMA–H2O training set for both TTM-nrg and the MB-nrg PEFs consists of 27976

configurations. A first set of 2659 configurations was obtained from radial scans along interatomic

distances between all atom pairs that have one atom located on the NMA molecule and one atom

located on the water molecule. In these radial scans the two molecules were kept in their minimum-

energy geometries and randomly rotated with respect to each other, while the interatomic distances

were sampled using a logarithmic distribution favoring shorter distances. Some pairs were not in-

cluded since they involve equivalent atoms, e.g., the three hydrogen atoms located on the same

methyl group. Additional 6234 configurations were obtained from similar radial scans in which

the geometries of the two molecules were distorted using different combinations of the correspond-

ing normal modes. The last set of 19083 configurations was obtained from metadynamics simu-

lations of a single NMA molecule in bulk water that were carried out in the isobaric-isothermal

ensemble (NPT ) at 298 K and 1 atm using LAMMPS153 patched with PLUMED.152 In these sim-

ulations, the GAFF force field was used to describe the NMA molecule and the water molecules
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were described by the TIP4P/2005 model.156 Lorentz-Berthelot mixing rules were used to describe

NMA–H2O interactions.157 The same dihedral angle used to generate the 1-body training set was

used as the collective variable in the metadynamics simulations of an NMA molecule in bulk wa-

ter. All NMA–H2O pairs with an intermolecular distance between the two centers of mass shorter

than 9.0 Å were extracted from the metadynamics simulations and subsequently screened using

furthest point sampling.158 The NMA–H2O 2-body test set contains a total of 5961 configurations,

including 260 configurations generated from radial scans with rigid NMA and H2O molecules,

1184 configurations obtained from radial scans with distorted NMA and H2O molecules, and 4517

configurations obtained from metadynamics simulations.

All electronic structure calculations of the 1-body and 2-body reference energies were carried

out with MOLPRO 2019159,160 using density fitting161–163 second-order Møller-Plesset164 (DF-

MP2) perturbation theory in combination with the aug-cc-pVQZ (AVQZ) basis set.139 The DF-

MP2/aug-cc-pVQZ 2-body energies were corrected for the basis set superposition error using with

the counterpoise method.165

Molecular dynamics simulations

MD simulations were carried out in the isothermal-isobaric (NPT : constant number of particles,

pressure, and temperature) ensemble at 298.15 K and 1.0 atm for 1 NMA molecule and 277 wa-

ter molecules (corresponding to ∼0.2 M concentration) in periodic boundary conditions. A time

step of 0.5 fs was used to propagate the equations of motion according to the velocity-Verlet algo-

rithm for 1 ns.166 All MD simulations with the TTM-nrg and MB-nrg PEFs were carried out with

LAMMPS153 through the interface with the MBX software.148 For comparison, MD simulations

were also carried out with Amber22167 using both the GAFF154,155 and ff14SB168 force fields for

NMA combined with the TIP4P/2005 water model.156 Specific details about the GAFF and ff14SB

parameters for NMA are reported in the Supporting Information.
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Results

NMA in the gas phase

Correlation plots between the DF-MP2/aug-cc-pVQZ reference values and the corresponding MB-

nrg results for the 1-body energies of NMA (panel a), the 2-body energies for TTM-nrg NMA–

H2O PEF (panel b), and 2-body energies for MB-nrg NMA–H2O PEF (panel c) are shown in

Fig. 2. The corresponding root-mean-square deviations (RMSDs) are 0.2710 kcal/mol, 0.7826

kcal/mol, and 0.2690 kcal/mol, respectively. As discussed in the Methods section, the TTM-nrg

PEF adopts the same representation of the 1-body energies as the MB-nrg PEF. Consistent with

previous studies,90,91,93,107 the MB-nrg PEF is able to accurately represent both 1-body and 2-body

energies. In contrast, the limitations of a purely classical description of many-body interactions,

which were already identified in refs. 93 and refs. 91, manifest in large deviations between the

TTM-nrg 2-body energies and the corresponding DF-MP2/AVQZ reference data.

As shown in Figure 1, NMA can exist as either a cis or trans isomer, with the two configurations

being related to each other through a rotation of the two terminal methyl groups about the peptide

10 0 10 20 30 40 50
DF-MP2/AVQZ (kcal/mol)

10

0

10

20

30

40

50

M
B-

nr
g 

(k
ca

l/m
ol

)

c) NMA-H O MB-nrg

BE < 20 kcal/mol
BE > 20 kcal/mol

Figure 2: Correlation plots between the DF-MP2/AVQZ reference energies and the corresponding
values calculated with the different PEFs for the 1-body and 2-body test sets. (a) NMA 1-body
MB-nrg, (b) NMA-H2O 2-body TTM-nrg, and (c) NMA-H2O 2-body MB-nrg. In all panels, light
and dark colors represent configuration with binding energies lower and higher than the corre-
sponding cutoff values, which were set to 30 kcal/mol and 20 kcal/mol for the 1-body and 2-body
configurations, respectively.
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bond. To examine the ability of the MB-nrg PEF to correctly predict the structure of both iso-

mers, the MB-nrg optimized geometries were compared with the corresponding DF-MP2/AVQZ

reference structures, resulting in RMSDs of 0.016 Å and 0.008 Å for the cis and trans isomers,

respectively. Detailed comparisons illustrating the accuracy of the MB-nrg PEF in reproducing the

DF-MP2/AVQZ structural parameters for the two NMA isomers are reported in Tables S7 and S8

of the Supporting Information.

While the comparisons discussed above allow for assessing the accuracy of the MB-nrg PEF in

describing the minimum-energy structures of both cis and trans isomers of NMA, they do not pro-

vide any information about the ability of the MB-nrg PEF to represent the overall morphology of

the underlying multidimensional potential energy surface. To gain insights into the general shape

of the NMA potential energy surface in the neighborhoods of the cis and trans minimum-energy

structures, Figure 3 shows the comparisons between the reference DF-MP2/AVQZ harmonic fre-

quencies for the cis and trans isomers and the corresponding values predicted by the MB-nrg PEF.

For both isomers, the MB-nrg PEF predicts harmonic frequencies within 20 cm−1 of the ref-

erence DF-MP2/AVQZ values with the exception of normal modes 1 and 14 of the trans isomer,

and normal modes 15 and 28 of the cis isomer. The corresponding relative errors, defined as

∆ω = (ωMB−nrg−ωDF−MP2/AV QZ)/ωDF−MP2/AV QZ , are below 3% for all normal modes except for

the first four normal modes with the lowest frequencies. Since these four normal modes involve

the collective motion of several atoms, the deviations with the reference DF-MP2/AVQZ values

found in Figure 3 suggest that a PIP of degree higher than 3, which is currently used in the 1-

body MB-nrg PEF, may be needed for a more accurate description of these low-frequency normal

modes.

It should be noted that the MB-nrg PEF slightly underestimates the harmonic frequencies of

normal mode 1 (N-C-H3 deformation), normal mode 3 (combination of C-N-C deformation and N-

H out-of-plane bending), and normal mode 14 (combination of N-C-H3 rocking, C4-N stretching,

and N-H in-plane bending), while slightly overestimating the harmonic frequencies of normal

mode 6 (combination of C-N-C deformation, C-O in-plane bending, and C-C-H3 rocking) and
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mode 8 (combination of C-O in-plane bending and C-C stretching). These differences indicate

that the MB-nrg PEF makes the carbonyl and amino sides of the amide bond slightly stiffer and

softer, respectively, relative to reference DF-MP2/AVQZ values.

For normal modes with frequencies above 500 cm−1, the second largest relative deviation (-

1.67 %) from the reference DF-MP2/AVQZ values is found for normal mode 15 that corresponds

to the amide III mode (combination of N-H in-plane bending and C7-N stretching). This deviation

is a consequence of the stiffening and softening of the carbonyl and amino sides of the peptide
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Figure 3: Comparisons between the DF-MP2/AVQZ reference harmonic frequencies (green) and
the corresponding values calculated with the MB-nrg PEF (yellow) for the cis (a) and trans (b)
isomers of NMA in the gas phase. Shown in c) are the percentage errors associated with the
MB-nrg harmonic frequencies relative to the DF-MP2/AVQZ reference values for both isomers.
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bond, respectively, as discussed above. The MB-nrg PEF accurately reproduces the harmonic

frequencies of both amide I (normal mode 23) and amide II (normal mode 22) vibrations, which

highlights the prospect for applying the MB-nrg PEFs107 to simulations of vibrational spectra of

biomolecules.169,170

To further demonstrate the ability of the MB-nrg PEF to correctly represent the overall multidi-

mensional 1-body energy landscape of NMA, Figure 4 shows a comparison between the reference

DF-MP2/AVQZ and MB-nrg energies along the isomerization pathway between the cis and trans

configurations. The reference structures for this analysis were obtained from partial optimiza-

tions carried out at the DF-MP2/AVQZ level of theory in which the C9-C7-N5-C4 dihedral angle

(Figure 1) was uniformly varied from the cis to the trans configuration while optimizing all other

degrees of freedom. The comparison shown in Figure 4 demonstrates that the MB-nrg PEF is able

to quantitatively reproduce the reference DF-MP2/AVQZ energies for configurations along the iso-

merization path that are not explicitly included in the training set, which provides evidence for the

ability of the MB-nrg PEF to extrapolate outside the training set and thus accurately represent the

global 1-body NMA multidimensional energy landscape.
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Figure 4: Energy variation along the cis–trans isomerization path of NMA described by the C9-
C7-N5-C4 dihedral angle. The DF-MP2/AVQZ reference energies are shown as red circles and the
corresponding MB-nrg values are shown as a blue line.
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As discussed in Ref. 107, it should be emphasized that, by construction, the accuracy of any

MB-nrg PEF is systematically improvable, e.g., by training higher-degree PIPs on larger training

sets and/or using a higher level of electronic structure theory in the calculations of the reference

energies and/or expanding the training sets. The incremental refinement of the present MB-nrg

PEF for NMA, however, lies outside the scope of this study. Our primary objective instead is

to demonstrate that the MB-nrg formalism can be extended to enable predictive simulations of

biomolecules both in the gas phase and in solution.

NMA–H2O dimer

Figure 5 shows the variation of the NMA–H2O 2-body energy (i.e., interaction energy) along

different radial scans for both the cis and trans isomers of NMA. Specifically, the panels in the

left column (a, c, e, and g) show radial scans from the two methyl groups of NMA, while the

panels in the right column (b, d, f, h) show radial scans from the carbonyl (b, f) and amino (d,

h) groups. In all cases, the MB-nrg PEF accurately reproduces the DF-MP2/AVQZ energies. It

should be noted that, although the deviations from the reference data become relatively larger

at shorter distances, these configurations are less relevant in actual computer simulations given

the associated interaction energy that is significantly larger than the thermal energy at ambient

conditions (kBT = 0.59 kcal/mol at 300 K, with kB being Boltzmann’s constant).

On the other hand, the performance of the TTM-nrg PEF clearly demonstrates the limitations of

a classical representation of molecular interactions. In particular, TTM-nrg is unable to accurately

reproduce the DF-MP2/AVQZ reference data at short distances, where the monomer’s electron

densities overlap, but is able to correctly describe long-range interactions, which primarily depend

on many-body electrostatics and London dispersion forces.

NMA in liquid water

The last aspect that remains to be addressed is whether the high accuracy demonstrated by the MB-

nrg PEF in representing the DF-MP2/AVQZ energy landscape of both an isolated NMA molecule
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Figure 5: NMA–H2O energy scans along several distances between the water molecule and differ-
ent atoms of the cis (a-d) and trans (e-h) isomers of NMA. The DF-MP2/AVQZ reference energies
are shown as red circles, while the corresponding MB-nrg and TTM-nrg values are shown as blue
and green lines, respectively.
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and an NMA–H2O dimer in the gas phase is transferable to computer simulations of NMA in solu-

tion. To this end, we investigated the hydration structure of NMA as predicted by MD simulations

carried out in periodic boundary conditions with both the TTM-nrg and MB-nrg PEFs at 298 K

and 1 atm for a ∼0.2 M NMA solution (1 NMA molecule in a box of 277 water molecules). Be-

sides the TTM-nrg and MB-nrg PEFs, our analyses also include results obtained from analogous

MD simulations carried out with the empirical pairwise-additive ff14SB force field,168 which is

commonly used in biomolecular simulations, paired with the TIP4P-2005 water model.156

Fig. 6 shows the comparisons among the radial distribution functions (RDFs) between the oxy-

gen atoms of the water molecules (Ow) and the H6, O8, and N5 atoms of NMA (see Fig. 1)

calculated with the different models. Also shown are the RDFs obtained by applying the empirical

potential structure refinement (EPSR) method to experimental data collected from neutron diffrac-

tion with isotopic substitution (NDIS) measurements carried out for a solution with a concentration

of 1 mol of NMA per 15 mol of water. Overall, all models qualitatively reproduce the EPSR-based

RDFs although some differences are noticeable. In particular, MB-nrg predicts more structured and

somewhat tighter hydration shells, independently of the direction of approach and orientation of

the water molecules. On the other hand, TTM-nrg predicts the least structured first hydration shell,

which is particular evident in the case of the H6-Ow and O8-Hw RDFs. Interestingly, the empiri-

cal pairwise-additive potential ff14SB/TIP4P-2005 appears to resemble MB-nrg at short distances,

Figure 6: Radial distribution functions between different pairs of atoms located on the NMA
and H2O molecules calculated with the MB-nrg (blue) and TTM-nrg (green) PEFs, and the
ff14SB/TIP4P-2005 force field (yellow). Also shown are the EPSR-based radial distribution func-
tions derived from NDIS measurements.171 See main text for details.
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particularly within the first solvation shell of H6 and O8, but behaves more closely to TTM-nrg

at larger distances. The hydrogen-bond lengths predicted by MB-nrg PEF are in agreement with

values reported in the literature from hybrid quantum mechanics/molecular mechanics (QM/MM)

simulations172 and ab initio calculations.173 Importantly, the TTM-nrg PEF underestimates the

H6-Ow bond strength, which is consistent with the correlation plot reported in Fig. 2b, showing

that the TTM-nrg PEF tends to underestimate the strength of attractive 2-body energies.

The differences between the EPSR-based and MB-nrg RDFs may be due to various reasons,

including inaccuracies of the MB-nrg PEF which may be related to intrinsic inaccuracies of the

DF-MP2/AVQZ training data and/or inaccuracies in the description of NMA–H2O n-body energies

with n > 2 which are only represented by many-body polarization in the current MB-nrg PEF. In

this regard, it was shown explicitly representing 3-body energies with a 3-body PIP, in some cases,

slightly improves the agreement with experimental measurements of extended X-ray absorption

fine structure (EXAFS) spectra.102,104,126,127 Another possible reason for the differences between

the EPSR-based and MB-nrg RDFs may be related to the higher NMA concentration used in the

experiments. In this regard, from the analyses of the NDIS measurements reported in Ref. 171

it was concluded that, at the concentration used in the experiments, NMA molecules can form

hydrogen-bonded dimers and possibly chains. Since all MD simulations reported in this study

were carried out at an NMA concentration that is ∼18 times lower than in the experiments of Ref.

171, the differences in the EPSR-based and MB-nrg RDFs can also possibly be due to the absence

of NMA dimers or chains in the MD simulations. Both the role of 3-body interactions and NMA

concentration will be the subject of future studies.

Conclusions

In this study, we introduced two data-driven many-body PEFs for NMA in water which were de-

veloped within the TTM-nrg and MB-nrg theoretical/computational frameworks. At the 1-body

level, the TTM-nrg and MB-nrg PEFs adopt the same machine-learned PIP to represent the in-
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tramolecular distortion of an isolated NMA molecule. The 1-body training set includes config-

urations extracted from normal-mode sampling applied to minimum-energy and transition-state

structures of NMA as well as configurations extracted from metadynamics simulations, which

were then screened using furthest point sampling. The reference energies were calculated at the

DF-MP2/AVQZ level of theory in combination with the aug-cc-pVQZ basis set. It was shown

that the 1-body PEF accurately reproduces the DF-MP2/AVQZ multidimensional potential energy

surface of an isolated NMA molecule, being able to correctly describe the energetics and normal

modes of both cis and trans isomers as well as the isomerization path.

The 2-body NMA–H2O training set was developed following the same protocol used for the 1-

body training set. While the TTM-nrg PEF adopts conventional Born-Mayer potentials to describe

repulsive NMA–H2O interactions, the MB-nrg PEF adopts a machine-learned PIP that effectively

represents short-range quantum-mechanical interactions. In order to guarantee fast computation

of the 2-body PIP, we applied a specific filtering scheme that systematically removes the least

relevant terms. From the analysis of various NMA–H2O radial scans, we demonstrated that the

MB-nrg PEF closely reproduces the DF-MP2/AVQZ reference interaction energies, independently

of the direction of approach and orientation of the water molecule. In contrast, the TTM-nrg

PEF was found to deviate appreciably from the DF-MP2/AVQZ reference interaction energies at

short NMA–H2O distances. These deviations can be traced back to the inability of classical-like

functional forms (i.e., Born-Mayer potentials and many-body electrostatics) adopted by the TTM-

nrg PEF to correctly describe quantum-mechanical interactions that arise from the overlap of the

NMA and water electron densities at close range.

Finally, we analyzed the hydration structure of a dilute solution (∼0.2 M) of NMA in water.

Overall, both TTM-nrg and MB-nrg PEFs qualitatively reproduce the EPSR-based RDFs derived

from neutron diffraction measurements. Interestingly, the MB-nrg PEF was found to predict more

structured and somewhat more strongly bound hydration shells compared to the TTM-nrg PEF.

These differences are in line with the conclusions drawn from the analysis of the NMA–H2O

dimer, indicating that the TTM-nrg PEF overall underestimates the strength of NMA–H2O inter-
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actions. Some differences were found between the EPSR-based and MB-nrg RDFs. Since the

experimental measurements were carried out for a much higher NMA concentration, these differ-

ences are likely due to the presence of hydrogen-bonded NMA dimers and possibly NMA chains

is the experimental solution.

Future studies will focus on extending the MB-nrg theoretical/computational framework to the

modeling generic peptides with the ultimate goal of developing a transferable, “first principles”

data-driven many-body force field for biomolecules.
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