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6)Halicioǧlu Data Science Institute, University of California San Diego,

La Jolla, California 92093, United States

7)San Diego Supercomputer Center, University of California San Diego,

La Jolla, California 92093, USA

a)Electronic mail: mrierari@ucsd.edu
b)Electronic mail: knightc@anl.gov
c)Electronic mail: fpaesani@ucsd.edu

1



Abstract

MBX is a C++ library that implements many-body potential energy functions (PEFs) within

the “many-body energy” (MB-nrg) formalism. MB-nrg PEFs integrate an underlying polariz-

able model with explicit machine-learned representations of many-body interactions to achieve

chemical accuracy from the gas to the condensed phases. MBX can be employed either as a

stand-alone package or as an energy/force engine that can be integrated with generic software for

molecular dynamics and Monte Carlo simulations. MBX is parallelized internally using OpenMP,

and can utilize MPI when available in interfaced molecular simulation software. MBX enables

classical and quantum molecular simulations with MB-nrg PEFs, as well as hybrid simulations

that combine conventional force fields and MB-nrg PEFs, for diverse systems ranging from small

gas-phase clusters to aqueous solutions and molecular fluids to biomolecular systems and metal-

organic frameworks.

I. INTRODUCTION

Molecular dynamics (MD) and Monte Carlo (MC) simulations1,2 have been widely used for

understanding and characterizing structural, thermodynamic, and dynamical properties of molec-

ular systems, from small gas-phase clusters to extended materials and biomolecular systems.3–8

The potential energy function (PEF) used to represent the multidimensional potential energy sur-

face associated with the molecular system being studied directly determines the level of realism as

well as the predictive power of any MD and MC simulation.

In the early days of molecular simulations, due to limited computational resources, the only

viable options for PEFs were empirically parameterized force fields (FFs) that use relatively

simple expressions to describe intramolecular distortions and pairwise-additive functions to de-

scribe intermolecular interactions.9,10 Although more advanced (nonpolarizable and polarizable)

FFs developed over the past five decades11–15 remain the most commonly used PEFs in MD

and MC simulations, machine-learning (ML) models trained on electronic structure data have

become increasingly popular, promising higher accuracy than conventional FFs.16–19 Some exam-

ples of ML PEFs include neural network potentials (NNPs),20–29 equivariant graph neural network

potentials,30 Gaussian approximation potentials (GAPs),31 moment tensor potentials (MTPs),32

and spectral neighbor analysis potentials (SNAPs),33 as well as PEFs based on the atomic cluster

expansion,34 kernel ridge regression methods,35 gradient-domain machine learning (GDML),36
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and support vector machines (SVM).37 Permutationally invariant polynomials (PIPs) have also

been used, either as standalone fitting functions38–62 or in combination with neural networks (PIP-

NNs).63–66 Many ML PEFs are, however, limited in their transferability - those designed to mimic

gas phase properties perform well under those conditions but may not be as accurate when ap-

plied to condensed-phase systems,67–69 and models that are trained to reproduce condensed-phase

properties may not perform as well in the gas phase or at interfaces.70,71

Ten years ago, Babin, Medders, and Paesani introduced MB-pol, a data-driven many-body

PEF for water rigorously derived from “first principles”.72–74 MB-pol combines physics-based

many-body models with data-driven machine-learned representations of individual many-body

interactions that are expressed in terms of multidimensional PIPs. These machine-learned PIPs

were shown to account for limitations in classical representations of molecular interactions that

arise when overlapping electron densities lead to quantum-mechanical effects that do not have

a classical counterpart, such as exchange-repulsion, charge transfer, and charge penetration.75–77

The PIPs of MB-pol were trained on large datasets of many-body energies calculated at the coupled

cluster level of theory, including single, double, and perturbative triple excitations, i.e., CCSD(T),

the current “gold standard” for chemical accuracy.78 By construction, MB-pol is fully transferable

across all phases,79,80 accurately reproducing the properties of small gas-phase clusters,81–92 liquid

water,93–99 the air/water interface,100–104 and ice.105–110 Remarkably, MB-pol was shown to be the

first and, currently, only water PEF able to correctly predict the phase diagram of water.111 More

recently, an updated version of MB-pol, MB-pol(2023), which was trained on larger training sets

of many-body interactions, was shown to achieve even higher accuracy for simulations of water in

both gas and liquid phases.112

Building on the accuracy and predictive power of MB-pol, many-body PEFs for various molec-

ular systems were developed, including halide113–119 and alkali-metal120–124 ions in water, molec-

ular fluids,125–128 small molecules in water,129,130 and generic covalently-bonded molecules in the

gas phase.131 These many-body PEFs were developed within the many-body energy (MB-nrg)

theoretical/computational framework,113,120 which effectively generalizes the MB-pol framework

to arbitrary molecules. Briefly, the MB-nrg PEF of a system is built upon a baseline physics-based

model describing permanent electrostatics, London dispersion forces, and many-body polariza-

tion, which is supplemented by explicit machine-learned n-body PIPs. As in MB-pol, the MB-nrg

PIPs effectively represent quantum-mechanical many-body interactions arising from the overlap

of the electron densities of individual monomers.113,120
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Here, we introduce MBX (Many-Body eXpansion),132 a modular C++ library that can either be

used as a standalone software for calculating MB-nrg energies and forces for the molecular system

of interest or interfaced with external MD and MC engines to perform classical and quantum

simulations of the molecular system of interest across different thermodynamic states and phases,

in both periodic and non-periodic conditions, using the corresponding MB-nrg PEFs. Importantly,

MBX is interfaced with MB-Fit,133 a Python software infrastructure that provides an integrated

suite of codes for the automated development of MB-nrg PEFs for generic molecules, from training

set generation to PEF fitting and implementation.134

II. THEORY: MB-NRG POTENTIAL ENERGY FUNCTIONS

The energy of a system containing N (atomic or molecular) monomers (hereafter referred to

as 1-mers) can be rigorously expressed as a sum of n-body energy contributions (1 ≤ n ≤ N)

according to the many-body expansion (MBE) of the energy:135

EN(1, . . . ,N) =
N

∑
i=1

ε1B(i)+
N

∑
i< j

ε2B(i, j)+
N

∑
i< j<k

ε3B(i, j,k)+ . . .+ εNB(1, . . . ,N) (1)

where each 1-body energy, ε1B(i), is the energy of the isolated ith 1-mer, E1(i). For n ≥ 2, the

n-body energies, εnB are defined recursively according to the following expression:

εnB(1, . . . ,n) = En(1, . . . ,n)−
n

∑
i=1

ε1B(i)−
n

∑
i< j

ε2B(i, j)

−
n

∑
i< j<k

ε3B(i, j,k)− . . .−
n

∑
i< j<k<...

ε(n−1)B(i, j,k, . . .) (2)

It should be noted that within the MB-nrg theoretical/computational framework the reference zero

for the energy scale (where EN = 0) corresponds to the molecular configuration in which all N 1-

mers are separated by infinite distances and each 1-mer is in its minimum-energy geometry. As a

consequence, ε1B(i) corresponds to the distortion energy of the ith 1-mer relative to its minimum-

energy geometry. Since the MBE converges quickly for molecular systems with localized electron

densities, i.e., molecular systems with large electronic band gaps,136–139 the MBE provides a rig-

orous and efficient theoretical/computational framework for the development of many-body PEFs

where each n-body term of Eq. 1 is fitted to reproduce the corresponding n-body reference energies

calculated from “first principles”.

As in MB-pol,72–74 the MB-nrg PEFs integrate physics-based many-body terms, representing

contributions to molecular interactions that can be accurately represented by classical expressions
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(e.g., permanent electrostatics and polarization), with explicit machine-learned representations of

individual n-body terms in the MBE, which effectively recover quantum-mechanical interactions

arising from the overlap of 1-mer’s electron densities (e.g., exchange-repulsion, charge transfer,

and charge penetration) that cannot be represented by classical expressions.140 Specifically, the

MB-nrg theoretical/computational framework approximates the MBE defined in Eq. 1 as:

EN =V 1B +V 2B +V 3B + . . .+V nB +Velec (3)

where n ≤ N and N is the total number of 1-mers in the system.

Each of the V nB terms of an MB-nrg PEF includes an n-body machine-learned term (V nB
ML) for

each n-mer. Each V nB
ML is expressed as a product of a switching function and a PIP (i.e., V nB

ML =

snBV nB
PIP). The switching function (snB) ensures that the contribution from the associated V nB

ML term

goes to zero as any subset of the 1-mers in an n-mer is separated from the rest.

Following the original MB-pol PEF,72,73 a given n-body PIP takes the following form:

V nB
PIP(M1,M2, . . . ,Mn|ν(M1,M2, . . . ,Mn)) =

L

∑
l=1

cl ·ηl(ξ1,ξ2, . . . ,ξλ ) (4)

Here, M1,M2, . . . ,Mn are n 1-mers which compose an n-mer of type ν(M1,M2, . . . ,Mn), L is the

number of linear parameters, cl are the linear parameters, ηl are the symmetrized monomials built

from the variables, ξ1−λ , each of which is an exponential of an interatomic distance with one of

the following forms:

ξ exp(Rmn) = e−kτ(mn)Rmn (5a)

ξ exp0(Rmn) = e−kτ(mn)(Rmn−d0,τ(mn)) (5b)

ξ coul(Rmn) = e−kτ(mn)Rmn/Rmn (5c)

ξ coul0(Rmn) = e−kτ(mn)(Rmn−d0,τ(mn))/Rmn (5d)

where m, n are the indices for the physical atoms or fictitious sites defined by the n-mer’s ge-

ometry, and Rmn is the distance between two atoms/sites. τ(mn) maps the pair of atoms/sites

into distinct classes, such that all atom/site pairs within the same class share the same nonlinear

fitting parameters kτ(mn) and d0,τ(mn). There is one unique set of monomials (ηl), linear fitting

parameters (cl), and non-linear fitting parameters [kτ(mn), d0,τ(mn)] for each unique n-mer type

[ν(M1,M2, . . . ,Mn)].

In Eq. 3, V 1B is the total 1-body energy given by

V 1B =
N

∑
i=1

V 1B
ML (Mi|ν(Mi)) (+V 1B

disp) (6)
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Because a switching function is not used for the 1-body term, V 1B
ML (Mi|ν(Mi)) is simply a machine-

learned PIP representing the 1-body energy of the ith 1-mer with functional form as in Eq. 4:

V 1B
ML (Mi|ν(Mi)) =V 1B

PIP (Mi|ν(Mi)) (7)

V 1B
disp represents the 1-body dispersion energy, as a sum of interatomic pairwise contributions:

V 1B
disp =

N

∑
i=1


 ∑

k,l∈Mi
l 6=k

−∆kl f (bklRkl)
C6,kl

R6
kl


 (8)

where Rkl is the distance between atoms k and l located on 1-mer Mi, C6,kl is the corresponding

dispersion coefficient, and ∆kl = 0 if the atom pair is excluded or 1 otherwise. f (bklRkl) is the

Tang-Toennies damping function,141

f (bkl,Rkl) = 1− exp(−bklRkl)
6

∑
n=0

(bklRkl)
n

n!
(9)

where bkl is a fitting parameter. By convention, all atom pairs that participate in a bond, angle, or

dihendral angle are excluded (∆kl = 0). Thus, for most 1-mers, all atom pairs are excluded and

V 1B
disp = 0. However, for large 1-mers, this may not be the case.

The explicit 2-body term of an MB-nrg PEF, V 2B in Eq. 3, is expressed as

V 2B =
N

∑
i=1
j>i

V 2B
ML

(
Mi,M j|ν(Mi,M j)

)
+V 2B

disp (10)

Here, V 2B
ML

(
Mi,M j|ν(Mi,M j)

)
is a 2-body machine-learned term representing the 2-body energy

of the 2-mer composed by the ith and jth 1-mers, constructed as a product of a switching function

and a PIP with functional form as in Eq. 4:

V 2B
ML

(
Mi,M j|ν(i, j)

)
= s2B (Mi,M j|ν(Mi,M j)

)
V 2B

PIP
(
Mi,M j|ν(Mi,M j)

)
(11)

V 2B
disp in Eq. 10 is the total 2-body dispersion energy calculated as a sum of pairwise additive

contributions associated with each pair of atoms located on the two 1-mers in a 2-mer:140

V 2B
disp =

N

∑
i=1
j>i

[

∑
k∈Mi

∑
l∈M j

− f (bklRkl)
C6,kl

R6
kl

]
(12)

where Rkl is the distance between atoms k and l located on 1-mers Mi and M j, respectively, C6,kl

is the corresponding dispersion coefficient, and f (bklRkl) is the Tang-Toennies damping function
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(Eq. 9). In both Eq. 8 and Eq. 12, the dispersion coefficients are calculated using the Exchange

Dipole Moment (XDM) model.142–144

All other explicit many-body terms (V nB) in Eq. 3 take the following form:

V nB =
N

∑
i=1
j>i...
l>k

V nB
ML

(
Mi,M j, . . . ,Ml|ν(Mi,M j, . . . ,Ml)

)
(13)

where each V nB
ML

(
Mi,M j, . . . ,Ml|ν(Mi,M j, . . . ,Ml)

)
is built as the product of a switching function

and a PIP with functional form as in Eq. 4:

V nB
ML

(
Mi,M j, . . . ,Ml|ν(Mi,M j, . . . ,Ml)

)
=

snB (Mi,M j, . . . ,Ml|ν(Mi,M j, . . . ,Ml)
)

V nB
PIP

(
Mi,M j, . . . ,Ml|ν(Mi,M j, . . . ,Ml)

) (14)

Explicit n-body terms may be retained up to an arbitrary n-body level. Generally, it is sufficient to

truncate these terms at the n = 3 or n = 4 level, depending on the system being studied. Specific

details about the switching functions (s2B, s3B, and s4B), including functional forms used by the

MB-nrg PEFs available in MBX, are discussed in the Supplementary Information.

Finally, the electrostatics term, Velec, in Eq. 3 is based on a modified version of the Thole

model145 introduced in Ref. 146 and further refined for the MB-pol PEF.72,73 Velec represents per-

manent electrostatics by a sum of Coulomb interactions between smeared partial charges located

on each 1-mer as well as induced electrostatics (up to dipoles) by an implicit many-body polar-

ization term. Within the MB-nrg theoretical/computational framework, the partial charges, which

can have fixed or geometry-dependent values, are obtained by fitting the multipole moments cal-

culated from “first principles” for each isolated 1-mer and can be placed on both physical atoms

and fictitious sites.

In MBX, Velec is represented by four terms describing charge-charge interactions (Vqq), charge-

dipole interactions (Vqµ ), dipole-dipole interactions (Vµµ ), and the polarization energy (Vpol), re-
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spectively. Each of these terms is defined as follows:

Vqq =
N

∑
i

∑
j>i

qiT̂i jq j (15a)

Vqµ =
N

∑
i

∑
j>i

(
µα

i T̂ α
i j q j −qiT̂

α
i j µα

j

)
(15b)

Vµµ =−
N

∑
i

∑
j>i

µα
i T̂

αβ
i j µ

β
j (15c)

Vpol =
1
2

N

∑
i=1

µµµ iα̂
−1
i µµµ i (15d)

where the Einstein notation is used for repeated Greek letters (e.g., µα
i is a condensed form of

∑α=x,y,z µα
i ) In Eqs. 15a-d, N is the total number of electrostatic sites in the system, qi is the

charge of site i, µµµ i is the dipole moment of site i, α̂i is the polarizability of site i (α̂i becomes a

scalar if it is isotropic), and T̂i j, T̂ α
i j , and T̂

αβ
i j are the electrostatic tensors defined as follows:

T̂i j = S0(Ri j)
1

Ri j
(16a)

T̂ α
i j = ∇α T̂i j =−S1(Ri j)

Rα
i j

R3
i j

(16b)

T̂
αβ

i j = ∇α T̂
β

i j = S2(Ri j)
3Rα

i jR
β
i j

R5
i j

−S1(Ri j)
δαβ

R3
i j

(16c)

T̂
αβγ

i j = ∇α T̂
βγ

i j =−S3(Ri j)
15

R7
i j

Rα
i jR

β
i jrγ +S2(Ri j)

3

R5
i j

(
Rα

i jδβγ +R
β
i jδαγ +R

γ
i jδαβ

)
(16d)

Here, α ,β ,γ define any of the Cartesian directions (x, y, or z), Ri j is the distance between atoms i

and j, and δ is the Kronecker delta. The functions Si(r) are the screening functions designed to

smear the charges over space, which can be recursively derived from Eq. 18a as

Sk(r) = Sk−1 −
r

2k−1
∂

∂ r
Sk−1(r) (17)

As in MB-pol,72,73 the screening functions for the MB-nrg PEFs are given by

S0(r) = 1− e−a( r
A)

4

+
a1/4r

A
Γ

(
3
4
,a
( r

A

)4
)

(18a)

S1(r) = 1− e−a( r
A)

4

(18b)

S2(r) = S1(r)−
4a

3

( r

A

)4
e−a( r

A)
4

(18c)

S3(r) = S2(r)−
4a

15

( r

A

)4
e−a( r

A)
4
(

4a
( r

A

)4
−1

)
(18d)
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Here, a is the Thole damping, which can be different for charge-charge, charge-dipole, and dipole-

dipole interactions, A =
(
αiα j

)1/6, with i and j being the two sites involved, r = Ri j, and α is the

polarizability factor that is usually set to be the same as the polarizability. The interested reader is

referred to Ref. 147 for specific details about the derivation of Eqs. 14-17.

III. SOFTWARE STRUCTURE

The C++ source code of MBX is organized into four modules, each of which handles specific

functions: building block is responsible for maintaining the state of the system; potential

evaluates the various components of the MB-nrg PEFs; I/O manages inputs, outputs, and in-

terfaces with MD drivers; and utilities contains functions to execute miscellaneous support

tasks. The potential module is further divided into sub-modules to calculate each of the energy

contributions described in Eq. 3: n-body PIPs, 2-body dispersion, permanent electrostatics, and

many-body polarization. The general workflow for an energy calculation step performed by MBX

is shown in Fig. III.

FIG. 1. General workflow for an energy and force calculation step in MBX.
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A. Input

Since all PEF parameters are directly compiled into MBX, the user only needs to provide

minimal information that is passed to MBX through two files: the NRG file, which contains in-

formation about all 1-mers in the system and their initial coordinates, and the JSON file, which

specifies details about the calculation to be performed, such as enabling or disabling n-body terms

for certain n-mers, and assorted settings, such as the algorithm for the calculation of many-body

polarization and convergence threshold for the induced dipole moments. More information about

the format and contents of the NRG and JSON files are discussed in the Supplementary Material.

B. Building block

The building block module contains the System class, which stores all the information

about the 1-mers in the system. MBX provides a function that reads the NRG file, and creates

and initializes a System instance. The initialized System can then be configured using the JSON

parameters that control the energy calculation. Initializing a System object requires multiple mem-

ory allocation calls and is therefore not instantaneous, but it is performed only once per system of

interest.

While MD and MC software implementations for force fields typically treat atoms as the small-

est unit, MBX considers 1-mers, each consisting of a few atoms, as the smallest unit of the system

since the n-body PIPs, which form the backbone of MB-nrg PEFs, are evaluated on these 1-mers.

For this reason, the System class stores data on a per-1-mer basis.

For each 1-mer type defined in a MB-nrg PEF, the parameters defining all relevant atomic quan-

tities (e.g., charges, polarizabilities, and dispersion coefficients) are automatically compiled into

MBX. Because the n-body PIPs of a given MB-nrg PEF are fitted over the underlying representa-

tion of electrostatics and dispersion, the parameters entering the expressions for V 2B
disp (Eq. 10) and

Velec (Eqs. 14a-d) are intertwined with each MB-nrg PEF. As a consequence, if the user wishes

to adopt a different set of electrostatic or dispersion parameters, all n-body PIPs will need to be

refitted using MB-Fit.133

The System class oversees the calculations of each contribution to the total energy by delegat-

ing to the appropriate functions within the potential module (see below). Each function returns

the energy and associated gradients of a particular energy contribution with respect to the coordi-
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nates of the atoms. Once the System object is initialized, it is not possible in the current version

of MBX to add new 1-mers or change the type of existing ones without rebuilding the System

instance. The atomic coordinates can be updated at any time as long as they are in the same order

as the initial set of coordinates. Similarly, any parameters specifying the type of calculation to

be performed (e.g., algorithm for many-body polarization, convergence threshold for the induced

dipoles, and box size and shape for calculations in periodic boundary conditions) can be changed

at any time.

MBX initializes a System object through the following steps:

1. Create a new System object with default parameters corresponding to those used for a gas-

phase calculation.

2. Add 1-mers to the System using the AddMonomer member function. The coordinates, atom

labels, and 1-mer type for each 1-mer are stored in the System object.

3. After all 1-mers have been added, initialize the System. This involves storing the properties

for each 1-mer and reordering the 1-mers for optimization of parallelization. The reordering

process groups 1-mers of the same type together and orders the types by increasing number

of 1-mers. For example, the input for a system of 250 CO2 molecules (i.e., 1-mers of type

CO2) and 300 H2O molecules (i.e., 1-mers of type H2O) can be provided in any order, but

MBX will reorder it such that the CO2 molecules come before the H2O molecules.

4. Set the physical properties of the atoms, such as charges, polarizabilities, and dispersion

coefficients, using helper functions.

5. Parse the JSON file containing information about box size and shape for calculations in

periodic boundary conditions, cutoffs, and type of MB-nrg PEFs, as well as other options

that control and determine the type of calculation and energy calls to be performed. If a

JSON file is not found or not present, the defaults are used.

C. Machine-learned 1-body term: V 1B
ML

Since different MD and MC engines have different conventions regarding storage of atom co-

ordinates, MBX first translates the atoms in the 1-mer to obey the minimum-image convention
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before evaluating the 1-body PIPs. This is only necessary when performing a calculation in pe-

riodic boundary conditions. MBX selects the first atom of each 1-mer as the reference atom to

identify the minimum images of the other atoms in the 1-mer. This reference atom is then placed

in the principal box and the closest images of other atoms in the 1-mer are selected through an

algorithm that operates in fractional coordinates.

D. Machine-learned n-body terms (n > 1): V nB
ML

MBX supports n-body PIPs with arbitrary values for n, which can be generated with MB-

Fit,133,134 and currently already provides functions to evaluate 2-body, 3-body, and 4-body PIPs.

Adding n-body PIPs with larger values of n is trivial and does not require any significant refactor-

ing of the source code. In order to efficiently evaluate all V nB
ML terms (Eq. 4), MBX first identifies

all n-mers for which it is possible that the associated n-body switching function (snB) is non-zero.

An n-mer is accepted and passed to the polynomial evaluation if and only if some 1-mer within

the n-mer is within a predefined n-body cutoff (rnB
cutoff) of all other 1-mers in the n-mer. In other

words, there must be a “central” 1-mer, and all other 1-mers must be within the n-body cutoff of

the “central” 1-mer. This idea is formalized in the following criterion:

CENTER-NEIGHBOR CRITERION: Using the first atom of each 1-mer to define the position

of the 1-mer, the center-neighbor criterion for a given n-mer is satisfied if and only if there

exists at least one 1-mer (“center”) such that the distances between the “center” 1-mer

and all other n-1 1-mers (“neighbors”) in the n-mer are smaller than the n-body cutoff

rnB
cutoff.

The value for each rnB
cutoff used by the CENTER-NEIGHBOR CRITERION is specified by the user

in the JSON file. As a consequence, MBX only needs to collect n-mers for which the CENTER-

NEIGHBOR CRITERION is satisfied and pass this information to the PIP evaluator. The rules for

setting appropriate values for rnB
cutoff are discussed in the Supplementary Information.

MBX uses a K-D Tree to search for n-mers that satisfy the CENTER-NEIGHBOR CRITERION,

after which the evaluation of the n-body PIPs with n > 1 is effectively the same as for the 1-body

PIPs. Using a K-D Tree allows MBX to quickly identify relevant n-mers and avoid the need for a

double or triple loop over all 1-mers, which would be extremely slow. The Nanoflann library148 is

used to implement the K-D Tree and perform the radial search. It should be noted that, although not

negligible, the CPU time required to create the tree and perform the search is still a small fraction of
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the CPU time required to calculate the n-body PIP contributions. The K-D Tree implementation in

MBX is as follows: first, a tree is built using the first atom of each 1-mer as a point in the tree. Once

the tree containing all the 1-mers is completed, MBX loops over all the 1-mers, which will be the

candidate “center” 1-mer in the current loop, and performs a radial search of all other 1-mers that

are within rnB
cutoff, which will be the candidate “neighbor” 1-mers. Then, n-mers are constructed

from the “center” 1-mer and each combination of n-1 “neighbors”. By construction, each of

the constructed n-mers necessarily satisfies the CENTER-NEIGHBOR CRITERION. However, it is

possible that the same n-mer can be selected several times, with different 1-mers acting as the

“center”. To avoid double counting, the candidate n-mer is considered valid only if the 1-mer

index of the “center” is the smallest among all valid “center” 1-mers.

Although K-D Trees were not originally designed for use in periodic boundary conditions,

MBX has implemented a patch that allows for their use in such cases by replicating the box in

space. This implies that instead of building a tree for a single copy of the system as done in the gas

phase, MBX builds a tree for 27 copies: the original one and the twenty six adjacent boxes. Only

images within the main simulation box are eligible “center” 1-mers. Future versions of MBX will

implement more advanced solutions to address the potential memory cost of this process when

the target number of 1-mers is large. After obtaining the lists of n-mers, MBX sends batches of

multiple n-mers of the same type to the PIP functions, which then transform the coordinates into

PIP variables and calculate the corresponding PIP values.

E. Physics-based terms

MBX defines two distinct classes that are dedicated to calculating the following non-bonded in-

teractions: dispersion (Dispersion class) and permanent and induced electrostatics (Electrostatics

class). As in conventional force fields and discussed in Section II, MBX excludes these non-

bonded interactions for atom pairs that are part of a bond, angle, or dihedral angle. However,

MBX does not scale these interactions as common force fields do - for a particular atom pair,

they are either entirely enabled or entirely disabled (hence ∆kl in Eq. 8). Generally, all atom pairs

within a 1-mer are excluded, but in the event that a 1-mer contains non-excluded pairs both classes

calculate the contributions from 1-mer dispersion and electrostatics (i.e., dispersion energy as in

Eq. 8 and 1-body contributions to Velec in Eq. 3, respectively) in a first step, ignoring any pair in

the excluded pairs list. Then, the intermolecular contributions are calculated in a double-loop over
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the 1-mer types. For each pair of 1-mer types, the contributions to the dispersion and electrostatics

energies are calculated. Before evaluation, the coordinates and associated properties (e.g., atomic

charges and polarizabilities, dispersion coefficients, etc.) are reordered to maximize speedup from

vectorization through single-instruction multiple-data (SIMD) operations.

1. Dispersion

As shown in Eq. 12, the dispersion energy of a MB-nrg PEF is calculated in real space as a

pairwise-additive potential using pair-defined dispersion coefficients (C6,kl) that are calculated us-

ing the XDM model.142–144 If the molecular system of interest is in periodic boundary conditions,

the long-range contribution to the dispersion energy is calculated in reciprocal space using the

particle mesh Ewald (PME) algorithm as implemented in the helPME library.149,150 PME uses

atom-defined C6 which are then combined using the usual geometric mean combination rule to

obtain pair coefficients (i.e., C6,kl =
√

C6,kkC6,ll). A discontinuity in the energy and its gradients

can occur if the C6,kl pair coefficients used to calculate the dispersion energy in real space are

abruptly changed to the values used by the PME algorithm at the cutoff distance. To avoid this

discontinuity, MBX applies a switching function of the same form as that used for the 2-body PIP

switching function (see Supplementary Information), enabling a smooth transition from the C6,kl

used in real space to the C6,kl used in the PME calculation.

2. Electrostatics

The electrostatics calculation involves several steps, including the computation of the perma-

nent electric field, the calculation of the long-range electric field using the PME algorithm as

implemented in the helPME library,149,150 and the determination of the induced dipoles using one

of three algorithms: iterative, conjugate gradient, or always stable predictor-corrector.151 The per-

manent contribution to the electrostatic energy is straightforward to calculate and relatively fast.

However, the bottleneck of the electrostatics calculation is to obtain the induced dipoles on each

site. While the analytical solution of the induced dipole moments is possible, it is not efficient for

large systems,147 and it has not been implemented in MBX. A detailed description of the possible

methods to solve for the induced dipole moments can be found in Ref. 147.
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1 // Needed to read the NRG file

2 #include "io_tools/read_nrg.h"

3 // Needed to use the system class

4 #include "bblock/system.h"

5 #include <vector >

6 #include <string >

7 int main() {

8 // Declare systems vector

9 std::vector <bblock ::System > systems;

10 // Read systems from NRG file

11 std:: string input = "input.nrg";

12 tools:: ReadNrg (&input [0], systems);

13 // Set up from json file

14 std:: string json_file = "input.json";

15 systems [0]. SetUpFromJson (& json_file [0]);

16 // Compute energy

17 double e = systems [0]. Energy(true);

18 // Retrieve gradients

19 std::vector <double > grads = systems [0]. GetRealGrads ();

20 return 0;

21 }

FIG. 2. Example of a C++ main function to use the MBX library with a NRG and a JSON file.

F. Output

Once all energy and gradient contributions have been calculated, they are summed and stored

in the System object, ready to be retrieved by the user or a MD/MC driver. After this step is

completed, external modifications to the coordinates of the system such as progression to the next

MD/MC step can be performed. The new coordinates are set in the same System instance, which

can then be used to perform another energy/force calculation.

While energies and forces are the most commonly retrieved information by MD and MC

drivers, MBX provides interfaces to retrieve any of the system’s properties, including, but not

limited to, charges, permanent and induced dipole moments, and the virial tensor.

IV. DRIVERS

MBX has three built-in drivers to perform single point calculations, geometry optimizations,

and normal-mode analyses, all written in C++. A simple example on how to use MBX to read an

NRG file and set up the system with a JSON file is shown in Fig. 2.

Besides the internal drivers discussed above, the current version of MBX also provides an ef-
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ficient interface to popular software packages LAMMPS152 and i-PI153 for both classical MD and

quantum path-integral molecular dynamics (PIMD) simulations.2 MBX acts as a client that returns

MB-nrg energies and forces, while the actual MD steps are controlled by the MD engine. In the

case of i-PI, the communication between MBX and i-PI can be established in two ways: Internet

and Unix domain sockets. For LAMMPS, MBX is connected through the combination of specific

FIX and PAIR_STYLE commands in the LAMMPS input. The MBX/LAMMPS and MBX/i-PI

interfaces have already been used to study the water vapor/liquid equilibrium,104 CH4/H2O126,128

and CO2/H2O125,127 mixtures, and ions in solution.118,119,122 In the current version of MBX, all of

the computationally expensive functions are parallelized using OpenMP to maximize use of large

many-core compute nodes. This design readily enables other “driver” codes, serial or parallel, to

couple with MBX and perform advanced calculations, such as MD and PIMD simulations using

LAMMPS or i-PI.

The pure driver-only nature of i-PI makes the interface with MBX very simple. A single driver

code that communicates with the i-PI socket is enough to allow both packages to communicate.

The driver code receives the coordinates and the simulation cell from i-PI through a socket, sets

them into MBX, and performs the energy calculation for those coordinates. Gradients and energies

are then retrieved from MBX and sent through the socket to i-PI that performs the time evolution

for each time step, updating both atom coordinates and simulation cell, which are then sent back

to the driver.

In the case of LAMMPS, MBX is tightly coupled to enable large-scale parallel simulations

with minimal overhead. LAMMPS is parallelized using a spatial domain decomposition algorithm

whereby the simulation is partitioned into sub-domains and individual MPI ranks are responsible

for computing all tasks within the sub-domain to which they have been assigned. In MBX, min-

imal changes were necessary to enable the calculation of the real-space interactions within each

LAMMPS sub-domain containing local and ghost particles. Local particles are contained within

the sub-domain owned by an MPI rank and ghost particles are replicated from neighboring sub-

domains owned by other MPI ranks. For performance reasons, the iterative electrostatic solver

in MBX was enabled with MPI and does not need to interact with LAMMPS during intermedi-

ate steps. In current CPU-only data-driven many-body simulations with MBX+LAMMPS, the

performance bottleneck functions include evaluation of the n-body PIP terms, and calculation

of the long-range portion of the electrostatic and dispersion interactions that include evaluation

of distributed 3D Fast Fourier Transforms (FFTs). The electrostatic solver involves an iterative
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TABLE I. Effective Lennard-Jones parameters for MB-pol water.

Atom σ (Å) ε (kcal/mol)

O 3.26393 0.26948

H 2.68354 3.7×10−10

calculation of induced dipole moments requiring repeated communication with neighboring MPI

ranks and evaluation of multiple 3D FFTs. These terms of the MB-nrg PEF along with all the

others can be evaluated independently of one another and in arbitrary order.

The LAMMPS interface also enables hybrid FF/MB-nrg simulations where some interactions

are described by conventional force fields (e.g., AMBER,154 CHARMM,155 and OPLS156) and

other interactions are described by MB-nrg PEFs. In these hybrid simulations, the electrostatic

energy is exclusively computed by MBX, while the remaining non-bonded interactions between

FF and MB-nrg molecules are represented by Lennard-Jones potentials that can be derived using

standard Lorentz-Berthelot mixing rules. In the case of FF molecules solvated in MB-pol water,

the recommended effective Lennard-Jones parameters for MB-pol are listed in Table I.

Importantly, given its modularity and portability, MBX can be used in combination with any

software package (e.g., in-house software developed within a research group) that supplies atom

coordinates and expects energies and forces. MBX modules and sub-modules can be included by

other C++ codes and System objects can be instantiated and used like any other C++ class. MBX

also provides wrapper interfaces in C, FORTRAN and Python. The System class by itself is too

big to be automatically adapted to other languages. However, for each one of the main System

member function, there is a wrapper that enables calls from other programming languages. While

not all of the member functions are wrapped, implementing a wrapper to retrieve a property that

is currently not available is a simple and straightforward process.

V. PARALLELIZATION

In order to perform calculations on large systems, it is necessary to parallelize the evaluation

of the various contributions to the total potential energy and forces. MBX exploits two sources

of parallelization. Internally, MBX parallelizes the calculation of the various PEF contributions

using OpenMP. Externally, MBX can exploit MPI parallelization schemes implementing domain

decomposition which may be available in the interfaced molecular simulation software. For ex-
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FIG. 3. Relative time to calculate all energies and gradients for a cubic box of 2048 water molecules in

MBX in periodic boundary conditions. Calculations were each performed 100 times, and the average was

taken. The relative times are presented as a function of the number of OpenMP threads used with MBX as

a standalone code (a) and with LAMMPS using a single MPI rank (b), being the reference time the average

time taken when using 1 OMP thread. All the calculations were performed on a compute node with two

sockets each with 64 2.6GHz AMD 7H12 Rome processors.

ample, since LAMMPS is able to partition the simulation box into sub-domains overseen by indi-

vidual MPI ranks, the MBX/LAMMPS interface allows each LAMMPS MPI rank to use one or

more MBX OpenMP threads. This implies that both sources of parallelization (OpenMP in MBX

and MPI in LAMMPS or other software) can be used together.

As a showcase of the OpenMP parallelization, Fig. 3 reports the mean runtime of an energy

calculation for a box of 2048 water molecules as a function of the number of cores. The timings

observed suggest that the OpenMP parallelization is efficient up to about 16 threads, after which

MBX is not currently able to take full advantage of further parallelization through OpenMP. Also

shown in Fig. 3 is the runtime when the calculations are performed within LAMMPS using a

single MPI rank (and the indicated number of OpenMP threads). As expected, the scaling for

both MBX as a standalone code and when interfaced with LAMMPS using a single MPI rank is

essentially identical, since the OpenMP parallelization is internal to MBX. It should be noted here

that, as is generally the case, the electrostatics represents the most expensive energy contribution

to calculate. Since the i-PI interface utilizes no additional source of parallelization, the relative
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times profile of MBX in i-PI is essentially identical to that obtained when MBX is interfaced with

LAMMPS in Fig. 3.

When the simulations are driven by LAMMPS, MBX can also take advantage of parallelization

over MPI ranks. Fig. 4 shows the relative times associated with the MBX energy and gradient

calculations when interfaced with LAMMPS, utilizing several different combinations of MPI ranks

and OpenMP threads. Comparing columns [1,2] and [1,4] with columns [2,1] and [4,1], it is clear

that the OpenMP parallelization is more effective when the total number of available threads is

small. However, as nOMP gets larger and approaches the parallelization limit observed in Fig. 3,

the use of MPI ranks is more effective in achieving the best performance. The optimal combination

of OpenMP threads and MPI ranks depends on various factors, including the system’s size and

topology (i.e., cluster, bulk, or interface). It should be noted that the evaluation of all individual

contributions to the energy scales relatively well with both MPI and OpenMP paralellization, with
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FIG. 4. Relative time to calculate all energies and gradients for a cubic box of 2048 water molecules in

periodic boundary conditions using MBX interfaced with LAMMPS. Calculations were each performed

100 times, and the average was taken. The relative times are presented as a function of the number of

OpenMP threads (nOMP) per MPI rank and the number of MPI ranks (nMPI), being the time corresponding

to 1 OMP thread and 1 MPI rank the reference. Calculations were performed on a compute node with two

sockets each with 64 2.6GHz AMD 7H12 Rome processors.
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the exception of the PME part of the electrostatics, which will be the focus of further optimizations

in the subsequent releases of MBX. The actual timings associated with the MBX energy and

gradient calculations shown in Figs. 3 and 4 are reported in the Supplementary Material.

All timings reported in Figs. 3 and 4 were obtained for simulations of 2048 water molecules in

a periodic cubic box carried out on a compute node with two sockets each with 64 2.6GHz AMD

7H12 Rome processors using a convergence threshold (ε) for the atomic induced dipole moments

of 10−16, which corresponds to each component of the induced dipole moment of each atom

being converged up to the 8th decimal digit. The convergence criterion is met when the squared

difference between successive iterations (k and k+1) of each induced dipole moment component

(α) for each atom i, µindi,α , is smaller than the tolerance ε:

(
µ
(k+1)
indi,α

−µ
(k)
indi,α

)2
< ε, ∀ i,α (19)

A threshold ε = 10−16 corresponds to a conservative and safe convergence criterion for all systems

that we have simulated with our MB-nrg PEFs to date. However, it is worth noting that larger

values up to ε = 10−8 are sufficient for systems with weaker responses to electric fields (e.g.,

neat H2O, CO2, CH4 solutions). A systematic analysis of the energy conservation and associated

energy fluctuations for simulations of 2048 water molecules in a periodic cubic box carried out

in the microcanonical (NVE = constant number of molecules, volume, and energy) ensemble as a

function of the convergence tolerance is reported in the Supplementary Material.

VI. CONCLUSIONS

Over the last decade, data-driven many-body MB-nrg PEFs have been shown to accurately

predict the properties of various molecular systems from the gas to the condensed phase. By inte-

grating an underlying many-body polarizable model with explicit machine-learned representations

of individual n-body interactions, MB-nrg PEFs achieve chemical accuracy in the representation

of molecular interactions at both short and long range, and at all n-body orders.

In this work, we introduced MBX, a C++ modular library that enables MB-nrg energy and

forces calculations. MBX is divided into modules responsible for particular tasks. The potential

module is divided into sub-modules, each handling one specific energy contribution: n-body PIPs,

dispersion energy, and electrostatics. Other modules are responsible for input/output, interfacing

with drivers (e.g., software for MD and MC simulations), and constructing the System class that
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stores the state of the molecular system.

While MBX can be used as a standalone software, it also provides interfaces to common MD

packages such as i-PI and LAMMPS along with interfaces written in Fortran and Python that can

be seamlessly used in combination with third-party software (e.g., in-house software developed

by a research group). Both interfaces have already been used to study various molecular systems,

including liquid water, CO2/H2O mixtures, CH4/H2O mixtures, hydrated alkali-metal ion clusters,

and ionic solutions.

MBX includes an internal OpenMP parallelization that is more efficient when the number of

threads is small. When interfaced with external software that provides its own MPI paralleliza-

tion (e.g., LAMMPS), MBX enables efficient MB-nrg energy and force calculations that take

advantage of both OpenMP and MPI parallelizations. Future versions of MBX will include im-

proved parallelization schemes as well as the implementation of the extended MB-nrg framework

introduced in Ref. 131 for covalently-bonded molecules, with the goal of enabling fast MB-nrg

energy/force calculations which, in turn, will enable chemically accurate large-scale computer

simulations of generic molecular systems.

VII. SUPPLEMENTARY MATERIAL

Description of the MBX input file formats and functional form of the switching functions for

the MB-nrg PEFs.
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