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Abstract

MBX is a C++ library that implements many-body potential energy functions (PEFs) within
the “many-body energy” (MB-nrg) formalism. MB-nrg PEFs integrate an underlying polariz-
able model with explicit machine-learned representations of many-body interactions to achieve
chemical accuracy from the gas to the condensed phases. MBX can be employed either as a
stand-alone package or as an energy/force engine that can be integrated with generic software for
molecular dynamics and Monte Carlo simulations. MBX is parallelized internally using OpenMP,
and can utilize MPI when available in interfaced molecular simulation software. MBX enables
classical and quantum molecular simulations with MB-nrg PEFs, as well as hybrid simulations
that combine conventional force fields and MB-nrg PEFs, for diverse systems ranging from small
gas-phase clusters to aqueous solutions and molecular fluids to biomolecular systems and metal-

organic frameworks.

I. INTRODUCTION

Molecular dynamics (MD) and Monte Carlo (MC) simulations!? have been widely used for
understanding and characterizing structural, thermodynamic, and dynamical properties of molec-
ular systems, from small gas-phase clusters to extended materials and biomolecular systems.>
The potential energy function (PEF) used to represent the multidimensional potential energy sur-
face associated with the molecular system being studied directly determines the level of realism as
well as the predictive power of any MD and MC simulation.

In the early days of molecular simulations, due to limited computational resources, the only
viable options for PEFs were empirically parameterized force fields (FFs) that use relatively
simple expressions to describe intramolecular distortions and pairwise-additive functions to de-
scribe intermolecular interactions.>!? Although more advanced (nonpolarizable and polarizable)

=15 remain the most commonly used PEFs in MD

FFs developed over the past five decades
and MC simulations, machine-learning (ML) models trained on electronic structure data have
become increasingly popular, promising higher accuracy than conventional FFs.!%~1° Some exam-
ples of ML PEFs include neural network potentials (NNPs),?-2° equivariant graph neural network
potentials,>® Gaussian approximation potentials (GAPs),?! moment tensor potentials (MTPs),>2

),33 as well as PEFs based on the atomic cluster

)36

and spectral neighbor analysis potentials (SNAPs

expansion,>* kernel ridge regression methods,> gradient-domain machine learning (GDML
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and support vector machines (SVM).3” Permutationally invariant polynomials (PIPs) have also

38-62

been used, either as standalone fitting functions or in combination with neural networks (PIP-

NNs).03-66 Many ML PEFs are, however, limited in their transferability - those designed to mimic

gas phase properties perform well under those conditions but may not be as accurate when ap-

67-69

plied to condensed-phase systems, and models that are trained to reproduce condensed-phase

properties may not perform as well in the gas phase or at interfaces.’®”!

Ten years ago, Babin, Medders, and Paesani introduced MB-pol, a data-driven many-body
PEF for water rigorously derived from “first principles”.”>~’4 MB-pol combines physics-based
many-body models with data-driven machine-learned representations of individual many-body
interactions that are expressed in terms of multidimensional PIPs. These machine-learned PIPs
were shown to account for limitations in classical representations of molecular interactions that

arise when overlapping electron densities lead to quantum-mechanical effects that do not have

a classical counterpart, such as exchange-repulsion, charge transfer, and charge penetration.”>~"’

The PIPs of MB-pol were trained on large datasets of many-body energies calculated at the coupled
cluster level of theory, including single, double, and perturbative triple excitations, i.e., CCSD(T),

the current “gold standard” for chemical accuracy.”® By construction, MB-pol is fully transferable

79,80

across all phases, accurately reproducing the properties of small gas-phase clusters,!=2? liquid

93-99

water, the air/water interface, 90194 and ice.105-110 Remarkably, MB-pol was shown to be the

first and, currently, only water PEF able to correctly predict the phase diagram of water.!!! More
recently, an updated version of MB-pol, MB-pol(2023), which was trained on larger training sets

of many-body interactions, was shown to achieve even higher accuracy for simulations of water in

both gas and liquid phases.!!?

Building on the accuracy and predictive power of MB-pol, many-body PEFs for various molec-

113-119 1120—124

ular systems were developed, including halide and alkali-meta ions in water, molec-

125-128 129,130

ular fluids, small molecules in water, and generic covalently-bonded molecules in the
gas phase.!3! These many-body PEFs were developed within the many-body energy (MB-nrg)
theoretical/computational framework,!!>120 which effectively generalizes the MB-pol framework
to arbitrary molecules. Briefly, the MB-nrg PEF of a system is built upon a baseline physics-based
model describing permanent electrostatics, London dispersion forces, and many-body polariza-
tion, which is supplemented by explicit machine-learned n-body PIPs. As in MB-pol, the MB-nrg
PIPs effectively represent quantum-mechanical many-body interactions arising from the overlap

of the electron densities of individual monomers,!13-120



Here, we introduce MBX (Many-Body eXpansion),!3? a modular C++ library that can either be
used as a standalone software for calculating MB-nrg energies and forces for the molecular system
of interest or interfaced with external MD and MC engines to perform classical and quantum
simulations of the molecular system of interest across different thermodynamic states and phases,
in both periodic and non-periodic conditions, using the corresponding MB-nrg PEFs. Importantly,
MBX is interfaced with MB-Fit,!33 a Python software infrastructure that provides an integrated
suite of codes for the automated development of MB-nrg PEFs for generic molecules, from training

set generation to PEF fitting and implementation.'34

II. THEORY: MB-NRG POTENTIAL ENERGY FUNCTIONS

The energy of a system containing N (atomic or molecular) monomers (hereafter referred to
as 1-mers) can be rigorously expressed as a sum of n-body energy contributions (1 < n < N)
according to the many-body expansion (MBE) of the energy: '3
N N N
En(1,...,N) =Y i)+ Y e, )+ Y P, jk)+...+e"P(1,...,N) (1)
i=1 i<j i<j<k
where each 1-body energy, £'B(i), is the energy of the isolated ith 1-mer, E1(i). For n > 2, the
n-body energies, " are defined recursively according to the following expression:
n n
e(1,...,n)=Ey(1,....n) = Y e'B(i) = Y (i, ))
i=1 i<j

n

- fg%(i,j,k)—...— Y B k) (@

i<j<k i<j<k<...
It should be noted that within the MB-nrg theoretical/computational framework the reference zero
for the energy scale (where Ey = 0) corresponds to the molecular configuration in which all N 1-
mers are separated by infinite distances and each 1-mer is in its minimum-energy geometry. As a
consequence, €'B(i) corresponds to the distortion energy of the ith 1-mer relative to its minimum-
energy geometry. Since the MBE converges quickly for molecular systems with localized electron

densities, i.e., molecular systems with large electronic band gaps,'36-13°

the MBE provides a rig-
orous and efficient theoretical/computational framework for the development of many-body PEFs
where each n-body term of Eq. 1 is fitted to reproduce the corresponding n-body reference energies
calculated from “first principles”.

As in MB-pol,”>7# the MB-nrg PEFs integrate physics-based many-body terms, representing

contributions to molecular interactions that can be accurately represented by classical expressions
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(e.g., permanent electrostatics and polarization), with explicit machine-learned representations of
individual n-body terms in the MBE, which effectively recover quantum-mechanical interactions
arising from the overlap of 1-mer’s electron densities (e.g., exchange-repulsion, charge transfer,
and charge penetration) that cannot be represented by classical expressions.!*? Specifically, the

MB-nrg theoretical/computational framework approximates the MBE defined in Eq. 1 as:
Ey=VB4rvBrv3B v v 3)

where n < N and N is the total number of 1-mers in the system.
Each of the V"B terms of an MB-nrg PEF includes an n-body machine-learned term (Vl\’}lli) for
each n-mer. Each V”‘L is expressed as a product of a switching function and a PIP (i.e., Vl\’,‘[% =
s"Byn IP) The switching function (s"8) ensures that the contribution from the associated V”L term
goes to zero as any subset of the 1-mers in an n-mer is separated from the rest.

F 72,73

Following the original MB-pol PEF, a given n-body PIP takes the following form:

L
VF’?I%(MUM%"‘7Mn|v(MlaM27' >Mn)) = ch : nl(éhéb"'?gl) (4)

Here, M|,M3, ..., M, are n 1-mers which compose an n-mer of type v(M|,M»,...,M,), L is the
number of linear parameters, c; are the linear parameters, 1; are the symmetrized monomials built
from the variables, &;_;, each of which is an exponential of an interatomic distance with one of

the following forms:

ESP(R,) = ¢~ K (mm)Rimn (5a)
ESXPO(R Y — e Ketm) (Ron—do <) (5b)
gcoul (Rn) = e Kc(on) Rinn /Ryn (5¢)
écouIO (Rom) = e Ke(mn) (Rimn—=do z(mn)) /Ry (5d)

where m, n are the indices for the physical atoms or fictitious sites defined by the n-mer’s ge-
ometry, and R, is the distance between two atoms/sites. T(mn) maps the pair of atoms/sites
into distinct classes, such that all atom/site pairs within the same class share the same nonlinear
fitting parameters k;(,,,) and dp 7(,,). There is one unique set of monomials (7;), linear fitting
parameters (¢;), and non-linear fitting parameters [K¢(,), do z(mn)] for each unique n-mer type
[VIM|,My,...,M,)].

In Eq. 3, V!B is the total 1-body energy given by

Z L (Mi[ V(M) (+V4s,) (6)



Because a switching function is not used for the 1-body term, V)i (M;|v(M;)) is simply a machine-

learned PIP representing the 1-body energy of the ith 1-mer with functional form as in Eq. 4:

Vatt, (Mi v(M3)) = Vpip (M v(M))) ()

lesp represents the 1-body dispersion energy, as a sum of interatomic pairwise contributions:

N
Cé ki
Vi, =Y. | ¥ —Auf(buRiu)—2 6
i=1 | kleM; kl
I#k

®)

where Ry; is the distance between atoms k and / located on 1-mer M;, Cg g is the corresponding
dispersion coefficient, and Ay = 0 if the atom pair is excluded or 1 otherwise. f(bgRy;) is the

Tang-Toennies damping function, 4!

by Ry
J (b, Riy) = 1 — exp(—byRys) Z % ©)
n=0 :
where by; is a fitting parameter. By convention, all atom pairs that participate in a bond, angle, or
dihendral angle are excluded (A;; = 0). Thus, for most 1-mers, all atom pairs are excluded and
lesp = 0. However, for large 1-mers, this may not be the case.

The explicit 2-body term of an MB-nrg PEF, V2B in Eq. 3, is expressed as

Z b (M, Mj|v(M;, M) + Ve, (10)

j>l

Here, Vl\z,fi (Mi, M;|v(M;;M j)) is a 2-body machine-learned term representing the 2-body energy
of the 2-mer composed by the ith and jth 1-mers, constructed as a product of a switching function

and a PIP with functional form as in Eq. 4:
Vi (Mi, M| v(i, j)) = 5™ (M;, M;|v(M;, M;)) Vsl (M, M| v(M;, M) (11)

lesp in Eq. 10 is the total 2-body dispersion energy calculated as a sum of pairwise additive

contributions associated with each pair of atoms located on the two 1-mers in a 2-mer:'4°
y Co 1
Vip =2 | X, Y —f(buRu) (12)
i=1 [kEM; 1M kl
j>i

where Ry, is the distance between atoms & and / located on 1-mers M; and M, respectively, Cg i

is the corresponding dispersion coefficient, and f(byRy;) is the Tang-Toennies damping function

6



(Eq. 9). In both Eq. 8 and Eq. 12, the dispersion coefficients are calculated using the Exchange
Dipole Moment (XDM) mode] 142-144

All other explicit many-body terms (V"B) in Eq. 3 take the following form:

N
V=Y Wit (Mi,M;,... . M[v(M;, M;,....M))) (13)
i—1

jzi
5k

where each Vl\’}I]i (M,-, M;,....M;[v(M;, M}, ... ,Ml)) is built as the product of a switching function

and a PIP with functional form as in Eq. 4:

ik (Mo, My, M V(M My, ... M) = (1
s"® (M, My, My VM My, M) BB (M, My, M VM, M, M)

Explicit n-body terms may be retained up to an arbitrary n-body level. Generally, it is sufficient to

truncate these terms at the n = 3 or n = 4 level, depending on the system being studied. Specific
3

s

details about the switching functions (SZB, B and s4B), including functional forms used by the

MB-nrg PEFs available in MBX, are discussed in the Supplementary Information.

Finally, the electrostatics term, Ve, in Eq. 3 is based on a modified version of the Thole
model'® introduced in Ref. 146 and further refined for the MB-pol PEFE.”>73 V.. represents per-
manent electrostatics by a sum of Coulomb interactions between smeared partial charges located
on each 1-mer as well as induced electrostatics (up to dipoles) by an implicit many-body polar-
ization term. Within the MB-nrg theoretical/computational framework, the partial charges, which
can have fixed or geometry-dependent values, are obtained by fitting the multipole moments cal-
culated from “first principles” for each isolated 1-mer and can be placed on both physical atoms

and fictitious sites.

In MBX, V. is represented by four terms describing charge-charge interactions (Vgq), charge-

dipole interactions (Vg ), dipole-dipole interactions (V,,), and the polarization energy (Vpor), re-
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spectively. Each of these terms is defined as follows:

N
Vog = 2. ) aiTija; (152)
i j>i
N A~ A~
Vau =YX (w80, - aTdns) (15b)
i j>i
Vﬂu:_zzula R (15¢)
i j>i
1Y
Voo =5 ) G B (15d)
i=1

where the Einstein notation is used for repeated Greek letters (e.g., n* is a condensed form of
Ya—xy M) In Egs. 15a-d, N is the total number of electrostatic sites in the system, g; is the
charge of site i, i, is the dipole moment of site i, @; is the polarizability of site i (0; becomes a

scalar if it is isotropic), and T.., T%, and T ap are the electrostatic tensors defined as follows:

l_]’ 1]’
~ 1
Tij = So(Rij) &~ tew
ij
R
Vol = 5i) e
s 3R£‘5R5 2
T VoTj; = S2(Rij)—3 1(Rij)—5- (160
Rij Rij
15 3
11 1

Here, o,y define any of the Cartesian directions (x, y, or z), R; j 1s the distance between atoms i
and j, and & is the Kronecker delta. The functions S;(r) are the screening functions designed to
smear the charges over space, which can be recursively derived from Eq. 18a as

r o

Sk(r) = Sk—1 T % _19r

Si—1(r) (17)

As in MB-pol,’?"3 the screening functions for the MB-nrg PEFs are given by

So(r) = 1—e(5) 4 alfrr (%,a (%)4) (18a)

Si(r) = 1—ea(s) (18b)
4a /r\4 r\4

S =si100-5(7) et (18¢)

S3(r) :Sz(r)—élﬁ (7:)4e—“(£)4 <4a (%)4—1> (18d)



Here, a is the Thole damping, which can be different for charge-charge, charge-dipole, and dipole-

dipole interactions, A = (Ocioc j) 1/6

, with i and j being the two sites involved, r = R;;, and « is the
polarizability factor that is usually set to be the same as the polarizability. The interested reader is

referred to Ref. 147 for specific details about the derivation of Eqs. 14-17.

III. SOFTWARE STRUCTURE

The C++ source code of MBX is organized into four modules, each of which handles specific
functions: building block is responsible for maintaining the state of the system; potential
evaluates the various components of the MB-nrg PEFs; I/0 manages inputs, outputs, and in-
terfaces with MD drivers; and utilities contains functions to execute miscellaneous support
tasks. The potential module is further divided into sub-modules to calculate each of the energy
contributions described in Eq. 3: n-body PIPs, 2-body dispersion, permanent electrostatics, and
many-body polarization. The general workflow for an energy calculation step performed by MBX

is shown in Fig. III.

Inputs Building Block
JSON :> Settings System Utilities
Coordinates Initialization @
orai
NRG Box |_|:> Update System

Driver L\

Internal External

Single Point
Optimize

Or in-house software .
No/r\mal Mode = = hackages in G+, f_l Potential H
nalysis

Python or Fortran
\ ) 1B energy 2B energy
3Benergy  pispersion
Energy Repulsion ~ €Mergy
Gradients energy Electrostatic
Virial Tensor \ energy energy y

FIG. 1. General workflow for an energy and force calculation step in MBX.



A. Input

Since all PEF parameters are directly compiled into MBX, the user only needs to provide
minimal information that is passed to MBX through two files: the NRG file, which contains in-
formation about all 1-mers in the system and their initial coordinates, and the JSON file, which
specifies details about the calculation to be performed, such as enabling or disabling n-body terms
for certain n-mers, and assorted settings, such as the algorithm for the calculation of many-body
polarization and convergence threshold for the induced dipole moments. More information about

the format and contents of the NRG and JSON files are discussed in the Supplementary Material.

B. Building block

The building block module contains the System class, which stores all the information
about the 1-mers in the system. MBX provides a function that reads the NRG file, and creates
and initializes a System instance. The initialized System can then be configured using the JSON
parameters that control the energy calculation. Initializing a System object requires multiple mem-
ory allocation calls and is therefore not instantaneous, but it is performed only once per system of
interest.

While MD and MC software implementations for force fields typically treat atoms as the small-
est unit, MBX considers 1-mers, each consisting of a few atoms, as the smallest unit of the system
since the n-body PIPs, which form the backbone of MB-nrg PEFs, are evaluated on these 1-mers.
For this reason, the System class stores data on a per-1-mer basis.

For each 1-mer type defined in a MB-nrg PEF, the parameters defining all relevant atomic quan-
tities (e.g., charges, polarizabilities, and dispersion coefficients) are automatically compiled into
MBX. Because the n-body PIPs of a given MB-nrg PEF are fitted over the underlying representa-
tion of electrostatics and dispersion, the parameters entering the expressions for dei]fp (Eq. 10) and
Velee (Egs. 14a-d) are intertwined with each MB-nrg PEF. As a consequence, if the user wishes
to adopt a different set of electrostatic or dispersion parameters, all n-body PIPs will need to be
refitted using MB-Fit.!33

The System class oversees the calculations of each contribution to the total energy by delegat-
ing to the appropriate functions within the potential module (see below). Each function returns

the energy and associated gradients of a particular energy contribution with respect to the coordi-
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nates of the atoms. Once the System object is initialized, it is not possible in the current version
of MBX to add new 1-mers or change the type of existing ones without rebuilding the System
instance. The atomic coordinates can be updated at any time as long as they are in the same order
as the initial set of coordinates. Similarly, any parameters specifying the type of calculation to
be performed (e.g., algorithm for many-body polarization, convergence threshold for the induced
dipoles, and box size and shape for calculations in periodic boundary conditions) can be changed
at any time.

MBX initializes a System object through the following steps:

1. Create a new System object with default parameters corresponding to those used for a gas-

phase calculation.

2. Add 1-mers to the System using the AddMonomer member function. The coordinates, atom

labels, and 1-mer type for each 1-mer are stored in the System object.

3. After all 1-mers have been added, initialize the System. This involves storing the properties
for each 1-mer and reordering the 1-mers for optimization of parallelization. The reordering
process groups 1-mers of the same type together and orders the types by increasing number
of 1-mers. For example, the input for a system of 250 CO, molecules (i.e., 1-mers of type
CO;,) and 300 H>O molecules (i.e., 1-mers of type H,O) can be provided in any order, but

MBX will reorder it such that the CO, molecules come before the H,O molecules.

4. Set the physical properties of the atoms, such as charges, polarizabilities, and dispersion

coefficients, using helper functions.

5. Parse the JSON file containing information about box size and shape for calculations in
periodic boundary conditions, cutoffs, and type of MB-nrg PEFs, as well as other options
that control and determine the type of calculation and energy calls to be performed. If a

JSON file is not found or not present, the defaults are used.

C. Machine-learned 1-body term: V,/?

Since different MD and MC engines have different conventions regarding storage of atom co-

ordinates, MBX first translates the atoms in the 1-mer to obey the minimum-image convention

11



before evaluating the 1-body PIPs. This is only necessary when performing a calculation in pe-
riodic boundary conditions. MBX selects the first atom of each 1-mer as the reference atom to
identify the minimum images of the other atoms in the 1-mer. This reference atom is then placed
in the principal box and the closest images of other atoms in the 1-mer are selected through an

algorithm that operates in fractional coordinates.

D. Machine-learned n-body terms (n > 1): V{i#

MBX supports n-body PIPs with arbitrary values for n, which can be generated with MB-
Fit,'3313% and currently already provides functions to evaluate 2-body, 3-body, and 4-body PIPs.
Adding n-body PIPs with larger values of n is trivial and does not require any significant refactor-
ing of the source code. In order to efficiently evaluate all Vl(,‘lli terms (Eq. 4), MBX first identifies
all n-mers for which it is possible that the associated n-body switching function (s"®) is non-zero.

An n-mer is accepted and passed to the polynomial evaluation if and only if some 1-mer within

the n-mer is within a predefined n-body cutoff (B

utoff) of all other 1-mers in the n-mer. In other

words, there must be a “central” 1-mer, and all other 1-mers must be within the n-body cutoff of

the “central” 1-mer. This idea is formalized in the following criterion:

CENTER-NEIGHBOR CRITERION: Using the first atom of each 1-mer to define the position
of the 1-mer; the center-neighbor criterion for a given n-mer is satisfied if and only if there
exists at least one 1-mer (“center”) such that the distances between the “center” 1-mer
and all other n-1 1-mers (“neighbors”) in the n-mer are smaller than the n-body cutoff
rgll?toff'
The value for each rgftoff used by the CENTER-NEIGHBOR CRITERION is specified by the user
in the JSON file. As a consequence, MBX only needs to collect n-mers for which the CENTER-

NEIGHBOR CRITERION is satisfied and pass this information to the PIP evaluator. The rules for

setting appropriate values for 78

utofr are discussed in the Supplementary Information.

MBX uses a K-D Tree to search for n-mers that satisfy the CENTER-NEIGHBOR CRITERION,
after which the evaluation of the n-body PIPs with n > 1 is effectively the same as for the 1-body
PIPs. Using a K-D Tree allows MBX to quickly identify relevant n-mers and avoid the need for a
double or triple loop over all 1-mers, which would be extremely slow. The Nanoflann library!'*? is
used to implement the K-D Tree and perform the radial search. It should be noted that, although not

negligible, the CPU time required to create the tree and perform the search is still a small fraction of

12



the CPU time required to calculate the n-body PIP contributions. The K-D Tree implementation in
MBX is as follows: first, a tree is built using the first atom of each 1-mer as a point in the tree. Once
the tree containing all the 1-mers is completed, MBX loops over all the 1-mers, which will be the
candidate “center” 1-mer in the current loop, and performs a radial search of all other 1-mers that

are within 7B

toffs Which will be the candidate “neighbor” 1-mers. Then, n-mers are constructed

from the “center” l1-mer and each combination of n-1 “neighbors”. By construction, each of
the constructed n-mers necessarily satisfies the CENTER-NEIGHBOR CRITERION. However, it is
possible that the same n-mer can be selected several times, with different 1-mers acting as the
“center”. To avoid double counting, the candidate n-mer is considered valid only if the 1-mer
index of the “center” is the smallest among all valid “center” 1-mers.

Although K-D Trees were not originally designed for use in periodic boundary conditions,
MBX has implemented a patch that allows for their use in such cases by replicating the box in
space. This implies that instead of building a tree for a single copy of the system as done in the gas
phase, MBX builds a tree for 27 copies: the original one and the twenty six adjacent boxes. Only
images within the main simulation box are eligible “center” 1-mers. Future versions of MBX will
implement more advanced solutions to address the potential memory cost of this process when
the target number of 1-mers is large. After obtaining the lists of n-mers, MBX sends batches of
multiple n-mers of the same type to the PIP functions, which then transform the coordinates into

PIP variables and calculate the corresponding PIP values.

E. Physics-based terms

MBX defines two distinct classes that are dedicated to calculating the following non-bonded in-
teractions: dispersion (Dispersion class) and permanent and induced electrostatics (Electrostatics
class). As in conventional force fields and discussed in Section II, MBX excludes these non-
bonded interactions for atom pairs that are part of a bond, angle, or dihedral angle. However,
MBX does not scale these interactions as common force fields do - for a particular atom pair,
they are either entirely enabled or entirely disabled (hence Ay; in Eq. 8). Generally, all atom pairs
within a 1-mer are excluded, but in the event that a 1-mer contains non-excluded pairs both classes
calculate the contributions from 1-mer dispersion and electrostatics (i.e., dispersion energy as in
Eq. 8 and 1-body contributions to V. in Eq. 3, respectively) in a first step, ignoring any pair in

the excluded pairs list. Then, the intermolecular contributions are calculated in a double-loop over

13



the 1-mer types. For each pair of 1-mer types, the contributions to the dispersion and electrostatics
energies are calculated. Before evaluation, the coordinates and associated properties (e.g., atomic
charges and polarizabilities, dispersion coefficients, etc.) are reordered to maximize speedup from

vectorization through single-instruction multiple-data (SIMD) operations.

1. Dispersion

As shown in Eq. 12, the dispersion energy of a MB-nrg PEF is calculated in real space as a
pairwise-additive potential using pair-defined dispersion coefficients (Cg ;) that are calculated us-
ing the XDM model.!#>1%4 If the molecular system of interest is in periodic boundary conditions,
the long-range contribution to the dispersion energy is calculated in reciprocal space using the
particle mesh Ewald (PME) algorithm as implemented in the helPME library.'#*-15° PME uses
atom-defined Cg which are then combined using the usual geometric mean combination rule to
obtain pair coefficients (i.e., Cg 1y = \/m). A discontinuity in the energy and its gradients
can occur if the Cgy pair coefficients used to calculate the dispersion energy in real space are
abruptly changed to the values used by the PME algorithm at the cutoff distance. To avoid this
discontinuity, MBX applies a switching function of the same form as that used for the 2-body PIP
switching function (see Supplementary Information), enabling a smooth transition from the Cg

used in real space to the Cg ;; used in the PME calculation.

2. Electrostatics

The electrostatics calculation involves several steps, including the computation of the perma-
nent electric field, the calculation of the long-range electric field using the PME algorithm as

149,150 and the determination of the induced dipoles using one

implemented in the helPME library,
of three algorithms: iterative, conjugate gradient, or always stable predictor-corrector.!! The per-
manent contribution to the electrostatic energy is straightforward to calculate and relatively fast.
However, the bottleneck of the electrostatics calculation is to obtain the induced dipoles on each
site. While the analytical solution of the induced dipole moments is possible, it is not efficient for
large systems,'#” and it has not been implemented in MBX. A detailed description of the possible

methods to solve for the induced dipole moments can be found in Ref. 147.
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1 // Needed to read the NRG file

> #include "io_tools/read_nrg.h"

3 // Needed to use the system class

4 #include "bblock/system.h"

5 #include <vector>

¢ #include <string>

7 int main() {

8 // Declare systems vector

9 std::vector<bblock::System> systems;

10 // Read systems from NRG file

I std::string input = "input.nrg";

2 tools::ReadNrg (&input [0], systems);

13 // Set up from json file

14 std::string json_file = "input. json";

5 systems [0] . SetUpFromJson (&json_file [0]) ;
16 // Compute energy

17 double e = systems [0].Energy(true);

18 // Retrieve gradients

19 std::vector<double> grads = systems [0].GetRealGrads () ;
20 return O;

FIG. 2. Example of a C++ main function to use the MBX library with a NRG and a JSON file.

F. Output

Once all energy and gradient contributions have been calculated, they are summed and stored
in the System object, ready to be retrieved by the user or a MD/MC driver. After this step is
completed, external modifications to the coordinates of the system such as progression to the next
MD/MC step can be performed. The new coordinates are set in the same System instance, which
can then be used to perform another energy/force calculation.

While energies and forces are the most commonly retrieved information by MD and MC
drivers, MBX provides interfaces to retrieve any of the system’s properties, including, but not

limited to, charges, permanent and induced dipole moments, and the virial tensor.

IV. DRIVERS

MBX has three built-in drivers to perform single point calculations, geometry optimizations,
and normal-mode analyses, all written in C++. A simple example on how to use MBX to read an
NRG file and set up the system with a JSON file is shown in Fig. 2.

Besides the internal drivers discussed above, the current version of MBX also provides an ef-
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ficient interface to popular software packages LAMMPS!>? and i-PI!3 for both classical MD and
quantum path-integral molecular dynamics (PIMD) simulations.> MBX acts as a client that returns
MB-nrg energies and forces, while the actual MD steps are controlled by the MD engine. In the
case of i-PI, the communication between MBX and i-PI can be established in two ways: Internet
and Unix domain sockets. For LAMMPS, MBX is connected through the combination of specific
FIX and PAIR_STYLE commands in the LAMMPS input. The MBX/LAMMPS and MBX/i-PI
interfaces have already been used to study the water vapor/liquid equilibrium,'% CH4/H,0126:128
and COg/H20125’127 mixtures, and ions in solution. 18119122 1y the current version of MBX, all of
the computationally expensive functions are parallelized using OpenMP to maximize use of large
many-core compute nodes. This design readily enables other “driver” codes, serial or parallel, to
couple with MBX and perform advanced calculations, such as MD and PIMD simulations using

LAMMPS or i-PL

The pure driver-only nature of i-PI makes the interface with MBX very simple. A single driver
code that communicates with the i-PI socket is enough to allow both packages to communicate.
The driver code receives the coordinates and the simulation cell from i-PI through a socket, sets
them into MBX, and performs the energy calculation for those coordinates. Gradients and energies
are then retrieved from MBX and sent through the socket to i-PI that performs the time evolution
for each time step, updating both atom coordinates and simulation cell, which are then sent back

to the driver.

In the case of LAMMPS, MBX is tightly coupled to enable large-scale parallel simulations
with minimal overhead. LAMMPS is parallelized using a spatial domain decomposition algorithm
whereby the simulation is partitioned into sub-domains and individual MPI ranks are responsible
for computing all tasks within the sub-domain to which they have been assigned. In MBX, min-
imal changes were necessary to enable the calculation of the real-space interactions within each
LAMMPS sub-domain containing local and ghost particles. Local particles are contained within
the sub-domain owned by an MPI rank and ghost particles are replicated from neighboring sub-
domains owned by other MPI ranks. For performance reasons, the iterative electrostatic solver
in MBX was enabled with MPI and does not need to interact with LAMMPS during intermedi-
ate steps. In current CPU-only data-driven many-body simulations with MBX+LAMMPS, the
performance bottleneck functions include evaluation of the n-body PIP terms, and calculation
of the long-range portion of the electrostatic and dispersion interactions that include evaluation

of distributed 3D Fast Fourier Transforms (FFTs). The electrostatic solver involves an iterative

16



TABLE I. Effective Lennard-Jones parameters for MB-pol water.

Atom o (A) € (kcal/mol)

O 3.26393 0.26948
H 2.68354 3.7x10°10

calculation of induced dipole moments requiring repeated communication with neighboring MPI
ranks and evaluation of multiple 3D FFTs. These terms of the MB-nrg PEF along with all the
others can be evaluated independently of one another and in arbitrary order.

The LAMMPS interface also enables hybrid FF/MB-nrg simulations where some interactions
are described by conventional force fields (e.g., AMBER,!>* CHARMM, !> and OPLS'%) and
other interactions are described by MB-nrg PEFs. In these hybrid simulations, the electrostatic
energy is exclusively computed by MBX, while the remaining non-bonded interactions between
FF and MB-nrg molecules are represented by Lennard-Jones potentials that can be derived using
standard Lorentz-Berthelot mixing rules. In the case of FF molecules solvated in MB-pol water,
the recommended effective Lennard-Jones parameters for MB-pol are listed in Table I.

Importantly, given its modularity and portability, MBX can be used in combination with any
software package (e.g., in-house software developed within a research group) that supplies atom
coordinates and expects energies and forces. MBX modules and sub-modules can be included by
other C++ codes and System objects can be instantiated and used like any other C++ class. MBX
also provides wrapper interfaces in C, FORTRAN and Python. The System class by itself is too
big to be automatically adapted to other languages. However, for each one of the main System
member function, there is a wrapper that enables calls from other programming languages. While
not all of the member functions are wrapped, implementing a wrapper to retrieve a property that

is currently not available is a simple and straightforward process.

V. PARALLELIZATION

In order to perform calculations on large systems, it is necessary to parallelize the evaluation
of the various contributions to the total potential energy and forces. MBX exploits two sources
of parallelization. Internally, MBX parallelizes the calculation of the various PEF contributions
using OpenMP. Externally, MBX can exploit MPI parallelization schemes implementing domain

decomposition which may be available in the interfaced molecular simulation software. For ex-
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FIG. 3. Relative time to calculate all energies and gradients for a cubic box of 2048 water molecules in
MBX in periodic boundary conditions. Calculations were each performed 100 times, and the average was
taken. The relative times are presented as a function of the number of OpenMP threads used with MBX as
a standalone code (a) and with LAMMPS using a single MPI rank (b), being the reference time the average
time taken when using 1 OMP thread. All the calculations were performed on a compute node with two

sockets each with 64 2.6GHz AMD 7H12 Rome processors.

ample, since LAMMPS is able to partition the simulation box into sub-domains overseen by indi-
vidual MPI ranks, the MBX/LAMMPS interface allows each LAMMPS MPI rank to use one or
more MBX OpenMP threads. This implies that both sources of parallelization (OpenMP in MBX
and MPI in LAMMPS or other software) can be used together.

As a showcase of the OpenMP parallelization, Fig. 3 reports the mean runtime of an energy
calculation for a box of 2048 water molecules as a function of the number of cores. The timings
observed suggest that the OpenMP parallelization is efficient up to about 16 threads, after which
MBX is not currently able to take full advantage of further parallelization through OpenMP. Also
shown in Fig. 3 is the runtime when the calculations are performed within LAMMPS using a
single MPI rank (and the indicated number of OpenMP threads). As expected, the scaling for
both MBX as a standalone code and when interfaced with LAMMPS using a single MPI rank is
essentially identical, since the OpenMP parallelization is internal to MBX. It should be noted here
that, as is generally the case, the electrostatics represents the most expensive energy contribution

to calculate. Since the i-PI interface utilizes no additional source of parallelization, the relative
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times profile of MBX in i-PI is essentially identical to that obtained when MBX is interfaced with
LAMMPS in Fig. 3.

When the simulations are driven by LAMMPS, MBX can also take advantage of parallelization
over MPI ranks. Fig. 4 shows the relative times associated with the MBX energy and gradient
calculations when interfaced with LAMMPS, utilizing several different combinations of MPI ranks
and OpenMP threads. Comparing columns [1,2] and [1,4] with columns [2,1] and [4, 1], it is clear
that the OpenMP parallelization is more effective when the total number of available threads is
small. However, as noyp gets larger and approaches the parallelization limit observed in Fig. 3,
the use of MPI ranks is more effective in achieving the best performance. The optimal combination
of OpenMP threads and MPI ranks depends on various factors, including the system’s size and
topology (i.e., cluster, bulk, or interface). It should be noted that the evaluation of all individual

contributions to the energy scales relatively well with both MPI and OpenMP paralellization, with
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FIG. 4. Relative time to calculate all energies and gradients for a cubic box of 2048 water molecules in
periodic boundary conditions using MBX interfaced with LAMMPS. Calculations were each performed
100 times, and the average was taken. The relative times are presented as a function of the number of
OpenMP threads (npyrp) per MPI rank and the number of MPI ranks (n37p7), being the time corresponding
to 1 OMP thread and 1 MPI rank the reference. Calculations were performed on a compute node with two

sockets each with 64 2.6GHz AMD 7H12 Rome processors.

19



the exception of the PME part of the electrostatics, which will be the focus of further optimizations
in the subsequent releases of MBX. The actual timings associated with the MBX energy and
gradient calculations shown in Figs. 3 and 4 are reported in the Supplementary Material.

All timings reported in Figs. 3 and 4 were obtained for simulations of 2048 water molecules in
a periodic cubic box carried out on a compute node with two sockets each with 64 2.6GHz AMD
7TH12 Rome processors using a convergence threshold (€) for the atomic induced dipole moments
of 10716, which corresponds to each component of the induced dipole moment of each atom
being converged up to the 8th decimal digit. The convergence criterion is met when the squared
difference between successive iterations (k and k+1) of each induced dipole moment component

(a) for each atom i, Uing. ,, is smaller than the tolerance €:

2
(u ) — i) <& Via (19)

A threshold & = 10716 corresponds to a conservative and safe convergence criterion for all systems
that we have simulated with our MB-nrg PEFs to date. However, it is worth noting that larger
values up to € = 1073 are sufficient for systems with weaker responses to electric fields (e.g.,
neat H,O, CO,, CHy4 solutions). A systematic analysis of the energy conservation and associated
energy fluctuations for simulations of 2048 water molecules in a periodic cubic box carried out
in the microcanonical (NVE = constant number of molecules, volume, and energy) ensemble as a

function of the convergence tolerance is reported in the Supplementary Material.

VI. CONCLUSIONS

Over the last decade, data-driven many-body MB-nrg PEFs have been shown to accurately
predict the properties of various molecular systems from the gas to the condensed phase. By inte-
grating an underlying many-body polarizable model with explicit machine-learned representations
of individual n-body interactions, MB-nrg PEFs achieve chemical accuracy in the representation
of molecular interactions at both short and long range, and at all n-body orders.

In this work, we introduced MBX, a C++ modular library that enables MB-nrg energy and
forces calculations. MBX is divided into modules responsible for particular tasks. The potential
module is divided into sub-modules, each handling one specific energy contribution: n-body PIPs,
dispersion energy, and electrostatics. Other modules are responsible for input/output, interfacing

with drivers (e.g., software for MD and MC simulations), and constructing the System class that
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stores the state of the molecular system.

While MBX can be used as a standalone software, it also provides interfaces to common MD
packages such as i-PI and LAMMPS along with interfaces written in Fortran and Python that can
be seamlessly used in combination with third-party software (e.g., in-house software developed
by a research group). Both interfaces have already been used to study various molecular systems,
including liquid water, CO,/H,O mixtures, CH4/H,O mixtures, hydrated alkali-metal ion clusters,
and ionic solutions.

MBX includes an internal OpenMP parallelization that is more efficient when the number of
threads is small. When interfaced with external software that provides its own MPI paralleliza-
tion (e.g., LAMMPS), MBX enables efficient MB-nrg energy and force calculations that take
advantage of both OpenMP and MPI parallelizations. Future versions of MBX will include im-
proved parallelization schemes as well as the implementation of the extended MB-nrg framework
introduced in Ref. 131 for covalently-bonded molecules, with the goal of enabling fast MB-nrg
energy/force calculations which, in turn, will enable chemically accurate large-scale computer

simulations of generic molecular systems.

VII. SUPPLEMENTARY MATERIAL

Description of the MBX input file formats and functional form of the switching functions for

the MB-nrg PEFs.
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