Balance Between Physical Interpretability and
Energetic Predictability in Widely Used

Dispersion-Corrected Density Functionals

Saswata Dasgupta,*'T Etienne Palos,™® Yuanhui Pan,"8 and Francesco

Paesani* !9

T Department of Chemistry and Biochemistry, University of California San Diego,
La Jolla, California 92093, United States
IMaterials Science and Engineering, University of California San Diego,
La Jolla, California 92093, United States
San Diego Supercomputer Center, University of California San Diego,
La Jolla, California 92093, United States

§Contributed equally to this work

E-mail: sldasgupta@ucsd.edu; fpaesani@ucsd.edu


s1dasgupta@ucsd.edu
fpaesani@ucsd.edu

Abstract

We assess the performance of different dispersion models for several popular density
functionals across a diverse set of non-covalent systems, ranging from the benzene
dimer to molecular crystals. By analyzing the interaction energies and their individ-
ual components, we demonstrate that there exists variability across different systems
for empirical dispersion models, which are calibrated for reproducing the interaction
energies of specific systems. Thus, parameter fitting may undermine the underlying
physics, as dispersion models rely on error compensation among the different com-
ponents of the interaction energy. Energy decomposition analyses reveal that, the
accuracy of revPBE-D3 for some aqueous systems originates from significant compen-
sation between dispersion and charge transfer energies. However, revPBE-D3 is less
accurate in describing systems where error compensation is incomplete, such as the
benzene dimer. Such cases highlight the propensity for unpredictable behavior in vari-
ous dispersion-corrected density functionals across a wide range of molecular systems,
akin to the behavior of force fields. On the other hand, we find that SCAN-rVV10,
a targeted-dispersion approach, affords significant reductions in errors associated with
the lattice energies of molecular crystals, whilst it has limited accuracy in reproducing
structural properties. Given the ubiquitous nature of non-covalent interactions and the
key role of density functional theory in computational sciences, the future development
of dispersion models should prioritize the faithful description of the dispersion energy, a
shift that promises greater accuracy in capturing the underlying physics across diverse

molecular and extended systems.

INTRODUCTION

Non-covalent interactions play a central role in a broad range of scientific fields, includ-
ing but not limited to chemistry, condensed matter physics, and biology.'® In recent years,
there has been significant interest in developing efficient and accurate methods to study non-

covalent interactions theoretically. Although coupled cluster theory including single, double,



and perturbative triple excitations in the complete basis set limit, i.e., CCSD(T)/CBS, cur-
rently represents the “gold standard” for modeling non-covalent interactions,” the associated
computational cost limits its applicability to small systems. In this context, the recent de-
velopment of the domain-based local pair natural orbital CCSD(T), i.e., DLPNO-CCSD(T),
represents significant progress toward achieving high accuracy for large non-covalent sys-
tems.® Comparatively inexpensive, second-order Mgller-Plesset perturbation theory (MP2),°
has been widely used for systems consisting of a few tens of atoms. It has, however, been
found that MP2 displays poor convergence behavior for systems dominated by dispersion
interactions, such as m — 7 stacking.'1® On the other hand, Kohn-Sham density functional
theory (DFT) has been successful in handling larger systems albeit with limited ability in
describing non-covalent interactions,'* especially the London dispersion interaction (here-
after simply referred to as dispersion interaction), which is an electron correlation effect. In
the limit of two atoms, the dispersion interaction decays as R~%, where R is the interatomic
distance. !

By definition, the dispersion interaction is an intrinsic component of the total interaction
energy and is always attractive. The principal driving force behind the dispersion interaction
is the correlated motion of electrons, particularly over extended distances. Using semi-local
and hybrid density functionals (DFs), the dependence of the dispersion interactions on the
intermolecular distances is challenging to capture with the exponentially decaying electron
density.'%!” None of the conventional components of a DF, such as the local electron density,
its gradient, or its kinetic energy, fully account for the correlated motion of electrons over
the appropriate range of distances necessary for a correct description of dispersion interac-
tions. Although hybrid DFs incorporate long-range effects (nonlocality) through Hartree-
Fock exchange (HFX), they remain local in correlation and are, consequently, insufficient for
accurately describing the R™% asymptotic behavior of the dispersion energy.

The limitations of conventional DFs become clear when examining the underlying wave-

function and its role in the dispersion energy. Within MP2 theory,® the dispersion energy



arises from Coulomb and exchange interactions involving single-electron transition densities

associated with two interacting fragments:
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As shown in eq 1, EC(hsp

involves a sum over all possible single-particle hole excitations from
orbital i to orbital a (localized on the first fragment) and from orbital j to orbital b (local-
ized on the second fragment), with the term (ia | jb) representing a two-electron integral,
and g;, €4, €; and €, corresponding to the energies of orbitals 4, a, j, and b, respectively.
It follows that the term (ia | jb) involves instantaneous electron correlations arising from
electromagnetic zero-point energy fluctuations, leading to virtual excitations and electro-
static interactions. Conventional DFs, which only consider electron exchange without using
virtual orbitals, fall short in adequately representing these instantaneous electron correla-
tions. While DFT-related virtual-orbital dependent methods, such as the random phase
approximation (RPA),'® 20 are able to accurately capture nonlocal correlations, they are
significantly more computationally expensive than conventional DFs.?!

An accurate treatment of the dispersion energy is essential for understanding the stability
and properties of diverse molecular systems. To overcome the limitations of conventional
DFs to describe dispersion interactions, the dispersion energy in Kohn-Sham DFT is typi-
cally incorporated as an additive correction.??3% Dispersion correction schemes commonly
employed in DFT calculations can be categorized into five main approaches:

a) Nonlocal density-based schemes that introduce corrections to the electronic
potential: These nonlocal schemes, which involve a supermolecular calculation of both
the total system’s and fragments’ energies to determine the interaction energy, are widely
used to compute the dispersion energy in various systems based on their electron density.3”
All van der Waals density functional (vdW-DF') schemes employ an approximation for the

exchange-correlation energy using standard exchange and correlation components for short-



range contributions and a nonlocal term for the dispersion energy. Earlier versions of vdW-
DF required empirical damping functions,® but modern schemes provide improved results
by going beyond local approximations in the nonlocal correlation kernel.33 33940 Several
variants of the vdW-DF scheme exist that use different nonlocal correlation kernels based
on approximations of the dipole polarizability.*! The dispersion energy is then determined
by integrating the polarizability using the Casimir-Polder relationship,*? which enables the
calculation of the Cy dispersion coefficients for the interacting fragments. Dielectric functions
(e.g., the Drude model) and local plasma frequencies are used to relate the local polarizability
to the electron density.*3** Various versions of the vdW-DF scheme have been reported,
including vdW-DF, %546 vdW-DF2,%? VV09,® and VV10.3® One advantage of the vdW-DF
schemes is the ability to naturally include dispersion effects based on the charge density,
accounting for the dependence on charge transfer.37

b) Semiclassical schemes based on C; parameters that primarily modify the
total energy: The DFT-D approach?3 26364750 inyolves augmenting DFT calculations with
a damped dispersion energy that takes into account the interactions between pairs of atoms.
Over the years, several variants of the DFT-D scheme have been proposed, each with its

2472647495153 Among these approaches,

own damping functions and refinement strategies.
the DFT-D3 scheme?0°1%3 has emerged as one of the most widely used, enhancing the
accuracy of the DFT-D scheme, providing broader applicability, and reducing empiricism.
DFT-D3 incorporates atom-specific pairwise-additive dispersion coefficients, refined cutoff
radii computed from “first principles”, and system-dependent information through fractional
coordination numbers.?® DFT-D3 requires the adjustment of three global parameters for
each DF to provide the dispersion energy for molecules and solids. The next-generation,
DFT-D4, exhibits improved performance by incorporating atomic charge information to
enhance the “geometry-only” model.?® In the DFT-D4 scheme, computed atom-in-molecule

dynamic polarizabilities are scaled using element-specific functions that are derived from

Mulliken-type atomic charges.®® The DFT-D4 scheme retains the strengths of DFT-D3 while



introducing charge dependence and technical refinements, such as less empirical functions
and classical electronegativity equilibration (EEQ) partial charges that are adopted instead
of Mulliken partial charges.?0

¢) Many-body dispersion model: The many-body dispersion (MBD) model devel-
oped by Tkatchenko and co-workers has gained popularity in recent times.?* It originates
from the Tkatchenko-Scheffler model in which Cg coefficients and vdW radii are determined
from the mean-field electron density.?® Tkatchenko and Lilienfeld estimated 2-body and 3-
body dispersion contributions using Cg and Cy coefficients within a many-body expansion
formalism.®® The inclusion of 3-body dispersion contributions was found to be necessary
for many non-covalent interactions, leading to the development of the MBD model. The
MBD approach incorporates long-range screening effects (SCS) and nonadditive dispersion
energy using the coupled fluctuating dipole model (CFDM).5" The MBD model is based on
the adiabatic-connection fluctuation-dissipation theorem, providing an exact expression for
the total electron correlation energy.!® The original MBD model was shown to suffer from
underbinding issues due to short-range correlation effects, which led to the development of
the MBD@rsSCS model that adopts range separation.®® In the following, we will refer to
MBD@rsSCS as MBD for simplicity.

d) Exchange-hole dipole moment (XDM) model: In a less empirical fashion, the
dispersion energy can be incorporated into Kohn-Sham DFT by means of the XDM model
developed by Becke and Johnson. 275960 The XDM model relies on the observation that in
a non-overlapping system, the nonzero dipole moment of an exchange-hole can induce an
instantaneous dipole moment that leads to dispersion interactions.

e) Effective one-electron potentials: The London dispersion interaction resulting
from correlated electron motion can be empirically described via effective one-electron po-
tentials. Two common approaches include atom-centered external potentials?? and semi-local
DFs, i.e., functionals derived within the generalized gradient approximation (GGA) as well

as meta-GGA functionals, describing dispersion interactions.® The concept of dispersion-



corrected atom-centered potentials interprets London dispersion forces as arising from dis-
torted charge distributions, inducing a dipole moment in each atom.??%%6% Alternatively,

61,6667 can glean information about the dispersion interaction from the total

semi-local DF's
density and its deformation caused by the overlapping of wavefunctions.

Since most dispersion models currently used in studies involve empirical elements in var-
ious ways, it is important to conduct rigorous benchmarking against reliable experimental
or high-level theoretical reference data to ensure the accuracy and validity of the results
obtained with different dispersion models. The conventional parameterization of dispersion
coefficients relies on evaluating the error in interaction energies of datasets involving non-
covalently interacting dimers, such as the $22,% S22x5,%9 566, and S66x87! datasets. By
design, such an approach does not necessarily yield optimized parameters that accurately
describe the dispersion energy. Instead, it tends to determine an optimal set of parameters
that reproduce the total interaction energy, which, however, may be achieved through error
compensation among different energy components. Although the incorporation of dispersion
models does apparently enhance the overall accuracy of conventional DFs, there remains
uncertainty regarding whether empirically fitted dispersion models can also lead to physi-
cal interpretability as they might not be able to correctly reproduce the dispersion energy
contribution to the interaction energy. Furthermore, it has been observed that globally op-
timized dispersion parameters may not perform as well as dispersion parameters optimized
specifically for a certain class of systems.”>" In the context of ab initio molecular dynamics
(AIMD) simulations, the error resulting from inaccurate dispersion coefficients can be am-
plified due to the size of the system, leading to potentially incorrect predictions of physical
behavior and, consequently, misleading interpretations of the results.

The primary objective of this study is to scrutinize the significance of parametrization in
dispersion models and its impact on representing dispersion energy across a variety of non-
covalently bound systems. Instead of contrasting different dispersion models, our focus is on

understanding how parameter choices might compromise the physical interpretability and



energetic predictability. Through thorough analyses and benchmarking against high-quality
reference data, we aim to enhance our understanding of dispersion interactions in molecular

systems.

THEORY AND METHODS

Energy Calculations

The interaction energies for non-covalently interacting systems were calculated as follows:

N
Ep = Ex — Y _E; (2)

where Fr,, En, and E; represent the interaction energies, total energy of the N-monomer
system, and monomer energies, respectively. The energy calculations for all datasets were
performed using Q-Chem 6.0™ with the PBE,”™ revPBE,™ and PBE0™ functionals com-
bined with various dispersion models, including the -D3,26°! -D4.36 -VV10,3® and -MBD
models.?® The calculations were carried out with the def2-QZVPPD basis set ™ unless stated
otherwise using the SG-3 integration grid.”™ For the S66x8 dataset, we used both the zero-
damping, -D3(0),?° and the Becke-Johnson damping, -D3(BJ),%! schemes. The -D4 disper-
sion correction was calculated for DF's that include the 3-body dispersion term by default.
The -VV10 dispersion model®® was incorporated with all DFs. The -VV10 b parameters
were set to 6.5 for PBE, 3.6 for revPBE, and 6.6 for PBEO, with C' fixed at its original value
(C' =0.0093) as determined in ref 80. The errors for the interaction energies of water clus-
ters, (H20),,, were calculated relative to the reference values obtained at the CCSD(T)/CBS
level of theory in ref 81. The errors for the interaction energies of the hydrate sodium
ion, Na™(H50),, and hydrated chloride ion, Cl1~(H30),,, clusters were calculated relative to
DLPNO-CCSD(T)®? calculations performed using the def2-QZVPPD basis set in combina-
tion with the def2-QZVPPD/C auxiliary basis set,% as implemented in ORCA 4.2.1.8



Energy Decomposition Analysis (EDA)

The second-generation absolutely localized molecular orbital energy decomposition analysis
(ALMO-EDA) method was used to decompose the interaction energy of a given N-monomer
system, Ff, into a sum of physical contributions.®#" Specifically, the interaction energy
was decomposed as

EInt = EPO] + EFrz + ECT + EDisp (3)

where Epol, Ery,, Ect, and Epig, are the polarization, frozen, charge transfer, and disper-
sion energies of the N-monomer system, respectively. Based on this decomposition, E, is
the polarization energy, which describes the contribution to binding that results from in-
duced electrostatic interactions between monomers, Ef, is the sum of energy contributions
associated with permanent electrostatics (FEee.) and Pauli repulsion (FEp,y;), and Ecr is the
charge-transfer contribution, which is always negative and accounts for donor—acceptor or-
bital interactions between monomers in the system. Within the ALMO-EDA framework, the
dispersion (Disp) is distinguished from the rest of the exchange-correlation contributions by
utilizing a supplementary density functional that is free of dispersion.®” For the decomposi-
tion with hybrid functionals, like wB97M-V or PBEQ, the Hartree-Fock (HF) approach is uti-
lized. In contrast, for semi-local functionals, the revPBE or dispersion-less density functional
(dIDF) is employed as the dispersion-excluded option.®” The ALMO-EDA calculations were
performed using the PBE, revPBE, and PBEO functionals without any dispersion correction
as well as with the -D3, -D4, and -VV10 dispersion models (see Supporting Information for
details). For the dispersion-corrected PBE and revPBE functionals, revPBE was used as
the dispersion-free functional in the ALMO-EDA calculations. The b and C parameters of
the -VV10 model for PBE, revPBE, and PBEO were obtained from ref. 80. All ALMO-EDA
calculations used the def2-QZVPPD basis set® except those for the aqueous clusters. The
ALMO-EDA calculations for the water clusters were performed using the def2-QZVPP basis
set, while the def2-TZVPPD basis set® was used in the ALMO-EDA calculations for the



hydrated sodium and chloride clusters. The reference ALMO-EDA energies were calculated
with the wB97M-V density functional® using the corresponding basis sets. The adoption
of wB9TM-V as the reference DF rests on its established accuracy in rendering non-covalent
interactions, validated by multiple studies. 3 Additionally, it demonstrates smaller delocal-

94,95 Furthermore it has

ization errors when compared against a range of contemporary DFs.
been shown that the ALMO-EDA dispersion term of wB97M-V is in fine agreement with the
highly-accurate MB-pol data-driven many-body potential for water.?® To stress the validity
of wB9TM-V as a suitable reference functional to analyze the dispersion contribution, we
have performed agnostic analyses within the SAPT0, MP2-EDA, and XSAPT+MBD frame-
works. Independently of how the dispersion energies are computed within each formalism,

wB9TM-V consistently displays a smaller error relative to other dispersion models, evidenced

by improved agreement over the PBE for the S66 dataset,™ as illustrated in Figure S1.

Cell Optimizations and Calculations of Lattice Energies

The geometry optimizations of the X23 dataset of molecular crystals®” and corresponding
isolated molecules, followed by the calculations of the lattice energies, were performed using
the Vienna Ab initio Simulation Package (VASP). %% The core electrons were treated by the
projector-augmented wave (PAW) method.!%%1% For these calculations, we used PBE and
revPBE as representative of GGA functionals!®?!% with the -D3(BJ) and -MBD dispersion
models. The range-separation parameter 5 = 0.54 for revPBE-MBD was obtained from ref
104. VASP supports the revised version of the -VV10 model, known as -rVV10.1% We used
the strongly constrained and appropriately normed (SCAN)Y" as a representative meta-GGA
functional with and without -rVV10,% as both SCAN and SCAN-rVV10'% are becoming
increasingly popular for modeling diversely bonded systems and materials. 10 In this
context, it is important to mention that in the version of VASP available to us (VASP 5.4.4),
DFT calculations with -rVV10 are only supported for meta-GGA functionals such as SCAN.

The b = 15.7 and C' = 0.0093 parameters of the -rVV10 model for SCAN were obtained from

10



ref 106. In the optimizations of the molecular crystals, the unit cell parameters as well as
the atomic coordinates were allowed to relax. For the optimizations and energy calculations
involving the isolated molecules, we used large cubic unit cells with each side measuring
25 A to minimize finite-size effects. A plane-wave basis set with an energy cutoff of 1000
eV was used in all calculations. The convergence criteria for the energies and forces were
set to 1x107° eV and 0.005 eV Afl, respectively. Given the different unit cell dimensions
along different directions of the crystals in the X23 dataset, ['-centered k-point grids with a
k-point resolution of 27 x 0.03 A~ were used for the structural optimizations, which were
generated using VASPKIT.!!! For the isolated molecules, only the I point was used. The

lattice energy of each molecular crystal was calculated as

Ecrys

Nmol

Elatt = - EisO? (4>

where Eys is the energy of the molecular crystal unit cell, nye is the number of molecules

in the crystal unit cell, and Ei, is the energy of the corresponding isolated molecule.

RESULTS AND DISCUSSION

Interaction Energies and Energy Decomposition Analyses of the

S66 x8 Dataset

S66x87 is an exemplary dataset for studying non-covalent interactions, encompassing a di-
verse range of interactions such as hydrogen bonding, m — 7 stacking, dispersion, and mixed
interactions involving both electrostatics and dispersion. In addition to dimer configurations
in their equilibrium geometries, it also includes stretched and compressed dimer configura-
tions, thereby assessing the influence of dispersion interactions at both short and long ranges.
The interaction energies within the S66 x8 dataset were calculated using PBE, revPBE, and
PBEO in combination with the -D3, -D4, -VV10, and -MBD models. The accuracy of these

11
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Figure 1: Box plots of absolute errors in total interaction energies relative to the
CCSD(T)/CBS reference values calculated for the S66x8 dataset using: (a) PBE, (b)
revPBE, and (¢) PBEO combined with the -MBD, -D3(0), -D3(BJ), -D4, and -VV10 models.
Each box represents the interquartile range (IQR), the whiskers indicate the full range of
the data, and the mean error is indicated by the dot. Panels (d-f) display the ALMO-EDA
mean errors relative to wB97M-V calculated for specific subsets of the S66x8 dataset: (d)
hydrogen-bonding interactions, (e) dispersion-dominated interactions, and (f) mixed inter-
actions. See main text for details.

calculations was assessed relative to the CCSD(T)/CBS reference values. In the case of the
-D3 model, we considered both -D3(0) and -D3(BJ) damping schemes.

Figure 1a reports the error statistics for the complete S66x8 calculated with PBE com-
bined with the different dispersion models. The dispersion-corrected PBE functionals ex-
hibit remarkably similar error statistics across the entire dataset, with mean unsigned errors
(MUESs) ranging between 0.29 and 0.42 kcal/mol. Among the dispersion-corrected PBE
functionals, PBE-D4 and PBE-D3(0) demonstrate the best and poorest performance, re-
spectively. Interestingly, when -D3(0) is replaced by -D3(BJ), the accuracy of the corre-
sponding dispersion-corrected PBE functional, i.e., PBE-D3(BJ) exhibits significantly bet-

ter performance (MUE = 0.33 kcal/mol). It should be noted that the dispersion-corrected
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PBE functionals also exhibit comparable accuracy for the different subsets of interactions
included in the S66x8 dataset as shown in Figure S2. Similar trends in accuracy are also
observed for the dispersion-corrected PBEO models (Figure 1c¢), with only a negligible uptick
in error statistics found for the PBE0-D3(0) functional. In contrast, the accuracy of the
dispersion-corrected revPBE functionals displays notable variations, with the empirical dis-
persion models (i.e., -D3 and -D4) performing surprisingly better than the more sophisticated
-MBD model (Figure 1b). This discrepancy becomes particularly evident when analyzing
dispersion-dominated and mixed interactions for which revPBE-MBD exhibits the highest
error statistics among all dispersion models considered in this study (Figure S2). It is worth
noting that the inclusion of the Axilrod-Teller-Muto (ATM) term to account for 3-body in-
teractions!? does not significantly alter the performance of PBE-D3(BJ), revPBE-D3(BJ),
and PBEO-D3(BJ) for S66x8 (Figure S4).

Although the incorporation of dispersion models leads to a notable enhancement in the
accuracy of density functionals in modeling non-covalent interactions within the S66x8

t,113 it is important to consider that the choice of a specific dispersion model can

datase
impact the level of accuracy attained, as in the case of revPBE where the more physically
motivated -MBD model exhibits larger errors across all individual subsets. For hydrogen-
bonding interactions, the combination of -D3 or -D4 with revPBE results in notably better
performance than when the same two dispersion models are combined with PBE and PBEO

114

(Figures S2). A previous study by Boese''* also reported a significant error reduction with

revPBE-D3. Because of this apparent good performance, revPBE-D3 has become a common
density functional in AIMD simulations of hydrogen-bonded systems. 5119

When PBE and PBEO are combined with the -D3, -D4, and -VV 10 models, the dispersion
errors for both stretched and compressed configurations show similar trends as when they
are combined with the -MBD model (Figure S5). This seems to suggest that the -D3, -D4,

and -VV10 models are able to effectively capture both short-range and long-range dispersion

contributions. However, revPBE-D3, revPBE-D4, and revPBE-VV10 deviate significantly
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from the dispersion energy provided by revPBE-MBD, resulting in significant underbinding
(Figure S5). Nevertheless, as the geometries become highly stretched and, consequently, dis-
persion contributions become nearly negligible, the differences between revPBE-D3, revPBE-
D4, revPBE-VV10, and revPBE-MBD become smaller.

To investigate the surprising accuracy exhibited by revPBE-D3, ALMO-EDA calculations
were conducted on the S66x8 dataset with the D3(0)-corrected PBE, revPBE, and PBEO
functionals. As shown by the analysis of hydrogen-bonded systems reported in Figure 1d,
all three functionals display significant errors in the frozen energy, which, as mentioned
above, encompasses permanent electrostatics and Pauli repulsion. Specifically, PBE-D3(0)
and revPBE-D3(0) tend to underestimate the frozen energy, with mean errors of 0.39 and
0.38 kcal/mol, respectively, whereas PBE0-D3(0) tends to overestimate it, with a mean
error of -0.32 kcal/mol. The overestimation observed in the case of PBEO can primarily
be attributed to inaccuracies in the Pauli repulsion, as indicated by the decomposition of
the frozen energy in Figure S3. In terms of polarization contributions (denoted as Pol in
Figure 1), all D3(0)-corrected functionals exhibit negligible errors. The GGA functionals
(i.e., PBE and revPBE) exhibit substantial errors in charge transfer energies (denoted as
CT in Figure 1) due to the presence of larger delocalization errors. Notably, the inclusion of
25% Hartree-Fock exchange, a known approach to mitigate delocalization errors, reduces the
charge transfer error as demonstrated by the PBEQ results. While PBE-D3 and PBEO-D3
exhibit small mean errors for the dispersion energy (denoted as Disp in Figure 1), revPBE-
D3 exhibits a much larger mean error of 0.53 kcal/mol. The positive errors in the dispersion
and frozen energies displayed by revPBE-D3 significantly counterbalance the negative error
introduced by the charge transfer energy. The more pronounced error compensation among
the different energy contributions thus explains why revPBE-D3 overall performs better than
PBE-D3 for hydrogen-bonded systems.

Error compensation among different energy components as predicted by the various

dispersion-corrected functionals is especially notable in systems primarily influenced by dis-
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persion interactions. The positive error (i.e., underbinding) associated with the dispersion
energy effectively offsets the negative errors (i.e., overbinding) associated with the frozen
and charge transfer energies, resulting in an apparent better description of the interaction
energy. In the case of mixed interactions, the errors for all energy components predicted
by the various dispersion-corrected DFs are smaller, which also results in a more accurate
representation of the dispersion energy.

Based on these analyses, it is natural to inquire about the underlying factors contribut-
ing to these significant discrepancies in the representation of the dispersion energy. The
widely used -D3 and -D4 dispersion models require specific parameterization for any given
DF. These parameters are optimized using extensive datasets, such as 566, S22x5,%° and
S66x8,™ which encompass various non-covalent interactions. The objective of this param-
eter fitting is to reproduce the reference interaction energies and not the actual dispersion
contributions. However, different DF's suffer, to varying degrees, from inherent errors, such

as self-interaction and delocalization errors, %4120:121

which lead to inaccuracies in the rep-
resentation of charge transfer energies. As shown by the ALMO-EDA results reported in
Figure 1, significant negative charge transfer errors are often counterbalanced by positive
errors in the representation of the dispersion energy by empirical dispersion models, which
are particularly pronounced for revPBE-D3. Due to the ill-parametrization, certain disper-
sion models can sometimes outperform the -MBD model when combined with the revPBE
functional.

These analyses thus demonstrate that balancing the errors associated with the different
energy contributions to reproduce reference interaction energies through parameter fitting
can result in an incorrect and unreliable representation of the dispersion energy, compromis-

ing the underlying physics while only apparently preserving the overall predictive accuracy

in energetic calculations.
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Role of the Dispersion Energy in the Benzene Dimer

The accurate prediction of the interaction energy of the benzene dimer serves as a rigorous
test for the capability of a particular electronic structure method to adequately describe non-
covalent interactions, as the attraction between two benzene molecules primarily arises from
a delicate balance between dispersion and Pauli-repulsion, depending on the specific binding
arrangement of the two molecules.'?? As a result, the interaction energy of the benzene
dimer is relatively small, typically 2-3 kcal/mol, leading to a remarkably flat potential energy
surface. %

Studies of the benzene dimer generally focus on three distinct configurations: “parallel-
stacked”, “parallel-displaced”, and “T-shape” configurations.'?* Both theoretical and exper-
imental investigations face significant challenges when attempting to determine the station-
ary points on the benzene dimer potential energy surface. Wavefunction methods, such as
second-order perturbation theory encompassing SAPT0 and MP2, fail to provide a quanti-
tative description of the dispersion energy.!?* MP2 overestimates the interaction energy of
the “parallel-stacked” benzene dimer by a factor of 2, whereas it predicts the interaction
energy for the T-shaped configuration with a 30% error due to this configuration’s smaller
dispersion energy.'?® The benzene dimer thus represents a prototypical system to assess the
performance of various dispersion-corrected DF's.

Podeszwa et al.'?3 used DFT-based symmetry adapted perturbation theory (DFT-SAPT) %"
to scan the potential energy surface of the benzene dimer, identifying multiple station-
ary points, including minima (M) and saddle (S) points. Bludsky et al.'?® performed
counterpoise-corrected optimizations at the PBE/CCSD(T) level of theory for these con-
figurations using the accurate fixed benzene monomer geometry provided by Gauss and
Stanton. 28

We calculated the interaction energies between two minima (M1 and M2) and eight saddle
points (S1-S8) using PBE, revPBE, and PBEO combined with the -D3 and -VV10 dispersion

models. In addition, we also calculated the interaction energies using wB97M-V, as it exhibits
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high accuracy in describing non-covalent interactions among existing DFs.%? All calculations
were performed using the def2-QZVPPD basis set. As shown in Figure 2, wB97M-V exhibits
close agreement with the CCSD(T)/CBS reference values of ref 126, with an MUE of 0.12
kcal/mol and a maximum unsigned error of 0.25 kcal/mol. For comparison, the MUE for
the PBE-D3 functional is 0.18 kcal/mol, with a maximum unsigned error of 0.35 kcal/mol.
However, when PBE is combined with -VV10, the agreement improves significantly, with
PBE-VV10 exhibiting an MUE of 0.08 kcal/mol and a maximum unsigned error of 0.28
kcal/mol. In contrast, despite their accuracy in modeling the hydrogen-bonded systems
of the S66x8 dataset, both revPBE-D3 and revPBE-VV10 perform poorly on the benzene
dimer. In particular, revPBE-D3 exhibits an MUE of 0.21 kcal /mol and a maximum unsigned
error of 0.51 kcal/mol, with revPBE-VV10 performing even more poorly. Both PBE0-D3
and PBEO-VV10 demonstrate high accuracy, comparable to that of wB97TM-V.

The interaction energies of T-shaped benzene dimers (S3 saddle point) were calculated at
intermolecular distances ranging from -2.0 to 2.0 A with an increment of 0.2 A (Figure 3a),
and were further decomposed using ALMO-EDA to characterize the different energy contri-

butions. In Figure 3a, we compare the errors in interaction energies predicted by PBE-D3,
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Figure 2: Box plot of absolute errors in interaction energies relative to the CCSD(T)/CBS
reference values!?6 calculated for 10 stationary points on the benzene dimer potential energy
surface using wB97TM-V, PBE-D3, PBE-VV10, revPBE-D3, revPBE-VV10, PBE0O-D3, and
PBEO-VV10. See main text for details.
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PBE-VV10, revPBE-D3, revPBE-VV10, PBEO-D3, and PBE0-VV10 with respect to the
reference wB97TM-V values. This comparison reveals notable trends in the errors exhibited
by each DF. First, PBE-D3 exhibits errors ranging from 0.07 to 0.43 kcal/mol relative to
wBI9TM-V | with the errors becoming smaller near the equilibrium distance, i.e., at zero dis-
placement from the equilibrium distance between the centers of mass (COM) of the two
benzene rings. Interestingly, PBE-VV10 exhibits slightly better performance for dimer con-
figurations far from the equilibrium geometry. In contrast, revPBE-D3 exhibits a large
deviation from wB97M-V, with errors ranging from 0.30 to 0.54 kcal/mol. Also, in this
case, the combination with the -VV10 model improves the overall performance of revPBE.
Regarding the hybrid DFs, PBE(0-D3 exhibits errors ranging from 0.15 to 0.35 kcal/mol,
which consistently decrease as the benzene-benzene separation within the dimer approaches
the equilibrium distance. Notably, PBE0-VV10 provides the best agreement with wB97M-V
as the errors range from -0.01 to 0.16 kcal/mol, indicating a significant improvement over
the other combinations of DFs and dispersion models considered in this study. The results
for revPBE-D3 are somewhat unexpected, considering that revPBE-D3 shows the best error
statistics for the hydrogen-bonded systems in the S66x8 dataset (Figure 1). Consequently,
it is evident that dispersion models, due to the inherent limitations of any chosen density
functional, are not universally applicable to all types of interactions within various chemical
systems, when they are fitted to reproduce the interaction energies.

After decomposing the interaction energies through ALMO-EDA calculations, wB97M-V
provides charge transfer energies of -0.49 and -0.51 kcal /mol for the terminal and equilibrium
dimer configurations along the intermolecular distance scan, respectively (Figure 3). In
comparison, due to the delocalization error, both PBE and revPBE display larger charge
transfer stabilization of -0.71 and -0.75 kcal /mol for the same structures, while PBEQ predicts
charge transfer energies of -0.59 and -0.63 kcal/mol, respectively. Interestingly, all DFs
examined in this study show optimal charge transfer for dimer configurations displaced by

~1.2 A relative to the equilibrium distance.
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Figure 3: (a) Interaction energies of the T-shaped benzene dimers (S3) calculated at in-
termolecular displacements from -2.0 to 2.0 A relative to the equilibrium distance using
PBE, revPBE, and PBEO functionals combined with the -D3 and -VV10 models, as well as
wBI7M-V. (b) Charge-transfer contributions to the interaction energies reported in (a). (c)
Dispersion contributions to the interaction energies reported in (a).
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Figure 3c illustrates the impact of the different dispersion models on the performance
of PBE, revPBE, and PBEO. For the terminal structures along the intermolecular dis-
tance scan (i.e., structures with a displacement of 2 A relative to the equilibrium distance),
PBE(0-VV10 predicts the smallest dispersion energy (-2.43 kcal/mol). Both wB97M-V and
revPBE-VV10 predict a dispersion energy of -2.56 kcal /mol for the same structures, while the
other dispersion-corrected DFs overestimate the stabilization due to the dispersion energy.
Specifically, PBE0-D3 and PBE-VV10 predict a dispersion energy of -2.61 kcal/mol, while
the dispersion energy predicted by PBE-D3 is -2.66 kcal/mol. Among all functionals exam-
ined in this study, revPBE-D3 predicts the largest overstabilization due to the dispersion
energy (-2.78 kcal/mol).

In the case of the equilibrium geometry, where the dispersion energy is most prominent,
the differences in dispersion energies predicted by the different dispersion-corrected DF's
become more apparent. PBE0-VV10 exhibits significant understabilization (-3.34 kcal/mol)
compared to wBI7TM-V (-3.69 kcal/mol). Both PBE-D3 and PBE0-D3, which show slight
overbinding compared to wB97M-V for the displaced structure, exhibit underbinding for
the equilibrium geometry, with dispersion energies of -3.54 and -3.55 kcal/mol, respectively.
On the other hand, PBE-VV10 and revPBE-VV10 display overstabilization, predicting a
dispersion energy of -3.75 kcal/mol. revPBE-D3 deviates the most from wB97M-V also in
the case of the equilibrium geometry, predicting a dispersion contribution of -3.80 kcal/mol.

The ALMO-EDA results demonstrate that, while wB97M-V and PBE0-VV10 exhibit
similar interaction energy profiles (Figure 3a), this similarity is purely accidental, arising from
substantial error compensation in PBE0-VV10, particularly near the equilibrium geometry.
In particular, PBEO-VV10 displays an overbinding tendency in terms of charge transfer
(Figure 3b) and frozen energies (Figure S6a), but it significantly underbinds the benzene
dimer in terms of dispersion energy (Figure 3¢) and slightly underestimates the polarization
energy (Figure S6b). The same trend is observed for the other dispersion-corrected DFs

where various levels of error compensation occur among the different energy components,
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which overall tend to improve the agreement with wB97M-V. Although several dispersion-
corrected DFs demonstrate similar accuracy to wB97M-V for the benzene dimer (Figure 2),
the ALMO-EDA results demonstrate that this apparent accuracy stems from the delicate
balance of error compensation among the different energy components and not from a correct
representation of the corresponding physical interactions. In particular, the DFs analyzed in
this study tend to overestimate charge transfer and undermine polarization effects, while the
fitted dispersion models attempt to counterbalance these errors by either overemphasizing

or underemphasizing the dispersion contributions.

Non-Covalent Interaction in Charged Systems

The interaction energies in ionic systems are influenced by the charge distribution, which in
turn affects the polarizability and alters the dispersion contributions. Charged systems inter-
acting through non-covalent forces are included in the AHB21, IL16, and CHB6 datasets. !?
Each dataset focuses on specific types of interactions: anionic hydrogen bonding (AHB21),
cation-neutral interactions (CHB6), and cation-anion pairs in ionic liquids (IL16).'** In our
analyses reported in Figure 4, we compare the results obtained with the different dispersion-
corrected DFs with the CCSD(T)/CBS reference values reported in ref 129.

In the case of the AHB21 dataset, both PBE-D3 and PBE-D4 exhibit similar error
statistics, while the magnitude of the errors increases when PBE is combined with -VV10.
All dispersion-corrected variants of revPBE (i.e., revPBE-D3, revPBE-D4, and revPBE-
VV10) exhibit comparable error statistics. Upon application of the dispersion correction to
the PBEO functional, we find similar error statistics to those exhibited by the dispersion-
corrected PBE functional, with PBEO-VV10 exhibiting larger errors than PBE(0-D3 and
PBEO-D4. As for the AHB21 dataset, the comparisons for the I1L16 dataset indicate that
the combination of the -VV10 model with PBE and PBEO results in worse agreement with the
reference values compared to when the same DFs are combined with the -D3 or -D4 models.

In contrast, revPBE-D4 exhibits a larger MUE and a wider range of errors compared to
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Figure 4: Box plots for the absolute errors in interaction energies relative to the

CCSD(T)/CBS reference values'®® calculated for the AHB21 (a), IL16 (b), and CHB6 (c)
datasets using PBE, revPBE, and PBEO combined with the -D3, -D4, and -VV10 models.
Panels (d-1) display the mean errors in individual energy components relative to the wB97M-
V reference values obtained from ALMO-EDA calculations carried out for specific subsets of

the AHB21 (panels (d-f), IL16 (panels g-i), and CHB6 (panels j-1) datasets.
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revPBE-D3 and revPBE-VV10. Finally, for the CHB6 dataset (Figure 4), the combination
of PBE and PBEO with the -VV10 model results in slightly smaller errors compared to
those exhibited by the two DFs when they are combined with the -D3 and -D4 models.
Interestingly, combining revPBE with the -D4 model significantly increases the error and
widens the range of errors compared to revPBE-D3 and revPBE-VV10. Notably, PBE0-D4
exhibits a wide range of errors similar to revPBE-D4, while PBEO-D3 and PBEO-D4 exhibit
comparable MUEs.

Overall, the most consistent DF in producing the lowest MUEs across all three datasets is
the dispersion-corrected revPBE functional. However, its performance varies with the type
of dispersion model used. For instance, all dispersion-corrected revPBE functionals perform
similarly in the case of the AHB21 dataset, while revPBE-VV10 and revPBE-D3 perform
better for the IL16 and CHB6 datasets, respectively. Although all dispersion-corrected
revPBE functionals exhibit reasonably good performance across the three datasets, no single
dispersion-corrected DF consistently yields the lowest MUEs across all three datasets. Based
on the analyses for PBE, revPBE, and PBEO, it thus follows that there is no definitive “best”
combination of DF and dispersion model that consistently applies to all types of non-covalent
interactions in charged systems.

To understand the trends in interaction energies in terms of the underlying physical
contributions, ALMO-EDA calculations were performed on the three datasets using all
dispersion-corrected DF's examined in this study. The ALMO-EDA results are shown Fig-
ure 4d-1 relative to the wB97M-V references values. For the AHB21 dataset, the PBE
functional predicts a significant charge transfer stabilization of approximately -2 kcal /mol.
Both PBE-D3 and PBE-D4 predict slightly underbinding dispersion energies relative to the
wBI7M-V reference values, while PBE-VV10 exhibits opposite behavior. As shown in Fig-
ure 4d, this delicate balance of errors improves the performance of PBE-D3 and PBE-D4 in
predicting the interaction energies for systems included in the AHB21 dataset. Conversely,

all dispersion-corrected revPBE functionals consistently exhibit large (positive) errors for

23



the dispersion energy, independently of the dispersion model employed. This underestima-
tion of the dispersion energy is counteracted by the delocalization error, which is reflected
in an artificial stabilization provided by the charge transfer energy. This pronounced error
compensation leads to an apparent good agreement with the reference wB97M-V values for
the interaction energies (Figure 4e). On the other hand, the PBEO functional yields smaller
errors for all energy components. Being a hybrid functional, PBEO mitigates the error in
charge transfer energy by construction, while keeping the error in the dispersion energy con-
sistently low. However, since the errors for all energy components of the dispersion-corrected
PBEO functionals display the same signs, their accumulation decreases the agreement with
the wB97M-V interaction energies compared to the corresponding dispersion-corrected PBE
and revPBE functionals (Figure 4a).

The ALMO-EDA calculations for the IL16 dataset indicate that large dispersion errors
negate the effects of over-stabilization caused by the delocalization error, which is particularly
notable in the case of revPBE (Figure 4g-i). This error compensation is more prominent
when revPBE is combined with the -D3 and -D4 models, while it is less marked in revPBE-
VV10 due to a smaller dispersion error (Figure 4h). Similar error compensation improves
the performance of PBEO-D3 and PBE0-D4 but worsens the performance of PBE0O-VV10 for
which the errors in charge transfer and dispersion energy have the same sign (Figure 4i).

Figure 4j-1 shows that the error compensation is less pronounced in the case of the CHB6
dataset. This is primarily due to smaller errors in the dispersion energy displayed by all
dispersion-corrected DFs, which can be traced back to the intrinsic electronic properties of
cations. Specifically, due to their compact electron density, cations exhibit smaller polariz-
abilities than neutral and anionic species. A smaller polarizability implies that the electron
density of a cation is less easily distorted by an external electric field. Since dispersion in-
teractions depend on these distortions of the electron densities, they are relatively weaker
for cationic species. This explains the smaller errors in the dispersion energies exhibited

by the different dispersion-corrected DF's for systems in the CHB6 dataset. On the other
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hand, electrostatic interactions, which arise from the forces that electric charges exert on
each other, play a key role in cationic systems. Since charges get artificially distributed over
larger volumes due to delocalization error, Figure S7 shows that the errors associated with
electrostatic contributions predicted by the different DF's are larger for systems in the CHB6

dataset.

Energy Decomposition Analysis of Aqueous Clusters

To elucidate the effects of various dispersion models on the DFT description of molecu-
lar interactions in aqueous environments, we focus in this section on water [(H20),—2_1¢],
hydrated sodium cation [Na®(H20),,—2_10], and hydrated chloride anion [Cl~(H30),—2_1¢]
clusters. As in the previous sections, our analyses encompass the -D3, -D4, and -VV10 mod-
els combined with the PBE, revPBE, and PBEO functionals that are commonly employed in
AIMD simulations of aqueous systems. Unless otherwise stated, the analyses with the -D3
model presented in this section are discussed in the context of the -D3(0) damping scheme.
The structures of the (HyO),—2_1¢ clusters were obtained from the BEGDB water clusters

t,13% which were originally optimized at the RI-MP2/aug-cc-pVDZ level of theory.®!

datase
All analyses reported for the BEGDB clusters are averaged over the number of isomers in
the dataset for each cluster size n.

The combination of the -D3, -D4, and -VV10 models with the PBE and PBEO function-
als results in significant errors in the interaction energies with respect to CCSD(T)/CBS
reference values, ! which tend to increase with cluster’s size as summarized in Table 1 for
(H,0),,, Nat(H50),, and C1~(H20),,, with n = 2,10. The errors per water molecule for the
interaction energies of the full datasets are reported in Figures S8-S16.

The ALMO-EDA errors relative to the wB97M-V reference values for each individual
energy component of the corresponding interaction energy for the (HyO),,—2_10 are shown in
Figure 5a as mean errors (ME) per water molecule, Aécomponent = (Emonconent — Eromponent) /-

The error per water molecule in the frozen component (i.e., electrostatics + Pauli repulsion)

25



Table 1: Errors (kcal/mol) in interaction energies per water molecule relative to the
CCSD(T)/CBS*! and DLPNO-CCSD(T)/def2-QZVPPD reference values for water and
ion-water clusters, respectively, calculated with PBE, revPBE, and PBEO combined with
the -D3, -D4, and -VV10 models as well as wB97TM-V.

Method (HQO)Q (HgO)lo Na+ (H20>2 Na+(H20)10 Cl_ (H20)2 Cl_ (HgO)lo

PBE-D3 -0.37 -1.52 0.82 0.12 -1.18 -0.76
PBE-D4 -0.34 -1.33 0.65 0.23 -1.33 -0.63
PBE-VV10 -0.46 -1.87 0.60 -0.04 -1.84 -1.06
revPBE-D3 0.05 0.19 1.70 1.10 0.51 0.30
revPBE-D4 0.07 0.18 1.21 1.10 0.08 0.41
revPBE-VV10  0.30 1.05 1.44 0.91 -0.75 -0.21
PBEO-D3 -0.34 -1.40 0.65 0.05 -1.01 -0.67
PBEO-D4 -0.27 -1.12 0.58 0.28 -1.06 -0.46
PBEO-VV10 -0.39 -1.62 0.51 0.03 -1.55 -0.85
wBITM-V -0.13 -0.50 0.79 0.50 -0.13 -0.18

of the interaction energies exhibits an increasing trend with cluster size. This trend is more
pronounced for PBE and revPBE than the hybrid PBEO functional. In the case of PBEO
specifically, separation of the frozen component suggests that excessive Pauli repulsion out-
competes as the main component of the total error (see Figure S23). Overall, all three
DFs perform similarly in describing the polarization contribution, with the associated errors
contributing minimally to the total error for all clusters. This is within general agreement
with previous studies that focused on quantifying the contributions of different components
to intermolecular interactions in hydrogen-bonded systems. 1327136

As discussed in the previous sections, GGA functionals, such as PBE and revPBE, suffer
from a non-negligible delocalization error, which, in turn, results in a systematic overesti-
mation of charge transfer. This is particularly pronounced in aqueous systems, as observed

in our previous studies. 931367138

In the case of PBE-D3, the error in charge transfer energies
increases from -0.35 kcal/mol to -1.65 kcal/mol as the cluster size increases from the dimer
to the decamer. A similar trend is displayed by revPBE-D3. As expected, by incorporat-

ing 25% Hartree-Fock exchange, this artificial charge transfer error is partially mitigated
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in PBEO-D3, which exhibits errors of -0.12 kcal/mol and -0.57 kcal/mol for the dimer and
decamer, respectively. At the same time, 25% HFX in the PBEO global hybrid increases
the strength of Pauli repulsion, leaving Aep,, as the primary contributor to the deviation in
the predicted interaction energy relative to wB97M-V, which contains at short-range 15% of
HFX (see Figure S23).

For the dispersion energy, revPBE-D3 displays the most notable deviation from the
wBITM-V reference values, with an error of 0.36 kcal/mol for the dimer that progressively
increases to 1.60 kcal /mol for the decamer. In contrast, PBE-D3 and PBE0-D3 exhibit min-
imal errors for all clusters from the dimer to the decamer. While PBE-D3 and PBEO-D3
show improved agreement with wB97M-V for the dispersion energies, their overall perfor-
mance in reproducing the CCSD(T)/CBS interaction energies is inferior to revPBE-D3. This
poor performance is rationalized by considering the large dispersion errors associated with
revPBE-D3. Paradoxically, the smaller errors in dispersion energies exhibited by PBE-D3
and PBEO-D3 are insufficient to compensate for the charge transfer errors, which thus results
in higher inaccuracy in the description of the interaction energies as reported in Table 1.
Figure S17 and S18 show the same analyses for PBE, revPBE, and PBE0O combined with
the -D4 and -VV10 models, respectively. Interestingly, although the trends in dispersion
energies predicted by PBE and PBEO combined with the -D4 and -VV10 models are similar
to those provided by the -D3 model, the performance of revPBE-VV10 is significantly worse
than that of revPBE-D3 and revPBE-DA4.

Given the apparent agreement with the CCSD(T)/CBS reference energies for the water
clusters, which, as demonstrated above, effectively derives from fortuitous error compen-
sation between the representation of charge transfer and dispersion energy, revPBE-D3(0)
has gained widespread popularity as a suitable DF for AIMD simulations of liquid wa-
ter. 11517 This popularity has made revPBE-D3(0) one of the preferred DFs for training
“DFT-level” machine-learned potentials for water.!'? In this context, it should be noted

that a recent study'®® demonstrated that the -D3(BJ) model and its generalized form -
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D3(op)®? introduces smaller dispersion errors compared to the -D3(0) model in the case of
revPBE. However, due to a less-than-optimal error compensation between charge transfer

and dispersion energy, both revPBE-D3(BJ) and revPBE-D3(op) provide worse agreement
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Figure 5: Errors (kcal/mol) relative to the wB97M-V reference values for the energy com-
ponents of the interaction energies obtained from ALMO-EDA calculations carried out for
(H20),, (a), Nat(H50),, (b), and C1~(H0),, (c) clusters, with n = 2 — 10. All errors are
divided by the number of water molecules in each cluster and the total error is shown on each
bar. The energy components of PBE-D3, revPBE-D3, and PBE0-D3 are shown in green,
blue, and red shades, respectively. See main text for details.
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with the CCSD(T)/CBS reference energies than revPBE-D3(0). This contradicting trends
in reproducing dispersion and interaction energies manifest, for example, in revPBE-D3(0)
better reproducing the sum-frequency generation spectrum of the air/water interface than
revPBE-D3(BJ) and PBE-D3.'3 The underbinding dispersion interaction in revPBE-D3(0)
effectively prevents hydrogen bonds from becoming overly attractive, which counteracts the
relatively large delocalization error. On the other hand, a better description of the dispersion
energy combined with GGA functionals, such as PBE and revPBE, lead to overly stronger
hydrogen bonds, causing the vibrational spectra to redshift as shown in simulations with
PBE-D3(0), PBE-D3(BJ), and revPBE-D3(BJ).1%

Simulations carried out based on revPBE-D3 were shown to reproduce some properties of
liquid water. 14%14! However, employing a data-driven many-body potential based on revPBE-
D3, which includes a pairwise dispersion term resulted in a more structured liquid. This
seemingly counterintuitive result is again explained by the lack of error compensation in
dispersion-corrected revPBE variants that adopt an accurate description of the dispersion
energy. %6 Head-Gordon and coworkers also suggested the presence of error compensation in
revPBE-D3.142 In particular, they demonstrated that the inherent inaccuracies in revPBE-
D3 seem to fortuitously coincide with the neglect of the nuclear quantum effect in classical
simulations, as the agreement with the experimental data deteriorates when these effects are
explicitly included in path-integral molecular dynamics simulations.

In addition to pure water clusters, we also investigated the impact of dispersion interac-
tions on ionic aqueous clusters. In the following, we focus on Nat(H,0), and Cl~(H,0),
clusters, obtained from molecular dynamics simulations carried out in the isothermal-isobaric
(NPT = constant number of particles, pressure, and temperature) ensemble at 7" = 298.15
K and P = 1 atm. 3% These simulations employed MB-nrg many-body potentials that were
trained on CCSD(T)/CBS 2-body and 3-body energies for ion-water dimers and trimers 43146
The cluster configurations extracted from the NPT simulations were further optimized using

the MB-nrg framework implemented in the MBX software. 147
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Contrary to the water clusters, dispersion-corrected revPBE exhibits significantly larger
error in interaction energies compared to the DLPNO-CCSD(T)/def2-QZVPPD reference
values, especially when compared to the results obtained with the dispersion-corrected PBE
and PBEOQ functionals as shown in Table 1 and Figure S9. The analysis of the dispersion
energies predicted by PBE-D3, PBEO-D3, and revPBE-D3 demonstrates that, while both
PBE-D3 and PBEO-D3 exhibit relatively small errors, revPBE-D3 consistently exhibits larger
errors as shown in Figure 5b. For example, the errors associated with the PBE-D3 values
for the dispersion energy range from -0.15 kcal/mol for n = 2 to -0.27 kcal/mol for n = 10.
A similar trend is observed for PBE0-D3 with errors of 0.01 kcal/mol and -0.11 kcal/mol
for the corresponding clusters. In contrast, the errors for revPBE-D3 are 0.43 kcal/mol
for Nat(H20), and 0.47 kcal/mol for Nat(H20)19. The corresponding ALMO-EDA results
obtained with the -D4 and -VV10 models are reported in Figures S19 and S20. For the
-D4 model, the errors associated with the dispersion energy decrease as a function of cluster
size for PBE-D4 but increase for revPBE-D4. In the case of PBEO-D3, the errors remain
relatively small and only slightly increase as the cluster size increases. It is noteworthy that
all D4-corrected DF's exhibit errors in dispersion energies comparable in magnitude to those
of their D3-corrected counterparts. Both PBE-VV10 and revPBE-VV10 exhibit substantial
errors in dispersion energies, which persist independently of cluster size. Conversely, PBEO-
VV10 displays a consistent trend, with comparatively smaller errors in dispersion energies
for all clusters.

It is noteworthy that the dispersion errors in Na™(H;0), clusters are smaller compared
to those observed in (Hy0O), clusters, primarily because the dispersion contributions to the
interaction energies are much smaller in Na™(H,0),, clusters as cations have smaller polariz-
abilities (Table S1). As mentioned above, Na™(H0),, clusters are dominated by electrostatic
interactions that are poorly described by GGA functionals, such as PBE and revPBE (Fig-
ures S19 and S20), due to relatively large delocalization errors. This is evident in the case

of both PBE and revPBE, which exhibit large errors in the description of the electrostatic
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energy of the frozen component (see Figures 5b, S19 and S20).

Mundy and coworkers carried out AIMD simulations of alkali-metal ions in water and
compared the performance of revPBE-D3, a GGA functional, and SCAN, a meta-GGA
functional. #® Their results indicate that SCAN provides a more reliable description of the
hydration structure for Na*t, although revPBE-D3 outperforms SCAN in describing the hy-
dration structure of liquid water. The observed differences between the behavior of SCAN
and revPBE-D3 in the context of liquid water were attributed to SCAN’s known tendency
to overbind. 8 In this context, it is important to note that both revPBE-D3 and SCAN are
susceptible to delocalization errors, which are more prominent for GGA functionals, such as
revPBE-D3, in case of ion-water clusters.'36:138 Ag discussed in ref 136 for revPBE-D3(0),
revPBE-D3(op), and SCAN, delocalization errors lead to an overstructured representation of
liquid water. In the case of neutral water, the errors in charge transfer and dispersion energy
in revPBE-D3 accidentally compensate for each other, leading to a fortuitous improvement
in the performance of revPBE-D3 for liquid water. In contrast, SCAN outperforms revPBE-
D3 in predicting the energetics of Na®™(H0),, clusters as well as the hydration structure of
Na™ in liquid water.4® The reason for the different performance of revPBE-D3 in describing
pure water and hydrated Na*t thus lies in the different nature of the underlying physical in-
teractions. Specifically, permanent electrostatics become one of the dominant contributions
in Na*t-water clusters, which prevents the fortuitous error compensation observed in water
clusters and consequently prevents the -D3 model, which shows remarkable accuracy for
neutral water simulations, from accurately representing Na'-water interactions. Recently,
Jungwirth and coworkers reported significant improvement in hydrated alkali-metal ion sim-
ulations by selectively deactivating the dispersion interaction between alkali-metal ions and
water molecules while still preserving the dispersion interaction among water molecules. 4 It
should be emphasized that this improved agreement does not imply that alkali-metal ions are
not polarizable or that their dispersion interactions can be neglected. Our analyses, in fact,

demonstrate that removing Nat-metal water dispersion interactions can, at times, result in
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improved performance of revPBE-D3. However, this improvement is primarily due to error
compensation rather than a more accurate representation of the actual physical interactions.

Unlike the Na®(H50), clusters, Table 1 and Figure S10 show that the errors in the
interaction energies of the C1~(H20),, clusters calculated with all dispersion-corrected DFs
decrease as the cluster size increases. It is, however, important to note that these errors are
significantly larger for C1~(H20),, than for Na*(H20),, and (Hy0),, clusters. This behavior
is reminiscent of the delocalization error that affects any DFT representation of molecular
interactions and is particularly pronounced in the case of anionic systems due to the more
diffuse delocalization of the excess electrons. As discussed above, the delocalization error, in
turn, has a significant effect on the charge transfer energies. %150 Interestingly, the errors
in interaction energies for the larger clusters remain quite comparable, regardless of the
dispersion model used (Figures S10, S13, and S16). As in the case of water clusters, revPBE
combined with any of the dispersion models provides better agreement with the reference
values than the dispersion-corrected PBE and PBEOQ functionals (Figures S8, S11, and S14).

Figure 5¢ shows the ALMO-EDA results for the Cl1~(Hy0),,=1_10 clusters. Focusing on
the dispersion energy, the error associated with revPBE-D3 still constitutes a substantial
fraction of the total error, being 2.56 kcal/mol at n = 2 and 1.18 kcal/mol at n = 10.
The error in the dispersion energy varies from 0.70 kcal/mol to 0.07 kcal/mol in the case of
PBE-D3 and from 0.18 kcal/mol to 0.04 kcal/mol in the case of PBE0-D3 as the cluster size
increases from n = 2 to n = 10.

As shown in Figures S21 and S22, the errors in dispersion energies for the Cl~(Hy0),
cluster calculated with the -D4 and -VV10 models present a significant spread in values.
Specifically, in the case of the PBE functional, the error varies from 0.55 kcal/mol for PBE-
D4 to -0.04 kcal /mol for PBE-VV10. Similarly, the error associated with revPBE-D4 is 2.14
kecal/mol and becomes 1.13 kcal/mol for revPBE-VV10, while PBE0-D4 and PBE0-VV10
exhibit errors of 0.13 kcal/mol and -0.43 kcal/mol, respectively. The same trends hold for

the larger Cl~(H0)qo cluster. In this case, the error varies from 0.20 kcal/mol for PBE-D4
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to -0.25 kcal/mol for PBE-VV10, from 1.28 kcal/mol for revPBE-D4 to 0.60 kcal/mol for
revPBE-VV10, and from 0.25 kcal/mol for PBE0-D4 to -0.16 kcal/mol for PBE0-VV10.
These analyses highlight the significant impact of the selected dispersion models on the
representation of dispersion interactions in water and ionic aqueous systems within DFT.
Notably, they shed light on the unexpected accuracy of revPBE-D3 in AIMD simulations of

151 attributing it to error compensa-

liquid water and hydrated monovalent anions (e.g., C17),
tion among various physical contributions, especially charge transfer and dispersion energy.
Moreover, these findings underscore the need for caution in AIMD simulations of aqueous
systems with dispersion-corrected DFs since, not being able to correctly represent the un-

derlying physical interactions, these DFs may lead to misinterpretations of the experimental

data.

Impact of Dispersion Energy on Molecular Crystals

DFT stands as the de facto electronic structure theory for modeling extended systems due to
its reasonable accuracy and efficiency relative to post-Hartree-Fock wavefunction methods.
To assess how a given dispersion model affects the DFT description of structural properties
and energetics of molecular crystals, we analyzed the performance of dispersion-corrected
DF's on the X23 dataset that consists of a diverse collection of 23 molecular crystals with
well-understood rigid molecular structures (Figure 6).°” The reference values in the X23

dataset?”

include experimentally measured sublimation enthalpies adjusted to account for
vibrational contributions and cell volumes.'®? This adjustment enables a direct comparison
of static lattice energies. Since the interactions in the molecular crystals included in the X23
dataset are dominated by long-range effects, the treatment of the dispersion energy within
DFT is expected to significantly affect the lattice structures.

Full unit cell optimizations were carried out for all 23 molecular crystals using PBE-

D3, PBE-MBD, revPBE-D3, SCAN, and SCAN-rVV10. The analysis of the errors in the

unit cell volumes, represented as percentages of the corresponding reference experimental
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volumes, 1*? provides valuable insights into the accuracy of dispersion-corrected DFs in pre-
dicting the structural properties of the molecular crystals in the X23 dataset. Evaluating the
entire dataset, the MUEs for the PBE-D3 and PBE-MBD functionals are 1.83% and 1.77%,
respectively. Poorer performance is displayed by revPBE-D3 and revPBE-MBD, with MUEs
of 3.41% and 6.99%, respectively.

SCAN represents a particular case among the DFs examined in this study. By construc-
tion, SCAN includes medium-range dispersion contributions in its functional form,%" but, as
any semi-local functional, also suffers from a non-negligible delocalization error that leads
to over-attractive interactions.!®® The effect of the delocalization error is particularly evi-
dent in the case of the hydrogen-bonded molecular crystals of the X23 dataset for which
SCAN-rVV10 predicts more compact unit cells as shown in Figure 6a. On the other hand,
the absence of long-range dispersion contributions partially counteracts the artificial unit
cell shrinkage due to the delocalization error in the case of SCAN. For cell volume calcula-
tions across the entire X23 dataset, the MUE of SCAN is 3.47%. Combining the -rVV10
model with SCAN'% Jeads to a significant reduction in unit cell size, resulting in an error
of 11.13%. The unit cell shrinkage provided by SCAN-rVV10 is more pronounced in the
hydrogen-bonded molecular crystals as shown in Figure S25. While comparing against the
experimentally back-corrected reference, which accounts for vibrational effects, reduces the
magnitude of errors, SCAN-rVV10 still consistently overbinds across all the molecular crys-
tals (Figure S26).'% These results are in line with the observation that AIMD simulations
of liquid water reported in the literature are mostly carried out with SCAN because the
incorporation of the dispersion correction through the -rVV10 model leads to a significant
overestimation of the liquid density. !5

PBE-D3 and PBE-MBD both exhibit minimal mean errors and standard deviations in
comparison to experimental volumes. While revPBE-D3 typically predicts more contracted
unit cells and revPBE-MBD predicts more expanded ones on average, their associated stan-

dard deviations are quite broad, encompassing both negative errors (i.e., smaller unit cell
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Figure 6: Illustration of all the molecular crystal unit cells in the X23 dataset along with the
% change of unit cell volumes and lattice energies using PBE-D3, PBE-MBD, revPBE-D3,
revPBE-MBD, SCAN, SCAN-rVV10 for molecular crystals of X23 dataset with respect to
the experimental reference. 152

volumes) and positive errors (i.e., larger unit cell volumes). However, while the error distri-
bution of SCAN also extends into positive errors, SCAN-rVV10 underestimates the unit cell
volumes for every molecular crystal in the X23 dataset.

The lattice energy errors reported in Figure 6b demonstrate that both PBE-D3 and
PBE-MBD exhibit a similar level of agreement with the experimental values, resulting in
MUESs of 1.02 kcal/mol and 1.36 kcal/mol, respectively. Interestingly, revPBE-D3 predicts
X23 lattice energies with a comparable MUE of 1.26 kcal/mol. However, the combination
of revPBE with the -MBD model compromises the overall accuracy, leading to an MUE of
2.66 kcal/mol. Although predicting significantly more contracted unit cells, SCAN-rVV10
performs reasonably well in reproducing the lattice energies. Specifically, SCAN yields an
MUE of 4.60 kcal/mol, which reduces to 2.26 kcal/mol for SCAN-rVV10. The performance
of SCAN-rVV10 in predicting unit cell volumes and lattice energies is particularly revealing.

It underscores the capability of a dispersion-corrected DF to reliably estimate the energetics
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of molecular crystals, even amidst clear limitations in accurately reproducing structural

properties.

CONCLUSIONS

Maintaining a balance between physical interpretability and energy predictability is paramount
when employing dispersion models within DFT. Although parametrized dispersion models
are known to often enhance the accuracy of DFT calculations, there exist cases where the
dispersion model is ill-parameterized, giving rise to physical inconsistencies that, in turn,
add complexity to the interpretation of the results.

A key challenge arises when tuning parameters to predict the interaction energy of a
given molecular system rather than only the component associated with the dispersion en-
ergy. In this work, we have assessed the performance of various dispersion models with
DFT, particularly focusing on their prediction of dispersion energies for a wide variety of
non-covalent systems. This study demonstrates that parameter fitting can, in some cases,
compromise the underlying physics and hinder transferability, as it leads to significant error
compensation among the different energy components in order to reproduce the reference
data. Consequently, the performance of dispersion models varies across different systems. For
example, while revPBE-D3 proves highly effective in hydrogen-bonded systems, it struggles
to faithfully reproduce the potential energy surface of the benzene dimer. This discrep-
ancy highlights the potential for inconsistent - and thus unpredictable - behavior of various
dispersion-corrected DF's across a broad range of molecular systems, a trait reminiscent of
the behavior displayed in force fields.

Further complicating matters is a proposed solution to optimally tune the dispersion
correction in accordance with a tailored training set. While Perdew ef. al recommended
distinct sets of dispersion coefficients for different systems to optimize performance for a

certain system class, ? this method increases the complexity of the resulting optimally-tuned

36



dispersion-corrected DF. Additionally, the variability of dispersion coefficients in optimally-
tuned dispersion models for molecular systems and layered materials may, for example, limit
the applicability of the optimally-tuned dispersion-corrected DF to surface science, thus
complicating the description of processes like molecular adsorption.

In pursuit of obtaining physically meaningful results rooted in accurate physics, future
development of dispersion models should prioritize reproducing the dispersion energy, rather
than solely aiming to reproduce the overall interaction energy through parameter fitting.
This refined approach offers the potential to more accurately capture the underlying physics,

ensuring broad applicability across a diverse range of molecular systems.

Data Availability Statement

The data associated with the analyses presented in this work are freely available at this repos-

itory: https://github.com/paesanilab/Data_Repository/tree/main/dispersion-DFT.

Supporting Information

Comparison of EDA dispersion energies; polarizabilities of C1~ and Na™; errors in dispersion
corrected DFT for S66 x8; errors in dispersion corrected DFT energy components for benzene
dimers, CHB6, AHB21, IL16, (H50),,, Nat(H50),, Cl1~(HyO),; errors in lattice energies and

cell volumes using dispersion-corrected DFT for X23.

Conflicts of interest

The authors declare no competing financial interest.

37


https://github.com/paesanilab/Data_Repository/tree/main/dispersion-DFT

Acknowledgements

This research was supported by the National Science Foundation through grant no. CHE-
2102309. S.D. acknowledges support from the Eric and Wendy Schmidt Al in Science Post-
doctoral Fellowship, a program of Schmidt Futures. E.P. acknowledges support from the
National Science Foundation (NSF) Graduate Research Fellowship Program (GRFP) un-
der grant no. DGE-2038238, as well as the Alfred P. Sloan Foundation Ph.D. Fellowship
Program under grant no. G-2020-14067. This research used Expanse at the San Diego
Supercomputer Center (SDSC) through allocation CHE230052 from the Advanced Cyber-
infrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is
supported by National Science Foundation grants nos. 2138259, 2138286, 2138307, 2137603,
and 2138296, as well as the Triton Shared Computing Cluster (TSCC) at SDSC.

References

(1) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry; University
Science Books: Sausalito, CA, 2004.

(2) Schalley, C. A. Analytical Methods in Supramolecular Chemistry, 2nd ed.; Wiley, 2012.

(3) Cockroft, S. L.; Hunter, C. A. Chemical Double-Mutant Cycles: Dissecting Non-
Covalent Interactions. Chem. Soc. Rev. 2007, 56, 172-188.

(4) Brown, T. L.; Bursten, B. E.; Eugene, H.; LeMay, H. Chemistry: The Central Science,
11th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, 2009.

(5) Eisler, M. In Encyclopedia of Nanoscience and Society; Guston, D. H., Ed.; SAGE
Publications: Thousand Oaks, CA, 2010.

(6) Biedermann, F.; Schneider, H.-J. Experimental Binding Energies in Supramolecular

Complexes. Chem. Rev. 2016, 116, 5216-5300.

38



(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Rezac, J.; Hobza, P. Benchmark Calculations of Interaction Energies in Noncovalent

Complexes and Their Applications. Chem. Rev. 2016, 116, 5038-5071.

Guo, Y.; Riplinger, C.; Becker, U.; Liakos, D. G.; Minenkov, Y.; Cavallo, L.; Neese, F.
Communication: An Improved Linear Scaling Perturbative Triples Correction for the
Domain Based Local Pair-Natural Orbital Based Singles and Doubles Coupled Cluster

Method [DLPNO-CCSD (T)]. J. Chem. Phys. 2018, 148, 011101.

Mgller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron
Systems. Phys. Rev. 1934, 46, 618.

Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K. Origin of Attraction
and Directionality of the 7 /7 Interaction: Model Chemistry Calculations of Benzene

Dimer Interaction. J. Am. Chem. Soc. 2002, 124, 104-112.

Grimme, S. Do Special Noncovalent 7—r Stacking Interactions Really Exist? Angew.

Chem. Int. Ed. 2008, /7, 3430-3434.

Tkatchenko, A.; DiStasio, R. A.; Head-Gordon, M.; Scheffler, M. Dispersion-Corrected
Mogller-Plesset Second-Order Perturbation Theory. J. Chem. Phys. 2009, 131.

Hohenstein, E. G.; Sherrill, C. D. Wavefunction Methods for Noncovalent Interactions.

WIRFEs Comput. Mol. Sci. 2012, 2, 304-326.

Grimme, S.; Hansen, A.; Brandenburg, J. G.; Bannwarth, C. Dispersion-Corrected

Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116, 5105-5154.

Ullrich, C. A. Time-Dependent Density-Functional Theory: Concepts and Applica-
tions; OUP Oxford, 2011.

Pérez-Jorda, J.; Becke, A. D. A Density-Functional Study of Van Der Waals Forces:
Rare Gas Diatomics. Chem. Phys. Lett. 1995, 233, 134-137.

39



(17) Kristyan, S.; Pulay, P. Can (Semi) Local Density Functional Theory Account for the

London Dispersion Forces? Chem. Phys. Lett. 1994, 229, 175-180.

(18) Langreth, D. C.; Perdew, J. P. The Exchange-Correlation Energy of a Metallic Surface.
Solid State Communications 1975, 17, 1425-1429.

(19) Langreth, D. C.; Perdew, J. P. Exchange-Correlation Energy of a Metallic Surface:

Wave-Vector Analysis. Phys. Rev. B 1977, 15, 2884.

(20) Adamo, C.; Barone, V. Toward Reliable Adiabatic Connection Models Free From
Adjustable Parameters. Chem. Phys. Lett. 1997, 27/, 242-250.

(21) Kaltak, M.; Klimes, J.; Kresse, G. Cubic Scaling Algorithm for the Random Phase

Approximation: Self-Interstitials and Vacancies in Si. Phys. Rev. B 2014, 90, 054115.

(22) Von Lilienfeld, O. A.; Tavernelli, I.; Rothlisberger, U.; Sebastiani, D. Optimization
of Effective Atom Centered Potentials for London Dispersion Forces in Density Func-

tional Theory. Phys. Rev. Lett. 2004, 93, 153004.

(23) Wu, Q.; Yang, W. Empirical Correction to Density Functional Theory for Van Der
Waals Interactions. J. Chem. Phys. 2002, 116, 515-524.

(24) Grimme, S. Accurate Description of Van Der Waals Complexes by Density Functional
Theory Including Empirical Corrections. J. Comput. Chem. 2004, 25, 1463-1473.

(25) Grimme, S. Semiempirical Gga-Type Density Functional Constructed with a Long-
Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787-1799.

(26) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Ini-
tio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94

Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

(27) Becke, A. D.; Johnson, E. R. A Density-Functional Model of the Dispersion Interac-
tion. J. Chem. Phys. 2005, 123, 154101.

40



(28)

(29)

(30)

(31)

(32)

(33)

Becke, A. D.; Johnson, E. R. Exchange-Hole Dipole Moment and the Dispersion In-

teraction: High-Order Dispersion Coefficients. J. Chem. Phys. 2006, 124, 014104.

Becke, A. D.; Johnson, E. R. Exchange-Hole Dipole Moment and the Dispersion In-
teraction. J. Chem. Phys. 2005, 122, 154104.

Angyén, J. G. On the Exchange-Hole Model of London Dispersion Forces. .J. Chem.
Phys. 2007, 127, 024108.

Heflelmann, A. Derivation of the Dispersion Energy as an Explicit Density-and

Exchange-Hole Functional. J. Chem. Phys. 2009, 150, 084104.

Steinmann, S. N.; Corminboeuf, C. A System-Dependent Density-Based Dispersion
Correction. J. Chem. Theory Comput. 2010, 6, 1990-2001.

Vydrov, O. A.; Van Voorhis, T. Nonlocal Van der Waals Density Functional Made
Simple. Phys. Rev. Lett. 2009, 103, 063004.

Vydrov, O. A.; Van Voorhis, T. Implementation and Assessment of a Simple Nonlocal

Van Der Waals Density Functional. J. Chem. Phys. 2010, 152, 164113.

Vydrov, O. A.; Van Voorhis, T. Nonlocal Van der Waals Density Functional: The
Simpler the Better. J. Chem. Phys. 2010, 133, 244103.

Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.;
Grimme, S. A Generally Applicable Atomic-Charge Dependent London Dispersion
Correction. J. Chem. Phys. 2019, 150, 154122.

Grimme, S. Density Functional Theory with London Dispersion Corrections. WIRFEs

Comput. Mol. Sci. 2011, 1, 211-228.

Andersson, Y.; Hult, E.; Rydberg, H.; Apell, P.; Lundqvist, B. I.; Langreth, D. C. Van
der Waals Interactions in Density Functional Theory. FElectronic Density Functional

Theory: Recent Progress and New Directions 1998, 243-260.

41



(39)

(40)

(41)

(42)

(43)

(45)

(46)

(47)

(48)

Lee, K.; Murray, E. D.; Kong, L.; Lundqvist, B. I.; Langreth, D. C. Higher-Accuracy
Van der Waals Density Functional. Phys. Rev. B 2010, 82, 081101.

Berland, K.; Borck, @.; Hyldgaard, P. Van der Waals Density Functional Calculations

of Binding in Molecular Crystals. Comput. Phys. Commun. 2011, 182, 1800-1804.

Vydrov, O. A.; Van Voorhis, T. Dispersion Interactions From a Local Polarizability
Model. Phys. Rev. A 2010, 81, 062708.

Casimir, H. B.; Polder, D. The Influence of Retardation on the London-Van der Waals
Forces. Phys. Rev. 1948, 73, 360.

Bade, W. Drude-Model Calculation of Dispersion Forces. I. General Theory. J. Chem.
Phys. 1957, 27, 1280-1284.

Jones, A. P.; Crain, J.; Sokhan, V. P.; Whitfield, T. W.; Martyna, G. J. Quantum
Drude Oscillator Model of Atoms and Molecules: Many-Body Polarization and Dis-

persion Interactions for Atomistic Simulation. Phys. Rev. B 2013, 87, 144103.

Dion, M.; Rydberg, H.; Schroder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals

Density Functional for General Geometries. Phys. Rev. Lett. 2004, 92, 246401.

Dion, M.; Rydberg, H.; Schroder, E.; Langreth, D.; Lundqvist, B. Erratum: Van der
Waals Density Functional for General Geometries [Phys. Rev. Lett. 92 246401 (2004)].

Phys. Rev. Lett. 2005, 95, 109902.

Gianturco, F.; Paesani, F. In Conceptual Perspectives in Quantum Chemistry;

Calais, J.-L., Kryachko, E., Eds.; Springer, 1997; pp 337-382.

Gianturco, F.; Paesani, F.; Laranjeira, M.; Vassilenko, V.; Cunha, M. Intermolecular
Forces From Density Functional Theory. III. A Multiproperty Analysis for the Ar (1
S)-Co (1 o) Interaction. J. Chem. Phys. 1999, 110, 7832-7845.

42



(49)

(50)

(53)

(55)

Gianturco, F.; Paesani, F. The He—OCS Van Der Waals Potential From Model Calcu-
lations: Bound States Stable Structures and Vibrational Couplings. J. Chem. Phys.
2000, 1153, 3011-3019.

Elstner, M.; Hobza, P.; Frauenheim, T.; Suhai, S.; Kaxiras, E. Hydrogen Bonding and
Stacking Interactions of Nucleic Acid Base Pairs: A Density-Functional-Theory Based
Treatment. J. Chem. Phys. 2001, 114, 5149-5155.

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion

Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456-1465.

Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with
Damped Atom—Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10,

6615-6620.

Witte, J.; Mardirossian, N.; Neaton, J. B.; Head-Gordon, M. Assessing DFT-D3
Damping Functions Across Widely Used Density Functionals: Can We Do Better?
J. Chem. Theory Comput. 2017, 15, 2043-2052.

Tkatchenko, A.; DiStasio Jr, R. A.; Car, R.; Scheffler, M. Accurate and Efficient
Method for Many-Body Van der Waals Interactions. Phys. Rev. Lett. 2012, 108,
236402.

Tkatchenko, A.; Scheffler, M. Accurate Molecular Van der Waals Interactions From
Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009,

102, 073005.

Anatole von Lilienfeld, O.; Tkatchenko, A. Two-and Three-Body Interatomic Disper-
sion Energy Contributions to Binding in Molecules and Solids. J. Chem. Phys. 2010,
132, 234109.

43



(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

Donchev, A. Many-Body Effects of Dispersion Interaction. J. Chem. Phys. 2006, 125,

074713.

Tkatchenko, A.; Ambrosetti, A.; DiStasio, R. A. Interatomic Methods for the Disper-
sion Energy Derived From the Adiabatic Connection Fluctuation-Dissipation Theo-

rem. J. Chem. Phys. 2013, 158, 074106.

Johnson, E. R.; Becke, A. D. A Post-Hartree—-Fock Model of Intermolecular Interac-

tions. J. Chem. Phys. 2005, 123, 024101.

Johnson, E. R.; Becke, A. D. A Post-Hartree-Fock Model of Intermolecular Interac-

tions: Inclusion of Higher-Order Corrections. J. Chem. Phys. 2006, 124, 174104.

Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group
Thermochemistry Thermochemical Kinetics Noncovalent Interactions Excited States
and Transition Elements: Two New Functionals and Systematic Testing of Four M06-

Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215-241.

Tkatchenko, A.; von Lilienfeld, O. A. Adsorption of Ar on Graphite Using London
Dispersion Forces Corrected Kohn-Sham Density Functional Theory. Phys. Rev. B
2006, 73, 153406.

Arey, J. S.; Aeberhard, P. C.; Lin, I.-C.; Rothlisberger, U. Hydrogen Bonding De-
scribed Using Dispersion-Corrected Density Functional Theory. J. Phys. Chem. B
2009, 115, 4726-4732.

Mackie, I. D.; DiLabio, G. A. Accurate Dispersion Interactions from Standard Density-
Functional Theory Methods with Small Basis Sets. Phys. Chem. Chem. Phys. 2010,
12, 6092-6098.

van Santen, J. A.; DiLabio, G. A. Dispersion Corrections Improve the Accuracy

44



(69)

(70)

(72)

of Both Noncovalent and Covalent Interactions Energies Predicted by a Density-

Functional Theory Approximation. J. Phys. Chem. A 2015, 119, 6703-6713.

Haoyu, S. Y.; He, X.; Li, S. L.; Truhlar, D. G. MN15: A Kohn-Sham Global-Hybrid
Exchange—Correlation Density Functional with Broad Accuracy for Multi-Reference
and Single-Reference Systems and Noncovalent Interactions. Chem. Sci. 2016, 7,

5032-5051.

Sun, J.; Ruzsinszky, A.; Perdew, J. P. Strongly Constrained and Appropriately

Normed Semilocal Density Functional. Phys. Rev. Lett. 2015, 115, 036402.

Jurecka, P.; Sponer, J.; Cerny, J.; Hobza, P. Benchmark Database of Accurate (MP2
and CCSD(T) Complete Basis Set Limit) Interaction Energies of Small Model Com-
plexes DNA Base Pairs and Amino Acid Pairs. Phys. Chem. Chem. Phys. 2006, &,
1985-1993.

Grafova, L.; Pitonak, M.; Rezac, J.; Hobza, P. Comparative Study of Selected Wave
Function and Density Functional Methods for Noncovalent Interaction Energy Calcu-
lations Using the Extended S22 Data Set. J. Chem. Theory Comput. 2010, 6, 2365—
2376.

Rezac, J.; Riley, K. E.; Hobza, P. S66: A Well-Balanced Database of Benchmark
Interaction Energies Relevant to Biomolecular Structures. J. Chem. Theory Comput.

2011, 7, 24272438,

Rezac, J.; Riley, K. E.; Hobza, P. Extensions of the S66 Data Set: More Accurate
Interaction Energies and Angular-Displaced Nonequilibrium Geometries. J. Chem.

Theory Comput. 2011, 7, 3466-3470.

Peng, H.; Perdew, J. P. Rehabilitation of the Perdew-Burke-Ernzerhof Generalized

Gradient Approximation for Layered Materials. Phys. Rev. B 2017, 95, 081105.

45



(73) Ferretti, A.; Canal, L.; Sorodoc, R. A.; Sinha, S.; Brancato, G. Fine Tuning the
Intermolecular Interactions of Water Clusters Using the Dispersion-Corrected Density

Functional Theory. Molecules 2023, 28, 3834.

(74) Epifanovsky, E.; Gilbert, A. T. B.; Feng, X.; Lee, J.; Mao, Y.; Mardirossian, N;
Pokhilko, P.; White, A. F.; Coons, M. P.; Dempwolff, A. L.; Gan, Z.; Hait, D.;
Horn, P. R.; Jacobson, L. D.; Kaliman, I.; Kussmann, J.; Lange, A. W.; Lao, K. U;
Levine, D. S.; Liu, J.; McKenzie, S. C.; Morrison, A. F.; Nanda, K. D.; Plasser, F.;
Rehn, D. R.; Vidal, M. L.; You, Z.-Q.; Zhu, Y.; Alam, B.; Albrecht, B. J.; Al-
dossary, A.; Alguire, E.; Andersen, J. H.; Athavale, V.; Barton, D.; Begam, K.;
Behn, A.; Bellonzi, N.; Bernard, Y. A.; Berquist, E. J.; Burton, H. G. A.; Carreras, A.;
Carter-Fenk, K.; Chakraborty, R.; Chien, A. D.; Closser, K. D.; Cofer-Shabica, V.;
Dasgupta, S.; de Wergifosse, M.; Deng, J.; Diedenhofen, M.; Do, H.; Ehlert, S.;
Fang, P.-T.; Fatehi, S.; Feng, Q.; Friedhoft, T.; Gayvert, J.; Ge, Q.; Gidofalvi, G.;
Goldey, M.; Gomes, J.; Gonzalez-Espinoza, C. E.; Gulania, S.; Gunina, A. O.; Hanson-
Heine, M. W. D.; Harbach, P. H. P.; Hauser, A.; Herbst, M. F.; Hernandez Vera, M.;
Hodecker, M.; Holden, Z. C.; Houck, S.; Huang, X.; Hui, K.; Huynh, B. C.; Ivanov, M.;
Jasz, A7 Ji, H.; Jiang, H.; Kaduk, B.; Kahler, S.; Khistyaev, K.; Kim, J.; Kis, G.;
Klunzinger, P.; Koczor-Benda, Z.; Koh, J. H.; Kosenkov, D.; Koulias, L.; Kowal-
czyk, T.; Krauter, C. M.; Kue, K.; Kunitsa, A.; Kus, T.; Ladjanszki, I.; Landau, A.;
Lawler, K. V.; Lefrancois, D.; Lehtola, S.; Li, R. R.; Li, Y.-P.; Liang, J.; Lieben-
thal, M.; Lin, H.-H.; Lin, Y.-S.; Liu, F.; Liu, K.-Y.; Loipersberger, M.; Luenser, A.;
Manjanath, A.; Manohar, P.; Mansoor, E.; Manzer, S. F.; Mao, S.-P.; Marenich, A. V_;
Markovich, T.; Mason, S.; Maurer, S. A.; McLaughlin, P. F.; Menger, M. F. S. J.;
Mewes, J.-M.; Mewes, S. A.; Morgante, P.; Mullinax, J. W.; Oosterbaan, K. J.;
Paran, G.; Paul, A. C.; Paul, S. K.; Pavosevi¢, F.; Pei, Z.; Prager, S.; Proynov, E. 1,;
Rak, A7 Ramos-Cordoba, E.; Rana, B.; Rask, A. E.; Rettig, A.; Richard, R. M.;
Rob, F.; Rossomme, E.; Scheele, T.; Scheurer, M.; Schneider, M.; Sergueev, N.;

46



(76)

(77)

(78)

(79)

Sharada, S. M.; Skomorowski, W.; Small, D. W.; Stein, C. J.; Su, Y.-C.; Sund-
strom, E. J.; Tao, Z.; Thirman, J.; Tornai, G. J.; Tsuchimochi, T.; Tubman, N. M.;
Veccham, S. P.; Vydrov, O.; Wenzel, J.; Witte, J.; Yamada, A.; Yao, K.; Yeganeh, S.;
Yost, S. R.; Zech, A.; Zhang, I. Y.; Zhang, X.; Zhang, Y.; Zuev, D.; Aspuru-Guzik, A.;
Bell, A. T.; Besley, N. A.; Bravaya, K. B.; Brooks, B. R.; Casanova, D.; Chai, J.-D.; Co-
riani, S.; Cramer, C. J.; Cserey, G.; DePrince, A. E.; DiStasio, R. A.; Dreuw, A.; Duni-
etz, B. D.; Furlani, T. R.; Goddard, W. A.; Hammes-Schiffer, S.; Head-Gordon, T.;
Hehre, W. J.; Hsu, C.-P.; Jagau, T.-C.; Jung, Y.; Klamt, A.; Kong, J.; Lam-
brecht, D. S.; Liang, W.; Mayhall, N. J.; McCurdy, C. W.; Neaton, J. B.; Ochsen-
feld, C.; Parkhill, J. A.; Peverati, R.; Rassolov, V. A.; Shao, Y.; Slipchenko, L. V_;
Stauch, T.; Steele, R. P.; Subotnik, J. E.; Thom, A. J. W.; Tkatchenko, A.; Truh-
lar, D. G.; Van Voorhis, T.; Wesolowski, T. A.; Whaley, K. B.; Woodcock, H. L.;
Zimmerman, P. M.; Faraji, S.; Gill, P. M. W.; Head-Gordon, M.; Herbert, J. M.;
Krylov, A. I. Software for the Frontiers of Quantum Chemistry: An Overview of De-
velopments in the Q-Chem 5 Package. J. Chem. Phys. 2021, 155, 084801.

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made

Simple. Phys. Rev. Lett. 1996, 77, 3865.

Zhang, Y.; Yang, W. Comment on “Generalized Gradient Approximation Made Sim-
ple”. Phys. Rev. Lett. 1998, 80, 890.

Adamo, C.; Barone, V. Toward Reliable Density Functional Methods Without Ad-
justable Parameters: The PBEO Model. J. Chem. Phys. 1999, 110, 6158-6170.

Rappoport, D.; Furche, F. Property-Optimized Gaussian Basis Sets for Molecular
Response Calculations. J. Chem. Phys. 2010, 133, 134105.

Dasgupta, S.; Herbert, J. M. Standard Grids for High-Precision Integration of Modern
Density Functionals: SG-2 and SG-3. J. Comput. Chem. 2017, 38, 869-882.

47



(80)

(81)

(86)

Arago, J.; Orti, E.; Sancho-Garcia, J. C. Nonlocal Van der Waals Approach Merged
with Double-Hybrid Density Functionals: Toward the Accurate Treatment of Nonco-

valent Interactions. J. Chem. Theory Comput. 2013, 9, 3437-3443.

Temelso, B.; Archer, K. A.; Shields, G. C. Benchmark Structures and Binding Energies
of Small Water Clusters with Anharmonicity Corrections. J. Phys. Chem. A 2011,
115, 12034-12046.

Riplinger, C.; Neese, F. An Efficient and Near Linear Scaling Pair Natural Orbital
Based Local Coupled Cluster Method. J. Chem. Phys. 2013, 138, 034106.

Hellweg, A.; Rappoport, D. Development of New Auxiliary Basis Functions of the
Karlsruhe Segmented Contracted Basis Sets Including Diffuse Basis Functions (Def2-
SVPD Def2-TZVPPD and Def2-Qvppd) for Ri-Mp2 and Ri-Cec Calculations. Phys.
Chem. Chem. Phys. 2015, 17, 1010-1017.

Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry
Program Package. J. Chem. Phys. 2020, 152, 224108.

Horn, P. R.; Head-Gordon, M. Polarization Contributions to Intermolecular Inter-
actions Revisited with Fragment Electric-Field Response Functions. J. Chem. Phys.
2015, 143, 114111.

Horn, P. R.; Mao, Y.; Head-Gordon, M. Defining the Contributions of Permanent Elec-
trostatics Pauli Repulsion and Dispersion in Density Functional Theory Calculations

of Intermolecular Interaction Energies. J. Chem. Phys. 2016, 144, 114107.

Horn, P. R.; Mao, Y.; Head-Gordon, M. Probing Non-Covalent Interactions with a Sec-
ond Generation Energy Decomposition Analysis Using Absolutely Localized Molecular

Orbitals. Phys. Chem. Chem. Phys. 2016, 18, 23067-23079.

48



(88)

(89)

(90)

(91)

(92)

(94)

Pritchard, B. P.; Altarawy, D.; Didier, B.; Gibson, T. D.; Windus, T. L. New Basis
Set Exchange: An Open, Up-to-date Resource for the Molecular Sciences Community:.

J. Chem. Inf. Model. 2019, 59, 4814—4820.

Weigend, F.; Furche, F.; Ahlrichs, R. Gaussian Basis Sets of Quadruple Zeta Valence

Quality for Atoms H-Kr. J. Chem. Phys. 2003, 119, 12753-12762.

Mardirossian, N.; Head-Gordon, M. wB97M-V: A Combinatorially Optimized Range-
Separated Hybrid meta-GGA Density Functional with VV10 Nonlocal Correlation.

J. Chem. Phys. 2016, 1/4, 214110.

Mardirossian, N.; Head-Gordon, M. Thirty Years of Density Functional Theory in
Computational Chemistry: An Overview and Extensive Assessment of 200 Density

Functionals. Mol. Phys. 2017, 115, 2315-2372.

Najibi, A.; Goerigk, L. The Nonlocal Kernel in Van der Waals Density Functionals as
an Additive Correction: An Extensive Analysis with Special Emphasis on the BO7TM-V
and wB97TM-V Approaches. J. Chem. Theory Comput. 2018, 1/, 5725-5738.

Santra, G.; Martin, J. M. Some Observations on the Performance of the Most Recent
Exchange-Correlation Functionals for the Large and Chemically Diverse GMTKNb5

Benchmark. AIP Conference Proceedings. 2019.

Hait, D.; Head-Gordon, M. Delocalization Errors in Density Functional Theory Are
Essentially Quadratic in Fractional Occupation Number. J. Phys. Chem. Lett. 2018,

9, 6280-6288.

Lambros, E.; Dasgupta, S.; Palos, E.; Swee, S.; Hu, J.; Paesani, F. General Many-Body
Framework for Data-Driven Potentials with Arbitrary Quantum Mechanical Accuracy:

Water as a Case Study. J. Chem. Theory Comput. 2021, 17, 5635-5650.

49



(96)

(100)

(101)

(102)

(103)

(104)

(105)

Paesani, F. Water: Many-body potential from first principles (from the gas to the
liquid phase). Handbook of Materials Modeling: Methods: Theory and Modeling 2020,
635-660.

Reilly, A. M.; Tkatchenko, A. Understanding the Role of Vibrations Exact Exchange
and Many-Body Van der Waals Interactions in the Cohesive Properties of Molecular
Crystals. J. Chem. Phys. 2013, 139, 024705.

Kresse, G.; Furthmiiller, J. Efficient Iterative Schemes for Ab Initio Total-Energy

Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169.

Kresse, G.; Furthmiiller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals
and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15—

50.
Blochl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953.

Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-
Wave Method. Phys. Rev. B 1999, 59, 1758.

Langreth, D. C.; Mehl, M. Beyond the Local-Density Approximation in Calculations
of Ground-State Electronic Properties. Phys. Rev. B 1983, 28, 1809.

Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct
Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098.

Markovich, T.; Blood-Forsythe, M. A.; Rappoport, D.; Kim, D.; Aspuru-Guzik, A.
Calibration of the Many-Body Dispersion Range-Separation Parameter. arXiv preprint

arXw:1605.04987 2016,

Sabatini, R.; Gorni, T.; De Gironcoli, S. Nonlocal Van Der Waals Density Functional

Made Simple and Efficient. Phys. Rev. B 2013, 87, 041108.

50



(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

Peng, H.; Yang, Z.-H.; Perdew, J. P.; Sun, J. Versatile Van Der Waals Density Func-
tional Based on a Meta-Generalized Gradient Approximation. Phys. Rev. X 2016, 6,

041005.

Sun, J.; Remsing, R. C.; Zhang, Y.; Sun, Z.; Ruzsinszky, A.; Peng, H.; Yang, Z.;
Paul, A.; Waghmare, U.; Wu, X., et al. Accurate First-Principles Structures and

Energies of Diversely Bonded Systems From an Efficient Density Functional. Nat.
Chem. 2016, 8, 831-836.

Yang, J. H.; Kitchaev, D. A.; Ceder, G. Rationalizing Accurate Structure Prediction

in the meta-GGA SCAN Functional. Phys. Rev. B 2019, 100, 035132.

Shepard, S.; Smeu, M. First Principles Study of Graphene on Metals with the SCAN
and SCAN+rVV10 Functionals. J. Chem. Phys. 2019, 150, 154702.

Varadwaj, A.; Miyake, T. Geometrical- Electronic-and Optical Properties of Vanadium
Dioxide: A Theoretical Perspective From meta-GGA SCAN. ChemistrySelect 2022,
7, €202200171.

Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. Vaspkit: A User-Friendly Inter-
face Facilitating High-Throughput Computing and Analysis Using Vasp Code. Com-
put. Phys. Commun. 2021, 267, 108033.

Moellmann, J.; Grimme, S. DFT-D3 Study of Some Molecular Crystals. J. Phys.
Chem. C 2014, 118, 7615-7621.

Goerigk, L.; Kruse, H.; Grimme, S. Benchmarking Density Functional Methods
Against the S66 and S66x8 Datasets for Non-Covalent Interactions. ChemPhysChem

2011, 12, 3421-3433.

Boese, A. D. Density Functional Theory and Hydrogen Bonds: Are We There Yet?
ChemPhysChem 2015, 16, 978-985.

51



(115) Lin, I.-C.; Seitsonen, A. P.; Tavernelli, I.; Rothlisberger, U. Structure and Dynamics
of Liquid Water From Ab Initio Molecular Dynamics Comparison of BLYP PBE and
revPBE Density Functionals with and Without Van der Waals Corrections. J. Chem.

Theory Comput. 2012, 8, 3902-3910.

(116) Skinner, L.; Galib, M.; Fulton, J.; Mundy, C.; Parise, J.; Pham, V.-T.; Schenter, G.;
Benmore, C. The Structure of Liquid Water Up to 360 Mpa From X-Ray Diffraction

Measurements Using a High Q-Range and From Molecular Simulation. J. Chem. Phys.
2016, 1/4, 134504.

(117) Bankura, A.; Karmakar, A.; Carnevale, V.; Chandra, A.; Klein, M. L. Structure Dy-
namics and Spectral Diffusion of Water From First-Principles Molecular Dynamics.

J. Phys. Chem. C 2014, 118, 20401-29411.

(118) Galib, M.; Limmer, D. T. Reactive Uptake of NyO5 by Atmospheric Aerosol is Domi-

nated by Interfacial Processes. Science 2021, 371, 921-925.

(119) Niblett, S. P.; Galib, M.; Limmer, D. T. Learning Intermolecular Forces at Liquid—

Vapor Interfaces. J. Chem. Phys. 2021, 155, 164101.

(120) Perdew, J. P.; Zunger, A. Self-Interaction Correction to Density-Functional Approxi-

mations for Many-Electron Systems. Phys. Rev. B 1981, 23, 5048.

(121) Johnson, E. R.; Mori-Sanchez, P.; Cohen, A. J.; Yang, W. Delocalization Errors in
Density Functionals and Implications for Main-Group Thermochemistry. J. Chem.

Phys. 2008, 129, 204112.

(122) Carter-Fenk, K.; Herbert, J. M. Electrostatics Does Not Dictate the Slip-Stacked

Arrangement of Aromatic 7—7 Interactions. Chem. Sci. 2020, 11, 6758-6765.

(123) Podeszwa, R.; Bukowski, R.; Szalewicz, K. Potential Energy Surface for the Benzene

52



(124)

(125)

(126)

(127)

(128)

(129)

(130)

Dimer and Perturbational Analysis of - 7 Interactions. J. Phys. Chem. A 2006, 110,

10345-10354.

Nguyen, B. D.; Chen, G. P.; Agee, M. M.; Burow, A. M.; Tang, M. P.; Furche, F.
Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large

Molecules. J. Chem. Theory Comput. 2020, 16, 2258-2273.

Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. Estimates of the Ab Initio Limit for
- 7 Interactions: The Benzene Dimer. J. Am. Chem. Soc. 2002, 124, 10887-10893.

Bludsky, O.; Rubes, M.; Soldan, P.; Nachtigall, P. Investigation of the Benzene-Dimer
Potential Energy Surface: DFT/CCSD (T) Correction Scheme. J. Chem. Phys. 2008,
128, 114102.

Williams, H. L.; Chabalowski, C. F. Using Kohn- Sham Orbitals in Symmetry-Adapted
Perturbation Theory to Investigate Intermolecular Interactions. J. Phys. Chem. A

2001, 105, 646-659.

Gauss, J.; Stanton, J. F. The Equilibrium Structure of Benzene. J. Phys. Chem. A

2000, 104, 2865-2868.

Lao, K. U.; Schaffer, R.; Jansen, G.; Herbert, J. M. Accurate Description of Inter-
molecular Interactions Involving Ions Using Symmetry-Adapted Perturbation Theory.

J. Chem. Theory Comput. 2015, 11, 2473-2486.

Rez4é, J.; Jurecka, P.; Riley, K. E.; Cerny, J.: Valdes, H.; Pluh4ckova, K.; Berka, K.;
Rezae, T.; Pitondk, M.; Vondrasek, J.; Hobza, P. Quantum Chemical Benchmark
Energy and Geometry Database for Molecular Clusters and Complex Molecular Sys-
tems (Www.Begdb.Com): A Users Manual and Examples. Collect. Czechoslov. Chem.
Commun. 2008, 73, 1261-1270.

53



(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)

Manna, D.; Kesharwani, M. K.; Sylvetsky, N.; Martin, J. M. Conventional and Explic-
itly Correlated Ab Initio Benchmark Study on Water Clusters: Revision of the Begdb

and Water27 Data Sets. J. Chem. Theory Comput. 2017, 13, 3136-3152.

Khaliullin, R. Z.; Cobar, E. A.; Lochan, R. C.; Bell, A. T.; Head-Gordon, M. Unrav-
elling the Origin of Intermolecular Interactions Using Absolutely Localized Molecular

Orbitals. J. Phys. Chem. A 2007, 111, 8753-8765.

Cobar, E. A.; Horn, P. R.; Bergman, R. G.; Head-Gordon, M. Examination of the
Hydrogen-Bonding Networks in Small Water Clusters (n= 2-5, 13, 17) Using Ab-
solutely Localized Molecular Orbital Energy Decomposition Analysis. Phys. Chem.
Chem. Phys. 2012, 1/, 15328-153309.

Bizzarro, B. B.; Egan, C. K.; Paesani, F. Nature of Halide—water Interactions: Insights
from Many-Body Representations and Density Functional Theory. J. Chem. Theory
Comput. 2019, 15, 2983-2995.

Egan, C. K.; Bizzarro, B. B.; Riera, M.; Paesani, F. Nature of Alkali Jon—water Inter-
actions: Insights from Many-Body Representations and Density Functional Theory.

II. J. Chem. Theory Comput. 2020, 16, 3055-3072.

Palos, E.; Lambros, E.; Swee, S.; Hu, J.; Dasgupta, S.; Paesani, F. Assessing the
Interplay Between Functional-Driven and Density-Driven Errors in DFT Models of
Water. J. Chem. Theory Comput. 2022, 18, 3410-3426.

Dasgupta, S.; Lambros, E.; Perdew, J.; Paesani, F. Elevating Density Functional
Theory to Chemical Accuracy for Water Simulations Through a Density-Corrected

Many-Body Formalism. Nat. Commun. 2021, 12, 1-12.

Dasgupta, S.; Shahi, C.; Bhetwal, P.; Perdew, J. P.; Paesani, F. How Good Is the

Density-Corrected SCAN Functional for Neutral and Ionic Aqueous Systems and What

o4



(139)

(140)

(141)

(142)

(143)

(144)

(145)

Is So Right About the Hartree-Fock Density? J. Chem. Theory Comput. 2022, 18,
4745-4761.

Zhong, K.; Yu, C.-C.; Dodia, M.; Bonn, M.; Nagata, Y.; Ohto, T. Vibrational Mode
Frequency Correction of Liquid Water in Density Functional Theory Molecular Dy-
namics Simulations with Van der Waals Correction. Phys. Chem. Chem. Phys. 2020,

22, 12785-12793.

Morawietz, T.; Singraber, A.; Dellago, C.; Behler, J. How Van der Waals Interactions
Determine the Unique Properties of Water. Proc. Natl. Acad. Sci. USA 2016, 113,
8368-8373.

Galib, M.; Duignan, T. T.; Misteli, Y.; Baer, M. D.; Schenter, G. K.; Hutter, J.;
Mundy, C. J. Mass Density Fluctuations in Quantum and Classical Descriptions of

Liquid Water. J. Chem. Phys. 2017, 146, 244501.

Pestana, L. R.; Mardirossian, N.; Head-Gordon, M.; Head-Gordon, T. Ab Initio Molec-
ular Dynamics Simulations of Liquid Water Using High Quality Meta-Gga Functionals.
Chem. Sci. 2017, 8, 3554-3565.

Zhuang, D.; Riera, M.; Zhou, R.; Deary, A.; Paesani, F. Hydration Structure of Na*
and KT Tons in Solution Predicted by Data-Driven Many-Body Potentials. J. Phys.

Chem. B 2022, 126, 9349-9360.

Caruso, A.; Paesani, F. Data-Driven Many-Body Models Enable a Quantitative De-
scription of Chloride Hydration From Clusters to Bulk. J. Chem. Phys. 2021, 155,
064502.

Riera, M.; Mardirossian, N.; Bajaj, P.; Gotz, A. W.; Paesani, F. Toward Chemical
Accuracy in the Description of Ton—Water Interactions Through Many-Body Repre-
sentations. Alkali-Water Dimer Potential Energy Surfaces. J. Chem. Phys. 2017, 147,
161715.

%)



(146)

(147)

(148)

(149)

(150)

(151)

(152)

(153)

Bajaj, P.; Gotz, A. W.; Paesani, F. Toward Chemical Accuracy in the Description of
Ion-Water Interactions Through Many-Body Representations. I. Halide-Water Dimer
Potential Energy Surfaces. J. Chem. Theory Comput. 2016, 12, 2698-2705.

Riera, M.; Knight, C.; Bull-Vulpe, E. F.; Zhu, X.; Agnew, H.; Smith, D. G.; Sim-
monett, A. C.; Paesani, F. MBX: A Many-Body Energy and Force Calculator for
Data-Driven Many-Body Simulations. J. Chem. Phys. 2023, 159, 054802.

Duignan, T. T.; Schenter, G. K.; Fulton, J. L.; Huthwelker, T.; Balasubramanian, M.;
Galib, M.; Baer, M. D.; Wilhelm, J.; Hutter, J.; Del Ben, M., et al. Quantifying
the Hydration Structure of Sodium and Potassium Ions: Taking Additional Steps on
Jacob’S Ladder. Phys. Chem. Chem. Phys. 2020, 22, 10641-10652.

Kostal, V.; Mason, P. E.; Martinez-Seara, H.; Jungwirth, P. Common Cations Are
Not Polarizable: Effects of Dispersion Correction on Hydration Structures From Ab

Initio Molecular Dynamics. J. Phys. Chem. Lett. 2023, 14, 4403-4408.

Wagle, K.; Santra, B.; Bhattarai, P.; Shahi, C.; Pederson, M. R.; Jackson, K. A.;
Perdew, J. P. Self-Interaction Correction in Water—Ion Clusters. J. Chem. Phys. 2021,

154, 094302.

Zhou, K.; Qian, C.; Liu, Y. Quantifying the Structure of Water and Hydrated Monova-
lent Tons by Density Functional Theory-Based Molecular Dynamics. J. Phys. Chem. B
2022, 126, 10471-10480.

Mortazavi, M.; Brandenburg, J. G.; Maurer, R. J.; Tkatchenko, A. Structure and Sta-
bility of Molecular Crystals With Many-Body Dispersion-Inclusive Density Functional
Tight Binding. J. Phys. Chem. Lett. 2018, 9, 399-405.

Brandenburg, J.; Bates, J.; Sun, J.; Perdew, J. Benchmark Tests of a Strongly Con-
strained Semilocal Functional with a Long-Range Dispersion Correction. Phys. Rev. B

2016, 9/, 115144.

56



(154) Dolgonos, G. A.; Hoja, J.; Boese, A. D. Revised values for the X23 benchmark set of
molecular crystals. Phys. Chem. Chem. Phys. 2019, 21, 24333-24344.

(155) Wiktor, J.; Ambrosio, F.; Pasquarello, A. Note: Assessment of the SCAN+rVV10
Functional for the Structure of Liquid Water. J. Chem. Phys. 2017, 147, 216101.

57



TOC graphic

PBESDY

RBEOSVVALOY aPEE-08

58



	INTRODUCTION
	THEORY AND METHODS
	Energy Calculations
	Energy Decomposition Analysis (EDA)
	Cell Optimizations and Calculations of Lattice Energies

	RESULTS AND DISCUSSION
	Interaction Energies and Energy Decomposition Analyses of the S668 Dataset
	Role of the Dispersion Energy in the Benzene Dimer
	Non-Covalent Interaction in Charged Systems
	Energy Decomposition Analysis of Aqueous Clusters
	Impact of Dispersion Energy on Molecular Crystals

	CONCLUSIONS
	Data Availability Statement
	Supporting Information
	Conflicts of interest
	Acknowledgements
	References
	TOC graphic

