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Abstract

We assess the performance of different dispersion models for several popular density

functionals across a diverse set of non-covalent systems, ranging from the benzene

dimer to molecular crystals. By analyzing the interaction energies and their individ-

ual components, we demonstrate that there exists variability across different systems

for empirical dispersion models, which are calibrated for reproducing the interaction

energies of specific systems. Thus, parameter fitting may undermine the underlying

physics, as dispersion models rely on error compensation among the different com-

ponents of the interaction energy. Energy decomposition analyses reveal that, the

accuracy of revPBE-D3 for some aqueous systems originates from significant compen-

sation between dispersion and charge transfer energies. However, revPBE-D3 is less

accurate in describing systems where error compensation is incomplete, such as the

benzene dimer. Such cases highlight the propensity for unpredictable behavior in vari-

ous dispersion-corrected density functionals across a wide range of molecular systems,

akin to the behavior of force fields. On the other hand, we find that SCAN-rVV10,

a targeted-dispersion approach, affords significant reductions in errors associated with

the lattice energies of molecular crystals, whilst it has limited accuracy in reproducing

structural properties. Given the ubiquitous nature of non-covalent interactions and the

key role of density functional theory in computational sciences, the future development

of dispersion models should prioritize the faithful description of the dispersion energy, a

shift that promises greater accuracy in capturing the underlying physics across diverse

molecular and extended systems.

INTRODUCTION

Non-covalent interactions play a central role in a broad range of scientific fields, includ-

ing but not limited to chemistry, condensed matter physics, and biology.1–6 In recent years,

there has been significant interest in developing efficient and accurate methods to study non-

covalent interactions theoretically. Although coupled cluster theory including single, double,
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and perturbative triple excitations in the complete basis set limit, i.e., CCSD(T)/CBS, cur-

rently represents the “gold standard” for modeling non-covalent interactions,7 the associated

computational cost limits its applicability to small systems. In this context, the recent de-

velopment of the domain-based local pair natural orbital CCSD(T), i.e., DLPNO-CCSD(T),

represents significant progress toward achieving high accuracy for large non-covalent sys-

tems.8 Comparatively inexpensive, second-order Møller-Plesset perturbation theory (MP2),9

has been widely used for systems consisting of a few tens of atoms. It has, however, been

found that MP2 displays poor convergence behavior for systems dominated by dispersion

interactions, such as π− π stacking.10–13 On the other hand, Kohn-Sham density functional

theory (DFT) has been successful in handling larger systems albeit with limited ability in

describing non-covalent interactions,14 especially the London dispersion interaction (here-

after simply referred to as dispersion interaction), which is an electron correlation effect. In

the limit of two atoms, the dispersion interaction decays as R−6, where R is the interatomic

distance.15

By definition, the dispersion interaction is an intrinsic component of the total interaction

energy and is always attractive. The principal driving force behind the dispersion interaction

is the correlated motion of electrons, particularly over extended distances. Using semi-local

and hybrid density functionals (DFs), the dependence of the dispersion interactions on the

intermolecular distances is challenging to capture with the exponentially decaying electron

density.16,17 None of the conventional components of a DF, such as the local electron density,

its gradient, or its kinetic energy, fully account for the correlated motion of electrons over

the appropriate range of distances necessary for a correct description of dispersion interac-

tions. Although hybrid DFs incorporate long-range effects (nonlocality) through Hartree-

Fock exchange (HFX), they remain local in correlation and are, consequently, insufficient for

accurately describing the R−6 asymptotic behavior of the dispersion energy.

The limitations of conventional DFs become clear when examining the underlying wave-

function and its role in the dispersion energy. Within MP2 theory,9 the dispersion energy
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arises from Coulomb and exchange interactions involving single-electron transition densities

associated with two interacting fragments:

E
(2)
disp = −

∑
ia

∑
jb

(ia | jb)
[
(ia | jb)− (ib | ja)

]
εa + εb − εi − εj

(1)

As shown in eq 1, E
(2)
disp involves a sum over all possible single-particle hole excitations from

orbital i to orbital a (localized on the first fragment) and from orbital j to orbital b (local-

ized on the second fragment), with the term (ia | jb) representing a two-electron integral,

and εi, εa, εj and εb corresponding to the energies of orbitals i, a, j, and b, respectively.

It follows that the term (ia | jb) involves instantaneous electron correlations arising from

electromagnetic zero-point energy fluctuations, leading to virtual excitations and electro-

static interactions. Conventional DFs, which only consider electron exchange without using

virtual orbitals, fall short in adequately representing these instantaneous electron correla-

tions. While DFT-related virtual-orbital dependent methods, such as the random phase

approximation (RPA),18–20 are able to accurately capture nonlocal correlations, they are

significantly more computationally expensive than conventional DFs.21

An accurate treatment of the dispersion energy is essential for understanding the stability

and properties of diverse molecular systems. To overcome the limitations of conventional

DFs to describe dispersion interactions, the dispersion energy in Kohn-Sham DFT is typi-

cally incorporated as an additive correction.22–36 Dispersion correction schemes commonly

employed in DFT calculations can be categorized into five main approaches:

a) Nonlocal density-based schemes that introduce corrections to the electronic

potential: These nonlocal schemes, which involve a supermolecular calculation of both

the total system’s and fragments’ energies to determine the interaction energy, are widely

used to compute the dispersion energy in various systems based on their electron density.37

All van der Waals density functional (vdW-DF) schemes employ an approximation for the

exchange-correlation energy using standard exchange and correlation components for short-
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range contributions and a nonlocal term for the dispersion energy. Earlier versions of vdW-

DF required empirical damping functions,38 but modern schemes provide improved results

by going beyond local approximations in the nonlocal correlation kernel.33–35,39,40 Several

variants of the vdW-DF scheme exist that use different nonlocal correlation kernels based

on approximations of the dipole polarizability.41 The dispersion energy is then determined

by integrating the polarizability using the Casimir-Polder relationship,42 which enables the

calculation of the C6 dispersion coefficients for the interacting fragments. Dielectric functions

(e.g., the Drude model) and local plasma frequencies are used to relate the local polarizability

to the electron density.43,44 Various versions of the vdW-DF scheme have been reported,

including vdW-DF,45,46 vdW-DF2,39 VV09,33 and VV10.35 One advantage of the vdW-DF

schemes is the ability to naturally include dispersion effects based on the charge density,

accounting for the dependence on charge transfer.37

b) Semiclassical schemes based on C6 parameters that primarily modify the

total energy: The DFT-D approach23–26,36,47–50 involves augmenting DFT calculations with

a damped dispersion energy that takes into account the interactions between pairs of atoms.

Over the years, several variants of the DFT-D scheme have been proposed, each with its

own damping functions and refinement strategies.24–26,47–49,51–53 Among these approaches,

the DFT-D3 scheme26,51–53 has emerged as one of the most widely used, enhancing the

accuracy of the DFT-D scheme, providing broader applicability, and reducing empiricism.

DFT-D3 incorporates atom-specific pairwise-additive dispersion coefficients, refined cutoff

radii computed from “first principles”, and system-dependent information through fractional

coordination numbers.26 DFT-D3 requires the adjustment of three global parameters for

each DF to provide the dispersion energy for molecules and solids. The next-generation,

DFT-D4, exhibits improved performance by incorporating atomic charge information to

enhance the “geometry-only” model.36 In the DFT-D4 scheme, computed atom-in-molecule

dynamic polarizabilities are scaled using element-specific functions that are derived from

Mulliken-type atomic charges.36 The DFT-D4 scheme retains the strengths of DFT-D3 while
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introducing charge dependence and technical refinements, such as less empirical functions

and classical electronegativity equilibration (EEQ) partial charges that are adopted instead

of Mulliken partial charges.36

c) Many-body dispersion model: The many-body dispersion (MBD) model devel-

oped by Tkatchenko and co-workers has gained popularity in recent times.54 It originates

from the Tkatchenko-Scheffler model in which C6 coefficients and vdW radii are determined

from the mean-field electron density.55 Tkatchenko and Lilienfeld estimated 2-body and 3-

body dispersion contributions using C6 and C9 coefficients within a many-body expansion

formalism.56 The inclusion of 3-body dispersion contributions was found to be necessary

for many non-covalent interactions, leading to the development of the MBD model. The

MBD approach incorporates long-range screening effects (SCS) and nonadditive dispersion

energy using the coupled fluctuating dipole model (CFDM).57 The MBD model is based on

the adiabatic-connection fluctuation-dissipation theorem, providing an exact expression for

the total electron correlation energy.19 The original MBD model was shown to suffer from

underbinding issues due to short-range correlation effects, which led to the development of

the MBD@rsSCS model that adopts range separation.58 In the following, we will refer to

MBD@rsSCS as MBD for simplicity.

d) Exchange-hole dipole moment (XDM) model: In a less empirical fashion, the

dispersion energy can be incorporated into Kohn-Sham DFT by means of the XDM model

developed by Becke and Johnson.27,59,60 The XDM model relies on the observation that in

a non-overlapping system, the nonzero dipole moment of an exchange-hole can induce an

instantaneous dipole moment that leads to dispersion interactions.

e) Effective one-electron potentials: The London dispersion interaction resulting

from correlated electron motion can be empirically described via effective one-electron po-

tentials. Two common approaches include atom-centered external potentials22 and semi-local

DFs, i.e., functionals derived within the generalized gradient approximation (GGA) as well

as meta-GGA functionals, describing dispersion interactions.61 The concept of dispersion-
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corrected atom-centered potentials interprets London dispersion forces as arising from dis-

torted charge distributions, inducing a dipole moment in each atom.22,62–65 Alternatively,

semi-local DFs61,66,67 can glean information about the dispersion interaction from the total

density and its deformation caused by the overlapping of wavefunctions.

Since most dispersion models currently used in studies involve empirical elements in var-

ious ways, it is important to conduct rigorous benchmarking against reliable experimental

or high-level theoretical reference data to ensure the accuracy and validity of the results

obtained with different dispersion models. The conventional parameterization of dispersion

coefficients relies on evaluating the error in interaction energies of datasets involving non-

covalently interacting dimers, such as the S22,68 S22×5,69 S66,70 and S66×871 datasets. By

design, such an approach does not necessarily yield optimized parameters that accurately

describe the dispersion energy. Instead, it tends to determine an optimal set of parameters

that reproduce the total interaction energy, which, however, may be achieved through error

compensation among different energy components. Although the incorporation of dispersion

models does apparently enhance the overall accuracy of conventional DFs, there remains

uncertainty regarding whether empirically fitted dispersion models can also lead to physi-

cal interpretability as they might not be able to correctly reproduce the dispersion energy

contribution to the interaction energy. Furthermore, it has been observed that globally op-

timized dispersion parameters may not perform as well as dispersion parameters optimized

specifically for a certain class of systems.72,73 In the context of ab initio molecular dynamics

(AIMD) simulations, the error resulting from inaccurate dispersion coefficients can be am-

plified due to the size of the system, leading to potentially incorrect predictions of physical

behavior and, consequently, misleading interpretations of the results.

The primary objective of this study is to scrutinize the significance of parametrization in

dispersion models and its impact on representing dispersion energy across a variety of non-

covalently bound systems. Instead of contrasting different dispersion models, our focus is on

understanding how parameter choices might compromise the physical interpretability and
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energetic predictability. Through thorough analyses and benchmarking against high-quality

reference data, we aim to enhance our understanding of dispersion interactions in molecular

systems.

THEORY AND METHODS

Energy Calculations

The interaction energies for non-covalently interacting systems were calculated as follows:

EInt = EN −
N∑
i

Ei (2)

where EInt, EN, and Ei represent the interaction energies, total energy of the N -monomer

system, and monomer energies, respectively. The energy calculations for all datasets were

performed using Q-Chem 6.074 with the PBE,75 revPBE,76 and PBE077 functionals com-

bined with various dispersion models, including the -D3,26,51 -D4,36 -VV10,35 and -MBD

models.58 The calculations were carried out with the def2-QZVPPD basis set78 unless stated

otherwise using the SG-3 integration grid.79 For the S66×8 dataset, we used both the zero-

damping, -D3(0),26 and the Becke-Johnson damping, -D3(BJ),51 schemes. The -D4 disper-

sion correction was calculated for DFs that include the 3-body dispersion term by default.

The -VV10 dispersion model35 was incorporated with all DFs. The -VV10 b parameters

were set to 6.5 for PBE, 3.6 for revPBE, and 6.6 for PBE0, with C fixed at its original value

(C = 0.0093) as determined in ref 80. The errors for the interaction energies of water clus-

ters, (H2O)n, were calculated relative to the reference values obtained at the CCSD(T)/CBS

level of theory in ref 81. The errors for the interaction energies of the hydrate sodium

ion, Na+(H2O)n, and hydrated chloride ion, Cl−(H2O)n, clusters were calculated relative to

DLPNO-CCSD(T)82 calculations performed using the def2-QZVPPD basis set in combina-

tion with the def2-QZVPPD/C auxiliary basis set,83 as implemented in ORCA 4.2.1.84
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Energy Decomposition Analysis (EDA)

The second-generation absolutely localized molecular orbital energy decomposition analysis

(ALMO-EDA) method was used to decompose the interaction energy of a given N -monomer

system, EInt, into a sum of physical contributions.85–87 Specifically, the interaction energy

was decomposed as

EInt = EPol + EFrz + ECT + EDisp (3)

where EPol, EFrz, ECT, and EDisp are the polarization, frozen, charge transfer, and disper-

sion energies of the N -monomer system, respectively. Based on this decomposition, Epol is

the polarization energy, which describes the contribution to binding that results from in-

duced electrostatic interactions between monomers, EFrz is the sum of energy contributions

associated with permanent electrostatics (Eelec) and Pauli repulsion (EPauli), and ECT is the

charge-transfer contribution, which is always negative and accounts for donor–acceptor or-

bital interactions between monomers in the system. Within the ALMO-EDA framework, the

dispersion (Disp) is distinguished from the rest of the exchange-correlation contributions by

utilizing a supplementary density functional that is free of dispersion.87 For the decomposi-

tion with hybrid functionals, like ωB97M-V or PBE0, the Hartree-Fock (HF) approach is uti-

lized. In contrast, for semi-local functionals, the revPBE or dispersion-less density functional

(dlDF) is employed as the dispersion-excluded option.87 The ALMO-EDA calculations were

performed using the PBE, revPBE, and PBE0 functionals without any dispersion correction

as well as with the -D3, -D4, and -VV10 dispersion models (see Supporting Information for

details). For the dispersion-corrected PBE and revPBE functionals, revPBE was used as

the dispersion-free functional in the ALMO-EDA calculations. The b and C parameters of

the -VV10 model for PBE, revPBE, and PBE0 were obtained from ref. 80. All ALMO-EDA

calculations used the def2-QZVPPD basis set88 except those for the aqueous clusters. The

ALMO-EDA calculations for the water clusters were performed using the def2-QZVPP basis

set, while the def2-TZVPPD basis set89 was used in the ALMO-EDA calculations for the
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hydrated sodium and chloride clusters. The reference ALMO-EDA energies were calculated

with the ωB97M-V density functional90 using the corresponding basis sets. The adoption

of ωB97M-V as the reference DF rests on its established accuracy in rendering non-covalent

interactions, validated by multiple studies.91–93 Additionally, it demonstrates smaller delocal-

ization errors when compared against a range of contemporary DFs.94,95 Furthermore it has

been shown that the ALMO-EDA dispersion term of ωB97M-V is in fine agreement with the

highly-accurate MB-pol data-driven many-body potential for water.96 To stress the validity

of ωB97M-V as a suitable reference functional to analyze the dispersion contribution, we

have performed agnostic analyses within the SAPT0, MP2-EDA, and XSAPT+MBD frame-

works. Independently of how the dispersion energies are computed within each formalism,

ωB97M-V consistently displays a smaller error relative to other dispersion models, evidenced

by improved agreement over the PBE for the S66 dataset,70 as illustrated in Figure S1.

Cell Optimizations and Calculations of Lattice Energies

The geometry optimizations of the X23 dataset of molecular crystals97 and corresponding

isolated molecules, followed by the calculations of the lattice energies, were performed using

the Vienna Ab initio Simulation Package (VASP).98,99 The core electrons were treated by the

projector-augmented wave (PAW) method.100,101 For these calculations, we used PBE and

revPBE as representative of GGA functionals102,103 with the -D3(BJ) and -MBD dispersion

models. The range-separation parameter β = 0.54 for revPBE-MBD was obtained from ref

104. VASP supports the revised version of the -VV10 model, known as -rVV10.105 We used

the strongly constrained and appropriately normed (SCAN)67 as a representative meta-GGA

functional with and without -rVV10,105 as both SCAN and SCAN-rVV10106 are becoming

increasingly popular for modeling diversely bonded systems and materials.107–110 In this

context, it is important to mention that in the version of VASP available to us (VASP 5.4.4),

DFT calculations with -rVV10 are only supported for meta-GGA functionals such as SCAN.

The b = 15.7 and C = 0.0093 parameters of the -rVV10 model for SCAN were obtained from
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ref 106. In the optimizations of the molecular crystals, the unit cell parameters as well as

the atomic coordinates were allowed to relax. For the optimizations and energy calculations

involving the isolated molecules, we used large cubic unit cells with each side measuring

25 Å to minimize finite-size effects. A plane-wave basis set with an energy cutoff of 1000

eV was used in all calculations. The convergence criteria for the energies and forces were

set to 1×10−5 eV and 0.005 eV Å
−1

, respectively. Given the different unit cell dimensions

along different directions of the crystals in the X23 dataset, Γ-centered k-point grids with a

k-point resolution of 2π × 0.03 Å−1 were used for the structural optimizations, which were

generated using VASPKIT.111 For the isolated molecules, only the Γ point was used. The

lattice energy of each molecular crystal was calculated as

Elatt =
Ecrys

nmol

− Eiso, (4)

where Ecrys is the energy of the molecular crystal unit cell, nmol is the number of molecules

in the crystal unit cell, and Eiso is the energy of the corresponding isolated molecule.

RESULTS AND DISCUSSION

Interaction Energies and Energy Decomposition Analyses of the

S66×8 Dataset

S66×871 is an exemplary dataset for studying non-covalent interactions, encompassing a di-

verse range of interactions such as hydrogen bonding, π− π stacking, dispersion, and mixed

interactions involving both electrostatics and dispersion. In addition to dimer configurations

in their equilibrium geometries, it also includes stretched and compressed dimer configura-

tions, thereby assessing the influence of dispersion interactions at both short and long ranges.

The interaction energies within the S66×8 dataset were calculated using PBE, revPBE, and

PBE0 in combination with the -D3, -D4, -VV10, and -MBD models. The accuracy of these
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Figure 1: Box plots of absolute errors in total interaction energies relative to the
CCSD(T)/CBS reference values calculated for the S66×8 dataset using: (a) PBE, (b)
revPBE, and (c) PBE0 combined with the -MBD, -D3(0), -D3(BJ), -D4, and -VV10 models.
Each box represents the interquartile range (IQR), the whiskers indicate the full range of
the data, and the mean error is indicated by the dot. Panels (d-f) display the ALMO-EDA
mean errors relative to ωB97M-V calculated for specific subsets of the S66×8 dataset: (d)
hydrogen-bonding interactions, (e) dispersion-dominated interactions, and (f) mixed inter-
actions. See main text for details.

calculations was assessed relative to the CCSD(T)/CBS reference values. In the case of the

-D3 model, we considered both -D3(0) and -D3(BJ) damping schemes.

Figure 1a reports the error statistics for the complete S66×8 calculated with PBE com-

bined with the different dispersion models. The dispersion-corrected PBE functionals ex-

hibit remarkably similar error statistics across the entire dataset, with mean unsigned errors

(MUEs) ranging between 0.29 and 0.42 kcal/mol. Among the dispersion-corrected PBE

functionals, PBE-D4 and PBE-D3(0) demonstrate the best and poorest performance, re-

spectively. Interestingly, when -D3(0) is replaced by -D3(BJ), the accuracy of the corre-

sponding dispersion-corrected PBE functional, i.e., PBE-D3(BJ) exhibits significantly bet-

ter performance (MUE = 0.33 kcal/mol). It should be noted that the dispersion-corrected

12



PBE functionals also exhibit comparable accuracy for the different subsets of interactions

included in the S66×8 dataset as shown in Figure S2. Similar trends in accuracy are also

observed for the dispersion-corrected PBE0 models (Figure 1c), with only a negligible uptick

in error statistics found for the PBE0-D3(0) functional. In contrast, the accuracy of the

dispersion-corrected revPBE functionals displays notable variations, with the empirical dis-

persion models (i.e., -D3 and -D4) performing surprisingly better than the more sophisticated

-MBD model (Figure 1b). This discrepancy becomes particularly evident when analyzing

dispersion-dominated and mixed interactions for which revPBE-MBD exhibits the highest

error statistics among all dispersion models considered in this study (Figure S2). It is worth

noting that the inclusion of the Axilrod-Teller-Muto (ATM) term to account for 3-body in-

teractions112 does not significantly alter the performance of PBE-D3(BJ), revPBE-D3(BJ),

and PBE0-D3(BJ) for S66×8 (Figure S4).

Although the incorporation of dispersion models leads to a notable enhancement in the

accuracy of density functionals in modeling non-covalent interactions within the S66×8

dataset,113 it is important to consider that the choice of a specific dispersion model can

impact the level of accuracy attained, as in the case of revPBE where the more physically

motivated -MBD model exhibits larger errors across all individual subsets. For hydrogen-

bonding interactions, the combination of -D3 or -D4 with revPBE results in notably better

performance than when the same two dispersion models are combined with PBE and PBE0

(Figures S2). A previous study by Boese114 also reported a significant error reduction with

revPBE-D3. Because of this apparent good performance, revPBE-D3 has become a common

density functional in AIMD simulations of hydrogen-bonded systems.115–119

When PBE and PBE0 are combined with the -D3, -D4, and -VV10 models, the dispersion

errors for both stretched and compressed configurations show similar trends as when they

are combined with the -MBD model (Figure S5). This seems to suggest that the -D3, -D4,

and -VV10 models are able to effectively capture both short-range and long-range dispersion

contributions. However, revPBE-D3, revPBE-D4, and revPBE-VV10 deviate significantly
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from the dispersion energy provided by revPBE-MBD, resulting in significant underbinding

(Figure S5). Nevertheless, as the geometries become highly stretched and, consequently, dis-

persion contributions become nearly negligible, the differences between revPBE-D3, revPBE-

D4, revPBE-VV10, and revPBE-MBD become smaller.

To investigate the surprising accuracy exhibited by revPBE-D3, ALMO-EDA calculations

were conducted on the S66×8 dataset with the D3(0)-corrected PBE, revPBE, and PBE0

functionals. As shown by the analysis of hydrogen-bonded systems reported in Figure 1d,

all three functionals display significant errors in the frozen energy, which, as mentioned

above, encompasses permanent electrostatics and Pauli repulsion. Specifically, PBE-D3(0)

and revPBE-D3(0) tend to underestimate the frozen energy, with mean errors of 0.39 and

0.38 kcal/mol, respectively, whereas PBE0-D3(0) tends to overestimate it, with a mean

error of -0.32 kcal/mol. The overestimation observed in the case of PBE0 can primarily

be attributed to inaccuracies in the Pauli repulsion, as indicated by the decomposition of

the frozen energy in Figure S3. In terms of polarization contributions (denoted as Pol in

Figure 1), all D3(0)-corrected functionals exhibit negligible errors. The GGA functionals

(i.e., PBE and revPBE) exhibit substantial errors in charge transfer energies (denoted as

CT in Figure 1) due to the presence of larger delocalization errors. Notably, the inclusion of

25% Hartree-Fock exchange, a known approach to mitigate delocalization errors, reduces the

charge transfer error as demonstrated by the PBE0 results. While PBE-D3 and PBE0-D3

exhibit small mean errors for the dispersion energy (denoted as Disp in Figure 1), revPBE-

D3 exhibits a much larger mean error of 0.53 kcal/mol. The positive errors in the dispersion

and frozen energies displayed by revPBE-D3 significantly counterbalance the negative error

introduced by the charge transfer energy. The more pronounced error compensation among

the different energy contributions thus explains why revPBE-D3 overall performs better than

PBE-D3 for hydrogen-bonded systems.

Error compensation among different energy components as predicted by the various

dispersion-corrected functionals is especially notable in systems primarily influenced by dis-
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persion interactions. The positive error (i.e., underbinding) associated with the dispersion

energy effectively offsets the negative errors (i.e., overbinding) associated with the frozen

and charge transfer energies, resulting in an apparent better description of the interaction

energy. In the case of mixed interactions, the errors for all energy components predicted

by the various dispersion-corrected DFs are smaller, which also results in a more accurate

representation of the dispersion energy.

Based on these analyses, it is natural to inquire about the underlying factors contribut-

ing to these significant discrepancies in the representation of the dispersion energy. The

widely used -D3 and -D4 dispersion models require specific parameterization for any given

DF. These parameters are optimized using extensive datasets, such as S66,70 S22×5,69 and

S66×8,71 which encompass various non-covalent interactions. The objective of this param-

eter fitting is to reproduce the reference interaction energies and not the actual dispersion

contributions. However, different DFs suffer, to varying degrees, from inherent errors, such

as self-interaction and delocalization errors,94,120,121 which lead to inaccuracies in the rep-

resentation of charge transfer energies. As shown by the ALMO-EDA results reported in

Figure 1, significant negative charge transfer errors are often counterbalanced by positive

errors in the representation of the dispersion energy by empirical dispersion models, which

are particularly pronounced for revPBE-D3. Due to the ill-parametrization, certain disper-

sion models can sometimes outperform the -MBD model when combined with the revPBE

functional.

These analyses thus demonstrate that balancing the errors associated with the different

energy contributions to reproduce reference interaction energies through parameter fitting

can result in an incorrect and unreliable representation of the dispersion energy, compromis-

ing the underlying physics while only apparently preserving the overall predictive accuracy

in energetic calculations.
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Role of the Dispersion Energy in the Benzene Dimer

The accurate prediction of the interaction energy of the benzene dimer serves as a rigorous

test for the capability of a particular electronic structure method to adequately describe non-

covalent interactions, as the attraction between two benzene molecules primarily arises from

a delicate balance between dispersion and Pauli-repulsion, depending on the specific binding

arrangement of the two molecules.122 As a result, the interaction energy of the benzene

dimer is relatively small, typically 2-3 kcal/mol, leading to a remarkably flat potential energy

surface.123

Studies of the benzene dimer generally focus on three distinct configurations: “parallel-

stacked”, “parallel-displaced”, and “T-shape” configurations.123 Both theoretical and exper-

imental investigations face significant challenges when attempting to determine the station-

ary points on the benzene dimer potential energy surface. Wavefunction methods, such as

second-order perturbation theory encompassing SAPT0 and MP2, fail to provide a quanti-

tative description of the dispersion energy.124 MP2 overestimates the interaction energy of

the “parallel-stacked” benzene dimer by a factor of 2, whereas it predicts the interaction

energy for the T-shaped configuration with a 30% error due to this configuration’s smaller

dispersion energy.125 The benzene dimer thus represents a prototypical system to assess the

performance of various dispersion-corrected DFs.

Podeszwa et al.123 used DFT-based symmetry adapted perturbation theory (DFT-SAPT)127

to scan the potential energy surface of the benzene dimer, identifying multiple station-

ary points, including minima (M) and saddle (S) points. Bludský et al.126 performed

counterpoise-corrected optimizations at the PBE/CCSD(T) level of theory for these con-

figurations using the accurate fixed benzene monomer geometry provided by Gauss and

Stanton.128

We calculated the interaction energies between two minima (M1 and M2) and eight saddle

points (S1-S8) using PBE, revPBE, and PBE0 combined with the -D3 and -VV10 dispersion

models. In addition, we also calculated the interaction energies using ωB97M-V, as it exhibits
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high accuracy in describing non-covalent interactions among existing DFs.92 All calculations

were performed using the def2-QZVPPD basis set. As shown in Figure 2, ωB97M-V exhibits

close agreement with the CCSD(T)/CBS reference values of ref 126, with an MUE of 0.12

kcal/mol and a maximum unsigned error of 0.25 kcal/mol. For comparison, the MUE for

the PBE-D3 functional is 0.18 kcal/mol, with a maximum unsigned error of 0.35 kcal/mol.

However, when PBE is combined with -VV10, the agreement improves significantly, with

PBE-VV10 exhibiting an MUE of 0.08 kcal/mol and a maximum unsigned error of 0.28

kcal/mol. In contrast, despite their accuracy in modeling the hydrogen-bonded systems

of the S66×8 dataset, both revPBE-D3 and revPBE-VV10 perform poorly on the benzene

dimer. In particular, revPBE-D3 exhibits an MUE of 0.21 kcal/mol and a maximum unsigned

error of 0.51 kcal/mol, with revPBE-VV10 performing even more poorly. Both PBE0-D3

and PBE0-VV10 demonstrate high accuracy, comparable to that of ωB97M-V.

The interaction energies of T-shaped benzene dimers (S3 saddle point) were calculated at

intermolecular distances ranging from -2.0 to 2.0 Å with an increment of 0.2 Å (Figure 3a),

and were further decomposed using ALMO-EDA to characterize the different energy contri-

butions. In Figure 3a, we compare the errors in interaction energies predicted by PBE-D3,
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Figure 2: Box plot of absolute errors in interaction energies relative to the CCSD(T)/CBS
reference values126 calculated for 10 stationary points on the benzene dimer potential energy
surface using ωB97M-V, PBE-D3, PBE-VV10, revPBE-D3, revPBE-VV10, PBE0-D3, and
PBE0-VV10. See main text for details.
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PBE-VV10, revPBE-D3, revPBE-VV10, PBE0-D3, and PBE0-VV10 with respect to the

reference ωB97M-V values. This comparison reveals notable trends in the errors exhibited

by each DF. First, PBE-D3 exhibits errors ranging from 0.07 to 0.43 kcal/mol relative to

ωB97M-V, with the errors becoming smaller near the equilibrium distance, i.e., at zero dis-

placement from the equilibrium distance between the centers of mass (COM) of the two

benzene rings. Interestingly, PBE-VV10 exhibits slightly better performance for dimer con-

figurations far from the equilibrium geometry. In contrast, revPBE-D3 exhibits a large

deviation from ωB97M-V, with errors ranging from 0.30 to 0.54 kcal/mol. Also, in this

case, the combination with the -VV10 model improves the overall performance of revPBE.

Regarding the hybrid DFs, PBE0-D3 exhibits errors ranging from 0.15 to 0.35 kcal/mol,

which consistently decrease as the benzene-benzene separation within the dimer approaches

the equilibrium distance. Notably, PBE0-VV10 provides the best agreement with ωB97M-V

as the errors range from -0.01 to 0.16 kcal/mol, indicating a significant improvement over

the other combinations of DFs and dispersion models considered in this study. The results

for revPBE-D3 are somewhat unexpected, considering that revPBE-D3 shows the best error

statistics for the hydrogen-bonded systems in the S66×8 dataset (Figure 1). Consequently,

it is evident that dispersion models, due to the inherent limitations of any chosen density

functional, are not universally applicable to all types of interactions within various chemical

systems, when they are fitted to reproduce the interaction energies.

After decomposing the interaction energies through ALMO-EDA calculations, ωB97M-V

provides charge transfer energies of -0.49 and -0.51 kcal/mol for the terminal and equilibrium

dimer configurations along the intermolecular distance scan, respectively (Figure 3). In

comparison, due to the delocalization error, both PBE and revPBE display larger charge

transfer stabilization of -0.71 and -0.75 kcal/mol for the same structures, while PBE0 predicts

charge transfer energies of -0.59 and -0.63 kcal/mol, respectively. Interestingly, all DFs

examined in this study show optimal charge transfer for dimer configurations displaced by

∼1.2 Å relative to the equilibrium distance.
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Figure 3: (a) Interaction energies of the T-shaped benzene dimers (S3) calculated at in-
termolecular displacements from -2.0 to 2.0 Å relative to the equilibrium distance using
PBE, revPBE, and PBE0 functionals combined with the -D3 and -VV10 models, as well as
ωB97M-V. (b) Charge-transfer contributions to the interaction energies reported in (a). (c)
Dispersion contributions to the interaction energies reported in (a).
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Figure 3c illustrates the impact of the different dispersion models on the performance

of PBE, revPBE, and PBE0. For the terminal structures along the intermolecular dis-

tance scan (i.e., structures with a displacement of 2 Å relative to the equilibrium distance),

PBE0-VV10 predicts the smallest dispersion energy (-2.43 kcal/mol). Both ωB97M-V and

revPBE-VV10 predict a dispersion energy of -2.56 kcal/mol for the same structures, while the

other dispersion-corrected DFs overestimate the stabilization due to the dispersion energy.

Specifically, PBE0-D3 and PBE-VV10 predict a dispersion energy of -2.61 kcal/mol, while

the dispersion energy predicted by PBE-D3 is -2.66 kcal/mol. Among all functionals exam-

ined in this study, revPBE-D3 predicts the largest overstabilization due to the dispersion

energy (-2.78 kcal/mol).

In the case of the equilibrium geometry, where the dispersion energy is most prominent,

the differences in dispersion energies predicted by the different dispersion-corrected DFs

become more apparent. PBE0-VV10 exhibits significant understabilization (-3.34 kcal/mol)

compared to ωB97M-V (-3.69 kcal/mol). Both PBE-D3 and PBE0-D3, which show slight

overbinding compared to ωB97M-V for the displaced structure, exhibit underbinding for

the equilibrium geometry, with dispersion energies of -3.54 and -3.55 kcal/mol, respectively.

On the other hand, PBE-VV10 and revPBE-VV10 display overstabilization, predicting a

dispersion energy of -3.75 kcal/mol. revPBE-D3 deviates the most from ωB97M-V also in

the case of the equilibrium geometry, predicting a dispersion contribution of -3.80 kcal/mol.

The ALMO-EDA results demonstrate that, while ωB97M-V and PBE0-VV10 exhibit

similar interaction energy profiles (Figure 3a), this similarity is purely accidental, arising from

substantial error compensation in PBE0-VV10, particularly near the equilibrium geometry.

In particular, PBE0-VV10 displays an overbinding tendency in terms of charge transfer

(Figure 3b) and frozen energies (Figure S6a), but it significantly underbinds the benzene

dimer in terms of dispersion energy (Figure 3c) and slightly underestimates the polarization

energy (Figure S6b). The same trend is observed for the other dispersion-corrected DFs

where various levels of error compensation occur among the different energy components,
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which overall tend to improve the agreement with ωB97M-V. Although several dispersion-

corrected DFs demonstrate similar accuracy to ωB97M-V for the benzene dimer (Figure 2),

the ALMO-EDA results demonstrate that this apparent accuracy stems from the delicate

balance of error compensation among the different energy components and not from a correct

representation of the corresponding physical interactions. In particular, the DFs analyzed in

this study tend to overestimate charge transfer and undermine polarization effects, while the

fitted dispersion models attempt to counterbalance these errors by either overemphasizing

or underemphasizing the dispersion contributions.

Non-Covalent Interaction in Charged Systems

The interaction energies in ionic systems are influenced by the charge distribution, which in

turn affects the polarizability and alters the dispersion contributions. Charged systems inter-

acting through non-covalent forces are included in the AHB21, IL16, and CHB6 datasets.129

Each dataset focuses on specific types of interactions: anionic hydrogen bonding (AHB21),

cation-neutral interactions (CHB6), and cation-anion pairs in ionic liquids (IL16).129 In our

analyses reported in Figure 4, we compare the results obtained with the different dispersion-

corrected DFs with the CCSD(T)/CBS reference values reported in ref 129.

In the case of the AHB21 dataset, both PBE-D3 and PBE-D4 exhibit similar error

statistics, while the magnitude of the errors increases when PBE is combined with -VV10.

All dispersion-corrected variants of revPBE (i.e., revPBE-D3, revPBE-D4, and revPBE-

VV10) exhibit comparable error statistics. Upon application of the dispersion correction to

the PBE0 functional, we find similar error statistics to those exhibited by the dispersion-

corrected PBE functional, with PBE0-VV10 exhibiting larger errors than PBE0-D3 and

PBE0-D4. As for the AHB21 dataset, the comparisons for the IL16 dataset indicate that

the combination of the -VV10 model with PBE and PBE0 results in worse agreement with the

reference values compared to when the same DFs are combined with the -D3 or -D4 models.

In contrast, revPBE-D4 exhibits a larger MUE and a wider range of errors compared to
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Figure 4: Box plots for the absolute errors in interaction energies relative to the
CCSD(T)/CBS reference values129 calculated for the AHB21 (a), IL16 (b), and CHB6 (c)
datasets using PBE, revPBE, and PBE0 combined with the -D3, -D4, and -VV10 models.
Panels (d-l) display the mean errors in individual energy components relative to the ωB97M-
V reference values obtained from ALMO-EDA calculations carried out for specific subsets of
the AHB21 (panels (d-f), IL16 (panels g-i), and CHB6 (panels j-l) datasets.
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revPBE-D3 and revPBE-VV10. Finally, for the CHB6 dataset (Figure 4), the combination

of PBE and PBE0 with the -VV10 model results in slightly smaller errors compared to

those exhibited by the two DFs when they are combined with the -D3 and -D4 models.

Interestingly, combining revPBE with the -D4 model significantly increases the error and

widens the range of errors compared to revPBE-D3 and revPBE-VV10. Notably, PBE0-D4

exhibits a wide range of errors similar to revPBE-D4, while PBE0-D3 and PBE0-D4 exhibit

comparable MUEs.

Overall, the most consistent DF in producing the lowest MUEs across all three datasets is

the dispersion-corrected revPBE functional. However, its performance varies with the type

of dispersion model used. For instance, all dispersion-corrected revPBE functionals perform

similarly in the case of the AHB21 dataset, while revPBE-VV10 and revPBE-D3 perform

better for the IL16 and CHB6 datasets, respectively. Although all dispersion-corrected

revPBE functionals exhibit reasonably good performance across the three datasets, no single

dispersion-corrected DF consistently yields the lowest MUEs across all three datasets. Based

on the analyses for PBE, revPBE, and PBE0, it thus follows that there is no definitive “best”

combination of DF and dispersion model that consistently applies to all types of non-covalent

interactions in charged systems.

To understand the trends in interaction energies in terms of the underlying physical

contributions, ALMO-EDA calculations were performed on the three datasets using all

dispersion-corrected DFs examined in this study. The ALMO-EDA results are shown Fig-

ure 4d-l relative to the ωB97M-V references values. For the AHB21 dataset, the PBE

functional predicts a significant charge transfer stabilization of approximately -2 kcal/mol.

Both PBE-D3 and PBE-D4 predict slightly underbinding dispersion energies relative to the

ωB97M-V reference values, while PBE-VV10 exhibits opposite behavior. As shown in Fig-

ure 4d, this delicate balance of errors improves the performance of PBE-D3 and PBE-D4 in

predicting the interaction energies for systems included in the AHB21 dataset. Conversely,

all dispersion-corrected revPBE functionals consistently exhibit large (positive) errors for
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the dispersion energy, independently of the dispersion model employed. This underestima-

tion of the dispersion energy is counteracted by the delocalization error, which is reflected

in an artificial stabilization provided by the charge transfer energy. This pronounced error

compensation leads to an apparent good agreement with the reference ωB97M-V values for

the interaction energies (Figure 4e). On the other hand, the PBE0 functional yields smaller

errors for all energy components. Being a hybrid functional, PBE0 mitigates the error in

charge transfer energy by construction, while keeping the error in the dispersion energy con-

sistently low. However, since the errors for all energy components of the dispersion-corrected

PBE0 functionals display the same signs, their accumulation decreases the agreement with

the ωB97M-V interaction energies compared to the corresponding dispersion-corrected PBE

and revPBE functionals (Figure 4a).

The ALMO-EDA calculations for the IL16 dataset indicate that large dispersion errors

negate the effects of over-stabilization caused by the delocalization error, which is particularly

notable in the case of revPBE (Figure 4g-i). This error compensation is more prominent

when revPBE is combined with the -D3 and -D4 models, while it is less marked in revPBE-

VV10 due to a smaller dispersion error (Figure 4h). Similar error compensation improves

the performance of PBE0-D3 and PBE0-D4 but worsens the performance of PBE0-VV10 for

which the errors in charge transfer and dispersion energy have the same sign (Figure 4i).

Figure 4j-l shows that the error compensation is less pronounced in the case of the CHB6

dataset. This is primarily due to smaller errors in the dispersion energy displayed by all

dispersion-corrected DFs, which can be traced back to the intrinsic electronic properties of

cations. Specifically, due to their compact electron density, cations exhibit smaller polariz-

abilities than neutral and anionic species. A smaller polarizability implies that the electron

density of a cation is less easily distorted by an external electric field. Since dispersion in-

teractions depend on these distortions of the electron densities, they are relatively weaker

for cationic species. This explains the smaller errors in the dispersion energies exhibited

by the different dispersion-corrected DFs for systems in the CHB6 dataset. On the other
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hand, electrostatic interactions, which arise from the forces that electric charges exert on

each other, play a key role in cationic systems. Since charges get artificially distributed over

larger volumes due to delocalization error, Figure S7 shows that the errors associated with

electrostatic contributions predicted by the different DFs are larger for systems in the CHB6

dataset.

Energy Decomposition Analysis of Aqueous Clusters

To elucidate the effects of various dispersion models on the DFT description of molecu-

lar interactions in aqueous environments, we focus in this section on water [(H2O)n=2−10],

hydrated sodium cation [Na+(H2O)n=2−10], and hydrated chloride anion [Cl−(H2O)n=2−10]

clusters. As in the previous sections, our analyses encompass the -D3, -D4, and -VV10 mod-

els combined with the PBE, revPBE, and PBE0 functionals that are commonly employed in

AIMD simulations of aqueous systems. Unless otherwise stated, the analyses with the -D3

model presented in this section are discussed in the context of the -D3(0) damping scheme.

The structures of the (H2O)n=2−10 clusters were obtained from the BEGDB water clusters

dataset,130 which were originally optimized at the RI-MP2/aug-cc-pVDZ level of theory.81

All analyses reported for the BEGDB clusters are averaged over the number of isomers in

the dataset for each cluster size n.

The combination of the -D3, -D4, and -VV10 models with the PBE and PBE0 function-

als results in significant errors in the interaction energies with respect to CCSD(T)/CBS

reference values,131 which tend to increase with cluster’s size as summarized in Table 1 for

(H2O)n, Na+(H2O)n and Cl−(H2O)n, with n = 2, 10. The errors per water molecule for the

interaction energies of the full datasets are reported in Figures S8-S16.

The ALMO-EDA errors relative to the ωB97M-V reference values for each individual

energy component of the corresponding interaction energy for the (H2O)n=2−10 are shown in

Figure 5a as mean errors (ME) per water molecule, ∆ecomponent = (Emodel
component−Eref

component)/n.

The error per water molecule in the frozen component (i.e., electrostatics + Pauli repulsion)
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Table 1: Errors (kcal/mol) in interaction energies per water molecule relative to the
CCSD(T)/CBS131 and DLPNO-CCSD(T)/def2-QZVPPD reference values for water and
ion-water clusters, respectively, calculated with PBE, revPBE, and PBE0 combined with
the -D3, -D4, and -VV10 models as well as ωB97M-V.

Method (H2O)2 (H2O)10 Na+(H2O)2 Na+(H2O)10 Cl−(H2O)2 Cl−(H2O)10

PBE-D3 -0.37 -1.52 0.82 0.12 -1.18 -0.76
PBE-D4 -0.34 -1.33 0.65 0.23 -1.33 -0.63

PBE-VV10 -0.46 -1.87 0.60 -0.04 -1.84 -1.06

revPBE-D3 0.05 0.19 1.70 1.10 0.51 0.30
revPBE-D4 0.07 0.18 1.21 1.10 0.08 0.41

revPBE-VV10 0.30 1.05 1.44 0.91 -0.75 -0.21

PBE0-D3 -0.34 -1.40 0.65 0.05 -1.01 -0.67
PBE0-D4 -0.27 -1.12 0.58 0.28 -1.06 -0.46

PBE0-VV10 -0.39 -1.62 0.51 0.03 -1.55 -0.85

ωB97M-V -0.13 -0.50 0.79 0.50 -0.13 -0.18

of the interaction energies exhibits an increasing trend with cluster size. This trend is more

pronounced for PBE and revPBE than the hybrid PBE0 functional. In the case of PBE0

specifically, separation of the frozen component suggests that excessive Pauli repulsion out-

competes as the main component of the total error (see Figure S23). Overall, all three

DFs perform similarly in describing the polarization contribution, with the associated errors

contributing minimally to the total error for all clusters. This is within general agreement

with previous studies that focused on quantifying the contributions of different components

to intermolecular interactions in hydrogen-bonded systems.132–136

As discussed in the previous sections, GGA functionals, such as PBE and revPBE, suffer

from a non-negligible delocalization error, which, in turn, results in a systematic overesti-

mation of charge transfer. This is particularly pronounced in aqueous systems, as observed

in our previous studies.95,136–138 In the case of PBE-D3, the error in charge transfer energies

increases from -0.35 kcal/mol to -1.65 kcal/mol as the cluster size increases from the dimer

to the decamer. A similar trend is displayed by revPBE-D3. As expected, by incorporat-

ing 25% Hartree-Fock exchange, this artificial charge transfer error is partially mitigated
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in PBE0-D3, which exhibits errors of -0.12 kcal/mol and -0.57 kcal/mol for the dimer and

decamer, respectively. At the same time, 25% HFX in the PBE0 global hybrid increases

the strength of Pauli repulsion, leaving ∆eFrz as the primary contributor to the deviation in

the predicted interaction energy relative to ωB97M-V, which contains at short-range 15% of

HFX (see Figure S23).

For the dispersion energy, revPBE-D3 displays the most notable deviation from the

ωB97M-V reference values, with an error of 0.36 kcal/mol for the dimer that progressively

increases to 1.60 kcal/mol for the decamer. In contrast, PBE-D3 and PBE0-D3 exhibit min-

imal errors for all clusters from the dimer to the decamer. While PBE-D3 and PBE0-D3

show improved agreement with ωB97M-V for the dispersion energies, their overall perfor-

mance in reproducing the CCSD(T)/CBS interaction energies is inferior to revPBE-D3. This

poor performance is rationalized by considering the large dispersion errors associated with

revPBE-D3. Paradoxically, the smaller errors in dispersion energies exhibited by PBE-D3

and PBE0-D3 are insufficient to compensate for the charge transfer errors, which thus results

in higher inaccuracy in the description of the interaction energies as reported in Table 1.

Figure S17 and S18 show the same analyses for PBE, revPBE, and PBE0 combined with

the -D4 and -VV10 models, respectively. Interestingly, although the trends in dispersion

energies predicted by PBE and PBE0 combined with the -D4 and -VV10 models are similar

to those provided by the -D3 model, the performance of revPBE-VV10 is significantly worse

than that of revPBE-D3 and revPBE-D4.

Given the apparent agreement with the CCSD(T)/CBS reference energies for the water

clusters, which, as demonstrated above, effectively derives from fortuitous error compen-

sation between the representation of charge transfer and dispersion energy, revPBE-D3(0)

has gained widespread popularity as a suitable DF for AIMD simulations of liquid wa-

ter.115–117 This popularity has made revPBE-D3(0) one of the preferred DFs for training

“DFT-level” machine-learned potentials for water.119 In this context, it should be noted

that a recent study136 demonstrated that the -D3(BJ) model and its generalized form -
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D3(op)53 introduces smaller dispersion errors compared to the -D3(0) model in the case of

revPBE. However, due to a less-than-optimal error compensation between charge transfer

and dispersion energy, both revPBE-D3(BJ) and revPBE-D3(op) provide worse agreement
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ponents of the interaction energies obtained from ALMO-EDA calculations carried out for
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with the CCSD(T)/CBS reference energies than revPBE-D3(0). This contradicting trends

in reproducing dispersion and interaction energies manifest, for example, in revPBE-D3(0)

better reproducing the sum-frequency generation spectrum of the air/water interface than

revPBE-D3(BJ) and PBE-D3.139 The underbinding dispersion interaction in revPBE-D3(0)

effectively prevents hydrogen bonds from becoming overly attractive, which counteracts the

relatively large delocalization error. On the other hand, a better description of the dispersion

energy combined with GGA functionals, such as PBE and revPBE, lead to overly stronger

hydrogen bonds, causing the vibrational spectra to redshift as shown in simulations with

PBE-D3(0), PBE-D3(BJ), and revPBE-D3(BJ).139

Simulations carried out based on revPBE-D3 were shown to reproduce some properties of

liquid water.140,141 However, employing a data-driven many-body potential based on revPBE-

D3, which includes a pairwise dispersion term resulted in a more structured liquid. This

seemingly counterintuitive result is again explained by the lack of error compensation in

dispersion-corrected revPBE variants that adopt an accurate description of the dispersion

energy.136 Head-Gordon and coworkers also suggested the presence of error compensation in

revPBE-D3.142 In particular, they demonstrated that the inherent inaccuracies in revPBE-

D3 seem to fortuitously coincide with the neglect of the nuclear quantum effect in classical

simulations, as the agreement with the experimental data deteriorates when these effects are

explicitly included in path-integral molecular dynamics simulations.

In addition to pure water clusters, we also investigated the impact of dispersion interac-

tions on ionic aqueous clusters. In the following, we focus on Na+(H2O)n and Cl−(H2O)n

clusters, obtained from molecular dynamics simulations carried out in the isothermal-isobaric

(NPT = constant number of particles, pressure, and temperature) ensemble at T = 298.15

K and P = 1 atm.143,144 These simulations employed MB-nrg many-body potentials that were

trained on CCSD(T)/CBS 2-body and 3-body energies for ion-water dimers and trimers143–146

The cluster configurations extracted from the NPT simulations were further optimized using

the MB-nrg framework implemented in the MBX software.147
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Contrary to the water clusters, dispersion-corrected revPBE exhibits significantly larger

error in interaction energies compared to the DLPNO-CCSD(T)/def2-QZVPPD reference

values, especially when compared to the results obtained with the dispersion-corrected PBE

and PBE0 functionals as shown in Table 1 and Figure S9. The analysis of the dispersion

energies predicted by PBE-D3, PBE0-D3, and revPBE-D3 demonstrates that, while both

PBE-D3 and PBE0-D3 exhibit relatively small errors, revPBE-D3 consistently exhibits larger

errors as shown in Figure 5b. For example, the errors associated with the PBE-D3 values

for the dispersion energy range from -0.15 kcal/mol for n = 2 to -0.27 kcal/mol for n = 10.

A similar trend is observed for PBE0-D3 with errors of 0.01 kcal/mol and -0.11 kcal/mol

for the corresponding clusters. In contrast, the errors for revPBE-D3 are 0.43 kcal/mol

for Na+(H2O)2 and 0.47 kcal/mol for Na+(H2O)10. The corresponding ALMO-EDA results

obtained with the -D4 and -VV10 models are reported in Figures S19 and S20. For the

-D4 model, the errors associated with the dispersion energy decrease as a function of cluster

size for PBE-D4 but increase for revPBE-D4. In the case of PBE0-D3, the errors remain

relatively small and only slightly increase as the cluster size increases. It is noteworthy that

all D4-corrected DFs exhibit errors in dispersion energies comparable in magnitude to those

of their D3-corrected counterparts. Both PBE-VV10 and revPBE-VV10 exhibit substantial

errors in dispersion energies, which persist independently of cluster size. Conversely, PBE0-

VV10 displays a consistent trend, with comparatively smaller errors in dispersion energies

for all clusters.

It is noteworthy that the dispersion errors in Na+(H2O)n clusters are smaller compared

to those observed in (H2O)n clusters, primarily because the dispersion contributions to the

interaction energies are much smaller in Na+(H2O)n clusters as cations have smaller polariz-

abilities (Table S1). As mentioned above, Na+(H2O)n clusters are dominated by electrostatic

interactions that are poorly described by GGA functionals, such as PBE and revPBE (Fig-

ures S19 and S20), due to relatively large delocalization errors. This is evident in the case

of both PBE and revPBE, which exhibit large errors in the description of the electrostatic
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energy of the frozen component (see Figures 5b, S19 and S20).

Mundy and coworkers carried out AIMD simulations of alkali-metal ions in water and

compared the performance of revPBE-D3, a GGA functional, and SCAN, a meta-GGA

functional.148 Their results indicate that SCAN provides a more reliable description of the

hydration structure for Na+, although revPBE-D3 outperforms SCAN in describing the hy-

dration structure of liquid water. The observed differences between the behavior of SCAN

and revPBE-D3 in the context of liquid water were attributed to SCAN’s known tendency

to overbind.148 In this context, it is important to note that both revPBE-D3 and SCAN are

susceptible to delocalization errors, which are more prominent for GGA functionals, such as

revPBE-D3, in case of ion-water clusters.136,138 As discussed in ref 136 for revPBE-D3(0),

revPBE-D3(op), and SCAN, delocalization errors lead to an overstructured representation of

liquid water. In the case of neutral water, the errors in charge transfer and dispersion energy

in revPBE-D3 accidentally compensate for each other, leading to a fortuitous improvement

in the performance of revPBE-D3 for liquid water. In contrast, SCAN outperforms revPBE-

D3 in predicting the energetics of Na+(H2O)n clusters as well as the hydration structure of

Na+ in liquid water.148 The reason for the different performance of revPBE-D3 in describing

pure water and hydrated Na+ thus lies in the different nature of the underlying physical in-

teractions. Specifically, permanent electrostatics become one of the dominant contributions

in Na+-water clusters, which prevents the fortuitous error compensation observed in water

clusters and consequently prevents the -D3 model, which shows remarkable accuracy for

neutral water simulations, from accurately representing Na+-water interactions. Recently,

Jungwirth and coworkers reported significant improvement in hydrated alkali-metal ion sim-

ulations by selectively deactivating the dispersion interaction between alkali-metal ions and

water molecules while still preserving the dispersion interaction among water molecules.149 It

should be emphasized that this improved agreement does not imply that alkali-metal ions are

not polarizable or that their dispersion interactions can be neglected. Our analyses, in fact,

demonstrate that removing Na+-metal water dispersion interactions can, at times, result in
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improved performance of revPBE-D3. However, this improvement is primarily due to error

compensation rather than a more accurate representation of the actual physical interactions.

Unlike the Na+(H2O)n clusters, Table 1 and Figure S10 show that the errors in the

interaction energies of the Cl−(H2O)n clusters calculated with all dispersion-corrected DFs

decrease as the cluster size increases. It is, however, important to note that these errors are

significantly larger for Cl−(H2O)n than for Na+(H2O)n and (H2O)n clusters. This behavior

is reminiscent of the delocalization error that affects any DFT representation of molecular

interactions and is particularly pronounced in the case of anionic systems due to the more

diffuse delocalization of the excess electrons. As discussed above, the delocalization error, in

turn, has a significant effect on the charge transfer energies.138,150 Interestingly, the errors

in interaction energies for the larger clusters remain quite comparable, regardless of the

dispersion model used (Figures S10, S13, and S16). As in the case of water clusters, revPBE

combined with any of the dispersion models provides better agreement with the reference

values than the dispersion-corrected PBE and PBE0 functionals (Figures S8, S11, and S14).

Figure 5c shows the ALMO-EDA results for the Cl−(H2O)n=1−10 clusters. Focusing on

the dispersion energy, the error associated with revPBE-D3 still constitutes a substantial

fraction of the total error, being 2.56 kcal/mol at n = 2 and 1.18 kcal/mol at n = 10.

The error in the dispersion energy varies from 0.70 kcal/mol to 0.07 kcal/mol in the case of

PBE-D3 and from 0.18 kcal/mol to 0.04 kcal/mol in the case of PBE0-D3 as the cluster size

increases from n = 2 to n = 10.

As shown in Figures S21 and S22, the errors in dispersion energies for the Cl−(H2O)2

cluster calculated with the -D4 and -VV10 models present a significant spread in values.

Specifically, in the case of the PBE functional, the error varies from 0.55 kcal/mol for PBE-

D4 to -0.04 kcal/mol for PBE-VV10. Similarly, the error associated with revPBE-D4 is 2.14

kcal/mol and becomes 1.13 kcal/mol for revPBE-VV10, while PBE0-D4 and PBE0-VV10

exhibit errors of 0.13 kcal/mol and -0.43 kcal/mol, respectively. The same trends hold for

the larger Cl−(H2O)10 cluster. In this case, the error varies from 0.20 kcal/mol for PBE-D4

32



to -0.25 kcal/mol for PBE-VV10, from 1.28 kcal/mol for revPBE-D4 to 0.60 kcal/mol for

revPBE-VV10, and from 0.25 kcal/mol for PBE0-D4 to -0.16 kcal/mol for PBE0-VV10.

These analyses highlight the significant impact of the selected dispersion models on the

representation of dispersion interactions in water and ionic aqueous systems within DFT.

Notably, they shed light on the unexpected accuracy of revPBE-D3 in AIMD simulations of

liquid water and hydrated monovalent anions (e.g., Cl−),151 attributing it to error compensa-

tion among various physical contributions, especially charge transfer and dispersion energy.

Moreover, these findings underscore the need for caution in AIMD simulations of aqueous

systems with dispersion-corrected DFs since, not being able to correctly represent the un-

derlying physical interactions, these DFs may lead to misinterpretations of the experimental

data.

Impact of Dispersion Energy on Molecular Crystals

DFT stands as the de facto electronic structure theory for modeling extended systems due to

its reasonable accuracy and efficiency relative to post-Hartree-Fock wavefunction methods.

To assess how a given dispersion model affects the DFT description of structural properties

and energetics of molecular crystals, we analyzed the performance of dispersion-corrected

DFs on the X23 dataset that consists of a diverse collection of 23 molecular crystals with

well-understood rigid molecular structures (Figure 6).97 The reference values in the X23

dataset97 include experimentally measured sublimation enthalpies adjusted to account for

vibrational contributions and cell volumes.152 This adjustment enables a direct comparison

of static lattice energies. Since the interactions in the molecular crystals included in the X23

dataset are dominated by long-range effects, the treatment of the dispersion energy within

DFT is expected to significantly affect the lattice structures.

Full unit cell optimizations were carried out for all 23 molecular crystals using PBE-

D3, PBE-MBD, revPBE-D3, SCAN, and SCAN-rVV10. The analysis of the errors in the

unit cell volumes, represented as percentages of the corresponding reference experimental
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volumes,152 provides valuable insights into the accuracy of dispersion-corrected DFs in pre-

dicting the structural properties of the molecular crystals in the X23 dataset. Evaluating the

entire dataset, the MUEs for the PBE-D3 and PBE-MBD functionals are 1.83% and 1.77%,

respectively. Poorer performance is displayed by revPBE-D3 and revPBE-MBD, with MUEs

of 3.41% and 6.99%, respectively.

SCAN represents a particular case among the DFs examined in this study. By construc-

tion, SCAN includes medium-range dispersion contributions in its functional form,67 but, as

any semi-local functional, also suffers from a non-negligible delocalization error that leads

to over-attractive interactions.153 The effect of the delocalization error is particularly evi-

dent in the case of the hydrogen-bonded molecular crystals of the X23 dataset for which

SCAN-rVV10 predicts more compact unit cells as shown in Figure 6a. On the other hand,

the absence of long-range dispersion contributions partially counteracts the artificial unit

cell shrinkage due to the delocalization error in the case of SCAN. For cell volume calcula-

tions across the entire X23 dataset, the MUE of SCAN is 3.47%. Combining the -rVV10

model with SCAN106 leads to a significant reduction in unit cell size, resulting in an error

of 11.13%. The unit cell shrinkage provided by SCAN-rVV10 is more pronounced in the

hydrogen-bonded molecular crystals as shown in Figure S25. While comparing against the

experimentally back-corrected reference, which accounts for vibrational effects, reduces the

magnitude of errors, SCAN-rVV10 still consistently overbinds across all the molecular crys-

tals (Figure S26).154 These results are in line with the observation that AIMD simulations

of liquid water reported in the literature are mostly carried out with SCAN because the

incorporation of the dispersion correction through the -rVV10 model leads to a significant

overestimation of the liquid density.155

PBE-D3 and PBE-MBD both exhibit minimal mean errors and standard deviations in

comparison to experimental volumes. While revPBE-D3 typically predicts more contracted

unit cells and revPBE-MBD predicts more expanded ones on average, their associated stan-

dard deviations are quite broad, encompassing both negative errors (i.e., smaller unit cell
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Figure 6: Illustration of all the molecular crystal unit cells in the X23 dataset along with the
% change of unit cell volumes and lattice energies using PBE-D3, PBE-MBD, revPBE-D3,
revPBE-MBD, SCAN, SCAN-rVV10 for molecular crystals of X23 dataset with respect to
the experimental reference.97,152

volumes) and positive errors (i.e., larger unit cell volumes). However, while the error distri-

bution of SCAN also extends into positive errors, SCAN-rVV10 underestimates the unit cell

volumes for every molecular crystal in the X23 dataset.

The lattice energy errors reported in Figure 6b demonstrate that both PBE-D3 and

PBE-MBD exhibit a similar level of agreement with the experimental values, resulting in

MUEs of 1.02 kcal/mol and 1.36 kcal/mol, respectively. Interestingly, revPBE-D3 predicts

X23 lattice energies with a comparable MUE of 1.26 kcal/mol. However, the combination

of revPBE with the -MBD model compromises the overall accuracy, leading to an MUE of

2.66 kcal/mol. Although predicting significantly more contracted unit cells, SCAN-rVV10

performs reasonably well in reproducing the lattice energies. Specifically, SCAN yields an

MUE of 4.60 kcal/mol, which reduces to 2.26 kcal/mol for SCAN-rVV10. The performance

of SCAN-rVV10 in predicting unit cell volumes and lattice energies is particularly revealing.

It underscores the capability of a dispersion-corrected DF to reliably estimate the energetics
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of molecular crystals, even amidst clear limitations in accurately reproducing structural

properties.

CONCLUSIONS

Maintaining a balance between physical interpretability and energy predictability is paramount

when employing dispersion models within DFT. Although parametrized dispersion models

are known to often enhance the accuracy of DFT calculations, there exist cases where the

dispersion model is ill-parameterized, giving rise to physical inconsistencies that, in turn,

add complexity to the interpretation of the results.

A key challenge arises when tuning parameters to predict the interaction energy of a

given molecular system rather than only the component associated with the dispersion en-

ergy. In this work, we have assessed the performance of various dispersion models with

DFT, particularly focusing on their prediction of dispersion energies for a wide variety of

non-covalent systems. This study demonstrates that parameter fitting can, in some cases,

compromise the underlying physics and hinder transferability, as it leads to significant error

compensation among the different energy components in order to reproduce the reference

data. Consequently, the performance of dispersion models varies across different systems. For

example, while revPBE-D3 proves highly effective in hydrogen-bonded systems, it struggles

to faithfully reproduce the potential energy surface of the benzene dimer. This discrep-

ancy highlights the potential for inconsistent - and thus unpredictable - behavior of various

dispersion-corrected DFs across a broad range of molecular systems, a trait reminiscent of

the behavior displayed in force fields.

Further complicating matters is a proposed solution to optimally tune the dispersion

correction in accordance with a tailored training set. While Perdew et. al recommended

distinct sets of dispersion coefficients for different systems to optimize performance for a

certain system class,72 this method increases the complexity of the resulting optimally-tuned
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dispersion-corrected DF. Additionally, the variability of dispersion coefficients in optimally-

tuned dispersion models for molecular systems and layered materials may, for example, limit

the applicability of the optimally-tuned dispersion-corrected DF to surface science, thus

complicating the description of processes like molecular adsorption.

In pursuit of obtaining physically meaningful results rooted in accurate physics, future

development of dispersion models should prioritize reproducing the dispersion energy, rather

than solely aiming to reproduce the overall interaction energy through parameter fitting.

This refined approach offers the potential to more accurately capture the underlying physics,

ensuring broad applicability across a diverse range of molecular systems.
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(45) Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals

Density Functional for General Geometries. Phys. Rev. Lett. 2004, 92, 246401.

(46) Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D.; Lundqvist, B. Erratum: Van der

Waals Density Functional for General Geometries [Phys. Rev. Lett. 92 246401 (2004)].

Phys. Rev. Lett. 2005, 95, 109902.

(47) Gianturco, F.; Paesani, F. In Conceptual Perspectives in Quantum Chemistry ;

Calais, J.-L., Kryachko, E., Eds.; Springer, 1997; pp 337–382.

(48) Gianturco, F.; Paesani, F.; Laranjeira, M.; Vassilenko, V.; Cunha, M. Intermolecular

Forces From Density Functional Theory. III. A Multiproperty Analysis for the Ar (1

S)-Co (1 σ) Interaction. J. Chem. Phys. 1999, 110, 7832–7845.

42



(49) Gianturco, F.; Paesani, F. The He–OCS Van Der Waals Potential From Model Calcu-

lations: Bound States Stable Structures and Vibrational Couplings. J. Chem. Phys.

2000, 113, 3011–3019.

(50) Elstner, M.; Hobza, P.; Frauenheim, T.; Suhai, S.; Kaxiras, E. Hydrogen Bonding and

Stacking Interactions of Nucleic Acid Base Pairs: A Density-Functional-Theory Based

Treatment. J. Chem. Phys. 2001, 114, 5149–5155.

(51) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion

Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465.

(52) Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with

Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10,

6615–6620.

(53) Witte, J.; Mardirossian, N.; Neaton, J. B.; Head-Gordon, M. Assessing DFT-D3

Damping Functions Across Widely Used Density Functionals: Can We Do Better?

J. Chem. Theory Comput. 2017, 13, 2043–2052.

(54) Tkatchenko, A.; DiStasio Jr, R. A.; Car, R.; Scheffler, M. Accurate and Efficient

Method for Many-Body Van der Waals Interactions. Phys. Rev. Lett. 2012, 108,

236402.

(55) Tkatchenko, A.; Scheffler, M. Accurate Molecular Van der Waals Interactions From

Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009,

102, 073005.

(56) Anatole von Lilienfeld, O.; Tkatchenko, A. Two-and Three-Body Interatomic Disper-

sion Energy Contributions to Binding in Molecules and Solids. J. Chem. Phys. 2010,

132, 234109.

43



(57) Donchev, A. Many-Body Effects of Dispersion Interaction. J. Chem. Phys. 2006, 125,

074713.

(58) Tkatchenko, A.; Ambrosetti, A.; DiStasio, R. A. Interatomic Methods for the Disper-

sion Energy Derived From the Adiabatic Connection Fluctuation-Dissipation Theo-

rem. J. Chem. Phys. 2013, 138, 074106.

(59) Johnson, E. R.; Becke, A. D. A Post-Hartree–Fock Model of Intermolecular Interac-

tions. J. Chem. Phys. 2005, 123, 024101.

(60) Johnson, E. R.; Becke, A. D. A Post-Hartree-Fock Model of Intermolecular Interac-

tions: Inclusion of Higher-Order Corrections. J. Chem. Phys. 2006, 124, 174104.

(61) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group

Thermochemistry Thermochemical Kinetics Noncovalent Interactions Excited States

and Transition Elements: Two New Functionals and Systematic Testing of Four M06-

Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241.

(62) Tkatchenko, A.; von Lilienfeld, O. A. Adsorption of Ar on Graphite Using London

Dispersion Forces Corrected Kohn-Sham Density Functional Theory. Phys. Rev. B

2006, 73, 153406.

(63) Arey, J. S.; Aeberhard, P. C.; Lin, I.-C.; Rothlisberger, U. Hydrogen Bonding De-

scribed Using Dispersion-Corrected Density Functional Theory. J. Phys. Chem. B

2009, 113, 4726–4732.

(64) Mackie, I. D.; DiLabio, G. A. Accurate Dispersion Interactions from Standard Density-

Functional Theory Methods with Small Basis Sets. Phys. Chem. Chem. Phys. 2010,

12, 6092–6098.

(65) van Santen, J. A.; DiLabio, G. A. Dispersion Corrections Improve the Accuracy

44



of Both Noncovalent and Covalent Interactions Energies Predicted by a Density-

Functional Theory Approximation. J. Phys. Chem. A 2015, 119, 6703–6713.

(66) Haoyu, S. Y.; He, X.; Li, S. L.; Truhlar, D. G. MN15: A Kohn–Sham Global-Hybrid

Exchange–Correlation Density Functional with Broad Accuracy for Multi-Reference

and Single-Reference Systems and Noncovalent Interactions. Chem. Sci. 2016, 7,

5032–5051.

(67) Sun, J.; Ruzsinszky, A.; Perdew, J. P. Strongly Constrained and Appropriately

Normed Semilocal Density Functional. Phys. Rev. Lett. 2015, 115, 036402.
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