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Abstract

It has been demonstrated that the critical point of the phase transition in scalar quantum

field theory with a quartic interaction in one space dimension can be approximated

via a Gaussian Effective Potential (GEP). We discuss how this critical point can be

estimated using quantum hardware. Performing quantum computations with various

lattice sizes, we obtain evidence of a transition from a symmetric to a symmetry-broken

phase using both discrete- and continuous-variable quantum computation. The ten-

site case is implemented on IBM quantum hardware using the Variational Quantum

Eigensolver algorithm to minimize the GEP and identify lattice level crossings. These

are extrapolated via simulations to find the continuum critical point.

Keywords Quantum computation · Phase transition · Quantum field theory ·
Variational quantum · Eigensolver · Continuous variables

1 Introduction

The calculation of non-perturbative properties in quantum field theories presents a

significant computational challenge due to the resources required to work with the

exponentially large Fock spaces involved in such systems. More specifically, in the

case of a (relativistic) bosonic field theory, the colossal scale of the Fock space derives

from two features. The first is the fact that each point in space has an infinitely large

local Hilbert space which can be characterized by, e.g., the span of the number states of

a harmonic oscillator system. This feature persists even in the lattice model. Second, we

must take the tensor product of these spaces. In order to observe continuum phenomena
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such as a quantum phase transition, which is the focus of this work, our lattice model

must include a large number of sites L � 1, and thus, the number of factors in this

tensor product is also L .

Quantum computers provide an encouraging means to address these large Fock

spaces, as they operate quantum mechanically by nature. Indeed, there is at present an

extensive effort to simulate relativistic quantum field theories on quantum hardware.

A particularly important class of problems are the simulation of gauge field theories

due to their crucial role in describing fundamental particle physics. These theories

contain bosonic degrees of freedom and so the corresponding infinite local Hilbert

spaces must be addressed. Some theoretical algorithm proposals for such problems

can be found in [1–5], and actual hardware implementations were performed in [6–9].

Unfortunately, the devices available to us at present are limited not only by the

number of qubits but more importantly by the high noise-levels inherent in a quan-

tum computer. While a fault tolerant quantum computer taking advantage of Quantum

Error Correction (QEC) [10–12] might prove reliable down the road, it is not currently

feasible to implement QEC on near-term quantum devices, dubbed Noisy Intermediate

Scale Quantum (NISQ) hardware. Adjusting to our current reality, it is worthwhile to

identify techniques which will allow us to extract useful information from available

technology. One can for example apply different forms of “error mitigation" tech-

niques to combat noise. These techniques are currently being investigated, and several

methods have been devised to address some of the most common sources of signifi-

cant error in quantum computers, including readout (RO) error [13–16], also known

as measurement error, as well as decoherence arising from two-qubit gates such as the

controlled-NOT (CNOT) gate [17–19].

A more straightforward solution is to implement hybrid quantum-classical algo-

rithms, thereby reducing the quantum aspect to a level that appropriately balances its

advantages and disadvantages. On the other hand, we shall see that there exists a situ-

ation in which the ground state of the Hamiltonian is factorizable, and both classical

and quantum algorithms for computing the quantum phase transition benefit from the

resulting simplification. Classically, the tensor product of Hilbert spaces is no longer

an issue, as the problem can be addressed locally. On the quantum side, the number

of entangling gates, as well as the range of the associated couplings, is substantially

reduced. This results in quantum circuits that can actually be implemented on today’s

hardware, even for a large lattice size L .

One must also consider the infinite local Hilbert in the case of a bosonic field theory.

While we can always truncate this Hilbert space when invoking qubit-based architec-

ture, which operates according to discrete-variable (DV) quantum computation, it is

perhaps more natural to simulate these bosonic modes with bosons themselves. This

is achieved in continuous-variable (CV) quantum computation. In addition to being

able to access the entire Hilbert space, a CV quantum computer can leverage opti-

cal elements and states that are more resistant to decoherence and can be effectively

manipulated using existing techniques [20]. Such a device could also in the future

be experimentally realized at room temperature, unlike current qubit devices such as

superconducting chips or ion trap quantum computers [21]. However, the implementa-

tion of non-Gaussian gates, required for universal quantum computation, is currently
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difficult to realize. To side-step this, some algorithms propose incorporating measure-

ments in the photon number basis to achieve nonlinearity [20, 22].

We shall see that CV quantum computers are particularly well-suited to describing

the quantum phase transition in a specific bosonic field theory: φ4 scalar field theory in

one space and time dimension (1 + 1 dimensions). A quantum computation of energy

levels on IBM’s qubit hardware has already been performed in [23]. Simulations

using CV quantum computation and the Quantum Imaginary Time Evolution (QITE)

algorithm [24] were implemented in [25]. It turns out that the ground state of the

system is well-approximated by a Gaussian wave-functional of the scalar field for

a large range of coupling strengths. Restricting to the subspace of such states, the

effective potential [26, 27] reduces to the Gaussian effective potential (GEP) [28, 29].

The GEP takes in a Gaussian Ansatz, and therefore, our CV quantum circuit only

requires gates that are already possible to implement with today’s technology.

The discussion proceeds as follows: In Sect. 2, we review φ4 scalar field theory in 1+
1 dimensions and its phase transition. In Sect. 3, we introduce the lattice theory which

is used for our quantum algorithms. In Sect. 4, we describe our CV quantum algorithm

and provide simulation results using the IBM Q bosonic qiskit [30]. In Sect. 5, we

discuss the DV quantum algorithm and present results from IBM’s superconducting

qubit hardware. We conclude in Sect. 6. Details are presented in Appendices A, B, and

C, which contain details of the GEP, our VQE algorithm, and derivatives with respect

to physical parameters, respectively.

2 Themodel

In this section, we discuss the salient features of φ4 scalar field theory in 1 + 1 dimen-

sions. After introducing the Hamiltonian, we discuss the phase transition between the

symmetric and symmetry-broken phases.

The Hamiltonian density in one spatial dimension is given by

H =
1

2
π2 +

1

2
(∂xφ)2 +

1

2
m2

0φ
2 +

λ

4!
φ4 (1)

where m0 is the bare mass and λ is the coupling strength of mass dimension two. The

field φ and its conjugate momentum π satisfy the canonical commutation relations

[
φ(x), π(x ′)

]
= iδ(x − x ′) (2)

The quartic self-interaction term in (1) induces mass renormalization. It is convenient

to split the Hamiltonian density into non-interacting and interacting parts,

H = H0 + Hint (3)

with

H0 =
1

2
π2 +

1

2
(∂xφ)2 +

1

2
m2φ2 , Hint =

1

2
δmφ2 +

λ

4!
φ4 (4)
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Fig. 1 Only divergent

irreducible diagram

where m is the renormalized mass and δm = m2
0 − m2 is a counterterm parameter.

We expand the field and its conjugate momentum in modes,

φ(x) =
∫

dk

2π

1
√

2ω(k)

(
a†(k)e−ikx + a(k)eikx

)

π(x) = i

∫
dk

2π

√
ω(k)

2

(
a†(k)e−ikx − a(k)eikx

)
(5)

with the dispersion relation

ω(k) =
√

m2 + k2 (6)

We deduce the commutation relations for creation and annihilation operators,

[
a(k), a†(k)

]
= 2π δ

(
k − k′) (7)

This system has one irreducible divergent diagram, shown in Fig. 1. As shown by

Coleman [31], we can remove this divergence by normal-ordering (subtracting at

mass level μ). The normal-ordered Hamiltonian density can be written as

H = Nμ

[
1

2
π2 +

1

2
(∂xφ)2 +

1

2
m2φ2 +

λ

4!
φ4

]
, (8)

Next, we follow the discussion of Ref. [32] in describing the phase transition in the

model. For m2 > 0, the classical potential is minimized at φ = 0. Small fluctua-

tions around the minimum have frequency m showing that in the weak coupling limit

λ/m2 � 1, we obtain free bosons of mass m. If m2 < 0, the classical potential is

minimized at φ = ±
√

−6 m2

λ
. Small fluctuations around the minimum have frequency

μ =
√

−2m2 leading to free bosons of mass μ in the weak coupling limit. There is a

duality between the two systems with the mass parameters related to each other via

1

λ

(
2m2 + μ2

)
=

1

4π
ln

μ2

m2
(9)

In the strong-coupling limit λ/m2 � 1 of the system with m2 > 0, this relation yields

two solutions for λ/μ2, with one corresponding to the weak coupling limit λ/μ2 � 1.

This is depicted in Fig. 2. With this relation, we now restrict ourselves to the m2 > 0

case. For weak coupling, the expectation value of the field φ(x) in the ground state

vanishes (〈GS| φ(x) |GS〉 = 0). If we fix the mass m2 and drive up the coupling λ,
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Fig. 2 Equivalence relation

between systems with m2 > 0

and m2 < 0. The weak coupling

limit for the m2 < 0 system

corresponds to the

strong-coupling limit of the

m2 > 0 system. No relation

exists below the intermediate

coupling λ/m2 ∼ 55. The

critical point (13) obtained in

Refs. [29, 32] is indicated with

the dashed line

then at large coupling we have symmetry breaking leading to a non-vanishing vacuum

expectation value, 〈GS| φ(x) |GS〉 = ±
√

−6 m2

λ
. We will concentrate on the case

〈GS| φ(x) |GS〉 =
√

−6 m2

λ
, as the other case (〈GS| φ(x) |GS〉 = −

√
−6 m2

λ
) is similar.

Thus, as we increase the coupling, we expect to see a phase transition from a

symmetric phase to a symmetry-broken phase. We can locate the critical point by

computing the effective potential and identifying the value of the coupling where the

order parameter 〈GS| φ(x) |GS〉 becomes nonzero. The effective potential is defined

as [28, 29]

Veff(φC ) = min
|�〉

〈�| H |�〉 , 〈�| φ(x) |�〉 = φC (10)

It should be noted that both of these expectation values are independent of the posi-

tion x . As noted in [27], this is a consequence of the translational invariance of the

ground state even in the case of spontaneous symmetry breaking so that momentum

conservation is always respected. The value of φC that minimizes the effective poten-

tial is the order parameter 〈GS| φ(x) |GS〉. We have seen, however, that at both weak

and strong coupling, the ground state of the system is approximated by that of a non-

interacting theory with some mass parameter 	. This state can be generated from

the weak-coupling vacuum using Gaussian operations. Thus, we can approximate the

ground state by a Gaussian functional of the field φ for all values of the coupling. This

leads us to consider the Gaussian effective potential (GEP),

VG(φC ) = min
	

〈
�φC ,	

∣∣H
∣∣�φC ,	

〉
(11)

where
∣∣�φC ,	

〉
is the ground state of the Hamiltonian

HφC ,	 =
1

2

∫
dx
[
π2(x) + (∂xφ(x))2 + 	2 (φ(x) − φC )2

]
(12)

Analytical calculations using the GEP yield the critical point [29, 32]

λ̃ ≡
λ

m2
= 61.27 (13)
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In the next section, we will place the system on a lattice in order to perform quantum

computation of the critical point (13).

3 Lattice

In this section, we write down the lattice form of the Hamiltonian (1). We will ana-

lytically minimize the effective potential for different lattice sizes which we will later

compare with results from our quantum calculations. We can then extrapolate these

results and obtain the continuum critical point (13).

We discretize the system in space with coordinate x = 0, 1, . . . , L − 1, where L

is the length of the spatial dimension in units in which the lattice spacing is a = 1.

The momentum lives in the dual lattice ( 2π
L

k, k = 0, 1, . . . , L − 1). The scalar field

and its conjugate momentum can be expressed in terms of creation and annihilation

operators obeying commutation relations
[
a(k), a†(k′)

]
= δkk′ as

φ(x) =
1

√
L

L−1∑

k=0

1
√

2ω(k)
a†(k)e−2π ikx/L + h.c. ,

π(x) =
i

√
L

L−1∑

k=0

√
ω(k)

2
a†(k)e−2π ikx/L + h.c. (14)

and the dispersion relation (6) is modified to

ω(k) =
√

	2 + 4 sin2 πk

L
, (15)

where 	 is an arbitrary mass parameter that will be varied for the calculation of the

GEP. The Hamiltonian (12) with φC = 0 is diagonal in the momentum representation,

HφC =0,	 =
∑

k

ω(k)

(
a†(k)a(k) +

1

2

)
(16)

It is convenient to work with the fields

q(k) =
1

√
2

[
a†(k) + a(k)

]
, p(k) =

i
√

2

[
a†(k) − a(k)

]
(17)

obeying the commutation relations
[
q(k), p(k′)

]
= iδk,k′ . in terms of which the Hamil-

tonian (16) reads

HφC =0,	 =
∑

k

ω(k)

2

[
p2(k) + q2(k)

]
. (18)
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Its ground state can be written as a product of single-mode squeezed states (Gaussian

functions),

|0〉 = |0〉0 ⊗ |0〉1 ⊗ · · · ⊗ |0〉L−1 , 〈q|0〉 =
1

π L/4
e−q

2/2 (19)

where q = (q(0), . . . , q(L − 1)). The ground state of the Hamiltonian with φc �= 0

is obtained by applying a displacement,

|�φC ,	〉 = e−iφC

√
L	p(0)|0〉 (20)

resulting in a squeezed coherent state with 〈�φC ,	|φ(x)|�φC ,	〉 = φC , as desired.

The fields q(k), p(k) are related to the fields in the position representation,

φ(x), π(x), by a Bogoliubov transformation,

φ(x) =
1

√
L

L−1∑

k=0

1
√

ω(k)

[
q(k) cos

2πkx

L
− p(k) sin

2πkx

L

]
,

π(x) =
1

√
L

L−1∑

k=0

√
ω(k)

[
p(k) cos

2πkx

L
+ q(k) sin

2πkx

L

]
. (21)

We define the potential

VG(φC ,	) =
1

L

〈
�φC ,	

∣∣ H
∣∣�φC ,	

〉
(22)

as the expectation value of the Hamiltonian

H =
L−1∑

x=0

[
1

2
π2(x) +

1

2
[∇φ(x)]2 +

m2
0

2
φ2(x) +

λ

4!
φ4(x)

]
. (23)

After some algebra, we obtain

VG(φC ,	) =
1

2
m2

0φ
2
C +

λ

4!
(φ2

C +6I0)φ
2
C + I1(	)+

m2
0 − 	2

2
I0(	)+

λ

8
I 2
0 (	) (24)

where

I0(	) =
1

2L

∑

k

1

ω(k)
, I1(	) =

1

2L

∑

k

ω(k) (25)

The GEP (11) is found as the minimum of (24). Setting ∂VG
∂	

= 0, and using d I1
d	

= 	I0,

we obtain

m2
0 − 	2 +

λ

2
φ2

C +
λ

2
I0 = 0 (26)
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which can be solved to express 	 in terms of φC . It is more convenient to express φC

in terms of 	,

φ2
C =

2(	2 − m2
0)

λ
− I0(	) (27)

and express the GEP in terms of 	, instead,

VG(	) =
1

2
m2

0

[
2(	2 − m2

0)

λ
− I0(	)

]
+

λ

4!

[
2(	2 − m2

0)

λ
− I0(	)

]2

+I1(	) −
λ

8
I 2
0 (	) (28)

The mass parameter 	 is in the interval 	 ∈ [	0,∞), where 	0 corresponds to

φC = 0 through Eq. (27),

m2
0 = 	2

0 −
λ

2
I0(	0) (29)

It is easy to see that 	0 is the renormalized mass (	0 = m). Indeed, using Eqs. (27)

and (28), we obtain

dVG

dφ2
C

∣∣∣∣∣
	=	0

=
dVG/d	2

dφ2
C/d	2

∣∣∣∣∣
	=	0

=
1

2
	2

0 (30)

It follows that the GEP has a minimum at 	 = 	0. There is another minimum at

	 = 	1 > 	0 at which dVG

d	2 = 0 (see Appendix A for details). For a fixed mass 	0,

as we vary the coupling constant λ, the difference between the two minima,


VG = VG(	1) − VG(	0) (31)

changes sign. The critical point 	c is found at 
VG = 0. Using dVG

d	2 = 0, we deduce

the critical coupling

λc =
	2

c + 2	2
0

I0(	0) − I0(	c)
(32)

Fig. 3 shows how the critical values vary with the size of the lattice for 	0 = m = 0.1.

We find
	2

c

m2 = 8.4 and λc

m2 = 60.8 as L becomes large. In the scaling limit, L → ∞,

m → 0 (in units in which the lattice spacing is a = 1), we will recover the continuum

result λc

m2 = 61.2.

4 CV quantum algorithm

We will calculate the GEP on quantum hardware using the Variational Quantum Eigen-

solver (VQE) algorithm [33]. To this end, we need to vary the mass parameter 	 in

order to determine its optimal value. To save on calculational resources, we define

a system by choosing the coupling constant λ and the renormalized mass m = 	0.

Then, we define the bare mass m0 that enters the Hamiltonian (23) using Eq. (29).
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Fig. 3 Critical values of a the variational mass parameter,
	2

c

m2 , and b the coupling constant, λc

m2 , vs. lattice

size L for renormalized mass 	0 = m = 0.1

Fig. 4 CV quantum circuit for

the Gaussian Ansatz state (20)

with a qumode for each lattice

site, two ancillary qumodes, and

featuring single- and two-mode

squeezers, and a displacement

Starting from the reference value 	0 = m, with fields q(k), p(k), we can build

a system with a different value of the mass parameter 	, with corresponding fields

q ′(k), p′(k), by noticing that there is a Bogoliubov transformation relating the two

systems,

q(k) = cosh r(k)q(k)−sinh r(k)q(L −k) , p′(k) = cosh r(k)p(k)+sinh r(k)p(L −k) ,

(33)

where

r(k) =
1

2
log

ω(k)

ω′(k)
(34)

with ω(k), ω′(k) given by the dispersion relation (15) for mass m,	, respectively.

For k �= 0, L
2

, this transformation can be implemented with a two-mode squeezer

S2(k, L − k; r(k)), where

S2(k, k′; r) = er
[
a†(k)a†(k′)−a(k)a(k′)

]
(35)

It can also be realized by beams splitters and single-mode squeezers as

S2(k, k′; r) = BS · S(k; r)S(k′;−r) · BS , (36)

where S(k; r) = er(a†2(k)−a2(k)) is a single-mode squeezer, and BS is a 50/50 beam

splitter. For k = 0, L
2

, the transformation (33) reduces to single-mode squeezing.

Thus, the state
∣∣�φC ,	

〉
(Eq. (20)) is generated using L qumodes with the quantum

circuit in Fig. 4. In this circuit, the displacement parameter differs from the one that

appears in Eq. (20) because we are expressing all operators in terms of quadratures

for the system with 	 = m.
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Having engineered the trial state
∣∣�φC ,	

〉
, we proceed to calculate its energy 〈H〉.

To compute expectation values on a CV substrate, we will perform photon number

measurements. Therefore, expectations of the powers of quadrature operators must be

expressed in terms of expectation values of number operators for the various modes

labeled by k,

N (k) = a†(k)a(k) =
1

2

[
q2(k) + p2(k) − 1

]
(37)

Expectation values of terms in the Hamiltonian that are proportional to 〈N (k)〉 are

straightforward to calculate with photon number measurements of the mode k. Expec-

tation values of the quadratures, such as 〈q2n(k)〉, can be calculated with the aid of the

quadratic phase gate P(�) = ei�q2/2 applied to each qumode independently. However,

it is experimentally easier to implement an evolution Hamiltonian that does not con-

tain quadratic powers of creation and annihilation operators per qumode. Therefore,

we construct our quantum circuits out of CX gates that can be decomposed into beam

splitters and a two-mode squeezer, each involving a Hamiltonian which is bi-linear in

qumode quadratures.

Thus, to calculate, e.g., 〈q2(k)〉, we add an ancillary qumode in the vacuum state

|0〉anc and entangle it with our trial state
∣∣�φC ,	

〉
using the CX gate e−i� panc⊗q(k). We

obtain the state

|�(�)〉 = e−i� panc⊗q(k) |0〉anc ⊗
∣∣�φC ,	

〉
(38)

Measurement of the photon number of the ancillary qumode, Nanc = a
†
ancaanc, yields

the expectation value 〈�(�)| Nanc |�(�)〉. After differentiating with respect to � twice

and setting � = 0, the ancillary qumode decouples and we obtain the desired expec-

tation value,

〈q2(k)〉 =
d2

d�2
〈�(�)| Nanc |�(�)〉

∣∣∣∣
�=0

(39)

Expectation values of higher powers of the quadratures are obtained similarly by

generalizing the above procedure.

In our algorithm, we will apply this procedure to the k = 0, L
2

qumodes, assigning

one ancillary qumode to each of them. For k �= 0, L
2

, we take advantage of a pairing of

the k, L−k modes which is present in the Hamiltonian and let them act as one another’s

ancillary qumode. The terms in the Hamiltonian containing the (k, L − k) qumode

pairs can be measured by computing the expectation values 〈N (k) ± N (L − k)〉 and

〈[N (k) ± N (L − k)]2〉. See Appendix B for details.

The complete circuit, including engineering of the trial state and photon num-

ber measurements, is shown on Fig. 5. The beam splitter (BS) gates are justified

in Appendix B. In practice, derivatives with respect to the parameter � (Eq. (39))

are approximated using finite differences for small � that inevitably generate inac-

curacies in a noisy environment. Thankfully, we can, instead, construct appropriate

linear combinations of expectation values,
∑

i ci 〈�(�i )| f (N ) |�(�i )〉, where f (N )

is a polynomial function of number operators, which evaluates expectation values of

quadratures exactly. This form bears a resemblance to the CV version of “parameter

shift rules" [34], which can be used to compute derivatives exactly. In our case, the

fact that the CX gate is applied last to the circuit means that parameter shifts of � can

123



Quantum computation of phase transition... Page 11 of 29 396

Fig. 5 CV quantum circuit required for computing expectation values of the various terms in the Hamilto-

nian with a qumode for each lattice site, two ancillary qumodes, and featuring two-mode squeezers S2, a

displacement, 50/50 beam splitters, CX gates and photon number measurements

be used regardless of the form of the trial state. Thus, e.g., the expectation value (39)

can be computed using the exact expression

〈q2(k)〉 =
1

2s2
[〈�(s)| Nanc |�(s)〉 + 〈�(−s)| Nanc |�(−s)〉 − 2 〈�(0)| Nanc |�(0)〉]

(40)

Similar linear combinations can be found for all other expectation values of quadratures

needed to compute the energy of the trial state 〈H〉. Details can be found in Appendix

B. For our calculations we chose s = 1. This value is large enough to reduce effects of

sampling error, and small enough to limit truncation error in simulations. By expressing

the CX gate in terms of beam splitters and squeezers [35], we see that the value s = 1

corresponds to about 4 dB squeezing which is well within the ∼10 dB limit of today’s

technology [36].

For the variational algorithm, we also need to compute exact derivatives with respect

to the mass parameter 	′ which enters the quantum gates through the squeezing

parameters r(k). This helps reduce sampling error in our VQE results. All gates in our

Ansatz are Gaussian, and this allows us to apply a parameter shift rule for derivatives

with respect to r(k).

Consider the derivative
d

dr(k)
〈�(�)| Nanc |�(�)〉 (41)

of the expectation value that contributes to 〈q2(k)〉 (Eq. (40)). The following parameter

shift rule holds:

d

dr(k)
〈Nanc〉φC ,r(k) =

1

sinh t

[
〈Nanc〉φC cosh s

2 ,r(k)+ t
2

− 〈Nanc〉φC cosh s
2 ,r(k)− t

2

]
(42)

Thus, we must take φC → φC cosh t
2

in our circuits to get the correct derivative. For

the terms quadratic in the number operators, we employ the rule

d

dr(k)
〈N 2

anc〉φC ,r(k) =
2

sinh t

[
〈N 2

anc〉φC

√
cosh t

4 ,r(k)+ t
4

− 〈N 2
anc〉φC

√
cosh t

4 ,r(k)− t
4

]
.

(43)
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It should be noted that this parameter shift does not give the correct factors for the

odd powers of q(0) in the derivative of 〈�(�)| N 2
anc |�(�)〉. Thankfully, these terms

do not contribute since odd powers of q map even number states to odd number states,

the latter of which do not contribute to the squeezed vacuum of a single qumode.

These results allow us to compute derivatives with respect to squeezing parameters,

and consequently the mass parameter 	′, as expectation values of qumode photon

numbers.

In the general case, one would encounter non-Gaussian gates in the Ansatz circuit,

in which case parameter shift rules are more difficult to apply. Ref. [37], for instance,

proposes an Ansatz where a non-Gaussian operator follows the initial squeeze of the

vacuum. In Appendix C, we provide a quantum circuit for computing the derivative

which would apply even if non-Gaussian elements were present. This circuit was used

in our simulation results.

Derivatives with respect to the field shiftφC can be computed using the displacement

parameter shift rule:

d

dφC

〈Nanc〉φC ,r(k) =
1

2t

[
〈Nanc〉φC +t,r(k) − 〈Nanc〉φC −t,r(k)

]
(44)

It is also possible to compute the derivative in a way that does not require running

circuits with two separate parameters. It is realized by directly transforming the quadra-

ture operators, i.e.,

q(k) → q(k) +
√

LmφC , p(k) → p(k) . (45)

This results in a polynomial in φC which is straightforward to differentiate. This

approach generalizes to any variational calculation that involves the effective potential,

since the displacement 〈φ〉 = 0 → 〈φ〉 = φC is performed as a final step and is only

applied to the zero mode q(0). Details relevant for our system are given in Appendix

C, and they were used in derivative calculations for our CV simulations.

Let	 = 	1 be the value of the variational mass parameter that minimizes the energy

〈H〉 for a given displacement φC . As discussed in the previous Section (Eq. (31)), to

determine the critical coupling, we need to find the point at which the difference


〈H〉 = 〈H〉	=	1,φC
− 〈H〉	=m,φC =0 (46)

changes sign as we vary the dimensionless coupling λ̃ = λ

m2 . Recall that we chose

the initial value of the variational mass parameter 	 = m by taking advantage of the

analytic result (29) to avoid having to apply a variational algorithm to compute the

minimum 〈H〉 for φC = 0. This helps reduce the effects of noise, both from sampling

error, as well as from machine noise on qubit hardware, which will be discussed in

the next Section.

To reduce the amount of computational resources further, we set r(k) = 0, for all

k �= 0, thus replacing expectation values of these modes with their vacuum expectation

values, e.g., 〈�| q2(k) |�〉 → 〈0| q2(k) |0〉 = 1
2

. This reduction is also necessary when

implementing the algorithm on a qubit architecture in order to reduce machine noise
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Fig. 6 CV simulation results for lattice size L = 10 and renormalized mass m = 	0 = 0.1. The solid black

curve is the exact difference 〈H〉VQE − 〈0| H |0〉 at a Hilbert space truncation of n = 32, while the dashed

blue curve sets the squeezing parameter r(k) = 0 for all modes with k �= 0. Displayed in panel a are points

obtained using the COBYLA optimizer for two different numbers of shots, as well as points obtained using

gradient descent with 2048 shots. Points are plotted near the transition and linearly extrapolated (dotted red

line) to the critical point. In panel b, points obtained using gradient descent are plotted on a larger scale,

and quadratic extrapolation (dotted red line) is used to find the critical point. The value of 〈H〉 at φC = 0

is obtained classically to reduce sampling error. The CX gate parameter shift is s = 1. Error bars were

obtained using bootstrap re-sampling [38]

to a manageable level. For lattice size L � 10, this simplification leads only to a

small shift in the critical point since for small m, r(k) ∼ O(m2). For larger L , the

error increases and it becomes necessary to compute expectation values away from

the vacuum for some of these modes.

Displayed in Fig. 6 are results from noiseless simulations of the CV algorithm. They

were obtained with the assistance of CV gates included in bosonic qiskit [30]. In panel

(a), we compare VQE results from a non-gradient-based optimizer (“COBYLA") with

those from gradient descent. We see that significantly less shots (2048) are needed to

identify the optimal parameters in the gradient descent method. However, a large

number of shots (100,000) are required when evaluating 
〈H〉 at these parameters.

We obtain the critical point by extrapolating the VQE energies to the x-intercept. The

dashed blue curve is classical and corresponds to the case r(k) = 0 for all k �= 0. We

find a value of λ̃ = 28.0 ± 0.7, which contains the value obtained from the dashed

curve, λ̃ = 27.5, within its error bars. In panel (b), VQE energies are computed for
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Fig. 7 CV simulation results for lattice size L = 30 and renormalized mass m = 	0 = 0.1. The solid

black curve is the exact difference 〈H〉VQE − 〈0| H |0〉 at a Hilbert space truncation of n = 32, while the

dashed blue curve sets the squeezing parameter r(k) = 0 for modes with k > 3. 2048 shots were used to

obtain the optimal parameters. Quadratic extrapolation (dotted red line) was used to find the critical point.

The value of 〈H〉 at φC = 0 was obtained classically to reduce sampling error. The CX gate parameter shift

is s = 1. Error bars were obtained using bootstrap re-sampling [38]

larger values of λ̃, and a quadratic extrapolation is performed. We obtain a value of

28.9 ± 1.0. The low end of this range has about a 1.5% error with the value obtained

from the dashed curve. In all of these calculations, a Hilbert space cutoff of n = 32 is

used. In bosonic qiskit, this means the qumode uses 5 qubits.

In Fig. 7, we display results for a larger lattice size, L = 30. Here, we use only

gradient descent for minimization. It is necessary to increase the number of modes

with r(k) �= 0 up to k = 3 in order to obtain a good approximation of the case where

all modes are squeezed. We locate the critical point at λ̃ = 59 ± 0.9. The low end

of the range has about a 1.9% error with the value obtained from the dashed curve,

λ̃ = 57.

To get even closer to the continuum limit, we increased the lattice size to L = 76,

with the appropriate squeezes applied to all qumodes, in contrast to Figs. 6 and 7 where

only a few modes were squeezed. To reduce simulation time, we used a statevector-

based simulator which corresponds to the infinite shot limit. This made it possible to

reduce truncation error by taking s = 0.1 instead of s = 1, which in turn allowed us

to use only 4 qubits per qumode instead of 5. This also gave us the opportunity to take

advantage of the COBYLA optimizer, which in our simulations was more efficient in

the absence of noise (including sampling error). The results are displayed in Fig. 8. We

found a level crossing at λ̃ = 61.1, which is very close to the limiting value obtained

for 	0 = 0.1, λ̃ = 60.8 (see panel (b) in Fig. 3), and has a 0.33% error with the

continuum critical value λ̃ = 61.3.

5 DV quantum algorithm

In this Section, we discuss a discrete-variable (DV) approach to calculating the phase

transition on a quantum computer.

We first note that one can go a long way by using just two qubits for each pair

of modes (k, L − k). This is possible for two reasons. First, in the DV case, one can
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Fig. 8 Noiseless CV simulation

results for lattice size L = 76

and renormalized mass

m = 	0 = 0.1. The minimized

energy differences are

extrapolated to the x-axis, where

a level crossing at λ̃ = 61.1 is

identified. We used a CX gate

parameter shift of s = 0.1 and a

qumode Hilbert space dimension

cutoff of n = 16. These results

correspond to the infinite shot

limit

remove the final displacement operation from the quantum circuit and instead use it

to perform a similarity transformation on the Hamiltonian,

H → H̃ = D†
(√

LmφC

)
· H · D

(√
LmφC

)
, (47)

where D acts only on the zero mode. As was discussed in the previous Section, this

course of action generalizes to any variational calculation that involves the effective

potential. Second, the remaining operations in the quantum circuit are parity pre-

serving. For k = 0, L
2

, we act with a single squeeze operator which generates only

even-photon number states from the vacuum. The two-mode squeeze acting on the

(k, L − k) pair of modes generates the collective number states |00〉 , |11〉 , |22〉 , . . .,

and so only half of the qubits are needed to encode such states at a given truncation

level. In fact, we will treat the (k, L − k) pair of modes as a single entity labeled by k

(1 ≤ k < L
2

), and use two qubits to represent it.

The success of this truncation scheme is illustrated in Fig. 9 where we see that,

in the absence of noise, two qubits bring us to a level crossing (i.e., the value of the

coupling λ̃ = λ

m2 where the absolute minimum of the effective potential begins to

occur for a nonzero value of φC ) that is within 1% of the true value for lattice size

L = 30 and mass m = 0.1. We also notice that the level crossing obtained in Fig. 9

is already within 10% of the continuum critical point λ̃ = 61.2. As we increase the

lattice size to L � 40, the truncation error begins to have a more significant effect,

and it is necessary to incorporate more of the infinite local Hilbert space to stay within

1% of the true lattice level crossings.

To implement the 10-site case on quantum hardware, two qubits suffice. In the

DV implementation, it is not necessary to entangle different modes. Therefore, each

mode requires a circuit that contains only a single CNOT, which is the maximum

number required for a two-qubit circuit. This is nicely illustrated by the circuit in

Fig. 10, which directly constructs the Schmidt decomposition of the two-qubit system

[39]. It should be noted that a similar Schmidt circuit structure also enters in the state

preparation of arbitrary three- and four-qubit circuits, with less CNOTs required than

the circuits produced using IBM qiskit’s isometry function, which are based on the

circuit decomposition methods of Ref. [40]. Our main goal is to find the most shallow

circuit that represents squeezing of the vacuum.
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Fig. 9 a Gaussian Effective Potential and b 
〈H〉 vs λ̃ ≡ λ

m2 for L = 30 sites, with renormalized mass

m = 	0 = 0.1, determined using two qubits per qumode. The potential in a is rescaled by L and plotted

for several values of the coupling λ̃. In b, the first-order level crossing occurs near λ̃ = 56, to be compared

with the continuum phase transition at λ̃ = 61.2. The solid black curve shows energy differences for the

two-qubit truncation, with the level crossing identified with the dashed vertical line. The analytical critical

point (CP) is indicated with the solid vertical line (see panel (b) in Fig. 3)

Fig. 10 Preparation of an arbitrary two-qubit state [39]. The circuit constructs the Schmidt decomposition

of the bipartite system. RY (θ) is a y-rotation and U , V are single-qubit unitary gates. Only one CNOT gate

is needed

Using qubits, the evaluation of powers of quadrature operators q(k), p(k) discussed

in the previous Section proceeds in a more traditional fashion. We expand the quadra-

tures as linear combinations of two-qubit Pauli operators. Since we have absorbed the

final displacement into the Hamiltonian, the zero-mode quadrature expansions contain

coefficients that are functions of the displacement parameter. All operators that we are

concerned with are real, so we need only consider ten Pauli operators. To evaluate the

expectation values of these operators, we diagonalize them in the computational basis
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using single-qubit operations. For example, we evaluate 〈�| X ⊗ Z |�〉 as

〈�| X0 Z1 |�〉 = 〈�| H0 Z0 Z1 H0 |�〉 , (48)

where X and Z are Pauli matrices, H is the Hadamard gate and H0 |�〉 is the circuit

to be measured on the quantum computer. Some operators can be diagonalized by

the same circuit due to bit-wise commutation. We find that for two qubits, only five

circuits need be evaluated on the quantum computer, for each mode. When all circuits

are evaluated, we can compute expectations of quadrature operators as, e.g.,

〈�| q2(k) |�〉 =
5∑

i=1

〈�i | fi (Z) |�i 〉 (49)

where fi (Z) is a function of the Pauli Z operators which corresponds to the i th circuit.

Its expectation value is computed as

〈�i | fi (Z) |�i 〉 =
∑

j

〈 j | fi (Z) | j〉 Pr (| j〉) (50)

where | j〉 is a computational basis state.

As discussed in the previous Section, we used a gradient-based optimizer to perform

the VQE minimization. For the squeezing parameter r(k) of mode k, we used

d

dr(k)
〈S†(r(k))AS(r(k))〉 =

i

2
〈S†(r(k)) [A, q(k)p(k) + p(k)q(k)] S(r(k))〉 ,

(51)

where S = e
i
2 (qp+pq) is a single-mode squeezer, and similarly for two-mode squeez-

ers. Since we have severely truncated the Hilbert space, we cannot simplify the

commutator using the fundamental commutation relations
[
q(k), p(k′)

]
= iδk,k′ .

Instead, we expanded the commutator, similar to the original quadrature operators, in

terms of the ten two-qubit Pauli operators, and used the results of the same five circuits

to compute derivatives of expectation values. The form (51) is used in ADAPT-VQE

[41], which is an iterative algorithm where new candidate gates are applied to the

circuit at each step, and the derivatives with respect to their parameters are evaluated

to determine the best gate to append to the circuit at the current iteration. In our case,

the circuit remains fixed, but Eq. (51) still applies since the single- and two-mode

squeezes are in the last (and only) layer of the circuit.

Derivatives with respect to φC are evaluated by writing the commutators of zero

mode quadratures with the displacement generator and then making the Pauli expan-

sion coefficients of the resulting operator functions of the displacement parameter as

before.
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5.1 Error mitigation

Even though the structure of our calculation is not complicated, requiring two-qubit

circuits with only one CNOT gate, it is still necessary to apply error mitigation tech-

niques in order for the quantum computer to return valid results. This is because we

are looking for a value of the dimensionless coupling λ̃ = λ

m2 , where 
〈H〉 (Eq. (46))

becomes nonzero. In a noisy environment, it is difficult to resolve the location of this

point precisely. Therefore, we must strive to reduce the noise. This includes sampling

error, which can be reduced by using a large number of shots. In fact, we evaluated


〈H〉 at the optimal parameters using 100, 000 shots. However, as with the CV case,

we used only 2048 shots to obtain the optimal parameters when using the gradient

descent method for minimization.

For machine noise, we made use of two error mitigation techniques. First, we had to

address readout (RO) error, also known as measurement error. This occurs when a qubit

is measured and collapses to the |0〉 or |1〉 state, but upon reading out the measurement

result, there is a classical bit flip and one obtains the opposite result. One can attempt

to mitigate this by running calibration experiments where a computational basis state

is prepared and then measured. The probabilities of this state being readout as other

computational basis states are contained in a calibration matrix which can be inverted

and then applied to measurement results to obtain approximate values for the true

probabilities. IBM Qiskit allows the user to automatically incorporate this calibration

in the jobs they submit to the quantum computer. This is the approach we followed.

We used only two qubits, and therefore only four calibration experiments had to be

run. In the general case, this approach scales exponentially with the number of qubits

being utilized. By assuming that RO errors are limited in their correlations, one can

reduce the RO error mitigation overhead to be polynomial in the number of qubits.

This is explored in Refs. [16, 23, 42].

To address CNOT error, we attempted a zero-noise extrapolation (ZNE). To do this,

we took our quantum circuits and for each CNOT in the original circuit, we added

pairs of additional CNOTs, which in the absence of noise were just applications of an

identity operation. For each added pair, we observed the effect on the value of 
〈H〉.
These observed values were extrapolated to the nonphysical case where there are no

CNOTs, to obtain the ZNE.

As shown in Figs. 11 and 12, the total number of pairs to add, as well as the order

of the extrapolation, depends on the quantum device the calculation is performed on

and the severity of the errors encountered at the time the device is accessed. In Fig. 11

and panel (a) of Fig. 12, we see that even for 9 CNOTs per CNOT, the errors do not

grow too large, and therefore, a linear extrapolation incorporating all five points helps

to get a good ZNE. On the other hand, panel (b) in Fig. 12 depicts significantly more

growth in the error, even when using the same qubits as in panel (a). Therefore, linear

extrapolation does not give an accurate ZNE when going up to 9 CNOTs per CNOT

and a better estimate is obtained with fewer points.

Limiting the maximum number of additional CNOT gates such that the error growth

remains under control is the focus of Refs. [18, 19]. Instead of adding the same number

of pairs of CNOT gates to every CNOT in the original circuit (fixed identity insertion
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Fig. 11 CNOT extrapolation for

the evaluation of 
〈H〉 at

coupling λ̃ = 30 evaluated at the

optimal parameters for lattice

size L = 10 and renormalized

mass m = 0.1, on IBM Q

Mumbai. Five points (up to 9

CNOTs per CNOT) were used

for the extrapolation

Fig. 12 CNOT extrapolation for the evaluation of 
〈H〉 at coupling λ̃ = 30 evaluated at the optimal

parameters for lattice size L = 10 and renormalized mass m = 0.1, on IBM Q Kolkata. In a, five points (up

to 9 CNOTs per CNOT) were used for extrapolation. In b, only three points (up to 5 CNOTs per CNOT)

were used. While the device and qubits used were the same, the circuit jobs were run on different days

method), an alternative is proposed where one could apply a variable number of pairs

for each unique CNOT in the original circuit (random identity insertion method).

However, it was demonstrated that while the latter allows one to rely on more shallow

circuits to reduce bias in the results, more measurements are required to combat the

increased sampling error. Middle-ground approaches such as the set identity insertion

method [19] can be applied to reduce bias without a large increase in sampling error.

In our calculation, we proceeded with the fixed identity insertion method, especially

since we already required a large number of shots to deal with sampling error. However,

a higher truncation level or more complicated Ansätze will yield deeper circuits, and

these alternatives might be advantageous for those cases.

5.2 Quantum hardware results

Next, we present our results from IBM Q hardware shown in Fig. 13. As with the

CV quantum algorithm, we set r(k) = 0, for all k �= 0, and replace expectation

values of nonzero modes with their vacuum expectation values. Once again, VQE

minimization is performed using a gradient descent algorithm, and derivatives are

computed using only 2048 shots. Also, ZNE was not necessary for the location of
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Fig. 13 Quantum hardware results for lattice size L = 10 and renormalized mass m = 0.1. The solid black

curve is the exact difference 〈H〉VQE −〈0| H |0〉 while the dashed blue curve sets the squeezing parameter

r(k) = 0 for all modes with k �= 0. Minimization is done on the IBM Q devices: Perth, Nairobi, and Lagos.

The value of 〈H〉 at the optimal parameters was obtained both classically (purple triangles), and on two

separate quantum computers: a IBM Q Mumbai and b IBM Q Kolkata. The error bars were obtained by

bootstrap re-sampling. Displayed are results with no CNOT extrapolation (NE) and linear extrapolation

(LE). A linear extrapolation was performed on the LE points to locate the critical point (dotted red line)

reasonable optimal parameters. Several devices were used for minimization: IBM

Perth, Nairobi and Lagos. To judge how well the minimization step was performed,

we evaluated classically the value of 
〈H〉 at the obtained optimal parameters. These

values are given in Fig. 13, labeled “hybrid", and are seen to agree with fully classical

results.

We also computed the value of 
〈H〉 at the optimal parameters using quantum

hardware. To get acceptable results, we needed 100,000 shots as well as ZNE (see

Figs. 11 and 12). Extrapolating the results and locating the x-intercept, we identified

a critical point at λ̃ = 29.6 ± 1.3 in panel (a). The lower end of this range has a 4.4%

error with the value obtained from the dashed curve, λ̃ = 27.1. Again, the dashed

curve is the fully classical result for the case where r(k) = 0 for all k �= 0. In panel

(b), we obtained a value of λ̃ = 29.5 ± 1.5, the lower end of which had about a 3.3%

error with the value from the dashed curve. The values of 
〈H〉 were obtained using

IBM Q Mumbai for panel (a) and IBM Q Kolkata for panel (b) of Fig. 13.
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Fig. 14 Noisy DV simulation results for lattice size L = 30 and renormalized mass m = 0.1. The solid

black curve is the exact difference 〈H〉VQE − 〈0| H |0〉 while the dashed blue curve sets the squeezing

parameters r(k) = 0, for all modes with k > 3. The noise model derives from calibrations of the device

IBM Q Mumbai. The error bars were obtained by bootstrap re-sampling. Displayed are results with no

CNOT extrapolation (NE) and linear extrapolation (LE). A linear extrapolation was performed on the LE

points to locate the critical point (dotted red line). The value of 〈H〉 at the optimal parameters was also

computed classically (purple triangles)

In order to get closer to the continuum limit, we calculated the L = 30 case using

a noisy simulation. The results are displayed in Fig. 14. As discussed earlier, this

is about the largest lattice size we can compute using only two qubits per qumode.

As with the CV case, we needed to increase the number of modes with r(k) �= 0

up to k = 3. Extrapolating the data to the x-intercept, we found a level crossing

at λ̃ = 62.3 ± 1.3, the lower end of which had about a 6.3% error with the value

obtained from the dashed curve, λ̃ = 57.4. We note that the latter value itself has

about a 6% error with the continuum critical point, demonstrating that a lot can be

done with just two qubits per qumode as well as a limited number of squeezing

operations.

6 Conclusion

In summary, we have performed two quantum computations of the phase transition

in φ4 scalar field theory in one space and one time dimension. One was performed

using continuous-variables (CV) quantum computation and the other utilized discrete

variables (DV). The DV case was implemented on actual quantum hardware from

IBM Q. Due to the particular applicability of a Gaussian Ansatz to the variational

calculation of this transition, we found that we could complete the calculation with

relatively few resources.

CV (qumodes) found a natural application to this particular problem. No non-

Gaussian gates were required, allowing the CV quantum algorithm to be experimen-

tally realizable with today’s technology. We also found that the calculation could

be completed using only photon number measurements, and at most two ancillary

qumodes were necessary. CV parameter shift rules proved to be quite useful in our

algorithm.
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For DV (qubits), the problem was reducible to one where we required only two

qubits for each mode. Expectation values were computed using standard methods.

While zero-noise extrapolation was required for evaluating the expectation value of

the Hamiltonian, it did not prove to be crucial in obtaining the optimal variational

parameters. Results obtained from IBM hardware agreed with classical results.

One of the main challenges in computing the phase transition was countering the

effects of sampling error (shot noise). This was apparent even in the noiseless simu-

lations performed for the CV case. While it was vital to run a very large number of

shots in evaluating the expectation value of the Hamiltonian, we found that far fewer

shots were needed in a gradient-based approach to computing the optimal parameters.

Our algorithm provides an interesting launching point for future work. At present,

our calculation factorizes into blocks, preventing exponential scaling in a classical

computing sense, and reducing error in a quantum computing sense. As we look toward

more complicated systems, such as lattice gauge theories, we want to see whether this

separability holds to some extent.

It would be interesting to see what happens when we move beyond non-Gaussian

Ansätze. It has been demonstrated [37] that non-Gaussian elements might be essential

in probing the second-order nature of the φ4 phase transition, and so we have an

important phenomenological motivation to explore this extension. While the ability to

factorize the Ansatz has made possible the analysis of a non-perturbative property of

φ4 theory, we are also interested in seeing where entangling gates provide a quantum

advantage. As suggested by the CV equivalent of the Gottesman-Knill Theorem [43,

44], the presence of non-Gaussian gates will prove central in demonstrating such an

advantage.
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Appendix A: Critical coupling

In this Appendix, we provide details of the calculation of minima of the GEP. In Sect. 3,

we asserted that the effective potential, as a function of the mass parameter 	 (Eq.

(28)), has a second minimum at some 	1 > m. We can use Eq. (29) to eliminate the

bare mass m0 in favor of the renormalized mass m = 	0 in (28) to obtain

VG(	) =
1

2

[
	2

0 −
λ

2
I0(	0)

][
2(	2 − 	2

0)

λ
+ I0(	0) − I0

]
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+
λ

4!

[
2(	2 − 	2

0)

λ
+ I0(	0) − I0

]2

+ I1 −
λ

8
I 2
0 (A1)

The value of the potential at the renormalized mass is

VG(	0) = I1(	0) −
λ

8
I 2
0 (	0) (A2)

The derivative of (A1) is

dVG

d	2
=

1

3λ

[
1 −

λ

2

d I0

d	2

] [
	2 + 2	2

0 + λI0 − λI0(	0)

]
(A3)

It vanishes for 	 = 	1 such that

λ =
	2

1 + 2	2
0

I0(	0) − I0(	1)
(A4)

For the phase transition, we need to know the sign of 
VG (Eq. (31)). We obtain


VG =
[−	4

1 − 4	2
1	

2
0 + 2	4

0]I0(	1) + [−	4
1 + 2	2

1	
2
0 + 2	4

0]I0(	0) + 4(	2
1 + 2	2

0)(I1(	1) − I1(	0))

4(	2
1 + 2	2

0)

(A5)

where we used (A4). Given m = 	0, the solution 	 = 	1 to 
VG = 0 with 	1 > 	0

is the critical value 	c. These values are plotted for different lattice sizes on panel

(a) in Fig. 3. Substituting in (A4), we obtain the critical coupling λc (Eq. (32)). Their

values for different lattice sizes are shown on panel (b) in Fig. 3.

Appendix B: VQE

In this Appendix, we provide details of the terms in the Hamiltonian that are relevant

to our VQE algorithm and the CV quantum circuits.

To take advantage of the form of the Ansatz state, we express the Hamiltonian

in terms of the quadrature operators q and p and then compute expectation values

of the various terms in the Hamiltonian using a quantum computer. Notice that the

Gaussian Ansatz in Fig. 4 is even under the reflection operators for nonzero modes,

eπ i[N (k)+N (L−k)] (1 ≤ k < L
2

) and eπ i N ( L
2 ). Therefore, the only Hamiltonian terms

contributing are those with an even number of quadrature operators acting on the k = L
2

mode or an even total number of quadrature operators acting on a (k, L − k) mode

pair, since each quadrature operator is odd under reflection. Since the Hamiltonian

only contains an even number of quadrature operators per term, this implies that only

an even number can act on the zero mode as well. We can also eliminate terms with an

odd number of quadratures p(k) acting on a single mode. This follows from the fact
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Fig. 15 Alternative quantum circuit to the one in Fig. 5

that such an operator is purely imaginary while the Ansatz unitaries are real. These

observations help us reduce the number of terms to be computed.

It is convenient to express the fields (Eq. (21)) as

φ(x) =
1

√
L

⎡
⎢⎣

q(0)
√

ω(0)
+

q( L
2
)

√
ω( L

2
)

(−)x +
∑

1≤k< L
2

√
2

ω(k)

(
q+(k) cos

2πkx

L

−p−(k) sin
2πkx

L

)]

π(x) =
1

√
L

⎡
⎢⎣
√

ω(0)p(0) +

√
ω

(
L

2

)
p

(
L

2

)
(−)x +

∑

1≤k< L
2

√
2ω(k)

(
p+(k) cos

2πkx

L
+ q−(k) sin

2πkx

L

)]
(B1)

in terms of the linear combinations of quadratures,

q±(k) =
1

√
2

(q(k) ± q(L − k)) , p±(k) =
1

√
2

(p(k) ± p(L − k)) , 1 ≤ k <
L

2
(B2)

which can be implemented with beam splitters.

The Hamiltonian can be written as

H =
ω(0)

2

[
q2(0) + p2(0)

]
+

ω( L
2 )

2

[
q2(

L

2
) + p2(

L

2
)

]

+
∑

1≤k< L
2

ω(k)

2

[
q2
+(k) + q2

−(k) + p2
+(k) + p2

−(k)

]
]

+
	2 − m2

2

⎡
⎢⎣

q2(0)

ω(0)
+

q2(L/2)

ω( L
2 )

+
∑

1≤k< L
2

1

ω(k)

(
q2
+(k) + p2

−(k)

)
⎤
⎥⎦
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+
λ

24L

[
q4(0)

ω2(0)
+

q4( L
2 )

ω2( L
2 )

+ 6
q2(0)q2( L

2 )

ω(0)ω( L
2 )

+ 6

(
q2(0)

ω(0)
+

q2( L
2 )

ω( L
2 )

)

∑

1≤k< L
2

1

ω(k)

(
q2
+(k) + p2

−(k)

)

+
1

2

∑

1≤k< L
2

1

ω2(k)

[
3
(

q2
+(k) + p2

−(k)

)2(
1 − δ

k, L
4

)
+ 4

(
q4
+(k) + p4

−(k)

)
δ

k, L
4

]

+3
∑

1≤k<k′< L
2

1

ω(k)ω(k′)

[
2
(

q2
+(k) + p2

−(k)

) (
q2
+(k′) + p2

−(k′)
)

+
(

q2
+(k) − p2

−(k)

) (
q2
+(k′) − p2

−(k′)
)

δ
k+k′, L

2

]]
(B3)

In the VQE circuit shown in Fig. 5, we used a two-mode squeezer to generate all of the

squeezed states, including the k = 0, L
2

modes. We also applied 50/50 beamsplitters to

all pairs of qumodes in order to implement the transformation (B2). For simulations,

the circuit in Fig. 5 results in significant sampling error from computing derivatives

with respect to �, even when using the parameter shift rule. This sampling error can

be mitigated on actual CV hardware by increasing the magnitude of the shifts on the �

parameter (up to the limit the platform can handle). However, in a finite Hilbert space

necessitated by limitations of simulations, this greatly increases truncation error. We

therefore implemented the equivalent circuit shown in Fig. 15, instead.

We calculated expectation values of quadratures that contribute to the expectation

value of the Hamiltonian using photon number measurements. The expectation value

〈q2(k)〉 was computed in (39). More generally, we have

〈q2n(k)〉 =
2n

(2n)!
d2n

d�2n
〈�(�)| N n

anc |�(�)〉 (B4)

where |�(�)〉 is given in Eq. (38). This follows from the fact that the CX gate

ei� panc⊗q(k) transforms qanc → qanc + �q(k), panc → panc.
We re-expressed these derivatives as linear combinations of expectation values

using CX gates with different parameters �; see, Eq. (40) for 〈q2(k)〉. For the quartic
term, 〈q4(k)〉, we used a five-term parameter shift:

〈q4(k)〉 =
1

6s4

[
〈�(2s)| Nanc |�(2s)〉 + 〈�(−2s)| Nanc |�(−2s)〉 − 4 〈�(s)| Nanc |�(s)〉

− 4 〈�(−s)| Nanc |�(−s)〉 + 6 〈�(0)| Nanc |�(0)〉
]

(B5)

For modes with 1 ≤ k < L
2

, we considered pairs (k, L − k) as one another’s

ancilla by making the replacements Nanc → N (k) + N (L − k), and e−i� panc⊗q(k) →
e−i� p(k)⊗q(L−k).
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Fig. 16 Quantum circuit employing two ancilla qubits for the calculation of derivatives with respect to

squeezing parameters for the modes with k = 0, L
2 . It features single-mode squeezers, an unspecified

qumode unitary U , Hadamard gates on the qubits, and SNAP gates entangling qumodes and qubits. At

the end, qubits are measured in the computational basis whereas the (unspecified) Hermitian operator A is

measured on the qumode

Appendix C: Derivatives for physical parameters

Here, we discuss further the implementation of derivatives of expectation values with

respect to physical parameters which can be computed exactly in quantum circuits.

As we discussed, the introduction of parameter shift rules allowed us to compute

derivatives with respect to the squeezing parameters r(k) (Eq. (34)). This was enabled

by the Gaussian form of our Ansatz. It is of great interest to extend results of exact

computation of derivatives to cases where parameter shift rules are challenging to

implement, such as in the presence of non-Gaussian gates.

To this end, one can leverage the tools of bosonic qiskit [30] which allow coupling

between qubits and qumodes. Such couplings exist in hybrid quantum systems such

as circuit QED [45]. In particular, one can take advantage of the Selective Number-

dependent Arbitrary Phase (SNAP) gate,

SNAPn (θ) = e−iθ Z⊗|n〉〈n| (C1)

which involves a phase that is conditioned on the photon number state |n〉 of the

physical qumode.

To compute derivatives with respect to a squeezing parameter r(k), notice that for

the expectation value of a Hermitian operator A in a state constructed using a squeezer

S(r) = e
i
2 (a†2−a2) and an unspecified, possibly multi-modal, unitary U , taking a

derivative with respect to r , we obtain

d

dr
〈0| S†(r)U † AU S(r) |0〉 =

√
2�〈2| S†(r)U † AU S(r) |0〉 (C2)

involving number states |0〉 and |2〉. For a single qumode, this is implemented with

the quantum circuit in Fig. 16. This circuit allows us to compute derivatives using an

ancilla. We first apply a squeezer of arbitrary squeezing t that generates all the even

number states, and then, we use SNAP gates to change the states of the qubits. The

qubit states allow us to label the number states for the physical qumode. By projecting

the ancilla qubit labeled 1 onto the state |1〉, we pick out the states of the qumode that

we are interested in: |0〉 , |2〉. Finally, we measure Z0 ⊗ A. To obtain (C2), we need

divide by the appropriate factor which contains the matrix elements 〈0| S(t) |0〉 and
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Fig. 17 Quantum circuit employing two ancilla qubits for the calculation of derivatives with respect to

squeezing parameters for pairs of modes (k, L − k) with 1 ≤ k < L
2 . It features single-mode squeezers, an

unspecified qumode unitary U , Hadamard gates on the qubits, and controlled beam splitter, rotation, and

SNAP gates entangling qumodes and qubits. At the end, qubits are measured in the computational basis

whereas the photon number is measured on the qumodes

〈2| S(t) |0〉. This method is an extension of the Hadamard test [46] to hybrid systems.

We used the circuit of Fig. 16 for the k = 0, L
2

modes.

For modes with 1 ≤ k < L
2

, we treat them as pairs (k, L − k). The quantum circuit

for derivatives with respect to squeezing parameters in this case is slightly modified.

We need include additional circuit elements that incorporate some of bosonic qiskit’s

controlled Gaussian operations, namely a controlled beam splitter and rotation gate.

The resulting circuit is shown in Fig. 17.

Turning to derivatives with respect to φC , they can be computed by removing the dis-

placement D from the circuit, taking H → D† H D, and expressing it as a polynomial

in φC . In general, derivatives with respect to φC are straightforward. The only terms

affected by the displacement are those that contain the zero-mode quadrature. Thus,

we need only compute 〈D†q2(0)D〉 and 〈D†q4(0)D〉 in a state that lies in the even

parity subspace (squeezed vacuum). Dropping terms that are odd in the quadrature

q(0), we easily obtain
d

dc
〈D†(c)q2(0)D(c)〉 = 2c . (C3)

For the quartic term, we obtain

d

dc
〈D†(c)q4(0)D(c)〉 = 12〈D†(c)q2(0)D(c)〉 − 8c3 , (C4)

expressing the derivative in terms of the expectation value of q2(0) which has already

been computed (Eq. (40)).
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