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ABSTRACT

We provide a uniform bound for the index of cohomology classes in

Hi(F, µ⊗i−1
� ) when F is a semiglobal field (i.e., a one-variable function

field over a complete discretely valued field K). The bound is given in

terms of the analogous data for the residue field of K and its finitely

generated extensions of transcendence degree at most one. We also ob-

tain analogous bounds for collections of cohomology classes. Our results

provide recursive formulas for function fields over higher rank complete

discretely valued fields, and explicit bounds in some cases when the infor-

mation on the residue field is known. In the process, we prove a splitting

result for cohomology classes of degree 3 in the context of surfaces over

finite fields.
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1. Introduction

It is classical that the index of a central simple algebra over a global field F

is equal to its period as an element of the Brauer group. In terms of Galois

cohomology, this says that any element of H2(F, μn) is split by an extension of

degree n over F . The corresponding assertion does not generally hold for other

fields F , though the period always divides the index, and the index always di-

vides some power of the period ([Pie82], Proposition 14.4(b)(ii)). In [Sal97] (see

also [Sal98]), it was shown that for a one-variable function field F over Qp, the

index divides the square of the period, provided that the period is prime to p.1

More generally, given a field F , one can ask if there is a uniform bound on

the index in terms of the period, that is, whether there is an integer d such that

the index of every central simple F -algebra divides the d-th power of its period.

Starting with [CT01, page 12] (see also [Lie08]), the idea has emerged that for

large classes of fields, such a uniform bound d should exist, and that it should

increase by one upon passage to one-variable function fields. So far, there have

been a number of results giving such bounds and giving evidence for this idea. In

the case that F is a one-variable function field over a complete discretely valued

field with residue field k, and the period is prime to char(k), such a bound d

for F was found in [Lie11] and [HHK09] in terms of the corresponding bounds

for fields that are extensions of k that are either finite or finitely generated of

transcendence degree one. This generalized [Sal97]. More recently, for such a

field F , a bound was found for a “simultaneous index” in [Gos19]; i.e., for the

degree of an extension of F that simultaneously splits an arbitrary finite set of

�-torsion Brauer classes over F , for a given prime � �= char(k).

In this paper, we focus on higher degree Galois cohomology groups

H i(F, μ⊗i−1
n ), i > 2.

These higher cohomology groups have already been the subject of much in-

vestigation from various perspectives. We note in particular that in [Kat86]

these were viewed in certain contexts as generalizations of the n-torsion sub-

group H2(F, μn) of the Brauer group Br(F ) for F a higher dimensional local

1 In this paper, we use the term one-variable function field F over a field K to mean a

finitely generated extension of K of transcendence degree one; we do not require K to be

algebraically closed in F .
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or global field. However, much less is known in general about uniform period-

index bounds for these groups; and although some conjectures have been made

(see for example [Kra16, Conjecture 1, page 997]), supporting evidence has

been difficult to obtain. Some important progress has been made in the case

of degree 3 cohomology, showing that period and index coincide in the case of

function fields of p-adic curves ([PS98]), function fields of surfaces over finite

fields ([PS16]), and more recently for function fields of curves over imaginary

number fields [Sur20]. Motivated by Kato’s work, by the results on Brauer

groups, as well as these results for degree 3 cohomology, in this paper we study

the problem of bounding the index of a class in Hi(F, μ⊗i−1
� ) in terms of its pe-

riod �, where F is a one-variable function field over a complete discretely valued

field K with residue field k; and more generally bounding the minimal degree of

an extension of F that simultaneously splits finitely many such classes. Namely,

we define ssdi�(F ), called the stable i-splitting dimension at � of F , to be the

minimal d such that for all finite extensions L/F , and for all α ∈ H i(L, μ⊗i−1
� ),

ind(α) divides �d. We similarly define the generalized stable i-splitting dimen-

sion at � of F to be an analogous quantity gssdi�(F ) for the simultaneous split-

ting of finite sets of elements B ⊆ Hi(L, μ⊗i−1
� ). In Theorem 2.9, we show the

following generalization of the main theorem in [Gos19]:

Theorem: In the above situation,

ssdi�(F ) ≤ ssdi�(k) + ssdi�(k(x)) + ε,

where ε = 2 if � is odd and ε = 3 if � = 2. The analogous bound also holds

for gssdi�(F ). Here i is any positive integer.

Our approach first reduces to the case of unramified classes using a splitting

result of [Gos19]. The proof in the unramified case relies on patching over

fields, a framework introduced in [HH10] (which was also used in [HHK09] and

[Gos19]). In particular, it relies on a local-global principle for Galois cohomology

from [HHK14]. In the case when i = 2, i.e., when considering classes in the

Brauer group, our bound agrees with that given in [Gos19] for collections of

Brauer classes, but it is weaker than the bound given in [HHK09] for a single

Brauer class. The main theorem implies recursive bounds for function fields

over higher rank complete discretely valued fields. In the final section of this

paper, we apply our results in specific situations to obtain explicit numerical

bounds for ssdi�(F ) and gssdi�(F ). These bounds give information on degree 3
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and higher cohomology classes, in cases when the information on the Brauer

group is not sufficient to obtain bounds with prior methods. For example, if F

is a one-variable function field over a complete discretely valued field whose

residue field is a global function field and � is odd, then gssd3�(F ) is at most 3;

see Proposition 8.4. In order to obtain these numerical bounds, we prove a

splitting result for surfaces over a finite field (Theorem 7.9), which should be

of independent interest. Both the splitting result and the applications build on

work of Kato (see [Kat86]).

Acknowledgment. We thank the anonymous referee for helpful comments

that led to improvements and to simplifications of some of the arguments.

2. Uniform bounds for cohomology classes

In this section, we define quantities that bound the degree of extensions needed

to split a cohomology class, or a finite collections of such classes.

Definition 2.1: LetF be a field, and fix a prime ��=char(F ) and a positive inte-

ger i. A field extension L/F is called a splitting field for a class α∈H i(F, μ⊗i−1
� ),

if the image αL of α under the natural map H i(F, μ⊗i−1
� )→Hi(L, μ⊗i−1

� ) is triv-

ial. In that case, we also say that α splits over L. Similarly, ifB⊆H i(F, μ⊗i−1
� )

is a collection of elements, we say that a field extension L/F is a splitting field

for B if it is a splitting field for each element of B.

The index of a class α ∈ H i(F, μ⊗i−1
� ), denoted by ind(α), is the greatest

common divisor of the degrees of splitting fields of α that are finite over F .

Similarly, the index of a subset B ⊆ Hi(F, μ⊗i−1
� ) is the greatest common

divisor of the degrees of splitting fields of B that are finite over F .

Remark 2.2: We will frequently use that if α ∈ H i(F, μ⊗i−1
� ) and E/F is a finite

field extension of degree prime to � such that αE is trivial, then α is trivial,

by a standard restriction-corestriction argument (using that the composition of

restriction and corestriction is multiplication by the degree).

Lemma 2.3: For F a field, � �= char(F ) a prime, and i a positive integer, let

α ∈ Hi(F, μ⊗i−1
� ). Then there exists a splitting field L/F so that [L : F ] is a

power of �. In particular, the index of α is a power of �. More generally, the

index of a finite subset B ⊆ Hi(F, μ⊗i−1
� ) is a power of �.
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Proof. Let ρ be a primitive �-th root of unity, and let F̃ := F (ρ). By the Bloch–

Kato conjecture/norm residue isomorphism theorem ([Voe11, Theorem 6.16];

see also [Wei09]), α
˜F ∈ H i(F̃ , μ⊗i−1

� ) ∼= H i(F̃ , μ⊗i
� ) may be written as a sum of

symbols. That is,

α
˜F =

m∑
j=1

βj ,

where βj = (bj1)∪· · ·∪(bji) for elements bjk ∈ F̃×; here for b ∈ F̃×, (b) denotes
the class in H1(F̃ , μ�) ∼= F̃×/(F̃×)�. It then follows that

E := F̃ ( �
√
b11, . . . ,

�
√
bm1)

is a splitting field for α (see also [Kra16], Remark 2.3). Let Ẽ be the Galois

closure of E/F . Note that Ẽ/F̃ is a compositum of cyclic (Galois) extensions

of prime degree � (viz., those obtained by adjoining �-th roots of the Gal(F̃ /F )-

conjugates of the elements bjk). Hence Gal(Ẽ/F̃ ) is a subdirect product of cyclic

groups of order � (see, e.g., [DF91], Chap. 14, Proposition 21). By induction,

one checks that such a subdirect product is in fact a direct product of cyclic

groups of order �, using that for H1 cyclic of order � and H2 of �-power order,

H1 ∩ H2 is either equal to H1 or trivial. Thus Gal(Ẽ/F̃ ) is an (elementary

abelian) �-group. By the Schur–Zassenhaus theorem ([Zas49], IV.7, Theorem 25;

or [Suz82], Chap. 2, Theorem 8.10), Gal(Ẽ/F ) contains a subgroup of �-power

index and order [F̃ : F ] dividing � − 1. Its fixed field is an extension L/F of

�-power order. Since Ẽ/L is of degree prime to � and Ẽ is a splitting field of α,

so is L (Remark 2.2), proving the first assertion. Note that the same argument

applies to finite collections of cohomology classes. The statements on the index

are immediate consequences.

As a consequence of the above lemma, we can make the following definition.

Definition 2.4: For a prime � and a positive integer i, we say that the i-splitting

dimension at � of F , denoted by sdi�(F ), is the minimal exponent n so that

ind(α) | �n for all α ∈ Hi(F, μ⊗i−1
� ).

We would like to show that the splitting dimension behaves in a controlled

way upon finitely generated extensions of certain fields, and with respect to

complete fields and their residues. In order to facilitate this, we will use a

stronger form of splitting dimension, to require stability under finite extensions.
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This is analogous to notions introduced for quadratic forms and central simple

algebras in [HHK09].

Definition 2.5: Let i be a positive integer. We say that the stable i-splitting

dimension at � of F , denoted ssdi�(F ), is the minimal n so that sdi�(E) ≤ n for

all finite field extensions E/F .

In analogy to [Gos19], we also consider collections of cohomology classes.

Definition 2.6: Let i be a positive integer. We define the generalized stable

i-splitting dimension of a field F , denoted by gssdi�(F ), to be the minimal

exponent n so that ind(B) | �n for all finite field extensions E/F and all finite

subsets B ⊆ Hi(E, μ⊗i−1
� ).

The advantage of the generalized stable splitting dimension is that it pro-

vides information about higher degree cohomology groups as well, as in [Gos19,

Corollary 1.4].

Proposition 2.7:Let F be a field of characteristic unequal to �. For all i≥j≥1,

ssdi�(F ) ≤ gssdj�(F )

and

gssdi�(F ) ≤ gssdj�(F ).

Proof. Let α ∈ Hi(E, μ⊗i−1
� ) for some finite extension E of F and i ≥ j. By

Remark 2.2, we may assume that E contains a primitive �-th root of unity.

We can then use the norm residue isomorphism theorem as in the proof of

Lemma 2.3 in order to write α as a finite sum

α =
∑
k

βk ∪ γk

where βk ∈ Hj(E, μ⊗j−1
� ) = Hj(E, μ⊗j

� ). By definition, there exists a finite

extension L of E such that the �-adic valuation of [L : E] is at most gssdj�(F )

and such that L splits all βk occurring in the sum. But then L splits α, and the

first claim follows. Note that the same argument applies to finite collections of

cohomology classes, hence the second assertion.

The next lemma shows another useful property of the generalized stable split-

ting dimension.
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Lemma 2.8: If K is a complete discretely valued field having residue field k

with char(k) �= �, then

gssdi�(K) ≤ gssdj�(k)

for all positive integers i > j.

Proof. Since any finite extension of K is of the same form, it suffices to consider

classes defined over K. Let α1, . . . , αm ∈ H i(K,μ⊗i−1
� ). By the Witt decompo-

sition theorem ([GS17], Corollary 6.8.8), that cohomology group is isomorphic

to Hi(k, μ⊗i−1
� )⊕Hi−1(k, μ⊗i−2

� ), so each αr is of the form (βr, β
′
r), where βr, β

′
r

are classes over the residue field of degree i and i − 1, respectively. As in the

proof of Proposition 2.7 above, we may assume that K contains a primitive �-th

root of unity and we may write βr and β′
r as sums of terms that are each of the

form γ∪δ where γ ∈ Hj(k, μ⊗j−1
� ). But then all βr, β

′
r are split by a finite exten-

sion k′/k such that the �-adic valuation of [k′ : k] is at most gssdj�(k). Since K is

complete, this extension lifts to a finite extension K ′/K of the same degree (by

applying [SGA71, Théorème I.6.1] to lift the maximal separable subextension,

and then iteratively lifting p-th roots for the purely inseparable part). This

lift then splits α1, . . . , αm, by the Witt decomposition theorem applied to K ′

and k′.

Our main result is the following theorem, which is proven in Section 5.

Theorem 2.9: Suppose k is a field and � is a prime unequal to the characteristic

of k. Let k(x) denote the rational function field over k in one variable. Let K

be a complete discretely valued field with residue field k, and let F be a one-

variable function field over K. Then for all i ≥ 1,

ssdi�(F ) ≤ ssdi�(k) + ssdi�(k(x)) +

⎧⎨
⎩
2 if � is odd

3 if � = 2

and

gssdi�(F ) ≤ gssdi�(k) + gssdi�(k(x)) +

⎧⎨
⎩
2 if � is odd

3 if � = 2.

The main interest is in the case i > 1. In fact,

ssd1�(F ) = 1 and gssd1�(F ) = ∞
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for any field F for which F×/(F×)� is infinite (in particular, for F as in the

theorem). This is because H1(E,Z/�Z) = E×/E×� is then infinite for any finite

extension E/F , and because a non-trivial Z/�Z-torsor over E corresponds to a

field extension that splits only over itself. For the same reason, a non-trivial

class α ∈ H1(E,Z/�Z) satisfies ind(α) = �.

Even for i > 1, we do not assert that these bounds are sharp. Nevertheless,

in light of this theorem and [HHK09, Theorem 5.5], it is natural to investi-

gate more precisely how these quantities grow. In particular, one might ask

whether ssdi�(F ) and gssdi�(F ) are bounded above by dim(F )− i+1 for certain

naturally occurring fields F ; i.e., those obtainable from a prime field by passing

iteratively to finite generated field extensions of transcendence degree one over a

given field, and to henselian discretely valued fields with a given field as residue

field. Here, dim(F ) is defined inductively, with the dimensions of Fp and Q set

equal to 1 and 2, and with the dimension increasing by one at each iterative

step. But proving such an assertion seems a long way off.

3. Preliminaries from patching

The proof of the main theorem will use the patching framework introduced in

[HH10] and [HHK09], which we now recall.

Let K be a complete discretely valued field with residue field k, valuation

ring OK , and uniformizer t. Let F be a semiglobal field over K; i.e., a one-

variable function field over K. A normal model of F is an integral OK-

scheme X with function field F that is flat and projective over OK of relative

dimension one, and that is normal as a scheme. If X is regular, we call it a reg-

ular model. Such a regular model exists by the main theorem in [Lip78] (see

also [Sta22, Theorem 0BGP]). Let P be a finite nonempty set of closed points

of X that contains all the singular points of the reduced closed fiber X red
k .

Let U be the collection of connected components of the complement X red
k �P .

For each U ∈ U, we consider the ring RU ⊂ F consisting of the rational

functions on X that are regular at all points of U . The t-adic completion R̂U

of RU is an I-adically complete domain, where I is the radical of the ideal

generated by t in R̂U . The quotient R̂U/I equals k[U ], the ring of regular

functions on the integral affine curve U . We write FU for the field of fractions

of R̂U . If V ⊆ U , then R̂U ⊆ R̂V and FU ⊆ FV .
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Also, for a (not necessarily closed) point P of X red
k , we let FP denote the

field of fractions of the complete local ring R̂P := ÔX ,P of X at P , and we

let κ(P ) denote its residue field. The fields of the form FP , FU for P ∈ P,

U ∈ U (and the rings R̂P , R̂U , respectively) are called patches on X .

For a closed point P ∈ X red
k , we consider height one primes ℘ of the complete

local ring R̂P that contain the uniformizing parameter t ∈ OK . For each such ℘,

we let R℘ be the localization of R̂P at ℘, and we let R̂℘ be its t-adic (or

equivalently, its ℘-adic) completion; this is a complete discrete valuation ring.

We write F℘ for the fraction field of R̂℘. If P is on the closure of U , we

call such a ℘ a branch at P on U . Let B denote the set of all branches

at points P ∈ P (each of which lies on some U ∈ U). The fields F℘ (resp.,

rings R̂℘) are referred to as the overlaps of the corresponding patches FP , FU

(resp., R̂P , R̂U ). For a branch ℘ at P on U , there is an inclusion FP ⊂ F℘

induced by the inclusion R̂P ⊂ R̂℘, and also an inclusion FU ⊂ F℘ that is

induced by the inclusion R̂U ↪→ R̂℘. (See [HHK11], beginning of Section 4.)

The strategy for proving Theorem 2.9 relies on putting ourselves in the above

context. Given a class α ∈ Hi(F, μ⊗i−1
� ), we will choose a suitable regular

model X , along with P and U, and will construct splitting fields Lξ/Fξ for αFξ
,

for each ξ ∈ P ∪ U. Next, we will use these to obtain an extension L/F that

splits α locally. Finally, we will use a local-global principle from [HHK14] to

show that this extension in fact splits α. To handle the second of those three

steps, we prove some auxiliary results, starting with a general lemma.

Lemma 3.1: Let v1, . . . , vn be distinct non-trivial discrete valuations on a

field E, with completions Ei. Let d be a positive integer and for each i let Li

be an étale Ei-algebra of degree d. Then there exists an étale E-algebra L of

degree d such that L⊗E Ei
∼= Li for all i. If some Li is a field, then so is L.

Proof. The complete discretely valued field Ei is infinite for each i, and so

by Corollary 4.2(d) of [FR17] there is a primitive element for the étale alge-

bra Li over Ei, say with monic minimal polynomial fi(x) ∈ Ei[x] of degree d.

For each i, there is an extension of vi to a discrete valuation on the polyno-

mial ring Ei[x], by taking the minimum of the valuations on the coefficients;

we again write vi for that extension. Applying Krasner’s Lemma ([Lan94],

Prop. II.2.4) to each monic irreducible factor fij of fi ∈ Ei[x] (and then tak-

ing the maximum) gives a positive integer ni such that for any monic polyno-

mial hi ∈ Ei[x] of the same degree as some fij , if vi(hi − fij) > ni then hi is



362 D. HARBATER, J. HARTMANN AND D. KRASHEN Isr. J. Math.

irreducible, and the polyomials hi and fij define the same field extension of Ei.

By a general form of Hensel’s Lemma (see Theorem 8 of [Bri06]), for each i

there is an integer mi such that for any monic polynomial gi ∈ Ei[x] of degree

equal to that of fi and with vi(fi − gi) > mi, we may write gi as a product of

monic polynomials gij ∈ Ei[x] of the same respective degrees as fij and such

that vi(fij − gij) > ni for all j.

The field E is dense in
∏

Ei by Theorem VI.7.2.1 of [Bou72]. Hence we may

find a monic polynomial f ∈ E[x] of degree d such that vi(fi − f) > mi for

all i. By the definition of mi, we may write f as a product of monic factors gij

over Ei that are respectively of the same degrees as the polynomials fij and

with vi(fij − gij) > ni. By the definition of ni, each factor gij of f over Ei

is irreducible and defines the same field extension of Ei as fij ; and so the

étale algebras induced by f and by fi over Ei are the same. Hence the étale

E-algebra L defined by f induces Li over Ei for all i. The last assertion is

clear.

Resuming our notation for semiglobal fields, we have the following.

Lemma 3.2: Given F , X , and U as above, suppose that for each U ∈ U we

are given an étale FU -algebra LU of (a common) degree d. Then there exists an

étale F -algebra L (necessarily of degree d) such that L⊗F FU
∼= LU for all U .

If some LU is a field, so is L.

Proof. For a point P ∈ P, each branch ℘ at P lies on the closure of a unique

U ∈ U; and we define an étale F℘-algebra

L℘ := LU ⊗FU F℘.

Applying Lemma 3.1 to the field FP and the discrete valuations corresponding

to the branches at P , we obtain an étale FP -algebra LP such that LP ⊗F℘
∼= L℘

for each of the branches ℘ at P . Therefore, we have defined a system of étale Fξ-

algebras Lξ for ξ ∈ P∪U, together with isomorphisms LP ⊗FP F℘
∼= LU ⊗FU F℘

whenever ℘ is a branch at P on U . Since patching holds for étale algebras in

this context (see, for example, Proposition 3.7 and Example 2.7 in [HHK15b]),

there is an étale F -algebra L with the desired properties. The final assertion is

clear.

The next lemma is a variant of [HHK+19, Theorem 2.6].
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Lemma 3.3: With K, k, F , and P as above, suppose that for each P ∈ P, we are

given an étale FP -algebra LP of (a common) degree d prime to the characteristic

of k, and assume that the integral closure of R̂P in LP is unramified over R̂P .

Then there exists an étale F -algebra L such that L ⊗F FP
∼= LP for all P . If

some LP is a field, so is L.

Proof. For each P ∈ P, the normalization SP of R̂P in LP is a degree d étale

R̂P -algebra. It induces an étale R̂℘-algebra S℘ for each branch ℘ at P ; and those

in turn induce degree d étale algebras L℘ over F℘ and λ℘ over κ(℘), where κ(℘)

is the residue field at ℘. The branches ℘ on U define distinct non-trivial discrete

valuations on the function field k(U) of U , with completions κ(℘). Applying

Lemma 3.1, we obtain a degree d étale algebra ΛU over k(U) such that

ΛU ⊗k(U) κ(℘) ∼= λ℘

for all branches ℘ on U . The normalization of k[U ] in ΛU is a generically

étale k[U ]-algebra ĀU that induces ΛU over k(U). By lifting the defining co-

efficients of ĀU from k[U ] to R̂U , we obtain a generically étale R̂U -algebra

AU whose reduction is ĀU . The algebra AU induces S℘ over R̂℘, because

both AU ⊗
̂RU

R̂℘ and S℘ lift the étale κ(℘)-algebra λ℘, and that lift is unique

by [SGA71, Théorème I.5.5]. Thus LU := AU⊗ ̂RU
FU is an étale algebra over FU

that induces L℘ := S℘ ⊗
̂R℘

F℘ over F℘.

Thus we have étale algebras LP over FP for each P ∈ P and LU over FU

for each U ∈ U such that LP and LU induce the same F℘-algebra L℘ for ℘

a branch at P on U . By the patching result [HH10, Theorem 7.1(iii)] (in the

context of [HH10, Theorem 6.4] and [HHK15a, Proposition 3.3]), there is an

étale algebra L over F that induces LU over FU for all U ∈ U and induces LP

over FP for all P ∈ P. This yields the main assertion, and the final assertion of

the lemma is clear.

4. Splitting unramified cohomology classes

In order to prove the main theorem, we will reduce to the case of unramified

classes. Let L be a field. For every discrete valuation v of L, we let κ(v) denote

its residue field. Recall that for a prime � �= char(κ(v)) and i ≥ 1, there is a

residue homomorphism

resv : Hi(L, μ⊗i−1
� ) → Hi−1(κ(v), μ⊗i−2

� );
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e.g., see [GMS03, Section II.7.9, p. 18]. A class α ∈ Hi(L, μ⊗i−1
� ) is called

unramified at v if

resv(α) = 0.

If Y is a regular integral scheme with function field L and Y (1) is the set of

codimension one points of Y , then every y ∈ Y (1) defines a discrete valuation

vy of L. We say that α as above is unramified at y if

resvy (α) = 0.

It is unramified on Y if it is unramified at all points of Y (1); and we write

Hi(L, μ⊗i−1
� )nr,Y for the subgroup of Hi(L, μ⊗i−1

� ) consisting of these unrami-

fied classes.

Lemma 4.1: With notation as above and U ∈ U, let α ∈ Hi(FU , μ
⊗i−1
� ) be

unramified on Spec(R̂U ). Then for some nonempty affine open subset U ′ ⊆ U ,

αFU′ is in the image of Hi(R̂U ′ , μ⊗i−1
� ) → Hi(FU ′ , μ⊗i−1

� ).

Proof. Let Rh
η := lim−→V⊆U

R̂V (varying over the nonempty open subsets V ⊆ U),

and let Fh
η be its fraction field. Then by [HHK14], Lemma 3.2.1, Rh

η is a

henselian discrete valuation ring with residue field k(U), and Fh
η = lim−→V ⊆U

FV .

Since α is unramified, so is its image αFh
η
. Thus by [Col95, beginning of Sec-

tion 3.3], αFh
η

is the image of some α̃ ∈ Hi(Rh
η , μ

⊗i−1
� ). According to [Sta22,

Theorem 09YQ],

Hi(Rh
η , μ

⊗i−1
� ) = lim−→

V ⊆U

Hi(R̂V , μ
⊗i−1
� )

and

Hi(F h
η , μ

⊗i−1
� ) = lim−→

V ⊆U

Hi(FV , μ
⊗i−1
� ).

In particular, there is some nonempty open subset V ⊆ U so that α̃ is the image

of an element α̃′ ∈ H i(R̂V , μ
⊗i−1
� ). The classes αFV and α̃′

FV
then have the same

image in Hi(F h
η , μ

⊗i−1
� ) by construction. Again by [HHK14, Lemma 3.2.1],

Fh
η = lim−→

W⊆V

FW ,

and thus there exists a U ′ ⊆ V for which αFU′ = α̃′
FU′ . But then U ′ is as

desired.
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This next result gives a bound on the index in the case of unramified coho-

mology classes.

Proposition 4.2: Let K be a complete discretely valued field with residue

field k, let � be a prime unequal to the characteristic of k, let F be the function

field of a K-curve, and let X be a regular model of F . Let i ≥ 1.

(a) If α ∈ H i(F, μ⊗i−1
� ) is unramified on X , then

ind(α) | �ssdi
�(k)+ssdi

�(k(x)).

(b) If B ⊆ Hi(F, μ⊗i−1
� ) is a finite collection of cohomology classes that are

unramified on X , then

ind(B) | �gssdi
�(k)+gssdi

�(k(x)).

Proof. Both assertions are trivially true for i = 1, by the paragraph following

Theorem 2.9. So we assume i > 1 from now on.

We start by proving part (b). Let B = {αj | j ∈ J} for some finite index set J .

By Lemma 2.3, it is sufficient to show that there is a finite field extension L/F

that splits all classes in B and such that the �-adic valuation of [L : F ] is at

most gssdi�(k)+gssdi�(k(x)). Let P be a finite nonempty subset of the closed fiber

containing all the singular points of X red
k , and let U be the set of components

of the complement X red
k � P.

Fix U ∈ U. After deleting finitely many points from U and adding those to P,

we may assume that each (αj)FU is the image of some α̃j ∈ H i(R̂U , μ
⊗i−1
� ), by

Lemma 4.1. This gives

Hi(R̂U , μ
⊗i−1
� ) ∼= H i(U, μ⊗i−1

� ) → Hi(k(U), μ⊗i−1
� ),

α̃j �→ ᾱj ,

where the isomorphism is by Gabber’s affine analog of proper base change

([Sta22, Theorem 09ZI]). By definition of the generalized stable splitting di-

mension, there exists a finite field extension lU of k(U) that splits all ᾱj and

so that the �-adic valuation of [lU : k(U)] is at most gssdi�(k(x)). Let l
′
U be the

separable closure of k(U) in lU . Then since [lU : l′U ] is a power of char(k) and

thus prime to �, the separable extension l′U also splits all ᾱj (see Remark 2.2).

Let V → U be the normalization of U in l′U , so that l′U = k(V ). Hence each α̃j

maps to zero under the composition

Hi(R̂U , μ
⊗i−1
� ) ∼= H i(U, μ⊗i−1

� ) → Hi(k(U), μ⊗i−1
� ) → Hi(k(V ), μ⊗i−1

� ).
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The collection of V ×U U ′, where U ′ ranges over the non-empty open subsets

of U , is cofinal in the collection of non-empty open subsets V ′ ⊆ V . So by

[Sta22, Theorem 09YQ],

Hi(k(V ), μ⊗i−1
� ) = lim−→

V ′⊆V

Hi(V ′, μ⊗i−1
� ) = lim−→

U ′⊆U

Hi(V ×U U ′, μ⊗i−1
� ).

Hence there exists some U ′ ⊆ U for which each α̃j maps to zero in

Hi(V ×U U ′, μ⊗i−1
� ). Since k(V )/k(U) is separable, V → U is generically étale.

Possibly after shrinking U ′, we may assume that V ×U U ′ → U ′ is finite étale.

Let I be the ideal defining U ′ in Spec(R̂U ′). Then (R̂U ′ , I) is a henselian pair,

so V ×UU
′ → U ′ is the closed fiber of a finite étale cover Spec(SU ′) → Spec(R̂U ′)

of the same degree by [Sta22, Lemma 09XI]. Note that Spec(SU ′) is reduced and

irreducible since V is, and hence SU ′ is an integral domain. The commutative

diagram

Hi(R̂U , μ
⊗i−1
� ) Hi(R̂U ′ , μ⊗i−1

� ) Hi(U ′, μ⊗i−1
� )

Hi(SU ′ , μ⊗i−1
� ) Hi(V ×U U ′, μ⊗i−1

� )

∼=

∼=

then shows that each α̃j maps to zero inHi(SU ′ , μ⊗i−1
� ); hence all αj are split by

the fraction field EU ′ of SU ′ , which is an extension of FU ′ whose degree has �-adic

valuation at most gssdi�(k(x)). (Here the isomorphisms in the diagram are—

again—by Gabber’s affine analog of proper base change, [Sta22, Theorem 09ZI].)

Note that each U ′ was obtained by removing a finite number of closed points

from the corresponding U ∈ U. We add those points to P and replace U with

the set of components of the complement in X red
k of this possibly enlarged set P

(the elements of this new set U are exactly the sets U ′). Let d1 be the least

common multiple of the degrees [EU ′ : FU ′ ] where U ′ is in the (new) set U.

Thus the �-adic valuation of d1 is at most gssdi�(k(x)). By taking direct sums

of an appropriate number of copies of EU ′ for each such U ′, we obtain étale

FU ′ -algebras LU ′ for all U ′ of degree d1. Then by Lemma 3.2, there is an

étale F -algebra L1 of degree d1 so that L1 ⊗F FU ′ ∼= LU ′ for all U ′ ∈ U.

For P ∈ P, each class αj,P := (αj)FP is unramified on Spec(R̂P ), since each αj

is unramified. Thus by [Sak20], Theorem 9, we may lift each αj,P to a class

in H i(R̂P , μ
⊗i−1
� ); that group is isomorphic to Hi(κ(P ), μ⊗i−1

� ) by proper base

change ([SGA73, Exp. XII, Corollaire 5.5]). By definition of the generalized

stable splitting dimension, we may find a common splitting field lP /κ(P ) for
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the images of the αj,P , so that [lP : κ(P )] has �-adic valuation at most gssdi�(k).

As in the previous part, we may assume that lP /κ(P ) is separable. By [SGA71,

Theorem I.6.1], the extension lifts to a finite étale R̂P -algebra SP of the same

degree (using the completeness of R̂P ). Note that again by proper base change

(loc. cit.), all αj,P split over SP . Since R̂P is a regular local domain, and

since SP is finite étale over R̂P and lifts lP , SP is a regular local domain.

Its fraction field is a finite extension EP /FP of the same degree, which splits

all αj,P . Let d2 be the least common multiple of the degrees [LP : FP ]. By

taking direct sums of an appropriate number of copies of EP for each P ∈ P, we

obtain étale FP -algebrasLP (for all P ) of degree d2 which has �-adic valuation at

most gssdi�(k). Then by Lemma 3.3, there is an étale F -algebra L2 of degree d2

so that L2 ⊗F FP
∼= LP for all P ∈ P.

Consider the tensor product L1 ⊗F L2; this is a direct sum of finite field

extensions of F since each Li is an étale F -algebra. Since the �-adic valuation

of the degree of L1⊗F L2 is at most gssdi�(k(x))+ gssdi�(k), the same is true for

at least one of the direct summands, say L/F . Let XL be the normalization

of X in L, let PL be the preimage of P under the natural map XL → X ,

and let UL be the set of connected components of the complement of PL in the

reduced closed fiber of XL. For each P ∈ P, L ⊗F FP is the direct product of

the fields LP ′ , where P ′ runs over the points of PL that map to P and LP ′ is the

fraction field of the complete local ring of XL at P ′; similarly for each U ∈ U.

Hence all (αj)Lξ
are split for every ξ ∈ PL ∪ UL. By [HHK14, Theorem 3.1.5],

all αj are split over L. This completes the proof of part (b).

For part (a), note that if α is a single class unramified on a regular model X ,

then for splitness over each U ∈ U (resp., P ∈ P), it suffices to take an ex-

tension whose degree has �-adic valuation at most ssdi�(k(x)) (resp., ssdi�(k)),

by definition of the stable splitting dimension. Hence the above proof yields

a splitting field L for α whose degree over F has �-adic valuation at most

ssdi�(k) + ssdi�(k(x)). Since ind(α) is an �-power by Lemma 2.3, this implies

ind(α) | �ssdi
�(k)+ssdi

�(k(x))

as we intended to show.

Remark 4.3: If k is finite in the context of Proposition 4.2, then the group

Hi(F, μ⊗i−1
� )nr,X vanishes for all i > 1. This follows from [Gro68, Théo-

rème III.3.1, Corollaire II.1.10] for i = 2; from [Kat86, Proposition 5.2] for i = 3;
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and because cd(F ) = 3 for i ≥ 4. Thus the proposition applies only to the zero

class in these situations, and so it has no actual content there. (In the case

of i = 1, as noted at the beginning of the above proof, the assertion of Propo-

sition 4.2 is trivial for an arbitrary residue field k.)

5. Proof of the main theorem

We are now in a position to prove the main theorem.

Proof of Theorem 2.9. We first prove the second assertion. Let B⊆H i(F, μ⊗i−1
� )

be a finite collection of cohomology classes, and choose a regular model X of F .

By [Gos19, Prop. 3.1], there is a field extension L/F of degree �2 (resp. 23 = 8)

for � odd (resp. � = 2) that splits the ramification of B with respect to all

discrete valuations on L whose restriction to F has a center on X . The ex-

tension L/F corresponds to a morphism Y → X for some regular model Y

of L; and αL ∈ H i(L, μ⊗i−1
� )nr,Y for every α ∈ B. By Proposition 4.2(b), there

exists a finite field extension L̃/L that splits all elements of B and so that [L̃ : L]

has �-adic valuation at most gssdi�(k) + gssdi�(k(x)). Thus the �-adic valuation

of [L̃ : F ] is at most

gssdi�(k) + gssdi�(k(x)) +

⎧⎨
⎩
2 if � is odd,

3 if � = 2.

To bound the generalized stable splitting dimension, we also need to consider

cohomology classes defined over finite field extensions E/F . Each such E is

the function field of a curve over KE, where KE is some finite extension of K

and hence is a complete discretely valued field whose residue field k′ is a finite

extension of k. Now if B ⊆ Hi(E, μ⊗i−1
� ) is a finite collection of cohomology

classes, the first part of the proof shows the existence of a common splitting

field L/E for the elements of B whose degree [L : E] has �-adic valuation at

most

gssdi�(k
′) + gssdi�(k

′(x)) +

⎧⎨
⎩
2 if � is odd

3 if � = 2

≤ gssdi�(k) + gssdi�(k(x)) +

⎧⎨
⎩
2 if � is odd

3 if � = 2,

which proves the desired bound for gssdi�(F ).
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If B = {α} is a one-element set, Proposition 4.2(a) gives

ind(αL) | �ssdi
�(k)+ssdi

�(k(x)),

and hence ind(α) | �m where

m = ssdi�(k) + ssdi�(k(x)) +

⎧⎨
⎩
2 if � is odd,

3 if � = 2.

Since α was arbitrary, this shows that

sdi�(F ) ≤ ssdi�(k) + ssdi�(k(x)) +

⎧⎨
⎩
2 if � is odd,

3 if � = 2.

As before, the same bound applies to finite extensions E/F , and hence

ssdi�(F ) ≤ ssdi�(k) + ssdi�(k(x)) +

⎧⎨
⎩
2 if � is odd,

3 if � = 2,

as we wanted to show.

6. Bounds for higher rank complete discretely valued fields

In this section, we bound gssdi�(F ) for one-variable function fields F over higher

rank complete discretely valued fields—that is, fields kr arising in an iterated

construction of fields k0, k1, . . . , kr where kj is a complete discretely valued

field with residue field kj−1, for all j ≥ 1. We will do this using Theorem 2.9.

We first determine the generalized stable splitting dimension of higher rank

complete discretely valued fields.

Lemma 6.1: Let k be a field and let � �= char(k) be a prime. Let r ≥ 0, and

let k0, k1, . . . , kr be a sequence of fields with k0 = k, and kj a complete discretely

valued field with residue field kj−1 for all j ≥ 1. Then for every finite collection

B ⊆ Hi(kr, μ
⊗i−1
� ), there exists an extension L/kr of degree dividing �gssd

i
�(k)+r

that splits all elements of B. In particular, gssdi�(kr) ≤ gssdi�(k) + r. The same

statements remain true when B is replaced by a single class and gssdi�(−) is

replaced with ssdi�(−).

Proof. By induction, it suffices to prove the result with r = 1. Set K = k1,

let v denote the valuation on K, and let A be its valuation ring, with uni-

formizer π. By proper base change ([SGA73], Exp. XII, Corollaire 5.5), for
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any m ≥ 1 the mod π reduction map Hm(A, μ⊗m−1
� ) → Hm(k, μ⊗m−1

� ) is

an isomorphism, and so we may identify these two cohomology groups. Thus

by [GMS03, Proposition II.7.11, p. 18], each element α ∈ H i(K,μ⊗i−1
� ) may be

written in the form α′+(π)∪β, where α′ ∈ Hi(A, μ⊗i−1
� ); where (π) ∈ H1(K,μ�)

is the class defined by π; and where β ∈ Hi−1(A, μ⊗i−2
� ) is the class identified

with resv(α) ∈ H i−1(k, μ⊗i−2
� ) via the above isomorphism. Consequently, if we

base change to K̃ = K( �
√
π) to split the class (π), we find that (α)

˜K = (α′)
˜K .

Now let B = {α1, . . . , αm} ⊆ Hi(K,μ⊗i−1
� ) be a finite collection, and

let B = {α′
1, . . . , α

′
m}, where α′

i denotes the image of α′
i in Hi(k, μ⊗i−1

� ) (and α′
i

is associated to αi as in the first part of the proof). By definition, there ex-

ists a splitting field k′/k for B of degree dividing �gssd
i
�(k). To prove the first

assertion of the lemma, it suffices to show that we may find a splitting field

K̃ ′/K of B whose degree divides �[k′ : k]. By hypothesis on the characteris-

tic, each α′
i is also split by the separable closure of k in k′ (Remark 2.2), and

so we may assume without loss of generality that k′ is a separable extension

of k. Consequently, we may lift k′ to an unramified extension A′ of A of the

same degree; let K ′ denote the fraction field of A′. Again using proper base

change ([SGA73, Exp. XII, Corollaire 5.5]), the classes (α′
i)A′ are split; so it

follows that the classes (α′
i)K′ are split as well. Let K̃ ′ be a compositum of K̃

and K ′. Then (αi) ˜K = (α′
i) ˜K = 0. As [K̃ ′ : K] | �[k′ : k], the extension K̃ ′/K

is as desired. The assertion on the generalized stable splitting dimension is an

immediate consequence.

If B consists of a single class, then the extension k′/k in the previous part

can be chosen of degree dividing �ssd
i
�(k), and this yields the final assertion of

the lemma.

Remark 6.2: The bounds given in the previous lemma are not sharp. For exam-

ple, consider k = Q and i = 2 = �. Given a collection of 2-torsion Brauer classes,

we may find a quadratic extension of Q which is non-split at every prime where

at least one of the corresponding quaternion algebras is ramified. This extension

will then split all the classes, so gssd22(Q) = 1, and gssd32(Q) ≤ gssd22(Q) = 1

by Proposition 2.7. Since the Pfister form 〈〈−1,−1,−1〉〉 does not split over Q,

gssd32(Q) = 1. Lemma 6.1 then gives gssd32(Q((t)))) ≤ 2. But more is true: since

gssd22(Q) = 1, Lemma 2.8 implies the stronger assertion that gssd32(Q((t)))) = 1

(note that the above Pfister form does not split over Q((t)) either).
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Theorem 6.3: Let k be a field, let � �= char(k) be a prime, let d = gssdi�(k),

and let δ = gssdi�(k(x)). Suppose we are given a sequence k = k0, k1, . . . , kr

of fields with kj a complete discretely valued field having residue field kj−1 for

all j ≥ 1. Then

gssdi�(F ) ≤
⎧⎨
⎩
δ + r

2 (r + 2d+ 3) if � is odd

δ + r
2 (r + 2d+ 5) if � = 2

for any one-variable function field F over kr. The same result holds for ssdi�(F )

when d and δ are replaced with ssdi�(k) and ssdi�(k(x)), respectively.

Proof. Note that by definition of the invariants in question, it suffices to consider

the case F =kr(x). By Lemma 6.1, we know that gssdi�(kj)≤gssdi�(k)+j=d+j.

Let ε be 2 if � is odd and let it be 3 if � is even. By Theorem 2.9, we

have gssdi�(kj(x)) ≤ gssdi�(kj−1) + gssdi�(kj−1(x)) + ε, and so

gssdi�(kj(x))− gssdi�(kj−1(x)) ≤ d+ j − 1 + ε.

Taking a sum of these inequalities for j = 1, . . . , r yields

gssdi�(kr(x)) − gssdi�(k0(x)) ≤ rd+
r(r − 1)

2
+ rε

and so

gssdi�(kr(x)) ≤ rd+
r(r − 1)

2
+ δ + rε = δ +

r

2
(r + 2d+ 2ε− 1),

as desired. The proof for the stable splitting dimension is similar (using the

corresponding assertions of Lemma 6.1 and Theorem 2.9).

Next, we would like to examine the behavior of the splitting dimension as

the cohomological degree varies. While we don’t have the ability to control

this well for general fields, we can make some statements to this effect in the

case that the cohomological dimension is bounded, using that gssdm� (k) = 0

for m > cd�(k).

Theorem 6.4: Let k be a field, let � �= char(k) be a prime, and let c = cd�(k).

Consider a sequence of fields k = k0, k1, . . . , kr where kj is a complete discretely

valued field having residue field kj−1 for all j ≥ 1. Set ε = 2 if � is odd and ε = 3

if � = 2. Then

gssdc+m
� (kr) ≤ max(0, r −m+ 1) for m ≥ 1,
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and

gssdc+m
� (F ) ≤

⎧⎪⎪⎨
⎪⎪⎩

1
2r(r − 1) + rε+ gssdc+1

� (k(x)) for m = 1,

1
2 (r −m+ 1)(r −m) + (r −m+ 2)ε for 2 ≤ m ≤ r + 1,

0 for m > r + 1,

for any one-variable function field F over kr. The same assertions hold for the

stable splitting dimension.

Proof. For the first assertion, we have cd�(kj) = c + j for j ≥ 0 by applying

[Ser97, Proposition II.4.3.12] inductively. Thus gssdc+m
� (kr) = 0 if m ≥ r + 1,

as asserted in that case. On the other hand, if m ≤ r then gssdc+m
� (km−1) = 0.

Hence gssdc+m
� (kr) ≤ r − m + 1 by applying Lemma 6.1 to the sequence of

fields km−1, . . . , kr.

For the second assertion, again it suffices to consider the case when F = kr(x).

Note that the case m > r + 1 follows from the fact that cd�(kr(x)) = c+ r + 1

by [Ser97, Proposition II.4.2.11]. The case m = r+1 follows from Theorem 2.9,

using the fact that gssdc+m
� (kr−1(x)) = 0 = gssdc+m

� (kr−1) because of the

cohomological dimension of these fields.

For the case 2 ≤ m ≤ r, observe that

gssdc+m
� (km−1) = 0 = gssdc+m

� (km−2(x))

because cd(km−1) = c+m−1 = cd(km−2(x)), and similarly gssdc+m
� (km−2) = 0.

Thus Theorem 2.9 yields

gssdc+m
� (km−1(x)) ≤ ε.

Now write k′ = km−1 and k′j = km−1+j . Thus kr = k′r+1−m. Applying Theo-

rem 6.3 with k′, c+m, r −m+ 1 playing the roles of k, i, r there, we have

gssdc+m
� (kr(x)) ≤ ε+

r −m+ 1

2
(r −m+ 1 + 2·0 + 2ε− 1)

=
1

2
(r −m+ 1)(r −m) + (r −m+ 2)ε.

For m=1, we have gssdc+1
� (k)=0 since cd�(k)=c. Theorem 6.3 with i=c+1

yields

gssdc+1
� (kr(x))≤gssdc+1

� (k(x))+
r

2
(r+2·0+2ε−1)=

1

2
r(r−1)+rε+gssdc+1

� (k(x)).

The same proof shows the assertions on the stable splitting dimension, using

the corresponding assertions in Lemma 6.1, Theorem 2.9, and Theorem 6.3.
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Remark 6.5: (a) The bounds on gssdi�(kr(x)) also apply to gssdi�(F ) for

any finite extension F of kr(x), since the generalized stable i-splitting

dimension either stays the same or decreases upon passing to a finite

extension.

(b) In the case of ssdi�(kr(x)), the bounds given in Theorem 6.4 are not in

general sharp. For example, consider the field kr = C((s1)) · · · ((sr))
for r ≥ 1, and let � be a prime. Then Theorem 6.4 says that

ssd2� (kr(x)) ≤ gssd2�(kr(x)) ≤
1

2
(r − 1)(r − 2) + rε,

with ε = 2 (resp., 3) if � �= 2 (resp., = 2). But according to [HHK09,

Corollary 5.7], ssd2�(kr(x)) ≤ r, which is smaller.

(c) Theorem 6.4 shows that if k is fixed and F is a one-variable function field

over kr as above, then our bound on gssdi�(F ) (resp., gssdi�(kr)) depends

only on r−i for i > cd�(k)+1 (resp., for i > cd�(k)); moreover the bound

increases with r and decreases with i (and similarly for ssdi�). More

precisely, as i increases, our bound on gssdi�(kr) decreases linearly until

it reaches 0, and our bound on gssdi�(kr(x)) decreases quadratically;

and the same happens as r decreases. For numerical examples, see the

discussion following Proposition 8.4.

(d) Suppose more generally that k is a field with virtual �-cohomological

dimension equal to c; i.e., there is a finite field extension k′/k such

that cd�(k
′) = c. Let F be a one-variable function field over kr, and

let F ′ = Fk′. Then for i ≥ c + 1, the value of gssdi�(F
′) is bounded

via the above theorem, and we have that gssdi�(F ) ≤ v� + gssdi�(F
′),

where v� is the �-adic valuation of [k′ : k].

7. Splitting for arithmetic surfaces

We have so far focused on the splitting of cohomology classes α ∈ H i(F, μ⊗i−1
� )

in the case of a semiglobal field F ; i.e., a one-variable function field over a

complete discretely valued field. We can also consider the case of one-variable

function fields F over a global field. Such a field F has a model which is a

two-dimensional regular integral scheme that is projective over either a finite

field or the ring of integers of a number field (of relative dimension one). In the

latter case, there is the following splitting result when i = 3 and � = 2, due to

a theorem of Suresh.
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Theorem 7.1: Let X be a two-dimensional regular integral scheme that is

projective over the ring of integers of a number field. Let F be the function

field of X , and let γ1, . . . , γN ∈ H3(F, μ⊗2
2 ). Then there is a degree-two field

extension of F that splits each γj .

Proof. Theorem 3.2 of [Sur04] asserts that there exist f ∈F× and βj∈H2(F, μ2)

for j = 1, . . . , N such that γj = (f) ∪ βj for all j. Thus every γj is split by the

degree-two extension F (f1/2) of F .

In the remainder of this section, our goal is to treat the analogous situa-

tion for the function field F of a regular projective surface over a finite field,

with � �= char(F ). Specifically, in Theorem 7.9, we show that a finite set of

elements in H3(F, μ⊗2
� ) can all be split by some extension of degree �. This will

then be used in the next section to obtain values of gssd in situations related

to global function fields, building also on the previous sections. We first need

some preliminary results.

Lemma 7.2: Let X be a normal integral scheme whose function field F contains

a primitive �-th root of unity for some prime number �. Let P1, . . . , Pr be closed

points of X whose residue fields are finite of order prime to �. Then there is a

Galois field extension L/F of degree � such that the normalization Y of X in L

has the property that the fiber of Y → X over each Pi is étale and consists of

a single closed point of Y .

Proof. Choose an affine open subset U = Spec(R) of X that contains the

points Pi, and let mi be the maximal ideal of R corresponding to Pi. Let k′i
be the unique degree � field extension of the finite field ki := κ(Pi). By the

hypothesis on F , the field ki contains a primitive �-th root of unity; and so k′i/ki
is a Kummer extension, given by extracting an �-th root of some element ai ∈ ki

that is not an �-th power in ki. Since the maximal ideals mi are pairwise

relatively prime, by the Chinese Remainder Theorem there is an element a ∈ R

whose reduction modulo mi is ai for all i. Here a is not an �-th power in F . The

reduction of S := R[x]/(x� − a) modulo miS is k′i for all i, and so its fraction

field L has the asserted property.

Lemma 7.3: LetR be a regular local ring of dimension two with fraction field E,

and let f, g be a system of parameters at the maximal ideal of R. Let L/E be

a cyclic field extension whose degree � is a prime number that is unequal to
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the residue characteristics of R and such that E contains a primitive �-th root

of unity. Let S be the normalization of R in L, and suppose that S[f−1] is

unramified over R[f−1]. Then S is regular.

Proof. By the hypotheses, L/E is a Kummer extension; i.e., L = E[h1/�]

for some h ∈ E that is not an �-th power. After multiplying h by an �-th

power, we may assume that h ∈ R and so h1/� ∈ S. Since the regular lo-

cal ring R is a unique factorization domain (by [AB59, Theorem 5]), we may

write h = uhd1
1 · · ·hdn

n with n ≥ 0, where u is a unit in R, the elements hi ∈ R

are irreducible and define distinct height one primes, and each di ≥ 1. After

dividing h by an �-th power, we may assume that 1 ≤ di < � for all i. Since the

residue characteristics of R are unequal to �, the subring R[h1/�] ⊆ S is ramified

over R precisely over the primes (hi).

If n = 0 then the subring R[h1/�] = R[u1/�] ⊆ L is finite étale over R, and

hence regular. So it is equal to its normalization; i.e., its integral closure in its

fraction field L, which is S. Thus S is regular. Alternatively, if n > 0, then

since S[f−1] is unramified over R[f−1], and since f, h1 are both irreducible in R,

it follows that n = 1 and h1 = vf for some unit v ∈ R. Since d1 and � are

relatively prime, there exist integers a, b > 0 with ad1 − b� = 1. Hence

ha = uavad1f1+b�;

and so S contains an �-th root of uavad1f1+b� and thus also of f1 := uavad1f .

The elements f
1/�
1 , g form a system of parameters for the subring S′=R[f

1/�
1 ]⊆S,

which is therefore regular. Since f1 = ha/f b� is not an �-th power in E, the

fraction field of S′ has degree � over E and so is equal to L, the fraction field

of S. But S is the normalization of R in L, and hence also that of S′ in L.

Since the regular ring S′ is normal, S = S′, and so S is regular.

Remark 7.4: The conclusion of Lemma 7.3 fails if char(R) = 0 but R has primes

of residue characteristic �, even though L/E is Kummer. For example, let

R = Z2[[x, y]]/(xy − 2), for which x, y form a system of parameters. Let E be

the fraction field of R, take � = 2, let h = 2y2 + 1, and write

L = E[h1/2] = E[w]/(w2 − h).

Here h is a unit in R; but R[h1/2] is not étale over R, being purely insepara-

ble over the primes (x) and (y), where the residue characteristic is 2. More-

overR[h1/2] is not normal; its normalization S (in its fraction field L) is obtained
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by adjoining to R[h1/2] the element z = (w + 1)/y ∈ L. As an abstract ring,

S = R[z]/(z2−xz−2). This ring is ramified precisely over (x), but it is not reg-

ular, having a singularity at its maximal ideal (x, y). This phenomenon, which

is contrary to the situation of Lemma 7.3, leads to difficulties in treating the

analog of Theorem 7.9 in the case of a projective scheme of relative dimension

one over the spectrum of the ring of integers of a number field, with general �.

The following known result will be useful in proofs below, and we state it for

ease of citation.

Lemma 7.5: Let K ′/K be an extension of discretely valued fields with residue

field extension k′/k and ramification index e. Let � �= char(k) be a prime and

let i be a non-negative integer. Then the diagram

Hi+1(K,μ⊗i
� ) Hi(k, μ⊗i−1

� )

Hi+1(K ′, μ⊗i
� ) Hi(k′, μ⊗i−1

� )

res

e

res

commutes, where the horizontal arrows are given by residues, the left hand

vertical arrow is the natural map, and the right hand vertical arrow is the

product of e with the natural map.

Proof. This is a special case of [GMS03, Proposition II.8.2, p. 19].

These next lemmas will be used to verify properties needed in the proof of

Theorem 7.9, concerning the ramification and splitting behavior of cohomology

classes under pullback.

Lemma 7.6: Let Z → X be a morphism of regular integral two-dimensional

schemes, with function fields L/F . Let � be a prime number unequal to the

residue characteristics at the points of X and Z , and let γ ∈ H3(F, μ⊗2
� ). If γ

is unramified on X then its restriction γ′ ∈ H3(L, μ⊗2
� ) is unramified on Z .

Proof. Let ζ be a codimension one point of Z . We wish to show that the residue

of γ′ at ζ is trivial. Let ξ be the image of ζ in X . Thus ξ has codimension one

or two on X . In the former case, γ has trivial residue at ξ, hence γ′ has trivial
residue at ζ by Lemma 7.5.
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Now assume that ξ has codimension two in X . The rows in the commutative

diagram

H3(OZ ,ζ , μ
⊗2
� ) H3(L, μ⊗2

� )) H2(κ(ζ), μ�)

H3(OX ,ξ, μ
⊗2
� ) H3(F, μ⊗2

� ))
∏

x∈Spec(OX ,ξ)(1)
H2(κ(x), μ�)

res

res

are complexes, and the lower row is exact by [Sak20, Proposition 6]. Since γ

is unramified on X , it is the image of an element γ̃ ∈ H3(OX ,ξ, μ
⊗2
� ), by the

exactness. Let γ̃′ ∈ H3(OZ ,ζ , μ
⊗2
� ) be the image of γ̃. So the image of γ̃′

in H3(L, μ⊗2
� ) is unramified at ζ. This latter image is γ′ by commutativity of

the above square , so the conclusion follows.

Given a field L, an arbitrary prime �, and non-negative integers i, j, Kato

defined an abelian group Hi(L,Z/�Z(j)) that agrees with H i(L, μ⊗j
� ) in the

case that char(L) �= � (see [Kat86, page 143]). Moreover, as stated there,

H2(L,Z/�Z(1)) is just the �-torsion subgroup of Br(L), and H1(L,Z/�Z) is the

same as Homcont(Gal(Lab/L),Z/�Z).

Lemma 7.7: Let X be a two-dimensional regular integral scheme that is pro-

jective over either a finite field or the ring of integers of a number field that we

assume to be totally imaginary. Let γ ∈ H3(F,Z/�Z(2)) for some prime num-

ber � �= char(F ), where F is the function field of X . Let C be a codimension

one subscheme of X that contains the closures of the codimension one points

of X where γ is ramified. Consider the blow-up X̃ → X of X at a finite

set of regular points of C. Then γ is unramified at the generic point of each

exceptional divisor of the blow-up.

Proof. The field F has no ordered field structure, and so the hypotheses of

[Kat86, Corollary to Theorem 0.7] are satisfied. That result then provides an

exact sequence

0 → H3(F,Z/�Z(2)) →
⊕
η∈ ˜X1

H2(κ(η),Z/�Z(1))

→
⊕
x∈ ˜X0

H1(κ(x),Z/�Z(1)) → Z/�Z → 0,

where the maps are given by residues, and where X̃i is the set of dimension-i

points on X̃ .
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Let ξ be one of the closed points of X that is blown up. By the regularity

hypotheses, the exceptional divisor E over ξ is a copy of P1
κ(ξ) that meets the

proper transform of C at a single point ξ̃. Consider any closed point x0 ∈ E

other than ξ̃. Then except for the generic point η0 ∈ X̃1 of E, the class γ

is unramified at the dimension one points of X̃ whose closure contains x0.

So only one term in
⊕

η∈ ˜X1
H2(κ(η),Z/�Z(1)) contributes to the image of γ

in H1(κ(x0),Z/�Z(1)); viz., the one arising from η0 ∈ X̃1. Since the image of γ

in
⊕

x∈ ˜X0
H1(κ(x),Z/�Z(1)) is 0, it follows that the contribution of that one

term is also zero; i.e., α := resη0(γ) is unramified at x0, where x0 is an arbitrary

closed point of E other than ξ̃.

The complement of the κ(ξ)-point ξ̃ of E ∼= P1
κ(ξ) is isomorphic to the

affine line over κ(ξ). Since α is unramified over that complement, it is in-

duced from a class in H2(κ(ξ),Z/�Z(1)) by [GMS03, Theorem III.9.3, p.24].

But H2(κ(ξ),Z/�Z(1)) is the �-torsion subgroup of Br(κ(ξ)), which is trivial

since κ(ξ) is a finite field. Hence α = 0.

Lemma 7.8: Let � be a prime number, and let X be a two-dimensional regular

integral scheme that is projective over either a finite field or the ring of integers

of a number field that we assume to be totally imaginary if � = 2. Let Y be

the normalization of X in a degree � separable field extension L/F , let C ⊂ X

be a regular connected curve with function field κ(C), and let α be an �-torsion

element of Br(κ(C)). Suppose that at every closed point P of C at which α is

ramified, π : Y → X is étale and π−1(P ) is a single point. If η ∈ Y lies over

the generic point of C, then the pullback ακ(η) is split.

Proof. Let P be the set of closed points ofC where α is ramified. LetD⊆π−1(C)

be the closure of η, with normalization D̃ → D. The pullback

ακ(η) ∈ Br(κ(D̃)) = Br(κ(D))

of α∈Br(κ(C)) is unramified away from π−1(P). Since π is étale over each P ∈P,

so is D → C; hence D is regular there and D̃ → D is an isomorphism

over OP (C). So D̃ → C is étale over P , with just one point in the fiber.

The residue field extension there is the unique degree � extension of the finite

field κ(P ), so it agrees with the residue resP (α) ∈ H1(κ(P ),Z/�Z) of the �-

torsion class α at the ramified point P . Thus ακ(η) is unramified at each point

over P, hence at every point of D̃. So the �-torsion class ακ(η) lies in Br(D̃)
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by [CTS21, Theorem 3.7.7]. But Br(D̃) has trivial �-torsion; e.g., see [Gro68,

Remarque III.2.5(b)] if D̃ is a smooth projective curve over a finite field, and

see [Gro68, Proposition III.2.4] if instead D̃ = Spec(OK) for a number field K

that is totally imaginary if � = 2. Hence ακ(η) is split.

We now come to the main result of this section.

Theorem 7.9: Let X be a two-dimensional regular integral scheme that is

projective over a finite field. Let F be the function field of X . Assume

that F contains a primitive �-th root of unity for some prime �, and let

γ1, . . . , γN ∈ H3(F,Z/�Z(2)). Then there is a field extension of F of degree �

that splits each γj .

Proof. Let C be an effective divisor on X that contains all the codimension

one points of X at which at least one of the classes γj is ramified. By [Lip75,

p. 193], there is a blow-up X ′ of X such that the total transform of C is a

strict normal crossings divisor (i.e., it has only normal crossings and its compo-

nents are regular). So after replacing X by X ′, we may assume that C itself

satisfies this condition. Let C1, . . . , Cm be the irreducible components of C,

with function fields κ(Ci), and let αi,j ∈ Br(κ(Ci)) be the residue of γj at the

generic point ξi of Ci. Thus αi,j is �-torsion.

Let P be a finite set of closed points of X with at least one point on each Ci,

such that P contains all the singular (normal crossing) points of C and all

the points at which any of the classes αi,j is ramified. (In fact, all of these

ramification points are singular points, by the exact sequence at the beginning

of the proof of Theorem 7.7.) Let L/F be the cyclic field extension given by

Lemma 7.2 applied to the points of P. Let Y → X be the normalization of X

in L, and let B be its branch locus. Over each point of P the morphism Y → X

is étale and the fiber consists of a single point; hence the same holds for the

generic points ξi of the curves Ci, and moreover the divisor B does not pass

through any point of P. There is then a blow-up X̃ → X , centered only

at points where B ∪ C has a singularity other than a normal crossing, such

that the total transform of B ∪ C is a strict normal crossing divisor. Since the

singular points of C lie in P, none of those points lie on B and none of them

are among the points that are blown up. So the proper transform C̃ of C maps

isomorphically onto C, with its irreducible components mapping isomorphically

onto respective components Ci of C.
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We now reduce to the case that B∪C is itself a strict normal crossing divisor.

To do this, first observe that none of the cohomology classes γj are ramified at

any of the exceptional divisors of X̃ → X , by Lemma 7.6 applied to the com-

plement U ⊆ X of C, in the case of an exceptional divisor lying over a point

that does not lie on C; and by Lemma 7.7 in the case of an exceptional divisor

lying over a (regular) point of C. Thus the proper transform C̃ of C contains all

the codimension one points of X̃ at which at least one of the classes γj is rami-

fied. Let Ỹ → X̃ be the normalization of X̃ in L; its branch locus is contained

in the total transform of B. So replacing Y → X by Ỹ → X̃ , replacing C

by its (isomorphic) proper transform C̃ and similarly for its irreducible com-

ponents Ci, replacing P ⊂ C by its inverse image in C̃, and replacing B by

the branch locus of Ỹ → X̃ (which is contained in the total transform of the

original B), we may assume that B∪C is a strict normal crossing divisor in X .

In doing so, we retain the property that the cohomology classes γj are ramified

only at codimension one points of X that lie on (the new) C.

Our next step is to show that the given cohomology classes γj are each un-

ramified at every codimension one point of Y . To see this, note that since the

given cohomology classes γj are unramified at the codimension one points on

the complement U ⊆ X of C, they remain unramified at the codimension one

points on its inverse image V ⊆ Y by Lemma 7.5. The other codimension one

points of Y lie over the generic points ξi of Ci for i = 1, . . . ,m. As noted above,

there is a unique point ηi in Y over each ξi. Now Y → X is étale over the

points of P with each of those fibers consisting of a single point; so this holds

in particular at the points where each αi,j is ramified. It then follows from

Lemma 7.8 that (αi,j)ηi is split. That is, γj is unramified at the points ηi ∈ Y

lying over the generic points of the curves Ci, as well as at the other codimension

one points of Y ; and that completes this step.

Next, we claim that Y is regular at every closed point Q lying over a point P

of C. To see this, note that Y is regular at Q if P is not a point of B,

since Y → X is étale there and X is regular. Now suppose that P ∈ B.

Then P is a nodal point of B ∪ C, and is a regular point of B and of C,

lying on a unique irreducible component of each. These components are respec-

tively defined in OX ,P by elements f, g that form a system of parameters. By

Lemma 7.3, OY ,Q is regular, proving the claim.
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Every singular point of Y lies in V by the above claim, and the two-dimen-

sional normal scheme Y has only finitely many singular points. Thus there is

a blow-up Z → Y centered at those points of V , with Z regular. This is an

isomorphism away from those finitely many points, and Lemma 7.5 implies that

the classes γj are unramified at every codimension one point of Z that lies over

a codimension one point of Y . The only other codimension one points of Z are

the generic points of the exceptional divisors of the blow-up Z → Y , which lie

over closed points of V . Let W be the inverse image of U ⊆ X (or equivalently,

of V ⊆ Y ) in Z . Applying Lemma 7.6 to W → U , we find that the classes γj

are unramified at the codimension one points of W , and in particular at the

exceptional divisors of Z → Y . Since Z is regular with function field L,

[Kat86, Corollary to Theorem 0.7] asserts that the residue map

H3(L,Z/�Z(2)) →
⊕
ζ∈Z1

H2(κ(ζ),Z/�Z(1))

is injective, where Z1 is the set of dimension-one points of Z . Hence the

pullback of each γj to H3(L,Z/�Z(2)) is trivial, as needed.

8. Applications

This section gives concrete applications of our bound. We start with an ex-

ample involving 3-dimensional fields over the complex numbers. A result of

de Jong ([deJ04]) shows that for the function field of a complex algebraic sur-

face, the index of a Brauer class (that is, an element in degree 2 cohomology)

must equal its period. In contrast, bounds for the index of a degree 3 co-

homology class on the function field of a complex threefold are not known.

On the other hand, if we consider a somewhat simpler 3-dimensional field F ,

namely a finite extension of the field C(x, y)((t)), it follows (for example from

Lemma 6.1) that a class in H3(F, μ⊗2
� ) will have index at most �. If F is a

finite extension of C(y)((t))(x), the arithmetic is more subtle. Using [deJ04]

to show ssd2�(C(x, y)) ≤ 1, Theorem 2.9 gives that ssd2�(C(y)((t))(x)) ≤ 3 or 4,

depending on the parity of �. On the other hand, de Jong’s theorem does not

give us information about gssd2�(C(x, y)), and hence the methods of [Gos19]

and Proposition 2.7 do not give bounds on the index of degree 3 cohomology

classes for such fields. Using our new results, we obtain the following bounds

for degree 3 cohomology:
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Proposition 8.1: Let k = C(Y ) be the function field of a complex curve.

Let � be a prime.

(a) If F is a one-variable function field over k((s)), then gssd3� (F ) ≤ 2 if �

is odd and gssd3�(F ) ≤ 3 if � = 2.

(b) More generally, if Fr is a one-variable function field over k((s1)) · · · ((sr))
for r > 0, then

gssd3�(Fr) ≤ (r2 + r + 2)/2 if � is odd

and

gssd3�(Fr) ≤ (r2 + 3r + 2)/2 if � = 2.

Proof. Note that k and k(x) have cohomological dimension 1 and 2 respectively,

and thus gssd3�(k) = gssd3�(k(x)) = 0. The first statement now follows directly

from Theorem 2.9. The second statement is by Theorem 6.4 (with m = 2).

In the situation above, Theorem 6.4 also gives bounds for gssdi�(Fr) when

3 < i < r + 3; e.g.,

gssd4�(Fr) ≤ (r2 − r + 2)/2 if � is odd

and

gssd4�(Fr) ≤ (r2 + r)/2 if � = 2.

As i increases, gssdi�(Fr) decreases, and becomes 0 for i ≥ r + 3. Bounds for

gssd2� (Fr) were given in [Gos19].

We now move on to a class of examples related to global residue fields. Infor-

mation about the period-index problem for degree 2 cohomology classes when F

is a one-variable function field over a number field has been highly sought after.

As of yet, bounds of this type are only known contingent upon conjectures of

Colliot-Thélène [LPS14]. Remarkably, the work of Lieblich [Lie15] has shown

that the index divides the square of the period in the case of a function field F

of a surface over a finite field, giving ssd2� (F ) ≤ 2 in this case. Nevertheless,

in neither situation do we have information on gssd2�(F ), and so again we are

unable to apply [Gos19] or Proposition 2.7 to obtain bounds on the index of a

cohomology class of degree higher than 3. On the other hand, degree 3 coho-

mology over such fields is much more directly tractable, as was highlighted in

the work of Kato [Kat86]. Building on Theorems 7.1 and 7.9 above together

with our previous results, we obtain Proposition 8.3, Proposition 8.4, and the

numerical examples that follow. First we state a lemma.
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Lemma 8.2: Let k be a global field, let E be the function field of a regular pro-

jective k-curve C, and let � be a prime unequal to char(k). ThenH3(E, μ⊗2
� ) �=0.

Proof. Let P ∈ C be any closed point, and let k′ be its residue field. Since k′

is also a global field, the �-torsion subgroup Br(k′)[�] ⊆ Br(k′) is non-trivial

(e.g., by [GS17, Corollary 6.5.3, Proposition 6.3.7] in the function field case

and [Pie82, Theorem 18.5] in the number field case). The period and index

of a non-trivial element α ∈ Br(k′)[�] both equal � since k′ is a global field.

By [Sal84, Theorem 3.11, Corollary 5.3], as � is prime, we may lift α to an

index � class α̃ ∈ Br(OC,P )[�] ⊆ Br(E)[�] = H2(E, μ�). Let t ∈ OC,P ⊂ E be a

uniformizer at P , and set β = α̃ ∪ (t) ∈ H3(E, μ⊗2
� ). Then resvP (β) = α �= 0

by [GMS03, Proposition II.7.11, p. 18], using that the residue homomorphism

resvP associated to the discrete valuation vP defined by P is defined by passing

through the completion ([GMS03, Section II.7.13, p. 19]). Hence β∈H3(E, μ⊗2
� )

is nonzero.

Proposition 8.3: Suppose k is a global field. If k is a function field, choose a

prime � �= char(k). If k is a number field, take � = 2. Let E be a one-variable

function field over k. Then sd3�(E) = ssd3�(E) = gssd3�(E) = 1.

Proof. By Lemma 8.2, H3(E, μ⊗2
� ) �= 0, hence

0 < sd3� (E) ≤ ssd3�(E) ≤ gssd3� (E).

Thus to show that sd3�(E) = ssd3�(E) = gssd3�(E) = 1, it suffices to prove that

gssd3� (E) is at most 1. Every finite extension of E is of the same form (i.e., a

one-variable function field over a global field). So it suffices to consider classes

in H3(E, μ⊗2
� ), and not separately treat classes over finite extensions E′ of E.

By Lemma 2.3, we may also assume that E contains a primitive �-th root of

unity, since adjoining this element produces a field extension of degree prime

to �.

If k is a function field, then the desired assertion is now immediate from

Theorem 7.9. In the case where k is a number field and � = 2, it is immediate

from Theorem 7.1.

Our next examples concern function fields over higher local fields whose

residue field is a global field. Examples of such fields include F = K(x)

where K = Q((s)) or Fp(y)((s)), or where K is the p-adic completion of Qp(t),

or where K is a field of iterated Laurent series over one of these fields.
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Proposition 8.4: Let k be a global field, and let � �= char(k) be a prime.

In the number field case assume � = 2. Suppose we have a sequence of

fields k = k0, k1, . . . , kr, with r ≥ 1, where kj is a complete discretely valued

field with residue field kj−1 for all j ≥ 1, and let F be a one-variable function

field over kr. Then

• if � is odd, we have gssd3� (F ) ≤ 1 + r
2 (r + 3),

• if � is even, and k has no real places, we have gssd3�(F ) ≤ 1 + r
2 (r + 5),

• if � is even, and k has real places, we have gssd3� (F ) ≤ 2 + r
2 (r + 5).

Proof. Since F is a finite extension of kr(x), we have that

gssd3�(F ) ≤ gssd3�(kr(x)).

Hence it suffices to prove the assertion for F = kr(x).

If k is a number field (and � = 2), we can reduce to the case that k has no

real places by adjoining a square root of −1 if necessary. This increases by 1 the

power of � in the degree of the splitting extension, and so the bound on gssd3�(F )

increases by 1 (as in the assertion of the third case). So we can now assume

that the global field k has no real places, and in particular that we are in one

of the first two cases.

In the notation of Theorem 6.3 with i = 3, we have d = gssd3�(k) = 0, by

[Ser97, Proposition II.4.4.13] in the case of a totally imaginary number field,

and by [Ser97, Corollary in II.4.2] in the global function field case. Moreover,

δ = gssd3�(k(x)) = 1 by Proposition 8.3. Theorem 6.3 thus gives the desired

bounds.

In the situation of Proposition 8.4, if k has no real places, then for r = 1, 2, 3

we find gssd3�(F ) ≤ 3, 6, 10, respectively, if � is odd; and ≤ 4, 8, 13, respec-

tively, if � = 2. Again, Theorem 6.4 gives information on the higher coho-

mology groups. Note that c = cd�(k) = 2 as in the above proof; moreover,

gssd3� (k(x)) = 1 by Proposition 8.3. Hence for this field F with r = 1, 2, 3,

Theorem 6.4 yields that gssd4�(F ) ≤ 2, 4, 7 respectively if � is odd, and ≤ 3, 6, 10

respectively if � = 2. Observe that our bound for gssdi�(F ) decreases as i in-

creases. For example, if r = 3 then gssdi�(F ) ≤ 10, 7, 4, 2, 0 for i = 3, 4, 5, 6, 7

if � is odd, and ≤ 13, 10, 6, 3, 0 if � = 2. Note in particular the relationship

between the bounds for gssdi�(F ) as i increases and those as r decreases (and

see Remark 6.5(c) for a further discussion).
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On the other hand, if k is a number field with a real place (and � = 2), then

the bounds each increase by 1 as above. For example, for r = 1, 2, 3 in that

case, we have gssd32(F ) ≤ 5, 9, 14 and gssd42(F ) ≤ 4, 7, 11, respectively. And

for r = 3 in that case, gssdi2(F ) ≤ 14, 11, 7, 4, 1 for i = 3, 4, 5, 6, 7.
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