ISRAEL JOURNAL OF MATHEMATICS 257 (2023), 353-387
DOI: 10.1007/s11856-023-2549-x

BOUNDING COHOMOLOGY CLASSES
OVER SEMIGLOBAL FIELDS

BY

DAvVID HARBATER, JULIA HARTMANN AND DANIEL KRASHEN*

Department of Mathematics, University of Pennsylvania
Philadelphia, PA 19104-6395, USA
e-mail: harbater@math.upenn.edu, hartmann@math.upenn.edu,
dkrashen@math.upenn.edu

Dedicated to Moshe Jarden on his 80th birthday
to honor his contributions to patching methods in algebra

ABSTRACT

We provide a uniform bound for the index of cohomology classes in
Hi(F, ,u?iil) when F is a semiglobal field (i.e., a one-variable function
field over a complete discretely valued field K). The bound is given in
terms of the analogous data for the residue field of K and its finitely
generated extensions of transcendence degree at most one. We also ob-
tain analogous bounds for collections of cohomology classes. Our results
provide recursive formulas for function fields over higher rank complete
discretely valued fields, and explicit bounds in some cases when the infor-
mation on the residue field is known. In the process, we prove a splitting
result for cohomology classes of degree 3 in the context of surfaces over
finite fields.
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1. Introduction

It is classical that the index of a central simple algebra over a global field F'
is equal to its period as an element of the Brauer group. In terms of Galois
cohomology, this says that any element of H?(F, ) is split by an extension of
degree n over F. The corresponding assertion does not generally hold for other
fields F', though the period always divides the index, and the index always di-
vides some power of the period ([Pie82], Proposition 14.4(b)(ii)). In [Sal97] (see
also [Sal98]), it was shown that for a one-variable function field F over Q,, the
index divides the square of the period, provided that the period is prime to p.!

More generally, given a field F', one can ask if there is a uniform bound on
the index in terms of the period, that is, whether there is an integer d such that
the index of every central simple F-algebra divides the d-th power of its period.
Starting with [CTO01, page 12] (see also [Lie08]), the idea has emerged that for
large classes of fields, such a uniform bound d should exist, and that it should
increase by one upon passage to one-variable function fields. So far, there have
been a number of results giving such bounds and giving evidence for this idea. In
the case that F' is a one-variable function field over a complete discretely valued
field with residue field k, and the period is prime to char(k), such a bound d
for F' was found in [Liell] and [HHKO09] in terms of the corresponding bounds
for fields that are extensions of k that are either finite or finitely generated of
transcendence degree one. This generalized [Sal97]. More recently, for such a
field F', a bound was found for a “simultaneous index” in [Gosl19]; i.e., for the
degree of an extension of F' that simultaneously splits an arbitrary finite set of
¢-torsion Brauer classes over F', for a given prime ¢ # char(k).

In this paper, we focus on higher degree Galois cohomology groups

HY(F,p&h), i>2.

These higher cohomology groups have already been the subject of much in-
vestigation from various perspectives. We note in particular that in [Kat86)
these were viewed in certain contexts as generalizations of the n-torsion sub-
group H?(F,u,) of the Brauer group Br(F) for F a higher dimensional local

1 In this paper, we use the term one-variable function field F' over a field K to mean a
finitely generated extension of K of transcendence degree one; we do not require K to be
algebraically closed in F'.
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or global field. However, much less is known in general about uniform period-
index bounds for these groups; and although some conjectures have been made
(see for example [Kral6, Conjecture 1, page 997]), supporting evidence has
been difficult to obtain. Some important progress has been made in the case
of degree 3 cohomology, showing that period and index coincide in the case of
function fields of p-adic curves ([PS98]), function fields of surfaces over finite
fields ([PS16]), and more recently for function fields of curves over imaginary
number fields [Sur20]. Motivated by Kato’s work, by the results on Brauer
groups, as well as these results for degree 3 cohomology, in this paper we study
the problem of bounding the index of a class in H*(F, u?iil) in terms of its pe-
riod ¢, where F is a one-variable function field over a complete discretely valued
field K with residue field k; and more generally bounding the minimal degree of
an extension of F' that simultaneously splits finitely many such classes. Namely,
we define ssdz(F), called the stable ¢-splitting dimension at ¢ of F', to be the
minimal d such that for all finite extensions L/F, and for all o € H*(L, "),
ind(c) divides ¢¢. We similarly define the generalized stable i-splitting dimen-
sion at ¢ of F' to be an analogous quantity gssdé(F ) for the simultaneous split-
ting of finite sets of elements B C H*(L,u$"""). In Theorem 2.9, we show the
following generalization of the main theorem in [Gos19]:

THEOREM: In the above situation,
ssdi(F) < ssdb(k) + ssdj(k(z)) + e,

where e = 2 if ¢ is odd and ¢ = 3 if { = 2. The analogous bound also holds
for gssdj(F). Here i is any positive integer.

Our approach first reduces to the case of unramified classes using a splitting
result of [Gos19]. The proof in the unramified case relies on patching over
fields, a framework introduced in [HH10] (which was also used in [HHKO09] and
[Gos19]). In particular, it relies on a local-global principle for Galois cohomology
from [HHK14]. In the case when i = 2, i.e., when considering classes in the
Brauer group, our bound agrees with that given in [Gos19] for collections of
Brauer classes, but it is weaker than the bound given in [HHKO09] for a single
Brauer class. The main theorem implies recursive bounds for function fields
over higher rank complete discretely valued fields. In the final section of this
paper, we apply our results in specific situations to obtain explicit numerical
bounds for ssd,(F) and gssdj(F). These bounds give information on degree 3
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and higher cohomology classes, in cases when the information on the Brauer
group is not sufficient to obtain bounds with prior methods. For example, if F'
is a one-variable function field over a complete discretely valued field whose
residue field is a global function field and ¢ is odd, then gssd? (F) is at most 3;
see Proposition 8.4. In order to obtain these numerical bounds, we prove a
splitting result for surfaces over a finite field (Theorem 7.9), which should be
of independent interest. Both the splitting result and the applications build on
work of Kato (see [Kat86]).

ACKNOWLEDGMENT. We thank the anonymous referee for helpful comments
that led to improvements and to simplifications of some of the arguments.

2. Uniform bounds for cohomology classes

In this section, we define quantities that bound the degree of extensions needed
to split a cohomology class, or a finite collections of such classes.

Definition 2.1: Let F be a field, and fix a prime ¢ char(F) and a positive inte-
geri. A field extension L/F is called a splitting field for a class a €H*(F u?ifl),
if the image oz, of & under the natural map H*(F, u5 ") — H(L, u* ) is triv-
ial. In that case, we also say that o splits over L. Similarly, if BC H*(F, u$" ")
is a collection of elements, we say that a field extension L/F is a splitting field
for B if it is a splitting field for each element of B.

The index of a class a € H(F, u?i_l), denoted by ind(«), is the greatest
common divisor of the degrees of splitting fields of « that are finite over F.
Similarly, the index of a subset B C H'(F, u?ifl) is the greatest common
divisor of the degrees of splitting fields of B that are finite over F.

Remark 2.2: We will frequently use that if « € H*(F, "~ ") and E/F is a finite
field extension of degree prime to ¢ such that apg is trivial, then « is trivial,
by a standard restriction-corestriction argument (using that the composition of
restriction and corestriction is multiplication by the degree).

LEMMA 2.3: For F a field, ¢ # char(F) a prime, and i a positive integer, let
o € HY(F,uP"""). Then there exists a splitting field L/F so that [L : F)] is a
power of . In particular, the index of « is a power of £. More generally, the
index of a finite subset B C H'(F, uy""') is a power of L.
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Proof. Let p be a primitive ¢-th root of unity, and let F:=F (p). By the Bloch—
Kato conjecture/norm residue isomorphism theorem ([Voell, Theorem 6.16];
see also [Wei09)), az € H(F, p'™1) = Hi(F, u$") may be written as a sum of
symbols. That is,

m
ap =5
j=1

where 8; = (b;1)U---U(bj;) for elements b;j, € F*; here for b € F*, (b) denotes
the class in HY(F, ug) = F* /(F*)*. Tt then follows that

E .= ﬁ(f/bu,---vf/bml)

is a splitting field for « (see also [Kral6], Remark 2.3). Let E be the Galois
closure of E/F. Note that E / F is a compositum of cyclic (Galois) extensions
of prime degree ¢ (viz., those obtained by adjoining ¢-th roots of the Gal(ﬁ JF)-
conjugates of the elements b;;). Hence Gal(E/F) is a subdirect product of cyclic
groups of order ¢ (see, e.g., [DF91], Chap. 14, Proposition 21). By induction,
one checks that such a subdirect product is in fact a direct product of cyclic
groups of order ¢, using that for H; cyclic of order ¢ and Hs of ¢-power order,
H, N Hy is either equal to Hy or trivial. Thus Gal(E/F) is an (elementary
abelian) ¢-group. By the Schur—Zassenhaus theorem ([Zas49], IV.7, Theorem 25;
or [Suz82], Chap. 2, Theorem 8.10), Gal(E/F) contains a subgroup of f-power
index and order [F : F] dividing £ — 1. Its fixed field is an extension L/F of
{-power order. Since E /L is of degree prime to ¢ and Eisa splitting field of «,
so is L (Remark 2.2), proving the first assertion. Note that the same argument
applies to finite collections of cohomology classes. The statements on the index
are immediate consequences.

As a consequence of the above lemma, we can make the following definition.

Definition 2.4: For a prime £ and a positive integer ¢, we say that the i-splitting
dimension at ¢ of F, denoted by sdj(F), is the minimal exponent n so that

ind(a) | " forall « € HY(F,ud" ).

We would like to show that the splitting dimension behaves in a controlled
way upon finitely generated extensions of certain fields, and with respect to
complete fields and their residues. In order to facilitate this, we will use a
stronger form of splitting dimension, to require stability under finite extensions.
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This is analogous to notions introduced for quadratic forms and central simple
algebras in [HHKO09].

Definition 2.5: Let i be a positive integer. We say that the stable i-splitting
dimension at £ of F, denoted ssd,(F), is the minimal n so that sd}(FE) < n for
all finite field extensions E/F.

In analogy to [Gos19], we also consider collections of cohomology classes.

Definition 2.6: Let i be a positive integer. We define the generalized stable
i-splitting dimension of a field F', denoted by gssdé(F), to be the minimal
exponent n so that ind(B) | £ for all finite field extensions F/F and all finite
subsets B C H'(E,u$" ).

The advantage of the generalized stable splitting dimension is that it pro-
vides information about higher degree cohomology groups as well, as in [Gos19,
Corollary 1.4].

PROPOSITION 2.7: Let F' be a field of characteristic unequal to £. For alli>j>1,
ssd(F) < gssdz (F)
and
gssdb(F) < gssd) (F).

Proof. Let a € Hi(E,/Lz@i_l) for some finite extension E of F' and i > j. By
Remark 2.2, we may assume that E contains a primitive /-th root of unity.
We can then use the norm residue isomorphism theorem as in the proof of

Lemma 2.3 in order to write « as a finite sum
a= Z Br Uk
k

where 8, € HI(E,u$’™") = HI(E, ;). By definition, there exists a finite
extension L of E such that the (-adic valuation of [L : E] is at most gssd(F)
and such that L splits all 85 occurring in the sum. But then L splits «, and the
first claim follows. Note that the same argument applies to finite collections of
cohomology classes, hence the second assertion.

The next lemma shows another useful property of the generalized stable split-
ting dimension.
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LEMMA 2.8: If K is a complete discretely valued field having residue field k
with char(k) # ¢, then

gesdi(K) < gesd (k)
for all positive integers i > j.

Proof. Since any finite extension of K is of the same form, it suffices to consider
classes defined over K. Let a1, ..., a, € H (K, ,u?i_l). By the Witt decompo-
sition theorem ([GS17], Corollary 6.8.8), that cohomology group is isomorphic
to H(k, ,u?i*l)@Hi_l(k, ,u?i*Q), so each a is of the form (8,, ..), where f,, 3.,
are classes over the residue field of degree ¢ and i — 1, respectively. As in the
proof of Proposition 2.7 above, we may assume that K contains a primitive ¢/-th
root of unity and we may write 8, and .. as sums of terms that are each of the
form yUS where v € HY (k, u?jfl). But then all §,, 8. are split by a finite exten-
sion k’/k such that the ¢-adic valuation of [k’ : k] is at most gssdg(k:). Since K is
complete, this extension lifts to a finite extension K'/K of the same degree (by
applying [SGA71, Théoreme 1.6.1] to lift the maximal separable subextension,
and then iteratively lifting p-th roots for the purely inseparable part). This
lift then splits a1, ..., a,;,, by the Witt decomposition theorem applied to K’
and k'

Our main result is the following theorem, which is proven in Section 5.

THEOREM 2.9: Suppose k is a field and ¢ is a prime unequal to the characteristic
of k. Let k(x) denote the rational function field over k in one variable. Let K
be a complete discretely valued field with residue field k, and let F' be a one-
variable function field over K. Then for all i > 1,

. ) . 2 if{ is odd
ssdy(F) < ssdy(k) + ssdy(k(zx)) + oo
3 ift=2
and
. ; ; 2 if ¢ is odd
gssdy(F) < gssdj(k) + gssdy(k(z)) + 3 iff—9
1 = .

The main interest is in the case ¢ > 1. In fact,

ssdj(F) =1 and gssdj(F) = oo
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for any field F' for which F'*/(F*)¢ is infinite (in particular, for F' as in the
theorem). This is because H'(E,Z/(Z) = E* /E** is then infinite for any finite
extension E/F, and because a non-trivial Z/¢Z-torsor over E corresponds to a
field extension that splits only over itself. For the same reason, a non-trivial
class a € HY(E, Z/lZ) satisfies ind(a) = /.

Even for i > 1, we do not assert that these bounds are sharp. Nevertheless,
in light of this theorem and [HHKO09, Theorem 5.5], it is natural to investi-
gate more precisely how these quantities grow. In particular, one might ask
whether ssd,(F) and gssd}(F) are bounded above by dim(F) —i+ 1 for certain
naturally occurring fields F; i.e., those obtainable from a prime field by passing
iteratively to finite generated field extensions of transcendence degree one over a
given field, and to henselian discretely valued fields with a given field as residue
field. Here, dim(F') is defined inductively, with the dimensions of F,, and Q set
equal to 1 and 2, and with the dimension increasing by one at each iterative
step. But proving such an assertion seems a long way off.

3. Preliminaries from patching

The proof of the main theorem will use the patching framework introduced in
[HH10] and [HHKO09], which we now recall.

Let K be a complete discretely valued field with residue field k, valuation
ring Ok, and uniformizer . Let F be a semiglobal field over K; i.e., a one-
variable function field over K. A normal model of F' is an integral Og-
scheme 2~ with function field F' that is flat and projective over Ok of relative
dimension one, and that is normal as a scheme. If 2 is regular, we call it a reg-
ular model. Such a regular model exists by the main theorem in [Lip78] (see
also [Sta22, Theorem 0BGP]). Let P be a finite nonempty set of closed points
of Z that contains all the singular points of the reduced closed fiber %kmd.
Let U be the collection of connected components of the complement %kmd NP

For each U € U, we consider the ring Ry C F' consisting of the rational
functions on 2 that are regular at all points of U. The t-adic completion }ABU
of Ry is an [-adically complete domain, where I is the radical of the ideal
generated by t in ]%U. The quotient }ABU /I equals k[U], the ring of regular
functions on the integral affine curve U. We write Fy for the field of fractions
of EU. If VCU, then EU - EV and Fy C Fy.
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Also, for a (not necessarily closed) point P of %kred, we let Fp denote the
field of fractions of the complete local ring EP = 65{713 of 2" at P, and we
let k(P) denote its residue field. The fields of the form Fp, Fy for P € P,
U € U (and the rings EP, EU, respectively) are called patches on 2.

For a closed point P € Z, kmd, we consider height one primes p of the complete
local ring R p that contain the uniformizing parameter t € Ok . For each such g,
we let R, be the localization of Rp at o, and we let ﬁp be its t-adic (or
equivalently, its p-adic) completion; this is a complete discrete valuation ring.
We write F, for the fraction field of ]?Ep. If P is on the closure of U, we
call such a p a branch at P on U. Let B denote the set of all branches
at points P € P (each of which lies on some U € U). The fields F, (resp.,
rings ﬁp) are referred to as the overlaps of the corresponding patches Fp, Fyy
(resp., Rp, Ry). For a branch p at P on U, there is an inclusion Fp C F,
induced by the inclusion Rp - Rg,_,, and also an inclusion Fyy C Fj, that is
induced by the inclusion Ry < Rp. (See [HHK11], beginning of Section 4.)

The strategy for proving Theorem 2.9 relies on putting ourselves in the above
context. Given a class o € H(F, ,u®Z 1), we will choose a suitable regular
model .2, along with P and U, and will construct splitting fields L¢ / F for ap,,
for each £ € P UU. Next, we will use these to obtain an extension L/F that
splits « locally. Finally, we will use a local-global principle from [HHK14] to
show that this extension in fact splits . To handle the second of those three
steps, we prove some auxiliary results, starting with a general lemma.

LEMMA 3.1: Let vy,...,v, be distinct non-trivial discrete valuations on a
field E, with completions E;. Let d be a positive integer and for each i let L;
be an étale E;-algebra of degree d. Then there exists an étale E-algebra L of
degree d such that L @ g E; = L; for all i. If some L; is a field, then so is L.

Proof. The complete discretely valued field E; is infinite for each ¢, and so
by Corollary 4.2(d) of [FR17] there is a primitive element for the étale alge-
bra L; over E;, say with monic minimal polynomial f;(z) € E;[z] of degree d.
For each 7, there is an extension of v; to a discrete valuation on the polyno-
mial ring E;[z], by taking the minimum of the valuations on the coefficients;
we again write v; for that extension. Applying Krasner’s Lemma ([Lan94],
Prop. I1.2.4) to each monic irreducible factor f;; of f; € E;[z] (and then tak-
ing the maximum) gives a positive integer n; such that for any monic polyno-
mial h; € E;[z] of the same degree as some f;;, if v;(h; — fi;) > n; then h; is
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irreducible, and the polyomials h; and f;; define the same field extension of E;.
By a general form of Hensel’s Lemma (see Theorem 8 of [Bri06]), for each i
there is an integer m; such that for any monic polynomial g; € E;[x] of degree
equal to that of f; and with v;(f; — ¢;) > m;, we may write g; as a product of
monic polynomials g;; € E;[z] of the same respective degrees as f;; and such
that Ui(fij — gij) > n; for all 7.

The field FE is dense in [] E; by Theorem VI.7.2.1 of [Bou72]. Hence we may
find a monic polynomial f € E[z] of degree d such that v;(f; — f) > m; for
all ¢. By the definition of m;, we may write f as a product of monic factors g;;
over E; that are respectively of the same degrees as the polynomials f;; and
with v;(fi; — gi;) > ni. By the definition of n;, each factor g;; of f over E;
is irreducible and defines the same field extension of E; as f;;; and so the
étale algebras induced by f and by f; over E; are the same. Hence the étale
E-algebra L defined by f induces L; over E; for all i. The last assertion is

clear.

Resuming our notation for semiglobal fields, we have the following.

LEMMA 3.2: Given F, 2", and U as above, suppose that for each U € U we
are given an étale Fyy-algebra Ly of (a common) degree d. Then there exists an
étale F-algebra L (necessarily of degree d) such that L @ p Fy & Ly for all U.
If some Ly is a field, so is L.

Proof. For a point P € P, each branch g at P lies on the closure of a unique
U € U; and we define an étale Fi,-algebra

Lp =Ly QF, Fp.

Applying Lemma 3.1 to the field Fp and the discrete valuations corresponding
to the branches at P, we obtain an étale Fp-algebra Lp such that Lp® F, = L
for each of the branches p at P. Therefore, we have defined a system of étale F¢-
algebras L¢ for £ € PUU, together with isomorphisms Lp ®p, F, = Ly Qp, Fj,
whenever p is a branch at P on U. Since patching holds for étale algebras in
this context (see, for example, Proposition 3.7 and Example 2.7 in [HHK15b]),
there is an étale F-algebra L with the desired properties. The final assertion is
clear.

The next lemma is a variant of [HHK*19, Theorem 2.6].
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LemMA 3.3: With K, k, F, and P as above, suppose that for each P € P, we are
given an étale Fp-algebra Lp of (a common) degree d prime to the characteristic
of k, and assume that the integral closure of ﬁp in Lp is unramified over EP.
Then there exists an étale F-algebra L such that L @ Fp = Lp for all P. If
some Lp is a field, so is L.

Proof. For each P € P, the normalization Sp of ﬁp in Lp is a degree d étale
R p-algebra. It induces an étale ﬁp-algebra S, for each branch p at P; and those
in turn induce degree d étale algebras L, over Fy, and A, over k(gp), where k(p)
is the residue field at p. The branches p on U define distinct non-trivial discrete
valuations on the function field k(U) of U, with completions k(p). Applying
Lemma 3.1, we obtain a degree d étale algebra Ay over k(U) such that

Ay @y k(p) = A

for all branches p on U. The normalization of k[U] in Ay is a generically
étale k[U]-algebra Ay that induces Ay over k(U). By lifting the defining co-
efficients of Ay from k[U] to EU, we obtain a generically étale EU—algebra
Ay whose reduction is Ay. The algebra Ay induces S, over ﬁp, because
both Ay @z, Ep and Sy, lift the étale k(p)-algebra A, and that lift is unique
by [SGAT1, Théoreme 1.5.5]. Thus Ly := Ay Dz, Fy is an étale algebra over Fyy
that induces L, := S, g, F,, over F,.

Thus we have étale algebras Lp over Fp for each P € P and Ly over Fy
for each U € U such that Lp and Ly induce the same Fj,-algebra L, for p
a branch at P on U. By the patching result [HH10, Theorem 7.1(iii)] (in the
context of [HH10, Theorem 6.4] and [HHK15a, Proposition 3.3]), there is an
étale algebra L over F' that induces Ly over Fy for all U € U and induces Lp
over Fp for all P € P. This yields the main assertion, and the final assertion of
the lemma is clear.

4. Splitting unramified cohomology classes

In order to prove the main theorem, we will reduce to the case of unramified
classes. Let L be a field. For every discrete valuation v of L, we let k(v) denote
its residue field. Recall that for a prime ¢ # char(x(v)) and 7 > 1, there is a

residue homomorphism

ves, + H'(L,p™Y) = B (v(v), 1 2);
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e.g., see [GMS03, Section I11.7.9, p. 18]. A class a € H*(L,u$" ') is called
unramified at v if

res, (a) = 0.

If % is a regular integral scheme with function field L and % () is the set of
codimension one points of %, then every y € (1) defines a discrete valuation
vy of L. We say that o as above is unramified at y if

res,, (o) = 0.

It is unramified on % if it is unramified at all points of #(V); and we write
Hi(L, u?i_l)m’g’ for the subgroup of H*(L, ,u?i_l) consisting of these unrami-
fied classes.

LEMMA 4.1: With notation as above and U € U, let a € H'(Fy,uy"™ ") be
unramified on Spec(ﬁy). Then for some nonempty affine open subset U’ C U,
g, is in the image of H(Ry», n$'™Y) — Hi(Fyr, p71).
Proof. Let RZ = H_r)nv U ﬁv (varying over the nonempty open subsets V C U),
and let F' be its fraction field. Then by [HHK14], Lemma 3.2.1, R! is a
henselian discrete valuation ring with residue field k(U), and F}} = lim,, . Fy.
Since « is unramified, so is its image « Pl Thus by [Col95, beginning of Sec-
tion 3.3], apn is the image of some & € Hi(RZ,;Lz@Fl). According to [Sta22,
Theorem 09YQ),

H'(Rp, p* ") = lim H'(Ry, uf" ")

oS
c

<
g

and
HY(Fy,pg ™) = lim H'(Fy, uf' ™).
VU

In particular, there is some nonempty open subset V' C U so that « is the image

of an element &’ € Hi(}ABV, p$" ). The classes ap, and @', then have the same

image in Hl(Fff, 1S 1) by construction. Again by [HHK14, Lemma 3.2.1],

F) = lim F,
wcv
and thus there exists a U’ C V for which ap, = &/FU/' But then U’ is as

desired.
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This next result gives a bound on the index in the case of unramified coho-
mology classes.

PROPOSITION 4.2: Let K be a complete discretely valued field with residue
field k, let £ be a prime unequal to the characteristic of k, let F' be the function
field of a K-curve, and let & be a regular model of F'. Let i > 1.

(a) Ifa € HY(F,u$"") is unramified on %, then

ind(a) | gssdé(k)Jrsst(k(m))'

(b) If B C HY(F, " ") is a finite collection of cohomology classes that are
unramified on 2", then

ind(B) | pessdy (k) +essdj (k(x))

Proof. Both assertions are trivially true for ¢ = 1, by the paragraph following
Theorem 2.9. So we assume ¢ > 1 from now on.

We start by proving part (b). Let B = {«; | j € J} for some finite index set J.
By Lemma 2.3, it is sufficient to show that there is a finite field extension L/F
that splits all classes in B and such that the f-adic valuation of [L : F] is at
most gssdy(k)+gssdy(k(z)). Let P be a finite nonempty subset of the closed fiber
containing all the singular points of %kmd, and let U be the set of components
of the complement 2;7*d \ P.

Fix U € U. After deleting finitely many points from U and adding those to P,
we may assume that each (a;)r, is the image of some a; € Hi(Ry, p$ ), by
Lemma 4.1. This gives

B Ry, u 1) = HA(U, 1) = HY(W(U), 527,
o = Qg

where the isomorphism is by Gabber’s affine analog of proper base change
([Sta22, Theorem 09Z1]). By definition of the generalized stable splitting di-
mension, there exists a finite field extension Iy of k(U) that splits all &; and
so that the f-adic valuation of [Iyy : k(U)] is at most gssdj(k(z)). Let Ij; be the
separable closure of k(U) in ;. Then since [y : I};] is a power of char(k) and
thus prime to ¢, the separable extension [, also splits all &; (see Remark 2.2).
Let V' — U be the normalization of U in If;, so that I;; = k(V'). Hence each &;
maps to zero under the composition

H'(Ry, ™) = H(U. ™) = H'(R(U), 1) = H(B(V), 5" ).
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The collection of V' x ¢ U’, where U’ ranges over the non-empty open subsets
of U, is cofinal in the collection of non-empty open subsets V' C V. So by
[Sta22, Theorem 09YQ)],

H'(k(V),p*™Y) = lim H'(V',pf* ™) = lim HY(V xp U, 57

VICV U'cu
Hence there exists some U’ C U for which each a; maps to zero in
HY(V xy U, 1§ 1). Since k(V)/k(U) is separable, V — U is generically étale.
Possibly after shrinking U’, we may assume that V' xy U’ — U’ is finite étale.
Let I be the ideal defining U’ in Spec(}A%Ur). Then (]?EU/,I) is a henselian pair,
s0 VxyU' — U'is the closed fiber of a finite étale cover Spec(Sy+) — Spec(Ry+)
of the same degree by [Sta22, Lemma 09XI]. Note that Spec(Sy) is reduced and
irreducible since V' is, and hence Sy is an integral domain. The commutative
diagram

Hi(RUa/J/?i_l) — Hi(ﬁU/“u/?i_l) i> Hi(U/7M%§i—1)

| |

Hi(SU’a/u’?i_l) i> HZ(V XU Ulvﬂ%@i_l)

then shows that each &; maps to zero in H*(Sy, ui,@i*l); hence all «; are split by

the fraction field Ey of Sy, which is an extension of Fy;» whose degree has ¢-adic
valuation at most gssdj(k(x)). (Here the isomorphisms in the diagram are—
again—by Gabber’s affine analog of proper base change, [Sta22, Theorem 09Z1].)
Note that each U’ was obtained by removing a finite number of closed points
from the corresponding U € U. We add those points to P and replace U with
the set of components of the complement in 2;7°¢ of this possibly enlarged set P
(the elements of this new set U are exactly the sets U’). Let di be the least
common multiple of the degrees [Eys : Fys| where U’ is in the (new) set U.
Thus the f-adic valuation of d; is at most gssd}(k(z)). By taking direct sums
of an appropriate number of copies of Ey: for each such U’, we obtain étale
Fy-algebras Ly: for all U’ of degree di. Then by Lemma 3.2, there is an
étale F-algebra L of degree d; so that Ly Qg Fyr = Ly for all U’ € U.

For P € P, each class a; p := (o) pp is unramified on Spec(ﬁp), since each a;
is unramified. Thus by [Sak20], Theorem 9, we may lift each a; p to a class
in Hi(ﬁp, ,u?i*l); that group is isomorphic to H*(x(P), ,u?i*l) by proper base
change ([SGAT73, Exp. XII, Corollaire 5.5]). By definition of the generalized
stable splitting dimension, we may find a common splitting field [p/x(P) for
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the images of the a; p, so that [Ip : k(P)] has f-adic valuation at most gssdj (k).
As in the previous part, we may assume that [p/k(P) is separable. By [SGATL,
Theorem 1.6.1], the extension lifts to a finite étale }A%p—algebra Sp of the same
degree (using the completeness of }A%p). Note that again by proper base change
(loc. cit.), all a; p split over Sp. Since ]%p is a regular local domain, and
since Sp is finite étale over ﬁp and lifts [p, Sp is a regular local domain.
Its fraction field is a finite extension Ep/Fp of the same degree, which splits
all aj p. Let da be the least common multiple of the degrees [Lp : Fp]. By
taking direct sums of an appropriate number of copies of Ep for each P € P, we
obtain étale Fp-algebras Lp (for all P) of degree ds which has ¢-adic valuation at
most gssdz(k). Then by Lemma 3.3, there is an étale F-algebra Ly of degree da
so that Lo ®p F'p = Lp for all P € P.

Consider the tensor product L; ®p Lo; this is a direct sum of finite field
extensions of F since each L; is an étale F-algebra. Since the f-adic valuation
of the degree of L1 @ Ly is at most gssdj(k(z)) + gssdj(k), the same is true for
at least one of the direct summands, say L/F. Let 27, be the normalization
of 2 in L, let Py be the preimage of P under the natural map 27, — 4,
and let Uy, be the set of connected components of the complement of Py, in the
reduced closed fiber of 27. For each P € P, L ® p Fp is the direct product of
the fields Lp:, where P’ runs over the points of Py, that map to P and Lp/ is the
fraction field of the complete local ring of 27, at P’; similarly for each U € U.
Hence all (a;)z, are split for every & € P, UUr. By [HHK14, Theorem 3.1.5],
all a; are split over L. This completes the proof of part (b).

For part (a), note that if « is a single class unramified on a regular model .2,
then for splitness over each U € U (resp., P € P), it suffices to take an ex-
tension whose degree has f-adic valuation at most ssdj(k(z)) (resp., ssdi(k)),
by definition of the stable splitting dimension. Hence the above proof yields
a splitting field L for a whose degree over F' has f-adic valuation at most
ssdj (k) 4 ssdi(k(x)). Since ind(a) is an f-power by Lemma 2.3, this implies

ind(a) | Essdé(k)—i—ssdz(k(z))

as we intended to show.

Remark 4.3: If k is finite in the context of Proposition 4.2, then the group
HY(F,p$""1)""# vanishes for all i > 1. This follows from [Gro68, Théo-
reme II1.3.1, Corollaire I1.1.10] for ¢ = 2; from [Kat86, Proposition 5.2] for i = 3;
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and because cd(F) = 3 for ¢ > 4. Thus the proposition applies only to the zero
class in these situations, and so it has no actual content there. (In the case
of © = 1, as noted at the beginning of the above proof, the assertion of Propo-
sition 4.2 is trivial for an arbitrary residue field k.)

5. Proof of the main theorem

We are now in a position to prove the main theorem.

Proof of Theorem 2.9. We first prove the second assertion. Let BCH'(F, ;Lz@ifl)
be a finite collection of cohomology classes, and choose a regular model 2 of F.
By [Gos19, Prop. 3.1], there is a field extension L/F of degree ¢* (resp. 23 = 8)
for ¢ odd (resp. ¢ = 2) that splits the ramification of B with respect to all
discrete valuations on L whose restriction to F' has a center on 2. The ex-
tension L/F corresponds to a morphism % — 2 for some regular model %
of L; and ay, € HY(L, "~ ')"¥ for every a € B. By Proposition 4.2(b), there
exists a finite field extension L/L that splits all elements of B and so that [L : L]
has (-adic valuation at most gssdj(k) + gssdy(k(x)). Thus the f-adic valuation
of [L : F] is at most

2 if £ is odd,

gssd’ (k) + gssdl(k(z)) +
b +essayka) + 4

To bound the generalized stable splitting dimension, we also need to consider
cohomology classes defined over finite field extensions E/F. Each such E is
the function field of a curve over Kg, where Kg is some finite extension of K
and hence is a complete discretely valued field whose residue field &’ is a finite
extension of k. Now if B C H'(E, %@Fl) is a finite collection of cohomology
classes, the first part of the proof shows the existence of a common splitting
field L/E for the elements of B whose degree [L : E] has (-adic valuation at
most

2 if £ is odd

gssdy (k') + gssdb (k' (z)) +
(GRS S

2 if £ is odd

< gssdl (k) + gssdb(k(z)) +
)+ sl +

which proves the desired bound for gssdj(F).
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If B = {a} is a one-element set, Proposition 4.2(a) gives

ind(ayp) | gSSd;}(*’C)-l-ssdf}(lc(ac))7

and hence ind(«) | £™ where

. ) 2 if £ is odd
m = ssdy(k) + ssdy(k(z)) + ’
) Fssdilk@)
Since a was arbitrary, this shows that
2 if £ is odd,

sdi(F §ssdik+ssdikm +
) < ) + sk + 4

As before, the same bound applies to finite extensions E/F, and hence

2 if £ is odd,

ssdb(F §ssdik + ssd? (k(z)) +
E) S ssdifl) +ssdihe) +4 "

as we wanted to show.

6. Bounds for higher rank complete discretely valued fields

In this section, we bound gssds(F') for one-variable function fields F over higher
rank complete discretely valued fields—that is, fields k, arising in an iterated
construction of fields ko, k1,..., k. where k; is a complete discretely valued
field with residue field k;_1, for all j§ > 1. We will do this using Theorem 2.9.
We first determine the generalized stable splitting dimension of higher rank
complete discretely valued fields.

LEMMA 6.1: Let k be a field and let ¢ # char(k) be a prime. Let r > 0, and
let ko, k1, ...,k be asequence of fields with kg = k, and k; a complete discretely
valued field with residue field k;_; for all j > 1. Then for every finite collection
B C Hi(k,, uy"" "), there exists an extension L/k, of degree dividing gessdi(R)+r
that splits all elements of B. In particular, gssd,(k,) < gssdi(k) +r. The same
statements remain true when B is replaced by a single class and gssd};(f) is
replaced with ssdj(—).

Proof. By induction, it suffices to prove the result with » = 1. Set K = kq,
let v denote the valuation on K, and let A be its valuation ring, with uni-
formizer w. By proper base change ([SGA73], Exp. XII, Corollaire 5.5), for
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any m > 1 the mod 7 reduction map H™(A,ud™ ') — H™(k,pud™ ") is
an isomorphism, and so we may identify these two cohomology groups. Thus
by [GMS03, Proposition I1.7.11, p. 18], each element o € H*(K, u?iil) may be
written in the form o/ +(m)UB, where o/ € H(A, u$~'); where (1) € H (K, ju¢)
is the class defined by 7; and where 8 € H*"1(A, u$"~?) is the class identified
with res, (a) € H "' (k, u$*~?) via the above isomorphism. Consequently, if we
base change to K = K (/) to split the class (), we find that (o) » = (o) %.

g = \¥)g
Now let B = {a1,...,an} € HY(K,u$""') be a finite collection, and
let B = {ca},...,al,}, where o/, denotes the image of o, in H*(k, 5" ") (and o,

is associated to «; as in the first part of the proof). By definition, there ex-
ists a splitting field k'/k for B of degree dividing 2559 (F) . To prove the first
assertion of the lemma, it suffices to show that we may find a splitting field
K'/K of B whose degree divides [k’ : k]. By hypothesis on the characteris-
tic, each o is also split by the separable closure of k in k' (Remark 2.2), and
so we may assume without loss of generality that k' is a separable extension
of k. Consequently, we may lift &’ to an unramified extension A’ of A of the
same degree; let K’ denote the fraction field of A’. Again using proper base
change ([SGAT73, Exp. XII, Corollaire 5.5]), the classes («})as are split; so it
follows that the classes (o) g+ are split as well. Let K’ be a compositum of K
and K'. Then (o) = (o) = 0. As [K': K] | ([K' : k], the extension K'/K
is as desired. The assertion on the generalized stable splitting dimension is an
immediate consequence.

If B consists of a single class, then the extension k'/k in the previous part
can be chosen of degree dividing fSSdz(k), and this yields the final assertion of

the lemma.

Remark 6.2: The bounds given in the previous lemma are not sharp. For exam-
ple, consider k = Q and ¢ = 2 = £. Given a collection of 2-torsion Brauer classes,
we may find a quadratic extension of Q which is non-split at every prime where
at least one of the corresponding quaternion algebras is ramified. This extension
will then split all the classes, so gssd3(Q) = 1, and gssds(Q) < gssd3(Q) = 1
by Proposition 2.7. Since the Pfister form ((—1,—1, —1)) does not split over Q,
gssds(Q) = 1. Lemma 6.1 then gives gssd3(Q((¢)))) < 2. But more is true: since
gssds(Q) = 1, Lemma 2.8 implies the stronger assertion that gssds(Q((t)))) = 1
(note that the above Pfister form does not split over Q((¢)) either).
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THEOREM 6.3: Let k be a field, let £ # char(k) be a prime, let d = gssd(k),
and let § = gssdi(k(z)). Suppose we are given a sequence k = ko, ki, ..., ky
of fields with k; a complete discretely valued field having residue field k;_, for
all j > 1. Then

6+ 5(r+2d+3) iflisodd

gssdy(F) <
‘ S+ T(r+2d+5) ifl=2

for any one-variable function field F over k,. The same result holds for ssd}(F)
when d and § are replaced with ssd(k) and ssd}(k(z)), respectively.

Proof. Note that by definition of the invariants in question, it suffices to consider
the case F =k, (z). By Lemma 6.1, we know that gssdj(k;) < gssd}(k)+j=d+j.
Let € be 2 if £ is odd and let it be 3 if ¢ is even. By Theorem 2.9, we
have gssdj(k;(2)) < gssd(k;_1) + gssdy(kj_1(z)) + €, and so

gesdi(k; (2)) — gssdi(ky—1 (@) < d +j —1+e.

Taking a sum of these inequalities for j = 1,...,r yields
- - 1
gssdy (kr(2)) — gssdy(ko(z)) < rd + r(r2 ) +re

and so
s r(r—1) r
gssdy(kr(z)) < rd+ 5 +(5+r5:§+2(r+2d+25—1),

as desired. The proof for the stable splitting dimension is similar (using the
corresponding assertions of Lemma 6.1 and Theorem 2.9).

Next, we would like to examine the behavior of the splitting dimension as
the cohomological degree varies. While we don’t have the ability to control
this well for general fields, we can make some statements to this effect in the
case that the cohomological dimension is bounded, using that gssdj"(k) = 0
for m > cdg(k).

THEOREM 6.4: Let k be a field, let ¢ # char(k) be a prime, and let ¢ = cd(k).
Consider a sequence of fields k = kg, k1, ..., k. where k; is a complete discretely
valued field having residue field k;_1 forall j > 1. Sete =2 if{isodd ande = 3
if ¢ = 2. Then

gssdy ™™ (k) < max(0,7 —m +1) form > 1,
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and
1r(r = 1) + re + gssdS T (k(2) form =1,
gssdy M (F) < sr=m+1)(r—m)+(r—m+2)e for2<m<r+1,
0 form >r+1,

for any one-variable function field F' over k,. The same assertions hold for the
stable splitting dimension.

Proof. For the first assertion, we have cde(k;) = ¢+ j for j > 0 by applying
[Ser97, Proposition 11.4.3.12] inductively. Thus gssd{™™(k,) = 0 if m > r + 1,

ct+m

as asserted in that case. On the other hand, if m < r then gssd; ™" (km—1) = 0.
Hence gssd;t" (k) < r —m + 1 by applying Lemma 6.1 to the sequence of
fields kpm—1, ..., k.

For the second assertion, again it suffices to consider the case when F' = k,(z).
Note that the case m > r + 1 follows from the fact that cd¢(k,(z)) =c+r+1
by [Ser97, Proposition I1.4.2.11]. The case m = r+1 follows from Theorem 2.9,
using the fact that gssd{t" (k,—1(z)) = 0 = gssdj " (k,—1) because of the
cohomological dimension of these fields.

For the case 2 < m < r, observe that

gssd; T (kp—1) = 0 = gssdf ™ (kp—a(z))

because cd(ky,—1) = c+m—1 = cd(ky—2(x)), and similarly gssdj " (ky,—2) = 0.
Thus Theorem 2.9 yields

gssd T (k1 (7)) < e

Now write k" = ky,—1 and k) = ky—14;. Thus k. = k;.;_,,. Applying Theo-
rem 6.3 with k', ¢ +m,r — m + 1 playing the roles of k,i,r there, we have

- 1
gssdfrm(kT(:E))ga—i—T 7;—’— (r—=m+142042-1)
1
=_(r—-—m+1)(r—m)+(r—m+2)e.

2
For m=1, we have gssdS*" (k) =0 since cdy(k)=c. Theorem 6.3 with i=c+1
yields
1
gssdSt (k. () <gssdS™ (k(z))+ ; (r42-0+42e—1)= N r(r—1)4re+gssdS T (k(z)).

The same proof shows the assertions on the stable splitting dimension, using
the corresponding assertions in Lemma 6.1, Theorem 2.9, and Theorem 6.3.
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Remark 6.5: (a) The bounds on gssd(k,(x)) also apply to gssdi(F) for

any finite extension F' of k,.(z), since the generalized stable i-splitting
dimension either stays the same or decreases upon passing to a finite
extension.

In the case of ssdj(k,(x)), the bounds given in Theorem 6.4 are not in
general sharp. For example, consider the field k. = C((s1)) - ((sr))
for r > 1, and let ¢ be a prime. Then Theorem 6.4 says that

ssd%(kT(:E)) < gssd%(/@(:z:)) < ;(r —1)(r—2)+re,

with € = 2 (resp., 3) if £ # 2 (resp., = 2). But according to [HHKO09,
Corollary 5.7], ssd? (k. (x)) < r, which is smaller.

Theorem 6.4 shows that if k is fixed and F' is a one-variable function field
over k, as above, then our bound on gssd,(F) (resp., gssdi(k,)) depends
only on r—i for i > cdy(k)+1 (resp., for ¢ > cdy(k)); moreover the bound
increases with r and decreases with i (and similarly for ssd)). More
precisely, as 4 increases, our bound on gssdé(kT) decreases linearly until
it reaches 0, and our bound on gssd}(k,(z)) decreases quadratically;
and the same happens as r decreases. For numerical examples, see the
discussion following Proposition 8.4.

Suppose more generally that k£ is a field with virtual /-cohomological
dimension equal to ¢; i.e., there is a finite field extension k’/k such
that edg(k’) = ¢. Let F be a one-variable function field over k,, and
let I = FE'. Then for i > ¢+ 1, the value of gssdj(F’) is bounded
via the above theorem, and we have that gssdl(F) < v, + gssdi(F"),
where vy is the ¢(-adic valuation of [k’ : k].

7. Splitting for arithmetic surfaces

We have so far focused on the splitting of cohomology classes o € H'(F, i

®i71)

in the case of a semiglobal field F’; i.e., a one-variable function field over a

complete discretely valued field. We can also consider the case of one-variable
function fields F' over a global field. Such a field F' has a model which is a
two-dimensional regular integral scheme that is projective over either a finite

field or the ring of integers of a number field (of relative dimension one). In the

latter case, there is the following splitting result when i = 3 and ¢ = 2, due to

a theorem of Suresh.
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THEOREM 7.1: Let 2  be a two-dimensional regular integral scheme that is
projective over the ring of integers of a number field. Let F' be the function
field of 2, and let v1,...,yn € H*(F,us?). Then there is a degree-two field
extension of F' that splits each ;.

Proof. Theorem 3.2 of [Sur04] asserts that there exist f € F* and 8; € H2(F, us)
for j =1,..., N such that v; = (f) U 8; for all j. Thus every ~; is split by the
degree-two extension F(f'/2) of F.

In the remainder of this section, our goal is to treat the analogous situa-
tion for the function field F' of a regular projective surface over a finite field,
with ¢ # char(F). Specifically, in Theorem 7.9, we show that a finite set of
elements in H3(F, M%z) can all be split by some extension of degree £. This will
then be used in the next section to obtain values of gssd in situations related
to global function fields, building also on the previous sections. We first need

some preliminary results.

LEMMA 7.2: Let 2" be a normal integral scheme whose function field F' contains
a primitive £-th root of unity for some prime number {. Let Py, ..., P. be closed
points of 2~ whose residue fields are finite of order prime to . Then there is a
Galois field extension L/ F' of degree £ such that the normalization % of 2" in L
has the property that the fiber of % — %2 over each P; is étale and consists of
a single closed point of #'.

Proof. Choose an affine open subset U = Spec(R) of 2" that contains the
points P;, and let m; be the maximal ideal of R corresponding to P;. Let k}
be the unique degree ¢ field extension of the finite field k; := x(P;). By the
hypothesis on F, the field k; contains a primitive ¢-th root of unity; and so k. /k;
is a Kummer extension, given by extracting an ¢-th root of some element a; € k;
that is not an /-th power in k;. Since the maximal ideals m; are pairwise
relatively prime, by the Chinese Remainder Theorem there is an element a € R
whose reduction modulo m; is a; for all i. Here a is not an ¢-th power in F'. The
reduction of S := R[z]/(x* — a) modulo m;S is &/ for all 4, and so its fraction
field L has the asserted property.

LEMMA 7.3: Let R be a regular local ring of dimension two with fraction field E,
and let f, g be a system of parameters at the maximal ideal of R. Let L/E be
a cyclic field extension whose degree ¢ is a prime number that is unequal to
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the residue characteristics of R and such that E contains a primitive ¢-th root
of unity. Let S be the normalization of R in L, and suppose that S[f~1] is
unramified over R[f~!]. Then S is regular.

Proof. By the hypotheses, L/E is a Kummer extension; i.e., L = E[hY/]
for some h € E that is not an /-th power. After multiplying A by an ¢-th
power, we may assume that A~ € R and so h'/ € S. Since the regular lo-
cal ring R is a unique factorization domain (by [AB59, Theorem 5]), we may
write h = uhil1 -+~ hdn with n > 0, where u is a unit in R, the elements h; € R
are irreducible and define distinct height one primes, and each d; > 1. After
dividing h by an ¢-th power, we may assume that 1 < d; < ¢ for all 7. Since the
residue characteristics of R are unequal to /£, the subring R[h!/¢] C S is ramified
over R precisely over the primes (h;).

If n = 0 then the subring R[h'/¢] = R[u'/*] C L is finite étale over R, and
hence regular. So it is equal to its normalization; i.e., its integral closure in its
fraction field L, which is S. Thus S is regular. Alternatively, if n > 0, then
since S[f '] is unramified over R[f '], and since f, h; are both irreducible in R,
it follows that n = 1 and h; = vf for some unit v € R. Since d; and { are
relatively prime, there exist integers a,b > 0 with ad; — b¢ = 1. Hence

a _ ,.a,ad; £1+bl,
h® = utv* f ;

and so S contains an (-th root of u®v® f1+%¢ and thus also of fi 1= u®v® f.
The elements fll/{ g form a system of parameters for the subring S’ = R[fll/é] cs,
which is therefore regular. Since f; = h®/f% is not an /-th power in E, the
fraction field of S’ has degree £ over E and so is equal to L, the fraction field
of S. But S is the normalization of R in L, and hence also that of S’ in L.
Since the regular ring S’ is normal, S = S’, and so S is regular.

Remark 7.4: The conclusion of Lemma 7.3 fails if char(R) = 0 but R has primes
of residue characteristic ¢, even though L/FE is Kummer. For example, let
R = Z5[[z,y]]/(xy — 2), for which z,y form a system of parameters. Let E be
the fraction field of R, take £ = 2, let h = 2y% + 1, and write

L = E[h'?] = Elw]/(w? — h).

Here h is a unit in R; but R[h/?] is not étale over R, being purely insepara-
ble over the primes (z) and (y), where the residue characteristic is 2. More-
over R[h'/?] is not normal; its normalization S (in its fraction field L) is obtained
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by adjoining to R[h'/?] the element z = (w + 1)/y € L. As an abstract ring,
S = R[z]/(2? —xz—2). This ring is ramified precisely over (z), but it is not reg-
ular, having a singularity at its maximal ideal (x,y). This phenomenon, which
is contrary to the situation of Lemma 7.3, leads to difficulties in treating the
analog of Theorem 7.9 in the case of a projective scheme of relative dimension
one over the spectrum of the ring of integers of a number field, with general /.

The following known result will be useful in proofs below, and we state it for
ease of citation.

LEMMA 7.5: Let K'/K be an extension of discretely valued fields with residue
field extension k' /k and ramification index e. Let ¢ # char(k) be a prime and
let © be a non-negative integer. Then the diagram

HPYEK, pf") — H'(k, pg" )

| L

HAHK!, p") = HI(F, 5"

commutes, where the horizontal arrows are given by residues, the left hand
vertical arrow is the natural map, and the right hand vertical arrow is the
product of e with the natural map.

Proof. This is a special case of [GMS03, Proposition I1.8.2, p. 19].

These next lemmas will be used to verify properties needed in the proof of
Theorem 7.9, concerning the ramification and splitting behavior of cohomology
classes under pullback.

LEMMA 7.6: Let & — Z be a morphism of regular integral two-dimensional
schemes, with function fields L/F. Let { be a prime number unequal to the
residue characteristics at the points of 2" and %, and let v € H3(F, u$?). If v
is unramified on 2 then its restriction ' € H*(L, u$?) is unramified on & .

Proof. Let ¢ be a codimension one point of 2. We wish to show that the residue
of 7" at ( is trivial. Let £ be the image of ¢ in 2. Thus £ has codimension one
or two on 2. In the former case, v has trivial residue at £, hence v’ has trivial
residue at ¢ by Lemma 7.5.
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Now assume that & has codimension two in :2". The rows in the commutative
diagram

H¥ Oz ¢ 1i?) —— HYL,pi?)) ———— H*(k(C), pe)

| |

H3(ﬁ%75’uz®2) — HS(F7 I’L?2)) — HmESpec(ﬁgg-yg)(l) HQ(K‘(J:)vM@)

are complexes, and the lower row is exact by [Sak20, Proposition 6]. Since 7
is unramified on 2, it is the image of an element 7 € H3(Og ¢, u$?), by the
exactness. Let 7' € H*(Ox ¢,u$?) be the image of 5. So the image of 7’
in H3(L, ,uzw) is unramified at (. This latter image is 4/ by commutativity of
the above square , so the conclusion follows.

Given a field L, an arbitrary prime ¢, and non-negative integers i, j, Kato
defined an abelian group H'(L,Z/(Z(j)) that agrees with Hi(L,u?j) in the
case that char(L) # ¢ (see [Kat86, page 143]). Moreover, as stated there,
H?(L,7/¢Z(1)) is just the ¢-torsion subgroup of Br(L), and H*(L,Z/{Z) is the
same as Homeopn (Gal(L?P /L), Z/(Z).

LEMMA 7.7: Let 2 be a two-dimensional regular integral scheme that is pro-
jective over either a finite field or the ring of integers of a number field that we
assume to be totally imaginary. Let v € H3(F,Z/{Z(2)) for some prime num-
ber ¢ # char(F), where F is the function field of Z". Let C' be a codimension
one subscheme of 2" that contains the closures of the codimension one points
of & where v is ramified. Consider the blow-up X — X of X at a finite
set of regular points of C. Then ~ is unramified at the generic point of each
exceptional divisor of the blow-up.

Proof. The field F' has no ordered field structure, and so the hypotheses of
[Kat86, Corollary to Theorem 0.7] are satisfied. That result then provides an
exact sequence
0— HYF,2/02(2)) — @ H*(x(n),Z/0Z(1))
7765571
— P H'(k(x),2/t2(1)) - 2/Z 0,
163?:)

where the maps are given by residues, and where QZ is the set of dimension-i
points on 2.
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Let £ be one of the closed points of 2~ that is blown up. By the regularity
hypotheses, the exceptional divisor E over £ is a copy of [Pi(g) that meets the
proper transform of C' at a single point E Consider any closed point xg € FE
other than E Then except for the generic point 79 € 5;‘71 of E, the class
is unramified at the dimension one points of 2 whose closure contains ZQ.

So only one term in 69776571 H?(k(n),Z/¢Z(1)) contributes to the image of v

in H(k(xo),Z/¢Z(1)); viz., the one arising from 7o € 2. Since the image of
in P, 7 H(k(z),Z/0Z(1)) is 0, it follows that the contribution of that one
term is also zero; i.e., o := resy, (y) is unramified at o, where o is an arbitrary
closed point of E other than E

The complement of the k(£)-point E of £ & [P,l{(@ is isomorphic to the
affine line over x(§). Since « is unramified over that complement, it is in-
duced from a class in H%(k(€),Z/¢Z(1)) by [GMS03, Theorem I11.9.3, p.24].
But H?(k(€),Z/0Z(1)) is the f-torsion subgroup of Br(k(€)), which is trivial

since k() is a finite field. Hence a = 0.

LEMMA 7.8: Let ¢ be a prime number, and let 2~ be a two-dimensional regular
integral scheme that is projective over either a finite field or the ring of integers
of a number field that we assume to be totally imaginary if { = 2. Let % be
the normalization of & in a degree ¢ separable field extension L/F, let C C %
be a regular connected curve with function field x(C'), and let « be an {-torsion
element of Br(k(C)). Suppose that at every closed point P of C' at which « is
ramified, ™ : % — % is étale and 7= (P) is a single point. If n € # lies over
the generic point of C, then the pullback o, is split.

Proof. Let P be the set of closed points of C where « is ramified. Let D C7~1(C)
be the closure of 7, with normalization D — D. The pullback

Qy(y) € Br(s(D)) = Br(x(D))

of a € Br(k(C)) is unramified away from =1 (®P). Since 7 is étale over each P € P,
so is D — C; hence D is regular there and D — D is an isomorphism
over Op(C). So D — C is étale over P, with just one point in the fiber.
The residue field extension there is the unique degree ¢ extension of the finite
field x(P), so it agrees with the residue resp(a) € H'(k(P),Z/¢Z) of the (-
torsion class « at the ramified point P. Thus «,) is unramified at each point

over P, hence at every point of D. So the (-torsion class Qy(y) lies in Br(D)
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by [CTS21, Theorem 3.7.7]. But Br(D) has trivial /-torsion; e.g., see [Gro68,
Remarque II1.2.5(b)] if D is a smooth projective curve over a finite field, and
see [Gro68, Proposition I11.2.4] if instead D = Spec(O) for a number field K
that is totally imaginary if £ = 2. Hence «

w(n) is split.

We now come to the main result of this section.

THEOREM 7.9: Let 2  be a two-dimensional regular integral scheme that is
projective over a finite field. Let F be the function field of 2 . Assume
that F' contains a primitive ¢-th root of unity for some prime {, and let
Yiy.-., YN € H3(F,Z/¢Z(2)). Then there is a field extension of F of degree {
that splits each ;.

Proof. Let C be an effective divisor on 2" that contains all the codimension
one points of 2 at which at least one of the classes ; is ramified. By [Lip75,
p. 193], there is a blow-up 2" of 2 such that the total transform of C is a
strict normal crossings divisor (i.e., it has only normal crossings and its compo-
nents are regular). So after replacing 2" by 2", we may assume that C' itself
satisfies this condition. Let Ci,...,C,, be the irreducible components of C,
with function fields x(C;), and let «; ; € Br(k(C;)) be the residue of v; at the
generic point &; of C;. Thus «; ; is -torsion.

Let P be a finite set of closed points of 2" with at least one point on each C;,
such that P contains all the singular (normal crossing) points of C' and all
the points at which any of the classes «; ; is ramified. (In fact, all of these
ramification points are singular points, by the exact sequence at the beginning
of the proof of Theorem 7.7.) Let L/F be the cyclic field extension given by
Lemma 7.2 applied to the points of P. Let # — 2 be the normalization of 2
in L, and let B be its branch locus. Over each point of P the morphism % — 2~
is étale and the fiber consists of a single point; hence the same holds for the
generic points &; of the curves C;, and moreover the divisor B does not pass
through any point of P. There is then a blow-up 2 = X , centered only
at points where B U C has a singularity other than a normal crossing, such
that the total transform of B U C is a strict normal crossing divisor. Since the
singular points of C' lie in P, none of those points lie on B and none of them
are among the points that are blown up. So the proper transform CofC maps
isomorphically onto C', with its irreducible components mapping isomorphically
onto respective components C; of C.
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We now reduce to the case that BUC is itself a strict normal crossing divisor.
To do this, first observe that none of the cohomology classes v; are ramified at
any of the exceptional divisors of X =X , by Lemma 7.6 applied to the com-
plement U C 2 of C, in the case of an exceptional divisor lying over a point
that does not lie on C; and by Lemma 7.7 in the case of an exceptional divisor
lying over a (regular) point of C. Thus the proper transform C of C contains all
the codimension one points of 2 at which at least one of the classes «y; is rami-
fied. Let % — 2 be the normalization of 2 in L; its branch locus is contained
in the total transform of B. So replacing # — 2 by Y - 2/\;, replacing C'
by its (isomorphic) proper transform C and similarly for its irreducible com-
ponents Cj, replacing P C C by its inverse image in 5’, and replacing B by
the branch locus of ¥ — 2 (which is contained in the total transform of the
original B), we may assume that BUC is a strict normal crossing divisor in 2"
In doing so, we retain the property that the cohomology classes y; are ramified
only at codimension one points of 2" that lie on (the new) C.

Our next step is to show that the given cohomology classes 7; are each un-
ramified at every codimension one point of %". To see this, note that since the
given cohomology classes y; are unramified at the codimension one points on
the complement U C 2" of C, they remain unramified at the codimension one
points on its inverse image V' C # by Lemma 7.5. The other codimension one
points of & lie over the generic points &; of C; for i = 1,...,m. As noted above,
there is a unique point 7; in % over each §;. Now % — 2 is étale over the
points of P with each of those fibers consisting of a single point; so this holds
in particular at the points where each «;; is ramified. It then follows from
Lemma 7.8 that (c ), is split. That is, y; is unramified at the points n; € &
lying over the generic points of the curves C;, as well as at the other codimension
one points of #; and that completes this step.

Next, we claim that & is regular at every closed point @ lying over a point P
of C. To see this, note that % is regular at @ if P is not a point of B,
since % — % is étale there and 2 is regular. Now suppose that P € B.
Then P is a nodal point of B U C, and is a regular point of B and of C,
lying on a unique irreducible component of each. These components are respec-
tively defined in O o~ p by elements f, g that form a system of parameters. By
Lemma 7.3, Og ¢ is regular, proving the claim.



Vol. 257, 2023 BOUNDING COHOMOLOGY CLASSES 381

Every singular point of & lies in V' by the above claim, and the two-dimen-
sional normal scheme % has only finitely many singular points. Thus there is
a blow-up 2 — % centered at those points of V', with & regular. This is an
isomorphism away from those finitely many points, and Lemma 7.5 implies that
the classes 7; are unramified at every codimension one point of 2 that lies over
a codimension one point of %°. The only other codimension one points of % are
the generic points of the exceptional divisors of the blow-up & — %, which lie
over closed points of V. Let W be the inverse image of U C 2" (or equivalently,
of VC %) in Z. Applying Lemma 7.6 to W — U, we find that the classes ~;
are unramified at the codimension one points of W, and in particular at the
exceptional divisors of & — #. Since Z is regular with function field L,
[Kat86, Corollary to Theorem 0.7] asserts that the residue map

HY(L,7/02(2)) — @@ H*(x((), Z/¢Z(1))
ez
is injective, where %7 is the set of dimension-one points of 2. Hence the
pullback of each v; to H3(L,Z/¢Z(2)) is trivial, as needed.

8. Applications

This section gives concrete applications of our bound. We start with an ex-
ample involving 3-dimensional fields over the complex numbers. A result of
de Jong ([deJ04]) shows that for the function field of a complex algebraic sur-
face, the index of a Brauer class (that is, an element in degree 2 cohomology)
must equal its period. In contrast, bounds for the index of a degree 3 co-
homology class on the function field of a complex threefold are not known.
On the other hand, if we consider a somewhat simpler 3-dimensional field F,
namely a finite extension of the field C(z,y)((t)), it follows (for example from
Lemma 6.1) that a class in H(F, u’®) will have index at most £. If F is a
finite extension of C(y)((¢))(x), the arithmetic is more subtle. Using [deJ04]
to show ssd? (C(z,%)) < 1, Theorem 2.9 gives that ssd?(C(y)((t))(x)) < 3 or 4,
depending on the parity of £. On the other hand, de Jong’s theorem does not
give us information about gssd?(C(z,v)), and hence the methods of [Gos19)
and Proposition 2.7 do not give bounds on the index of degree 3 cohomology
classes for such fields. Using our new results, we obtain the following bounds
for degree 3 cohomology:
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PROPOSITION 8.1: Let k = C(%') be the function field of a complex curve.
Let £ be a prime.

(a) If F is a one-variable function field over k((s)), then gssd3(F) < 2 if ¢
is odd and gssd3(F) < 3 if £ = 2.

(b) More generally, if F,. is a one-variable function field over k((s1)) - - - ((s+))
for r > 0, then

gssdy (F) < (r? + 1 +2)/2 if £ is odd
and

gssd? (F) < (r? +3r 4 2)/2 if € =2.

Proof. Note that k and k(z) have cohomological dimension 1 and 2 respectively,
and thus gssd; (k) = gssd; (k(z)) = 0. The first statement now follows directly
from Theorem 2.9. The second statement is by Theorem 6.4 (with m = 2).

In the situation above, Theorem 6.4 also gives bounds for gssdz(F,«) when
3<i<r+3;eg.,
gssdj (F,) < (r?2 —r +2)/2 if £ is odd
and

gssdy(F,) < (r2 4+1)/2 if £ =2.

As i increases, gssdz(F,«) decreases, and becomes 0 for 7 > r + 3. Bounds for
gssd? (F,) were given in [Gos19).

We now move on to a class of examples related to global residue fields. Infor-
mation about the period-index problem for degree 2 cohomology classes when F'
is a one-variable function field over a number field has been highly sought after.
As of yet, bounds of this type are only known contingent upon conjectures of
Colliot-Thélene [LPS14]. Remarkably, the work of Lieblich [Liel5] has shown
that the index divides the square of the period in the case of a function field F'
of a surface over a finite field, giving ssd%(F ) < 2 in this case. Nevertheless,
in neither situation do we have information on gssd?(F ), and so again we are
unable to apply [Gos19] or Proposition 2.7 to obtain bounds on the index of a
cohomology class of degree higher than 3. On the other hand, degree 3 coho-
mology over such fields is much more directly tractable, as was highlighted in
the work of Kato [Kat86]. Building on Theorems 7.1 and 7.9 above together
with our previous results, we obtain Proposition 8.3, Proposition 8.4, and the
numerical examples that follow. First we state a lemma.
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LEMMA 8.2: Let k be a global field, let E be the function field of a regular pro-
jective k-curve C, and let £ be a prime unequal to char(k). Then H3(E, ujm) £0.

Proof. Let P € C be any closed point, and let k' be its residue field. Since %’
is also a global field, the ¢-torsion subgroup Br(k’)[¢] C Br(k’) is non-trivial
(e.g., by [GS17, Corollary 6.5.3, Proposition 6.3.7] in the function field case
and [Pie82, Theorem 18.5] in the number field case). The period and index
of a non-trivial element « € Br(k’)[¢] both equal ¢ since k' is a global field.
By [Sal84, Theorem 3.11, Corollary 5.3], as ¢ is prime, we may lift o to an
index ¢ class & € Br(0c.p)[f] C Br(E)[{] = H*(E, jus). Let t € Oc,p C E be a
uniformizer at P, and set 8 = a U (t) € H3(E,u$?). Then res,,(8) =a #0
by [GMS03, Proposition I1.7.11, p. 18], using that the residue homomorphism
res,, associated to the discrete valuation vp defined by P is defined by passing
through the completion ([GMS03, Section I1.7.13, p. 19]). Hence € H*(E, u$?)

is nonzero.

PROPOSITION 8.3: Suppose k is a global field. If k is a function field, choose a
prime ¢ # char(k). If k is a number field, take ¢ = 2. Let E be a one-variable
function field over k. Then sd}(E) = ssd} (E) = gssd}(E) = 1.

Proof. By Lemma 8.2, H3(E, u®) # 0, hence
0 < sd}(E) < ssdi(E) < gssdj (E).

Thus to show that sd}(E) = ssd}(E) = gssd}(F) = 1, it suffices to prove that
gssd? (E) is at most 1. Every finite extension of E is of the same form (i.e., a
one-variable function field over a global field). So it suffices to consider classes
in H3(E, ,uzm), and not separately treat classes over finite extensions E’ of E.
By Lemma 2.3, we may also assume that E contains a primitive ¢-th root of
unity, since adjoining this element produces a field extension of degree prime
to /.

If k£ is a function field, then the desired assertion is now immediate from
Theorem 7.9. In the case where k is a number field and ¢ = 2, it is immediate
from Theorem 7.1.

Our next examples concern function fields over higher local fields whose
residue field is a global field. Examples of such fields include F = K(x)
where K = Q((s)) or Fp(y)((s)), or where K is the p-adic completion of Q,(¢),
or where K is a field of iterated Laurent series over one of these fields.
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PROPOSITION 8.4: Let k be a global field, and let ¢ # char(k) be a prime.
In the number field case assume ¢ = 2. Suppose we have a sequence of
fields k = ko, k1, ..., k-, with v > 1, where k; is a complete discretely valued
field with residue field kj_, for all j > 1, and let F' be a one-variable function
field over k,. Then

e if ¢ is odd, we have gssd; (F) <1+ 5(r+3),
e if ¢ is even, and k has no real places, we have gssdy (F) < 1+ 5 (r +5),
e if ¢ is even, and k has real places, we have gssd; (F) < 2+ §(r +5).

Proof. Since F is a finite extension of k,(z), we have that
gssdy (F) < gssdy (kr ().

Hence it suffices to prove the assertion for F = k,.(z).

If k is a number field (and £ = 2), we can reduce to the case that k has no
real places by adjoining a square root of —1 if necessary. This increases by 1 the
power of £ in the degree of the splitting extension, and so the bound on gssd: (F)
increases by 1 (as in the assertion of the third case). So we can now assume
that the global field k£ has no real places, and in particular that we are in one
of the first two cases.

In the notation of Theorem 6.3 with i = 3, we have d = gssd?(k) = 0, by
[Ser97, Proposition 11.4.4.13] in the case of a totally imaginary number field,
and by [Ser97, Corollary in 11.4.2] in the global function field case. Moreover,
§ = gssdj(k(z)) = 1 by Proposition 8.3. Theorem 6.3 thus gives the desired
bounds.

In the situation of Proposition 8.4, if k has no real places, then for r =1,2,3
we find gssdg’(F) < 3,6,10, respectively, if ¢ is odd; and < 4,8, 13, respec-
tively, if £ = 2. Again, Theorem 6.4 gives information on the higher coho-
mology groups. Note that ¢ = edg(k) = 2 as in the above proof; moreover,
gssd? (k(z)) = 1 by Proposition 8.3. Hence for this field F with r = 1,2, 3,
Theorem 6.4 yields that gssd?(F) < 2,4, 7 respectively if £ is odd, and < 3,6, 10
respectively if £ = 2. Observe that our bound for gssdj(F) decreases as i in-
creases. For example, if » = 3 then gssd};(F) <10,7,4,2,0 for ¢ = 3,4,5,6,7
if £ is odd, and < 13,10,6,3,0 if /£ = 2. Note in particular the relationship
between the bounds for gssdj(F) as i increases and those as r decreases (and
see Remark 6.5(c) for a further discussion).
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On the other hand, if k£ is a number field with a real place (and ¢ = 2), then
the bounds each increase by 1 as above. For example, for r = 1,2,3 in that
case, we have gssd3(F) < 5,9,14 and gssdy(F) < 4,7,11, respectively. And
for r = 3 in that case, gssdg(F) <14,11,7,4,1 for i = 3,4,5,6,7.
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