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Optical second harmonic generation in
anisotropic multilayers with complete
multireflection of linear and nonlinear
waves using ♯SHAARP.ml package
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Rui Zu 1,6 , Bo Wang 1,2,6 , Jingyang He1, Lincoln Weber1, Akash Saha 1, Long-Qing Chen1,3,4 &
Venkatraman Gopalan 1,3,5

Optical second harmonic generation (SHG) is a nonlinear optical effect widely used for nonlinear
optical microscopy and laser frequency conversion. Closed-form analytical solution of the nonlinear
optical responses is essential for evaluatingmaterialswhose optical properties are unknown apriori. A
recent open-source code, ♯SHAARP.si, can provide such closed form solutions for crystals with
arbitrary symmetries, orientations, and anisotropic properties at a single interface. However, optical
components are often in the form of slabs, thin films on substrates, and multilayer heterostructures
with multiple reflections of both the fundamental and up to ten different SHGwaves at each interface,
adding significant complexity. Many approximations have therefore been employed in the existing
analytical approaches, such as slowly varying approximation, weak reflection of the nonlinear
polarization, transparent medium, high crystallographic symmetry, Kleinman symmetry, easy crystal
orientation along a high-symmetry direction, phase matching conditions and negligible interference
among nonlinear waves, which may lead to large errors in the reported material properties. To avoid
these approximations, we have developed an open-source package named Second Harmonic
Analysis of Anisotropic Rotational Polarimetry in Multilayers (♯SHAARP.ml). The reliability and
accuracy are established by experimentally benchmarking with both the SHG polarimetry and Maker
fringes using standard and commonly used nonlinear optical materials as well as twisted
2-dimensional heterostructures.

The development of coherent laser over a broad frequency spectrum from
near-infrared and visible to terahertz (THz), ultraviolet, and X-rays
regimes1–4 has driven much of science and technology in the past decades,
ranging from sensing, communications, biomedical instruments, imaging,
andmost recently nuclear fusion research5–10. Since the discovery of lasers in
1960 and the nonlinear optical effect in 196111,12, nonlinear optics has been a
primary source for generating a continuously tunable electromagnetic
spectrum. In the last two decades, quantum communications and

computing have relied on using nonlinear optics to generate entangled
photons and to achieve ultrafast all-optical switching13–15.

Optical second harmonic generation (SHG) refers to the nonlinear
optical process where two photons of the same energy (_ω) combine to
generate a third photonof higher energy (2_ω) in a nonlinear optical (NLO)
medium. This phenomenon is described by the nonlinear polarization,
P2ω ¼ χð2ÞEωEω, generated in the NLO material at 2ω frequency by the
electric field of the incident light, Eω at frequency ω16. Here, χð2Þ is the
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second-order nonlinear optical susceptibility represented by a third-rank
tensor (with 18 independent components). If the refractive index and χð2Þ

tensors of a crystal are known, one can employ numerical simulations to
model their nonlinear optical responses17,18. However, for new materials
with unknown optical properties, experimental responses need to be mea-
sured andmodeled by analytical or semi-analytical approaches to determine
the coefficients by fitting the models to the experimental data. The com-
plexity of developing such analytical models becomes untenable to perform
manually when, in addition to the unknown χð2Þ tensor, birefringence,
arbitrary crystal symmetry and orientation, complex dielectric function,
multilayer geometries, and interference of all the waves involved are con-
sidered. Errors in χð2Þ may be mistakenly introduced if the analysis is not
handled properly19–21. The previous ♯SHAARP.si package addresses this
need only for a single interface. The current ♯SHAARP.ml package
addresses this need for realistic slabs andmultilayer structures found inmost
optical applications.

Table 1 summarizes the commonly appliedmodels in existing SHG
analyses. The foundation for the theoreticalmodeling of SHG responses
was established by Maker, Bloembergen and Pershan (BP), Jerphagnon
and Kurtz (JK), et al. in the 1960s and 1970s22–24, for nonlinear optical
processes in a transparent isotropic/ medium. In particular, the Maker
fringes technique has become the primary method for characterizing
nonlinear optical susceptibilities in transparent crystals, where the
transmitted SHG intensity is measured as a function of the angle of
incidence25–27. Further advances in the Maker fringes technique were
made by Herman and Hayden (HH), and Shoji et al., extending its
applicability towards uniaxial systems and biaxial materials cut along
high-symmetry directions28–30. However, these characterization meth-
ods are generally limited to transparent systems with high crystal-
lographic symmetry, p- and s- polarized pump and SHG waves, and
relatively simple geometry such as a bulk single crystal, a single-crystal
slab, or a single-crystalline film on a substrate. SHG polarimetry is
another technique to map out the anisotropic χð2Þ by varying the
polarizations of fundamental and SHG waves, which is applicable to

both transparent and absorbing crystals31–37. Nonetheless, the theore-
tical analyses for both Maker fringes and SHG polarimetry still involve
many assumptions such as the slowly varying approximation, weak
reflection of the nonlinear polarization, transparent medium, high
crystallographic symmetry, Kleinman symmetry, easy crystal orienta-
tion along a high-symmetry direction, phase matching conditions
(nω ¼ n2ω), and negligible interference among nonlinear
waves23,24,29,38–42. Our existing package ♯SHAARP.si addressed arbitrary
crystal symmetry, orientation, and complex dielectric function for a
single interface21. However, its application requires analyzing nonlinear
optical response in a single homogeneous crystal where the crystal is
wedged to avoid specular reflections from the back surface (if the crystal
is transparent), or the crystal has a thickness greater than the absorption
depth for the fundamental and SHG waves (if the crystal is absorbing).
To our best knowledge, there is no general tool available that can
analytically or semi-analytically model, without the simplifying
approximations made in BP, HH and JK models23,24,28, the SHG
responses of multilayer systems where light propagates through mul-
tiple layers of nonlinear optical materials, such as stacked 2D
materials43, near Fabry-Perot conditions44, periodic domain gratings45,
and superlattices46.

In this work, we present a comprehensive theoretical framework and
an open-source package, ♯SHAARP.ml (Second Harmonic Analysis of
Anisotropic Rotational Polarimetry for multilayers), for modeling second
harmonic generation in an arbitrary single interface (same as
♯SHAARP.si)21 and complex heterostructure with full consideration of
multireflection at both linear and nonlinear frequencies. The ♯SHAARP.ml
is designed to provide numerical and analytical nonlinear optical solutions
for both simulation and experimental characterization, allowing for fast,
flexible, and user-friendly analysis of nonlinear optical response on complex
material systems. Five key attributes of ♯SHAARP.ml include: (1) ability to
model a multilayer stack with an arbitrary number of layers with homo-
geneous optical properties, (2) allowing arbitrary crystallographic sym-
metry, orientation, and possess absorption, birefringence, and dispersion of
each layer, (3) choices for both reflection and transmission probe geome-
tries, (4) full control of the polarization states of the incident and detected
waves, and (5) explicit considerationof themultireflectionof both linear and
the nonlinear waves. While there are other contributions to the SHG
response, such asmagnetically inducedSHG47, electric quadrupole48, etc., we
focus on the electric dipole SHG in thiswork and shall extend the ♯SHAARP
package to include other sources of SHG in future studies.

Sevenmaterials systemswere used to benchmark the analysis using the
♯SHAARP.ml package: α-quartz single crystal, Au-coated α-quartz bilayer,
LiNbO3 and KTP single crystals, ZnO//Pt//Al2O3 thin film and multiple
SHG active layers (LiNbO3//quartz, and twisted bilayer MoS2). Good
agreement between results from ♯SHAARP.ml and the literature on the
measured SHG coefficients for standard single crystal materials demon-
strate the accuracy and reliability of the package.

Results and discussion
Theoretical background
Figure 1a presents the ray diagram of linear and nonlinear waves through a
multilayer system adopted in ♯SHAARP.ml. Without loss of generality, we
assume thefirst layer (M1) tobe SHGactive. In amore general case, all layers
can (but need not) be SHG active in experiments. When a monochromatic
plane wave at ω frequency is incident upon the system, the electromagnetic
properties of the plane wave inside the system are governed by the wave
equation at ω frequency,

∇×∇×Eω þ
eεωL1L1 eεωL1L2 eεωL1L3eεωL2L1 eεωL2L2 eεωL2L3eεωL3L1 eεωL3L2 eεωL3L3

0
B@

1
CAμω ∂2

∂t2 E
ω ¼ 0 ð1Þ

Table 1 | Comparison of modeling capabilities among
Bloembergen and Pershan Method (BP), Jerphagnon and
Kurtz method (JK), Herman and Hayden method (HH),
#SHAARP.si, and #SHAARP.ml

Features BP JK HH #SHAARP.si #SHAARP.ml

Probing
geometrya

R and T T T R R and T

Layersb SI or 1 1 2 SI Any

Symmetry Isotropic Isotropic Uniaxial Any Any

Orientationc × High
symmetrya

High
symmetrya

Any Any

Light
polarizationd

p- or s- p- or s- p- or s- Any Any

Absorption √ × × √ √

MR of
Ee&o;ω e

× × × N/Af √

MR of
Ee&o;2ω e

√ × √ N/A √

MR of P2ω e × × × N/A √

aR and T refer to reflection and transmission, respectively.
bSI represents single interface. Numbers reflect the number of layers.
cHigh symmetry means samples are oriented along a high-symmetry direction.
dp- or s- refer to the electric fields of electromagnetic waves either parallel or perpendicular to the
plane of incidence, respectively.
eMR represents multiple reflections of waves, Ee&o represents homogeneous waves at their cor-
responding frequency, ω or 2ω (e for extraordinary and o for ordinary waves), and P2ω stands for
nonlinear polarization that gives rise to SHG effects.
fN/A refers to not applicable.

https://doi.org/10.1038/s41524-024-01229-2 Article

npj Computational Materials |           (2024) 10:64 2



where Eω, eεωLiLj and μω are respectively the electric field inside the
medium at ω frequency, anisotropic dielectric tensor components in
the lab coordinate system (LCS), and magnetic permeability tensor at
ω frequency. The μω will be assumed to be vacuum permeability for a
nonmagnetic system, μω ∼ μ0I, where I is the identity matrix. The
subscripts i and j are dummy indices describing the direction of each
tensor component of the anisotropic dielectric susceptibility tensor in
the LCS, denoted aseεωLCS. Note thateεωLCS can be complex to account for
absorption. Four coordinate systems are utilized, namely, principal
coordinate system (PCS), crystal physics coordinate system (ZCS),
crystallographic coordinate system (CCS), and lab coordinate system
(LCS). In PCS, the complex dielectric susceptibility tensor is diag-
onalized. ZCS is the orthogonal coordinate system in which the
property tensors are defined, such as dielectric susceptibility tensor,
SHG tensor, piezoelectricity tensor, etc49. The CCS describes the
coordinate system formed by the basis vectors of the unit cell (which
are not necessarily orthogonal), and LCS is an orthogonal coordinate
system of themodel systemwith the plane of incidence (PoI) coincides
with the L1-L3 plane as shown in Fig. 1a. Note that PCS, ZCS, and LCS
are orthogonal coordinate systems, while the CCS can be non-
orthogonal depending on the crystal symmetry. Equation (1) is a
generalized eigenvalue problem that can be solved routinely50. The
resulting eigenvalues and eigenvectors are related to the effective
refractive indices and electric field directions for both ordinary and
extraordinary waves. Due to reflectance at various interfaces, both

forward and backward propagating waves exist in the heterostructure.
The resulting backward propagating wavevectors can be described as

keB;ω; koB;ω
� �

Mi
¼

1 0 0

0 1 0

0 0 �1

0
B@

1
CA � keF;ω;

1 0 0

0 1 0

0 0 �1

0
B@

1
CA � koF;ω

0
B@

1
CA

Mi

;1≤ iN

ð2Þ

The superscripts e, o, F; and B, respectively, represent extraordinary,
ordinary, forward-propagating, and backward-propagating waves. Mi
represents the ith medium in the heterostructure. Similarly, the full elec-
tromagnetic properties of backward propagating waves can be obtained
using Eqs. (1) and (2). The boundary conditions require the tangential
components of both wave vectors and fields to be continuous across the
interface where the former relation yields Snell’s law, and the latter repre-
sents the Fresnel coefficients. Thus the propagation direction, effective
refractive indices, and fields can be obtained by simultaneously solving the
equations below23,51,

ki;ωL1 ¼ kR;ωL1
¼ keF;ωL1

� �
Mi

¼ koF;ωL1

� �
Mi

¼ keB;ωL1

� �
Mi

¼ koB;ωL1

� �
Mi

¼ kT;ωL1
; 1≤ i≤N

ð3Þ

Fig. 1 | Ray diagram and SHG measurement geometry. a The ray diagram of
birefringent linear and nonlinear waves in the heterostructure. TheM1 layer is set to
be SHG active. Both keFeB;2ω and koFoB;2ω are propagating parallel to layers. Different
colors are used to distinguish different waves and are not indicative of their

frequencies. b The SHG probing geometry. (L1; L2; L3) is the lab coordinate system.
Red and blue rays are the fundamental beam atω and SHGwaves at 2ω, respectively.
θi is the angle of incidence, and the light red plane is the PoI, indicated by theL1 � L3
plane. The layers are subsequently labeled from M1 to MN.
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Ei;ω
k þ ER;ω

k ¼ EeF;ω
k þ EoF;ω

k þ EeB;ω
k þ EoB;ω

k
� �

M1

ð4Þ

EeF;ω
k eiϕ

eF;ω þ EoF;ω
k eiϕ

oF;ω þ EeB;ω
k e�iϕeB;ω þ EoB;ω

k e�iϕoB;ω
� �

Mi

¼ EeF;ω
k þ EoF;ω

k þ EeB;ω
k þ EoB;ω

k
� �

Miþ1

; 1≤ i ≤N � 1
ð5Þ

EeF;ω
k eiϕ

eF;ω þ EoF;ω
k eiϕ

oF;ω þ EeB;ω
k e�iϕeB;ω þ EoB;ω

k e�iϕoB;ω
� �

MN

¼ ET;ω
k

ð6Þ

Hi;ω
k þ HR;ω

k ¼ HeF;ω
k þHoF;ω

k þHeB;ω
k þHoB;ω

k
� �

M1

ð7Þ

HeF;ω
k eiϕ

eF;ω þ HoF;ω
k eiϕ

oF;ω þHeB;ω
k e�iϕeB;ω þHoB;ω

k e�iϕoB;ω
� �

Mi

¼ HeF;ω
k þ HoF;ω

k þ HeB;ω
k þ HoB;ω

k
� �

Miþ1

; 1≤ i≤N � 1
ð8Þ

HeF;ω
k eiϕ

eF;ω þ HoF;ω
k eiϕ

oF;ω þ HeB;ω
k e�iϕeB;ω þ HoB;ω

k e�iϕoB;ω
� �

MN

¼ ET;ω
k

ð9Þ

Here,ϕ is thephasedifference for a forwardwavepropagating fromtop
tobottomsurfaces and for abackwardwavepropagating frombottomto top
surfaces of layer Mi, defined as ϕ ¼ hMi

k � ð0; 0;�1Þ, where hMi
is the

thickness of the ith medium. The subscript k indicates tangential compo-
nents along both L1 and L2 directions. Equations (3)–(9) can be expanded
depending on the number of layers in the heterostructure.

The optical dipolar second harmonic generation is defined by the
generation of nonlinear polarization at 2ω frequency when the NLO
materials are pumped by the incident electric fields at ω frequency. The
nonlinear polarization is defined as

P2ω
Mi

¼ ε0χ
ð2ÞEω

Mi
Eω
Mi
eiðk

S � r�2ωtÞ ð10Þ

where P2ω
Mi
, Eω

Mi
, ε0, χ

ð2Þ, kS and r are nonlinear polarization, fundamental
electric field, vacuum dielectric permittivity, second-order nonlinear optical
susceptibility, wave vector of the source wave, and position vector,
respectively. Since arbitrary layers can be SHG active, P2ω

Mi
will appear when

the ith layer is SHG active, as denoted by the subscript Mi. The generated
nonlinear polarization is often known as the source wave that gives rise to the
nonlinear optical effects. It is important tonote that during thepropagationof
fundamental waves, the nonlinear polarization is generated throughout the
entireoptical pathofEω

Mi
, according toEq. (10).When themultiple reflections

of nonlinear polarization are considered, the interference of nonlinear
polarization can be obtained by considering the multiple reflections of Eω

Mi
.

Many previous theoretical studies of transmission SHG assume weak
reflection of the source wave and ignore the interference among nonlinear
polarization24,28. Thougha fewotherworks considered themultiple reflections
explicitly30,52,53, they rely on approximations such as high symmetry structures
with high symmetry axes aligned along the probing directions.

The propagation of nonlinear waves is governed by the wave equation
at 2ω frequency, written as

∇×∇×E2ω þ
eε2ωL1L1 eε2ωL1L2 eε2ωL1L3
eε2ωL2L1 eε2ωL2L2 eε2ωL2L3
eε2ωL3L1 eε2ωL3L2 eε2ωL3L3

0
BB@

1
CCAμ2ω ∂2

∂t2 E
2ω ¼ �μ2ω ∂2

∂t2 P
2ω

ð11Þ

where P2ω, E2ω, eε2ωLiLj , and μ2ω are nonlinear polarization, radiated electric
field, the component of complex dielectric permittivity tensor in LCS (eε2ωLCS),
andmagnetic permeability tensor at 2ω frequency. Equation (11) highlights
the fundamental mechanism of nonlinear optics, where the generated
nonlinear polarization works as a source wave, generating and radiating
secondharmonic electricfields that can freely propagate inside themedium.
Therefore, the particular and general solutions of Eq. (11) correspond to the
bound and free waves, respectively28. The propagation of P2ω is confined to
the propagation of the fundamental wave at ω that generates it, and the
correspondingE2ω is hence called the boundwave or inhomogeneouswave.
On the other hand, the SHG wave generated by the bound wave can freely
propagate governed by the direction specified by Snell’s law at 2ω, hence it is
called the free wave or the homogeneous wave.

The anisotropic three-wavemixing phenomena is revealed in Eq. (10),
where material anisotropy is taken into account. In each SHG active med-
ium (Mi), the forward and backward nonlinear wavevectors can thus be
identified as kS;2ω ¼ 2keF;ω, 2koF;ω,keF;ω þ koF;ω, 2keB;ω, 2koB;ω,
keB;ω þ koB;ω, keF;ω þ keB;ω, keF;ω þ koB;ω, koF;ω þ keB;ω, and
koF;ω þ koB;ω. The wavevectors for the ten nonlinear polarizations in the ith

layer are thus denoted as (keFeF;2ω, koFoF;2ω, keFoF;2ω, keBeB;2ω, koBoB;2ω,
keBoB;2ω, keFeB;2ω, keFoB;2ω, koFeB;2ω, koFoB;2ωÞMi

for clarity, as shown in Fig.
1a. For example, a nonlinear polarizationPeFoB;2ω is formedwhen a forward
propagating extraordinary wave (keF;ω) and a backward propagating
ordinary wave (koB;ω) are combined. However, the wave mixing terms
containing both forward and backwardwaves, such as keFeB;2ω and koFoB;2ω,
are often dropped or ignored in existing literature due to a large phase
mismatch29,30. Although these terms form standing waves propagating
parallel to the layers, the standingwaves at both the top and bottom surfaces
of each layer can still contribute to the boundary conditions. For example, a
nonlinear polarization (PeFeB;2ω) can be generated by amixture of keF;ω and
keB;ω at top or bottom surfaces of layers leading to additional components in
the boundary conditions. Therefore, we have implemented the mixing
terms in ♯SHAARP.ml, resulting in, at most, ten distinct nonlinear polar-
izations of different combinations of wavevectors for each SHG active layer.
These ten waves are shown as ten different arrows in Fig. 1a.

The particular solutions of Eq. (11) can be obtained using the method
described in previous work21. For example, the electric field of the nonlinear
polarization induced by themixture of two forward extraordinary waves can
be written as EeFeF;2ω ¼ CeFeF;2ωeiðk

eFeF;2ω � r�2ωtÞ, where CeFeF;2ω is a vector
describing the direction andmagnitude of the resulting bounded electricfield
due to the nonlinear polarization. Thus, all electric and magnetic fields
generated by the ten distinct nonlinear polarizations can be uniquely iden-
tified by solving Eq. (11). On the other hand, the general solution of Eq. (11),
which represents the homogeneous waves, can be calculated following the
same procedure as solving Eq. (1) but at 2ω frequency. Four nonlinear waves
will be obtained to fully describe the multiple reflections of homogeneous
waves, namely, EeF;2ω;EoF;2ω;EeB;2ω; EoB;2ω

� �
Mi
, whose field strengths are

determined using the boundary conditions to be described below.
The momentum conservation and energy conservation of the gener-

ated 2ω waves lead to the following boundary condition:

kR;2ωL1
¼ keF;2ωL1

� �
Mi

¼ koF;2ωL1

� �
Mi

¼ keB;2ωL1

� �
Mi

¼ koB;2ωL1

� �
Mi

¼ kT;2ωL1
; 1≤ i≤N

ð12Þ

ER;2ω
k ¼ �

EeF;2ω
k þ EoF;2ω

k þ EeB;2ω
k

þEoB;2ω
k þ EeFeF;2ω

k þ EoFoF;2ω
k þ EeFoF;2ω

k
þEeBeB;2ω

k þ EoBoB;2ω
k þ EeBoB;2ω

k þ EeFeB;2ω
k

þEeFoB;2ω
k þ EoFeB;2ω

k þ EoFoB;2ω
k

�
M1

ð13Þ
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ðEeF;2ω
k eiϕ

eF;2ω þ EoF;2ω
k eiϕ

oF;2ω þ EeB;2ω
k e�iϕeB;2ω

þ EoB;2ω
k e�iϕoB;2ω þ EeFeF;2ω

k ei 2ϕ
eF;ωð Þ

þEoFoF;2ω
k ei 2ϕ

oF;ωð Þ þ EeFoF;2ω
k ei ϕ

eF;ωþϕoF;ωð Þ

þEeBeB;2ω
k e�i 2ϕeB;ωð Þ þ EoBoB;2ω

k e�i 2ϕoB;ωð Þ

þ EeFeB;2ω
k þ EeFoB;2ω

k ei ϕ
eF;ω�ϕoB;ωð Þ

þEoFeB;2ω
k ei ϕ

oF;ω�ϕeB;ωð Þ þ EoFoB;2ω
k Þ

Mi

¼ ðEeF;2ω
k þ EoF;2ω

k þ EeB;2ω
k þ EoB;2ω

k
þEeFeF;2ω

k þ EoFoF;2ω
k þ EeFoF;2ω

k þ EeBeB;2ω
k

þEoBoB;2ω
k þ EeBoB;2ω

k þ EeFeB;2ω
k þ

EeFoB;2ω
k þ EoFeB;2ω

k þ EoFoB;2ω
k Þ

Miþ1
; 1≤ i≤N � 1

ð14Þ

ðEeF;2ω
k eiϕ

eF;2ω þ EoF;2ω
k eiϕ

oF;2ω þ EeB;2ω
k e�iϕeB;2ω

þ EoB;2ω
k e�iϕoB;2ω þ EeFeF;2ω

k ei 2ϕ
eF;ωð Þ

þ EoFoF;2ω
k ei 2ϕ

oF;ωð Þ þ EeFoF;2ω
k ei ϕ

eF;ωþϕoF;ωð Þ

þ EeBeB;2ω
k e�i 2ϕeB;ωð Þ þ EoBoB;2ω

k e�i 2ϕoB;ωð Þ

þ EeFeB;2ω
k þ EeFoB;2ω

k ei ϕ
eF;ω�ϕoB;ωð Þ

þEoFeB;2ω
k ei ϕ

oF;ω�ϕeB;ωð Þ þ EoFoB;2ω
k Þ

MN
¼ ET;2ω

k

ð15Þ

HR;2ω
k ¼ ðHeF;2ω

k þ HoF;2ω
k þ HeB;2ω

k þ HoB;2ω
k

þHeFeF;2ω
k þHoFoF;2ω

k þHeFoF;2ω
k þ HeBeB;2ω

k

þHoBoB;2ω
k þ HeBoB;2ω

k þ HeFeB;2ω
k þHeFoB;2ω

k

þHoFeB;2ω
k þHoFoB;2ω

k Þ
M1

ð16Þ

ðHeF;2ω
k eiϕ

eF;2ω þ HoF;2ω
k eiϕ

oF;2ω þHeB;2ω
k e�iϕeB;2ω

þHoB;2ω
k e�iϕoB;2ω þ HeFeF;2ω

k eið2ϕ
eF;ωÞ

þHoFoF;2ω
k ei 2ϕ

oF;ωð Þ þ HeFoF;2ω
k ei ϕ

eF;ωþϕoF;ωð Þ

þHeBeB;2ω
k e�i 2ϕeB;ωð Þ þ HoBoB;2ω

k e�i 2ϕoB;ωð Þ

þHeFeB;2ω
k þ HeFoB;2ω

k ei ϕ
eF;ω�ϕoB;ωð Þ

þHoFeB;2ω
k ei ϕ

oF;ω�ϕeB;ωð Þ þ HoFoB;2ω
k Þ

Mi

¼ ðHeF;2ω
k þ HoF;2ω

k þHeB;2ω
k þHoB;2ω

k

þHeFeF;2ω
k þ HoFoF;2ω

k þ HeFoF;2ω
k þHeBeB;2ω

k

þHoBoB;2ω
k þ HeBoB;2ω

k þ HeFeB;2ω
k þ HeFoB;2ω

k

þHoFeB;2ω
k þ HoFoB;2ω

k Þ
Miþ1

; 1≤ i≤N � 1

ð17Þ

ðHeF;2ω
k eiϕ

eF;2ω þ HoF;2ω
k eiϕ

oF;2ω þ HeB;2ω
k e�iϕeB;2ω

þHoB;2ω
k e�iϕoB;2ω þ HeFeF;2ω

k ei 2ϕ
eF;ωð Þ

þHoFoF;2ω
k ei 2ϕ

oF;ωð Þ þ HeFoF;2ω
k ei ϕ

eF;ωþϕoF;ωð Þ

þHeBeB;2ω
k e�i 2ϕeB;ωð Þ þ HoBoB;2ω

k e�i 2ϕoB;ωð Þ

þHeFeB;2ω
k þHeFoB;2ω

k ei ϕ
eF;ω�ϕoB;ωð Þ

þHoFeB;2ω
k ei ϕ

oF;ω�ϕeB;ωð Þ þ HoFoB;2ω
k Þ

MN
¼ HT;2ω

k

ð18Þ

where ϕ is the phase difference for a forward wave propagating from top to
bottom surface and for a backward wave propagating from bottom to top
surface in layer Mi, defined as ϕ ¼ hMi

k � ð0; 0;�1Þ. Equations (12)–(18)

describe themost general casewhere all layers are SHG active, except for the
air layers. For a non-SHG active layer, all the fields of the inhomogeneous
waves will be zero due to the absence of nonlinear polarization while the
homogeneous 2ω waves will still be present. For a standing wave formed at
either the top or bottom surface in the medium Mi, taking E

eFeB;2ω
k as an

example, the phase terms are mutually canceled out, leading to the same
field strength at both interfaces. Finally, with all the nonlinear waves and
boundary conditions considered, both polarization-resolved reflected and
transmitted SHG intensities can be obtained.

The SHG measurement geometry is shown in Fig. 1b, where the
incident light (red) is focused on the surface of the sample (a heterostructure
labeled by M1 to MN), and the generated SHG response can be collected in
either transmission or reflection geometry. With this measurement geo-
metry, twocommontechniques, namelySHGpolarimetry andMaker fringe
methods, can be deployed to probe the SHG tensors of nonlinear optical
materials. For SHG polarimetry measurement, both the incident polariza-
tion (φ, polarizer) andSHGpolarization (ψ, analyzer) can be varied to probe
the polarization-dependent anisotropic SHG tensor. This method provides
more comprehensive information on the anisotropy than the Maker fringe
method and can be utilized to identify the orientation and the point group
symmetry of a crystal. On the other hand, the Maker fringes method
measures the transmitted SHG response as a function of angle of incidence
(θi) with fixed polarization directions of both the incident and the SHG
waves, such as p- or s- polarized light waves. The variation in the envelope of
the SHG intensity versus the angle of incidence can reveal the relative
magnitude of nonlinear susceptibilities. However, the transmission geo-
metry for Maker fringes limits its applications to material systems that are
transparent. ♯SHAARP.ml canmodel both the SHGpolarimetry andMaker
fringes numerically or semi-analytically, which can be used to determine the
unknown SHG tensors of new materials.

Outline of ♯SHAARP.ml
The theoretical method described in the preceding section is implemented
using Wolfram Mathematica with a user-friendly GUI and a detailed
tutorial, which can be found in ref. 54. Following the naming convention of
our previous work, we named the software presented in this work as
♯SHAARP.ml, which is capable of modeling optical SHG of multilayer
system. Figure 2 illustrates the calculation procedure of ♯SHAARP.ml.
Additional features compared with ♯SHAARP.si are the capability of
handling more than one interface, the addition of backward propagating
waves and resulting nonlinear polarizations, interference at each frequency,
etc. First, with a given point group symmetry, the dielectric tensor in the
ZCS, and its orientation relative to the LCS coordinate system as inputs, one
can conveniently obtain the mutual relations among the four coordinate
systems within ♯SHAARP.ml, and thus define the geometry of the system.
Then, by solving the wave equation with the boundary conditions at ω
frequencies, one can obtain the forward andbackward propagatingwaves in
each layer, EeF;ω;EoF;ω;EeB;ω;EoB;ω

� �
Mi
. The obtained sets of field strengths

are the result ofmultiple reflections at the pump frequency51. The generated
nonlinear polarization vectors can thus be obtained from electric fields at ω
frequency. Further solving thewave equation at the nonlinear frequency can
provide the wavevector and electric field directions of all forward and
backward homogeneous and inhomogeneous waves in each layer (14waves
in each NLO layer, 4 waves in the non-NLO layer). Finally, plugging all the
waves at 2ω frequency into theboundary conditionsof electric andmagnetic
fields gives transmitted and reflectedpolarization-resolvednonlinear optical
response.

Case studies using ♯SHAARP.ml
In the following, we present our experimental measurements of the SHG
responses for a few typical nonlinear optical crystals and their hetero-
structures to demonstrate how they can be interpreted by numerical and
semi-analytical analyses using ♯SHAARP.ml. In particular, we studied the
Maker fringes of pure and Au-coated quartz single crystals and the SHG
polarimetry of LiNbO3, KTP, andZnO//Pt//Al2O3 heterostructure.We also
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performed two predictive modelings of bilayers consisting of two SHG
active materials, namely, LiNbO3//α-SiO2 and twisted bilayer MoS2, which
can be helpful in distinguishing ferroelectric domain states and nonlinear
optical studies in low dimensional material systems. These examples not
only serve as benchmark tests of ♯SHAARP.ml against known NLO
materials covering a wide range of types (uniaxial, biaxial, and absorbing)
but also demonstrate the broad applicability of ♯SHAARP.ml to a variety of
situations (e.g., Maker fringes, polarimetry, quantifying the effect of
adopting different assumptions in the SHG modeling, analytical fitting to
extract absolute values of SHG coefficients, and predictive simulations of
SHG responses of NLO heterostructures).

Maker fringes of α-quartz single crystal
The study of α-quartz in nonlinear optics can be traced back to the
discovery of second harmonic generation in 196111. The first benchmark
study for ♯SHAARP.ml is performed using the single crystalline α-
quartz, which has been extensively investigated previously using the

Maker fringes method22,24,28,30. The SHG coefficient d11 has been mea-
sured to be 0.3 pm V−1 55. In this case study, we demonstrate the cap-
ability of ♯SHAARP.ml in obtaining the semi-analytical expression for
Maker fringe response and benchmark analysis with both existing
models in the literature24,28 and our experimental investigations. Figure 3
shows the comparison among numerical simulation results from
♯SHAARP.ml with various modeling conditions and existing results
using analytical methods24,28. The Maker fringes condition is summar-
ized in Fig. 3a. The fundamental wavelength (λω) is 1064 nm and the
generated SHG signal from a 300 µm X-cut quartz is analyzed. Both the
fundamental and SHG waves are p- polarized. Two widely applied
Maker fringes models are utilized for comparison, namely the JK (Jer-
phagnon & Kurtz24) method and HH (Herman & Hayden28) method.
The JK method was developed for a high symmetry medium with an
assumption that only forward propagatingwaves are involved24. TheHH
method extended this model to a birefringent uniaxial system with
multiple reflections of homogeneous waves (free waves) at 2ω frequency,

Fig. 2 | Calculation procedures for ♯SHAARP.ml. The dashed regions indicate repeating processes for all layers in the heterostructure.

Fig. 3 | Comparison of Maker fringes results between ♯SHAARP.ml and early
analytical Herman&Hayden’s and Jerphagnon &Kurtz’s models. a Schematic of
Maker fringes condition using 300 µmX-cut quartz. The fundamental wavelength is
1064 nm. Red is fundamental light, and blue represents the generated SHG response.
θi is the angle of incidence. Polarizations of both the fundamental and the SHG

waves are set to be p- polarized. b SHG Maker fringes patterns obtained using
Herman & Hayden’s analytical expressions (analytic HH) and ♯SHAARP.ml ana-
lysis using Herman & Hayden’s modeling condition, ♯SHAARP(HH), and Jer-
phagnon & Kurtz modeling condition, ♯SHAARP(JK). c Magnified region of b as
indicated by the dashed box in b.
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but not for the inhomogeneous waves or linear waves. ♯SHAARP.ml
involves multiple reflections for both linear and nonlinear waves
(homogeneous and inhomogeneous) and thus can be reduced to JK or
HH methods by making the corresponding assumptions. Schematics of
the assumptions made for the three approaches can be found in Sup-
plementary Note 1 and Supplementary Fig. 1. Figure 3b, c illustrates the
three Maker fringes patterns obtained from the HHmethod (denoted as
analytic HH) and numerical analysis using ♯SHAARP.ml with both JK
and HH modeling conditions, denoted as ♯SHAARP(JK) and
♯SHAARP(HH)24,28. The blue dots, yellow and green lines correspond to
analytic HH, ♯SHAARP(JK) and ♯SHAARP(HH), respectively. All three
Maker fringes patterns are consistent with the literature28. In particular,
analytic HH and ♯SHAARP(HH) show good agreement, demonstrating
♯SHAARP.ml can accurately reproduce the prior results. Figure 3c
shows themagnified area of the dashed box region in Fig. 3b. By enabling
the multiple reflections of homogeneous waves at 2ω frequency,
♯SHAARP(HH) produce additional fine fringes at θi from 20° to 30°,
which are absent for ♯SHAARP(JK). This difference indicates that the
interferences between forward and backward homogenous 2ω waves
result in these fine fringes.

To demonstrate the effect of full multiple reflection (FMR) in deter-
mining the nonlinear optical responses,weperformed a comparative study to
measure theMaker fringes of uncoated andAu-coated quartz slabs, as shown
in Fig. 4. Figure 4a, b shows the experimental conditions and corresponding
Maker fringes patterns using a 123.6 µm uncoated Z-cut quartz slab. The
incident fundamental wave is p- polarized centered at 800 nm, and the
generated p- polarized SHG intensity is collected as a function of θi. Four
Maker fringes patterns are compared, namely, experimental results (Expt.),
♯SHAARP(JK), ♯SHAARP(HH), and full multiple reflections of linear and
nonlinear waves (♯SHAARP(FMR)). Due to the weak reflectance of quartz,
all three modeling conditions yield similar Maker fringes patterns, in agree-
ment with the experimental results. The centers of the fringes overlap with

that of ♯SHAARP(JK). The major difference lies in the fine fringes of the
Maker fringes patterns, as highlighted in the inset of Fig. 4b (a zoom-in of the
dashed regionsnearθi ¼ 30°).Withmultiple reflections consideredand thus
more interferences, the amplitude of the fine fringes increases. Experimen-
tally, the fine fringes are not observable with a fine step size of θi at 0:1°, and
possible reasons for not detecting fine fringes can be the range of angles of
incidence, the nonuniformity of sample thickness within the probing area, or
the bandwidth of the laser. To confirm the above effects, Maker fringes
patterns with averaging angle of incidence (due to beam divergence of ~3°),
thickness variation (of ~50 nm across the beam), and wavelength averaging
(λω ± 5 nm) are performed (see Supplementary Note 2, Supplementary Fig.
2a, b). It is found that by averaging the above three parameters one can
effectively smoothen the calculated Maker fringes pattern, confirming that
the variation of experimental conditions, as used for the case of quartz, can
smear out thefine fringes.Averagingθi andλω have amoredominating effect
comparedwith averaging h for the case of quartz in this study. It is important
tonote that although the JKmethodcanalsoproducea smoothMaker fringes
pattern, this coincidence is accidental. In fact, the smooth pattern obtained by
averaging the angle of incidence correctly considers themultiple reflection of
waves and the variation of experimental conditions while the JK method
excludes the fine fringes due to the neglect of reflective waves.

To illustrate the circumstance under which FMR becomes critical,
we further studied theMaker fringes of a Z-cut quartz with Au coating at
the backside of the slab, as shown in Fig. 4c, d. The thickness and
complex refractive index of Au coating are determined by spectroscopic
ellipsometry (see Supplementary Note 3 and Supplementary Fig. 3). The
thickness of the Au layer is found to be 13.9 nm, far below the pene-
tration depth (~45 nm). Due to the strong reflection of the Au layer, the
resulting backward propagating waves are expected to be more intense
than those in the pure quartz case. To test such hypothesis, we compared
the simulation results based on ♯SHAARP(HH) and ♯SHAARP(FMR)
against the experimental results, as shown in Fig. 4d.Due to the inclusion

Fig. 4 | Experimental verifications of ♯SHAARP.ml and influence of full multiple
reflections using Maker fringes technique. a Schematic of the experimental con-
dition using Z-cut quartz. b The comparison among Maker fringes patterns from
experiment and different modeling conditions based on the geometry in a. The inset
is the zoomed-in Maker fringes highlighted in the dashed area. c Schematic of the
experimental condition using Z-cut quartz with a backside Au coating. d The

comparison amongMaker fringes patterns from experiment and different modeling
conditions based on the geometry in c. JK, HH, FMR and FMR+θi + h+ λω

represent JK method, HH method, full multiple reflections of linear and nonlinear
waves, and averaged Maker fringes with a span of angles of incidence (θi), crystal
thicknesses (h) and wavelength of fundamental light (λω) due to a finite bandwidth
based on ♯SHAARP(FMR). The fundamental wavelength λω is 800 nm.
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of Au, the fine fringes resulting from multiple reflections become more
prominent as compared with Fig. 4b. Similar phenomenon has also been
observed in other studies30,52,56. It can be seen from Fig. 4d that
♯SHAARP(HH) fails to capture the total transmitted SHG intensity and
the relative intensity ratio between θi ¼ 0° and ≈40°. In contrast, the
results from ♯SHAARP(FMR) indicate better agreement with experi-
ments regarding these SHG intensities but exhibit large variation in the
fine fringes that are smeared out in the experiments. These oscillations
can be corrected by averaging the angle of incidence, thickness variation
in the probed area, and finite bandwidth of the fundamental wavelength,
leading to the results denoted as ♯SHAARP(FMR+θi + h+ λω).
Detailed discussion on the corrections can be found in Supplementary
Note 2, Supplementary Fig. 2c, d. With ♯SHAARP(FMR+θi + h+ λω),
the SHG relative intensities, peak, and minimum positions are well
captured simultaneously with good agreement between the experiments.

In contrast to the fine fringes originating from the interference of
the fundamental waves, the broader envelope in the SHG intensity with
respect to θi (interval ranging across tens of degrees visible in Figs. 3b
and 4b, d) carry the essential information associated with the inter-
ference between the homogeneous and inhomogeneous waves. This
interference originates from the phase difference between the source
waves (kS;2ω) and the homogeneous waves (ke;2ω and ko;2ω) accumulated
throughout the bilayer structure, and thus, the broader envelope is
extremely sensitive to the changes in the crystal thickness and refractive
indices at both ω and 2ω frequencies. Therefore, SHGMaker fringes can
be utilized as a sensitive probe of wafer uniformity57. For example, with a
thickness variation of 1 μm, the Maker fringes change drastically, as
demonstrated in Supplementary Note 4 and Supplementary Fig. 4. It is
worth noting that the crystal thicknesses determined in Fig. 4b, d are
slightly different, i.e., 123.6 μm and 121.4 μm, respectively, due to the
change of probing positions and nonuniform thickness across the
sample (10 μmvariation across a 10 mm× 10 mm sample), as confirmed
by the stylus profilometry. In addition, we note that the example pre-
sented in Fig. 4c, d also illustrates the capability of ♯SHAARP.ml in
handling multiple layers with strong reflections.

The phase difference between two propagating waves is critical to
determining their interference, e.g., being constructive and destructive for in-
phase and out-of-phase situations respectively.With ♯SHAARP.ml, we show
that different ways to compute the relative phase terms of the waves can lead
to dissimilar results. Conventionally, the phases of electromagnetic waves
propagating through layers are calculated as ϕ ¼ hMi

k � ð0; 0;�1Þ, where
only the L3 component of the wavevector is considered. On the other hand,
the full phase of the electromagnetic wave accumulated through layers can be
written as ϕ ¼ hMi

k � ðtan θ; 0;�1Þ, where θ represents the refractive angle
of the corresponding wave. However, the Maker fringes obtained using full
phase show large deviation from the experiments (see SupplementaryNote 5
and Supplementary Fig. 5). Such discrepancy may come from the fact that a
small beamsize comparative to the crystal thickness isused in the experiment,
where a sizeable beam overlap and finite resolution of angles are essential for
the interference to become observable in the experiments. Therefore, for the
quartz case, taking only the vertical phase along L3 directionwill be sufficient
in the SHG analysis throughout the current work.

LiNbO3 and KTP single crystals
LiNbO3 and KTiOPO4 (potassium titanyl phosphate, KTP) have been
widely studied for decades owing to their excellent nonlinear optical
properties58–60. Theirwell-establishednonlinear optical susceptibilitiesmake
the two crystals suitable for benchmarking analysis. Utilizing the partial
analytical expressions generated by ♯SHAARP.ml, the experimental
polarimetry results can be analyzed to extract relative ratios of SHG coef-
ficients, and the absolute SHG coefficients of the two single crystals can be
obtained using α-quartz as the reference.

LiNbO3 crystallizes in a trigonal structure with the point group 3m
and has a bandgap of around 3.8 eV59,61. Two orientations, namely
(0001) (i.e., Z-cut) and (11�20) (i.e., X-cut) were measured in the

transmission geometry and analyzed simultaneously to determine the
full SHG tensor using a fundamental wavelength (λω) centered at
1550 nm. Figure 5a–d shows the experimental results and fitting analysis
of LiNbO3. Three angles of incidence ðθi ¼ 0°; 10°; 30°Þ are analyzed
simultaneously, and the SHG intensities are normalized within each
orientation. Figure 5a, b is the SHG polarimetry results of ~538 μm thick
LiNbO3 (11�20) crystal slab, whose c axis is placed along the L1 direction
(see the experimental orientations in Supplementary Note 6 and Sup-
plementary Fig. 6). The obtained polar plots are p- and s- polarized SHG
intensities as a function of incident polarization (φ). The dominating d33
(corresponds to θi ¼ 0° in Fig. 5a) results in a large intensity difference
between the p- and s- polarized SHG responses (~135 times difference),
which can bewell captured by ♯SHAARP.ml. Figure 5c, d is themeasured
SHG intensities and fitting results of ~119 μmLiNbO3 (0001). At normal
incidence, both p- and s- polarized SHG show four lobes with equal
intensities arising from the in-plane isotropy in this orientation. As the
crystal is tilted towards a larger angle of incidence, the projection of d33
to the L1 increases, leading to an increase in the p- polarized SHG
intensity, as seen in Fig. 5c. By fitting two LiNbO3 crystals with different
orientations and using quartz as the reference, the extracted ratios and
absolute values of the SHG coefficients of LiNbO3 are summarized in
Table 2, which agree well with previously reported values24,29.

KTP adopts an orthorhombic crystal structure with a point group of
mm2. It is classified as a biaxialmaterialwith distinct optical responses along
all three crystal physics axes. Thus, a careful analysis of full anisotropy and
the presenceof twooptical axes are critical in opticalmodeling. In this study,
we used two KTP slabs simultaneously, namely ~370 μm X-cut ((100)
orientation) slab and ~570 μmY-cut ((010) orientation) slab, to analyze the
full SHG tensor. Both c axes are placed along the L2 direction, and their two
optical axes lie in Z1-Z3 plane (see the experimental orientations in Sup-
plementary Note 6 and Supplementary Fig. 6)49,62. Figure 5e, f is the SHG
polar plots for p- and s- polarized SHGresponse, respectively. Four angles of
incidence areutilized to identifyfiveunknownSHGsusceptibilities uniquely
(θi ¼ 0°; 10°; 20°, and 40°). Using partial analytical expressions generated
by ♯SHAARP.ml, the SHG polarimetry fittings show good agreement
between the theory and experimental data, and the extracted ratios and
absolute values of SHG coefficients of KTP are summarized in Table 2.

As discussed in previous work21, the symmetry assumptions, such as
that of isotropy, can lead to errors of up to 30% in the ratios between SHG
coefficients, depending on the anisotropy of thematerials. In this work, our
discussion will focus on the influence of Kleinman’s symmetry (KS), the
exclusion of multireflection of linear waves and nonlinear inhomogeneous
waves (NMR), and the exclusion of the nonlinear polarizations formed by
the mixture of forward and backward waves (No PFB;2ω). Using
♯SHAARP.ml, these three factors can be selectively applied in the modeling
and fitting analysis to investigate the influence of individual assumptions on
the final obtained nonlinear susceptibilities. Figure 5g, h summarizes the
SHGcoefficients ratios obtained under different assumptions tofit the same
experimental data for LiNbO3 and KTP, respectively. The Kleinman’s
symmetry (KS) assumes all three indices in the d tensor are permutable,
leading to d31 = d15 in LiNbO3, and d31 = d15, d32 = d24 in KTP63–67. The
NMR case is equivalent to the HHmethod, where only multiple reflections
of the nonlinear homogeneous wave are considered. The “No PFB;2ω” case
neglects the nonlinear polarizations generated by mixed forward and
backward waves, i.e., PeFeB;2ω, PeFoB;2ω, PoFeB;2ω, and PoFoB;2ω. The
♯SHAARP.ml case represents the analysis with full consideration of mul-
tireflection of linear and nonlinear waves, all possible nonlinear polariza-
tions and complete material anisotropy, and no Kleinmann symmetry
assumed. Comparing the four cases, we found most of the obtained SHG
ratios vary within 20–30%, which are commonly comparable to the error
bars. TheNMRcase is close to the ♯SHAARP.ml case, implying that theHH
method may be a good approximation for studying KTP with photon
energies below its bandgap. The difference between “♯SHAARP.ml” and
“No PFB:2ω” lies in whether or not to include the nonlinear polarization
created by the interference of forward and backward electric fields at ω
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frequency. For transparent crystals (such as LiNbO3 and KTP) whose
reflectance is smaller, the backward propagating electric fields are weaker,
and thus the resulting PFB;2ω does not contribute much to the final trans-
mitted SHG intensities. This observation also supports the claims of early
models that only nonlinear polarization formed by forward propagating

waves is considered for transparent samples23,24,28. TheKScase, however, can
introduce relatively large deviations in the obtained coefficient ratios such as
a 60% error for d31=d32 in KTP.

ZnO//Pt//Al2O3 thin films
ZnO has been widely studied for decades for electronics, photonics, and
optoelectronics applications owing to its large piezoelectric coefficients,
large exciton binding energies, wide optical bandgap, and good chemical
and thermal stability68–70. Recently, ZnOwithMg substitution (Zn1-xMgxO)
hasbeen shown topossess ferroelectricity, paving itsway towardwaveguides
and quasi-phase-matched (QPM) frequency conversion devices15,45.
Though the nonlinear optical process in ZnOhas been extensively explored
in both bulk and thin films forms, its nonlinear optical susceptibilities have
been reportedwith a large scatter in the values from less than one pmV−1 to
hundreds of pm V−1, indicating either sample variations or inconsistent
modeling of the SHGdata71–74. In this work, we select 159 nmZnO//200 nm
Pt//0.5mm Al2O3

45 as an example to demonstrate the capabilities of
♯SHAARP.ml in probing thin films on substrates with a bottom electrode
and the importance of multiple reflections in the analysis.

As described in earlier work, ZnO was grown using RF magnetron
sputtering and formed a stack of ZnO//Pt//Al2O3, as shown in Fig. 6a

45. The
fundamental wavelength is centered at 1550 nm, and the angle of incidence
is set to 45 degrees (θi ¼ 45°). The reflected p- and s- polarized SHG
intensities at 775 nmare then collected as a function of incident polarization
(azimuthal angle φ). The epitaxial ZnO (0001) films adopt the wurtzite
structure (point group 6mm) and remain isotropic within the in-plane
direction. Figure 6b shows the crystal structure of ZnO and its crystal-
lographic directions relative to the lab coordinate systems, where Z1 k L1
and Z3 k L3. Due to the strong reflection of the Pt bottom electrode at
fundamental 1550 nm and SHG wavelength at 775 nm, the multiple
reflections at both frequencies inside the ZnO layer are thus significant and
cannot be ignored. The thickness of the Pt layer is around 200 nm, and

Table 2 | Comparison of absolute SHG coefficients and their
ratios between ♯SHAARP and literature

Materials Wavelenth,
λ (nm)

SHG
coefficients

This work Refs.
27,32,55,59a

LiNbO3 slab 1550 d33

�� �� 19:3± 0:6 18:9± 2:1

d33=d31 5:5± 0:5 6:1± 0:7

d22=d31 �0:4± 0:1 �0:5± 0:1

KTP slab 1550 d33

�� �� 12:8± 0:1 12:6± 0:6

d33=d32 4:2± 0:1 3:9± 0:4

d31=d32 0:8± 0:3 0:6± 0:1

d24=d32 1:0± 0:1 1:0± 0:1

d15=d32 0:4± 0:1 0:5± 0:1

ZnO//Pt//Al2O3 1550 d33

�� �� ∓6:6± 2:2 �7:2

d31

�� �� ± 0:8± 0:3 0:7

d15

�� �� ± 1:1± 0:1 1ðKSÞ
α-quartz (w/
wo Au)

800, 1550 d11

�� �� 0.3a 0.3

d14

�� �� 0 0

MoS2 Bilayer 810 d22

�� �� 158 158

Absolute values are in the unit of pmV−1. The SHGcoefficients of quartz andMoS2 used in this work
are adopted from the literature.
aThe values are converted to correspondingwavelength using theMiller’s rule before comparison87.

Fig. 5 | Case studies of LiNbO3 andKTP single crystals at 1550 nm. a, bThe p- and
s- polarized SHG response of LiNbO3 (11�20) as a function of incident polarization
direction (φ). c, d The p- and s- polarized SHG response of LiNbO3 (0001) as a
function of incident polarization direction (φ). e, f The p- and s- polarized SHG
response of KTP (100) andKTP (010) as a function of incident polarization direction

(φ). Comparison of extracted SHG coefficients ratios among different modeling
conditions for (g) LiNbO3 and (h) KTP. KS is Kleinman’s symmetry. NMR stands
for no multiple reflections of linear waves and nonlinear inhomogeneous waves. No
PFB represents the case when the nonlinear polarizations generated by mixtures of
forward and backward waves are ignored.
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therefore both incident andSHGwaveswill be fully blocked and reflectedby
the Pt layer. Since earlier theoretical approaches often assume weak
reflection of the nonlinear source wave23,24,28, a suitable theoretical model in
the literature that can resolve anearFabry-Perot condition isdifficult tofind.
Using expressions generated by ♯SHAARP.ml, the experimental results can
thus be fitted, as demonstrated in Fig. 6c, d.

Further reference against a wedged X-cut LiNbO3 yields the absolute
SHGcoefficients of the entire SHG tensor. Figure 6e summarizes the absolute
SHG coefficients obtained from ♯SHAARP.ml in comparison with the cases
under various assumptions (themeaningsof thenotations are consistentwith
the previous section). The “♯SHAARP.ml” case yields the absolute
d33 ¼ 6:6 ± 2:2 pmV−1, which is close to early reported values for films and
single crystals (~7.15 pmV−1)45,72. This indicates the film under study has
goodqualities and lowoptical loss.Comparing the results from ♯SHAARP.ml
with those from KS and No PFB, the obtained absolute SHG coefficients are
reasonably close. On the other hand, the multiple reflections play a more
significant role in the analysis. As can be seen from the NMR case, the
obtained nonlinear susceptibilities are greatly exaggerated by one order of
magnitude. This is because the total SHG signals were attributed to the single
propagation of nonlinear polarization from the top to the bottom surface
instead of multiple bounces. To compensate for the path difference between
NMRandFMR, the nonlinear susceptibilities have to be increased, leading to
dSHG of nearly 10 times higher than the actual value.

This case study of ZnO thin films highlights the necessity of a more
general nonlinear optical model because of the increased complexity as
more materials are involved in a heterostructure. For example, SHG has
been widely applied in characterizing 2D materials on top of SiO2//Si sub-
strate which is highly reflective in the visible regime32,75. Nevertheless, the
multireflection of the heterostructure is often assumed to be negligible76.
Additionally, as more binary ferroelectric semiconductors are being dis-
covered, such as (Al,Sc)N and (Al,B)N44,77,78, optical second harmonic

generation as a non-destructive method will be a useful tool for probing
ferroelectricity. The ZnO//Pt//Al2O3 case shown here highlights the cap-
ability of ♯SHAARP.ml not only in handling various probing geometries
(transmission and reflection) that goes beyond the well-established Maker
fringes method but also in modeling heterostructures near the Fabry-Perot
condition. Inparticular, the analytical andnumerical approaches enabled by
♯SHAARP.ml provide versatile solutions for the purpose of materials
characterization and numerical simulation.

Table 2 summarizes the absolute nonlinear optical susceptibilities and
their relative ratios of all four crystalline materials obtained from this work
and reported in literature. The accuracy of ♯SHAARP.ml is benchmarked,
covering single crystals and thin film-based heterostructure, material sys-
tems that are highly transparent or reflective, and distinct anisotropy from
uniaxial to biaxial optical classes.

SHG active bilayers, LiNbO3//Quartz
The generated SHG signals, in general, contain both amplitude and phase
information of materials, such as the direction of a static (zero frequency)
spontaneous polarization,Ps, of ferroelectricmaterials. (Note that this static
ferroelectric polarization is distinct from any optical polarization at optical
frequencies we have discussed earlier). Two ferroelectric domains with
antiparallel spontaneous polarizations (separated by a 180° domain wall)
will generate nonlinear optical polarizations with a π phase shift, yet of the
same amplitude. Thus, the corresponding SHG intensities are identical for
the two domains, leaving the ferroelectric domain state indistinguishable
based on the intensity alone16,33,79. The SHG interference contrast imaging
has been developed to resolve this issue47,79–82. In this subsection, we employ
♯SHAARP.ml simulation to illustrate the basic idea of SHG interference
contrast imaging, intimately (without an air gap in this example) placing a
periodically poledLiNbO3 (2�1�10) crystal on topof aZ-cut quartz crystal as a
model system.

Fig. 6 | Second harmonic generation analysis of ZnO//Pt//Al2O3 thin film at
1550 nm. a The probing geometry of ZnO//Pt//Al2O3 heterostructure. The red
beam is the fundamental ray, and the blue is the generated SHG response. The light
red plane represents the plane of incidence parallel to L1 � L3 plane. The p- and s-
polarized SHG response (IR;2ωp and IR;2ωs ) are collected as a function of incident
polarization (φ). Superscript R indicates the reflected waves. b the relations between
the crystallographic coordinate system (a; b; c) and lab coordinate system

(L1; L2; L3). The SHG polarimetry results collected at θi ¼ 45° for (c) p- polarized
SHG intensity IR;2ωp ðφÞ and (d) s- polarized SHG intensity IR;2ωs ðφÞ. Data acquired
from the sample in ref. 45. e The comparison of extracted complete absolute SHG
tensor (d33, d31, d15) among full analysis (♯SHAARP.ml) and various assumptions.
KS is Kleinman’s symmetry. NMR stands for no multiple reflections of linear waves
and nonlinear inhomogeneous waves. NoPFB represents the nonlinear polarizations
generated by mixtures of forward and backward waves are ignored.
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The principle of SHG interference contrast imaging is schematically
shown in Fig. 7a, where the red and blue rays are fundamental waves and
SHG waves, respectively16,47. An additional quartz is placed beneath the
LiNbO3 crystal (abbreviated as LNO) to generate the interference of the
nonlinear waves through reflection. The nonlinear waves generated by
LiNbO3 (denoted as k2ωL ) and quartz (denoted as k2ωQ ) will interfere to
resolve the phase information of k2ωL . Figure 7b shows four cases where
Case 1 and 4 involve only LiNbO3 (2�1�10) crystals with opposite polar-
ization directions and Case 2 and 3 have an identical (001) quartz layer
placed under the LiNbO3. The thicknesses of both LiNbO3 and quartz
are assumed to be 50 µm and 35 µm, respectively, and the fundamental
light is set at normal incidence (θi ¼ 0°) with a wavelength centered at
1550 nm (λω ¼ 1550 nm). Figure 7c, d shows simulation results of the
SHG responses for the four cases using ♯SHAARP.ml. The simulated
SHG polarimetry responses (I2ωL1 ðφÞ and I2ωL2 ðφÞ) as a function of the
incident optical polarization (φ) is illustrated in Fig. 7c. The pure LNO
cases with opposite ferroelectric polarization directions (cases 1 and 4)
show identical SHG responses that cannot be distinguished from SHG
polarimetry. In contrast, by placing the quartz below the LNO, the
corresponding SHG responses between Cases 2 and 3 show a clear
change. We pick I2ωL1 ð0° Þ for comparison among the four cases (Fig. 7d)
since when φ ¼ 0°, the light polarization at ω and 2ω are parallel to the
ferroelectric polarization, Ps, of LiNbO3, giving rise to the largest SHG
intensity. The intensities of the SHGwaves in Cases 1 and 4 are the same
while they are different in Cases 2 and 3. This is because the nonlinear
waves generated by LNO (k2ωL ) and quartz (k2ωQ ) interfere constructively
in Case 2 and destructively in Case 3. Thereby, the two ferroelectric
domain states of LiNbO3 can be differentiated by measuring the SHG
intensity with the aid of a quartz reference layer. Beyond this example,
♯SHAARP.ml can easily handle extending this problem to include many
SHG active layers and with arbitrary direction of ferroelectric polar-
ization as long as each layer is homogeneous.

Twisted bilayer MoS2

Nonlinear optical probes have been widely applied in the studies of two-
dimensionalmaterial systemsdue to their sensitivity to structure, orientation,

electronic structure, andmaterial compositions. Twisted bilayer MoS2 is one
of the examples that contains two SHG active layers that are offset by certain
degrees. The SHG signal from these bilayer systems is often modeled as an
interference effect between the second harmonic waves arising from each
monolayer with a phase difference depending on the twist angle81,83. Figure 8
shows the ♯SHAARP.ml simulation results of twisted bilayer MoS2 for var-
ious twist angles (Δθ) in the rotating polarizer, rotating analyzer configura-
tion (RA) at normal incidence as described in ref. 81. The material
orientations and stacking orders are shown in Fig. 8a. The bottom blue layer
has a fixed orientation where the b-axis (zig-zag) is placed along the L2
direction (i.e.,MoS2(θ ¼ 0°)). The toporange layer (MoS2(θ)) is then rotated
counterclockwise by Δθ. The complete stacking order is thus
MoS2(θ ¼ Δθ)//MoS2(θ ¼ 0°)//Al2O3(0001). In this case study, the funda-
mental wavelength is set at 800 nm, where MoS2 remain transparent at ω
frequency but highly resonating at 2ω frequency with established refractive
indices84,85. Figure 8b illustrates the SHG intensity variations and effective
orientation change of monolayer MoS2 with θ ¼ 0° or 25° and the bilayer
MoS2(θ ¼ 25°)//MoS2(θ ¼ 0°). The reflected light with parallel polarizer
and analyzer condition is chosen, i.e., IR;2ωk . For monolayers, the peaks of the
lobes in Fig. 8b are perpendicular to a, b and a+ b directions, where a and b
are crystallographic lattices. On the other hand, the peaks of bilayers are
located between the peaks of monolayers, consistent with the experimental
observations81,86. With a thickness of Al2O3 set at 501.93 um, the observed
intensity ratio between the bilayer and monolayer is around 2.1, close to the
intensity ratio observed experimentally81. It is worth noting that this ratio
varies periodically between ~2.1 to ~2.4 with varying Al2O3 thickness (a few
hundred micrometers). To further explore the FMR effects induced by the
substrate, we use κ Δθð Þ � IB�2IM

2IM
as the indicator, where IB and IM are peak

intensities of bilayer and monolayer, as depicted in Fig. 8c. In a simplified
situation where only the anisotropic SHG tensor is considered, it can be
derived that κ Δθð Þ ¼ cos 3Δθ, as indicated by the black curve81. When
Δθ ¼ 0°, the two monolayers are aligned, and the SHG fields thus con-
structively interfere, generating the maximum reflected intensity. On the
other hand, destructive interfere will occur at Δθ ¼ 60°. Leveraging
the partial analytical expression from ♯SHAARP.ml, we found that varying
the Al2O3 thickness (500 ± 200 μm) can reduce the total refleted SHG

Fig. 7 | Interferences of SHG intensities in LiNbO3 and quartz (001) hetero-
structures. a The ray diagrams of nonlinear waves in LiNbO3 (LNO) and LiNbO3//
quartz. Red is fundamental light, and blue is SHG light. k2ωL and k2ωQ respectively refer
to nonlinear waves generated by LiNbO3 and quartz. b Four cases used in the
♯SHAARP.ml simulation. The LiNbO3 (2�1�10) and quartz (001) are used. The dark

arrows in LiNbO3 indicate polarization directions parallel to the c axis. The dark
arrows in quartz indicate the direction of [100]. Both case 2 and 3use the same quartz
for the interference study. c The resulting SHG polar plots for four cases in
b, subscripts L1 and L2 refer to SHG intensities polarized along L1 and L2 directions
in b. d The SHG intensity, IT;2ωL1

ðφ ¼ 0°Þ, for four cases in b.
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intensity by 7–31% together with the absorption of MoS2 at 2ω frequency
(using the imaginary dielectric constants of MoS2 as εωI ¼ 0 and
ε2ωI ¼ 14:6Þ84, as shown by the red area. Detailed discussion on the substrate
effect can be found in Supplementary Note 7 and Supplementary Fig. 7. Our
simulation results using ♯SHAARP.ml reproduced the sign change of κ and
indicate that the substrate effect may account for the scattered κ values lying
below the cos 3Δθ curve as measured in the previous study81.

Summary
In summary, we have developed a comprehensive theoretical framework and
implemented it into an open-source package (♯SHAARP.ml) for nonlinear
optical analysis of multilayer systems including slabs and heterostructures,
extending the existing capabilities of the prior ♯SHAARP.si package for
single-interface systems. In addition to arbitrary materials properties such as
symmetry, absorption, orientations, anddispersion, ♯SHAARP.ml also allows
multiple reflections of both inhomogeneous and homogeneous waves at ω
and 2ω frequency, editable heterostructure schemes for versatile materials
systems, integrated Maker fringes and polarimetry capabilities, and flexible
probing conditions for both transmission and reflection geometries. The
experimental and theoretical analyses based on various nonlinear optical
crystals and multilayers help validate the capabilities and accuracy of
♯SHAARP.ml in the determination of nonlinear optical susceptibilities,
crystal symmetries, and ferroelectric polarization directions. Seven material
systems, namely α-quartz, α-quartz with Au coating, LiNbO3, KTP, ZnO//
Pt//Al2O3, LiNbO3//α-quartz and twisted bilayer MoS2 are chosen to
benchmark ♯SHAARP.ml against our experimental measurements. The
resulting absolute nonlinear optical susceptibilities and their relative ratios
show excellent agreement with the reported values. The successful demon-
strations for the quartz+Au and ZnO//Pt//Al2O3 cases highlight the cap-
abilities of modelingmultiple reflection in a near Fabry-Perot condition. The
simulationof abilayer systemwith twoSHGactivemedia reveals the ability to
accurately model SHG interference contrast imaging of otherwise undiffer-
entiable ferroelectric domain states. The combined Maker fringes and SHG

polarimetry capabilities of ♯SHAARP.mlmake it a comprehensive analytical
modeling tool for the optical metrology of new materials and
heterostructures.

Looking forward, we expect that ♯SHAARP.ml can broadly streamline
research innonlinear optics.The complete andaccurate analytical framework
with editable assumptions from ♯SHAARP.ml can provide nonlinear optical
solutions in an on-demand modality. As more integrated nonlinear optical
devices and topological superlattices are being developed, the capability of
modeling these heterostructure can thus be an effective way to design,
characterize, and optimize nonlinear optical response fromcomplex systems.
Furthermore, ♯SHAARP.ml provides a programmable platform for future
extensions to more functionalities, such as other three-wave mixing pro-
cesses, magnetic-dipole or quadrupole induced nonlinear optical effects,
Gaussian beamswith finite beam size, and inhomogeneousmaterial systems.

Methods
Sample preparation
Both α-quartz and LiNbO3 single crystals were obtained from MTI Cor-
poration. The (11�20) and (0001) oriented LiNbO3, namely X-cut andZ-cut,
were utilized in the analysis. Since the definition of X-cut LiNbO3 fromMTI
is distinct from the orientations used in other analyses87,88, we have used the
Miller indices for clarity. The X-cut and Y-cut KTP crystals were obtained
from CASTECH Inc (Conex Systems Technology, Inc.). The ZnO//Pt//
Al2O3 was prepared using RF magnetron sputtering, and the detailed
growth procedure can be found in the earlier work45.

Second-harmonic generation
The second harmonic generationmeasurementswere performed using aTi:
Sapphire femtosecond laser system with the central wavelength at 800 nm
(1 kHz, 100 fs). The 1550 nm (1 kHz, 100 fs) was generated through an
optical parametric amplifier, pumped by the 800 nm amplified laser. The
SHG polarimetry measurements were performed using a combination of a
zero-order halfwaveplate for the incident beamandananalyzer for the SHG

Fig. 8 | SHG polarimetry of twisted bilayer MoS2. a Crystal structure and relative
orientations. Δθ represents the twist angle between the twisted top layer (orange)
and the fixed bottom layer (blue). L1-L2 and a-b represents LCS and CCS, respec-
tively. b Resulting reflective SHG polarimetry (IR;2ωk ) with parallel polarizer and
analyzer conditions, where blue and orange represent monolayers and green stands

for the bilayer. 0° in the polar plot refers to the electric field parallel to L1 direction.
The triangles indicate the orientations of monolayer MoS2 in panel a. c κ as a
function of the twist angle (Δθ). The red area shows the variation of κ due to
absorption of MoS2 and thickness variation of Al2O3 substrate.
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signals. The polarization (azimuthal angle φ) of the incident linearly
polarized lightwas rotatedby thehalf-waveplate.The analyzerwas set either
parallel or perpendicular to PoI, equivalent to p- and s- polarized SHG,
respectively. The polarized SHG was then filtered by the band pass filter to
avoid additional spectrum contribution from the laser and samples. The
Maker fringes measurements were performed by tilting samples while
keeping incident and detecting polarization fixed. The rotation center of the
sample stage is confirmed to be along the beam path to minimize the beam
drift during the experiment. A photomultiplier tube (PMT) was used to
collect SHG signals. The detected signalswere further processed by the lock-
in amplifier (SR830) to remove additional noise before feeding into the
home-developed LabView program. The SHG fittings were then conducted
using the expression generated by the ♯SHAARP.ml. All the SHG coeffi-
cients from the literature are recalibrated using Miller’s rule before the
comparison89.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon reasonable request.

Code availability
The ♯SHAARP.ml is available through GitHub (https://github.com/
bzw133/SHAARP.ml), and the documentation of the ♯SHAARP.ml can
be accessed through ReadtheDocs (https://shaarpml.readthedocs.io/en/
latest/).
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