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A B S T R A C T

This paper integrates nonlinear-manifold reduced order models (NM-ROMs) with domain
decomposition (DD). NM-ROMs approximate the full order model (FOM) state in a nonlinear-
manifold by training a shallow, sparse autoencoder using FOM snapshot data. These NM-ROMs
can be advantageous over linear-subspace ROMs (LS-ROMs) for problems with slowly decaying
Kolmogorov 𝑛-width. However, the number of NM-ROM parameters that need to be trained
scales with the size of the FOM. Moreover, for ‘‘extreme-scale" problems, the storage of
high-dimensional FOM snapshots alone can make ROM training expensive. To alleviate the
training cost, this paper applies DD to the FOM, computes NM-ROMs on each subdomain, and
couples them to obtain a global NM-ROM. This approach has several advantages: Subdomain
NM-ROMs can be trained in parallel, involve fewer parameters to be trained than global NM-
ROMs, require smaller subdomain FOM dimensional training data, and can be tailored to
subdomain-specific features of the FOM. The shallow, sparse architecture of the autoencoder
used in each subdomain NM-ROM allows application of hyper-reduction (HR), reducing the
complexity caused by nonlinearity and yielding computational speedup of the NM-ROM. This
paper provides the first application of NM-ROM (with HR) to a DD problem. In particular,
this paper details an algebraic DD reformulation of the FOM, training a NM-ROM with HR
for each subdomain, and a sequential quadratic programming (SQP) solver to evaluate the
coupled global NM-ROM. Theoretical convergence results for the SQP method and a priori and a
posteriori error estimates for the DD NM-ROM with HR are provided. The proposed DD NM-ROM
with HR approach is numerically compared to a DD LS-ROM with HR on the 2D steady-state
Burgers’ equation, showing an order of magnitude improvement in accuracy of the proposed
DD NM-ROM over the DD LS-ROM.

1. Introduction

Many applications in science and engineering require the high-fidelity numerical simulation of a parameterized, large-scale,
onlinear system, referred to as the full order model (FOM). For example, in the design of the airfoil of an aircraft, one
epeatedly simulates the airflow around the wing to compute the lift and drag for a number of shapes to determine the optimal
hape. Alternatively, in the case of digital twins, one simulates the high-fidelity FOM in real-time for given system inputs. To
uarantee a high-fidelity simulation, a high-dimensional numerical model is required, resulting in high computational expense
hen simulating the FOM. Consequently, both many-query and real-time applications are infeasible for large-scale problems. Model
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reduction alleviates the computational burden of simulating the high-dimensional FOM by replacing it with a low-dimensional,
computationally inexpensive model, referred to as a reduced order model (ROM), that approximates the dynamics of the FOM within
a tunable accuracy. This ROM can then be used in place of the FOM in real-time and many-query applications. In this work, we
integrate model reduction, specifically the nonlinear-manifold ROM (NM-ROM) approach, with an algebraic domain-decomposition
(DD) framework.

There are a large number of works that consider the integration of DD with model reduction. One family of approaches is
ased on the reduced basis element (RBE) method [1,2], in which reduced bases are computed locally for each subdomain. In the
BE method, continuity of the reduced basis solution across subdomains can be enforced via Lagrange multipliers as in [3], while
thers consider a discontinuous Galerkin approach [4]. Several modifications to the RBE method have been proposed, including
he so-called static condensation RBE method [5–7], which computes a reduced basis (RB) approximation of the Schur complement
nd provides rigorous a posteriori error estimators. The reduced basis hybrid method (RBHM) [3] is another modification of the
BE method, in which a global coarse-grid solution is included in the reduced basis to ensure continuity of normal fluxes at
ubdomain interfaces. For RBHM, this continuity is enforced using Lagrange multipliers. Another well-studied approach uses the
lternating Schwarz method, which decomposes the physical domain into two or more subdomains with or without overlap, and
roduces a global solution by iteratively solving the PDE on separate subdomains with boundary conditions coming from the state
f neighboring subdomains at the previous iteration. The Schwarz method has been developed for both FOM–ROM and ROM–ROM
ouplings in, e.g., [8,9], where the ROM is projection-based using Proper Orthogonal Decomposition (POD). The approach in [10]
lso considers FOM–ROM and ROM–ROM couplings, but couple subdomain solutions using Lagrange multipliers, and compute bases
uch that the Schur complement system required for recovering interface solutions is nonsingular. The authors in [11] also consider
Schwarz approach, but use an optimization-based coupling that minimizes the jump between PDE state solutions on the interface
f neighboring subdomains. The authors in [12] compute component-based ROMs based on a partition-of-unity to couple local
olutions. Others have considered using DD to compute ROMs for problems with spatially localized nonlinearities [13], and for use
n design optimization [14,15]. While these approaches have been successful, they are often problem-specific. That is, both RBE-
nd Schwarz-based methods typically formulate the DD problem at the PDE level and decompose the physical domain into separate
ubdomains. In contrast, the authors in [16] integrate DD and ROM for a general nonlinear FOM at the fully discrete level rather
han the PDE level, and algebraically decompose the FOM rather than considering a decomposition of the physical domain. The
authors then use POD to compute ROMs for each subdomain, and use an optimization-based coupling to minimize the discrete PDE
residual while enforcing compatibility constraints at the interfaces. In this paper, we extend the DD ROM framework of [16] to
incorporate the NM-ROM approach.

We integrate NM-ROM with DD to reduce the offline computational cost required for training an NM-ROM, and to allow NM-
ROMs to scale with increasingly large FOMs. Indeed, in the monolithic single-domain case, training NM-ROMs is expensive due to
the high-dimensionality of the FOM training data, which results in a large number of neural network (NN) parameters requiring
training. By coupling NM-ROM with DD, one can compute FOM training data on subdomains, thus reducing the dimensionality of
subdomain NM-ROM training data, resulting in fewer parameters that need to be trained per subdomain NM-ROM. Furthermore,
the subdomain NM-ROMs can be trained in parallel and adapted to subdomain-specific features of the FOM. We also note that
couplings of NNs and DD for solutions of partial differential equations (PDEs) have been considered in previous work (e.g., [17–20]).
However, these approaches use deep learning to solve a PDE by representing its solution as a NN and minimizing a corresponding
physics-informed loss function. In contrast, our work uses autoencoders to reduce the dimensionality of an existing numerical model.
The autoencoders are pretrained in an offline stage to find low-dimensional representations of FOM snapshot data, and used in an
online stage to significantly reduce the computational cost and runtime of numerical simulations. Our work is the first to couple
autoencoders with DD in the reduced-order modeling context.

A number of current model reduction approaches approximate the FOM solution in a low-dimensional linear subspace. In
this paper, we collectively refer to this class of approaches as linear subspace ROM (LS-ROM). The LS-ROM approach supposes
that the state solutions of the FOM are contained in a low-dimensional linear subspace. A basis for the linear subspace is then
computed, resulting in a ROM whose state consists of the generalized coordinates of the approximate state solution in the reduced
subspace. ROM approaches that follow LS-ROM include the reduced basis (RB) method [21,22], proper orthogonal decomposition
(POD) [23–27], balanced truncation and balanced POD [28,29], interpolation and moment-matching based approaches [30–32], the
Loewner framework [33–35], and the space–time POD [36–38] that expands the POD modes to temporal domain. Although LS-ROM
approaches have been successful for a number of applications, it is well known that for advection-dominated problems and problems
with sharp gradients, LS-ROM based approaches cannot produce low-dimensional subspaces where the state is well-approximated.
More precisely, LS-ROM struggles when applied to problems with slowly decaying Kolmogorov 𝑛-width [39].

In recent years, a number of model reduction approaches have been developed to address the Kolmogorov 𝑛-width barrier. For
example, one class of approaches leverages knowledge of the advection behavior of the given problem to enhance the approximation
capabilities of linear subspaces. These approaches include composing transport maps with the reduced bases [40–42], shifting the
POD basis [43], transforming the physical domain of the snapshots [44], and computing a reduced basis for a Lagrangian formulation
of the PDE [45]. Other approaches consider the use of multiple linear subspaces, where instead of using a global reduced basis, one
constructs multiple subspaces for separate regions in the time domain [25,26,46,47], physical domain [48], or state space [49,50].
However, each of these approaches relies upon a substantial amount of a priori knowledge of the governing PDE in order to improve
the local approximation capabilities of linear subspaces. In contrast, another class of methods circumvents these drawbacks by
approximating the FOM solution in a low-dimensional nonlinear manifold rather than a low-dimensional linear subspace. While
2

LS-ROM approaches map the low-dimensional ROM state space to the high-dimensional FOM state space via an affine mapping, the
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approaches in [51,52] consider the use of quadratic manifolds, where the ROM state space is mapped to the FOM state space via a
quadratic mapping. As a further generalization of this mapping, researchers have investigated the use of neural networks to represent
general nonlinear mappings from the ROM state space to the FOM state space. In particular, the use of autoencoders in the context of
model reduction was first considered in the papers [53,54]. Autoencoders are a type of neural network that aims to learn the identity
mapping by first encoding the inputs to some latent representation via the encoder, then decoding the latent representation to the
original input space via the decoder. In [55], the authors consider the use of deep convolutional autoencoders, which augment the
utoencoder architecture with convolutional layers. While their approach was successful in addressing the Kolmogorov 𝑛-width issue,
the computational speedup was limited because hyper-reduction (HR) was not incorporated into their framework to properly reduce
the complexity caused by nonlinear terms. The authors in [56,57] successfully apply HR in the context of NM-ROM and achieve a
considerable speed-up, and do so by choosing a shallow, wide, and sparse architecture for the autoencoder. The approach in [58] also
incorporates HR into an NM-ROM approach, but do so by employing a teacher–student training approach, where an autoencoder
is first trained to reduce the entire state, and a second decoder is trained to only reproduce the HR nodes. This approach also
permits the use of more general autoencoder architectures than the shallow, wide, and sparse architectures of [56,57]. However, an
advantage of the approach in [56,57] is that autoencoder training only happens once rather than requiring a teacher–student training
approach. Furthermore, this approach allows for different choices of HR nodes after NM-ROM training, whereas the approach in [58]
requires fixed HR nodes.

In this paper, we extend the work of [16] on DD LS-ROM and integrate the NM-ROM approach with HR discussed in [56].
We incorporate the NM-ROM approach into this framework because of its success when applied to problems with slowly decaying
Kolmogorov 𝑛-width. Specifically, to build ROMs on each subdomain of the DD problem, we apply NM-ROM with HR by using
wide, shallow, sparse-masked autoencoders. The wide, shallow, and sparse architecture allows for hyper-reduction to be efficiently
applied, thus reducing the complexity caused by nonlinearity and yielding computational speedup. Additionally, we modify the
wide, shallow, and sparse architecture used in [56] to also include a sparsity mask for the encoder input layer as well as the decoder
output layer. The sparsity mask at the encoder input layer results in an architecture that is symmetric across the latent layer of the
autoencoder. Using sparse linear layers also allows one to make the encoders and decoders very wide while keeping memory costs
low. Integrating NM-ROM with DD allows one to compute the FOM training snapshots on subdomains, thus significantly reducing
the number of NN parameters requiring training for each subdomain.

A summary of the key contributions from this paper are as follows.

• We develop the first application of NM-ROM with HR to a DD problem.
• We modify the autoencoder architecture discussed in [56] to also include sparsity in the encoder input layer as well as the
decoder output layer.

• We develop an inexact Lagrange–Newton sequential quadratic programming (SQP) method for the DD NM-ROM, and provide
a theoretical convergence result for the SQP solver.

• We provide a priori and a posteriori error estimates for the DD ROM which are valid for both LS-ROM and NM-ROM.
• We numerically compare DD LS-ROM with DD NM-ROM, both with and without HR, for a number of different problem
configurations using the 2D steady-state Burgers’ equation.

This paper is structured as follows. Section 2 discusses the algebraic DD FOM formulation that we consider. Section 3 discusses
he constrained least-squares Petrov–Galerkin (LSPG) formulation for the ROM, which respects the DD FOM formulation. We then
eview the LS-ROM approach based on POD in Section 3.3, and detail the NM-ROM approach in Section 3.4. We develop an
nexact Lagrange–Newton sequential quadratic programming (SQP) method for the constrained LSPG-ROM in Section 4, followed
y standard theoretical convergence results for the SQP solver in Section 4.2. We then discuss the autoencoder architecture used in
ection 5, the application of hyper-reduction in Section 5.3, and the construction of a HR subnet in Section 5.4. In Section 6, we
provide both a posteriori and a priori error bounds for the ROM solution in Theorems 5 and 6, respectively. We numerically compare
he DD LS-ROM and DD NM-ROM performance, both with and without HR, on the 2D steady-state Burgers’ equation in Section 7
or a number of different problem configurations. Lastly, we conclude the paper and discuss future directions in Section 8.

. Domain-decomposition FOM formulation

This section presents the algebraic domain-decomposition formulation [16]. We consider a FOM parameterized by 𝝁 ∈  ⊂ R𝑁𝜇 .
iven 𝝁 ∈ , the FOM is expressed as a parameterized system of nonlinear algebraic equations

𝒓(𝒙(𝝁);𝝁) = 𝟎, (1)

here 𝒓 ∶ R𝑁𝑥 ×  → R𝑁𝑥 denotes the residual and 𝒙(𝝁) ∈ R𝑁𝑥 denotes the state. For notational simplicity, the dependence on 𝝁
s suppressed until needed. Typically 𝒓 corresponds to a discretized PDE (e.g., using finite differences or finite elements) and in our
arget applications 𝒓 is nonlinear in 𝒙.
Next we decompose the system (1) into 𝑛𝛺 algebraic subdomains. Before giving the technical details, we describe the decom-

osition using a simple example illustrated in Fig. 1. In this example, suppose the system (1) is obtained from a finite difference
iscretization with a 5-point stencil of a scalar PDE in a rectangular domain in R2 with Dirichlet boundary conditions. The situation
ould be similar if the PDE was discretized using linear finite elements on a regular grid. Moreover, the decomposition into
lgebraic subdomains is not limited to the finite difference discretization with a 5-point stencil; this discretization is simply used for
3

llustration. In the left plot in Fig. 1, the finite difference discretization uses a 14 × 5 grid of 𝑁𝑥 = 70 nodes. Each node corresponds to
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Fig. 1. Left plot: Each node in the domain corresponds to an unknown 𝒙 and an equation in the system (1). The domain is subdivided into 𝑛𝛺 = 2 subdomains.
esiduals corresponding to nodes marked by filled circles near the boundary in subdomain 1 depend on nodes marked by filled circles in subdomain 2, and
esiduals corresponding to nodes marked by filled circles near the boundary in subdomain 2 depend on nodes marked by filled circles in subdomain 1. Right
lot: Variables that enter computations of residuals in one or more subdomains are duplicated as interface state variables 𝒙𝛤1 and 𝒙𝛤2 . Variables that only enter
the computations of the residuals in one subdomains are the interior state variables 𝒙𝛺1 and 𝒙𝛺2 , respectively. Equality 𝒙𝛤1 = 𝒙𝛤2 of interface state variables will
be enforced via constraints.

a component in the vector of unknown states 𝒙 and an equation in the system (1). The domain is subdivided into 𝑛𝛺 = 2 subdomains.
Nodes near the interface between the two subdomains are marked by filled circles. Because the PDE is discretized using a 5-point
stencil, residuals corresponding to nodes marked by filled circles in subdomain 1 depend on state variables corresponding to nodes
marked by filled circles in subdomain 2. Similarly, residuals corresponding to nodes marked by filled circles in subdomain 2 depend
on state variables corresponding to nodes marked by filled circles in subdomain 1. In the right plot in Fig. 1, these variables are
duplicated as components of the vectors of the interface states 𝒙𝛤1 and 𝒙𝛤2 . These have to satisfy 𝒙𝛤1 = 𝒙𝛤2 and this compatibility
condition will later be enforced via constraints. The other state variables are the interior states 𝒙𝛺𝑖 , 𝑖 = 1, 2. These are the state
variables that only enter the residuals corresponding to subdomain 𝑖. Next we provide a detailed description of the general case.

We decompose the system (1) into 𝑛𝛺 ≤ 𝑁𝑥 algebraic subdomains by defining so-called residual sampling matrices 𝑷 𝑟
𝑖 ∈ {0, 1}𝑁

𝑟
𝑖 ×𝑁𝑥

and computing subdomain residuals as

𝑷 𝑟
𝑖 𝒓(𝒙) ∈ R𝑁

𝑟
𝑖 , 𝑖 = 1,… , 𝑛𝛺 .

The residual sampling matrices are assumed to be algebraically non-overlapping, i.e.

𝑷 𝑟
𝑖 (𝑷

𝑟
𝑗 )
𝑇 = 𝟎, ∀ 𝑖 ≠ 𝑗,

and ∑𝑛𝛺
𝑖=1𝑁

𝑟
𝑖 = 𝑁𝑥. For problems (1) arising from a PDE discretization, the sparsity structure of the monolithic residual function

𝒓 implies that subdomain residuals 𝑷 𝑟
𝑖 𝒓(𝒙) only depend on a subset of the full state 𝒙. Furthermore, the residual corresponding to

points at the boundary of subdomain 𝑖 depend on the state 𝒙 at points within subdomain 𝑖 and at points that belong to neighboring
subdomains. Therefore, for subdomain 𝑖, we decompose the state components into interior states

𝒙𝛺𝑖 ∶= 𝑷𝛺
𝑖 𝒙 ∈ R𝑁

𝛺
𝑖 (2a)

and interface states

𝒙𝛤𝑖 ∶= 𝑷 𝛤
𝑖 𝒙 ∈ R𝑁

𝛤
𝑖 , (2b)

where 𝑷𝛺
𝑖 ∈ {0, 1}𝑁

𝛺
𝑖 ×𝑁𝑥 denotes the 𝑖th interior-state sampling matrix and 𝑷 𝛤

𝑖 ∈ {0, 1}𝑁
𝛤
𝑖 ×𝑁𝑥 denotes the 𝑖th interface-state sampling

matrix. The interior states 𝒙𝛺𝑖 ∶= 𝑷𝛺
𝑖 𝒙 only enter the evaluation of the 𝑖th subdomain residual 𝑷

𝑟
𝑗𝒓(𝒙). The interface states 𝒙

𝛤
𝑖 ∶= 𝑷 𝛤

𝑖 𝒙
also enter the evaluation of another subdomain residual 𝑷 𝑟

𝑗𝒓(𝒙), 𝑗 ≠ 𝑖. Since the 𝑖th interior states only enter the evaluation of the
𝑖th subdomain, the interior-state sampling matrices are algebraically non-overlapping,

𝑷𝛺
𝑖 (𝑷

𝛺
𝑗 )

𝑇 = 𝟎, ∀ 𝑖 ≠ 𝑗.

The interface state variables are duplicated across one or more subdomains, and we will describe later how to enforce equality
among duplicated interface state variables.

With these specifications we can now define subdomain residual functions 𝒓𝑖 ∶ R𝑁
𝛺
𝑖 × R𝑁

𝛤
𝑖 → R𝑁

𝑟
𝑖 as

𝒓𝑖(𝒙𝛺𝑖 ,𝒙
𝛤
𝑖 ) = 𝑷 𝑟

𝑖 𝒓
(

(

𝑷𝛺
𝑖
)𝑇 𝒙𝛺𝑖 +

(

𝑷 𝛤
𝑖
)𝑇 𝒙𝛤𝑖

)

. (3)

Furthermore, the monolithic residual function (1) can be decomposed as

𝒓(𝒙) =
𝑛𝛺
∑

𝑖=1

(

𝑷 𝑟
𝑖
)𝑇 𝒓𝑖(𝑷𝛺

𝑖 𝒙,𝑷
𝛤
𝑖 𝒙), ∀ 𝒙 ∈ R𝑁𝑥 . (4)

Eqs. (1), (3), and (4) imply that the solution (2) of (1) restricted to the 𝑖th subdomain satisfies
𝛺 𝛤
4

𝒓𝑖(𝒙𝑖 ,𝒙𝑖 ) = 𝟎, 𝑖 = 1,… , 𝑛𝛺 . (5)
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Fig. 2. Left: Residual decomposition using 4 subdomains. Notice that the residuals do not overlap. Right: State decomposition. The regions without overlap
correspond to interior states 𝒙𝛺𝑖 while regions with overlap correspond to interface states 𝒙𝛤𝑖 . The overlapping regions enclosed by black dashed lines represent
the ports 𝑃 (𝑗) ⊂

{

1,… , 𝑛𝛺
}

.

In addition to (5), compatibility conditions must be imposed that enforce equality between overlapping interface states for
neighboring subdomains. These compatibility conditions are enforced by defining 𝑛𝑝 non-overlapping ports. Geometrically, the 𝑗th
port is a subset of subdomains. The 𝑗th port has 𝑁𝑝

𝑗 ≤ 𝑁𝑥 overlapping interface-state variables. The indices of subdomains that
intersect with the 𝑗th port are 𝑃 (𝑗) ⊆

{

1,… , 𝑛𝛺
}

. Fig. 2 displays the ports for a 4-subdomain example configuration.
Using the ports, the compatibility conditions can be expressed as

𝑷 𝑗
𝑖𝒙
𝛤
𝑖 = 𝑷 𝑗

𝓁𝒙
𝛤
𝓁 , 𝑖,𝓁 ∈ 𝑃 (𝑗), 𝑗 = 1,… , 𝑛𝑝, (6)

where 𝑷 𝑗
𝑖 ∈ {0, 1}𝑁

𝑝
𝑗 ×𝑁

𝛤
𝑖 denotes the 𝑗th port sampling matrix for subdomain 𝑖. Because the ports are non-overlapping, if 𝑄(𝑖) ∶=

{𝑗 | 𝑖 ∈ 𝑃 (𝑗)} is the set of ports associated with subdomain 𝑖, then

𝑷 𝑗
𝑖 (𝑷

𝓁
𝑖 )
𝑇 = 𝟎, ∀ 𝑗, 𝓁 ∈ 𝑄(𝑖), 𝑗 ≠ 𝓁, (7)

and the sum of numbers of variables in the ports associated with subdomain 𝑖 is equal to the number of interface variables in the
𝑖th subdomain, ∑𝑗∈𝑄(𝑖)𝑁

𝑝
𝑗 = 𝑁𝛤

𝑖 .
As written, most conditions in (6) are redundant. Instead, for port 𝑗 one needs (|𝑃 (𝑗)| − 1)𝑁𝑝

𝑗 conditions, where |𝑃 (𝑗)| denotes
cardinality of 𝑃 (𝑗). For example, in Fig. 2 one needs the conditions 𝑷 1

1𝒙
𝛤
1 = 𝑷 1

2𝒙
𝛤
2 for the first port 𝑃 (1) = {1, 2}, and the conditions

𝑷 5
1𝒙

𝛤
1 = 𝑷 5

2𝒙
𝛤
2 , 𝑷

5
2𝒙

𝛤
2 = 𝑷 5

3𝒙
𝛤
3 , 𝑷

5
3𝒙

𝛤
3 = 𝑷 5

4𝒙
𝛤
4 for the fifth port 𝑃 (5) = {1, 2, 3, 4}. Removing redundant conditions (6), the port

compatibility conditions (6) can be written as
𝑛𝛺
∑

𝑖=1
𝑨𝑖𝒙𝛤𝑖 = 𝟎, (8)

where the 𝑨𝑖 ∈ {−1, 0, 1}𝑁𝐴×𝑁
𝛤
𝑖 denote the constraint matrices associated with the port compatibility conditions (6) and the total

number of compatibility conditions is 𝑁𝐴 =
∑𝑛𝑝
𝑗=1(|𝑃 (𝑗)| − 1)𝑁𝑝

𝑗 . The matrix (𝑨1,… ,𝑨𝑛𝛺 ) has full row rank.

In summary, the algebraic DD formulation of the FOM (1) is given by

𝒓𝑖(𝒙𝛺𝑖 ,𝒙
𝛤
𝑖 ) = 𝟎, 𝑖 = 1,… , 𝑛𝛺 , (9a)

𝑛𝛺
∑

𝑖=1
𝑨𝑖𝒙𝛤𝑖 = 𝟎. (9b)

Associated with (9) we also consider the nonlinear least-squares problem with equality constraints,

min
(𝒙𝛺𝑖 ,𝒙

𝛤
𝑖 ),𝑖=1,…,𝑛𝛺

1
2

𝑛𝛺
∑

𝑖=1

‖

‖

‖

𝒓𝑖
(

𝒙𝛺𝑖 ,𝒙
𝛤
𝑖
)

‖

‖

‖

2

2
(10a)

s.t.
𝑛𝛺
∑

𝑖=1
𝑨𝑖𝒙𝛤𝑖 = 𝟎. (10b)
5

The connections between the formulations (1), (9), and (10) are summarized in the following theorem.
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Theorem 1. If 𝒙 solves the FOM (1) then (𝒙𝛺𝑖 ,𝒙
𝛤
𝑖 ) with 𝒙𝛺𝑖 ∶= 𝑷𝛺

𝑖 𝒙 and 𝒙𝛤𝑖 ∶= 𝑷 𝛤
𝑖 𝒙, 𝑖 = 1,… , 𝑛𝛺, solves the algebraic DD formulation

of the FOM (9) and vice versa. A solution of (9) also solves (10), and a solution of (10) with objective function value equal to zero solves
(9).

The proof of Theorem 1 follows immediately from the construction of (9).
In the FOM context, the constrained nonlinear least-squares problem formulation (10) is not needed, but we include it here

because it will become important for the model reduction derivation in Section 3, where we use a least squares formulation for the
subdomain ROMs. The constrained nonlinear least-squares formulation (10) of the FOM could be solved using a Lagrange–Newton
sequential quadratic programming (SQP) method with Gauss–Newton Hessian approximation and the constrained nonlinear least-
squares formulation of the NM-ROM corresponding to (10) will be solved using the Lagrange–Newton SQP method discussed in
Section 4.

In principle, an alternative DD formulation of the FOM is possible, which reverses the role of satisfying the subdomain equations
and of the compatibility conditions. Instead of (9), one can impose the subdomain equations 𝒓𝑖(𝒙𝛺𝑖 ,𝒙

𝛤
𝑖 ) = 𝟎, 𝑖 = 1,… , 𝑛𝛺, as

constraints and use a least squares formulation of the compatibility conditions as the objective. This is used, e.g., in [11,59].
However, since we use LSPG-ROMs, which in general do not have zero residual, these cannot be incorporated as equality constraints.
In contrast, the formulation (10) can be used with subdomain LSPG-ROMs, as we will describe in the next section.

3. Domain-decomposition ROM

The ROM construction is built on the assumption that the high-dimensional subdomain state variables 𝒙𝛺𝑖 ∈ R𝑁
𝛺
𝑖 and 𝒙𝛤𝑖 ∈ R𝑁

𝛤
𝑖 ,

𝑖 = 1,… , 𝑛𝛺, can be approximated using low-dimensional variables 𝒙̂
𝛺
𝑖 ∈ R𝑛

𝛺
𝑖 , 𝑛𝛺𝑖 ≪ 𝑁𝛺

𝑖 and 𝒙̂𝛤𝑖 ∈ R𝑁
𝛤
𝑖 , 𝑛𝛤𝑖 ≪ 𝑁𝛤

𝑖 , 𝑖 = 1,… , 𝑛𝛺,
respectively. Specifically, we assume that for each subdomain 𝑖 there exist maps 𝒈𝛺𝑖 ∶ R𝑛

𝛺
𝑖 → R𝑁

𝛺
𝑖 and 𝒈𝛤𝑖 ∶ R𝑛

𝛤
𝑖 → R𝑁

𝛤
𝑖 such that

𝒙𝛺𝑖 ≈ 𝒈𝛺𝑖 (𝒙̂
𝛺
𝑖 ), 𝒙𝛤𝑖 ≈ 𝒈𝛤𝑖 (𝒙̂

𝛤
𝑖 ), 𝑖 = 1,… , 𝑛𝛺 . (11)

In the traditional LS-ROM the maps 𝒈𝛺𝑖 and 𝒈𝛤𝑖 are linear, whereas in our NM-ROM these maps are computed via autoen-
coders/decoders. Assuming that we have maps 𝒈𝛺𝑖 and 𝒈𝛤𝑖 such that (11) holds, we discuss how to construct the ROM in Section 3.1.
pecifically, our ROM is based on the constrained nonlinear least-squares formulation (10) of the FOM. One issue in the ROM
onstruction based on (10) is the formulation of compatibility constraints for the ROM. In Section 3.1 we use a formulation
ollowing [16] and in Section 3.2 we provide an alternative formulation of the ROM compatibility constraints by constructing
he maps 𝒈𝛤𝑖 (𝒙̂

𝛤
𝑖 ) in a suitable way. The detailed construction of maps 𝒈

𝛺
𝑖 and 𝒈𝛤𝑖 such that (11) holds is discussed in Sections 3.3,

.4, and 5. Specifically, we will review the traditional LS-ROM in Section 3.3. Sections 3.4 and 5 discuss how to compute these
aps via the NM-ROM approach.

.1. Least-squares formulation

Given maps 𝒈𝛺𝑖 and 𝒈𝛤𝑖 such that (11) holds, a naive way of computing the ROM is to simply replace 𝒙𝛺𝑖 and 𝒙𝛤𝑖 in the constrained
onlinear least-squares formulation (10) of the FOM by 𝒈𝛺𝑖 (𝒙̂

𝛺
𝑖 ) and 𝒈𝛤𝑖 (𝒙̂

𝛤
𝑖 ). An evaluation of this ROM requires the solution of

min
(𝒙̂𝛺𝑖 ,𝒙̂

𝛤
𝑖 ),𝑖=1,…,𝑛𝛺

1
2

𝑛𝛺
∑

𝑖=1

‖

‖

‖

‖

𝒓𝑖
(

𝒈𝛺𝑖
(

𝒙̂𝛺𝑖
)

, 𝒈𝛤𝑖
(

𝒙̂𝛤𝑖
)

)

‖

‖

‖

‖

2

2
(12a)

s.t.
𝑛𝛺
∑

𝑖=1
𝑨𝑖𝒈𝛤𝑖 (𝒙̂

𝛤
𝑖 ) = 𝟎. (12b)

his corresponds to a (naive) LSPG-ROM. There are two issues with this formulation.
The first issue is that, just as in the case of the classical LSPG-ROM, the complexity of the evaluation of the subdomain residuals,

.e.,
(

𝒙̂𝛺𝑖 , 𝒙̂
𝛤
𝑖
)

→
(

𝒈𝛺𝑖 (𝒙̂
𝛺
𝑖 ), 𝒈

𝛤
𝑖 (𝒙̂

𝛤
𝑖 )
)

→ 𝒓𝑖
(

𝒈𝛺𝑖
(

𝒙̂𝛺𝑖
)

, 𝒈𝛤𝑖
(

𝒙̂𝛤𝑖
))

scales with the size 𝑁𝛺
𝑖 and 𝑁𝛤

𝑖 of the FOM. This issue is addressed
sing so-called hyper-reduction (HR). See, e.g., [60] for an overview. HR replaces the residual 𝒓𝑖

(

𝒈𝛺𝑖
(

𝒙̂𝛺𝑖
)

, 𝒈𝛤𝑖
(

𝒙̂𝛤𝑖
))

in ((12)a) by
𝑩𝑖𝒓𝑖

(

𝒈𝛺𝑖
(

𝒙̂𝛺𝑖
)

, 𝒈𝛤𝑖
(

𝒙̂𝛤𝑖
))

, where 𝑩𝑖 ∈ R𝑁
𝐵
𝑖 ×𝑁𝑟

𝑖 , 𝑁𝐵
𝑖 ≤ 𝑁𝑟

𝑖 , is determined by the HR approach. For example, 𝑩𝑖 = 𝑰 corresponds to
vanilla LSPG, 𝑩𝑖 = 𝒁 𝑖, where 𝒁 𝑖 ∈ {0, 1}𝑁

𝑧
𝑖 ×𝑁

𝑟
𝑖 , 𝑁𝑧

𝑖 < 𝑁𝑟
𝑖 , denotes a row-sampling matrix, corresponds to collocation HR, and

𝑩𝑖 = (𝒁 𝑖Φ
𝑟
𝑖 )
†𝒁 𝑖, where 𝒁 𝑖 is as before, Φ𝑟

𝑖 ∈ R𝑁
𝑟
𝑖 ×𝑛

𝑟
𝑖 , 𝑖 = 1,… , 𝑛𝛺, denotes a reduced subspace for the corresponding subdomain

residual and the superscript † denotes the Moore–Penrose pseudoinverse, corresponds to gappy POD HR [61–63]. Further details
on HR for our DD NM-ROM are discussed in Section 5.3. For the application of HR to DD LS-ROM, we refer the reader to [16].

The second issue with (12) is that it involves the same number of constraints ((12)b) as the FOM (10), but fewer degrees of
freedom to satisfy them. In the extreme case, it may be impossible to satisfy the constraints ((12)b). One approach, following [16],
is to replace 𝑨𝑖 in ((12)b) by 𝑪𝑨𝑖, where 𝑪 ∈ R𝑛𝐶×𝑁𝐴 , 𝑛𝐶 ≪ 𝑁𝐴, is a test matrix that converts ((12)b) into a so-called ‘‘weak
6

compatibility constraint’’. We will choose 𝑪 to be a Gaussian matrix, but in principle other choices of 𝑪 can be used.
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To summarize, given maps 𝒈𝛺𝑖 ∶ R𝑛
𝛺
𝑖 → R𝑁

𝛺
𝑖 and 𝒈𝛤𝑖 ∶ R𝑛

𝛤
𝑖 → R𝑁

𝛤
𝑖 such that (11) holds, given HR matrices 𝑩𝑖 ∈ R𝑁

𝐵
𝑖 ×𝑁𝑟

𝑖 ,
𝑁𝐵
𝑖 ≤ 𝑁𝑟

𝑖 , 𝑖 = 1,… , 𝑛𝛺, and given 𝑪 ∈ R𝑛𝐶×𝑁𝐴 , 𝑛𝐶 ≪ 𝑁𝐴, our DD-LSPG-ROM is evaluated by solving

min
(𝒙̂𝛺𝑖 ,𝒙̂

𝛤
𝑖 ),𝑖=1,…,𝑛𝛺

1
2

𝑛𝛺
∑

𝑖=1

‖

‖

‖

‖

𝑩𝑖𝒓𝑖
(

𝒈𝛺𝑖
(

𝒙̂𝛺𝑖
)

, 𝒈𝛤𝑖
(

𝒙̂𝛤𝑖
))

‖

‖

‖

‖

2

2
(13a)

s.t.
𝑛𝛺
∑

𝑖=1
𝑪𝑨𝑖𝒈𝛤𝑖 (𝒙̂

𝛤
𝑖 ) = 𝟎. (13b)

he DD-LSPG-ROM formulation (13) will be referred to as the weak FOM-port constraint (WFPC) formulation.
While the FOM (9) or (10) has linear constraints, the WFPC formulation has nonlinear constraints in general. Corresponding to

𝒈𝛤𝑖 ∶ R𝑛
𝛤
𝑖 → R𝑁

𝛤
𝑖 is a function 𝒉𝛤𝑖 ∶ R𝑁

𝛤
𝑖 → R𝑛

𝛤
𝑖 such that ‖‖

‖

𝒈𝛤𝑖
(

𝒉𝛤𝑖
(

𝒙𝛤 ,train𝑖
))

− 𝒙𝛤 ,train𝑖
‖

‖

‖

is small for some training/snapshot data
𝒙𝛤 ,train𝑖 , 𝑖 = 1,… , 𝑛𝛺, that satisfy the linear FOM constraints ((9)b). See Sections 3.3 and 3.4. Thus ∑𝑛𝛺

𝑖=1 𝑪𝑨𝑖𝒈𝛤𝑖 (𝒙̂
𝛤
𝑖 ) is guaranteed to

e small at these training/snapshot data. Existence of points that satisfy ((13)b) in the nonlinear case is still an open issue. However,
n our numerical examples we have not observed any issues related to existence of feasible points for (13). The existence of solutions
f (13) can be guaranteed under mild conditions that are typical for optimization problems.

heorem 2. Let 𝒙̃𝛤𝑖 , 𝑖 = 1,… , 𝑛𝛺, satisfy the constraints ((13)b) and let 𝒙̃
𝛺
𝑖 , 𝑖 = 1,… , 𝑛𝛺, be arbitrary. If the residual function 𝒓 and the

aps 𝒈𝛺𝑖 , 𝒈
𝛤
𝑖 , 𝑖 = 1,… , 𝑛𝛺, are continuous and if the level set

𝐿 =
{

(𝒙̂𝛺1 , 𝒙̂
𝛤
1 ,… , 𝒙̂𝛺𝑛𝛺 , 𝒙̂

𝛤
𝑛𝛺

) ∶
𝑛𝛺
∑

𝑖=1
𝑪𝑨𝑖𝒈𝛤𝑖 (𝒙̂

𝛤
𝑖 ) = 𝟎,

𝑛𝛺
∑

𝑖=1

‖

‖

‖

‖

𝑩𝑖𝒓𝑖
(

𝒈𝛺𝑖
(

𝒙̂𝛺𝑖
)

, 𝒈𝛤𝑖
(

𝒙̂𝛤𝑖
))

‖

‖

‖

‖

2

2
≤

𝑛𝛺
∑

𝑖=1

‖

‖

‖

‖

𝑩𝑖𝒓𝑖
(

𝒈𝛺𝑖
(

𝒙̃𝛺𝑖
)

, 𝒈𝛤𝑖
(

𝒙̃𝛤𝑖
))

‖

‖

‖

‖

2

2

}

s bounded, then (13) has a solution.

roof. If (𝒙̂𝛺𝑖 , 𝒙̂
𝛤
𝑖 ), 𝑖 = 1,… , 𝑛𝛺, solves (13), then it also solves the minimization problem with the constraint (𝒙̂𝛺1 , 𝒙̂

𝛤
1 ,… , 𝒙̂𝛺𝑛𝛺 , 𝒙̂

𝛤
𝑛𝛺

) ∈
added. The feasible set of this new minimization problem is compact, the objective function is continuous, and therefore this
inimization problem has a solution, which is also a solution of (13). □

Instead of the weak compatibility constraint ((13)b) one can also construct the maps 𝒈𝛤𝑖 , 𝑖 = 1,… , 𝑛𝛺, such that compatibility is
nforced strongly for appropriate components of 𝒈𝛤𝑖 (𝒙̂

𝛤
𝑖 ), 𝑖 = 1,… , 𝑛𝛺. This approach is introduced in the following Section 3.2.

.2. Strong ROM-port constraints

In the general formulation, the maps (11) are computed separately for each subdomain 𝑖. However, since the interface variables
𝛤
𝑖 , 𝒙

𝛤
𝓁 are identical on each port 𝑗 associated with the subdomains 𝑖,𝓁, i.e., on each port 𝑗 with 𝑖,𝓁 ∈ 𝑃 (𝑗) (see (6)), one can instead

educe the interface variables on each port and then combine the reduced port interface variables to a reduced interface variable.
y (6) the interface variables for port 𝑗 must satisfy

𝒙𝑝𝑗 = 𝑷 𝑗
𝑖𝒙
𝛤
𝑖 ∈ R𝑁

𝑝
𝑗 , ∀ 𝑖 ∈ 𝑃 (𝑗). (14)

or each port 𝑗 we reduce the FOM port variables 𝒙𝑝𝑗 , i.e., for each port 𝑗 we compute a single map 𝒈𝑝𝑗 ∶ R𝑛
𝑝
𝑗 → R𝑁

𝑝
𝑗 , where

𝒈𝑝𝑗
(

𝒙̂𝑝𝑗
)

≈ 𝒙𝑝𝑗 = 𝑷 𝑗
𝑖𝒙
𝛤
𝑖 , ∀ 𝑖 ∈ 𝑃 (𝑗). (15)

he reduced interface variable 𝒙̂𝛤𝑖 is now computed by concatenating all port variables 𝒙̂𝑝𝑗 with 𝑖 ∈ 𝑃 (𝑗). This leads to the ROM port
ampling matrices 𝑷

𝑗
𝑖 ∈ {0, 1}𝑛

𝑝
𝑗×𝑛

𝛤
𝑖 which are defined through

𝒙̂𝑝𝑗 = 𝑷
𝑗
𝑖 𝒙̂
𝛤
𝑖 , 𝑖 ∈ 𝑃 (𝑗). (16)

quation (16) implies that on the 𝑗th port we have

𝑷
𝑗
𝑖 𝒙̂
𝛤
𝑖 = 𝑷

𝑗
𝓁 𝒙̂

𝛤
𝓁 , 𝑖, 𝓁 ∈ 𝑃 (𝑗). (17)

o introduce parallelism, ROM interface variables 𝒙̂𝛤𝑖 are introduced for each subdomain, and are coupled by enforcing (17). By
onstruction, the ROM ports are non-overlapping, i.e.

𝑷
𝑗
𝑖

(

𝑷
𝓁
𝑖

)𝑇
= 𝟎, ∀ 𝑗, 𝓁 ∈ 𝑄(𝑖), 𝑗 ≠ 𝓁, (18)

nd 𝑛𝛤𝑖 =
∑

𝑗∈𝑄(𝑖) 𝑛
𝑝
𝑗 . As discussed in Section 2, after removing redundant conditions in (17), one can write the ROM port compatibility

conditions (17) as
𝑛𝛺
∑

𝑨̂𝑖𝒙̂
𝛤
𝑖 = 𝟎, (19)
7

𝑖=1
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where 𝑨̂𝑖 ∈ {−1, 0, 1}𝑛𝐴×𝑛
𝛤
𝑖 , 𝑛𝐴 =

∑𝑛𝑝
𝑗=1(|𝑃 (𝑗)| − 1)𝑛𝑝𝑗 , denote the constraint matrices associated with port compatibility conditions

(17). The matrix

(𝑨̂1,… , 𝑨̂𝑛𝛺 ) ∈ R𝑛𝐴×
∑𝑛𝛺
𝑖=1 𝑛

𝛤
𝑖 (20)

has full row rank 𝑛𝐴, and 𝑛𝐴 <
∑𝑛𝛺
𝑖=1 𝑛

𝛤
𝑖 .

The map 𝒈𝛤𝑖 ∶ R𝑛
𝛤
𝑖 → R𝑁

𝛤
𝑖 that approximates the interface state 𝒙𝛤𝑖 is implied by the port maps 𝒈𝑝𝑗 . To see this, note that the

FOM compatibility conditions (6) and the non-overlapping condition (7) allow one to rewrite 𝒙𝛤𝑖 as

𝒙𝛤𝑖 =
∑

𝑗∈𝑄(𝑖)
(𝑷 𝑗

𝑖 )
𝑇𝑷 𝑗

𝑖𝒙
𝛤
𝑖 . (21)

Thus, using (15), (16), and (21) the map 𝒈𝛤𝑖 ∶ R𝑛
𝛤
𝑖 → R𝑁

𝛤
𝑖 that approximates the interface state 𝒙𝛤𝑖 is given by

𝒈𝛤𝑖 (𝒙̂
𝛤
𝑖 ) ∶=

∑

𝑗∈𝑄(𝑖)
(𝑷 𝑗

𝑖 )
𝑇 𝒈𝑝𝑗

(

𝑷
𝑗
𝑖 𝒙̂
𝛤
𝑖

)

. (22)

In particular, the definition (22) of 𝒈𝛤𝑖 and the ROM compatibility conditions (17) imply that

𝑷 𝑗
𝑖 𝒈
𝛤
𝑖 (𝒙̂

𝛤
𝑖 ) = 𝒈𝑝𝑗

(

𝑷
𝑗
𝑖 𝒙̂
𝛤
𝑖

)

= 𝒈𝑝𝑗
(

𝑷
𝑗
𝓁 𝒙̂

𝛤
𝓁

)

= 𝑷 𝑗
𝓁𝒈

𝛤
𝓁 (𝒙̂

𝛤
𝓁 )

for all 𝑖,𝓁 ∈ 𝑃 (𝑗) and for all ports 𝑃 (𝑗). This implies that strong compatibility holds for the FOM ports:
𝑛𝛺
∑

𝑖=1
𝑨𝑖𝒈𝛤𝑖 (𝒙̂

𝛤
𝑖 ) = 𝟎.

In summary, if port maps 𝒈𝑝𝑗 are constructed such that (15) holds and the implied interface maps 𝒈𝛤𝑖 are (22), then the
DD-LSPG-ROM is evaluated by solving

min
(𝒙̂𝛺𝑖 ,𝒙̂

𝛤
𝑖 ),𝑖=1,…,𝑛𝛺

1
2

𝑛𝛺
∑

𝑖=1

‖

‖

‖

‖

𝑩𝑖𝒓𝑖
(

𝒈𝛺𝑖
(

𝒙̂𝛺𝑖
)

, 𝒈𝛤𝑖
(

𝒙̂𝛤𝑖
))

‖

‖

‖

‖

2

2
(23a)

s.t.
𝑛𝛺
∑

𝑖=1
𝑨̂𝑖𝒙̂

𝛤
𝑖 = 𝟎. (23b)

he formulation (23) will be referred to as the strong ROM-port constraint (SRPC) formulation.
In contrast to (13) the constraints in (23) are linear and the set of feasible points for (23) is the null-space of the constraint

matrix (23). Thus existence of feasible points for (23) is now trivial. Existence of solutions of (23) can be guaranteed analogously
to Theorem 2ii.

Theorem 3. i. The null-space of the constraint matrix (23) has dimension (
∑𝑛𝛺
𝑖=1 𝑛

𝛤
𝑖 ) − 𝑛𝐴 ≥ 1.

ii. Let 𝒙̃𝛤𝑖 , 𝑖 = 1,… , 𝑛𝛺, satisfy the constraints ((23)b) and let 𝒙̃
𝛺
𝑖 , 𝑖 = 1,… , 𝑛𝛺, be arbitrary. If the residual function 𝒓 and the maps

𝒈𝛺𝑖 , 𝒈
𝛤
𝑖 , 𝑖 = 1,… , 𝑛𝛺, are continuous and if the level set

𝐿 =
{

(𝒙̂𝛺1 , 𝒙̂
𝛤
1 ,… , 𝒙̂𝛺𝑛𝛺 , 𝒙̂

𝛤
𝑛𝛺

) ∶
𝑛𝛺
∑

𝑖=1
𝑨̂𝑖𝒙̂

𝛤
𝑖 = 𝟎,

𝑛𝛺
∑

𝑖=1

‖

‖

‖

‖

𝑩𝑖𝒓𝑖
(

𝒈𝛺𝑖
(

𝒙̂𝛺𝑖
)

, 𝒈𝛤𝑖
(

𝒙̂𝛤𝑖
))

‖

‖

‖

‖

2

2
≤

𝑛𝛺
∑

𝑖=1

‖

‖

‖

‖

𝑩𝑖𝒓𝑖
(

𝒈𝛺𝑖
(

𝒙̃𝛺𝑖
)

, 𝒈𝛤𝑖
(

𝒙̃𝛤𝑖
))

‖

‖

‖

‖

2

2

}

s bounded, then (23) has a solution.

roof. The first part follows immediately from the properties of the constraint matrix (23). The proof of ii. is analogous to the
roof of Theorem 2ii. □

So far, we have specified our DD-LSPG-ROM (13) or (23) given maps 𝒈𝛺𝑖 and 𝒈𝛤𝑖 such that (11) holds, or given maps 𝒈
𝛺
𝑖 , 𝒈

𝑝
𝑗 and

mplied interface maps (22) such that (11) holds. Next we discuss how these maps can be computed. In the following Section 3.3
e first review traditional approaches based on linear subspaces to compute 𝒈𝛺𝑖 and 𝒈𝛤𝑖 (or 𝒈

𝛺
𝑖 and 𝒈𝑝𝑗 ). In Section 3.4 we will then

ntroduce the nonlinear-manifold ROM.

.3. Linear-subspace ROM

First we review linear subspace approximation to construct the maps 𝒈𝛺𝑖 and 𝒈𝛤𝑖 , or 𝒈
𝛺
𝑖 and 𝒈𝑝𝑗 . We will refer to resulting ROM

s LS-ROM. The LS-ROM approach supposes that the state solutions of the FOM are contained in a low-dimensional linear subspace.
basis for the linear subspace is then computed, resulting in a ROM whose state consists of the generalized coordinates of the

tate solution in the reduced subspace. The use of LS-ROM for the DD problem (13) has already been considered in [16], where
8

he LS-ROM bases are computed using POD, but in principle any choice of basis can be used. The numerics in Section 7 also use
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POD for consistency with previous works. We briefly review POD here for completeness. A thorough treatment of POD can be found
in [23].

As mentioned above, the LS-ROM approach approximates the FOM states 𝒙𝛺𝑖 , 𝒙
𝛤
𝑖 in a linear subspace. Hence 𝒈𝛺𝑖 ∶ R𝑛

𝛺
𝑖 → R𝑁

𝛺
𝑖

and 𝒈𝛤𝑖 ∶ R𝑛
𝛤
𝑖 → R𝑁

𝛤
𝑖 are linear maps,

𝒈𝛺𝑖 ∶ 𝒙̂𝛺𝑖 ↦ Φ𝛺
𝑖 𝒙̂

𝛺
𝑖 , 𝒈

𝛤
𝑖 ∶ 𝒙̂𝛤𝑖 ↦ Φ𝛤

𝑖 𝒙̂
𝛤
𝑖 ,

where Φ𝛺
𝑖 ∈ R𝑁

𝛺
𝑖 ×𝑛𝛺𝑖 and Φ𝛤

𝑖 ∈ R𝑁
𝛤
𝑖 ×𝑛𝛤𝑖 are basis matrices corresponding to the reduced linear subspaces. Consequently, the

Jacobians 𝑑
𝑑𝒙̂𝛺𝑖

𝒈𝛺𝑖 (𝒙̂
𝛺
𝑖 ) = Φ𝛺

𝑖 and 𝑑
𝑑𝒙̂𝛤𝑖

𝒈𝛤𝑖 (𝒙̂
𝛤
𝑖 ) = Φ𝛤

𝑖 are constant and do not need to be recomputed at each iteration of the SQP
olver described in Section 4 that is used to solve (13) or (23).
The POD bases are computed by minimizing the reconstruction error for a set of snapshots. First we focus on constructing

OD bases for the WFPC formulation. Recall that the residual functions 𝒓𝑖 are parameterized with parameter space  ⊂ R𝑁𝜇 . Let
𝝁train
𝓁

}𝑛𝜇

𝓁=1
⊂  be a set of training parameters, and solve the DD FOM (9) for each parameter 𝝁train

𝓁 to obtain FOM solutions
𝒙𝛺𝑖 (𝝁

train
𝓁 ),𝒙𝛤𝑖 (𝝁

train
𝓁 )), 𝑖 = 1,… , 𝑛𝛺. Of course, one can solve the monolithic, single-domain FOM (1) at 𝝁 = 𝝁train

𝓁 , and restrict the
olution 𝒙(𝝁train

𝓁 ) to the subdomain interior and interface states, 𝒙𝛺𝑖 (𝝁
train
𝓁 ) = 𝑷𝛺

𝑖 𝒙(𝝁
train
𝓁 ), 𝒙𝛤𝑖 (𝝁

train
𝓁 ) = 𝑷 𝛤

𝑖 𝒙(𝝁
train
𝓁 ). One then computes

ases Φ𝛺
𝑖 and Φ𝛤

𝑖 using the SVD applied to snapshot matrices for the interior and interface states

𝑿𝛺
𝑖 =

[

𝒙𝛺𝑖 (𝝁
train
1 ) … 𝒙𝛺𝑖 (𝝁

train
𝑛𝜇

)
]

∈ R𝑁
𝛺
𝑖 ×𝑛𝜇 , (24a)

𝑿𝛤
𝑖 =

[

𝒙𝛤𝑖 (𝝁
train
1 ) … 𝒙𝛤𝑖 (𝝁

train
𝑛𝜇

)
]

∈ R𝑁
𝛤
𝑖 ×𝑛𝜇 . (24b)

he process is the same for Φ𝛺
𝑖 and Φ𝛤

𝑖 and therefore we drop the superscript 𝛺 or 𝛤 and describe the process to compute a basis
𝑖 from a generic snapshot matrix 𝑿𝑖 ∈ R𝑁𝑖×𝑛𝜇 .
One computes the ‘thin’ SVD 𝑿𝑖 = 𝑼 𝑖Σ𝑖𝑽 𝑇

𝑖 of the snapshot matrix, where 𝑼 𝑖 ∈ R𝑁𝑖×𝑚𝑖 is the matrix of left singular vectors,
𝑖 ∈ R𝑚𝑖×𝑚𝑖 is the diagonal matrix of singular values 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑚𝑖 ≥ 0, 𝑽 𝑖 ∈ R𝑛𝜇×𝑚𝑖 is the matrix of right singular vectors, and
𝑖 = min

{

𝑁𝑖, 𝑛𝜇
}

. Given a tolerance 𝜈𝑖 ∈ (0, 1) one computes 𝑛𝑖 as the smallest integer such that
𝑛𝑖
∑

𝑗=1
𝜎2𝑗 ≥ (1 − 𝜈𝑖)

𝑚𝑖
∑

𝑗=1
𝜎2𝑗 , (25)

nd selects

Φ𝑖 = 𝑼 𝑖(∶, 1 ∶ 𝑛𝑖).

he POD basis Φ𝑖 minimize the snapshot reconstruction error ‖‖𝑿𝑖 −Φ𝑖(Φ𝑖)𝑇𝑿𝑖
‖

‖

2
𝐹 among all possible orthogonal basis matrices of

izes 𝑁𝑖 × 𝑛𝑖. See, e.g., [23].
POD basis construction for the SRPC formulation from Section 3.2 is similar. In fact, the bases Φ𝛺

𝑖 , 𝑖 = 1,… , 𝑛𝛺, are computed as
efore, and the bases Φ𝛤

𝑖 , 𝑖 = 1,… , 𝑛𝛺, are computed from bases Φ𝑝
𝑗 on the ports. Because 𝒙𝑝𝑗 (𝝁

train
𝓁 ) = 𝑷 𝑗

𝑖𝒙
𝛤
𝑖 (𝝁

train
𝓁 ) for any 𝑖 ∈ 𝑃 (𝑗)

nd all ports 𝑃 (𝑗), the snapshot matrices restricted to port 𝑃 (𝑗) are

𝑿𝑝
𝑗 = 𝑷 𝑗

𝑖𝑿
𝛤
𝑖 for any 𝑖 ∈ 𝑃 (𝑗). (26)

or each port 𝑃 (𝑗), the POD basis Φ𝑝
𝑗 = 𝑼 𝑝

𝑗 (∶, 1 ∶ 𝑛𝑝𝑗 ) is computed from the ‘thin’ SVD 𝑿𝑝
𝑗 = 𝑼 𝑝

𝑗Σ
𝑝
𝑗 (𝑽

𝑝
𝑗 )
𝑇 as described before. With

he port basis matrices Φ𝑝
𝑗 the linear map 𝒈𝛤𝑖 is constructed following (22),

𝒈𝛤𝑖 (𝒙̂
𝛤
𝑖 ) ∶=

∑

𝑗∈𝑄(𝑖)
(𝑷 𝑗

𝑖 )
𝑇Φ𝑝

𝑗𝑷
𝑗
𝑖 𝒙̂
𝛤
𝑖 = Φ𝛤

𝑖 𝒙̂
𝛤
𝑖 , where Φ𝛤

𝑖 =
∑

𝑗∈𝑄(𝑖)
(𝑷 𝑗

𝑖 )
𝑇Φ𝑝

𝑗𝑷
𝑗
𝑖 .

.4. Nonlinear-manifold ROM

The ROM approach that we focus on in this work is the nonlinear manifold approach, also referred to as NM-ROM. Rather than
upposing that the state solutions of the FOM are contained in a low-dimensional linear subspace as in LS-ROM, one supposes that
he FOM state solutions are contained in a low-dimensional nonlinear manifold. To build the NM-ROM, one must compute a suitable
apping from a low-dimensional coordinate space, often referred to as the latent space, to the manifold of candidate state solutions,
r trial manifold. Solving the ROM then yields the generalized coordinates in the latent space for a solution in the trial manifold. The
pproach considered here for computing the nonlinear trial manifold is similar to the approach in [56, Sec. 3], which uses wide,
hallow, and sparse autoencoders to compute suitable mappings from the latent space to the trial manifold. Further information
egarding the autoencoder architecture we use is given in Section 5.
To compute a DD ROM using the NM-ROM approach, one must compute continuously differentiable nonlinear mappings from a

uitably chosen latent space to the trial manifold. Hence the nonlinear functions 𝒈𝛺𝑖 ∶ R𝑛
𝛺
𝑖 → R𝑁

𝛺
𝑖 and 𝒈𝛤𝑖 ∶ R𝑛

𝛤
𝑖 → R𝑁

𝛤
𝑖 defined in

11) are computed as the decoders of autoencoders 𝒂𝛺𝑖 ∶ R𝑁
𝛺
𝑖 → R𝑁

𝛺
𝑖 and 𝒂𝛤𝑖 ∶ R𝑁

𝛤
𝑖 → R𝑁

𝛤
𝑖 . The autoencoders 𝒂𝛺𝑖 and 𝒂𝛤𝑖 consist

f two parts each: encoders 𝒉𝛺𝑖 ∶ R𝑁
𝛺
𝑖 → R𝑛

𝛺
𝑖 and 𝒉𝛤𝑖 ∶ R𝑁

𝛤
𝑖 → R𝑛

𝛤
𝑖 , and decoders 𝒈𝛺𝑖 ∶ R𝑛

𝛺
𝑖 → R𝑁

𝛺
𝑖 and 𝒈𝛤𝑖 ∶ R𝑛

𝛤
𝑖 → R𝑁

𝛤
𝑖 . The
9

ncoders map inputs from the high-dimensional state space to a low-dimensional latent space, while the decoders map elements
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I
a

f

from the low-dimensional space to the high-dimensional state space. The autoencoders 𝒂𝛺𝑖 and 𝒂𝛤𝑖 are then defined via the function
compositions

𝒂𝛺𝑖 = 𝒈𝛺𝑖 ◦𝒉
𝛺
𝑖 , 𝒂𝛤𝑖 = 𝒈𝛤𝑖 ◦𝒉

𝛤
𝑖 .

In this work, the encoders and decoders are neural networks such that the autoencoder approximates its inputs:

𝒙𝛺𝑖 ≈ 𝒂𝛺𝑖 (𝒙
𝛺
𝑖 ) = 𝒈𝛺𝑖 (𝒉

𝛺
𝑖 (𝒙

𝛺
𝑖 )), 𝒙𝛤𝑖 ≈ 𝒂𝛤𝑖 (𝒙

𝛤
𝑖 ) = 𝒈𝛤𝑖 (𝒉

𝛤
𝑖 (𝒙

𝛤
𝑖 )), 𝑖 = 1,… , 𝑛𝛺 .

Further details on the neural network architecture used can be found in Section 5. The decoders 𝒈𝛺𝑖 and 𝒈𝛤𝑖 can be interpreted as
approximate inverses of the encoders 𝒉𝛺𝑖 and 𝒉𝛤𝑖 . In the SRPC case, the autoencoder 𝒂

𝛤
𝑖 is composed of autoencoders 𝒂

𝑝
𝑗 ∶ R𝑁

𝑝
𝑗 → R𝑁

𝑝
𝑗

with encoder 𝒉𝑝𝑗 ∶ R𝑁
𝑝
𝑗 → R𝑛

𝑝
𝑗 and decoder 𝒈𝑝𝑗 ∶ R𝑛

𝑝
𝑗 → R𝑁

𝑝
𝑗 for each port 𝑃 (𝑗).

The mean-square-error (MSE) losses for the interior, interface, and port states are defined as

𝛺𝑖 ∶= 1
𝑛𝜇

𝑛𝜇
∑

𝓁=1

‖

‖

‖

𝒙𝛺𝑖 (𝝁
train
𝓁 ) − 𝒈𝛺𝑖 (𝒉

𝛺
𝑖 (𝒙

𝛺
𝑖 (𝝁

train
𝓁 )))‖‖

‖

2

2
, 𝑖 = 1,… , 𝑛𝛺 , (27a)

𝛤𝑖 ∶= 1
𝑛𝜇

𝑛𝜇
∑

𝓁=1

‖

‖

‖

𝒙𝛤𝑖 (𝝁
train
𝓁 ) − 𝒈𝛤𝑖 (𝒉

𝛤
𝑖 (𝒙

𝛤
𝑖 (𝝁

train
𝓁 )))‖‖

‖

2

2
, 𝑖 = 1,… , 𝑛𝛺 , (27b)

𝑝𝑗 ∶=
1
𝑛𝜇

𝑛𝜇
∑

𝓁=1

‖

‖

‖

𝒙𝑝𝑗 (𝝁
train
𝓁 ) − 𝒈𝑝𝑗 (𝒉

𝑝
𝑗 (𝒙

𝑝
𝑗 (𝝁

train
𝓁 )))‖‖

‖

2

2
, 𝑗 = 1,… , 𝑛𝑝, (27c)

where 𝒙𝛺𝑖 (𝝁
train
𝓁 ) and 𝒙𝛤𝑖 (𝝁

train
𝓁 ) are snapshots of the interior and interface states on subdomain 𝑖 at parameter 𝝁train

𝓁 and 𝒙𝑝𝑗 (𝝁
train
𝓁 ) is

the state on port 𝑃 (𝑗), as discussed in Section 3.3. In the WPFC case, the interior state and interface state autoencoders 𝒂𝛺𝑖 and 𝒂𝛤𝑖
are trained by minimizing the interior and interface losses 𝛺𝑖 and 𝛤𝑖 , respectively. In the SPRC case, the interior state autoencoders
𝒂𝛺𝑖 and the port autoencoders 𝒂𝑝𝑗 are trained by minimizing the interior and interface losses 

𝛺
𝑖 and 𝑝𝑗 , respectively. The interface

state autoencoders 𝒂𝛤𝑖 are implied by the port autoencoders. Specifically, 𝒉
𝛤
𝑖 is

𝒉𝛤𝑖 (𝒙
𝛤
𝑖 ) =

∑

𝑗∈𝑄(𝑖)
(𝑷

𝑗
𝑖 )
𝑇 𝒉𝑝𝑗 (𝑷

𝑗
𝑖𝒙
𝛤
𝑖 ), (28)

and 𝒈𝛤𝑖 is defined using equation (22).
Notice that minimizing the MSE loss is equivalent to minimizing the snapshot reconstruction error, which is exactly how POD

bases are constructed, as discussed in Section 3.3. Training the autoencoders can also be interpreted as ‘‘learning’’ the forward and
inverse mappings from the latent space of generalized coordinates to the nonlinear trial manifold. After training, the decoders 𝒈𝛺𝑖
and 𝒈𝛤𝑖 are used for the DD NM-ROM (13) or (23).

4. Sequential quadratic programming solver

4.1. Lagrange-Gauss–Newton SQP method

The problems (13) and (23) are nonlinear programs (NLPs) with equality constraints, and can be solved using sequential quadratic
programming (SQP) [64], [65, Ch. 18]. The SQP solver detailed below amounts to applying a Newton-type method to the Karush–
Kuhn–Tucker (KKT) necessary optimality conditions. Note that the SQP solver described in this section can also be applied to the
FOM (10) by considering the case 𝑩𝑖 = 𝑰 and 𝒈𝛺𝑖 , 𝒈

𝛤
𝑖 equal to the identity mapping.

To develop a solver that is applicable to either the WFPC (13) or the SPRC formulations (23), we define the constraint functions
𝑨̃𝑖 ∶ R𝑛

𝛤
𝑖 → R𝑛𝐴 and consider the general formulation

min
(𝒙̂𝛺𝑖 ,𝒙̂

𝛤
𝑖 ),𝑖=1,…,𝑛𝛺

1
2

𝑛𝛺
∑

𝑖=1

‖

‖

‖

‖

𝑩𝑖𝒓𝑖
(

𝒈𝛺𝑖
(

𝒙̂𝛺𝑖
)

, 𝒈𝛤𝑖
(

𝒙̂𝛤𝑖
))

‖

‖

‖

‖

2

2
(29a)

s.t.
𝑛𝛺
∑

𝑖=1
𝑨̃𝑖

(

𝒙̂𝛤𝑖
)

= 𝟎. (29b)

n the WFPC case 𝑨̃𝑖(𝒙̂
𝛺
𝑖 ) = 𝑪𝑨𝑖𝒈𝛤𝑖 (𝒙̂

𝛤
𝑖 ) and the constraints are nonlinear in the case of NM-ROMs. In the SRPC case 𝑨̃𝑖(𝒙̂

𝛤
𝑖 ) = 𝑨̂𝑖𝒙̂

𝛤
𝑖

nd the constraints are always linear.
To apply the SQP solver, one first writes the Lagrangian

𝐿̂(𝒙̂𝛺1 , 𝒙̂
𝛤
1 ,… , 𝒙̂𝛺𝑛𝛺 , 𝒙̂

𝛤
𝑛𝛺
, 𝝀̂) = 1

2

𝑛𝛺
∑

𝑖=1

‖

‖

‖

‖

𝑩𝑖𝒓𝑖
(

𝒈𝛺𝑖
(

𝒙̂𝛺𝑖
)

, 𝒈𝛤𝑖
(

𝒙̂𝛤𝑖
))

‖

‖

‖

‖

2

2
+

𝑛𝛺
∑

𝑖=1
𝝀̂
𝑇
𝑨̃𝑖(𝒙̂

𝛤
𝑖 ) (30)

or the ROM NLP (29), where 𝝀̂ ∈ R𝑛𝐴 are the Lagrange multipliers associated with the DD-ROM constraints ((29)b).
Let ∇𝒗 and

𝜕
𝜕𝒗 denote the partial gradient and partial Jacobian with respect to 𝒗, respectively, and let 𝑑

𝑑𝒗 denote the Jacobian.
The first order necessary optimality conditions are

∇ 𝐿̂(𝒙̂𝛺 , 𝒙̂𝛤 ,… , 𝒙̂𝛺 , 𝒙̂𝛤 , 𝝀̂) = 𝝆𝛺(𝒙̂𝛺 , 𝒙̂𝛤 ) = 𝟎, 𝑖 = 1,… , 𝑛 , (31a)
10
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w

w
e

f
(

L
h

𝑩
a
G

w

i

M

L

∇𝒙̂𝛤𝑖
𝐿̂(𝒙̂𝛺1 , 𝒙̂

𝛤
1 ,… , 𝒙̂𝛺𝑛𝛺 , 𝒙̂

𝛤
𝑛𝛺
, 𝝀̂) = 𝝆𝛤𝑖 (𝒙̂

𝛺
𝑖 , 𝒙̂

𝛤
𝑖 , 𝝀̂) = 𝟎, 𝑖 = 1,… , 𝑛𝛺 , (31b)

∇𝝀̂𝐿̂(𝒙̂
𝛺
1 , 𝒙̂

𝛤
1 ,… , 𝒙̂𝛺𝑛𝛺 , 𝒙̂

𝛤
𝑛𝛺
, 𝝀̂) =

𝑛𝛺
∑

𝑖=1
𝑨̃𝑖(𝒙̂

𝛤
𝑖 ) = 𝟎, (31c)

here

𝝆𝛺𝑖 (𝒙̂
𝛺
𝑖 , 𝒙̂

𝛤
𝑖 ) =

𝑑𝒈𝛺𝑖
𝑑𝒙̂𝛺𝑖

(𝒙̂𝛺𝑖 )
𝑇 𝜕𝒓𝑖
𝜕𝒙𝛺𝑖

(

𝒈𝛺𝑖 (𝒙̂
𝛺
𝑖 ), 𝒈

𝛤
𝑖 (𝒙̂

𝛤
𝑖 )
)𝑇𝑩𝑇

𝑖 𝑩𝑖𝒓𝑖
(

𝒈𝛺𝑖 (𝒙̂
𝛺
𝑖 ), 𝒈

𝛤
𝑖 (𝒙̂

𝛤
𝑖 )
)

, (32a)

𝝆𝛤𝑖 (𝒙̂
𝛺
𝑖 , 𝒙̂

𝛤
𝑖 , 𝝀̂) =

𝑑𝒈𝛤𝑖
𝑑𝒙̂𝛤𝑖

(𝒙̂𝛤𝑖 )
𝑇 𝜕𝒓𝑖
𝜕𝒙𝛤𝑖

(

𝒈𝛺𝑖 (𝒙̂
𝛺
𝑖 ), 𝒈

𝛤
𝑖 (𝒙̂

𝛤
𝑖 )
)𝑇𝑩𝑇

𝑖 𝑩𝑖𝒓𝑖
(

𝒈𝛺𝑖 (𝒙̂
𝛺
𝑖 ), 𝒈

𝛤
𝑖 (𝒙̂

𝛤
𝑖 )
)

+
𝑑𝑨̃𝑖

𝑑𝒙̂𝛤𝑖
(𝒙̂𝛤𝑖 )

𝑇 𝝀̂ (32b)

are the gradients of the Lagrangian with respect to the subdomain variables 𝒙̂𝛺𝑖 and 𝒙̂𝛤𝑖 , respectively.
A Newton-type method applied to (31) yields the SQP iterations

⎡

⎢

⎢

⎢

⎢

⎣

𝑯1(𝒙̂
𝛺(𝑘)
1 , 𝒙̂𝛤 (𝑘)1 ) … 𝑬1(𝒙̂

𝛤
1 )
𝑇

⋱ ⋮
𝑯𝑛𝛺 (𝒙̂

𝛺(𝑘)
𝑛𝛺

, 𝒙̂𝛤 (𝑘)𝑛𝛺
) 𝑬𝑛𝛺 (𝒙̂

𝛤
1 )
𝑇

𝑬1(𝒙̂
𝛤
1 ) … 𝑬𝑛𝛺 (𝒙̂

𝛤
𝑛𝛺

) 𝟎

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝒔(𝑘)1
⋮
𝒔(𝑘)𝑛𝛺
𝒔𝝀̂(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝝆1(𝒙̂
𝛺(𝑘)
1 , 𝒙̂𝛤 (𝑘)1 , 𝝀̂

(𝑘)
)

⋮

𝝆𝑛𝛺 (𝒙̂
𝛺(𝑘)
𝑛𝛺

, 𝒙̂𝛤 (𝑘)𝑛𝛺
, 𝝀̂

(𝑘)
)

∑𝑛𝛺
𝑖=1 𝑨̃𝑖(𝒙̂

𝛤 (𝑘)
𝑖 )

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (33)

here 𝑘 is the SQP iteration index, 𝑯 𝑖(𝒙̂
𝛺(𝑘)
𝑖 , 𝒙̂𝛤 (𝑘)𝑖 ) is the Hessian of the Lagrangian with respect to the subdomain variables (𝒙̂𝛺𝑖 , 𝒙̂

𝛤
𝑖 )

valuated at (𝒙̂𝛺(𝑘)
𝑖 , 𝒙̂𝛤 (𝑘)𝑖 ) or an approximation of this Hessian, and where

𝑬𝑖(𝒙̂
𝛤
𝑖 ) =

[

𝟎 𝑑𝑨̃𝑖
𝑑𝒙̂𝛤𝑖

(𝒙̂𝛤𝑖 )
]

, 𝒔(𝑘)𝑖 =

[

𝒔𝛺(𝑘)
𝑖
𝒔𝛤 (𝑘)𝑖

]

,𝝆𝑖(𝒙̂
𝛺
𝑖 , 𝒙̂

𝛤
𝑖 , 𝝀̂) =

[

𝝆𝛺𝑖 (𝒙̂
𝛺
𝑖 , 𝒙̂

𝛤
𝑖 )

𝝆𝛤𝑖 (𝒙̂
𝛺
𝑖 , 𝒙̂

𝛤
𝑖 , 𝝀̂)

]

, (34)

or 𝑖 = 1,… , 𝑛𝛺. The next result on the unique solvability of (33) follows from adapting standard results to the block structure of
33).

emma 1. If for 𝑖 = 1,… , 𝑛𝛺 the matrices 𝑯 𝑖(𝒙̂
𝛺(𝑘)
𝑖 , 𝒙̂𝛤 (𝑘)𝑖 ) are positive definite on the null-space of 𝑬𝑖(𝒙̂

𝛤
𝑖 ), and if

(

𝑬1(𝒙̂
𝛤
1 ),… ,𝑬𝑛𝛺 (𝒙̂

𝛤
𝑛𝛺

)
)

as full row rank, then (33) has a unique solution.

For a proof see, e.g., [66, Thm. 3.2], [65, Lemma 16.12].
We use a Gauss–Newton approximation of the Hessian, which is motivated by the following consideration. If the residuals

𝑖𝒓𝑖
(

𝒈𝛺𝑖 (𝒙̂
𝛺
𝑖 ), 𝒈

𝛤
𝑖 (𝒙̂

𝛤
𝑖 )
)

are small at the solution of (29), then the first order optimality condition ((31)b) implies that 𝝀̂ is small. Thus
ll second derivative terms in the true Hessians 𝑯 𝑖(𝒙̂

𝛺(𝑘)
𝑖 , 𝒙̂𝛤 (𝑘)𝑖 ) are multiplied by small residuals or small Lagrange multipliers. The

auss–Newton Hessian approximation neglects these terms and approximates the Hessians by

𝑯 𝑖(𝒙̂
𝛺
𝑖 , 𝒙̂

𝛤
𝑖 ) = 𝑹𝑖(𝒙̂

𝛺
𝑖 , 𝒙̂

𝛤
𝑖 )
𝑇𝑩𝑇

𝑖 𝑩𝑖𝑹𝑖(𝒙̂
𝛺
𝑖 , 𝒙̂

𝛤
𝑖 ), (35a)

here

𝑹𝑖(𝒙̂
𝛺
𝑖 , 𝒙̂

𝛤
𝑖 ) =

[

𝜕𝒓𝑖
𝜕𝒙𝛺𝑖

(

𝒈𝛺𝑖 (𝒙̂
𝛺
𝑖 ), 𝒈

𝛤
𝑖 (𝒙̂

𝛤
𝑖 )
) 𝑑𝒈𝛺𝑖
𝑑𝒙̂𝛺𝑖

(𝒙̂𝛺𝑖 ),
𝜕𝒓𝑖
𝜕𝒙𝛤𝑖

(

𝒈𝛺𝑖 (𝒙̂
𝛺
𝑖 ), 𝒈

𝛤
𝑖 (𝒙̂

𝛤
𝑖 )
) 𝑑𝒈𝛤𝑖
𝑑𝒙̂𝛤𝑖

(𝒙̂𝛤𝑖 )
]

(35b)

s the Jacobian of 𝒓𝑖 with respect to (𝒙̂𝛺𝑖 , 𝒙̂
𝛤
𝑖 ). The advantage is that (35) only requires first order derivatives. Note that the FOM

solution satisfies (9), i.e., the residual in the least squares formulation (10) is zero. Thus, if the ROM well approximates the FOM
(9) or, equivalently, its least squares formulation (10), then we expect the residuals 𝑩𝑖𝒓𝑖

(

𝒈𝛺𝑖 (𝒙̂
𝛺
𝑖 ), 𝒈

𝛤
𝑖 (𝒙̂

𝛤
𝑖 )
)

to be small at the solution
of (29) and the Gauss–Newton Hessian (35) to be good approximation of the true Hessian of the Lagrangian (30).

Note that with the notation (35), the gradients 𝝆𝑖(𝒙̂
𝛺
𝑖 , 𝒙̂

𝛤
𝑖 , 𝝀̂) in (34) can be written as

𝝆𝑖(𝒙̂
𝛺
𝑖 , 𝒙̂

𝛤
𝑖 , 𝝀̂) = 𝑹𝑖(𝒙̂

𝛺
𝑖 , 𝒙̂

𝛤
𝑖 )
𝑇𝑩𝑇

𝑖 𝑩𝑖𝒓𝑖
(

𝒈𝛺𝑖
(

𝒙̂𝛺𝑖
)

, 𝒈𝛤𝑖
(

𝒙̂𝛤𝑖
))

+ 𝑬𝑖(𝒙̂
𝛤
𝑖 )
𝑇 𝝀̂, 𝑖 = 1,… , 𝑛𝛺 . (36)

With the Gauss–Newton approximations (35), the SQP system (33) is essentially the optimality system for the quadratic program

min
𝒔𝑖=(𝒔𝛺𝑖 ,𝒔

𝛤
𝑖 ),𝑖=1,…,𝑛𝛺

1
2

𝑛𝛺
∑

𝑖=1

‖

‖

‖

𝑩𝑖𝒓𝑖
(

𝒈𝛺𝑖
(

𝒙̂𝛺(𝑘)
𝑖

)

, 𝒈𝛤𝑖
(

𝒙̂𝛤 (𝑘)𝑖
))

+ 𝑩𝑖𝑹𝑖(𝒙̂
𝛺(𝑘)
𝑖 , 𝒙̂𝛤 (𝑘)𝑖 )𝒔𝑖

‖

‖

‖

2

2
(37a)

s.t.
𝑛𝛺
∑

𝑖=1
𝑨̃𝑖

(

𝒙̂𝛤 (𝑘)𝑖
)

+ 𝑑
𝑑𝒙̂𝛤𝑖

𝑨̃𝑖
(

𝒙̂𝛤 (𝑘)𝑖
)

𝒔𝑖 = 𝟎. (37b)

ore precisely, the following result holds.

emma 2. If the assumptions of Lemma 1 hold, then the quadratic program (37) has a unique solution 𝒔(𝑘)𝑖 = (𝒔𝛺(𝑘)
𝑖 , 𝒔𝛤 (𝑘)𝑖 ), 𝑖 = 1,… , 𝑛𝛺,

given by the solution of (33). The associated Lagrange multiplier for (37) is 𝝀̂
(𝑘)

+ 𝒔𝝀̂(𝑘), where 𝝀̂
(𝑘)
is the Lagrange multiplier estimate in

𝝀̂(𝑘)
11

(33) and 𝒔 is the last component in the solution vector of (33).
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The proof of Lemma 2 follows from the necessary and sufficient optimality conditions (e.g., [65, Sec 16.1]) for the quadratic
rogram (37). The necessary and sufficient optimality conditions for (37) are given by (33) with the terms 𝑬𝑖(𝒙̂

𝛤 (𝑘)
𝑖 )𝑇 𝝀̂

(𝑘)
(see (36))

oved from the right to the left hand side.
An advantage of the Gauss–Newton approximation is that no Lagrange multiplier estimate is needed in (37) or the associated

ptimality system. Of course, quantities like 𝒈𝛺𝑖 (𝒙̂
𝛺
𝑖 ), 𝒈𝛤𝑖 (𝒙̂

𝛤
𝑖 ), 𝑩𝑖𝒓𝑖(𝒈𝛺𝑖 (𝒙̂

𝛺
𝑖 ), 𝒈

𝛤
𝑖 (𝒙̂

𝛤
𝑖 )), 𝑩𝑖𝑹𝑖(𝒙̂

𝛺
𝑖 , 𝒙̂

𝛤
𝑖 ), 𝑨̃𝑖(𝒙̂

𝛤
𝑖 ), and

𝑑𝑨̃𝑖
𝑑𝒙̂𝛤𝑖

(𝒙̂𝛤𝑖 ) can be
omputed in parallel across the subdomains. Moreover, the block structure of the system (33) lends itself to a parallel solution
trategy. However, since (33) corresponds to the ROM its size tends to be small and parallelism in its solution may yield less
peedup than it would if applied to the DD formulation (9) of the FOM (1). The parallel implementation of the approach discussed
n this paper is left to future work.
Given the solution of the SQP system (33), the new iterate, i.e., the new approximate solution of (29) is computed as

𝒙̂𝛺(𝑘+1)
𝑖 = 𝒙̂𝛺(𝑘)

𝑖 + 𝛼(𝑘)𝒔𝛺(𝑘)
𝑖 , 𝑖 = 1,… , 𝑛𝛺 , (38a)

𝒙̂𝛤 (𝑘+1)𝑖 = 𝒙̂𝛤 (𝑘)𝑖 + 𝛼(𝑘)𝒔𝛤 (𝑘)𝑖 , 𝑖 = 1,… , 𝑛𝛺 , (38b)

ith step size 𝛼(𝑘) ∈ (0, 1]. If one chooses to keep a Lagrange multiplier estimate, then 𝝀̂
(𝑘+1)

= 𝝀̂
(𝑘)

+ 𝛼(𝑘)𝒔𝝀̂(𝑘), 𝑖 = 1,… , 𝑛𝛺, where
𝝀̂(𝑘) is the last component in the solution vector of (33). The step size 𝛼(𝑘) is computed via line-search using a merit function that
oordinates progress of the iterates (and Lagrange multipliers) towards feasibility and optimality. In this work, we simply use the
orm of the gradients (31). This is an appropriate criterion if one starts sufficiently close to a (local) minimizer of (29), and this
riterion yielded good results in our examples. In our examples, the step size is computed using a backtracking line search with the
rmijo rule.

.2. Convergence of SQP solver

Convergence of the Lagrange–Gauss–Newton SQP method can be established using one of two related approaches. The iteration
38) with 𝒔𝛺(𝑘)

𝑖 , 𝒔𝛤 (𝑘)𝑖 , 𝑖 = 1,… , 𝑛𝛺, computed as the solution of (33) with Gauss–Newton Hessian approximation (35) can be
nterpreted and analyzed as a generalized Gauss–Newton iteration. See [67]. Alternatively, this iteration can also be viewed as
n inexact Newton method applied to the first-order optimality conditions (31). The local convergence result using either approach
equires that the Lagrange–Gauss–Newton SQP method is started sufficiently close to a (local) minimizer of (29). We summarize the
onvergence theory for inexact Newton methods (see, e.g. [65, Thm. 11.3]) in Theorem 4. First we define the following notation to
mprove readability. We group the vectors (𝒙̂𝛺1 , 𝒙̂

𝛤
1 ,… , 𝒙̂𝛺𝑛𝛺 , 𝒙̂

𝛤
𝑛𝛺

) and (𝒔𝛺(𝑘)
1 , 𝒔𝛤 (𝑘)1 ,… , 𝒔𝛺(𝑘)

𝑛𝛺 , 𝒔𝛤 (𝑘)𝑛𝛺 ) as

𝒙̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒙̂𝛺1
𝒙̂𝛤1
⋮

𝒙̂𝛺𝑛𝛺
𝒙̂𝛤𝑛𝛺

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑛𝐷 , 𝒔(𝑘)𝑥 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒔𝛺(𝑘)
1
𝒔𝛤 (𝑘)1
⋮

𝒔𝛺(𝑘)
𝑛𝛺
𝒔𝛤 (𝑘)𝑛𝛺

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑛𝐷 . (39a)

here 𝑛𝐷 =
∑𝑛𝛺
𝑖=1(𝑛

𝛺
𝑖 + 𝑛𝛤𝑖 ). Furthermore let 𝑭 ∶ R𝑛𝐷+𝑛𝐴 → R𝑛𝐷+𝑛𝐴 ,

𝑭 (𝒙̂, 𝝀̂) = −

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝝆1(𝒙̂
𝛺(𝑘)
1 , 𝒙̂𝛤 (𝑘)1 , 𝝀̂

(𝑘)
)

⋮

𝝆𝑛𝛺 (𝒙̂
𝛺(𝑘)
𝑛𝛺

, 𝒙̂𝛤 (𝑘)𝑛𝛺
, 𝝀̂

(𝑘)
)

∑𝑛𝛺
𝑖=1 𝑨̃𝑖(𝒙̂

𝛤 (𝑘)
𝑖 )

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (39b)

enote the right hand side of the KKT system. Recall that if 𝒙 ∈ R𝑛𝐷 is a local minimizer of (29) with associated Lagrange multiplier
𝝀 ∈ R𝑛𝐴 , then 𝑭 (𝒙,𝝀) = 𝟎. Next define the Hessian approximation 𝑯 ∶ R𝑛𝐷 × R𝑛𝐴 → R𝑛𝐷×𝑛𝐷 ,

𝑯(𝒙̂, 𝝀̂) =
⎡

⎢

⎢

⎢

⎣

𝑯1(𝒙̂
𝛺
1 , 𝒙̂

𝛤
1 , 𝝀̂)

⋱
𝑯𝑛𝛺 (𝒙̂

𝛺
𝑛𝛺
, 𝒙̂𝛤𝑛𝛺 , 𝝀̂)

⎤

⎥

⎥

⎥

⎦

, (39c)

nd constraint Jacobian 𝑑
𝑑𝒙̂𝛤

𝑨̃ ∶ R
∑𝑛𝛺
𝑖=1 𝑛

𝛤
𝑖 → R𝑛𝐴×𝑛𝐷 ,

𝑑
𝑑𝒙̂𝛤

𝑨̃(𝒙̂𝛤1 ,… , 𝒙̂𝛤𝑛𝛺 ) =
[

𝟎 𝑑
𝑑𝒙̂𝛤1

𝑨̃1(𝒙̂
𝛤
1 ) … 𝟎 𝑑

𝑑𝒙̂𝛤𝑛𝛺
𝑨̃𝑛𝛺 (𝒙̂

𝛤
𝑛𝛺

)
]

. (39d)

The convergence result can now be stated as follows.

Theorem 4. Let 𝒓𝑖, 𝒈𝛺𝑖 , and 𝒈𝛤𝑖 be continuously differentiable for all 𝑖 = 1,… , 𝑛𝛺. Let 𝒙 be a local minimizer of (29) such that the
acobian 𝑑 𝑨̃(𝒙𝛤 ,… ,𝒙𝛤 ) has full row rank, let 𝝀 denote the associated Lagrange multiplier and assume that 𝑯(𝒙,𝝀) is positive definite
12

𝑑𝒙̂𝛤 1 𝑛𝛺
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s

f

on the null-space of 𝑑
𝑑𝒙̂𝛤

𝑨̃(𝒙𝛤1 ,… ,𝒙𝛤𝑛𝛺 ). Furthermore, assume that 𝑭
′
(𝒙̂, 𝝀̂) is Lipschitz continuous with Lipschitz constant 𝐾, and that the

teps 𝒔(𝑘)𝑥 satisfy
‖

‖

‖

‖

(

∇2
𝒙̂𝐿̂(𝒙̂

(𝑘), 𝝀̂
(𝑘)
) −𝑯(𝒙̂(𝑘), 𝝀̂

(𝑘)
)
)

𝒔(𝑘)𝑥
‖

‖

‖

‖2
≤ 𝜂𝑘

‖

‖

‖

‖

𝑭 (𝒙̂(𝑘), 𝝀̂
(𝑘)
)
‖

‖

‖

‖2

or some sequence of forcing parameters 𝜂𝑘, and where 𝐿̂ is the Lagrangian defined in (30).
If

{

𝜂𝑘
}

satisfies 0 < 𝜂𝑘 ≤ 𝜂 where 𝜂 is such that 4𝜂𝜅̄ < 1 with 𝜅̄ = ‖

‖

‖

𝑭
′
(𝒙,𝝀)

−1
‖

‖

‖2
‖

‖

‖

𝑭
′
(𝒙,𝝀)‖‖

‖2
, then for all 𝜎 ∈ (4𝜂𝜅̄, 1) there exists

an 𝜖 > 0 such that for any (𝒙̂(0), 𝝀̂
(0)
) with ‖

‖

‖

(𝒙,𝝀) − (𝒙̂(0), 𝝀̂
(0)
)‖‖
‖2

< 𝜖, the sequence of iterates
{

(𝒙̂(𝑘), 𝝀̂
(𝑘)
)
}

generated by the SQP solver
converges to (𝒙,𝝀), and the iterates satisfy

‖

‖

‖

(𝒙̂(𝑘), 𝝀̂
(𝑘)
) − (𝒙,𝝀)‖‖

‖2
≤ 𝐾‖

‖

‖

𝑭
′
(𝒙,𝝀)−1‖‖

‖2
‖

‖

‖

(𝒙̂(𝑘), 𝝀̂
(𝑘)
) − (𝒙,𝝀)‖‖

‖

2

2
+ 4𝜂𝑘𝜅̄

‖

‖

‖

(𝒙̂(𝑘), 𝝀̂
(𝑘)
) − (𝒙,𝝀)‖‖

‖2

≤ 𝜎‖‖
‖

(𝒙̂(𝑘), 𝝀̂
(𝑘)
) − (𝒙,𝝀)‖‖

‖2
.

See, e.g., [65, Thm. 11.3] for a proof of this theorem.

Remark 1. As stated, Theorem 4 only guarantees a solution to the KKT system (31), which are (first order) necessary optimality
conditions. However one can give alternative inexactness conditions on Gauss–Newton Hessian approximations that ensure local
convergence to a point at which the second order sufficient optimality conditions are satisfied. See [68, L. 2.5] for the unconstrained
case and [67, Sec. 3.5] for the constrained case, but with 𝓁1 rather than 𝓁2 (=least squares) objective.

5. Autoencoder architecture

Following [56], we consider the use of shallow, wide, sparse-masked autoencoders with smooth activation functions for
representing the maps, 𝒈𝛺𝑖 and 𝒈𝛤𝑖 . Shallow networks are used for computational efficiency; fewer layers correspond to fewer repeated
matrix–vector multiplications when evaluating the decoders. The shallow depth necessitates a wide network to maintain enough
expressiveness for use in NM-ROM. Sparsity is applied at the decoder output layer so that hyper-reduction can be applied. Further
details on hyper reduction are addressed in Section 5.3. Smooth activations are used to ensure that 𝒈𝛺𝑖 and 𝒈𝛤𝑖 are continuously
differentiable. In contrast with [56], we also apply a sparsity mask to the encoder input layer so that the encoders and decoders are
symmetric across the latent layer. We found that applying a sparsity mask to the encoder input layer permitted the use of a wider
network for the encoder, resulting in improved performance over a dense input layer. See Section 7.4 for further details.

5.1. Weak FOM-port formulation

First we detail the architectures used for the weak FOM-port constraint formulation. We use a single-layer architecture for the
encoders and decoders with a smooth, non-polynomial activation function. The encoders, 𝒉𝛺𝑖 and 𝒉𝛤𝑖 , and decoders, 𝒈

𝛺
𝑖 and 𝒈𝛤𝑖 , are

of the form

𝒉𝛺𝑖 ∶ R𝑁
𝛺
𝑖 → R𝑛

𝛺
𝑖 , 𝒉𝛺𝑖 (𝒙

𝛺
𝑖 ) = 𝑾

𝒉𝛺𝑖
2 𝝈𝛺𝑖 (𝑾

𝒉𝛺𝑖
1 𝒙𝛺𝑖 + 𝒃

𝒉𝛺𝑖
1 ), (40a)

𝒈𝛺𝑖 ∶ R𝑛
𝛺
𝑖 → R𝑁

𝛺
𝑖 , 𝒈𝛺𝑖 (𝒙̂

𝛺
𝑖 ) = 𝑾

𝒈𝛺𝑖
2 𝝈𝛺𝑖 (𝑾

𝒈𝛺𝑖
1 𝒙̂𝛺𝑖 + 𝒃

𝒈𝛺𝑖
1 ), (40b)

𝒉𝛤𝑖 ∶ R𝑁
𝛤
𝑖 → R𝑛

𝛤
𝑖 , 𝒉𝛤𝑖 (𝒙

𝛤
𝑖 ) = 𝑾

𝒉𝛤𝑖
2 𝝈𝛤𝑖 (𝑾

𝒉𝛤𝑖
1 𝒙𝛤𝑖 + 𝒃

𝒉𝛤𝑖
1 ), (40c)

𝒈𝛤𝑖 ∶ R𝑛
𝛤
𝑖 → R𝑁

𝛤
𝑖 , 𝒈𝛤𝑖 (𝒙̂

𝛤
𝑖 ) = 𝑾

𝒈𝛤𝑖
2 𝝈𝛤𝑖 (𝑾

𝒈𝛤𝑖
1 𝒙̂𝛤𝑖 + 𝒃

𝒈𝛤𝑖
1 ), (40d)

where

𝑾
𝒈𝛺𝑖
1 ,

(

𝑾
𝒉𝛺𝑖
2

)𝑇
∈ R𝑤

𝛺
𝑖 ×𝑛𝛺𝑖 , 𝑾

𝒈𝛺𝑖
2 ,

(

𝑾
𝒉𝛺𝑖
1

)𝑇
∈ R𝑁

𝛺
𝑖 ×𝑤𝛺𝑖 , (41a)

𝒃
𝒉𝛺𝑖
1 ∈ R𝑤

𝛺
𝑖 , 𝒃

𝒈𝛺𝑖
1 ∈ R𝑤

𝛺
𝑖 , (41b)

𝑾
𝒈𝛤𝑖
1 ,

(

𝑾
𝒉𝛤𝑖
2

)𝑇
∈ R𝑤

𝛤
𝑖 ×𝑛

𝛤
𝑖 , 𝑾

𝒈𝛤𝑖
2 ,

(

𝑾
𝒉𝛤𝑖
1

)𝑇
∈ R𝑁

𝛤
𝑖 ×𝑤𝛤𝑖 , (41c)

𝒃
𝒉𝛤𝑖
1 ∈ R𝑤

𝛤
𝑖 , 𝒃

𝒈𝛤𝑖
1 ∈ R𝑤

𝛤
𝑖 , (41d)

𝝈𝛺𝑖 ,𝝈
𝛤
𝑖 are smooth, non-polynomial activation functions (e.g. Sigmoid or Swish), and where 𝑤

𝛺
𝑖 , 𝑤

𝛤
𝑖 are the network widths for all

subdomains 𝑖 = 1,… , 𝑛𝛺. The weight matrices 𝑾
𝒈𝛺𝑖
2 ,𝑾

𝒉𝛺𝑖
1 ,𝑾

𝒈𝛤𝑖
2 and 𝑾

𝒉𝛤𝑖
1 are all sparse, while the remaining weights and biases are

dense.
The widths, 𝑤𝛺𝑖 and 𝑤𝛤𝑖 , as well as the sparsity patterns of 𝑾

𝒈𝛺𝑖
2 ,𝑾

𝒉𝛺𝑖
1 ,𝑾

𝒈𝛤𝑖
2 and 𝑾

𝒉𝛤𝑖
1 are hyper-parameters that require tuning.

The use of a single-layer architecture of arbitrary width and non-polynomial activation, as defined in ((40)a-d), is motivated by the
well-known universal approximation theorem [69,70]. Furthermore, the use of a smooth activation function ensures that 𝒈𝛺𝑖 and
𝒈𝛤𝑖 are continuously differentiable. This is important because the Jacobians

𝑑𝒈𝛺𝑖
𝑑𝒙̂𝛺𝑖

and 𝑑𝒈𝛤𝑖
𝑑𝒙̂𝛤𝑖

are required by the SQP solver discussed
in Section 4. The autoencoders are trained by minimizing the MSE loss defined in equation (27).
13
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5.2. Strong ROM-port formulation

Next we detail the architectures used for the strong ROM-port constraint formulation. As before, we use a single-layer architecture
or the encoders and decoders with a smooth, non-polynomial activation function. The interior state encoders 𝒉𝛺𝑖 and decoders 𝒈𝛺𝑖
have the same architecture as in the weak FOM-port constraint formulation. Thus we focus on the interface encoders 𝒉𝛤𝑖 and decoders
𝒈𝛤𝑖 . As stated in Section 3.4, in the strong ROM-port case, the interface encoders 𝒉

𝛤
𝑖 and decoders 𝒈

𝛤
𝑖 are composed of encoders 𝒉

𝑝
𝑗

nd decoders 𝒈𝑝𝑗 for ports 𝑃 (𝑗). These encoders 𝒉
𝑝
𝑗 and decoders 𝒈

𝑝
𝑗 are of the form

𝒉𝑝𝑗 ∶ R𝑁
𝑝
𝑗 → R𝑛

𝑝
𝑗 , 𝒉𝑝𝑗 (𝒙

𝑝
𝑗 ) = 𝑾

𝒉𝑝𝑗
2 𝝈𝑝𝑗 (𝑾

𝒉𝑝𝑗
1 𝒙𝑝𝑗 + 𝒃

𝒉𝑝𝑗
1 ), (42a)

𝒈𝑝𝑗 ∶ R𝑛
𝑝
𝑗 → R𝑁

𝑝
𝑗 , 𝒈𝑝𝑗 (𝒙̂

𝑝
𝑗 ) = 𝑾

𝒈𝑝𝑗
2 𝝈𝑝𝑗 (𝑾

𝒈𝑝𝑗
1 𝒙̂𝑝𝑗 + 𝒃

𝒈𝑝𝑗
1 ), (42b)

here

𝑾
𝒈𝑝𝑗
1 ,

(

𝑾
𝒉𝑝𝑗
2

)𝑇
∈ R𝑤

𝑝
𝑗×𝑛

𝑝
𝑗 , 𝑾

𝒈𝑝𝑗
2 ,

(

𝑾
𝒉𝑝𝑗
1

)𝑇
∈ R𝑁

𝑝
𝑗 ×𝑤

𝑝
𝑗 , (43a)

𝒃
𝒉𝑝𝑗
1 ∈ R𝑤

𝑝
𝑗 , 𝒃

𝒈𝑝𝑗
1 ∈ R𝑤

𝑝
𝑗 , (43b)

𝑝
𝑗 are smooth, non-polynomial activation functions (e.g., Sigmoid or Swish), and where 𝑤

𝑝
𝑗 are the network widths for all ports

(𝑗), 𝑗 = 1,… , 𝑛𝑝. The weight matrices 𝑾
𝒈𝑝𝑗
2 and 𝑾

𝒉𝑝𝑗
1 are sparse, while the remaining weights and biases are dense. As in the WFPC

ase, the width 𝑤𝑝𝑗 and the sparsity patterns of𝑾
𝒈𝑝𝑗
2 and𝑾

𝒉𝑝𝑗
1 are hyper-parameters that require tuning. The autoencoders are trained

y minimizing the MSE loss defined in equation (27).
Recall that the interface encoders 𝒉𝛤𝑖 and 𝒈𝛤𝑖 are computed using equations (28) and (22), respectively. The encoders 𝒉𝛤𝑖 and

ecoders 𝒈𝛤𝑖 can be written in the form (40)c, d as follows. For a given subdomain 𝑖, let 𝑗1,… , 𝑗
|𝑄(𝑖)| denote the indices of the

ubdomains contained in 𝑄(𝑖). The weights and biases of 𝒉𝛤𝑖 and 𝒈𝛤𝑖 can then be assembled in block form as

𝑾
𝒉𝛤𝑖
1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑾
𝒉𝑝𝑗1
1

⋱

𝑾
𝒉𝑝𝑗

|𝑄(𝑖)|
1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑷 𝑗1
𝑖
⋮

𝑷 𝑗
|𝑄(𝑖)|
𝑖

⎤

⎥

⎥

⎥

⎦

, 𝒃
𝒉𝛤𝑖
1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝒃
𝒉𝑝𝑗1
1
⋮

𝒃
𝒉𝑝𝑗

|𝑄(𝑖)|
1

⎤

⎥

⎥

⎥

⎥

⎦

, (44a)

𝑾
𝒉𝛤𝑖
2 =

[

(𝑷
𝑗1
𝑖 )

𝑇 … (𝑷
𝑗
|𝑄(𝑖)|
𝑖 )𝑇

]

⎡

⎢

⎢

⎢

⎢

⎣

𝑾
𝒉𝑝𝑗1
2

⋱

𝑾
𝒉𝑝𝑗

|𝑄(𝑖)|
2

⎤

⎥

⎥

⎥

⎥

⎦

, (44b)

𝑾
𝒈𝛤𝑖
1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑾
𝒈𝑝𝑗1
1

⋱

𝑾
𝒈𝑝𝑗

|𝑄(𝑖)|
1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑷
𝑗1
𝑖
⋮

𝑷
𝑗
|𝑄(𝑖)|
𝑖

⎤

⎥

⎥

⎥

⎦

, 𝒃
𝒈𝛤𝑖
1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝒃
𝒈𝑝𝑗1
1
⋮

𝒃
𝒈𝑝𝑗

|𝑄(𝑖)|
1

⎤

⎥

⎥

⎥

⎥

⎦

, (44c)

𝑾
𝒈𝛤𝑖
2 =

[

(𝑷 𝑗1
𝑖 )

𝑇 … (𝑷 𝑗
|𝑄(𝑖)|
𝑖 )𝑇

]

⎡

⎢

⎢

⎢

⎢

⎣

𝑾
𝒈𝑝𝑗1
2

⋱

𝑾
𝒈𝑝𝑗

|𝑄(𝑖)|
2

⎤

⎥

⎥

⎥

⎥

⎦

, (44d)

ith activation

𝝈𝛤𝑖 (⋅) =
⎡

⎢

⎢

⎢

⎣

𝝈𝑝𝑗1 (⋅)
⋮

𝝈𝑝𝑗
|𝑄(𝑖)|

(⋅)

⎤

⎥

⎥

⎥

⎦

. (44e)

.3. Hyper-reduction

If no hyper-reduction (HR) is applied (i.e. 𝑩𝑖 = 𝑰) when solving DD ROM (13), the computational savings from the ROM is
imited because the evaluation of the residuals 𝒓𝑖 and their Jacobians still scales with the dimension of the FOM. Thus HR is applied
o decrease the computational complexity caused by the nonlinearity of 𝒓𝑖, and increase the computational speedup. Possible HR
pproaches include collocation (𝑩𝑖 = 𝒁 𝑖) and gappy POD (𝑩𝑖 = (𝒁 𝑖Φ

𝑟
𝑖 )
†𝒁 𝑖) [16,61]. In both cases, only a subsample of the residual

omponents and their corresponding Jacobian components are computed. This subsample is determined by the row-sampling matrix
𝑖, which is typically computed greedily (see Remark 2).
Now for both cases 𝑩𝑖 = 𝒁 𝑖 and 𝑩𝑖 = (𝒁 𝑖Φ

𝑟
𝑖 )
†𝒁 𝑖, one must compute the products 𝒁 𝑖𝒓𝑖, 𝒁 𝑖

𝜕𝒓𝑖
𝜕𝒙𝛺𝑖

, and 𝒁 𝑖
𝜕𝒓𝑖
𝜕𝒙𝛤𝑖

. In implementation,

instead of computing matrix–vector or matrix–matrix products, one only needs to compute the entries of 𝒓 and rows of 𝜕𝒓𝑖 and
14
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Fig. 3. Left: Dense autoencoder. The HR nodes are represented by solid blue neurons, and the nodes required to compute the HR nodes are outlined in blue.
otice that each node in the decoder hidden layer are required to compute the HR nodes in the output layer. Right: Sparse autoencoder. The encoder input
ayer and decoder output layer are sparsely connected, and only the blue-outlined hidden nodes are required to compute the HR nodes. The sparse output layer
llows one to only keep track of the blue connections to evaluate 𝒈𝛺𝑖 , 𝒈𝛤𝑖 and their Jacobians, resulting in computational speedup.

𝜕𝒓𝑖
𝜕𝒙𝛤𝑖

that are sampled by 𝒁 𝑖. Hence the application of HR is typically code-intrusive. Moreover, since only a subset of the entries

of 𝒈𝛺𝑖 (𝒙̂
𝛺
𝑖 ) and 𝒈𝛤𝑖 (𝒙̂

𝛤
𝑖 ) are needed to evaluate 𝒁 𝑖𝒓𝑖, 𝒁 𝑖

𝜕𝒓𝑖
𝜕𝒙𝛺𝑖

, and 𝒁 𝑖
𝜕𝒓𝑖
𝜕𝒙𝛤𝑖

, only the corresponding outputs of the decoders 𝒈𝛺𝑖 and 𝒈𝛤𝑖
need to be kept track of. This motivates the use of a sparsity mask in the last layer of the decoders, which was first introduced in
the context of NM-ROM in [56].

Indeed, in the case of a dense linear layer, each node in the hidden layer is needed to compute one node in the output layer,
thus limiting the computational savings gained through HR. If instead a sparsity mask is applied to the layer, only a subset of the
hidden nodes is required to compute a node in the output layer. This allows for the computation of a subnet, which only keeps track
of the nodes used to compute the output nodes remaining after HR. We discuss the computation of a subnet in Section 5.4. Fig. 3
rovides a visualization of a subnet. In this paper, we also apply the transpose of decoder sparsity mask to the input layer of the
ncoder, resulting in autoencoders whose architectures are (approximately) symmetric across the latent layer. We found that this
hoice gave improved performance (i.e. ROM accuracy) over the architectures used in [56], which use dense encoder input layers.

emark 2. Following [16] and [56], we use [71, Algo. 3] to greedily compute a row sampling matrix 𝒁 𝑖. This approach relies
pon the computation of a residual basis Φ𝑟

𝑖 for each subdomain. In practice, these residual bases are computed by applying POD to
esidual snapshots, which are collected from the iteration history of Newton’s method when computing interior- and interface-state
napshots for ROM training.

emark 3. For the WFPC case, the products 𝑪𝑨𝑖𝒈𝛤𝑖 (𝒙̂
𝛤
𝑖 ) and 𝝀̂

𝑇
𝑪𝑨𝑖

𝑑𝒈𝛤𝑖
𝑑𝒙̂𝛤𝑖

(𝒙̂𝛤𝑖 ) coming from the equality constraint appear in the
KT system (33) for the SQP solver. For LS-ROM, since the Jacobian of 𝒈𝛤𝑖 is nothing but the POD basis matrix Φ𝛤

𝑖 , one can easily
recompute 𝑪𝑨𝑖Φ

𝛤
𝑖 , thus making HR unnecessary for these quantities. However for NM-ROM, 𝑑𝒈𝛤𝑖 ∕𝑑𝒙̂

𝛤
𝑖 must be re-evaluated at

ach iteration of the SQP solver, thus introducing additional computation expense that is not present in LS-ROM. Currently, these
uantities do not undergo HR in the NM-ROM case, and hence the decoders 𝒈𝛤𝑖 for the entire interface states must be kept track of.
hile this limits the computational savings that can be obtained through HR, in practice the dimension of the FOM interface states
𝛤
𝑖 is much smaller than the dimension of the FOM interior states 𝑁𝛺

𝑖 , thus making the HR of 𝒈
𝛤
𝑖 less critical than the HR of 𝒈𝛺𝑖 .

his issue is not present in the SRPC case because the constraints are purely linear.

emark 4. In practice, the pattern of the sparsity mask is determined by a number of hyper parameters to be tuned by the user.
urther details on the sparsity pattern used for our numerical results is discussed in Section 7.

.4. Construction of a subnet

The authors in [56, Sec. 4.4.1] discuss the construction of a subnet in terms of gradients of the loss function with respect to the
eights and biases of the sparse decoder. In this section, we present an alternative method for constructing the subnet solely by
eeping track of indices of HR nodes. For simplicity, we consider a generic decoder 𝒈 ∶ R𝑛 → R𝑁 of the form ((40)b, d) with width
. Computing subnets for each decoder, e.g., 𝒈𝛺𝑖 and 𝒈𝛤𝑖 , follows the same procedure. Recall that in the architecture considered in
his paper, 𝑾 ∈ R𝑁×𝑤 is sparse and 𝑾 ∈ R𝑤×𝑛 is dense.
15
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Let 𝑜 ⊂ {1,… , 𝑁} denote the indices of the outputs of 𝒈 that are selected through HR. To find the indices of the hidden nodes
equired to compute the HR nodes, find the index set ℎ where

ℎ =
{

𝑗 ∈ {1,… , 𝑤} ∣ ∃ 𝑖 ∈ 𝑜 s.t. (𝑾 2)𝑖𝑗 ≠ 0
}

.

he index sets 𝑜 and ℎ contain the indices of all nonzero elements in 𝑾 2. Now let 𝑖1,… , 𝑖
|𝑜| and 𝑗1,… , 𝑗

|ℎ| denote the elements
of 𝑜 and ℎ in ascending order, respectively. Define the matrix 𝑾 2 ∈ R|𝑜|×|ℎ| as

(𝑾 2)𝓁,𝑘 = (𝑾 2)𝑖𝓁 ,𝑗𝑘 , ∀ 𝓁 = 1,… , |𝑜|, 𝑘 = 1,… , |ℎ|.

The matrix 𝑾 2 precisely consists of the connections in the subnet that remain after HR. Next, since the activation 𝝈 acts element-
wise, the connections that remain in the first layer of the subnet can be represented by 𝑾 1 ∈ R|ℎ|×𝑛, which consists of nothing but
the rows in 𝑾 1 corresponding to the index set ℎ:

(𝑾 1)𝑘,∶ = 𝑾 𝑗𝑘 ,∶, ∀ 𝑘 = 1,… , |ℎ|.

Lastly, the subnet bias 𝒃̃1 ∈ R|ℎ| is similarly defined as (𝒃̃1)𝑘 = (𝒃1)𝑗𝑘 for all 𝑘 = 1,… , |ℎ|. The subnet 𝒈̃ ∶ R𝑛 → R|𝑜| is then defined
as

𝒈̃(𝒙̂) = 𝑾 2𝝈(𝑾 1𝒙̂ + 𝒃̃1). (45)

Remark 5. This framework for computing a subnet can easily be extended to neural networks with arbitrarily many sparse linear
layers provided that the sparsity patterns for each layer’s weight matrix is known. Thus one could construct deep sparse autoencoders
with narrower width than the architectures considered here. However, for this paper we only consider single-layer, wide, sparse
decoders.

6. Error analysis

We present a priori and a posteriori error bounds analogous to those found in [16]. To simplify notation, analogous to the notation
in Section 4.2, we denote the optimal solutions to the FOM (10), to the ROM (29), and the ROM solution lifted to the FOM state
pace as

𝒙∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒙𝛺∗
1

𝒙𝛤∗1
⋮

𝒙𝛺∗
𝑛𝛺

𝒙𝛤∗𝑛𝛺

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑁𝐷 , 𝒙̂∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒙̂𝛺∗
1

𝒙̂𝛤∗1
⋮

𝒙̂𝛺∗
𝑛𝛺

𝒙̂𝛤∗𝑛𝛺

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑛𝐷 , 𝒈(𝒙̂∗) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒈𝛺1 (𝒙̂
𝛺∗
1 )

𝒈𝛤1 (𝒙̂
𝛤∗
1 )

⋮
𝒈𝛺𝑛𝛺 (𝒙̂

𝛺∗
𝑛𝛺

)
𝒈𝛤𝑛𝛺 (𝒙̂

𝛤∗
𝑛𝛺

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑁𝐷 , (46)

espectively, where 𝑁𝐷 =
∑𝑛𝛺
𝑖=1(𝑁

𝛺
𝑖 +𝑁𝛤

𝑖 ) and, as before, 𝑛𝐷 =
∑𝑛𝛺
𝑖=1(𝑛

𝛺
𝑖 + 𝑛𝛤𝑖 ). We also define the FOM constraint matrix

𝑨 =
[

𝟎 𝑨1 … 𝟎 𝑨𝑛𝛺

]

∈ R𝑁𝐴×𝑁𝐷 (47)

o that the constraints ((10)b) can be written as 𝑨𝒙 = 𝟎. As in Section 4, we define the constraint functions 𝑨̃𝑖 ∶ R𝑛
𝛤
𝑖 → R𝑛𝐴 , where

̃ 𝑖(𝒙̂
𝛺
𝑖 ) = 𝑪𝑨𝑖𝒈𝛤𝑖 (𝒙̂

𝛤
𝑖 ) in the WFPC case (13) and 𝑨̃𝑖(𝒙̂

𝛤
𝑖 ) = 𝑨̂𝑖𝒙̂

𝛤
𝑖 in the SRPC case (23), so that the DD-LSPG-ROMs (13) and (23)

an be written as (29). We define the ROM constraint function 𝑨̃ ∶ R𝑛𝐷 → R𝑛𝐴 as

𝑨̃(𝒙̂) =
𝑛𝛺
∑

𝑖=1
𝑨̃𝑖(𝒙̂

𝛤
𝑖 ), (48)

o that the constraints ((29)b) can be written as 𝑨̃(𝒙̂) = 𝟎. Lastly we define the feasible set

ROM =
{

𝒙̂ ∈ R𝑛𝐷 ∶ 𝑨̃(𝒙̂) = 𝟎
}

(49)

or (29).
The next two results provide basic error bounds between a solution to the FOM (9) and solutions to the DD-LSPG-ROM (13) or

23).

heorem 5 (A Posteriori Error Bound). Let 𝒙∗ ∈ R𝑁𝐷 be a solution to the FOM (9) and let 𝒙̂∗ ∈ R𝑛𝐷 be a (local) solution to the
D-LSPG-ROM (13) or (23). If the residual is inverse Lipschitz continuous, that is, if there exists 𝜅𝓁 > 0 such that

( 𝑛𝛺
∑

𝑖=1

‖

‖

‖

𝒓𝑖(𝒚𝛺𝑖 , 𝒚
𝛤
𝑖 ) − 𝒓𝑖(𝒛𝛺𝑖 , 𝒛

𝛤
𝑖 )
‖

‖

‖

2

2

)1∕2

≥ 𝜅𝓁 ‖𝒚 − 𝒛‖2 ∀ 𝒚, 𝒛 ∈ R𝑁𝐷 , (50a)

nd if there exists 𝑃 > 0 such that
( 𝑛𝛺
∑

‖

‖

‖

𝑩𝑖𝒓𝑖(𝒚𝛺𝑖 , 𝒚
𝛤
𝑖 )
‖

‖

‖

2

2

)1∕2

≥ 𝑃

( 𝑛𝛺
∑

‖

‖

‖

𝒓𝑖(𝒚𝛺𝑖 , 𝒚
𝛤
𝑖 )
‖

‖

‖

2

2

)1∕2

∀ 𝒚 ∈ 𝒈(ROM), (50b)
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B

T
N
a

then

‖

‖

𝒙∗ − 𝒈(𝒙̂∗)‖
‖2 ≤

1
𝑃𝜅𝓁

( 𝑛𝛺
∑

𝑖=1

‖

‖

‖

𝑩𝑖𝒓𝑖𝒈𝛺𝑖 (𝒙̂
𝛺∗), 𝒈𝛤𝑖 (𝒙̂

𝛤∗)‖‖
‖

2

2

)1∕2

. (51)

roof. Using ((50)a) and the fact that 𝒙∗ ∈ R𝑁𝐷 solves the FOM (9) gives

‖

‖

𝒙∗ − 𝒈(𝒙̂∗)‖
‖

2
2 ≤

1
𝜅2𝓁

𝑛𝛺
∑

𝑖=1

‖

‖

‖

𝒓𝑖(𝒙𝛺∗
𝑖 ,𝒙𝛤∗𝑖 ) − 𝒓𝑖(𝒈𝛺𝑖 (𝒙̂

𝛺∗
𝑖 ), 𝒈𝛤𝑖 (𝒙̂

𝛤∗
𝑖 ))‖‖

‖

2

2
≤ 1
𝜅2𝓁

𝑛𝛺
∑

𝑖=1

‖

‖

‖

𝒓𝑖(𝒈𝛺𝑖 (𝒙̂
𝛺∗
𝑖 ), 𝒈𝛤𝑖 (𝒙̂

𝛤∗
𝑖 ))‖‖

‖

2

2
.

Applying ((50)b) with (𝒚𝛺𝑖 , 𝒚
𝛤
𝑖 ) = (𝒈𝛺𝑖 (𝒙̂

𝛺∗
𝑖 ), 𝒈𝛤𝑖 (𝒙̂

𝛤∗
𝑖 )) gives the desired result. □

Theorem 6 (A Priori Error Bound). Let 𝒙∗ ∈ R𝑁𝐷 be a solution to the FOM (9) and let 𝒙̂∗ ∈ R𝑛𝐷 be a solution to the DD-LSPG-ROM (13)
or (23). If the inequalities ((50)a, b) hold and the HR residual is Lipschitz continuous, i.e., there exists 𝜅𝑢 > 0 such that

( 𝑛𝛺
∑

𝑖=1

‖

‖

‖

𝑩𝑖𝒓𝑖(𝒚𝛺𝑖 , 𝒚
𝛤
𝑖 ) − 𝑩𝑖𝒓𝑖(𝒛𝛺𝑖 , 𝒛

𝛤
𝑖 )
‖

‖

‖

2

2

)1∕2

≤ 𝜅𝑢 ‖𝒚 − 𝒛‖2 ∀ 𝒚, 𝒛 ∈ R𝑁𝐷 , (52)

then
‖

‖

𝒙∗ − 𝒈(𝒙̂∗)‖
‖2 ≤

𝜅𝑢
𝑃𝜅𝓁

inf
𝒘̂∈ROM

‖

‖

𝒙∗ − 𝒈(𝒘̂)‖
‖2 . (53)

Proof. Since 𝒙̂∗ ∈ R𝑛𝐷 is a solution to the DD-LSPG-ROM (13) or (23), any feasible 𝒘̂, i.e., any 𝒘̂ ∈ ROM satisfies
𝑛𝛺
∑

𝑖=1

‖

‖

‖

𝑩𝑖𝒓𝑖(𝒈𝛺𝑖 (𝒙̂
𝛺∗
𝑖 ), 𝒈𝛤𝑖 (𝒙̂

𝛤∗
𝑖 ))‖‖

‖

2

2
≤

𝑛𝛺
∑

𝑖=1

‖

‖

‖

𝑩𝑖𝒓𝑖(𝒈𝛺𝑖 (𝒘̂
𝛺∗
𝑖 ), 𝒈𝛤𝑖 (𝒘̂

𝛤∗
𝑖 ))‖‖

‖

2

2
. (54)

Moreover, since 𝒙∗ ∈ R𝑁𝐷 solves the FOM (9), 𝒓𝑖(𝒙𝛺∗
𝑖 ,𝒙𝛤∗𝑖 ) = 𝟎, for all 𝑖 = 1,… , 𝑛𝛺, (52) and (54) imply

𝑛𝛺
∑

𝑖=1

‖

‖

‖

𝑩𝑖𝒓𝑖(𝒈𝛺𝑖 (𝒙̂
𝛺∗
𝑖 ), 𝒈𝛤𝑖 (𝒙̂

𝛤∗
𝑖 ))‖‖

‖

2

2
≤

𝑛𝛺
∑

𝑖=1

‖

‖

‖

𝑩𝑖𝒓𝑖(𝒙𝛺∗
𝑖 ,𝒙𝛤∗𝑖 ) − 𝑩𝑖𝒓𝑖(𝒈𝛺𝑖 (𝒘̂

𝛺
𝑖 ), 𝒈

𝛤
𝑖 (𝒘̂

𝛤
𝑖 ))

‖

‖

‖

2

2

≤ 𝜅𝑢 ‖‖𝒙
∗ − 𝒈(𝒘̂)‖

‖2 for all 𝒘̂ ∈ ROM.

Combining this result with the a-posterior bound (51) in Theorem 5 yields ‖
‖

𝒙∗ − 𝒈(𝒙̂∗)‖
‖2 ≤

𝜅𝑢
𝑃𝜅𝓁

‖

‖

𝒙∗ − 𝒈(𝒘̂)‖
‖2 for all 𝒘̂ ∈ ROM, which

implies (53). □

Remark 6. As a consequence of Theorem 6, if ((50)a, b) and (52) hold, and if 𝒙∗ is in the image of the 𝒈 over the feasible set ROM
f (13), i.e. if 𝒙∗ ∈ 𝒈(ROM), then 𝒙∗ = 𝒈(𝒙̂∗).

The error bounds in Theorems 5 and 6 only involve the FOM and ROM states, but not the Lagrange multipliers. However, the
resent error bounds require stronger assumptions such as ((50)a). Alternatively, one could try to extend the error analysis for ROMs
pplied to nonlinear systems. such as those in [22, Sec. 11.5], [72]. In the context of the FOM (9) and the DD-LSPG-ROM (13) or (23)
he role of the nonlinear residual in [22, Sec. 11.5], [72] would now be played by the system of first order necessary optimality
onditions, given by (31) for the general ROM formulation (29) and correspondingly for the FOM (9). However, these residuals
nvolve the FOM states and Lagrange multipliers associated with ((9)b), and ROM states and Lagrange multipliers associated with
(29)b). Moreover, this analysis requires to relate the ROM states with the FOM states and the ROM Lagrange multipliers with
he FOM Lagrange multipliers. The former is done via 𝒈(𝒙̂) ≈ 𝒙∗. However, the connection between the Lagrange multipliers in the
eneral case is still open. For linear PDEs and a PDE-based (as opposed to our algebraic) DD formulation, [10] construct appropriate,
o called trace-compatible reduced bases for the Lagrange multipliers (see e.g., [10, Eq. (14)]). In the context of [10], the reduced
ases for the Lagrange multipliers determine the ROM constraints ((29)b). In our setting we first derive ROM constraints ((29)b),
hich yield ROM Lagrange multipliers, but no explicit construction of a reduced bases for these ROM Lagrange multipliers. This is
ubject of future research.

. Numerics

We apply LS-ROM and NM-ROM with and without HR to the DD ROM with WFPC (13) and with SRPC (23) for the 2D steady-state
urgers equation. We use the following formula for computing the relative error between the FOM and ROM solutions:

𝑒 =

⎛

⎜

⎜

⎜

⎝

1
𝑛𝛺

𝑛𝛺
∑

𝑖=1

‖

‖

‖

𝒙𝛺𝑖 − 𝒈𝛺𝑖 (𝒙̂
𝛺
𝑖 )

‖

‖

‖

2

2
+ ‖

‖

‖

𝒙𝛤𝑖 − 𝒈𝛤𝑖 (𝒙̂
𝛤
𝑖 )
‖

‖

‖

2

2

‖

‖

‖

𝒙𝛺𝑖
‖

‖

‖

2

2
+ ‖

‖

‖

𝒙𝛤𝑖
‖

‖

‖

2

2

⎞

⎟

⎟

⎟

⎠

1∕2

. (55)

he autoencoder training and subsequent computations in this section were performed on the Lassen machine at Lawrence Livermore
ational Laboratory, which consists of an IBM Power9 processor with NVIDIA V100 (Volta) GPUs, clock speed between 2.3–3.8 GHz,
17
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The implementation of the DD FOM, DD LS-ROM, and DD NM-ROM is done sequentially. However, to highlight potential
dvantages of a parallel implementation, the recorded wall clock time for the computation of the subdomain-specific quantities
equired by the SQP solver is taken to be the largest wall clock time incurred among all subdomains. The wall clock time for the
emaining steps of the SQP solver (e.g. assembling and solving the KKT system (33), updating the interior- and interface-states and
Lagrange multipliers Eq. (38), etc.) is set to the overall wall clock time to execute the steps.

7.1. 2D Burgers’ equation

In this experiment, we consider the 2D steady-state Burgers’ equation on the domain [−1, 1] × [0, 0.05]

𝑢 𝜕𝑢
𝜕𝑥

+ 𝑣 𝜕𝑢
𝜕𝑦

= 𝜈
(

𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

)

, (𝑥, 𝑦) ∈ [−1, 1] × [0, 0.05], (56a)

𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣
𝜕𝑦

= 𝜈
(

𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

)

, (𝑥, 𝑦) ∈ [−1, 1] × [0, 0.05], (56b)

where 𝜈 > 0 is the viscosity. As in [16], we consider the following exact solution, and its restriction to the boundary as Dirichlet
boundary conditions:

𝑢𝑒𝑥(𝑥, 𝑦; 𝑎, 𝜆) = −2𝜈
[

𝑎 + 𝜆
(

𝑒𝜆(𝑥−1) − 𝑒−𝜆(𝑥−1)
)

cos(𝜆𝑦)
]

∕𝜓(𝑥, 𝑦; 𝑎, 𝜆), (57a)

𝑣𝑒𝑥(𝑥, 𝑦; 𝑎, 𝜆) = 2𝜈
[

𝜆
(

𝑒𝜆(𝑥−1) + 𝑒−𝜆(𝑥−1)
)

sin(𝜆𝑦)
]

∕𝜓(𝑥, 𝑦; 𝑎, 𝜆), (57b)

where

𝜓(𝑥, 𝑦; 𝑎, 𝜆) = 𝑎(1 + 𝑥) +
(

𝑒𝜆(𝑥−1) + 𝑒−𝜆(𝑥−1)
)

cos(𝜆𝑦), (57c)

and where (𝑎, 𝜆) are parameters.
The PDE is discretized using centered finite differences with 𝑛𝑥 + 2 uniformly spaced grid points in the 𝑥-direction and 𝑛𝑦 + 2

uniformly spaced grid points in the 𝑦-direction, resulting in grid points (𝑥𝑖, 𝑦𝑗 ) where

𝑥𝑖 = −1 + 𝑖ℎ𝑥, 𝑖 = 0,… , 𝑛𝑥 + 1,

𝑦𝑗 = 𝑗ℎ𝑦, 𝑗 = 0,… , 𝑛𝑦 + 1,

where ℎ𝑥 = 2∕(𝑛𝑥 + 1) and ℎ𝑦 = 0.05∕(𝑛𝑦 + 1). The solutions 𝑢, 𝑣 on the grid points are denoted 𝑢𝑖𝑗 ≈ 𝑢(𝑥𝑖, 𝑦𝑗 ) and 𝑣𝑖𝑗 ≈ 𝑣(𝑥𝑖, 𝑦𝑗 ). The
PDE is then discretized using centered finite differences for the first and second derivative terms. The fully discretized system is
given by

𝟎 = 𝒓𝑢(𝒖, 𝒗) = 𝒖⊙ (𝑩𝑥𝒖 − 𝒃𝑢,𝑥) + 𝒗⊙ (𝑩𝑦𝒖 − 𝒃𝑢,𝑦) + 𝑪𝒖 + 𝒄𝑢, (58a)

𝟎 = 𝒓𝑣(𝒖, 𝒗) = 𝒖⊙ (𝑩𝑥𝒗 − 𝒃𝑣,𝑥) + 𝒗⊙ (𝑩𝑦𝒗 − 𝒃𝑣,𝑦) + 𝑪𝒗 + 𝒄𝑣, (58b)

where ⊙ represents the Hadamard product, and where

𝒖 =
⎡

⎢

⎢

⎣

𝒖[1]
⋮

𝒖[𝑛𝑦]

⎤

⎥

⎥

⎦

∈ R𝑛𝑥𝑛𝑦 , 𝒖[𝑗] =
⎡

⎢

⎢

⎣

𝑢1,𝑗
⋮

𝑢𝑛𝑥 ,𝑗

⎤

⎥

⎥

⎦

∈ R𝑛𝑥 , 𝑗 = 1,… , 𝑛𝑦, (59a)

𝒗 =
⎡

⎢

⎢

⎣

𝒗[1]
⋮

𝒗[𝑛𝑦]

⎤

⎥

⎥

⎦

∈ R𝑛𝑥𝑛𝑦 , 𝒗[𝑗] =
⎡

⎢

⎢

⎣

𝑣1,𝑗
⋮

𝑣𝑛𝑥 ,𝑗

⎤

⎥

⎥

⎦

∈ R𝑛𝑥 , 𝑗 = 1,… , 𝑛𝑦, (59b)

𝑩𝑥 = − 1
2ℎ𝑥

(

𝑰𝑛𝑦 ⊗ 𝑩̃𝑥

)

∈ R𝑛𝑥𝑛𝑦×𝑛𝑥𝑛𝑦 , 𝑩̃𝑥 =
⎡

⎢

⎢

⎣

0 1
−1 ⋱ 1

− 1 0

⎤

⎥

⎥

⎦

∈ R𝑛𝑥×𝑛𝑥 , (59c)

𝑩𝑦 = − 1
2ℎ𝑦

(

𝑩̃𝑦 ⊗ 𝑰𝑛𝑥
)

∈ R𝑛𝑥𝑛𝑦×𝑛𝑥𝑛𝑦 𝑩̃𝑦 =
⎡

⎢

⎢

⎣

0 1
−1 ⋱ 1

− 1 0

⎤

⎥

⎥

⎦

∈ R𝑛𝑦×𝑛𝑦 , (59d)

𝑪 = 𝜈
ℎ2𝑥

(

𝑰𝑛𝑦 ⊗ 𝑪̃𝑥

)

+ 𝜈
ℎ2𝑦

(

𝑪̃𝑦 ⊗ 𝑰𝑛𝑥
)

∈ R𝑛𝑥𝑛𝑦×𝑛𝑥𝑛𝑦 , (59e)

𝑪̃𝑥 =
⎡

⎢

⎢

⎣

−2 1
1 ⋱

1 −2

⎤

⎥

⎥

⎦

∈ R𝑛𝑥×𝑛𝑥 , 𝑪̃𝑦 =
⎡

⎢

⎢

⎣

−2 1
1 ⋱

1 −2

⎤

⎥

⎥

⎦

∈ R𝑛𝑦×𝑛𝑦 , (59f)

𝒃𝑢,𝑥 = − 1
2ℎ𝑥

(𝒃𝑢𝑥𝓁 − 𝒃𝑢𝑥𝑟), 𝒃𝑢,𝑦 = − 1
2ℎ𝑦

(𝒃𝑢𝑦𝓁 − 𝒃𝑢𝑦𝑟), (59g)

𝒄𝑢 =
𝜈
2
(𝒃𝑢𝑥𝓁 + 𝒃𝑢𝑥𝑟) +

𝜈
2
(𝒃𝑢𝑦𝓁 + 𝒃𝑢𝑦𝑟) (59h)
18

ℎ𝑥 ℎ𝑦
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Fig. 4. Top left: 𝑢-component with (𝑎, 𝜆) = (104 , 5); Top right: 𝑣-component with (𝑎, 𝜆) = (104 , 5); Bottom left: 𝑢-component with (𝑎, 𝜆) = (1, 25); Bottom right:
𝑣-component with (𝑎, 𝜆) = (1, 25).

𝒃𝑣,𝑥 = − 1
2ℎ𝑥

(𝒃𝑣𝑥𝓁 − 𝒃𝑣𝑥𝑟), 𝒃𝑣,𝑦 = − 1
2ℎ𝑦

(𝒃𝑣𝑦𝓁 − 𝒃𝑣𝑦𝑟), (59i)

𝒄𝑣 =
𝜈
ℎ2𝑥

(𝒃𝑣𝑥𝓁 + 𝒃𝑣𝑥𝑟) +
𝜈
ℎ2𝑦

(𝒃𝑣𝑦𝓁 + 𝒃𝑣𝑦𝑟) (59j)

𝒃𝑢𝑥𝓁 =
⎡

⎢

⎢

⎣

𝑢𝑒𝑥(𝑥0, 𝑦1)
⋮

𝑢𝑒𝑥(𝑥0, 𝑦𝑛𝑦 )

⎤

⎥

⎥

⎦

⊗

⎡

⎢

⎢

⎢

⎢

⎣

1
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦𝑛𝑥×1

∈ R𝑛𝑥𝑛𝑦 , 𝒃𝑢𝑥𝑟 =
⎡

⎢

⎢

⎢

⎣

𝑢𝑒𝑥(𝑥𝑛𝑥+1, 𝑦1)
⋮

𝑢𝑒𝑥(𝑥𝑛𝑥+1, 𝑦𝑛𝑦 )

⎤

⎥

⎥

⎥

⎦

⊗

⎡

⎢

⎢

⎢

⎢

⎣

0
⋮
0
1

⎤

⎥

⎥

⎥

⎥

⎦𝑛𝑥×1

∈ R𝑛𝑥𝑛𝑦 , (59k)

𝒃𝑢𝑦𝑏 =

⎡

⎢

⎢

⎢

⎢

⎣

1
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦𝑛𝑦×1

⊗
⎡

⎢

⎢

⎣

𝑢𝑒𝑥(𝑥1, 𝑦0)
⋮

𝑢𝑒𝑥(𝑥𝑛𝑥 , 𝑦0)

⎤

⎥

⎥

⎦

∈ R𝑛𝑥𝑛𝑦 𝒃𝑢𝑦𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

0
⋮
0
1

⎤

⎥

⎥

⎥

⎥

⎦𝑛𝑦×1

⊗

⎡

⎢

⎢

⎢

⎣

𝑢𝑒𝑥(𝑥1, 𝑦𝑛𝑦+1)
⋮

𝑢𝑒𝑥(𝑥𝑛𝑥 , 𝑦𝑛𝑦+1)

⎤

⎥

⎥

⎥

⎦

∈ R𝑛𝑥𝑛𝑦 (59l)

𝒃𝑣𝑥𝓁 =
⎡

⎢

⎢

⎣

𝑣𝑒𝑥(𝑥0, 𝑦1)
⋮

𝑣𝑒𝑥(𝑥0, 𝑦𝑛𝑦 )

⎤

⎥

⎥

⎦

⊗

⎡

⎢

⎢

⎢

⎢

⎣

1
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦𝑛𝑥×1

∈ R𝑛𝑥𝑛𝑦 , 𝒃𝑣𝑥𝑟 =
⎡

⎢

⎢

⎢

⎣

𝑣𝑒𝑥(𝑥𝑛𝑥+1, 𝑦1)
⋮

𝑣𝑒𝑥(𝑥𝑛𝑥+1, 𝑦𝑛𝑦 )

⎤

⎥

⎥

⎥

⎦

⊗

⎡

⎢

⎢

⎢

⎢

⎣

0
⋮
0
1

⎤

⎥

⎥

⎥

⎥

⎦𝑛𝑥×1

∈ R𝑛𝑥𝑛𝑦 , (59m)

𝒃𝑣𝑦𝑏 =

⎡

⎢

⎢

⎢

⎢

⎣

1
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦𝑛𝑦×1

⊗
⎡

⎢

⎢

⎣

𝑣𝑒𝑥(𝑥1, 𝑦0)
⋮

𝑣𝑒𝑥(𝑥𝑛𝑥 , 𝑦0)

⎤

⎥

⎥

⎦

∈ R𝑛𝑥𝑛𝑦 𝒃𝑣𝑦𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

0
⋮
0
1

⎤

⎥

⎥

⎥

⎥

⎦𝑛𝑦×1

⊗

⎡

⎢

⎢

⎢

⎣

𝑣𝑒𝑥(𝑥1, 𝑦𝑛𝑦+1)
⋮

𝑣𝑒𝑥(𝑥𝑛𝑥 , 𝑦𝑛𝑦+1)

⎤

⎥

⎥

⎥

⎦

∈ R𝑛𝑥𝑛𝑦 . (59n)

For the monolithic (single domain) FOM, we take 𝑛𝑥 = 480, 𝑛𝑦 = 24, viscosity 𝜈 = 0.1, and parameters (𝑎, 𝜆) ∈  = [1, 104]×[5, 25].
The parameter 𝑎 corresponds to the distance of the shock from the left boundary, whereas 𝜆 corresponds to the steepness of the
shock, as illustrated in Fig. 4. We use the ROMs to predict the case where (𝑎, 𝜆) = (7692.5384, 21.9230). The SQP solver for the
DD FOM, DD LS-ROM, and DD NM-ROM terminates when the 2-norm of the right hand side of (33) is less than 10−4, or after 15
iterations.

7.2. Snapshot data collection

To compute ROMs, we first collect 6400 snapshots for training with parameters (𝑎, 𝜆) uniformly sampled in a 80 × 80 grid for
the full-domain problem. These full-domain snapshots are then restricted to the interior, interface, and port states, which are then
used for training. This is the so-called ‘‘top-down’’ approach. The residual bases Φ𝑟

𝑖 for each subdomain are computed by taking the
Newton iteration history for 400 state snapshots sampled on a 20 × 20 (𝑎, 𝜆) grid, and computing a POD basis with energy criterion
𝜈 = 10−10. These 400 state snapshots are then used to train RBF interpolator models (using Scipy’s RBFInterpolator function)
for each subdomain’s interior and interface states, which are then used to compute an initial iterate for (𝒙̂𝛺𝑖 , 𝒙̂

𝛤
𝑖 ) for the SQP solver.

̂𝛺 ̂𝛤
19

The (𝒙𝑖 ,𝒙𝑖 ) initial iterates are then used to compute an initial iterate for the Lagrange multipliers 𝝀 by applying a least-squares
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Fig. 5. Three-banded sparsity mask for decoder.

Table 1
Comparison of dense and sparse encoder architectures.

Train loss Test loss Width # encoder parameters

Dense encoder 5.74 × 10−2 1.56 × 10−1 17280 9.96 × 107

Sparse encoder 7.21 × 10−5 7.48 × 10−5 28800 2.3 × 105

solver to equation ((32)b). The wall clock time to compute the initial iterates (𝒙̂𝛺𝑖 , 𝒙̂
𝛤
𝑖 ) is taken to be the largest wall clock time

ncurred among all subdomains, while the wall clock time to compute the initial iterate for 𝝀 is the time required to sequentially
olve the least-squares problem ((32)b). The wall clock time to compute the initial iterate for NM-ROM using the RBF interpolator
s included in the computation times and speedups reported.

.3. Autoencoder training

For NM-ROM, we randomly split the state snapshots into 5760 training snapshots and 640 testing snapshots. For training the
utoencoders, we use the MSE loss, the Adam optimizer over 2000 epochs, and a batch size of 32. We also normalize the snapshots
o that all snapshot components are in [−1, 1], and apply a de-normalization layer to the output of the autoencoder. We apply early
topping with a stopping patience of 300, and reduce the learning rate on plateau with an initial learning rate of 10−3 and a patience
of 50. The implementation was done using PyTorch, as well as the Pytorch Sparse and SparseLinear packages.

The sparsity masks used for the output layers of the decoders have a banded structure inspired by 2D finite difference stencils.
Each row has three bands, where each band consists of contiguous nonzero entries, and where the band shifts to the right a specified
amount from one row to the next. The number of nonzero entries per band and the number of columns the band shifts over are
hyper-parameters The separation between the bands in each row is equal to the product of the number of nonzeros per band and
the column-shift per row. These parameters, as well as the dimension of the interior and interface states, determine the width of
the decoders. Fig. 5 provides a visualization for the decoder mask used. The transpose of these masks is used at input layer of the
encoders.

7.4. Dense vs sparse encoder

We first briefly compare the performance of a dense encoder with a sparse encoder. We train two autoencoders, one with a fully
dense encoder and one with a sparse encoder, on a coarse, single domain problem with 𝑛𝑥 = 240 and 𝑛𝑦 = 12. Both decoders share
he same sparse architecture. The data collection, training, and relevant sparsity masks are identical to the procedures discussed in
ection 7.3. The discretization results in a FOM size of 5760 and we used a ROM of size 4.
Table 1 summarizes the key performance differences between the two encoders. Importantly, the sparse encoder architecture

chieves losses 4 orders of magnitude smaller than the dense encoder with 2 orders of magnitude fewer parameters.

.5. Single-domain NM-ROM vs DD NM-ROM

Next we examine the per-subdomain reduction in the required number of autoencoder parameters for different DD configurations
ompared to the monolithic single-domain NM-ROM. See Table 2. In the single domain case, we solve the LSPG problem

min
𝒙̂

‖

‖

‖

𝑩𝒓
(

𝒈
(

𝒙̂
))

‖

‖

‖

2

2
(60)

sing the Gauss–Newton method. The function 𝒈 ∶ R𝑛𝑥 → R𝑁𝑥 is the decoder of an autoencoder trained on snapshots of the
onolithic single-domain FOM as discussed in Sections 3.4, 5, and 7.3, and 𝑩 ∈ {0, 1}𝑁𝐵×𝑁𝑥 is a collocation HR matrix, as discussed
n Section 5.3.
We use the notation 2 × 1 subdomains to indicate 2 subdomains in the 𝑥-direction and 1 subdomain in the 𝑦-direction. As

xpected, from Table 2, we see that the maximum number of NN parameters per subdomain decreases significantly as more
ubdomains are used. Furthermore, the total number of NN parameters in the DD cases also decreases relative to the single-domain
ase. We also note that the error increases as more subdomains are used. We kept (𝑛𝛺𝑖 , 𝑛

𝛤
𝑖 ) = (6, 3) constant for each subdomain

onfiguration to isolate the effect of DD on the number of NN parameters, but this may cause overfitting in the 16 subdomain case.
20

ore careful hyper-parameter tuning is necessary to mitigate increases in error as the number of subdomains is increased.



Computer Methods in Applied Mechanics and Engineering 425 (2024) 116943A.N. Diaz et al.

9

i
f
f
s
s

a
d
a
n

4
e
L
N
r
a

a
h
f
b

T
(

p

H
a
o
=
a
a

t
c
r

2
o
r
o
r

Table 2
Max number of NN parameters per subdomain, the per-subdomain reduction in number of NN parameters, the total number of parameters, and the corresponding
error for different subdomain configurations. For the single-domain case, an NM-ROM of dimension 𝑛 = 9 is used. For the DD cases, (𝑛𝛺𝑖 , 𝑛𝛤𝑖 ) = (6, 3), resulting in
DoF per subdomain. HR was not used to evaluate the NM-ROMs in these examples.
Subdomains Max # subdomain params. Reduction Total # params. Error

1 × 1 2.995 × 106 0.0% 2.995 × 106 1.08 × 10−3

2 × 1 1.147 × 106 61.7% 2.307 × 106 1.27 × 10−3

2 × 2 5.257 × 105 82.4% 2.384 × 106 2.42 × 10−3

4 × 2 2.617 × 105 91.3% 2.391 × 106 4.26 × 10−3

8 × 2 1.297 × 105 95.7% 2.406 × 106 4.58 × 10−2

7.6. LS-ROM vs NM-ROM comparison

Next we compare the DD LS-ROM and DD NM-ROM. We first focus on a DD configuration with 2 uniformly sized subdomains
in the 𝑥-direction and 2 uniformly sized subdomains in the 𝑦-direction (4 subdomains total) using the WFPC formulation (13). The
nterior and interface states for the FOM were of dimension 𝑁𝛺

𝑖 = 5238 and 𝑁𝛤
𝑖 = 1006, respectively, resulting in 25056 degrees of

reedom (DoF) aggregated across all subdomains. For both the LS-ROM and NM-ROM, we use reduced state dimensions of 𝑛𝛺𝑖 = 8
or the interior states 𝒙̂𝛺𝑖 and 𝑛𝛤𝑖 = 4 for the interface states 𝒙̂𝛤𝑖 for each subdomain, resulting in 48 DoF aggregated across all
ubdomains. In the HR case, 𝑁𝐵

𝑖 = 100 HR nodes are used for each subdomain, resulting in 400 total HR nodes aggregated all
ubdomains.
Each interior-state autoencoder has input/output dimension 𝑁𝛺

𝑖 = 5238, width 𝑤𝛺𝑖 = 26290, latent dimension 𝑛𝛺𝑖 = 8, and Swish
ctivation 𝝈𝛺𝑖 (𝑧) = 𝑧∕(1 + 𝑒−𝑧). Each interface-state autoencoder has input/output dimension 𝑁𝛤

𝑖 = 1006, width 𝑤𝛤𝑖 = 5030, latent
imension 𝑛𝛤𝑖 = 4, and Swish activation. The number of nonzeros per row and column-shift were both set to 5 for both the interior
nd interface state decoders. The number of nonzeros for the interior-states masks is 78820, resulting in 99.94% sparsity, while the
umber of nonzeros for the interface-states masks is 15040, resulting in 99.70% sparsity.
Fig. 6 shows the FOM, LS-ROM, and NM-ROM solutions without HR, and Fig. 8 shows the solutions with collocation HR using

8 DoF in both cases. In both the HR and non-HR cases with the same DoF, NM-ROM achieves an order of magnitude lower relative
rror than LS-ROM, as evidenced in Figs. 7 and 9 and Table 3. Without HR, NM-ROM achieves a relative error of 1.28 × 10−3 while
S-ROM achieves a relative error 1.98 × 10−2 using the same number of DoF. LS-ROM also achieves a speedup of 30.0, whereas
M-ROM achieves a 21.7 times speedup. With HR, NM-ROM achieves a relative error of 1.64 × 10−3 while LS-ROM achieves a
elative error 1.44 × 10−2 using the same number of DoF. In the HR case, LS-ROM achieves a speedup of 347.6, whereas NM-ROM
chieves a 43.9 speedup.
Now we compare the performance of LS-ROM and NM-ROM for both the WFPC and SRPC formulations while varying the interior

nd interface ROM state dimensions 𝑛𝛺𝑖 and 𝑛𝛤𝑖 . For WFPC, the decoders 𝒈
𝛺
𝑖 and 𝒈𝛤𝑖 use Swish activations, and their sparsity masks

ave 5 nonzeros per band and a column-shift of 5 for each test. For SRPC, the interior-state decoders 𝒈𝛺𝑖 are reused from the WFPC
ormulation, and the port-state decoders 𝒈𝑝𝑗 were chosen to have Sigmoid activation and sparsity masks with 3 nonzero entries per
and with column-shift of 3. We also define 𝑛𝑝𝑗 , which determines the port latent dimensions 𝑛

𝑝
𝑗 via the relation

𝑛𝑝𝑗 = max
{

min
{

𝑁𝑝
𝑗 − 1, 𝑛𝑝𝑗

}

, 1
}

, ∀ 𝑗 = 1,… , 𝑛𝑝.

his rule was chosen to ensure that 1 ≤ 𝑛𝑝𝑗 < 𝑁𝑝
𝑗 because some DD configurations have ports with a very small number of nodes

e.g., 𝑁𝑝
𝑗 = 2). Recall that for SRPC, the ROM interface-state dimension is 𝑛𝛤𝑖 =

∑

𝑗∈𝑄(𝑖) 𝑛
𝑝
𝑗 .

Table 3 shows the relative error and speedup for LS-ROM and NM-ROM for both WFPC and SRPC on the 2 × 2 subdomain
roblem with and without HR while varying 𝑛𝛺𝑖 , 𝑛

𝑝
𝑗 , and 𝑛

𝛤
𝑖 .

From Table 3, we see that NM-ROM consistently achieves an order of magnitude lower error than LS-ROM both with and without
R when comparing ROMs of the same dimensions and constraint formulations. In the non-HR case with WFPC, LS-ROM only
chieves an order 10−3 error for a ROM with 96 total DoF (rel. error = 2.66×10−3), while NM-ROM can achieve a similar error with
nly 36 DoF (rel. error = 2.42 × 10−3) and a higher speedup (speedup = 26.2) compared to LS-ROM with similar accuracy (speedup
18.3). For SRPC, LS-ROM was only able to achieve order 10−2 accuracy for all cases tested. We also see that LS-ROM achieves
much higher speedup in the HR cases while retaining similar errors from the non-HR cases. NM-ROM also retains high accuracy
fter HR, and gains an extra 15-20× speedup after applying HR.
Next we examine the effect of subdomain configuration on the accuracy of LS-ROM and NM-ROM. Again let 𝑛𝑥𝛺 and 𝑛𝑦𝛺 denote

he number of subdomains in the 𝑥- and 𝑦-directions, respectively. In each case, the subdomains are of uniform size. For the WFPC
ases, we used (𝑛𝛺𝑖 , 𝑛

𝛤
𝑖 ) = (8, 4) for each subdomain, and for the SRPC cases, we used (𝑛𝛺𝑖 , 𝑛

𝑝
𝑗 ) = (8, 2) for each subdomain and port,

espectively. For the HR cases, we used 𝑁𝐵
𝑖 = 100 HR nodes. The results for the non-HR and HR cases are reported in Table 4.

Table 4 shows that LS-ROM is more sensitive to subdomain configuration than NM-ROM in the WFPC cases. Indeed, when using
subdomains in the 𝑦-direction, the relative error for LS-ROM increases to the order of 10−2, compared to errors on the order
f 10−3 when only 1 subdomain is used in the 𝑦-direction. In contrast, relative error for NM-ROM with WFPC is more stable with
espect to subdomain configuration. The relative errors are on the order of 10−3 for all configuration considered. For SRPC, LS-ROM
nly achieves order 10−3 relative error for the (𝑛𝑥𝛺 , 𝑛

𝑦
𝛺) = (2, 1) configuration, while the remaining configurations have order 10−2

−3 𝑥 𝑦
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r

Fig. 6. Top left: 𝑢-component of FOM; Top right: 𝑣-component of FOM; Middle left: 𝑢-component of LS-ROM without HR, WFPC, 48 DoF; Middle right: 𝑣-component
of LS-ROM without HR, WFPC, 48 DoF; Bottom left: 𝑢-component of NM-ROM without HR, WFPC, 48 DoF; Bottom right: 𝑣-component of NM-ROM without HR,
WFPC, 48 DoF.

Fig. 7. Top left: 𝑢 relative error for LS-ROM without HR, WFPC, 48 DoF; Top right: 𝑣 relative error for LS-ROM without HR, WFPC, 48 DoF; Bottom left: 𝑢
elative error for RM-ROM without HR, WFPC, 48 DoF; Bottom right: 𝑣 relative error for NM-ROM without HR, WFPC, 48 DoF.

order 10−2 relative error. For both WFPC and SRPC, the NM-ROM error increases slightly as more subdomains are used, but we
expect this error can be decreased by adjusting hyper-parameters during ROM training. Hyper-parameter tuning was only done for
the 2 × 2 subdomain configuration.

Tables 3 and 4 show that SRPC has slightly worse performance than WFPC. In particular, Table 3 shows that the relative errors
for both LS-ROM and NM-ROM with SRPC do not decrease monotonically as 𝑛𝛺𝑖 and 𝑛𝑝𝑗 increase. In contrast, the relative errors do
decrease monotonically as 𝑛𝛺𝑖 and 𝑛

𝛤
𝑖 increase for both LS-ROM and NM-ROM with WFPC. Furthermore, Table 4 shows that LS-ROM

with SRPC consistently has larger errors than with WFPC for each subdomain configuration. For NM-ROM, the relative errors and
speedups are similar between WFPC and SRPC for each subdomain configuration except for (𝑛𝑥 , 𝑛𝑦 ) = (4, 2), which has an order
22
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Fig. 8. Top left: 𝑢-component of FOM; Top right: 𝑣-component of FOM; Middle left: 𝑢-component of LS-ROM with collocation HR, WFPC, 48 DoF; Middle
ight: 𝑣-component of LS-ROM with collocation HR, WFPC, 48 DoF; Bottom left: 𝑢-component of NM-ROM with collocation HR, WFPC, 48 DoF; Bottom right:
-component of NM-ROM with collocation HR, WFPC, 48 DoF.

Fig. 9. Top left: 𝑢 relative error for LS-ROM with collocation HR, WFPC, 48 DoF; Top right: 𝑣 relative error for LS-ROM with collocation HR, WFPC, 48 DoF;
ottom left: 𝑢 relative error for NM-ROM with collocation HR, WFPC, 48 DoF; Bottom right: 𝑣 relative error for NM-ROM with collocation HR, WFPC, 48 DoF.

f magnitude higher error than the other configurations. Since SRPC performs as well or worse compared to WFPC for the cases
ested, we only consider WFPC in the remainder of this section.

.7. Pareto fronts

Next we compute Pareto fronts to compare LS-ROM and NM-ROM with WFPC while varying different parameters. The relative
rror reported is the same as defined in equation (55). Fig. 10 shows the Pareto fronts for varying (𝑛𝛺 , 𝑛𝛤 ) for both the non-HR and
23
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Table 3
Relative error and speedup for LS-ROM and NM-ROM with and without HR applied to the WFPC and SRPC formulations. We use 𝑁𝐵

𝑖 = 100 HR nodes per
subdomain in the HR case.

Constraints 𝑛𝛺𝑖 𝑛𝑝𝑗 𝑛𝛤𝑖 Total DoF Error Speedup Error (HR) Speedup (HR)

LS-ROM

WFPC

4 – 2 24 4.12 × 10−2 32.1 3.45 × 10−2 352.7
6 – 3 36 2.06 × 10−2 48.7 1.78 × 10−2 340.0
8 – 4 48 1.98 × 10−2 30.0 1.44 × 10−2 347.6
10 – 5 60 1.50 × 10−2 16.3 1.16 × 10−2 329.6
16 – 8 96 2.66 × 10−3 18.3 3.23 × 10−3 280.4

SRPC

6 1 5 44 5.17 × 10−2 24.5 5.12 × 10−2 315.6
8 2 7 60 3.75 × 10−2 22.0 4.22 × 10−2 313.9
10 3 9 76 1.87 × 10−2 19.4 2.94 × 10−2 262.6
16 4 11 108 2.00 × 10−2 17.8 3.37 × 10−2 253.8

NM-ROM

WFPC

4 – 2 24 6.94 × 10−3 22.7 7.04 × 10−3 37.4
6 – 3 36 2.42 × 10−3 26.2 2.60 × 10−3 44.7
8 – 4 48 1.28 × 10−3 21.7 1.64 × 10−3 43.9
10 – 5 60 1.09 × 10−3 15.0 1.19 × 10−3 43.6
16 – 8 96 7.87 × 10−4 13.9 9.80 × 10−4 37.5

SRPC

6 1 5 44 2.75 × 10−2 27.6 3.17 × 10−2 41.1
8 2 7 60 1.19 × 10−3 28.8 1.70 × 10−3 42.6
10 3 9 76 1.46 × 10−3 17.0 2.54 × 10−3 43.1
16 4 11 108 1.11 × 10−3 16.8 2.45 × 10−3 47.1

Table 4
Relative error and speedup for LS-ROM and NM-ROM with and without HR and different subdomain configurations for the WFPC and SRPC formulations. We
use 𝑛𝛺𝑖 = 8 for all cases, 𝑛𝛤𝑖 = 4 for the WFPC cases, 𝑛𝑝𝑗 = 2 for the SRPC cases, and 𝑁𝐵

𝑖 = 100 for the HR cases.

Constraints 𝑛𝑥𝛺 𝑛𝑦𝛺 # subdomains Error Speedup Error (HR) Speedup (HR)

LS-ROM

WFPC

2 1 2 6.36 × 10−3 25.1 6.64 × 10−3 285.7
2 2 4 1.98 × 10−2 30.0 1.44 × 10−2 347.6
4 1 4 7.34 × 10−3 37.1 7.47 × 10−3 373.1
4 2 8 2.29 × 10−2 35.8 4.21 × 10−2 259.2

SRPC

2 1 2 6.85 × 10−3 30.5 9.49 × 10−3 293.0
2 2 4 3.75 × 10−2 22.0 4.22 × 10−2 313.9
4 1 4 1.04 × 10−2 24.6 5.94 × 10−2 287.5
4 2 8 4.96 × 10−2 12.2 5.19 × 10−2 181.6

NM-ROM

WFPC

2 1 2 1.34 × 10−3 16.8 1.36 × 10−3 30.5
2 2 4 1.28 × 10−3 21.7 1.64 × 10−3 43.9
4 1 4 3.14 × 10−3 27.8 4.98 × 10−3 38.6
4 2 8 4.82 × 10−3 26.3 5.98 × 10−3 40.4

SRPC

2 1 2 1.00 × 10−3 17.0 1.37 × 10−3 35.9
2 2 4 1.19 × 10−3 28.8 1.70 × 10−3 42.6
4 1 4 1.68 × 10−3 27.4 2.12 × 10−3 39.1
4 2 8 1.67 × 10−2 24.2 2.39 × 10−2 32.5

HR cases. In the HR case, we use 𝑁𝐵
𝑖 = 100 for each subdomain. We see that LS-ROM wins in terms of relative wall time, while

NM-ROM attains an order of magnitude lower error in comparison to LS-ROM in each case.
Fig. 11 shows the Pareto front for varying number of HR nodes per subdomain, 𝑁𝐵

𝑖 . In this case, (𝑛
𝛺
𝑖 , 𝑛

𝛤
𝑖 ) = (8, 4) for each

experiment. As in the case for varying (𝑛𝛺𝑖 , 𝑛
𝛤
𝑖 ), NM-ROM attains an order of magnitude lower relative error. Moreover, both the

relative error and relative wall time for NM-ROM remains small for each value of 𝑁𝐵
𝑖 , whereas the relative error and relative wall

time for LS-ROM has more variability with respect to number of HR nodes.
Fig. 12 shows the Pareto fronts for varying number of training snapshots in the non-HR and HR cases. We used (𝑛𝛺𝑖 , 𝑛

𝛤
𝑖 ) = (8, 4)

for each experiment, and used 𝑁𝐵
𝑖 = 100 HR nodes in the HR case. For LS-ROM, the whole training set was used to compute the

POD bases, whereas for NM-ROM, the displayed number of snapshots underwent a random 90-10 split for training and validation,
respectively. In the case of LS-ROM, the relative error remained constant for the number of training snapshots used, whereas the
relative error for NM-ROM decreased as more training snapshots were used.

8. Conclusion

In this work, we detail the first application of NM-ROM with HR to a DD problem. We extend the DD framework of [16] and
compute ROMs using the NM-ROM [55] approach on each subdomain. Furthermore, we apply HR to NM-ROM on each subdomain,
which informs the use of shallow, sparse autoencoders, as in [56]. We detail how to implement an inexact Lagrange–Newton SQP
method to solve the constrained least-squares formulation of the ROM, where the inexactness comes from using a Gauss–Newton
approximation of the residual terms, and from neglecting second-order decoder derivative terms coming from the compatibility
24
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Fig. 10. Left: Pareto front for LS-ROM and NM-ROM without HR with varying (𝑛𝛺𝑖 , 𝑛
𝛤
𝑖 ) for WFPC formulation; Right: Pareto front for LS-ROM and NM-ROM

ith varying (𝑛𝛺𝑖 , 𝑛
𝛤
𝑖 ) and 𝑁𝐵

𝑖 = 100 HR nodes per subdomain for WFPC formulation.

Fig. 11. Pareto front for LS-ROM and NM-ROM with (𝑛𝛺𝑖 , 𝑛
𝛤
𝑖 ) = (8, 4) and varying number of HR nodes per subdomain 𝑁𝐵

𝑖 for WFPC formulation.

Fig. 12. Left: Pareto front for LS-ROM and NM-ROM with (𝑛𝛺𝑖 , 𝑛
𝛤
𝑖 ) = (8, 4) and varying number of training snapshots for WFPC formulation; Right: Pareto front

for LS-ROM and NM-ROM with (𝑛𝛺𝑖 , 𝑛
𝛤
𝑖 ) = (8, 4), 𝑁𝐵

𝑖 = 100 HR nodes per subdomain, and varying number of training snapshots for WFPC formulation.

onstraints. We then provide a convergence result for the SQP solver used using standard theory of inexact Newton’s method. We
lso provide a priori and a posteriori error bounds between the FOM and ROM solutions.
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From our numerical experiments on the 2D steady-state Burgers’ equation, we showed that using the DD NM-ROM approach
ignificantly decreases the number of required NN parameters per subdomain compared to the monolithic single-domain NM-ROM.
e also showed that DD NM-ROM achieves an order of magnitude lower relative error than DD LS-ROM in nearly all cases tested.
urthermore, in the non-HR case, NM-ROM is faster than LS-ROM in some instances. We also saw that NM-ROM is more robust than
S-ROM with respect to changes in subdomain configuration. In some cases, the subdomain configuration increased the LS-ROM
elative error by an order of magnitude. While LS-ROM with HR achieves much higher speedup than NM-ROM with HR, NM-ROM
s still the clear winner in terms of ROM accuracy for a given ROM size. Moreover, HR allows NM-ROM to gain an extra 15-20×
speedup compared to the non-HR cases. While the speedup is not as drastic as for LS-ROM, these speedup gains for NM-ROM are
the highest that have been achieved for NM-ROM to our knowledge. Our results indicate that NM-ROM should be the preferred
approach for problems where ROM accuracy for a given ROM size is more important than speedup.

Although NM-ROM performs better than LS-ROM in our experiments, LS-ROM still attains a relatively low relative error. This
indicates that the model problem considered may still be too benign to expose the advantages that NM-ROM has over LS-ROM,
particularly when applied to problems with slowly decaying Kolmogorov 𝑛-width. Therefore, in future work, we plan to apply DD
NM-ROM to more complicated problems, including those with slowly decaying Kolmogorov 𝑛-width, as well as to time-dependent
problems. Furthermore, the speedup of the DD NM-ROM is highly dependent on the SQP solver used. Thus, it will be important to
investigate the use of other optimization algorithms for the solution of (13) and examine their effects on computational speedup.
Other directions for future research include a greedy sampling strategy for the parameter space  when choosing which FOM
snapshots to compute for NM-ROM training, implementing a ‘‘bottom-up’’ training strategy that uses subdomain snapshots rather
than full-domain snapshots for training, applying the DD NM-ROM framework to decomposable or component-based systems, and
applying NM-ROM to other DD approaches such as the Schwarz method. Finally error estimates based on the first order necessary
optimality conditions, as outlined in the last paragraph of Section 6 is also part of future research.
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