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A B S T R A C T   

In the rapidly evolving realm of telecommunications, Machine Learning (ML) stands as a key driver for intelligent 
6 G networks, leveraging diverse datasets to optimize real-time network parameters. This transition seamlessly 
extends from 4 G LTE and 5 G NR to 6 G, with ML insights from existing networks, specifically in predicting RRC 
session durations. This work introduces a novel use of weighted ensemble approach using AutoGluon library, 
employing multiple base models for accurate prediction of user session durations in real-world LTE and NR 
networks. Comparative analysis reveals superior accuracy in LTE, with ’Data Volume’ as a crucial feature due to 
its direct impact on network load and user experience. Notably, NR sessions, marked by extended durations, 
reflect unique patterns attributed to Fixed Wireless Access (FWA) devices. An ablation study underscores the 
weighted ensemble’s superior performance. This study highlights the need for techniques like data categorization 
to enhance prediction accuracies for evolving technologies, providing insights for enhanced adaptability in ML- 
based prediction models for the next network generation.   

1. Introduction 

Amidst the revolutionary advancements in wireless communication 
systems, Machine Learning (ML) has emerged as a driving force 
reshaping the landscape of innovation. As we navigate the transition 
from 4 G LTE, known for its efficiency and reliability in providing high- 
speed mobile internet, to 5 G NR, which offers significantly higher data 
rates and lower latency, we lay the groundwork for the evolution of 6 G 
networks. ML takes center stage in this transition, introducing unpar
alleled capabilities and intelligent solutions (Rekkas et, al., 2021). Its 
adeptness in analyzing extensive datasets, discerning intricate patterns, 
and executing data-driven decisions establishes ML as a cornerstone for 
gaining network insights. Beyond this, it plays a pivotal role in pre
dicting user behaviors, thereby optimizing network performance, and 
elevating the overall efficiency of telecommunication (telco) systems. 

ML techniques can be broadly classified into regression, classifica
tion, and clustering tasks, each serving distinct purposes in handling 
various types of data and challenges. Regression involves predicting 
continuous numerical values, making it ideal for scenarios where the 
output is a quantitative measure. Classification, conversely, assigns data 
points to predefined categories, making it suitable for tasks with 

categorical outcomes. Clustering seeks to identify inherent patterns or 
groupings within data without predefined labels. The choice between 
these tasks depends on the nature of the problem at hand. However, the 
inherent diversity of techniques and algorithms poses a challenge in 
determining the optimal model for specific use cases. Navigating 
through the intricacies of selecting suitable models for diverse applica
tions within the telco industry can be a complex undertaking. Never
theless, solutions such as Automated Machine Learning (AutoML) play a 
pivotal role in mitigating this complexity. 

Anticipating changes in user behavior patterns, informed by early 
predictions of session duration, is invaluable for operators in tailoring 
effective management strategies and mitigating operational risks. To 
attain this objective, operators can leverage insights gleaned from his
torical mobile broadband (MBB) records within the telco domain. While 
existing research, such as (Luo et al., 2016; Wilhelmi et al., 2021; Brezov 
et al., 2023) has primarily focused on classification problems or simu
lator data, our work addresses a critical gap by emphasizing the signif
icance of predicting RRC session duration as a regression problem. 
Leveraging AutoGluon’s AutoML approach on real-world network data, 
our study uniquely contributes to optimizing network performance and 
ensuring adaptability in evolving wireless technologies. This approach 
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distinguishes our work in the telecommunication domain, providing a 
novel perspective on regression-based predictions for user’s RRC session 
duration. 

The following sections of the paper are structured as follows: The 
remainder of Section I introduces the weighted ensemble approach and 
the AutoGluon library. Section II provides detailed insights into the real- 
world 5 G NR and LTE network data used in this study, along with the 
measured performance metrics. In Section III, the prediction results for 
both technologies are presented, including a comparative analysis. 
Finally, Section IV offers concluding remarks and outlines potential 
avenues for future research. 

1.1. Weighted ensemble learning 

Within the dynamic landscape of telecommunications, where preci
sion, adaptability, and performance are paramount, the significance of 
ensemble methods becomes particularly pronounced (Luo et al., 2016). 
Ensemble models harness the collective intelligence of multiple machine 
learning models to enhance predictive accuracy and robustness (Brei
man, 1996). By combining diverse models, such as decision trees, 
random forests, gradient boosting machines, and neural networks, 
ensemble methods mitigate individual model biases and errors. For 
instance, a random forest aggregates predictions from multiple decision 
trees, while gradient boosting optimally combines weak learners to form 
a strong predictor (Freund et, al., 1996). Fig. 1 provides an overview of 
weighted ensemble architecture where N number of base models pro
vide their corresponding predictions which are aggregated within 
ensemble meta-model by considering multiple weight optimization 
schemes. These weight optimization schemes can depend on each base 
model’s accuracy of specific target metric that is under consideration or 
even based on user preferred biases (How et, al., 2023). Such synergy of 
these models in an ensemble not only improves performance but also 
provides a versatile framework applicable across various domains, from 
finance to healthcare and beyond (Dietterich, 2000). 

While traditional ensemble models treat each base model equally, 
weighted ensembles assign varying degrees of influence to individual 
models, emphasizing the strengths of each while mitigating potential 
weaknesses. This tailored combination not only enhances predictive 
accuracy but also facilitates a more nuanced understanding of complex 

network behaviors and user interactions. In scenarios where data with 
distinct patterns and anomalies may exist, the versatility of a weighted 
ensemble approach shines (Mohr et al., 2018). This enables a finer 
control over the contribution of each model, leading to potentially 
improved predictive accuracy and adaptability to diverse datasets. Thus, 
in the pursuit of optimizing machine learning models for telco appli
cations, a weighted ensemble approach emerges as a strategic and 
effective means of combining diverse models (Brezov et al., 2023). 

1.2. AutoGluon-tabular 

AutoGluon (developed by the Apache MXNet community) represents 
a cutting-edge AutoML framework designed to streamline the model 
development process. With a focus on enhancing accessibility and 
scalability, AutoGluon-Tabular (which is referred to as AutoGluon here 
for simplicity) is specific to tabular data and automates critical aspects of 
ML workflows, including model selection, hyperparameter tuning, and 
feature engineering (Erickson et al., 2020). Its robust capabilities are 
particularly beneficial in the communication networks, where the 
complexities of network optimization, predictive maintenance, and 
personalized user experiences demand efficient and powerful ML solu
tions (Mohr et al., 2018). AutoGluon’s automated model selection and 
hyperparameter tuning align harmoniously with the principles of 
weighted ensembles, fostering a symbiotic relationship that optimally 
leverages diverse models for enhanced predictive performance (Erickson 
et al., 2020; Van der Laan et al., 2007). 

In the context of machine learning ensemble techniques, multi-layer 
stacking, also known as stacked ensembles, is a strategy where pre
dictions from multiple models are combined in a hierarchical or layered 
fashion. This approach aims to leverage the diverse strengths of indi
vidual models by having multiple layers of ensembles. As illustrated in 
Fig. 2, AutoGluon’s multi-layer stacking works starts with a set of 
diverse base models that may use different algorithms or configurations. 
These models are trained on the training dataset. At first layer of 
stacking, predictions are made on the validation set using these base 
models. Train a meta-model (shown as concatenation in Fig. 2) on the 
validation set using the predictions from the base models as features. 
The meta-model learns to combine or weight the predictions of the base 
models, considering their individual strengths and weaknesses (Caruana 
et, al., 2004). At second optional layer, stacking process is extend to 
additional layers if needed. Predictions from the first layer are used as 
features for training another meta-model. This process can be repeated 
for multiple layers, each learning to combine predictions from the pre
vious layer. The final ensemble is typically a combination of predictions 
from the top-level meta-model and possibly some base models. The 
weights assigned to each model or layer in the ensemble are determined 
during the training process based on their performance on the validation 
set (Erickson et al., 2020). Such stacking approach provides benefits like 
diverse representations, hierarchical learning along with increased 
model robustness. 

AutoGluon’s comprehensive training strategy is outlined in Algo
rithm 1, after preprocessing the data, each stacking layer is allocated a 
time budget denoted as Ttotal/L where Ttotal represents the total time 
allocated to perform prediction while L represent the number of stacking 
layers. For this work, Ttotal is set to 48hours and doesn’t come into 
effect. It initially estimates the required training time, and if it exceeds 
the remaining time for the current layer, the process advances to the 
next stacking layer. AutoGluon further improves its stacking perfor
mance by utilizing all the available data for both training and validation, 
through k-fold ensemble bagging of all models at all layers of the stack. 
Also called cross-validated committees (Parmanto et, al., 1996), k-fold 
bagging is a simple ensemble method that reduces variance in the 
resulting predictions. This is achieved by randomly partitioning the data 
into k-disjoint chunks and subsequently training copies of a model with 
a different data k chunk held-out from each copy. AutoGluon bags all 
models, and each model is asked to produce out-of-fold (OOF) Fig. 1. Overview of Weighted Ensemble Architecture.  

R.K. Polaganga and Q. Liang                                                                                                                                                                                                                



Machine Learning with Applications 17 (2024) 100564

3

predictions on the chunk it did not see during training. As every training 
example is OOF for one of the bagged model copies, this allows us to 
obtain OOF predictions from every model for every training example. 

The prediction from the weighted ensemble model in is represented 
in (1) where ŷensemble is the final prediction, N is the number of base 
models, wi is the weight assigned to the ith base model, and ŷi is the 
prediction of the ith base model. 

ŷensemble =
∑N

i=1
wi. ŷi (1) 

Model further optimizes the weights of base models based on per
formance metrics. A simplified weight optimization equation is shown in 
(2) 

wi =
fi(metric)

∑N
j=1fi(metric)

(2)  

where fi(metric) is the performance of the ith model on the chosen metric. 
For this work, fi(metric) is chosen to be Mean Square Error (MSE) for 
optimization. By using the inverse of the MSE, better-performing models 
(with lower MSE) receive higher weights, ensuring that the ensemble 
promotes models with better performance. For example, consider two 
models with MSE values of 0.1 and 0.2, respectively. The weights for 

these models would be calculated as follows: For the model with MSE of 
0.1: w1 = (1 /0.1)/(1 /0.1) + (1 /0.2) = 0.67 and for the model with 
MSE of 0.2: w2 = (1 /0.2)/(1 /0.1) + (1 /0.2) = 0.33. This calcula
tion shows that the model with the lower MSE receives a higher weight, 
promoting better-performing models in the ensemble. 

To ensure framework’s predictability, models are promptly saved to 
disk after each training for fault tolerance. Such approach guarantees 
the ability to produce predictions as long as at least one model on one- 
fold can be trained within the allotted time. Checkpointing intermediate 
iterations of sequentially trained models, enables AutoGluon to generate 
models under stringent time limits which is crucial for mobile commu
nication type applications (Song et, al., 2022). Additionally, anticipating 
potential training failures, the framework skips to the next model in such 
events. Unlike several AutoML frameworks that concurrently train 
multiple models on the same instance, AutoGluon adopts a sequential 
training approach. It relies on individual implementations of models to 
efficiently leverage multiple cores, allowing successful training on larger 
datasets without encountering frequent out-of-memory errors as 
observed in parallel training scenarios. It bags all models, and each 
model is asked to produce out-of-fold (OOF) predictions on the chunk it 
did not see during training. As every training example is OOF for one of 
the bagged model copies, this allows to obtain OOF predictions from 
every model for every training example. 

Fig. 2. AutoGluon’s Multi-Layer Stacking Framework.  

Algorithm 1 
AutoGluon-tabular training strategy.  

(multi-layer stack ensembling ± n- repeated k-fold bagging) 
Require: data (X,Y), family of models M , # of layers L 
1: Preprocess data to extract features 
2: for l = 1 to L do {stacking} 
3: for i = 1 to n do {n-repeated} 

4: Randomly split data into k chunks 
{

Xj, Yj}k
j=1 

5: for j = 1 to k do {k-fold bagging} 
6: for each model type m in M do 
7: Train a type-m model on X−j, Y−j 

8: Make predictions Ŷ
j
m,i on OOF data Xj 

9: end for 
10: end for 
11: end for 

12: Average OOF predictions Ŷm =

{
1
n

∑

i
Ŷ

j
m,i

}k

j=1 

13: X ← concatenate 
(
X, {Ŷm}m∈M

)

14: end for  
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1.3. Base models 

Eight base models play a pivotal role in this study, encompassing 
ensemble methods, boosting algorithms, deep neural networks, and 
traditional regression techniques, collectively contributing to a 
comprehensive and diverse predictive framework. The models were 
selected based on their proven effectiveness in regression tasks, their 
ability to complement each other by capturing different aspects of the 
data, and their diversity in learning approaches. Specifically, we chose 
models with varying complexity and mechanisms, such as linear 
regression for its simplicity and interpretability, decision trees for their 
ability to handle non-linear relationships, and neural networks for their 
capacity to model complex patterns. This diversity ensures a robust 
ensemble capable of handling the intricate and varied nature of the data, 
ultimately improving the overall prediction performance. Ensemble 
based models include Random Forest (RF) and Extremely Randomized 
Trees (XT) that combine multiple models to enhance predictive accuracy 
by aggregating their outputs. Random Forest is a popular ensemble 
learning method that constructs a multitude of decision trees and 
combines their outputs to improve accuracy and reduce overfitting, of
fering robust performance across diverse datasets (Upadhyay et, al., 
2022). Like RF, XT further diversifies the learning process by random
izing the feature selection for each split in the decision trees, enhancing 
robustness and reducing variance (Sagi & Rokach, 2021). 

Boosting algorithms encompass XGBoost (XGB), LightGBM (GBM), 
and CatBoost (CAT) models. XGB is a gradient boosting framework 
designed to handle diverse data types and exhibit exceptional predictive 
power known for its efficiency and performance. Its core strength lies in 
sequentially combining weak learners, optimizing the model through 
gradient-based boosting (Sagi & Rokach, 2021; Ke et al., 2017b). GBM is 
another gradient boosting framework that excels in scalability and 
speed, making it particularly suited for large datasets like in telco 
domain. Its unique feature is the efficient implementation of tree-based 
learning, leading to faster training times and reduced memory con
sumption (Ke et al., 2017a). CAT stands out for its ability to handle 
categorical features seamlessly. It employs a robust algorithm that 
minimizes the need for extensive pre-processing, making it an ideal 
choice for real-world datasets with mixed data types (Dorogush et al., 
2018). 

On the neural network front, FastAI and Neural Networks in PyTorch 
(NN_TORCH) represents novel architectures capable of learning intri
cate patterns and representations from complex tabular data. FastAI 
framework built on PyTorch simplifies complex deep learning tasks, 
providing a high-level interface for rapid experimentation and model 
deployment. It empowers users to achieve state-of-the-art results with 
minimal code (Mendoza et al., 2016). NN_TORCH model implemented 
in PyTorch as well allows for fine-grained control over the architecture 
and training process. It’s the PyTorch’s flexibility that makes it a popular 
choice for researchers and practitioners in deep learning (Guo & Ber
khahn, 2016). 

AutoGluon uses a feedforward neural network architecture that is 
suitable for tabular data as shown in Fig. 3. The network contains 
separate input layers for numerical and categorical features. Numerical 
features are directly connected to dense layers, while categorical fea
tures are first embedded then connected. The network contains dense 
blocks with batch normalization and ReLU activation. It has dropout for 
regularization. The last dense layer outputs the predictions. This archi
tecture allows the network to learn relationships between mixed nu
merical and categorical features for tabular data (Liang et al., 2019). 
AutoGluon trains the neural network as one of its base models. It then 
ensembles the neural network with other base models like tree-based 
models. This provides diversity since neural networks and trees have 
different types of decision boundaries. The ensemble usually performs 
better than any individual model. In summary, AutoGluon’s neural 
network architecture and training approach allow it to leverage deep 
learning for tabular data, while also benefiting from ensemble methods 

for robust and accurate AutoML (Kotthoff et, al., 2017). 
Linear Regression (LR) serves as a foundational method for predict

ing continuous outcomes by modeling the relationship between depen
dent and independent variables through a linear equation. Its simplicity 
and transparency make it a valuable tool for certain prediction tasks. All 
these base models are exemplars used predominantly for regression 
tasks, contributing to predictive modeling across various domains by 
capturing intricate patterns and relationships within datasets (Wong & 
Michaels, 2022). 

2. Experimental setup 

2.1. Real-world data 

The datasets employed in this research stem from a live LTE and NR 
network belonging to a US-based mobile network operator. Capturing 
session data records from both eNBs and gNBs, the comprehensive 
dataset is built by aggregating per unique data session. Encompassing 
user sessions throughout a typical weekday in December 2023 over a 24- 
hour period, the data is sourced from diverse sites in the Seattle, WA 
area, presenting varying load scenarios across urban and rural land
scapes. In the NR data, implemented in non-standalone (NSA) mode, 
LTE-specific features are included alongside NR-specific attributes. 

Entries are meticulously filtered for non-guaranteed bit rate (non- 
GBR) class channel quality indicators. Both LTE and NR technologies 
represent typical data sessions excluding voice. With 5 G implemented 
as NSA, lacking native voice or Guaranteed Bit Rate (GBR) services, data 
sessions are meticulously collected to maintain parity between both 
technologies. The NR network boasts mid-band NR layers featuring N41 
(2500 MHz) as its mid-band layer and N71 (600 MHz) as its low-band 
NR layer. LTE, on the other hand, is implemented across various 
layers, including mid-band layers of AWS (2100 MHz) and PCS (1900 
MHz), and low-band layers of B12 (700 MHz) and B71 (600 MHz). As all 
considered sites belong to a single RAN vendor with a consistent 
network configuration, shared NR, and LTE feature sets guarantee data 
consistency across both technologies. The final dataset from Session 
Records comprises approximately 25,000 entries for LTE and about 
36,000 sessions for NR, sampled after eliminating entries with missing 
network attributes and ensuring data consistency. Table 1 provides a 
detailed list of all features collected in the real-world dataset per tech
nology, marked as ’X’ where applicable and ’N/A’ where not applicable. 
Additionally, 5 G introduces 10 extra features highlighted at the end of 
the table, distinguishing it from LTE. To handle missing data and 

Fig. 3. AutoGluon’s Neural Network Architecture.  
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outliers, we performed data cleaning steps such as removing entries with 
missing values in critical columns and applying interquartile range 
(IQR) methods to detect and eliminate outliers (Vinutha et al., 2018). 

Duration is calculated as difference between start time and end time 
features. To provide a contextual understanding, NR data in comparison 
to LTE has relatively larger duration interval with average session 
duration of 66.65 s while minimum and maximum are 0.76 s and 
64,088.21 s (~17.8 h) respectively. For LTE data, average session 
duration is 12.7 s while minimum is 0.53 s and maximum is 4068.29 s 
(~1.1 h). The computational infrastructure employed for executing 
predictions and obtaining performance results on these datasets com
prises a virtual Central Processing Unit (vCPU) configuration of 64 
cores, coupled with a Memory allocation of 52 gigabytes. 

2.2. Evaluation metrics 

The evaluation metrics serve as crucial benchmarks to gauge the 
efficacy of the predictive models, offering insights into their perfor
mance across various dimensions. Total six standard and key metrics are 
used for comparison purpose across both the data sets to add to the 
relevance and implications for this study. 

SHAP (SHapley Additive exPlanations) is employed as a powerful 
tool for interpreting and explaining the predictions of ML models. SHAP 
values as expressed in (3) provide a comprehensive understanding of 
feature contributions to individual predictions, shedding light on the 
factors that influence the model’s output. For this work, SHAP values is 
used to quantify the impact of each feature on the predicted session 
duration across both data sets. Such interpretability framework 

facilitates transparency in model’s decision-making process, allowing 
stakeholders to gain valuable insights into the key drivers behind pre
dicted session durations in both technologies. 

ϕi(f) =
1
N!

∑

S⊆N{i}

|S|!.(N − |S| − 1)!

N!
[f(S ∪ {i} − f(S)] (3)  

where N is the number of features, f(S) is the model’s prediction given 
the set of features. S represents a coalition of features excluding feature i. 
|S| denotes the cardinality of the set S. 

Mean Absolute Error (MAE) measures the average absolute differ
ence between the actual and predicted values as expressed in (4). It 
provides a straightforward indication of the magnitude of errors without 
considering their direction, with a lower MAE indicating better predic
tive accuracy. 

MAE =
1
n

∑n

i=1
|yi − ŷi | (4)  

where n represents the number of observations in the dataset. yi repre
sents the actual values and ŷi represents the predicted values. Mean 
Squared Error (MSE) measures the average squared difference between 
the actual and predicted values as shown in (5). Squaring the differences 
emphasizes larger errors, making it more sensitive to outliers compared 
to Mean Absolute Error (MAE). 

MSE =
1
n

∑n

i=1
(yi − ŷi )

2 (5) 

Root Mean Squared Error (RMSE) is like Mean Squared Error (MSE), 
but the square root is taken to bring the error metric back to the original 
scale of the dependent variable. It provides a measure of the average 
magnitude of the errors between actual and predicted values. Lower 
values of MSE and RMSE signify better model performance. 

RMSE =
̅̅̅̅̅̅̅̅̅̅
MSE

√
(6) 

The coefficient of determination, often denoted as R2 and shown in 
(7) is a metric used to assess the goodness of fit of a regression model. It 
indicates the proportion of the variance in the dependent variable that is 
predictable from the independent variables. The R2 value ranges from 
0 to 1, where 0 indicates that the model does not explain any variability, 
and 1 indicates perfect prediction. 

R2 = 1 −
(yi − ŷi )

2

∑n
i=1(yi − yi)

2 (7)  

where n is the number of observations in the dataset. yi represents the 
actual values, ŷi represents the predicted values and yi is the mean of 
the actual values. Also, Mean Absolute Percentage Error (MAPE) is a 
commonly used metric to measure the accuracy of a predictive model, 
especially in time series and regression contexts. MAPE expresses the 
prediction error as a percentage, which makes it intuitive and easy to 
interpret. 

MAPE =
1
n

∑n

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒ × 100 (8)  

where n represents the number of observations in the dataset, yi repre
sents the actual value and ŷi represents the predicted values. MAPE 
measures the average absolute percentage error between the actual and 
predicted values. y expressing the errors as percentages, MAPE allows 
for a relative comparison of error magnitudes across different datasets or 
models. It is particularly useful when the scale of the data varies 
significantly. Lower values of MAPE indicate better model performance. 
However, MAPE can disproportionately penalize overestimates and 
underestimates differently, and may not be suitable for datasets with 
highly variable scales of actual values. Despite this limitation, MAPE 

Table 1 
List of features collected in real-world datasets.  

Feature NR LTE 

Subscriber Identifier X X 
Device Software [SVN] X X 
Device Model X X 
Device Make X X 
Service Type X X 
Start Time X X 
Environment [Indoor / Outdoor] X X 
End Time X X 
Start Type X X 
Start eNB X X 
Establishment Cause X X 
RRC Setup Result X X 
LTE Setup Time X X 
S1 Release Cause X X 
RSRP [dBm] X X 
RSRQ [dB] X X 
Start Timing Advance [Miles] X X 
UE Category X X 
QCI List X X 
ARP List X X 
UE Power Headroom [dB] X X 
PUSCH SINR [dB] X X 
Mean MAC Throughput UL [kbps] X X 
Mean MAC Throughput DL [kbps] X X 
Mean CQI X X 
MAC Volume DL [bytes] X X 
MAC Volume UL [bytes] X X 
Max Number of LTE Carrier Components during aggregation X X 
Avg Number of LTE Carrier Components during aggregation X X 
5 G EN-DC Downlink Volume [bytes] X N/A 
5 G EN-DC Uplink Volume [bytes] X N/A 
5 G EN-DC Downlink Throughput [kbps] X N/A 
5 G EN-DC Uplink Throughput [kbps] X N/A 
5 G NR RSRP [dBm] X N/A 
5 G NR RSRQ [dB] X N/A 
5 G NR DL SINR [dB] X N/A 
5 G EN-DC Setup Time X N/A 
Max Number of NR Carrier Components X N/A 
Avg Number of NR Carrier Components X N/A  
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remains a valuable metric for providing an easily interpretable measure 
of prediction accuracy in percentage terms. 

Inference latency refers to the time it takes for a system or model to 
process input data and produce an output (inference). It is a crucial 
metric in real-time applications where prompt responses are essential. In 
machine learning, particularly with models deployed for inference tasks, 
latency is a critical consideration. Its magnitude may differ depending 
on the specific compute instance employed and the size of the overall 
dataset. 

3. Results 

3.1. LTE data 

Based on the approach outlined in Section-I, AutoGluon imple
mented weighted ensemble approach on LTE and identified that among 
all 8-base model, only 3 models proved to be effective as shown in 
Table 2 along with their weights while Fig. 4 shows the feature 
importance. 

Table 3 shows the values of other performance metrics along with 
their standard deviation. AutoGluon uses all the training data at least 
once to estimate the performance of a model. Scores are calculated using 
k-fold cross-validation resampling method that train a machine learning 
algorithm on different subsets of the dataset. A score is then calculated 
for overall performance by averaging the resulting performance metrics 
for each trial. 

The actual vs predicted plot shown in Fig. 5 is the difference between 
actual and predicted model values. The solid red line is a linear line of 
best fit. If the model were 100 % accurate, each predicted point would 
equal its corresponding actual point and lie on this line of best fit. The 
distance away from the line of best fit is a visual indication of model 
error. The larger the distance away from the line of best fit, the higher 
the model error. 

The standardized residual plot as shown in Fig. 6 measures the 
strength of the difference between observed and expected values. A 

point shows a value larger than an absolute value of 3 is commonly 
regarded as an outlier. 

The residual histogram of Fig. 7 shows the distribution of stan
dardized residual values. When the histogram is distributed in a bell 
shape and centered at zero, it indicates that the model does not sys
tematically over or under predict any range of target values. Overall, the 
weighted ensemble demonstrates strong performance with LTE data. 

3.2. NR data 

Like LTE, NR data also has same AutoGluon configuration of training 
and testing ratio. Model implementation on NR data identified 3 models 
(XGB, LR and GBM) proved to be effective as shown in Table 4. In 
comparison to LTE, XGB is the only common model with weightage 
while the other two are different. 

With NR having 10 additional features when compared to LTE, 
among total 39 different input features, Fig. 8 displays the top 10 SHAP 
values, highlighting the attributes with the most significant contribu
tions to the model’s predictions. Downlink Volume followed by Start 
Time and Uplink Volume metrics has the highest SHAP values. In 
comparison to LTE, high SHAP value for Volume metrics is observed to 
be standing out. 

Table 5 shows the values of other performance metrics of NR along 
with their standard deviation. Like LTE approach, all the training data is 
used at least once to estimate the performance of a model to calculate 
the scores using k-fold cross-validation resampling method. With R2 
close to 1 and other metrics at reasonable values, model is performing 
strong. 

The standardized residual plot in Fig. 10 shows most of the predicted 

Table 2 
Model weightage for LTE data.  

Model Name Ensemble Weights 

NeuralNet FastAI (Fast AI) 0.726316 
XGBoost (XGB) 0.242105 
CatBoost (CAT) 0.031579  

Fig. 4. Feature Importance for LTE Data.  

Table 3 
Performance metrics for LTE data.  

Metric Value Standard Deviation 

MAE 3.6818 0.0464 
MSE 64.6589 2.4005 
RMSE 8.0410 0.1493 
R2 0.9878 0.0058 
Inference Latency 0.160s – 
MAPE 28.97 % –  

Fig. 5. Actual vs Predicted plot for LTE Data.  

Fig. 6. Standardized Residual Plot for LTE Data.  
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points to be within +/−3 threshold. The actual vs predicted plot of Fig. 9 
shows the difference between actual and predicted model values. In 
comparison to LTE, both the axes are of high order due to high variation 
in session durations across both technologies. With most points close to 
the best fit, model error is minimal. Like LTE, the residual histogram in 
Fig. 11 shows the distribution of standardized residual values to be 
centered at zero, indicating that the model does not systematically over 
or under predict any range of target values. 

3.3. LTE vs NR 

Table 6 is summarization of Tables 3 and 5 to compare evaluation 
metrics of LTE and NR datasets next to each other. Model performance 
on LTE is relatively better as all the error metrics of NR are higher than 
LTE. However, R2 metric is slightly better for NR. NR’s higher Inference 
Latency can partly be attributed to relatively larger data set. 

To further explain the performance delta in both technologies, NR 

data set is further explored, and the large session durations are attrib
uted to a newly introduced device types in NR referred to as Fixed 
Wireless Access (FWA). These devices are introduced because of excess 
capacity with introduction of NR with larger bandwidths. Unlike tradi
tional smartphone devices, FWA devices are mostly stationary devices in 
a residential setup that in provides connectivity to multiple variety of 
devices like TVs, Laptops, Sensors, which results in relatively longer 
session durations. While LTE has a lower MAE, the higher MAPE in
dicates that the relative errors are larger when considering the actual 
values. This is because LTE has smaller average actual values compared 
to NR; thus, even small absolute errors can result in large percentage 

Fig. 7. Standardized Residual Histogram for LTE Data.  

Table 4 
Model weightage for NR data.  

Model Name Ensemble Weights 

XGBoost (XGB) 0.963855 
Linear Regression (LR) 0.024096 
Light GBM (GBM) 0.012048  

Fig. 8. Feature Importance for NR Data.  

Table 5 
Performance metrics for NR data.  

Metric Value Standard Deviation 

MAE 8.2879 0.1290 
MSE 793.2269 193.2641 
RMSE 28.1642 3.8137 
R2 0.9988 0.0005 
Inference Latency 0.172s – 
MAPE 12.44 % –  

Fig. 9. Actual vs Predicted plot for NR Data.  

Fig. 10. Standardized Residual Plot for NR Data.  

Fig. 11. Standardized Residual Histogram for NR Data.  
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errors, inflating MAPE. On the other hand, NR, having larger average 
actual values, would see smaller percentage errors for the same absolute 
error, leading to a lower MAPE. Despite having a higher MAE, the MAPE 
for NR is slightly lower, suggesting that the errors are smaller in per
centage terms relative to the larger actual values. 

Table 7 helps us to compare the quantitative metrics of these FWA 
devices to regular smartphones that explains the model performance. 
FWA devices have a larger session duration and carries more than 
double the data volumes of smartphones by its nature while being sta
tionary with good radio conditions (RSRP) and no uplink power limi
tations. While smartphones have different classes of 5 G Quality 
Indicators (5QI), FWA is always assigned a single 5QI value. 

The T-test was employed to rigorously examine the statistical sig
nificance of differences in session durations between FWA and regular 
smartphone users. The obtained T-statistic of −3.1175, with a corre
sponding p-value of 0.00186, rejects the null hypothesis that there is no 
significant difference in session durations between the two groups. The 
negative T-statistic suggests that FWA sessions exhibit longer durations 
compared to regular smartphone sessions. This statistical analysis pro
vides robust evidence supporting the contention that the observed dif
ferences in session durations between FWA and regular smartphone 
users are statistically significant, emphasizing the distinct characteris
tics of these user groups within the NR network. Fig. 12 

To further assess the model’s performance on like-to-like device 
types in both LTE and NR datasets, only smartphone-specific data is 
extracted from NR, and the same weighted ensemble model is applied as 
in the LTE dataset. Table 8 provides a summary of the weights assigned 
to the base models, showing a more distributed weightage across models 
compared to previous results. Additionally, six models contribute to the 
final prediction, a higher number than observed in earlier results. 
Analyzing the top 10 SHAP attributes, as depicted in Fig. 13, reveals a 
mix of influential factors. This aligns with LTE’s observation, where 
Uplink volume appears relatively more impactful than downlink vol
ume, while Start time remains a top attribute, consistent with NR data. 

The performance metrics for smartphone-only data has been sum
marized in Table 9 to be consistent with earlier results shown in Tables 3 
and 5. This table shows improved performance across all metrics for 
smartphone-only data compared to NR, while still showing relatively 
poor performance compared to LTE. This further confirms that the 
model’s accuracy has been affected by the large variations in session 
durations caused by FWA devices. When excluding FWA data from NR, 

despite having a higher MAE, the MAPE is still lower than LTE. This 
indicates that the relative errors in percentage terms are smaller for NR 
without FWA data, even though the absolute errors are higher. This 
suggests that NR’s larger average session durations result in relatively 
smaller percentage errors compared to LTE. 

3.4. Ablation study 

The ablation study systematically investigates the impact of indi
vidual components within the machine learning model, providing in
sights into the specific contributions and effectiveness of each element. 
In this context, it enables a nuanced comparison between the weighted 
ensemble approach and individual base models like XGBoost and 
Random Forest, offering a deeper understanding of their unique 
strengths in predicting session durations. 

Table 10 summarizes the best-performing base models for both 

Table 6 
Model performance of LTE vs NR data.  

Metric LTE NR 

Base Models FastAI, XGB, CAT XGB, LR, GBM 
MAE 3.6818 8.2879 
MSE 64.6589 793.2269 
RMSE 8.0410 28.1642 
R2 0.9878 0.9988 
Inference Latency 0.160s 0.172s 
MAPE 28.97 % 12.44 %  

Table 7 
Difference between FWA vs smartphone data.  

Session Metrics FWA Smartphone 
Duration Feature Min: 0.825 s 

Max: 64,088.22 s 
Avg: 82.17s 

Min: 0.76 s 
Max:9139.07 s 
Avg: 48.34s 

Device Make Count 6 25 
Avg RSRP −96dBm −102.01 dBm 
Mean MAC UL Thpt 39.61 Mbps 35.97 Mbps 
Mean MAC DL Thpt 14.65 Mbps 64.79 Mbps 
Avg MAC UL Volume 0.46MB 0.25MB 
Avg MAC DL Volume 1.02MB 0.49MB 
5QI 9 6,7,8,9  

Fig. 12. T-Test Results.  

Table 8 
Model weightage for NR data.  

Model Name Ensemble Weights 

NeuralNetFastAI 0.341772 
ExtraTreesMSE 0.303797 
XGBoost 0.227848 
LightGBM 0.063291 
CatBoost 0.050633 
LinearModel 0.012658  

Fig. 13. Feature Importance for NR-Smartphone Only Data.  

Table 9 
Performance metrics for NR-smartphone only data.  

Metric Value Standard Deviation 

MAE 9.3362 0.1372 
MSE 483.9649 84.5460 
RMSE 21.9992 2.0526 
R2 0.99276 0.0017 
Inference Latency 0.280s – 
MAPE 19.31 % –  
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datasets without the weighted ensemble approach. Comparison of in
dividual models on both LTE and NR datasets reveals higher perfor
mance on LTE, consistent with previous results obtained with the 
weighted ensemble approach. However, contrasting individual model 
performance with that of the weighted ensemble approach clearly in
dicates that the weighted ensemble consistently outperforms in all 
metrics except for inference latency, reflecting the delays introduced by 
the stacked approach at the expense of improved accuracy. This em
phasizes the significance of the weighted ensemble approach in telecom 
networks, where accuracy is crucial for achieving optimal network 
performance gains. 

4. Conclusion and future work 

The research presented demonstrates the effectiveness of a weighted 
ensemble model using AutoGluon in predicting RRC session durations in 
LTE and NR network environments, emphasizing its potential to opti
mize resource allocations and improve network performance. The 
ensemble model notably outperforms individual base models, with LTE 
exhibiting higher accuracy than NR. The ’Data Volume’ metric is iden
tified as a crucial feature in both technologies, underscoring its signifi
cance in network management, especially in high-demand scenarios. 

The study also highlights the impact of FWA devices, which display a 
broader range of session durations, on NR data predictions. A T-test 
confirms significant differences in session durations between smart
phones and FWA devices, pointing to the necessity of tailored data 
analysis and categorization by device type to boost predictive accuracy. 
Despite achieving superior prediction performance with the ensemble 
model, the research notes limitations due to the regional and temporal 
scope of the dataset, suggesting the need for more extensive data to 
better capture network behavior and user dynamics. 

Further, the research lays the groundwork for two pivotal areas of 
future research: Dynamic Resource Allocation for Mixed Networks and 
Energy-Efficient Resource Management. These initiatives aim to develop 
adaptive allocation strategies in heterogeneous network settings and 
refine energy usage in NR networks, particularly for FWA devices, 
leveraging predictive insights into session durations. Such advance
ments could significantly enhance network efficiency and sustainability, 
meeting the evolving demands of diverse technologies and user needs. 
This work not only proposes mechanisms for adaptive resource alloca
tion across LTE and NR devices but also explores strategies to optimize 
energy efficiency in resource management for NR networks, specifically 
tailored to the unique requirements of FWA devices based on their ses
sion duration predictions. 
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