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ARTICLE INFO ABSTRACT

Keywords: In the rapidly evolving realm of telecommunications, Machine Learning (ML) stands as a key driver for intelligent
Machine learning (ML), Weighted ensemble 6 G networks, leveraging diverse datasets to optimize real-time network parameters. This transition seamlessly
learning

extends from 4 G LTE and 5 G NR to 6 G, with ML insights from existing networks, specifically in predicting RRC
session durations. This work introduces a novel use of weighted ensemble approach using AutoGluon library,
employing multiple base models for accurate prediction of user session durations in real-world LTE and NR
networks. Comparative analysis reveals superior accuracy in LTE, with "Data Volume’ as a crucial feature due to
its direct impact on network load and user experience. Notably, NR sessions, marked by extended durations,
reflect unique patterns attributed to Fixed Wireless Access (FWA) devices. An ablation study underscores the
weighted ensemble’s superior performance. This study highlights the need for techniques like data categorization
to enhance prediction accuracies for evolving technologies, providing insights for enhanced adaptability in ML-
based prediction models for the next network generation.

5G new radio (NR)

Long term evolution (LTE)

6G

Fixed wireless access (FWA)

Live telecommunication networks, Auto-gluon

1. Introduction

Amidst the revolutionary advancements in wireless communication
systems, Machine Learning (ML) has emerged as a driving force
reshaping the landscape of innovation. As we navigate the transition
from 4 G LTE, known for its efficiency and reliability in providing high-
speed mobile internet, to 5 G NR, which offers significantly higher data
rates and lower latency, we lay the groundwork for the evolution of 6 G
networks. ML takes center stage in this transition, introducing unpar-
alleled capabilities and intelligent solutions (Rekkas et, al., 2021). Its
adeptness in analyzing extensive datasets, discerning intricate patterns,
and executing data-driven decisions establishes ML as a cornerstone for
gaining network insights. Beyond this, it plays a pivotal role in pre-
dicting user behaviors, thereby optimizing network performance, and
elevating the overall efficiency of telecommunication (telco) systems.

ML techniques can be broadly classified into regression, classifica-
tion, and clustering tasks, each serving distinct purposes in handling
various types of data and challenges. Regression involves predicting
continuous numerical values, making it ideal for scenarios where the
output is a quantitative measure. Classification, conversely, assigns data
points to predefined categories, making it suitable for tasks with
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categorical outcomes. Clustering seeks to identify inherent patterns or
groupings within data without predefined labels. The choice between
these tasks depends on the nature of the problem at hand. However, the
inherent diversity of techniques and algorithms poses a challenge in
determining the optimal model for specific use cases. Navigating
through the intricacies of selecting suitable models for diverse applica-
tions within the telco industry can be a complex undertaking. Never-
theless, solutions such as Automated Machine Learning (AutoML) play a
pivotal role in mitigating this complexity.

Anticipating changes in user behavior patterns, informed by early
predictions of session duration, is invaluable for operators in tailoring
effective management strategies and mitigating operational risks. To
attain this objective, operators can leverage insights gleaned from his-
torical mobile broadband (MBB) records within the telco domain. While
existing research, such as (Luo et al., 2016; Wilhelmi et al., 2021; Brezov
et al., 2023) has primarily focused on classification problems or simu-
lator data, our work addresses a critical gap by emphasizing the signif-
icance of predicting RRC session duration as a regression problem.
Leveraging AutoGluon’s AutoML approach on real-world network data,
our study uniquely contributes to optimizing network performance and
ensuring adaptability in evolving wireless technologies. This approach
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distinguishes our work in the telecommunication domain, providing a
novel perspective on regression-based predictions for user’s RRC session
duration.

The following sections of the paper are structured as follows: The
remainder of Section I introduces the weighted ensemble approach and
the AutoGluon library. Section II provides detailed insights into the real-
world 5 G NR and LTE network data used in this study, along with the
measured performance metrics. In Section III, the prediction results for
both technologies are presented, including a comparative analysis.
Finally, Section IV offers concluding remarks and outlines potential
avenues for future research.

1.1. Weighted ensemble learning

Within the dynamic landscape of telecommunications, where preci-
sion, adaptability, and performance are paramount, the significance of
ensemble methods becomes particularly pronounced (Luo et al., 2016).
Ensemble models harness the collective intelligence of multiple machine
learning models to enhance predictive accuracy and robustness (Brei-
man, 1996). By combining diverse models, such as decision trees,
random forests, gradient boosting machines, and neural networks,
ensemble methods mitigate individual model biases and errors. For
instance, a random forest aggregates predictions from multiple decision
trees, while gradient boosting optimally combines weak learners to form
a strong predictor (Freund et, al., 1996). Fig. 1 provides an overview of
weighted ensemble architecture where N number of base models pro-
vide their corresponding predictions which are aggregated within
ensemble meta-model by considering multiple weight optimization
schemes. These weight optimization schemes can depend on each base
model’s accuracy of specific target metric that is under consideration or
even based on user preferred biases (How et, al., 2023). Such synergy of
these models in an ensemble not only improves performance but also
provides a versatile framework applicable across various domains, from
finance to healthcare and beyond (Dietterich, 2000).

While traditional ensemble models treat each base model equally,
weighted ensembles assign varying degrees of influence to individual
models, emphasizing the strengths of each while mitigating potential
weaknesses. This tailored combination not only enhances predictive
accuracy but also facilitates a more nuanced understanding of complex
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network behaviors and user interactions. In scenarios where data with
distinct patterns and anomalies may exist, the versatility of a weighted
ensemble approach shines (Mohr et al., 2018). This enables a finer
control over the contribution of each model, leading to potentially
improved predictive accuracy and adaptability to diverse datasets. Thus,
in the pursuit of optimizing machine learning models for telco appli-
cations, a weighted ensemble approach emerges as a strategic and
effective means of combining diverse models (Brezov et al., 2023).

1.2. AutoGluon-tabular

AutoGluon (developed by the Apache MXNet community) represents
a cutting-edge AutoML framework designed to streamline the model
development process. With a focus on enhancing accessibility and
scalability, AutoGluon-Tabular (which is referred to as AutoGluon here
for simplicity) is specific to tabular data and automates critical aspects of
ML workflows, including model selection, hyperparameter tuning, and
feature engineering (Erickson et al., 2020). Its robust capabilities are
particularly beneficial in the communication networks, where the
complexities of network optimization, predictive maintenance, and
personalized user experiences demand efficient and powerful ML solu-
tions (Mohr et al., 2018). AutoGluon’s automated model selection and
hyperparameter tuning align harmoniously with the principles of
weighted ensembles, fostering a symbiotic relationship that optimally
leverages diverse models for enhanced predictive performance (Erickson
et al., 2020; Van der Laan et al., 2007).

In the context of machine learning ensemble techniques, multi-layer
stacking, also known as stacked ensembles, is a strategy where pre-
dictions from multiple models are combined in a hierarchical or layered
fashion. This approach aims to leverage the diverse strengths of indi-
vidual models by having multiple layers of ensembles. As illustrated in
Fig. 2, AutoGluon’s multi-layer stacking works starts with a set of
diverse base models that may use different algorithms or configurations.
These models are trained on the training dataset. At first layer of
stacking, predictions are made on the validation set using these base
models. Train a meta-model (shown as concatenation in Fig. 2) on the
validation set using the predictions from the base models as features.
The meta-model learns to combine or weight the predictions of the base
models, considering their individual strengths and weaknesses (Caruana
et, al., 2004). At second optional layer, stacking process is extend to
additional layers if needed. Predictions from the first layer are used as
features for training another meta-model. This process can be repeated
for multiple layers, each learning to combine predictions from the pre-
vious layer. The final ensemble is typically a combination of predictions
from the top-level meta-model and possibly some base models. The
weights assigned to each model or layer in the ensemble are determined
during the training process based on their performance on the validation
set (Erickson et al., 2020). Such stacking approach provides benefits like
diverse representations, hierarchical learning along with increased
model robustness.

AutoGluon’s comprehensive training strategy is outlined in Algo-
rithm 1, after preprocessing the data, each stacking layer is allocated a
time budget denoted as Ttotal/L where Ttotal represents the total time
allocated to perform prediction while L represent the number of stacking
layers. For this work, Ttotal is set to 48hours and doesn’t come into
effect. It initially estimates the required training time, and if it exceeds
the remaining time for the current layer, the process advances to the
next stacking layer. AutoGluon further improves its stacking perfor-
mance by utilizing all the available data for both training and validation,
through k-fold ensemble bagging of all models at all layers of the stack.
Also called cross-validated committees (Parmanto et, al., 1996), k-fold
bagging is a simple ensemble method that reduces variance in the
resulting predictions. This is achieved by randomly partitioning the data
into k-disjoint chunks and subsequently training copies of a model with
a different data k chunk held-out from each copy. AutoGluon bags all
models, and each model is asked to produce out-of-fold (OOF)
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Fig. 2. AutoGluon’s Multi-Layer Stacking Framework.

Algorithm 1
AutoGluon-tabular training strategy.

(multi-layer stack ensembling + n- repeated k-fold bagging)
Require: data (X, Y), family of models .7, # of layers L

1: Preprocess data to extract features

2: for 1 =1 to L do {stacking}

3: fori=1 tondo {nrepeated}

4 Randomly split data into k chunks {X/, YJ'}JIV(:1
5 for j =1 to k do {k-fold bagging}

6. for each model type m in . do

7: Train a type-m model on X7, Y7/
8

9

1

1

Make predictions Y. . on OOF data X'

mi
end for
0: end for
1: end for
k
- 1sj
12: Average OOF predictions Yy, = {EZYJM }
i -1
13: X < concatenate (X, {Yim}mes)
14: end for

predictions on the chunk it did not see during training. As every training
example is OOF for one of the bagged model copies, this allows us to
obtain OOF predictions from every model for every training example.

The prediction from the weighted ensemble model in is represented
in (1) where yensemble is the final prediction, N is the number of base
models, w; is the weight assigned to the i base model, and Y; is the
prediction of the i base model.

N
yememble = Zwi- _}71 (1)
i1
Model further optimizes the weights of base models based on per-
formance metrics. A simplified weight optimization equation is shown in
(2)
fi(metric)

= Sendebed/ S 2
YT SN fmetric) @

where f;(metric) is the performance of the i model on the chosen metric.
For this work, f;(metric) is chosen to be Mean Square Error (MSE) for
optimization. By using the inverse of the MSE, better-performing models
(with lower MSE) receive higher weights, ensuring that the ensemble
promotes models with better performance. For example, consider two
models with MSE values of 0.1 and 0.2, respectively. The weights for

these models would be calculated as follows: For the model with MSE of
0.1:w; = (1/0.1)/(1/0.1)+(1/0.2) = 0.67 and for the model with
MSE of 0.2: w, = (1/0.2)/(1/0.1)+ (1/0.2) = 0.33. This calcula-
tion shows that the model with the lower MSE receives a higher weight,
promoting better-performing models in the ensemble.

To ensure framework’s predictability, models are promptly saved to
disk after each training for fault tolerance. Such approach guarantees
the ability to produce predictions as long as at least one model on one-
fold can be trained within the allotted time. Checkpointing intermediate
iterations of sequentially trained models, enables AutoGluon to generate
models under stringent time limits which is crucial for mobile commu-
nication type applications (Song et, al., 2022). Additionally, anticipating
potential training failures, the framework skips to the next model in such
events. Unlike several AutoML frameworks that concurrently train
multiple models on the same instance, AutoGluon adopts a sequential
training approach. It relies on individual implementations of models to
efficiently leverage multiple cores, allowing successful training on larger
datasets without encountering frequent out-of-memory errors as
observed in parallel training scenarios. It bags all models, and each
model is asked to produce out-of-fold (OOF) predictions on the chunk it
did not see during training. As every training example is OOF for one of
the bagged model copies, this allows to obtain OOF predictions from
every model for every training example.
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1.3. Base models

Eight base models play a pivotal role in this study, encompassing
ensemble methods, boosting algorithms, deep neural networks, and
traditional regression techniques, collectively contributing to a
comprehensive and diverse predictive framework. The models were
selected based on their proven effectiveness in regression tasks, their
ability to complement each other by capturing different aspects of the
data, and their diversity in learning approaches. Specifically, we chose
models with varying complexity and mechanisms, such as linear
regression for its simplicity and interpretability, decision trees for their
ability to handle non-linear relationships, and neural networks for their
capacity to model complex patterns. This diversity ensures a robust
ensemble capable of handling the intricate and varied nature of the data,
ultimately improving the overall prediction performance. Ensemble
based models include Random Forest (RF) and Extremely Randomized
Trees (XT) that combine multiple models to enhance predictive accuracy
by aggregating their outputs. Random Forest is a popular ensemble
learning method that constructs a multitude of decision trees and
combines their outputs to improve accuracy and reduce overfitting, of-
fering robust performance across diverse datasets (Upadhyay et, al.,
2022). Like RF, XT further diversifies the learning process by random-
izing the feature selection for each split in the decision trees, enhancing
robustness and reducing variance (Sagi & Rokach, 2021).

Boosting algorithms encompass XGBoost (XGB), LightGBM (GBM),
and CatBoost (CAT) models. XGB is a gradient boosting framework
designed to handle diverse data types and exhibit exceptional predictive
power known for its efficiency and performance. Its core strength lies in
sequentially combining weak learners, optimizing the model through
gradient-based boosting (Sagi & Rokach, 2021; Ke et al., 2017b). GBM is
another gradient boosting framework that excels in scalability and
speed, making it particularly suited for large datasets like in telco
domain. Its unique feature is the efficient implementation of tree-based
learning, leading to faster training times and reduced memory con-
sumption (Ke et al., 2017a). CAT stands out for its ability to handle
categorical features seamlessly. It employs a robust algorithm that
minimizes the need for extensive pre-processing, making it an ideal
choice for real-world datasets with mixed data types (Dorogush et al.,
2018).

On the neural network front, FastAI and Neural Networks in PyTorch
(NN_TORCH) represents novel architectures capable of learning intri-
cate patterns and representations from complex tabular data. FastAl
framework built on PyTorch simplifies complex deep learning tasks,
providing a high-level interface for rapid experimentation and model
deployment. It empowers users to achieve state-of-the-art results with
minimal code (Mendoza et al., 2016). NN_TORCH model implemented
in PyTorch as well allows for fine-grained control over the architecture
and training process. It’s the PyTorch’s flexibility that makes it a popular
choice for researchers and practitioners in deep learning (Guo & Ber-
khahn, 2016).

AutoGluon uses a feedforward neural network architecture that is
suitable for tabular data as shown in Fig. 3. The network contains
separate input layers for numerical and categorical features. Numerical
features are directly connected to dense layers, while categorical fea-
tures are first embedded then connected. The network contains dense
blocks with batch normalization and ReLU activation. It has dropout for
regularization. The last dense layer outputs the predictions. This archi-
tecture allows the network to learn relationships between mixed nu-
merical and categorical features for tabular data (Liang et al., 2019).
AutoGluon trains the neural network as one of its base models. It then
ensembles the neural network with other base models like tree-based
models. This provides diversity since neural networks and trees have
different types of decision boundaries. The ensemble usually performs
better than any individual model. In summary, AutoGluon’s neural
network architecture and training approach allow it to leverage deep
learning for tabular data, while also benefiting from ensemble methods
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Fig. 3. AutoGluon’s Neural Network Architecture.

for robust and accurate AutoML (Kotthoff et, al., 2017).

Linear Regression (LR) serves as a foundational method for predict-
ing continuous outcomes by modeling the relationship between depen-
dent and independent variables through a linear equation. Its simplicity
and transparency make it a valuable tool for certain prediction tasks. All
these base models are exemplars used predominantly for regression
tasks, contributing to predictive modeling across various domains by
capturing intricate patterns and relationships within datasets (Wong &
Michaels, 2022).

2. Experimental setup
2.1. Real-world data

The datasets employed in this research stem from a live LTE and NR
network belonging to a US-based mobile network operator. Capturing
session data records from both eNBs and gNBs, the comprehensive
dataset is built by aggregating per unique data session. Encompassing
user sessions throughout a typical weekday in December 2023 over a 24-
hour period, the data is sourced from diverse sites in the Seattle, WA
area, presenting varying load scenarios across urban and rural land-
scapes. In the NR data, implemented in non-standalone (NSA) mode,
LTE-specific features are included alongside NR-specific attributes.

Entries are meticulously filtered for non-guaranteed bit rate (non-
GBR) class channel quality indicators. Both LTE and NR technologies
represent typical data sessions excluding voice. With 5 G implemented
as NSA, lacking native voice or Guaranteed Bit Rate (GBR) services, data
sessions are meticulously collected to maintain parity between both
technologies. The NR network boasts mid-band NR layers featuring N41
(2500 MHz) as its mid-band layer and N71 (600 MHz) as its low-band
NR layer. LTE, on the other hand, is implemented across various
layers, including mid-band layers of AWS (2100 MHz) and PCS (1900
MHz), and low-band layers of B12 (700 MHz) and B71 (600 MHz). As all
considered sites belong to a single RAN vendor with a consistent
network configuration, shared NR, and LTE feature sets guarantee data
consistency across both technologies. The final dataset from Session
Records comprises approximately 25,000 entries for LTE and about
36,000 sessions for NR, sampled after eliminating entries with missing
network attributes and ensuring data consistency. Table 1 provides a
detailed list of all features collected in the real-world dataset per tech-
nology, marked as X’ where applicable and "N/A’ where not applicable.
Additionally, 5 G introduces 10 extra features highlighted at the end of
the table, distinguishing it from LTE. To handle missing data and
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Table 1
List of features collected in real-world datasets.

Z
=
=
5
=

Feature

Subscriber Identifier

Device Software [SVN]

Device Model

Device Make

Service Type

Start Time

Environment [Indoor / Outdoor]
End Time

Start Type

Start eNB

Establishment Cause

RRC Setup Result

LTE Setup Time

S1 Release Cause

RSRP [dBm]

RSRQ [dB]

Start Timing Advance [Miles]

UE Category

QCI List

ARP List

UE Power Headroom [dB]

PUSCH SINR [dB]

Mean MAC Throughput UL [kbps]
Mean MAC Throughput DL [kbps]
Mean CQI

MAC Volume DL [bytes]

MAC Volume UL [bytes]

Max Number of LTE Carrier Components during aggregation
Avg Number of LTE Carrier Components during aggregation

LR o TR I R i I o T o T o B I i S o R o ]

LR T o T i I T o T T o T o T T I S e S I T S R o R o ]

5 G EN-DC Downlink Volume [bytes] N/A
5 G EN-DC Uplink Volume [bytes] N/A
5 G EN-DC Downlink Throughput [kbps] N/A
5 G EN-DC Uplink Throughput [kbps] N/A
5 G NR RSRP [dBm] N/A
5 G NR RSRQ [dB] N/A
5 G NR DL SINR [dB] N/A
5 G EN-DC Setup Time N/A
Max Number of NR Carrier Components N/A
Avg Number of NR Carrier Components N/A

outliers, we performed data cleaning steps such as removing entries with
missing values in critical columns and applying interquartile range
(IQR) methods to detect and eliminate outliers (Vinutha et al., 2018).

Duration is calculated as difference between start time and end time
features. To provide a contextual understanding, NR data in comparison
to LTE has relatively larger duration interval with average session
duration of 66.65 s while minimum and maximum are 0.76 s and
64,088.21 s (~17.8 h) respectively. For LTE data, average session
duration is 12.7 s while minimum is 0.53 s and maximum is 4068.29 s
(~1.1 h). The computational infrastructure employed for executing
predictions and obtaining performance results on these datasets com-
prises a virtual Central Processing Unit (vCPU) configuration of 64
cores, coupled with a Memory allocation of 52 gigabytes.

2.2. Evaluation metrics

The evaluation metrics serve as crucial benchmarks to gauge the
efficacy of the predictive models, offering insights into their perfor-
mance across various dimensions. Total six standard and key metrics are
used for comparison purpose across both the data sets to add to the
relevance and implications for this study.

SHAP (SHapley Additive exPlanations) is employed as a powerful
tool for interpreting and explaining the predictions of ML models. SHAP
values as expressed in (3) provide a comprehensive understanding of
feature contributions to individual predictions, shedding light on the
factors that influence the model’s output. For this work, SHAP values is
used to quantify the impact of each feature on the predicted session
duration across both data sets. Such interpretability framework
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facilitates transparency in model’s decision-making process, allowing
stakeholders to gain valuable insights into the key drivers behind pre-
dicted session durations in both technologies.

i) = S BB sy s ®

' SCN{i}

where N is the number of features, f(S) is the model’s prediction given
the set of features. S represents a coalition of features excluding feature i.
|S| denotes the cardinality of the set S.

Mean Absolute Error (MAE) measures the average absolute differ-
ence between the actual and predicted values as expressed in (4). It
provides a straightforward indication of the magnitude of errors without
considering their direction, with a lower MAE indicating better predic-
tive accuracy.

1 N
MAE:HZD’i—}’i\ (G
i=1

where n represents the number of observations in the dataset. y; repre-
sents the actual values and y; represents the predicted values. Mean
Squared Error (MSE) measures the average squared difference between
the actual and predicted values as shown in (5). Squaring the differences
emphasizes larger errors, making it more sensitive to outliers compared
to Mean Absolute Error (MAE).

1¢ ~
MSE:HZ(.Y:'*M‘)Z 5)
o1

Root Mean Squared Error (RMSE) is like Mean Squared Error (MSE),
but the square root is taken to bring the error metric back to the original
scale of the dependent variable. It provides a measure of the average
magnitude of the errors between actual and predicted values. Lower
values of MSE and RMSE signify better model performance.

RMSE = VMSE (6)

The coefficient of determination, often denoted as R? and shown in
(7) is a metric used to assess the goodness of fit of a regression model. It
indicates the proportion of the variance in the dependent variable that is
predictable from the independent variables. The R? value ranges from
0 to 1, where 0 indicates that the model does not explain any variability,
and 1 indicates perfect prediction.

i =)

R=1-7—"—3
i —%)

)

where n is the number of observations in the dataset. y; represents the
actual values, 7y; represents the predicted values and ¥; is the mean of
the actual values. Also, Mean Absolute Percentage Error (MAPE) is a
commonly used metric to measure the accuracy of a predictive model,
especially in time series and regression contexts. MAPE expresses the
prediction error as a percentage, which makes it intuitive and easy to
interpret.

i =¥

i

1 n
MAPE = — 100 8
Dy P ®

i=1

where n represents the number of observations in the dataset, y; repre-
sents the actual value and y; represents the predicted values. MAPE
measures the average absolute percentage error between the actual and
predicted values. y expressing the errors as percentages, MAPE allows
for a relative comparison of error magnitudes across different datasets or
models. It is particularly useful when the scale of the data varies
significantly. Lower values of MAPE indicate better model performance.
However, MAPE can disproportionately penalize overestimates and
underestimates differently, and may not be suitable for datasets with
highly variable scales of actual values. Despite this limitation, MAPE



R.K. Polaganga and Q. Liang

Table 2
Model weightage for LTE data.

Model Name Ensemble Weights
NeuralNet FastAl (Fast AI) 0.726316
XGBoost (XGB) 0.242105
CatBoost (CAT) 0.031579

MAC Volume UL

MAC Volume DL

ARP List

QCl List

Model

Environment

Start Time

Mean MAC Throughput UL
Mean MAC Throughput DL
Make

0.0 25 5.0 75 100 125 150 175 20.0
Global SHAP Values for "Duration"

Fig. 4. Feature Importance for LTE Data.

remains a valuable metric for providing an easily interpretable measure
of prediction accuracy in percentage terms.

Inference latency refers to the time it takes for a system or model to
process input data and produce an output (inference). It is a crucial
metric in real-time applications where prompt responses are essential. In
machine learning, particularly with models deployed for inference tasks,
latency is a critical consideration. Its magnitude may differ depending
on the specific compute instance employed and the size of the overall
dataset.

3. Results
3.1. LTE data

Based on the approach outlined in Section-I, AutoGluon imple-
mented weighted ensemble approach on LTE and identified that among
all 8-base model, only 3 models proved to be effective as shown in
Table 2 along with their weights while Fig. 4 shows the feature
importance.

Table 3 shows the values of other performance metrics along with
their standard deviation. AutoGluon uses all the training data at least
once to estimate the performance of a model. Scores are calculated using
k-fold cross-validation resampling method that train a machine learning
algorithm on different subsets of the dataset. A score is then calculated
for overall performance by averaging the resulting performance metrics
for each trial.

The actual vs predicted plot shown in Fig. 5 is the difference between
actual and predicted model values. The solid red line is a linear line of
best fit. If the model were 100 % accurate, each predicted point would
equal its corresponding actual point and lie on this line of best fit. The
distance away from the line of best fit is a visual indication of model
error. The larger the distance away from the line of best fit, the higher
the model error.

The standardized residual plot as shown in Fig. 6 measures the
strength of the difference between observed and expected values. A

Table 3
Performance metrics for LTE data.

Metric Value Standard Deviation
MAE 3.6818 0.0464

MSE 64.6589 2.4005

RMSE 8.0410 0.1493

R? 0.9878 0.0058

Inference Latency 0.160s -

MAPE 28.97 % -
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Fig. 5. Actual vs Predicted plot for LTE Data.

point shows a value larger than an absolute value of 3 is commonly
regarded as an outlier.

The residual histogram of Fig. 7 shows the distribution of stan-
dardized residual values. When the histogram is distributed in a bell
shape and centered at zero, it indicates that the model does not sys-
tematically over or under predict any range of target values. Overall, the
weighted ensemble demonstrates strong performance with LTE data.

3.2. NR data

Like LTE, NR data also has same AutoGluon configuration of training
and testing ratio. Model implementation on NR data identified 3 models
(XGB, LR and GBM) proved to be effective as shown in Table 4. In
comparison to LTE, XGB is the only common model with weightage
while the other two are different.

With NR having 10 additional features when compared to LTE,
among total 39 different input features, Fig. 8 displays the top 10 SHAP
values, highlighting the attributes with the most significant contribu-
tions to the model’s predictions. Downlink Volume followed by Start
Time and Uplink Volume metrics has the highest SHAP values. In
comparison to LTE, high SHAP value for Volume metrics is observed to
be standing out.

Table 5 shows the values of other performance metrics of NR along
with their standard deviation. Like LTE approach, all the training data is
used at least once to estimate the performance of a model to calculate
the scores using k-fold cross-validation resampling method. With R2
close to 1 and other metrics at reasonable values, model is performing
strong.

The standardized residual plot in Fig. 10 shows most of the predicted
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Fig. 6. Standardized Residual Plot for LTE Data.



R.K. Polaganga and Q. Liang

4000

3000 4

2000 A I
0

Counts

1000 A

T

=25 -20 -15 -10 -5

Standardized residual

Fig. 7. Standardized Residual Histogram for LTE Data.

Table 4
Model weightage for NR data.
Model Name Ensemble Weights
XGBoost (XGB) 0.963855
Linear Regression (LR) 0.024096
Light GBM (GBM) 0.012048

MAC Volume DL bytes
Start Time

MAC Volume UL bytes

Mean MAC Throughput DL kbps
Mean MAC Throughput UL kbps
Model

S1 Release Cause

5G EN-DC Downlink Volume bytes
5G EN-DC Downlink Throughput kbps

Start eNB

2( 40 60 80
Global SHAP Values for "Duration”

Fig. 8. Feature Importance for NR Data.

points to be within +/—3 threshold. The actual vs predicted plot of Fig. 9
shows the difference between actual and predicted model values. In
comparison to LTE, both the axes are of high order due to high variation
in session durations across both technologies. With most points close to
the best fit, model error is minimal. Like LTE, the residual histogram in
Fig. 11 shows the distribution of standardized residual values to be
centered at zero, indicating that the model does not systematically over
or under predict any range of target values.

3.3. LTE vs NR

Table 6 is summarization of Tables 3 and 5 to compare evaluation
metrics of LTE and NR datasets next to each other. Model performance
on LTE is relatively better as all the error metrics of NR are higher than
LTE. However, R2 metric is slightly better for NR. NR’s higher Inference
Latency can partly be attributed to relatively larger data set.

To further explain the performance delta in both technologies, NR

Table 5
Performance metrics for NR data.

Metric Value Standard Deviation
MAE 8.2879 0.1290

MSE 793.2269 193.2641

RMSE 28.1642 3.8137

R? 0.9988 0.0005

Inference Latency 0.172s -

MAPE 12.44 % -
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data set is further explored, and the large session durations are attrib-
uted to a newly introduced device types in NR referred to as Fixed
Wireless Access (FWA). These devices are introduced because of excess
capacity with introduction of NR with larger bandwidths. Unlike tradi-
tional smartphone devices, FWA devices are mostly stationary devices in
a residential setup that in provides connectivity to multiple variety of
devices like TVs, Laptops, Sensors, which results in relatively longer
session durations. While LTE has a lower MAE, the higher MAPE in-
dicates that the relative errors are larger when considering the actual
values. This is because LTE has smaller average actual values compared
to NR; thus, even small absolute errors can result in large percentage
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Fig. 11. Standardized Residual Histogram for NR Data.
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Table 6

Model performance of LTE vs NR data.
Metric LTE NR
Base Models FastAl, XGB, CAT XGB, LR, GBM
MAE 3.6818 8.2879
MSE 64.6589 793.2269
RMSE 8.0410 28.1642
R? 0.9878 0.9988
Inference Latency 0.160s 0.172s
MAPE 28.97 % 12.44 %

errors, inflating MAPE. On the other hand, NR, having larger average
actual values, would see smaller percentage errors for the same absolute
error, leading to a lower MAPE. Despite having a higher MAE, the MAPE
for NR is slightly lower, suggesting that the errors are smaller in per-
centage terms relative to the larger actual values.

Table 7 helps us to compare the quantitative metrics of these FWA
devices to regular smartphones that explains the model performance.
FWA devices have a larger session duration and carries more than
double the data volumes of smartphones by its nature while being sta-
tionary with good radio conditions (RSRP) and no uplink power limi-
tations. While smartphones have different classes of 5 G Quality
Indicators (5QI), FWA is always assigned a single 5QI value.

The T-test was employed to rigorously examine the statistical sig-
nificance of differences in session durations between FWA and regular
smartphone users. The obtained T-statistic of —3.1175, with a corre-
sponding p-value of 0.00186, rejects the null hypothesis that there is no
significant difference in session durations between the two groups. The
negative T-statistic suggests that FWA sessions exhibit longer durations
compared to regular smartphone sessions. This statistical analysis pro-
vides robust evidence supporting the contention that the observed dif-
ferences in session durations between FWA and regular smartphone
users are statistically significant, emphasizing the distinct characteris-
tics of these user groups within the NR network. Fig. 12

To further assess the model’s performance on like-to-like device
types in both LTE and NR datasets, only smartphone-specific data is
extracted from NR, and the same weighted ensemble model is applied as
in the LTE dataset. Table 8 provides a summary of the weights assigned
to the base models, showing a more distributed weightage across models
compared to previous results. Additionally, six models contribute to the
final prediction, a higher number than observed in earlier results.
Analyzing the top 10 SHAP attributes, as depicted in Fig. 13, reveals a
mix of influential factors. This aligns with LTE’s observation, where
Uplink volume appears relatively more impactful than downlink vol-
ume, while Start time remains a top attribute, consistent with NR data.

The performance metrics for smartphone-only data has been sum-
marized in Table 9 to be consistent with earlier results shown in Tables 3
and 5. This table shows improved performance across all metrics for
smartphone-only data compared to NR, while still showing relatively
poor performance compared to LTE. This further confirms that the
model’s accuracy has been affected by the large variations in session
durations caused by FWA devices. When excluding FWA data from NR,

Table 7
Difference between FWA vs smartphone data.
Session Metrics FWA Smartphone
Duration Feature Min: 0.825 s Min: 0.76 s
Max: 64,088.22 s Max:9139.07 s
Avg: 82.17s Avg: 48.34s
Device Make Count 6 25
Avg RSRP —96dBm —102.01 dBm
Mean MAC UL Thpt 39.61 Mbps 35.97 Mbps
Mean MAC DL Thpt 14.65 Mbps 64.79 Mbps
Avg MAC UL Volume 0.46MB 0.25MB
Avg MAC DL Volume 1.02MB 0.49MB
5QI 9 6,7,8,9
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Fig. 12. T-Test Results.
Table 8

Model weightage for NR data.

Model Name Ensemble Weights
NeuralNetFastAl 0.341772
ExtraTreesMSE 0.303797
XGBoost 0.227848
LightGBM 0.063291
CatBoost 0.050633
LinearModel 0.012658

despite having a higher MAE, the MAPE is still lower than LTE. This
indicates that the relative errors in percentage terms are smaller for NR
without FWA data, even though the absolute errors are higher. This
suggests that NR’s larger average session durations result in relatively
smaller percentage errors compared to LTE.

3.4. Ablation study

The ablation study systematically investigates the impact of indi-
vidual components within the machine learning model, providing in-
sights into the specific contributions and effectiveness of each element.
In this context, it enables a nuanced comparison between the weighted
ensemble approach and individual base models like XGBoost and
Random Forest, offering a deeper understanding of their unique
strengths in predicting session durations.

Table 10 summarizes the best-performing base models for both

Top 10 Shap Values for Duration in NR

Start Time
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Mean MAC Throughput DL
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QCi List
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Fig. 13. Feature Importance for NR-Smartphone Only Data.

Table 9
Performance metrics for NR-smartphone only data.

Metric Value Standard Deviation
MAE 9.3362 0.1372

MSE 483.9649 84.5460

RMSE 21.9992 2.0526

R? 0.99276 0.0017

Inference Latency 0.280s -

MAPE 19.31 % -
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Table 10
Performance on LTE and NR data without weighted ensemble.
Metric LTE NR
Model XGBoost (XGB) RandomPForest (RF)
MAE 3.2139 16.3907
MSE 178.9418 262,508.7070
RMSE 26.8130 512.3560
R? 0.8644 0.6089
Inference Latency 0.111s 0.159s
MAPE 25.30 % 24.59 %

datasets without the weighted ensemble approach. Comparison of in-
dividual models on both LTE and NR datasets reveals higher perfor-
mance on LTE, consistent with previous results obtained with the
weighted ensemble approach. However, contrasting individual model
performance with that of the weighted ensemble approach clearly in-
dicates that the weighted ensemble consistently outperforms in all
metrics except for inference latency, reflecting the delays introduced by
the stacked approach at the expense of improved accuracy. This em-
phasizes the significance of the weighted ensemble approach in telecom
networks, where accuracy is crucial for achieving optimal network
performance gains.

4. Conclusion and future work

The research presented demonstrates the effectiveness of a weighted
ensemble model using AutoGluon in predicting RRC session durations in
LTE and NR network environments, emphasizing its potential to opti-
mize resource allocations and improve network performance. The
ensemble model notably outperforms individual base models, with LTE
exhibiting higher accuracy than NR. The "Data Volume’ metric is iden-
tified as a crucial feature in both technologies, underscoring its signifi-
cance in network management, especially in high-demand scenarios.

The study also highlights the impact of FWA devices, which display a
broader range of session durations, on NR data predictions. A T-test
confirms significant differences in session durations between smart-
phones and FWA devices, pointing to the necessity of tailored data
analysis and categorization by device type to boost predictive accuracy.
Despite achieving superior prediction performance with the ensemble
model, the research notes limitations due to the regional and temporal
scope of the dataset, suggesting the need for more extensive data to
better capture network behavior and user dynamics.

Further, the research lays the groundwork for two pivotal areas of
future research: Dynamic Resource Allocation for Mixed Networks and
Energy-Efficient Resource Management. These initiatives aim to develop
adaptive allocation strategies in heterogeneous network settings and
refine energy usage in NR networks, particularly for FWA devices,
leveraging predictive insights into session durations. Such advance-
ments could significantly enhance network efficiency and sustainability,
meeting the evolving demands of diverse technologies and user needs.
This work not only proposes mechanisms for adaptive resource alloca-
tion across LTE and NR devices but also explores strategies to optimize
energy efficiency in resource management for NR networks, specifically
tailored to the unique requirements of FWA devices based on their ses-
sion duration predictions.
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