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Universality class of a spinor Bose–Einstein 
condensate far from equilibrium
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Scale invariance and self-similarity in physics provide a uni!ed framework 
for classifying phases of matter and dynamical properties near equilibrium 
in both classical and quantum systems. This paradigm has been further 
extended to isolated many-body quantum systems driven far from 
equilibrium, for which the physical observables exhibit dynamical scaling 
with universal scaling exponents. Universal dynamics appear in a wide range 
of scenarios, including cosmology, quark–gluon matter, ultracold atoms 
and quantum spin magnets. However, how the universal dynamics depend 
on the symmetry of the underlying Hamiltonian in non-equilibrium systems 
remains an outstanding challenge. Here we report on the classi!cation 
of universal coarsening dynamics in a quenched two-dimensional 
ferromagnetic spinor Bose gas. We observe spatio-temporal scaling 
of spin correlation functions with distinguishable scaling exponents 
that characterize binary and di"usive #uids. The universality class of 
the coarsening dynamics is determined by the symmetry of the order 
parameter and the dynamics of the topological defects, such as domain 
walls and vortices. Our results categorize the universality classes of 
far-from-equilibrium quantum dynamics based on the symmetry properties 
of the system.

Critical behaviour in thermodynamic equilibrium occurs in both 
classical and quantum realms. Such static critical phenomena can be 
divided into universality classes, each class described by the same 
set of exponents. However, two systems in the same static universal-
ity class may belong to different dynamical classes1. Extending the 
concept of universality to far-from-equilibrium quantum many-body 
systems presents a formidable challenge in physics2–4. Numerous exper-
iments with myriad platforms have observed universal behaviour and 
spatio-temporal scaling of physical observables in late-time dynamics, 
such that the scaling exponents and scaling functions are independ-
ent of the microscopic details and the initial conditions. Celebrated 
examples are the prethermal dynamics of both a unitary Bose gas5,6 and 

the wave turbulence of an atomic superfluid7, the relaxation dynamics 
of spin correlations8 and momentum distributions9–11, and emergent 
superdiffusive spin transport12–14.

Recently, a comprehensive picture of universal dynamics has 
emerged for isolated quantum systems15–21 in which quantum states 
driven far from equilibrium undergo a critical slowing down and dis-
play a self-similar time evolution associated with non-thermal fixed 
points. Universal coarsening dynamics driven by the annihilation of 
topological defects are found in quenched multicomponent Bose–
Einstein condensates21–25. This is contrast with the classical theory of 
phase-ordering kinetics in that the quantum many-body systems are 
not in contact with a thermal bath26. Generalized hydrodynamics has 
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To initiate the non-equilibrium dynamics, we switch on the micro-
wave field to quench the QZE from q/h = 510 Hz (polar phase) to a final 
value (Fig. 1a). This leads to a rapid crossing of the phase bounda-
ries rendering the initial polar state unstable and forming magnetic 
domains38. After a hold time t, we measure the in situ atomic density 
for each spin state and record the magnetization either along the 
vertical Fz or the horizontal spin axis Fx (Methods). A key feature of 
our system is the strongly ferromagnetic spin interactions34, such 
that the characteristic time (length) scale is much shorter (smaller) 
compared to other alkali atomic systems. For instance, the spin interac-
tion energy at the trap centre is c ≈ −h × 160 Hz and the characteristic 
timescale for domain formation is ts = !/2∣c∣ ≈ 0.5 ms (ref. 38). Such 
a strong interaction makes it possible to monitor the spinor gas for 
evolution times t ≈ 2 × 103 ts, which is long enough to study the emer-
gent universal coarsening dynamics22–25. Domain formation occurs 
initially at the harmonic trap centre due to the higher spin-dependent 
interaction energy. Subsequently these small magnetic domains 
merge and grow in the universal regime with the same power-law 
exponent regardless of the condensate density. Therefore, we are able 
to investigate the universal coarsening dynamics even with the density 
inhomogeneity enforced by the harmonic trap. To validate the experi-
mental observations, we perform extensive simulations of the under-
lying Gross–Pitaevskii equations tailored to the experimental set-up.  
The truncated Wigner approximation is employed39 and accounts 
for quantum and thermal fluctuations in the initial polar state;  
see Methods for more details.

Coarsening dynamics with ℤ
2

 symmetry
We first investigate the non-equilibrium dynamics in the easy-axis 
ferromagnetic phase, qEA/h = −200 Hz. The order parameter for the 
easy axis has U(1) × ℤ

2

 symmetry, which supports the formation of 

been developed for integrable models27,28. Moreover, superdiffusive 
transport in quantum magnets has been predicted29–31, as described 
by the Kardar–Parisi–Zhang universality class32. However, whether and 
how the far-from-equilibrium quantum dynamics and their universality 
classes depend on the symmetries of the Hamiltonian and the emergent 
topological textures remain unanswered.

Here we address these questions by studying universal coarsening 
dynamics in a quenched strongly ferromagnetic superfluid in two 
dimensions. We demonstrate that universality can be classified by: (1) 
the symmetry of the order parameter in the post-quench phase and (2) 
the merging and annihilation dynamics of the associated topological 
defects, such as domain walls and vortices. By quenching the quadratic 
Zeeman energy (QZE) such that a phase transition is crossed, relatively 
small magnetic domains are spontaneously generated and subse-
quently merge to enter the coarsening stage in the long-time evolution. 
By monitoring the spin correlation functions at various hold times, we 
confirm that the dynamics are self-similar, regardless of the experi-
mental conditions. Specifically, when the ground state after the quench 
has ℤ

2

 (spin inversion) symmetry, the domain growth dynamics can be 
described by the universal scaling exponent 1/z

exp

≈ 0.58(2)  
[1/z

sim

≈ 0.59(1)] in the experiment [finite-size simulations]. At high 
momentum, the so-called Porod tail26 is also observed in the structure 
factor as an imprint of the universal character of the dynamics and is 
associated with the formation of a magnetic domain with sharp edges. 
Our results show that the emergent dynamics belong to a binary-fluid 
universality class in the inertial hydrodynamic regime1,22,24. When the 
Hamiltonian exhibits SO(3) spin-rotation symmetry, the characteristics 
of the ensuing magnetic domain coarsening are modified. In the dif-
fusive growth dynamics of domain length25, the experimentally (theo-
retically) measured scaling exponent is  1/z

exp

≈ 0.43(3)  
[1/z

sim

≈ 0.40(1)], which belongs to the non-thermal universality class 
of O(N) symmetric Hamiltonians21,33. We identify the formation of spin 
vortices by matter-wave interferometry and argue that their annihila-
tion is closely related to the observed diffusive dynamics. Note also 
that the difference in the value of the above exponents with the ther-
modynamic limit predictions, namely 1/z ≈ 2/3 (refs. 22–24) and 1/z ≈ 1/2 
(refs. 21,25,33), respectively, can be attributed to the impact of 
finite-size effects introduced by the external trap.

Ferromagnetic spin-1 system
Our experiments begin by preparing a two-dimensional (2D) degener-
ate spin-1 Bose gas of 7Li atoms in an optical dipole trap34. The Hamil-
tonian for the 2D spin-1 condensate is35,36

H = ∫ d
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T  is the wavefunction of each hyperfine level 
(m = −1, 0, 1), M is the atomic mass, r = (x,y) and n = Ψ†Ψ is the atom 
density in the optical dipole trap Vtrap. The spin density is F = (Fx, Fy, Fz), 
where its j = {x, y, z} component is F

j

= Ψ
†

m

f

j

Ψ
m

 with spin-1 matrices fj. 
The coefficients c0 and c2 represent spin-independent and 
spin-dependent interaction coefficients, respectively, and q is the 
QZE. The 7Li spinor gas has ferromagnetic spin interactions (c2 < 0), 
and its ground state is known to feature different phases37 depending 
on the relative strength q/∣c2∣n (Fig. 1a). For q ≫ ∣c2∣n, the system lies 
in the polar phase, where it remains unmagnetized and only the mz = 0 
component is occupied. The region 0 < q < 2∣c2∣n is termed the 
easy-plane phase, having magnetization along the x–y plane and all 
mz components being unequally populated. The isotropic point q = 0 
is where all three spin components are equally populated. Entering 
q < 0, the magnetization resides in the z axis and the phase is known 
as the easy-axis phase. In the experiment, the degenerate Bose gas is 
generated under a finite magnetic field to prepare the spinor system 
in the polar phase (Methods).
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Fig. 1 | Universal coarsening dynamics and topological defects. a, Schematic 
diagram of the experimental sequence. Ramping the QZE q, the initially prepared 
polar condensate is quenched to a magnetic phase q < qc. The universal 
coarsening dynamics are investigated at (1) qEA < 0 easy-axis ferromagnetic 
phases with ℤ

2

 spin symmetry and (2) qIso = 0 isotropic ferromagnetic phase with 
SO(3) symmetry. b,c, Cartoon pictures of a magnetic domain in the easy-axis 
ferromagnetic phase (b) and a spin vortex in the isotropic ferromagnetic phase 
(c). The magnetization vectors in each regime are shown as the spin sphere on the 
left-hand side of the defects. d–f, Snapshot images of the magnetization at 
different hold times after quenching the polar condensate to the easy-axis phase, 
qEA/h = −200 Hz: t = 200 ms (d), t = 400 ms (e) and t = 800 ms (f). g, Correlation 
function of longitudinal magnetization Gz(x, y) at t = 200 ms. Scale bar, 100 µm. 
The data are averaged over 100 experimental realizations.

http://www.nature.com/naturephysics


Nature Physics | Volume 20 | March 2024 | 402–408 404

Article https://doi.org/10.1038/s41567-023-02339-2

magnetic domain walls as topological defects (Fig. 1b). After the 
quench, the polar phase is dynamically unstable and atom pairs with 
|

F = 1,m

z

= ±1⟩

 (|±1⟩) spin states and opposite momenta are generated. 
The kinetic energy εk of the created spin states stems from the 
post-quench QZE and the associated spin interaction energy εk = −qEA − c 
(refs. 37,40). Since the kinetic energy is comparable to the condensate 
chemical potential µ/h = 310 Hz, we can be sure that the spinor gas is 
driven far from equilibrium. At early times, t < 10 ms, spin-mixing takes 
place and the populations of the spin |±1⟩ states increase exponentially 
until they reach a steady value after 100 ms (Extended Data Fig. 1). 
During the spin-mixing process, gauge vortices appear in the |±1⟩ states, 
which either annihilate or drift out of the condensate, giving their place 
to magnetic domains (additional data are available in Supplementary 
Information). Afterwards, the number of spin domains decreases and 
their size increases, resulting in a process known as coarsening dynam-
ics (Fig. 1d–f). During the coarsening dynamics, the time evolution 
displays a self-similar behaviour characterized by a universal scaling 
law such that the condensate is away from both its initial and equilib-
rium states. For longer evolution times (t ≈ 2 s), only a few domains are 
left and coarsening is terminated (Extended Data Fig. 2).

The scaling behaviour can be understood by analysing the 
equal-time correlation function of the longitudinal magnetization24, 
G
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 is the normalization factor, which is conserved 
during the coarsening stage8. In the inset of Fig. 2a, we present the radial 
profile of the spin correlation functions G

z

(r, t) at various hold times. 
The anti-correlation captured by G

z

(r, t) indicates the creation of mag-
netic domains in opposite spin states. We quantify, both in experiment 
and theory, the average domain size L(t) as the first zero of the correla-
tion function, Gz(L, t) = 0 (ref. 24). Indeed, upon rescaling the radial 
distance r → r/L(t), the correlation functions at various hold times 
collapse onto a single curve, 𝒢𝒢𝒢r/L(t)] (Fig. 2a), indicating the self-similar 
character of the universal dynamics.

The universal growth dynamics are characterized by the power-law 
increase of the domain length L(t) ≈ t1/z (Fig. 2b), where the dynamical 
critical exponent 1/z determines the universality class of the emer-
gent coarsening dynamics. Since in the easy-axis phase the spinor gas 
reduces to a binary superfluid system consisting of only the mz = ±1 

components, the coarsening dynamics belong to a binary-fluid uni-
versality class or model H (ref. 1). Previous numerical studies operat-
ing in the thermodynamic limit indeed confirmed this argument and 
predicted the scaling exponent to be 1/z = 2/3 (refs. 22–24).

Figure 2b shows the power-law growth of L(t) as extracted from 
both experiment and theory. The scaling exponent in the experiment 
(open circles) is 1/z

exp

= 0.57(2), which is in excellent agreement with 
our mean-field simulations 1/z

sim

≈ 0.59(1)  using the experimental 
parameters. Here, the time interval for the scaling regime is set to 
t ∈ [0.2 s, 0.8 s], and the independency of the scaling exponent on the 
time interval is demonstrated (Extended Data Fig. 2a,b). The exponents 
as found both experimentally and theoretically, however, are smaller 
than the predicted thermodynamic limit value 1/z = 2/3 (refs. 22–24), 
and we attribute this discrepancy to the finite size of our system as 
enforced by the external trap. Although the universal scaling argu-
ments are strictly valid in the thermodynamic limit, corrections for the 
finite size should reduce the exponent to 1/z ≈ 2/3(1 − 𝒪𝒪(ξ

s

/L))   
(refs. 23,41), where ξ

s

= ℏ/√2M|c| ≈ 2.2 µm is the spin healing length. 
This is further supported by our simulations with the harmonic trap, 
which give a scaling exponent 1/z

sim

= 2/3  at large atom number 
(N ≈ 108) (see Supplementary Information). Furthermore, our imaging 
system has an effective resolution of 5 µm, which could increase the 
domain length. Employing the Weiner deconvolution method, we 
recalibrate the domain size and obtain 1/z

exp

= 0.61(3). Similar univer-
sal behaviour is observed in counting the magnetic domain number 
after the quench (Extended Data Fig. 2c).

Dynamical scaling is also represented in the structure factor 
Sz(k, t) = L(t)2Su(kL(t)), which is the Fourier transformation of the spin 
correlation function, with a scaling function Su (ref. 24). The scaling 
form is identical to the non-thermal fixed point theory, which suggests 
that Sz(k, t) = td/zfS(t1/zk) in d spatial dimensions with fS a scaling func-
tion16–21. Figure 3 shows the rescaled structure factors within the time 
interval t ∈ [0.2 s, 0.8 s]. A universal scaling of the Porod tail Sz(k) ≈ k−3 
is observed26. At early times (t < 100 ms), we observe that the structure 
factor monotonically decreases (not shown), and only after the system 
enters the coarsening stage, are the characteristic ‘knee’ shape and the 
universal high-momentum tail, revealed. The k−3 scaling behaviour 
originates from a linear decay of the correlation function with sharp 
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Fig. 2 | Dynamic scaling and power-law growth of the domain length. a, Scaled 
correlation function 𝒢𝒢𝒢r/L) at various hold times, t ∈ [0.2 s, 0.8 s]. The 
longitudinal spin correlation functions at various hold times (inset) collapse onto 
a single function after the radial position is rescaled by a domain length L(t). Here, 
L(t) is set by a distance with Gz(r, t) = 0. The solid light-blue line represents the 
numerical result with the experimental parameters. b, Power-law growth of the 
domain length L(t). Data with closed (open) circles represent the rescaled domain 
length after (without) deconvolution. The solid line is the theory line. The 
oscillatory behaviour comes from the breathing motion of the condensates.  

The dashed line represents a power-law function L(t) ≈ t1/z with 1/z = 0.61, which is 
obtained from a linear fit in the log-log plot of the domain growth dynamics 
(inset). The full dynamics of the domain length are shown in Extended Data Fig. 2, 
where we carefully choose the scaling range. Small deviations observed at long 
evolution times between theory and experiment are attributed to atom losses by 
microwave dressing (Extended Data Fig. 3). Each data point was obtained from 
more than 100 independent experimental realizations, and one standard error of 
the mean (s.e.m.) is comparable to the size of the data symbols.
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domain wall edges among the mz = ±1 states26, which is confirmed in our 
experiment by imaging Fz and Fx (Extended Data Fig. 4).

To demonstrate universality, we further investigate the quench 
dynamics with three different experimental configurations: (i) We 
create an equal superposition of |±1⟩ states at q/h = 510 Hz as the initial 
state and study the quench dynamics at qEA/h = −200 Hz. The initial 
state has a different dynamical response from the polar condensate37,42, 
and we observe domain separation43 instead of spin pair generation. 
(ii) Many vortices and anti-vortices are imprinted in the polar conden-
sate by dragging a repulsive barrier before the quench (Methods), and 
we investigate the effect of vortices on the coarsening dynamics. (iii) 
We prepare the polar condensate and quench QZE to qEA/h = −120 Hz, 
which is smaller than the reference experiment (qEA/h = −200 Hz) but 
still in the easy-axis phase. In this case, the decay time of L(t) from the 
microwave dressing is increased from 7 to 40 s. Even with such diverse 
experimental configurations, we obtain the same universal curve upon 
rescaling the spin correlation function (Fig. 4a), and the dynamical 
scaling exponents are all approximately 1/z

exp

≈ 0.58(2) (Fig. 4b). This 
highlights the insensitivity of the universal coarsening dynamics to 
experimental details, which contrasts with the near equilibrium critical 
phenomena1 that require a fine-tuning of system parameters. Here, we 
find similar results when the universal scaling functions are obtained 
by satisfying the scaling form Gz(r, t) = fG(t−βr) and Sz(k, t) = tαfS(tβk) with 
universal scaling exponents α and β (materials are available in Sup-
plementary Information). Furthermore, the scaling exponent is far 
different from that of other universality classes of binary fluids, such 
as viscous hydrodynamics with 1/z = 1 or diffusive dynamics with 
1/z = 1/3 (ref. 26). We reaffirm that the coarsening dynamics of the 2D 
ferromagnetic superfluid in the easy-axis phase belongs to the 
binary-fluid universality class in the inertial hydrodynamic regime1.

Coarsening dynamics with SO(3) symmetry
We now turn our attention to examining the coarsening dynamics at 
qIso = 0 (Fig. 1c). In contrast to the easy-axis phase, the ground state is 

invariant under spin rotations. Therefore, we aim to investigate the 
impact of the symmetry of the order parameter, here obeying SO(3) 
rotational symmetry, and the nature of topological defects on the uni-
versal behaviour of the spinor system. As the first homotopy group of 
SO(3) is π

1

𝒢SO(3)] = ℤ

2

, the condensate supports ℤ
2

 spin vortices as 
topological defects37. A recent study argued that universal coarsening 
dynamics also occur at the spin isotropic point, as in the easy-axis phase, 
but with a different critical exponent 1/z = 0.5 (ref. 25). This result is 
consistent with the theory of non-thermal fixed points, which predicts 
the dynamical scaling exponent 1/z ≈ 0.5 for a bosonic Hamiltonian with 
O(N) or U(N) symmetry in d ≥ 2 dimensions21,33. Additionally, a numeri-
cal study within the mean-field framework25 also reported that the 
coarsening dynamics proceeds with the annihilation of ℤ

2

 spin vortices.
Figure 5 summarizes our experimental results for the coarsening 

dynamics with a spin isotropic Hamiltonian. Since the spin vectors can 
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Fig. 4 | Universal coarsening dynamics in the easy-axis phase. a, Scaled spin 
correlation functions 𝒢𝒢𝒢r/L) in the coarsening stage for four different experimental 
configurations (see main text). The reference experiment refers to the coarsening 
dynamics at qEA/h = −200 Hz with a polar-phase initial state (Fig. 2a). The inset shows 
spin-resolved absorption images for various initial conditions. The vortices in (ii) 
can be identified after 6 ms of time of flight. b, Dynamical scaling exponents for the 
different configurations (Fig. 4a). Data with closed (open) circles represent the 
exponent after (without) deconvolution. Error bars denote the fitting errors (the 
resampling error is smaller than the fitting errors). The shaded line shows the results 
of numerical calculations with a finite system size. The solid line indicates the 
dynamic exponents for the inertial hydrodynamic regime in the thermodynamic 
limit, 1/z = 2/3. The experimental results are distinguished from other dynamic 
exponents in a binary-fluid universality class in the viscous 1/z = 1 (dashed line) and 
diffusive 1/z = 1/3 (dashed-dotted line) regimes.
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point in an arbitrary direction, domain coarsening is observed for both 
Fx and Fz (Extended Data Fig. 5). Following the same analysis as in the 
easy-axis quench experiment, we rescale the correlation functions by 
L(t) and observe their collapse into a single curve (Fig. 5a), in line with 
the mean-field analysis. These universal curves are similar for each spin 
axis measured but are distinctive from those of the easy-axis quench 
experiment (Fig. 5a inset), implying that the dynamics at the spin iso-
tropic point belong to a different universality class. This can be further 
supported by the scaling exponent of the domain length L(t) ≈ t1/z  
(Fig. 5b), which we experimentally find to be 1/z

exp

≈ 0.45(3) for Fx and 
1/z

exp

≈ 0.41(2) for Fz. Here, the exponents are close to the thermody-
namic prediction 1/z = 0.5 (ref. 25) and show good agreement with our 
finite-size numerical simulations, 1/z

sim

≈ 0.40(1).
To identify the underlying mechanism responsible for the coars-

ening dynamics in the SO(3) phase, we monitor the spin vortices and 
study their decay dynamics during the coarsening stage. Matter-wave 
interferometry was adopted to identify the position of the vortex 
cores from the relative phase winding between spin states (Methods). 
Characteristic interference patterns of the spin vortices are shown in 
Fig. 5c. The fork-shaped fringes are well represented in all three spin 
components. We also observe events with closely bounded spin vor-
tex/anti-vortex pairs (Fig. 5e). The existence of these spin vortices and 

vortex pairs is well reproduced in the simulated interference images 
(Fig. 5d,f and Extended Data Fig. 6).

By assigning the position of the spin vortex (vortex pairs) to the 
joint point in the fork-shaped (H-shaped) patterns, we count the spin 
vortex number NS and calculate the average distance between vortices 
lS at various hold times (Fig. 5g). The vortex number gradually decays, 
whereas the mean distance increases as time evolves. Since the imag-
ing resolution is larger than the spin healing length, we underestimate 
the vortex number when the condensate contains many vortices. Nev-
ertheless, the vortex number scales with the domain size, such that 
NS ≈ 1/L(t)2 and lS ≈ L(t). The decay of spin vortex pairs occurs at a similar 
timescale (materials are available in Supplementary Information), hint-
ing at its intricate connection with the universal coarsening dynamics in 
the isotropic SO(3) symmetric phase. This is supported by our numeri-
cal simulations, as we calculated the argument of the transverse spin 
vector and tracked the respective phase jumps (materials are available 
in Supplementary Information).

Conclusions and outlook
Utilizing a strongly ferromagnetic spinor condensate, we observe 
universal coarsening dynamics in two dimensions. We find that the 
universal dynamics can be categorized into a well-defined universality 
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. b, Growth 
dynamics of the spin domain for each axis. The solid line is the numerical result 
using our experimental parameters. The inset shows a log-log plot of the domain 
length dynamics. We extracted the scaling exponent with linear fits (dashed 

lines). c, Matter-wave interference images during the coarsening dynamics 
(t = 1 s). The two-to-one (three-to-one) fork-shaped fringes in the spin |±1⟩ (|0⟩) 
state represent phase windings of 2π (4π) around the vortex core. d, Simulated 
interference pattern with a spin vortex at the trap centre (red boxes).  
e, Interference images with spin vortex and anti-vortex pairs at t = 1 s (orange 
circles). f, Numerical simulations with the vortex pair located at the trap centre 
(H-shaped pattern, orange boxes). g, Number of spin vortices NS as a function of 
time. Inset: the intervortex distance lS during the time evolution. Solid lines are 
power-law guidelines, NS(t) ≈ 1/L(t)2 and lS ≈ L(t). The vortex number is the average 
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class based on the symmetry of the order parameter and the dynamics 
of topological defects, such as domain walls and spin vortices. Our 
research demonstrates the diverse capabilities of cold-atom quantum 
simulators in characterizing non-equilibrium quantum dynamics, 
thus providing a stepping stone to a comprehensive understanding 
of quantum thermalization processes in multidisciplinary research 
fields. Further extensions include an investigation of the universal 
dynamics mediated by other types of excitations, such as vortices in 
a two-dimensional superfluid44–46, solitons in one dimension47,48, mag-
nons in the Heisenberg spin model49,50 and chiral quantum magnetiza-
tion with spin–orbit interactions51,52. Moreover, our strongly interacting 
platform offers new opportunities for exploring long-time thermaliza-
tion dynamics in two dimensions, as the long-lived topological defects 
can slow down equilibration53.
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butions and competing interests; and statements of data and code avail-
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Methods
Experimental systems
We created a spinor condensate of 7Li atoms in a quasi-2D optical dipole 
trap34, with frequencies (ωx, ωy, ωz) = 2π × (7, 8, 635) Hz. The condensate 
contained 2.7 × 106 atoms and had a negligible thermal fraction (<5%). 
The chemical potential of the condensate was µ/h = 310 Hz, indicating 
that transversal excitations were suppressed. Indeed, no spin structures 
were observed along the axial direction, and thus, we confirmed that 
the coarsening dynamics occurred in two dimensions. To prepare the 
condensate in the polar phase, an external magnetic field of B = 1 G was 
applied along the vertical axis. Under this magnetic field, the QZE was 
larger than the critical point q > qc = 2∣c∣ (Fig. 1a), so that all atoms 
populated the same spin state |F = 1,m

z

= 0⟩ ≡

|

1,0⟩.
Instantaneous quenching of the QZE was experimentally real-

ized with the microwave dressing technique40. The QZE is given by 
q = qB + qMW, where qB/h = αB2 is the second-order Zeeman splitting of 
the hyperfine states of 7Li atoms with α = 610 Hz G−2, and qMW/h = Ω2/4δ 
denotes the respective energy shift due to the microwave field. In the 
experiment, we ramped the external bias field down to B ≈ 100 mG in 
7 ms and simultaneously tuned the microwave frequency, such that 
the QZE was always larger than the critical point (q > qc) during the 
field ramp. We initiated the non-equilibrium dynamics of the spinor 
gas by changing the microwave frequency within 1 µs and quenching 
the QZE to a target point. The magnitude of the QZE was calibrated 
by studying statistics of the spin population at 2 s after the quench53. 
The field gradient was compensated to below 30 µG cm−1 so that we 
observed randomly oriented domain walls, even a long time after the 
quench (t = 2 s). The microwave field induced atom loss and heating 
during the hold time, as it couples the atoms to the F = 2 spin state 
(Extended Data Fig. 3). Atom loss was noticeable in the deep easy-axis 
regime (q/h = −200 Hz), and we could easily underestimate the domain 
length and the dynamic scaling exponent. Fortunately, the atom loss 
was noticeable only for very long times, when all domains had merged, 
so that the thermal fraction remained mainly below 10% throughout 
the evolution. Therefore, neither the atom loss nor the heating had any 
sizeable effect on the universal coarsening dynamics.

Long-term drifts in the experimental parameters were calibrated 
by taking reference images. For example, the average magnetization at 
t = 2 s was monitored every 150 min (corresponding to approximately 
300 measurements), and we adjusted the field gradient if needed. 
The uncertainty of the QZE was mostly due to the external field noise, 
which was ±0.3 Hz. The small fluctuations in the QZE were negligible, 
even for the spin isotropic coarsening dynamics within the considered 
timescales. The small but non-zero QZE could have led to a coarsening 
transition at longer evolution times when the scaling exponents of the 
domain lengths followed the easy-plane or easy-axis phase dynamics25. 
The field fluctuations in the experiment were q/q0 < 10−3 so that the 
transition occurred after t > 1 s (t > 2,000ts).

In situ spin-resolved imaging
Atomic density distributions in the lower hyperfine spin states were 
recorded using the standard absorption imaging technique after selec-
tively converting a target spin state into an upper hyperfine state. Under 
a magnetic field of 100 mG, for instance, we applied a microwave that 
transferred the atoms from the |1, 1⟩ to the |2, 1⟩ state. The atomic distribu-
tion in the |2, 1⟩ state was subsequently imaged by a resonant light with 
the |F = 2⟩ →

|

F

′

= 3⟩ transition. The atoms in the other spin states were 
measured in a similar manner. Namely, after taking the first image, we 
applied an additional microwave pulse, flipping the hyperfine spin states 
from |1,0⟩ (|1, −1⟩) to |2, 1⟩ (|2, −2⟩), and imaging the transferred atoms. To 
avoid cross-talk between images within the F = 1 state, we removed all 
atoms in the |F = 2⟩ state before taking subsequent images. This imaging 
sequence was also used to measure the magnetization along the spin x 
direction, Fx. Indeed, by applying a resonant radio-frequency pulse, we 
rotated the measurement basis from the spin z axis to the x axis and 

recorded the density distribution of each spin state. Paradigmatic 
images of magnetization along x and z following a quench to the spin 
isotropic point (qIso = 0) are shown in Extended Data Fig. 5.

To characterize the imaging resolution, we prepared a spin spiral 
structure, which displayed periodic density modulation in each spin 
state. This state can be created by evolving the spin vector in the hori-
zontal plane under a finite field gradient54. The modulation period λsp 
was determined by the gradient strength and exposure time, and the 
contrast was affected by our imaging system. For example, the contrast 
dropped to 30% at λsp = 10 µm. By investigating the dependence of the 
contrast on the wavelength λsp, we estimated that the imaging resolu-
tion was 5 µm. The imaging parameters were optimized to give a better 
signal-to-noise ratio and imaging resolution. We set the imaging light 
intensity to 0.5Isat and the imaging pulse to 4 µs, where Isat = 2.5 mW cm−2 
is the saturation intensity.

Vortex shedding in the polar condensate
To demonstrate the insensitivity of the dynamical exponent on the 
initial conditions, we imprinted many vortices in the polar phase before 
the quench. An initial state containing many vortices can be prepared 
by adopting the vortex-shedding technique55,56. Specifically, a repulsive 
optical barrier was imposed at the trap centre and translated by a piezo 
mirror mount. When the speed of the barrier exceeded a critical thresh-
old, vortices and anti-vortices were nucleated in the condensate55. 
The optical obstacle was made of focused, blue-detuned laser light 
of 532 nm along the z direction. Its 1/e2 beam waist was 8 µm, and the 
obstacle height was V0/µ ≈ 3. The sweeping distance of the barrier from 
the trap centre was d = 60 µm, and its translation speed was 6 mm s−1. 
The vortex cores could be identified after 6 ms of time of flight (inset of 
Fig. 4a). Around 15 vortices were nucleated before the quench. Indeed, 
using this initial state containing vortices we performed the quench 
dynamics as described above and measured the critical exponent, 
which remained unaffected, for example having the value 1/z = 0.58(2) 
for the easy-axis phase.

Matter-wave interference
To infer the spin windings of spin vortices, we employed matter-wave 
interference57,58 with the following experimental procedure. A field gradi-
ent of 60 mG cm−1 was applied to the condensate for t

grad

= 6 ms. Next, a 
resonant radio-frequency pulse was used to induce the |1,0⟩ ↔ |

1, ±1⟩  
transition. Finally, we imaged all spin components in the F = 1 state using 
the selective spin transfer imaging technique. In the vortex-free state, we 
observed stripe lines along the gradient direction as a result of the phase 
accumulation across the condensate. With the phase defect, however, 
the stripe lines were dislocated, and we could read out the magnitude of 
the relative phase winding in the spin texture. Because of our finite imag-
ing resolution, we set the periodicity of the stripe patterns to ∼10 µm. 
Accordingly, this became the minimum distance between spin vortices 
detected with this scheme. The vortex positions in the numerical simula-
tions, as determined by analysing the spin vector, were the same as the 
phase singular points that were identified using the matter-wave interfer-
ence technique (Extended Data Fig. 6).

Mean-field equations of the spin-1 gas
The dynamics of the spin-1 condensate is described by the following 
set of coupled three-dimensional (3D) Gross–Pitaevskii equations of 
motion:

∂Ψ (r; t)

∂t

= [ −

ℏ

2

∇

2

2M

+ V

trap

(r) + q f

2

z

+ c

0

n(r; t) + c

2

F(r; t) ⋅ f]Ψ (r; t). (2)

The wavefunction of each hyperfine mz = −1, 0 or 1 level is denoted 
by Ψ = (Ψ

1

,Ψ
0

,Ψ
−1

)

T , the atom mass is M and r ≡ {x, y, z}. The 
spin-independent nonlinear term c0n is characterized by the effective 
strength, c0 = 4π!2(a0 + a2)/(3M), and total density, n = ∑

m

z

|Ψ
m

z

|

2. Here, 
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a0 and a2 refer to the 3D s-wave scattering lengths of the atoms in the 
scattering channels with total spin F = 0 and F = 2, respectively. In con-
trast, the spin-dependent nonlinear term c2F ⋅ f accounting for interac-
tions among the hyperfine levels contains the coupling constant 
c2 = 4π!2(a2 − a0)/(3M) and spin density F = (Fx, Fy, Fz), whose j = {x, y, z} 
component is F

j

= Ψ
†

m

z

f

j

Ψ
m

z

 where fj denote the spin-1 matrices. As 
discussed in the main text, we focus on the 7Li condensate possessing 
strong ferromagnetic interactions, that is c2 < 0. The 3D external har-
monic confinement V

trap

=

1

2

M(ω

2

x

x

2

+ ω

2

y

y

2

+ ω

2

z

z

2

) is characterized by 
the in-plane trap frequency ωx ≈ ωy and the out-of-plane one ωz. These 
obey the condition ωz ≫ ωx ≈ ωy, which restricts the atomic motion in 
2D. Throughout, we consider the experimentally used trap frequencies 
(ωx, ωy, ωz) = 2π × (7, 8, 635) Hz. Moreover, the length and energy scales 
of the system are expressed in terms of the harmonic oscillator length 
l

osc

= √ℏ/Mω

x

 and the energy quanta -ω. For convenience of our simula-
tions, we further cast the 3D Gross–Pitaevskii equation (2) into a dimen-
sionless form by rescaling the spatial coordinates as x′ = x/l

osc

, y′ = y/l

osc

 
and z′ = z/l

osc

, the time as t′ = ω

x

t  and the wavefunction as 
Ψ

m

z

(x

′

, y

′

, z

′

) =

√

(l

3

osc

/N )Ψ
m

z

(x, y, z)

. See, for example, refs. 59,60 for fur-
ther details.

Depending on the relative strength of q/(∣c2∣n), it is possible to 
realize a rich phase diagram containing first- and second-order  
phase transitions as described in ref. 37. For instance, the quantum 
critical point q = qc = 2∣c2∣npeak, with npeak being the condensate  
peak density around the trap centre, separates the so-called unmagnet-
ized polar state in which all atoms are in the mz = 0 state  
from the easy-plane ferromagnetic phase with all mz states being occu-
pied. The latter phase occurs within the interval 0 < q < qc and is char-
acterized by the order parameter F. = Fx + iFy for the transverse 
magnetization25, where F

x

= 𝒢Ψ
∗
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Ψ
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]/(

√

2n). On the other hand, for q < 0, 
the ground state corresponds to an easy-axis ferromagnetic phase 
where the magnetization lies along the z axis and the relevant order 
parameter is the longitudinal magnetization Fz = ∣Ψ+1∣2 − ∣Ψ−1∣2/n.

Initial state preparation using quantum and thermal 
fluctuations
The initial state of the spin-1 gas (the easy-axis polar state) was realized 
at q = 2qc, with the critical quadratic Zeeman shift qc = 2∣c2∣npeak/h. It is 
represented by the wavefunction

Ψ
polar

= (0,Ψ
0

,0)

T

. (3)

The latter was determined by numerically solving equation (2) 
using the split-time Crank–Nicholson method in imaginary time61,62.  
To trigger the dynamics, we performed a sudden change of the quadratic 
Zeeman coefficient q from its initial value qi/h = 510 Hz (polar state) to a 
final value qEA/h = −200 Hz (easy-axis state) or qIso/h = 0 (isotropic point).

To monitor the system’s non-equilibrium dynamics, it was essential 
to consider the presence of quantum and thermal fluctuations on top 
of the initial zero-temperature mean-field state (equation (3)). This 
contribution seeded the ensuing dynamical instabilities occurring 
once q was quenched. We incorporated the impact of quantum and 
thermal effects exploiting the truncated Wigner approximation39. 
Namely, we expressed the wavefunction as ΨI = Ψpolar + δ, where 
δ = (δ

+1

,δ

0

,δ

−1

)

T  is a noise vector constructed using the Bogoliubov 
quasi-particle modes of the system. Specifically, first, we calculated 
the steady-state solution (Ψpolar), which was subsequently perturbed 
according to the following ansatz Ψ
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)

. 
Inserting this ansatz into equation (2) and linearizing with respect to 
the small amplitude + leads to the corresponding energy eigenvalue 
problem, which was numerically solved through diagonalization, thus 
allowing us to determine the underlying eigenfrequencies {Ωj} and 
eigenfunctions {Uj

m

z

,V

j

m

z

}. For the polar steady state, where Ψ±1 = 0 and 
Ψ0 = Ψ0, the respective eigenvalue problem reads
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Here, the matrix elements are given by a = −
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2  with µ being the 
system’s chemical potential. Having at hand the eigenmodes {Uj
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} 
and eigenvalues Ωj, it is possible to express the noise field in the form 
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. That is, we decompose it in terms of the 
low-lying collective modes of the initial state, which are weighted by the 
random-valued coefficients β j
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. These coefficients are generated as
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where xj and yj are random values taken from a normally distributed 
Gaussian distribution characterized by zero mean and unit variance, and 
̄
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= (e
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ℏ/𝒢K

B

T )

−1)

−1

 denotes the mean thermal occupation of the Bose–
Einstein condensate at temperature T. Notice also that the constant 1/2 
factor in equation (5) stems from the vacuum noise. In this sense, the 
initial state of the system comprises a condensate with thermal excita-
tions for the mz = 0 and only vacuum noise for the mz = ±1 components. 
In the experiment, the initial thermal fraction detected was less than 5%. 
To take this into account within our simulations, we used T = 35 nK as the 
system temperature, for which the average thermal fraction was approxi-
mately 4% of the total atom number. Note that the number of thermal 
atoms is N

T

= ∫dr [∑

j

{𝒢(U

j

m

z
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2

}], see also ref. 39 

for the relation between the thermal fraction and the temperature of the 
condensate. Note that we also explored with our simulations the effect 
of varying the initial temperatures while ensuring that the thermal frac-
tion remained below 6%, as per the experimental conditions. Interest-
ingly, we found that such temperature variations had no discernible 
impact on the coarsening dynamics. Finally, in order to render the 
observables of interest independent of the presence of the 
above-discussed noise factors, we employ multiple realizations, for 
example, for a specific quench, and afterwards perform an averaging. 
Typical samples leading to a converged behaviour of the observables of 
interest consist of 500 different realizations.
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Source data are provided with this paper.

References
54. Hild, S. et al. Far-from-equilibrium spin transport in  

Heisenberg quantum magnets. Phys. Rev. Lett. 113, 147205  
(2014).

55. Neely, T. W., Samson, E. C., Bradley, A. S., Davis, M. J. &  
Anderson, B. P. Observation of vortex dipoles in an oblate  
Bose–Einstein condensate. Phys. Rev. Lett. 104, 160401  
(2010).

56. Kwon, W. J., Moon, G., Seo, S. W. & Shin, Y. Critical velocity for 
vortex shedding in a Bose–Einstein condensate. Phys. Rev. A 91, 
053615 (2015).

57. Choi, J.-y., Kwon, W. J. & Shin, Y.-i. Observation of topologically 
stable 2D skyrmions in an antiferromagnetic spinor Bose–Einstein 
condensate. Phys. Rev. Lett. 108, 035301 (2012).

58. Inouye, S. et al. Observation of vortex phase singularities in  
Bose–Einstein condensates. Phys. Rev. Lett. 87, 080402  
(2001).

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-023-02339-2

59. Mukherjee, K., Mistakidis, S. I., Kevrekidis, P. G. & Schmelcher, P. 
Quench induced vortex-bright-soliton formation in binary  
Bose–Einstein condensates. J. Phys. B: At. Mol. Opt. Phys. 53, 
055302 (2020).

60. Kwon, K. et al. Spontaneous formation of star-shaped surface 
patterns in a driven Bose–Einstein condensate. Phys. Rev. Lett. 
127, 113001 (2021).

61. Crank, J. & Nicolson, P. A practical method for numerical evaluation 
of solutions of partial di#erential equations of the heat-conduction 
type. Math. Proc. Camb. Philos. Soc. 43, 50–67 (1947).

62. Antoine, X., Bao, W. & Besse, C. Computational methods for 
the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii 
equations. Comput. Phys. Commun. 184, 2621–2633 (2013).

Acknowledgements
We acknowledge discussions with I. Bloch, S.-B. Chung, F. Fang,  
T. Hilker, G. C. Katsimiga, P. G. Kevrekidis, K. Kim, S. K. Kim,  
S. Majumder, S. M. Reimann and Y. Shin. K.M. acknowledges the 
PARAM Shakti at the Indian Institute of Technology Kharagpur, a 
national supercomputing mission, Government of India, for providing 
computational resources. J.-y.C. is supported by the Samsung Science 
and Technology Foundation (Grant No. BA1702-06), a National 
Research Foundation of Korea (NRF) grant (Project Nos. RS-2023-
00207974 and 2023M3K5A1094812) and the KAIST UP programme. 
S.I.M. and H.R.S. acknowledge support from the NSF through a 
grant to the Institute for Theoretical Atomic Molecular and Optical 
Physics at Harvard University. K.M. is financially supported by the 
Knut and Alice Wallenberg Foundation (Grant No. 2018.0217) and the 
Swedish Research Council and also acknowledges the Ministry of 

Human Resource Development, Government of India, for a research 
fellowship at the early stages of this work.

Author contributions
All authors contributed substantially to the work presented in this 
manuscript. S.-J.H., K.K., J.S. and J.H. maintained the experimental 
apparatus and collected the data. S.-J.H., K.K. and J.S. analysed the 
data. K.M. and S.M. performed the numerical simulations. This work 
was supervised by S.I.M., H.R.S. and J.-y.C.

Competing interests
The authors declare no competing interests.

Additional information
Extended data Extended data are available for this paper at  
https://doi.org/10.1038/s41567-023-02339-2.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41567-023-02339-2.

Correspondence and requests for materials should be addressed to 
Jae-yoon Choi.

Peer review information Nature Physics thanks the anonymous 
reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturephysics
https://doi.org/10.1038/s41567-023-02339-2
https://doi.org/10.1038/s41567-023-02339-2
http://www.nature.com/reprints


Nature Physics

Article https://doi.org/10.1038/s41567-023-02339-2

Extended Data Fig. 1 | Spin populations after quenching the quadratic 
Zeeman energy. a, After quenching to the isotropic ferromagnetic phase (q/h = 0 
Hz), the atoms in the spin |0⟩ state rapidly decay and create spin |±1⟩ states. The 
spin population reach a steady state after 100 ms with equal population 
(n1, n0, n−1) ≃ (1/3, 1/3, 1/3). During the whole coarsening dynamics, the spin 
population for all spin states remains constant. In the easy-axis ferromagnetic 
phase (b,q/h = − 120 Hz and c,q/h = − 200 Hz), the initial |0⟩ state rapidly 
disappear and generate equal population of the spin |±1⟩ state. The residual spin 
component in the |0⟩ state during the coarsening dynamics is attributed to the 

spin vector along the horizontal plane at the domain wall (Extended Data Fig. 4). 
Because of the microwave dressing field, the spin population gradually changes. 
d, Time evolution of spin population imbalance (ℐ = n

1

− n

−1

) under different 
quadratic Zeeman energy. The population imbalance is noticeable in the deep 
easy-axis regime (q/h = − 200 Hz), but its impact on the domain length is not 
significant as shown in Fig. 2. Each data point is obtained with more than 100 
independent experimental runs, and the error bars represent one standard error 
of the mean.
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Extended Data Fig. 2 | Full-time evolution of coarsening dynamics and 
scaling exponents in the easy-axis ferromagnetic phase. a, Domain length 
L(t) in the full time evolution accessible during the experiment. Closed (open) 
circles represent the domain length after (without) deconvolution. Dashed 
lines represent the scaling time interval t ∈ [0.2 s, 0.8 s]. The lower bound for the 
time interval is chosen to ensure that the condensate enters into the coarsening 
stage after the quench.The upper bound of the time interval is limited by the 

finite size of the system and lifetime lifetime of the condensate. b, Dependence 
of the scaling exponents 1/z on the lower bound for the time interval tL. The 
error bars indicate the 1σ confidence interval of the fit parameters. c, Number 
of magnetic domains after the quench. The domain number ND is counted by 
using the Hoshen-Koppelman algorithm (details are available in Supplementary 
Information). The domain number follows the power law decay (solid line), 
ND ∼ t−2/z with 1/z = 0.63(4).
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Extended Data Fig. 3 | Effect of the microwave dressing on the spinor Bose 
gas. a, Long-time evolution of the atom number and b, thermal fraction at 
q/h = − 120 Hz (square, light blue) and − 200 Hz (circle, dark blue). c, Long-time 
evolution of the domain length in the easy axis quench q/h = − 200 Hz. After the 
coarsening terminated (t = 1 s), the domain length is decreased from 61 µm  
to 57 µm with additional 1 s of hold time. It implies that the domain length during 

the universal dynamics t ∈ [0.2 s, 0.8 s] could be underestimated by 5%.  
d,e Absorption images (top) and the magnetization density (bottom)  
at different hold times (see legends). Domain size is reduced as a result of the 
atom loss. Each data point is obtained with 40 different experimental realisation, 
and the error bars denote one standard error of the mean.
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Extended Data Fig. 4 | Magnetic domain wall in the easy-axis ferromagnetic 
phase. a, Magnetization Fz after 1.5 s of hold time, and b, the cross-section profile 
across the magnetic domain. The solid line is a fit curve F

z

𝒢r) = F

z0

tanh𝒢r/ξ

d

) 
with ξd = 4.5(2) µm. c,d, Magnetization along the horizontal axis Fx. The spin 

vectors could be aligned on the same axis (c, Bloch or Neel-type domain wall) or 
point in opposite directions (d, Bloch line). A long wavelength modulation of the 
horizontal spin vector could imply the presence of spin wave excitations in the 
magnetic domain.
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Extended Data Fig. 5 | Time evolution of spin domains in the isotropic 
ferromagnetic phase. a-e, Longitudinal magnetization Fz (upper) and its two-
dimensional spin correlation functions Gz(x, y) (below) at various hold times. 
f-j, Snapshots of transverse magnetization Fx. and the correlation functions 

Gx(x, y). In contrast to the easy-axis phase, in the spin isotropic point, coarsening 
dynamics are observed in both axes, and the domain boundaries are much 
broader than those of the q < 0 spin domains. The spin correlation functions are 
averaged over 100 different realizations at a given hold time.
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Extended Data Fig. 6 | Numeric simulations of the matter-wave interference 
for the ℤ

2

 spin vortices. a, Density profile and b, the argument of the transverse 
spin vector ϕ = tan

−1

𝒢F

y

/F

x

) in the x-y plane after t = 3.5 s of domain coarsening 
dynamics at the spin isotropic point. The spin vortex can be identified from a 
phase jump around the vortex core (yellow box). c, Three dimensional spin 
vectors F = (Fx, Fy, Fz) in the x-y plane near the highlighted region (yellow box). Not 
only the in-plane spin vector but also the longitudinal spin vector turns around 
the vortex core, indicating the ℤ

2

 spin vortex. d, Simulated images after the 

matter-wave interference. The positions of the spin vortices are well-identified 
from fork-shaped patterns in the spin imbalance image. e–h, Representative 
experimental images after the matter-wave interference under various hold 
times (see distinct rows). All images are obtained by independent experimental 
runs. In the vortex-free region, the magnetization displays a connected stripe 
pattern, while the spin vortex shows a dislocation of the stripes to form the 
two-to-one fork-shaped patterns. The vortex positions are highlighted by yellow 
circles.
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