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Scale invariance and self-similarity in physics provide a unified framework

for classifying phases of matter and dynamical properties near equilibrium
inboth classical and quantum systems. This paradigm has been further
extended toisolated many-body quantum systems driven far from
equilibrium, for which the physical observables exhibit dynamical scaling
with universal scaling exponents. Universal dynamics appear inawide range
of scenarios, including cosmology, quark-gluon matter, ultracold atoms
and quantum spin magnets. However, how the universal dynamics depend
onthe symmetry of the underlying Hamiltonian in non-equilibrium systems
remains an outstanding challenge. Here we report on the classification

of universal coarsening dynamics in a quenched two-dimensional
ferromagnetic spinor Bose gas. We observe spatio-temporal scaling

of spin correlation functions with distinguishable scaling exponents

that characterize binary and diffusive fluids. The universality class of

the coarsening dynamicsis determined by the symmetry of the order
parameter and the dynamics of the topological defects, such as domain
walls and vortices. Our results categorize the universality classes of
far-from-equilibrium quantum dynamics based on the symmetry properties

of the system.

Critical behaviour in thermodynamic equilibrium occurs in both
classical and quantum realms. Such static critical phenomena can be
divided into universality classes, each class described by the same
set of exponents. However, two systems in the same static universal-
ity class may belong to different dynamical classes’. Extending the
concept of universality to far-from-equilibrium quantum many-body
systems presents aformidable challenge in physics**. Numerous exper-
iments with myriad platforms have observed universal behaviour and
spatio-temporal scaling of physical observables in late-time dynamics,
such that the scaling exponents and scaling functions are independ-
ent of the microscopic details and the initial conditions. Celebrated
examples are the prethermal dynamics of both aunitary Bose gas*® and

the wave turbulence of an atomic superfluid’, the relaxation dynamics
of spin correlations® and momentum distributions’™, and emergent
superdiffusive spin transport’?™*,

Recently, a comprehensive picture of universal dynamics has
emerged for isolated quantum systems"? in which quantum states
driven far from equilibrium undergo a critical slowing down and dis-
play a self-similar time evolution associated with non-thermal fixed
points. Universal coarsening dynamics driven by the annihilation of
topological defects are found in quenched multicomponent Bose-
Einstein condensates” . This is contrast with the classical theory of
phase-ordering kinetics in that the quantum many-body systems are
not in contact with a thermal bath*. Generalized hydrodynamics has
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been developed for integrable models”?%. Moreover, superdiffusive
transport in quantum magnets has been predicted®*, as described
by the Kardar-Parisi-Zhang universality class*. However, whether and
how the far-from-equilibrium quantum dynamics and their universality
classes depend onthe symmetries of the Hamiltonian and the emergent
topological textures remain unanswered.

Here we address these questions by studying universal coarsening
dynamics in a quenched strongly ferromagnetic superfluid in two
dimensions. We demonstrate that universality can be classified by: (1)
the symmetry of the order parameter in the post-quench phase and (2)
the merging and annihilation dynamics of the associated topological
defects, such asdomainwalls and vortices. By quenching the quadratic
Zeeman energy (QZE) such that aphase transitionis crossed, relatively
small magnetic domains are spontaneously generated and subse-
quently merge to enter the coarsening stage in the long-time evolution.
By monitoring the spin correlation functions at various hold times, we
confirm that the dynamics are self-similar, regardless of the experi-
mental conditions. Specifically, when the ground state after the quench
has 7, (spininversion) symmetry, the domain growth dynamics canbe
described by the universal scaling exponent 1/z¢,, ~ 0.58(2)
[1/z4m ~ 0.59(1)] in the experiment [finite-size simulations]. At high
momentum, the so-called Porod tail* is also observed in the structure
factor as animprint of the universal character of the dynamics and is
associated with the formation of amagnetic domain with sharp edges.
Our results show that the emergent dynamics belong to a binary-fluid
universality class in the inertial hydrodynamic regime'*>**, When the
Hamiltonian exhibits SO(3) spin-rotation symmetry, the characteristics
of the ensuing magnetic domain coarsening are modified. In the dif-
fusive growth dynamics of domain length?, the experimentally (theo-
retically) measured scaling exponent is 1/ze, =~ 0.43(3)
[1/z4m ~ 0.40(1)], which belongs to the non-thermal universality class
of O(N) symmetric Hamiltonians®**, We identify the formation of spin
vortices by matter-wave interferometry and argue that their annihila-
tion is closely related to the observed diffusive dynamics. Note also
that the difference in the value of the above exponents with the ther-
modynamiclimit predictions, namely 1/z = 2/3 (refs.22-24) and 1/z=1/2
(refs. 21,25,33), respectively, can be attributed to the impact of
finite-size effects introduced by the external trap.

Ferromagnetic spin-1system

Our experiments begin by preparing atwo-dimensional (2D) degener-
ate spin-1Bose gas of ’Li atoms in an optical dipole trap**. The Hamil-
tonian for the 2D spin-1condensate is*>**

2¢72 C C
H:fdzr[w(-%+qﬁ+v"ap>w+ 70n2+72|F|2 .,

where ¥ = (¥, ¥, LP_I)T is the wavefunction of each hyperfine level
(m=-1,0,1), Mis the atomic mass, ¥ = (x,y) and n = ¢'¢¥is the atom
density inthe optical dipole trap V,,,,. The spindensityisF = (F,, F,, F,),
whereitsj={x,y, z} componentis F; = W,Lj;wmwith spin-1matricesf.
The coefficients ¢, and c, represent spin-independent and
spin-dependent interaction coefficients, respectively, and g is the
QZE. The’Li spinor gas has ferromagnetic spin interactions (c, < 0),
andits ground state isknown to feature different phases” depending
on the relative strength g/|c,|n (Fig. 1a). For g > |c,|n, the system lies
inthe polar phase, where it remains unmagnetized and only the m,= 0
component is occupied. The region 0 < g <2|c,|n is termed the
easy-plane phase, having magnetization along the x-y plane and all
m,components being unequally populated. Theisotropic pointg=0
is where all three spin components are equally populated. Entering
g <0, the magnetization resides in the z axis and the phase is known
as the easy-axis phase. In the experiment, the degenerate Bose gas is
generated under a finite magnetic field to prepare the spinor system
inthe polar phase (Methods).

a Magnetic phase Polar phase
Qqea< O Qiso=0 (e q
Isotropic ferromagnet

b Easy-axis ferromagnet C
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Fig.1|Universal coarsening dynamics and topological defects. a, Schematic
diagram of the experimental sequence. Ramping the QZE g, the initially prepared
polar condensate is quenched to a magnetic phase g < g.. The universal
coarsening dynamics are investigated at (1) gg, < O easy-axis ferromagnetic
phases with Z, spin symmetry and (2) g,,, = O isotropic ferromagnetic phase with
SO(3) symmetry. b,c, Cartoon pictures of a magnetic domain in the easy-axis
ferromagnetic phase (b) and a spin vortex in the isotropic ferromagnetic phase
(c). The magnetization vectors in each regime are shown as the spin sphere on the
left-hand side of the defects. d-f, Snapshot images of the magnetization at
different hold times after quenching the polar condensate to the easy-axis phase,
Gea/h=-200Hz: t=200 ms (d), t=400 ms (e) and ¢ =800 ms (f). g, Correlation
function of longitudinal magnetization G,(x, y) at =200 ms. Scale bar, 100 pm.
The dataare averaged over 100 experimental realizations.

Toinitiate the non-equilibrium dynamics, we switch on the micro-
wave field to quench the QZE from g/h = 510 Hz (polar phase) to afinal
value (Fig. 1a). This leads to a rapid crossing of the phase bounda-
ries rendering the initial polar state unstable and forming magnetic
domains’®. After a hold time t, we measure the in situ atomic density
for each spin state and record the magnetization either along the
vertical F, or the horizontal spin axis F, (Methods). A key feature of
our system is the strongly ferromagnetic spin interactions®, such
that the characteristic time (Ilength) scale is much shorter (smaller)
compared to other alkaliatomic systems. Forinstance, the spininterac-
tionenergy at the trap centreis c = —h x 160 Hz and the characteristic
timescale for domain formation is ¢, = 71/2|c| = 0.5 ms (ref. 38). Such
a strong interaction makes it possible to monitor the spinor gas for
evolution times t = 2 x 10*,, which is long enough to study the emer-
gent universal coarsening dynamics?* >, Domain formation occurs
initially at the harmonic trap centre due to the higher spin-dependent
interaction energy. Subsequently these small magnetic domains
merge and grow in the universal regime with the same power-law
exponentregardless of the condensate density. Therefore, we are able
toinvestigate the universal coarsening dynamics even with the density
inhomogeneity enforced by the harmonic trap. To validate the experi-
mental observations, we perform extensive simulations of the under-
lying Gross-Pitaevskii equations tailored to the experimental set-up.
The truncated Wigner approximation is employed® and accounts
for quantum and thermal fluctuations in the initial polar state;
see Methods for more details.

Coarsening dynamics with z, symmetry

We first investigate the non-equilibrium dynamics in the easy-axis
ferromagnetic phase, gg,/h =-200 Hz. The order parameter for the
easy axis has U(1) x Z, symmetry, which supports the formation of
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Fig.2|Dynamic scaling and power-law growth of the domain length. a, Scaled
correlation function € (r/L) at various hold times, t €[0.2's, 0.8 s]. The
longitudinal spin correlation functions at various hold times (inset) collapse onto
asingle function after the radial positionis rescaled by adomain length L(t). Here,
L(¢t) is set by adistance with G,(r, t) = 0. The solid light-blue line represents the
numerical result with the experimental parameters. b, Power-law growth of the
domainlength L(¢). Data with closed (open) circles represent the rescaled domain
length after (without) deconvolution. The solid line is the theory line. The
oscillatory behaviour comes from the breathing motion of the condensates.
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The dashed line represents a power-law function L(¢) = t*with 1/z = 0.61, whichis
obtained fromalinear fitin the log-log plot of the domain growth dynamics
(inset). The full dynamics of the domain length are shown in Extended Data Fig. 2,
where we carefully choose the scaling range. Small deviations observed at long
evolution times between theory and experiment are attributed to atom losses by
microwave dressing (Extended Data Fig. 3). Each data point was obtained from
more than100 independent experimental realizations, and one standard error of
the mean (s.e.m.) iscomparable to the size of the data symbols.

magnetic domain walls as topological defects (Fig. 1b). After the
quench, the polar phase is dynamically unstable and atom pairs with
|F =1, m, = £1)(|+1)) spin states and opposite momenta are generated.
The kinetic energy ¢, of the created spin states stems from the
post-quench QZE and the associated spininteractionenergy &, =—qg — €
(refs.37,40). Since the kinetic energy is comparable to the condensate
chemical potential u/h =310 Hz, we can be sure that the spinor gas is
driven far from equilibrium. At early times, ¢ < 10 ms, spin-mixing takes
placeandthe populations of the spin |+1)statesincrease exponentially
until they reach a steady value after 100 ms (Extended Data Fig. 1).
During the spin-mixing process, gauge vortices appear in the |+1)states,
whicheither annihilate or drift out of the condensate, giving their place
to magnetic domains (additional dataare availablein Supplementary
Information). Afterwards, the number of spin domains decreases and
their size increases, resultingina process known as coarsening dynam-
ics (Fig. 1d-f). During the coarsening dynamics, the time evolution
displays a self-similar behaviour characterized by a universal scaling
law such that the condensate is away from both its initial and equilib-
riumstates. For longer evolutiontimes (¢ = 2 s), only afew domains are
left and coarsening is terminated (Extended Data Fig. 2).

The scaling behaviour can be understood by analysing the
equal-time correlation function of the longitudinal magnetization®,
G,(r,t) = lefdzr’ (F,(r+ 1, OF,(r', 1)) , as depicted in Fig. 1g. Here,
N = [ d2F (F,(t', t)) is the normalization factor, which is conserved
during the coarseningstage®. In theiinset of Fig. 2a, we present the radial
profile of the spin correlation functions G,(r, t) at various hold times.
Theanti-correlation captured by G,(r, t) indicates the creation of mag-
netic domains in opposite spin states. We quantify, both in experiment
andtheory, the average domain size L(¢) as the first zero of the correla-
tion function, G,(L, t) = O (ref. 24). Indeed, upon rescaling the radial
distance r - r/L(t), the correlation functions at various hold times
collapseontoasinglecurve, €[r/L(t)](Fig.2a),indicating the self-similar
character of the universal dynamics.

The universal growth dynamics are characterized by the power-law
increase of the domain length L(¢) = £? (Fig. 2b), where the dynamical
critical exponent 1/z determines the universality class of the emer-
gent coarsening dynamics. Since in the easy-axis phase the spinor gas
reduces to a binary superfluid system consisting of only the m, = +1

components, the coarsening dynamics belong to a binary-fluid uni-
versality class or model H (ref. 1). Previous numerical studies operat-
ing in the thermodynamic limit indeed confirmed this argument and
predicted the scaling exponent to be 1/z=2/3 (refs. 22-24).

Figure 2b shows the power-law growth of L(¢) as extracted from
both experiment and theory. The scaling exponentin the experiment
(opencircles) is 1/z.y, = 0.57(2), whichis in excellentagreement with
our mean-field simulations 1/z;,, ~ 0.59(1) using the experimental
parameters. Here, the time interval for the scaling regime is set to
te[0.25,0.85s],and theindependency of the scaling exponent on the
timeinterval is demonstrated (Extended Data Fig.2a,b). The exponents
as found both experimentally and theoretically, however, are smaller
than the predicted thermodynamic limit value 1/z=2/3 (refs. 22-24),
and we attribute this discrepancy to the finite size of our system as
enforced by the external trap. Although the universal scaling argu-
ments are strictly validin the thermodynamic limit, corrections for the
finite size should reduce the exponent to 1/z = 2/3(1 — 6(&/L))
(refs. 23,41), where & = 7/4/2M|c| ~ 2.2 pmiis the spin healing length.
This is further supported by our simulations with the harmonic trap,
which give a scaling exponent 1/z,, = 2/3 at large atom number
(N=10°%) (see Supplementary Information). Furthermore, ourimaging
system has an effective resolution of 5 um, which could increase the
domain length. Employing the Weiner deconvolution method, we
recalibrate the domain size and obtain 1/z,, = 0.61(3).Similar univer-
sal behaviour is observed in counting the magnetic domain number
after the quench (Extended Data Fig. 2c).

Dynamical scaling is also represented in the structure factor
S,(k, ©) = L(t)*S,(kL(t)), which is the Fourier transformation of the spin
correlation function, with a scaling function S, (ref. 24). The scaling
formisidentical tothe non-thermal fixed point theory, which suggests
that S,(k, t) = tY*f(t*k) in d spatial dimensions with f; a scaling func-
tion'*" Figure 3 shows the rescaled structure factors within the time
interval r € [0.2 s, 0.8 s]. A universal scaling of the Porod tail S,(k) = k®
isobserved®. At early times (£ <100 ms), we observe that the structure
factor monotonically decreases (not shown), and only after the system
enters the coarsening stage, are the characteristic ‘knee’shape and the
universal high-momentum tail, revealed. The k7 scaling behaviour
originates from a linear decay of the correlation function with sharp
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Fig.3 | Dynamicscaling of the spin structure factor in the easy-axis quench. The
structure factor of longitudinal magnetization S,(k, ¢) is rescaled by the domain
length: S, S,/L*and k> kL. The dashed line is the universal Porod tail S,(k, ) = k>
with an offset for clarity. The vertical red line represents the momentum resolution
for t=0.2s. Astime progresses, the high-momentum tail tends towards the
universal k* scaling. Deviations from k> scaling at higher momenta are traced back
to the finite imaging resolution of the CCD pixel (3.2 pm) in the experiment and the
finite spatial discretization in the simulations. The inset shows the structure factor
with compensation, S, = S,(k, t)Lk>. The solid light-blue line is the numerically
calculated structure factor uponrescalingat ¢~ 0.8s.

domainwall edges among the m, = +1states*, which is confirmed in our
experiment by imaging F,and F, (Extended Data Fig. 4).

To demonstrate universality, we further investigate the quench
dynamics with three different experimental configurations: (i) We
create an equal superposition of |+1) states at g/h = 510 Hz as the initial
state and study the quench dynamics at g;,/h =-200 Hz. The initial
state has a different dynamical response from the polar condensate®*?,
and we observe domain separation* instead of spin pair generation.
(ii) Many vortices and anti-vortices are imprinted in the polar conden-
sate by dragging arepulsive barrier before the quench (Methods), and
we investigate the effect of vortices on the coarsening dynamics. (iii)
We prepare the polar condensate and quench QZE to gg./h =-120 Hz,
which is smaller than the reference experiment (gg,/h =200 Hz) but
stillin the easy-axis phase. In this case, the decay time of L(¢t) from the
microwave dressingisincreased from7t040 s. Even withsuch diverse
experimental configurations, we obtain the same universal curve upon
rescaling the spin correlation function (Fig. 4a), and the dynamical
scaling exponentsare allapproximately 1/z.,, ~ 0.58(2)(Fig.4b). This
highlights the insensitivity of the universal coarsening dynamics to
experimental details, which contrasts with the near equilibrium critical
phenomena' thatrequire a fine-tuning of system parameters. Here, we
find similar results when the universal scaling functions are obtained
by satisfying the scaling form G,(r, t) = f;(t ’r) and S,(k, t) = t*f(t’k) with
universal scaling exponents a and 8 (materials are available in Sup-
plementary Information). Furthermore, the scaling exponent is far
different from that of other universality classes of binary fluids, such
as viscous hydrodynamics with 1/z =1 or diffusive dynamics with
1/z=1/3 (ref. 26). We reaffirm that the coarsening dynamics of the 2D
ferromagnetic superfluid in the easy-axis phase belongs to the
binary-fluid universality class in the inertial hydrodynamic regime'.

Coarsening dynamics with SO(3) symmetry
We now turn our attention to examining the coarsening dynamics at
(1o = 0 (Fig. 1c). In contrast to the easy-axis phase, the ground state is

1.0 Reference

A Configuration (i)
O Configuration (ii)
O Configuration (iii)

Scaled correlation function, ¥(r/L)

0.8 —

Scaling exponent, 1/z

os - 8 i

oo
(e o]

Reference (i) (i) (iii)
Experimental configuration

Fig. 4| Universal coarsening dynamics in the easy-axis phase. a, Scaled spin
correlation functions €(r/L)in the coarsening stage for four different experimental
configurations (see main text). The reference experiment refers to the coarsening
dynamics at gg,/h =—200 Hz with a polar-phase initial state (Fig. 2a). The inset shows
spin-resolved absorptionimages for various initial conditions. The vortices in (ii)
canbeidentified after 6 ms of time of flight. b, Dynamical scaling exponents for the
different configurations (Fig. 4a). Data with closed (open) circles represent the
exponent after (without) deconvolution. Error bars denote the fitting errors (the
resampling error is smaller than the fitting errors). The shaded line shows the results
of numerical calculations with a finite system size. The solid line indicates the
dynamic exponents for theinertial hydrodynamic regime in the thermodynamic
limit, 1/z=2/3. The experimental results are distinguished from other dynamic
exponents in a binary-fluid universality class in the viscous 1/z =1 (dashed line) and
diffusive 1/z=1/3 (dashed-dotted line) regimes.

invariant under spin rotations. Therefore, we aim to investigate the
impact of the symmetry of the order parameter, here obeying SO(3)
rotational symmetry, and the nature of topological defects on the uni-
versal behaviour of the spinor system. As the first homotopy group of
SO(3) is m;[SO(3)] = Z,, the condensate supports Z, spin vortices as
topological defects”. Arecent study argued that universal coarsening
dynamicsalsooccuratthe spinisotropic point, asin the easy-axis phase,
but with a different critical exponent 1/z= 0.5 (ref. 25). This result is
consistent with the theory of non-thermal fixed points, which predicts
the dynamical scaling exponent1/z= 0.5 for abosonic Hamiltonian with
O(N) or U(N) symmetry ind > 2 dimensions?-**. Additionally, a numeri-
cal study within the mean-field framework?® also reported that the
coarsening dynamics proceeds with the annihilation of Z, spin vortices.

Figure 5summarizes our experimental results for the coarsening
dynamics with aspinisotropic Hamiltonian. Since the spin vectors can
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lines). ¢, Matter-wave interference images during the coarsening dynamics
(t=1s). The two-to-one (three-to-one) fork-shaped fringes in the spin |£1) (|0))
state represent phase windings of 2t (41t) around the vortex core. d, Simulated
interference pattern with a spin vortex at the trap centre (red boxes).

e, Interference images with spin vortex and anti-vortex pairsat ¢ =1s (orange
circles). f, Numerical simulations with the vortex pair located at the trap centre
(H-shaped pattern, orange boxes). g, Number of spin vortices N as a function of
time. Inset: the intervortex distance /s during the time evolution. Solid lines are
power-law guidelines, Ns(t) = 1/L(t)*and [s = L(t). The vortex number is the average
over 40 independent realizations, and the error barsindicate 1s.e.m.

pointinanarbitrary direction, domain coarseningis observed for both
F.and F, (Extended Data Fig. 5). Following the same analysis as in the
easy-axis quench experiment, we rescale the correlation functions by
L(t) and observe their collapse into a single curve (Fig. 5a), inline with
the mean-field analysis. These universal curves are similar for each spin
axis measured but are distinctive from those of the easy-axis quench
experiment (Fig. 5a inset), implying that the dynamics at the spin iso-
tropic point belong to a different universality class. This canbe further
supported by the scaling exponent of the domain length L(¢t) = t/*
(Fig. 5b), which we experimentally find tobe 1/z¢,, ~ 0.45(3)for F,.and
1/zexp ~ 0.41(2)for F,. Here, the exponents are close to the thermody-
namic prediction1/z= 0.5 (ref.25) and show good agreement with our
finite-size numerical simulations, 1/z,, ~ 0.40(1).

To identify the underlying mechanism responsible for the coars-
ening dynamics in the SO(3) phase, we monitor the spin vortices and
study their decay dynamics during the coarsening stage. Matter-wave
interferometry was adopted to identify the position of the vortex
cores fromtherelative phase winding between spin states (Methods).
Characteristic interference patterns of the spin vortices are shown in
Fig. 5c. The fork-shaped fringes are well represented in all three spin
components. We also observe events with closely bounded spin vor-
tex/anti-vortex pairs (Fig. 5e). The existence of these spin vortices and

vortex pairs is well reproduced in the simulated interference images
(Fig.5d,fand Extended Data Fig. 6).

By assigning the position of the spin vortex (vortex pairs) to the
joint point in the fork-shaped (H-shaped) patterns, we count the spin
vortex number Nsand calculate the average distance between vortices
lsatvarious hold times (Fig. 5g). The vortex number gradually decays,
whereas the mean distance increases as time evolves. Since the imag-
ingresolutionislarger thanthe spin healing length, we underestimate
the vortex number when the condensate contains many vortices. Nev-
ertheless, the vortex number scales with the domain size, such that
Ns=1/L(t)*and s~ L(t). The decay of spin vortex pairs occurs at asimilar
timescale (materials are available in Supplementary Information), hint-
ingatitsintricate connectionwith the universal coarsening dynamicsin
theisotropic SO(3) symmetric phase. Thisis supported by our numeri-
cal simulations, as we calculated the argument of the transverse spin
vector and tracked the respective phase jumps (materials are available
inSupplementary Information).

Conclusions and outlook

Utilizing a strongly ferromagnetic spinor condensate, we observe
universal coarsening dynamics in two dimensions. We find that the
universal dynamics can be categorized into awell-defined universality
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classbased onthe symmetry of the order parameter and the dynamics
of topological defects, such as domain walls and spin vortices. Our
research demonstrates the diverse capabilities of cold-atom quantum
simulators in characterizing non-equilibrium quantum dynamics,
thus providing a stepping stone to a comprehensive understanding
of quantum thermalization processes in multidisciplinary research
fields. Further extensions include an investigation of the universal
dynamics mediated by other types of excitations, such as vortices in
atwo-dimensional superfluid**¢, solitons in one dimension***, mag-
nonsinthe Heisenberg spin model***° and chiral quantum magnetiza-
tionwith spin-orbitinteractions®*>. Moreover, our strongly interacting
platform offers new opportunities for exploring long-time thermaliza-
tiondynamicsintwo dimensions, asthe long-lived topological defects
can slow down equilibration®.
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Methods

Experimental systems

We created aspinor condensate of ‘Liatomsin a quasi-2D optical dipole
trap™, withfrequencies (@,, ,, w,) =21 x (7, 8, 635) Hz. The condensate
contained 2.7 x 10°atoms and had a negligible thermal fraction (<5%).
The chemical potential of the condensate was u/h = 310 Hz, indicating
that transversal excitations were suppressed. Indeed, no spinstructures
were observed along the axial direction, and thus, we confirmed that
the coarsening dynamics occurred intwo dimensions. To prepare the
condensateinthe polar phase, an external magnetic field of B=1Gwas
applied along the vertical axis. Under this magnetic field, the QZE was
larger than the critical point g > g. = 2|c| (Fig. 1a), so that all atoms
populated the same spin state |F = 1,m, = 0) = |1, 0).

Instantaneous quenching of the QZE was experimentally real-
ized with the microwave dressing technique*°. The QZE is given by
g =gy + guw, Where gg/h = aB? is the second-order Zeeman splitting of
the hyperfine states of 'Liatoms with a = 610 Hz G2, and g/h = Q*/46
denotes therespective energy shift due to the microwave field. In the
experiment, we ramped the external bias field down to B=100 mG in
7 ms and simultaneously tuned the microwave frequency, such that
the QZE was always larger than the critical point (g > g.) during the
field ramp. We initiated the non-equilibrium dynamics of the spinor
gas by changing the microwave frequency within 1 ps and quenching
the QZE to a target point. The magnitude of the QZE was calibrated
by studying statistics of the spin population at 2 s after the quench®.
The field gradient was compensated to below 30 uG cm™ so that we
observed randomly oriented domain walls, even a long time after the
quench (¢=2s). The microwave field induced atom loss and heating
during the hold time, as it couples the atoms to the F =2 spin state
(Extended Data Fig.3). Atom loss was noticeable in the deep easy-axis
regime (g/h =-200 Hz), and we could easily underestimate the domain
length and the dynamic scaling exponent. Fortunately, the atom loss
was noticeable only for very long times, when all domains had merged,
so that the thermal fraction remained mainly below 10% throughout
theevolution. Therefore, neither the atom loss nor the heating had any
sizeable effect on the universal coarsening dynamics.

Long-termdriftsinthe experimental parameters were calibrated
by taking reference images. For example, the average magnetization at
t=2swasmonitored every 150 min (corresponding to approximately
300 measurements), and we adjusted the field gradient if needed.
The uncertainty of the QZE was mostly due to the external field noise,
which was +0.3 Hz. The small fluctuations in the QZE were negligible,
even for the spinisotropic coarsening dynamics within the considered
timescales. The smallbut non-zero QZE could have led to acoarsening
transition atlonger evolution times when the scaling exponents of the
domain lengths followed the easy-plane or easy-axis phase dynamics?.
The field fluctuations in the experiment were g/q, <107 so that the
transition occurred after ¢ >1s(¢>2,000¢,).

Insitu spin-resolved imaging

Atomic density distributions in the lower hyperfine spin states were
recorded using the standard absorptionimaging technique after selec-
tively converting atarget spinstate into an upper hyperfine state. Under
amagnetic field of 100 mG, for instance, we applied a microwave that
transferred theatoms fromthe |1, 1)tothe |2, 1)state. The atomicdistribu-
tioninthe|2,1) state was subsequently imaged by aresonant light with
the |F = 2) - |F = 3)transition. The atomsin the other spin states were
measured in a similar manner. Namely, after taking the firstimage, we
applied anadditional microwave pulse, flipping the hyperfine spin states
from|1,0) (|1, -1)) to|2,1) (|2, —2)), and imaging the transferred atoms. To
avoid cross-talk between images within the F=1state, we removed all
atomsinthe|F = 2)state before taking subsequentimages. Thisimaging
sequence was also used to measure the magnetization along the spinx
direction, F,.Indeed, by applying aresonant radio-frequency pulse, we
rotated the measurement basis from the spin z axis to the x axis and

recorded the density distribution of each spin state. Paradigmatic
images of magnetization along x and z following a quench to the spin
isotropic point (g,, = 0) are shown in Extended Data Fig. 5.

To characterize theimaging resolution, we prepared a spin spiral
structure, which displayed periodic density modulation in each spin
state. This state can be created by evolving the spin vector in the hori-
zontal plane under afinite field gradient®. The modulation period A,
was determined by the gradient strength and exposure time, and the
contrast was affected by ourimaging system. For example, the contrast
droppedto30%atA,, =10 pm. By investigating the dependence of the
contraston the wavelength A, we estimated that the imaging resolu-
tionwas 5 pm. Theimaging parameters were optimized to give abetter
signal-to-noise ratio and imaging resolution. We set the imaging light
intensity to 0.5/, and the imaging pulse to 4 us, where I,.= 2.5 mW cm™
isthe saturationintensity.

Vortex shedding in the polar condensate

To demonstrate the insensitivity of the dynamical exponent on the
initial conditions, weimprinted many vortices in the polar phase before
the quench. Aninitial state containing many vortices can be prepared
by adopting the vortex-shedding technique®*. Specifically, arepulsive
optical barrier wasimposed at the trap centre and translated by a piezo
mirror mount. When the speed of the barrier exceeded acritical thresh-
old, vortices and anti-vortices were nucleated in the condensate®.
The optical obstacle was made of focused, blue-detuned laser light
of 532 nm along the z direction. Its 1/e* beam waist was 8 pm, and the
obstacle height was V,/u = 3. The sweeping distance of the barrier from
the trap centre was d = 60 um, and its translation speed was 6 mms™.
Thevortex cores could be identified after 6 ms of time of flight (inset of
Fig.4a). Around 15 vortices were nucleated before the quench. Indeed,
using this initial state containing vortices we performed the quench
dynamics as described above and measured the critical exponent,
whichremained unaffected, for example having the value 1/z= 0.58(2)
for the easy-axis phase.

Matter-wave interference

To infer the spin windings of spin vortices, we employed matter-wave
interference’* with the following experimental procedure. A field gradi-
entof 60 mG cm™ was applied to the condensate for t,,,y = 6 ms.Next,a
resonant radio-frequency pulse was used to induce the |1, 0) < |1, £1)
transition. Finally, weimaged all spin componentsinthe F=1state using
theselective spintransferimagingtechnique.Inthe vortex-freestate, we
observedstripelinesalongthe gradient direction asaresult of the phase
accumulation across the condensate. With the phase defect, however,
thestripelines were dislocated, and we could read out the magnitude of
therelative phase windingin the spin texture. Because of our finiteimag-
ing resolution, we set the periodicity of the stripe patterns to ~10 pm.
Accordingly, this became the minimum distance between spin vortices
detected with this scheme. The vortex positionsin the numerical simula-
tions, as determined by analysing the spin vector, were the same as the
phasesingular points that were identified using the matter-wave interfer-
ence technique (Extended DataFig. 6).

Mean-field equations of the spin-1gas

The dynamics of the spin-1 condensate is described by the following
set of coupled three-dimensional (3D) Gross-Pitaevskii equations of
motion:

n2v?

WD [ Z0 + Ve + af2 + contr:0+ R0 fle 0. )

The wavefunction of each hyperfine m,=-1,0or1levelis denoted
by W= (.0, %), the atom mass is M and r={x,y,z}. The
spin-independent nonlinear termcynis characterized by the effective
strength, ¢, = 4mh*(a, + a,)/(3M), and total density, n = T, |V, |%Here,
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a, and a, refer to the 3D s-wave scattering lengths of the atoms in the
scattering channels with total spin F= 0 and F =2, respectively.In con-
trast, the spin-dependent nonlinear term c,F - faccounting for interac-
tions among the hyperfine levels contains the coupling constant

=4mh’(a, - a)/(3M) and spindensity F = (F,, F,, F,),whosej = {x, y, 2}
component is F; = W;x,ﬁ% where f; denote the spin-1 matrices. As
discussed in the main text, we focus on the ’Li condensate possessing
strong ferromagnetic interactions, that is ¢, < 0. The 3D external har-
monic confinement V,,, = —M(wzx2 + w}y? + w22?) is characterized by
thein-plane trap frequencya) =w,and the out-of-plane one w,. These
obey the condition w,» 0, = w,, which restricts the atomic motion in
2D. Throughout, we consider the experimentally used trap frequencies
(w,, w,, w,) =21 x (7,8, 635) Hz. Moreover, the length and energy scales
ofthe systemare expressed in terms of the harmonic oscillator length
losc = \/h/Mw,and the energy quantafiw. For convenience of our simula-
tions, we further cast the 3D Gross—Pitaevskii equation (2) into adimen-
sionless formby rescaling the spatial coordinatesas x' = x/l,so ' = Y/lose
and z' =z/l,., the time as ¢ =w,t and the wavefunction as
T (XY, 7)) = [ (B /N)Ty (1,3, 2)-See, for example, refs. 59,60 for fur-
ther details.

Depending on the relative strength of g/(|c,|n), it is possible to
realize a rich phase diagram containing first- and second-order
phase transitions as described in ref. 37. For instance, the quantum
critical point g =g, = 2|,y With n,.,, being the condensate
peak density around the trap centre, separates the so-called unmagnet-
ized polar state in which all atoms are in the m,=0 state
fromthe easy-plane ferromagnetic phase with all m, states being occu-
pied. The latter phase occurs within the interval 0 < g < g.and is char-
acterized by the order parameter F, = F, +iF, for the transverse
magnetization®, where Fy = [¥] % + Y5 (¥ + ¥ 1)+W* ¥,1/(¥2n) and
Fy = (=0 Wo + Wi (8 — U_y) + W W] /(\/5:1). Ontheotherhand, forg<O0,
the ground state corresponds to an easy-axis ferromagnetic phase
where the magnetization lies along the z axis and the relevant order
parameter is the longitudinal magnetization F,= |¥,,|* - |¥_|¥/n.

Initial state preparation using quantum and thermal
fluctuations

Theinitial state of the spin-1gas (the easy-axis polar state) was realized
atq =24, with the critical quadratic Zeeman shift g. = 2|¢,|,e./h. It is
represented by the wavefunction

Gpotar = (0,%,0)". ®3)

The latter was determined by numerically solving equation (2)
using the split-time Crank-Nicholson method in imaginary time®"*.
Totrigger the dynamics, we performed asudden change of the quadratic
Zeeman coefficient gfromitsinitial value g/h = 510 Hz (polar state) toa
final value g;,/h = -200 Hz (easy-axis state) or g,,/h = O (isotropic point).

Tomonitor the system’s non-equilibrium dynamics, it was essential
to consider the presence of quantum and thermal fluctuations on top
of the initial zero-temperature mean-field state (equation (3)). This
contribution seeded the ensuing dynamical instabilities occurring
once g was quenched. We incorporated the impact of quantum and
thermal effects exploiting the truncated Wigner approximation®.
Namely, we expressed the wavefunction as ¥,= ¥, + 8, where
8 =(6",68°, 5—1)T is a noise vector constructed using the Bogoliubov
quasi-particle modes of the system. Specifically, first, we calculated
the steady-state solution (¥,,,,), which was subsequently perturbed
according to the following ansatz @, = Yoy + € (Un, € +V;;_e7170).
Inserting this ansatz into equation (2) and linearizing with respect to
the small amplitude € leads to the corresponding energy eigenvalue
problem, which was numerically solved through diagonalization, thus
allowing us to determine the underlying eigenfrequencies {2’} and
eigenfunctions {U{,, , V{,, }.For the polar steady state, where ., = 0 and

W,=Y,, therespective eigenvalue problemreads

Usx/a b 0 0 0 0 Uo
Vo || -6 =a 0 0 0 o Vo
Ul o o ¢c oo d Uy
=8 4)
Vi 0 0 0 —c—-d* o0 2]
u sl o o 0o a ¢co U,
v..){o 0-¢0 0 — v,
Here, the matrix elementsare givenby a = —-Vz + V= 1+ 2¢0| W%
= co(W)’, € = —-V +Viap—H+4q and d = cz(%) with p being the

system schemlcalpotentlal Havingathandthe elgenmodes{U{" ,V{,, }
and elgenvalues{)’ itis pOSSlble to express the noise field in the form
m, = 25 0 Un, B, +(V) (Bf .) - Thatis, we decomposeitintermsofthe

low-lying collective modes ofthe initial state, which are weighted by the
random-valued coefficients 3, . These coefficients are generated as

X+ 1\ % +iy

5— and [3{"Z=0= (ﬁj+§) 7 (O]

where x;and y; are random values taken from a normally distributed
Gaussian distribution characterized by zero mean and unit variance, and
i, = (e MK T) —1)_1 denotes the mean thermal occupation of the Bose-
Einstein condensate at temperature T. Notice also that the constant 1/2
factor in equation (5) stems from the vacuum noise. In this sense, the
initial state of the system comprises a condensate with thermal excita-
tions for the m,= 0 and only vacuum noise for the m,=+1components.
Inthe experiment, theinitial thermal fraction detected was less than 5%.
Totake thisinto accountwithin our simulations, we used T=35nK as the
system temperature, for which the average thermal fraction was approxi-
mately 4% of the total atom number. Note that the number of thermal

atomsis Ny = fd’[zj{[(u,’#o)z + (V{nZ:O)Z]ﬁj + (V{;IFO)Z}], seealsoref.39

J —
Bmz=¢1 -

fortherelation between the thermal fraction and the temperature of the
condensate. Note that we also explored with our simulations the effect
ofvaryingtheinitial temperatures while ensuring that the thermal frac-
tion remained below 6%, as per the experimental conditions. Interest-
ingly, we found that such temperature variations had no discernible
impact on the coarsening dynamics. Finally, in order to render the
observables of interest independent of the presence of the
above-discussed noise factors, we employ multiple realizations, for
example, for a specific quench, and afterwards perform an averaging.
Typical samplesleading to aconverged behaviour of the observables of
interest consist of 500 different realizations.

Data availability

Source data are provided with this paper.
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Extended Data Fig. 1| Spin populations after quenching the quadratic

Zeeman energy. a, After quenching to the isotropic ferromagnetic phase (g/h =0

Hz), the atomsin the spin |0) state rapidly decay and create spin |+1) states. The

spin population reach a steady state after 100 ms with equal population
(ny, ny, n_y) ~(1/3,1/3,1/3). During the whole coarsening dynamics, the spin

population for all spin states remains constant. In the easy-axis ferromagnetic

phase (b,g/h=-120Hzand ¢,q/h =-200 Hz), the initial |0) state rapidly

disappear and generate equal population of the spin |+1) state. The residual spin

componentin the |0) state during the coarsening dynamics is attributed to the
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spin vector along the horizontal plane at the domain wall (Extended Data Fig. 4).
Because of the microwave dressing field, the spin population gradually changes.
d, Time evolution of spin populationimbalance (¥ = n; — n_;) under different
quadratic Zeeman energy. The population imbalance is noticeable in the deep
easy-axis regime (g/h =200 Hz), but itsimpact on the domain length is not
significant as shownin Fig. 2. Each data point is obtained with more than100
independent experimental runs, and the error bars represent one standard error
ofthe mean.
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Extended Data Fig. 2| Full-time evolution of coarsening dynamics and
scaling exponents in the easy-axis ferromagnetic phase. a, Domain length
L(¢) inthe full time evolution accessible during the experiment. Closed (open)
circles represent the domain length after (without) deconvolution. Dashed
lines represent the scaling time interval t € [0.2s, 0.8 s]. The lower bound for the
timeinterval is chosen to ensure that the condensate enters into the coarsening
stage after the quench.The upper bound of the time interval is limited by the
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finite size of the system and lifetime lifetime of the condensate. b, Dependence
of the scaling exponents 1/zon the lower bound for the time interval ¢,. The
error bars indicate the 1o confidence interval of the fit parameters. c, Number
of magnetic domains after the quench. The domain number N, is counted by
using the Hoshen-Koppelman algorithm (details are available in Supplementary
Information). The domain number follows the power law decay (solid line),
Np~t22with1/z=0.63(4).

Nature Physics


http://www.nature.com/naturephysics

Article

https://doi.org/10.1038/s41567-023-02339-2

a
Gl
3.0x 10 * a/h (H2)
+ o -120
@ -200
g 20
€
2 L
£ ¢ g
2 s
< 1.0f
()
0.0 . ! . | . I . L
0 1 2 3 4
Hold time, t (s)
Cc
60 é
(¢]
= L
=
£ =
5 S0 )
c
9 -
é @
S 40
o
Q
300 | ! ] 1
1 2 3 4 5

Hold time, t (s)

Extended Data Fig. 3| Effect of the microwave dressing on the spinor Bose
gas. a, Long-time evolution of the atom number and b, thermal fraction at
g/h=-120Hz (square, light blue) and — 200 Hz (circle, dark blue). ¢, Long-time
evolution of the domain length in the easy axis quench g/h = - 200 Hz. After the
coarsening terminated (¢ =1s), the domain length is decreased from 61 pm

to 57 um with additional 1s of hold time. It implies that the domain length during
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the universaldynamics t €[0.2s, 0.8 s] could be underestimated by 5%.
d,e Absorptionimages (top) and the magnetization density (bottom)
atdifferent hold times (see legends). Domain size is reduced as aresult of the
atom loss. Each data point is obtained with 40 different experimental realisation,
and the error bars denote one standard error of the mean.
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Position (um)
Extended Data Fig. 4 | Magnetic domain wall in the easy-axis ferromagnetic
phase. a, Magnetization F,after 1.5s of hold time, and b, the cross-section profile
across the magnetic domain. The solid lineis a fit curve F,(r) = F,o tanh(r/&;)
with §;=4.5(2) pm. ¢,d, Magnetization along the horizontal axis F,. The spin

-0.5

vectors could be aligned on the same axis (c, Bloch or Neel-type domain wall) or
pointin opposite directions (d, Bloch line). Along wavelength modulation of the
horizontal spin vector could imply the presence of spin wave excitationsin the
magnetic domain.
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Extended Data Fig. 5| Time evolution of spin domains in the isotropic
ferromagnetic phase. a-e, Longitudinal magnetization F, (upper) and its two-
dimensional spin correlation functions G,(x, y) (below) at various hold times.
f-j, Snapshots of transverse magnetization F.. and the correlation functions
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G,(x,y).In contrast to the easy-axis phase, in the spin isotropic point, coarsening

dynamics are observed in both axes, and the domain boundaries are much
broader than those of the g < 0 spin domains. The spin correlation functions are
averaged over 100 different realizations at a given hold time.
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Extended Data Fig. 6 | Numeric simulations of the matter-wave interference
for the Z, spinvortices. a, Density profile and b, the argument of the transverse
spinvector ¢ = tan™! (Fy/Fy)inthex-y planeafter £ =3.5s of domain coarsening
dynamics at the spinisotropic point. The spin vortex can be identified from a
phase jump around the vortex core (yellow box). ¢, Three dimensional spin
vectors F = (F,, F,, F,) inthe x-y plane near the highlighted region (yellow box). Not
only thein-plane spin vector but also the longitudinal spin vector turns around
the vortex core, indicating the Z, spin vortex. d, Simulated images after the

matter-wave interference. The positions of the spin vortices are well-identified
from fork-shaped patternsin the spinimbalance image. e-h, Representative
experimental images after the matter-wave interference under various hold
times (see distinct rows). Allimages are obtained by independent experimental
runs. In the vortex-free region, the magnetization displays a connected stripe
pattern, while the spin vortex shows a dislocation of the stripes to form the
two-to-one fork-shaped patterns. The vortex positions are highlighted by yellow
circles.
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