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Abstract

This paper presents FlowSUM, a normaliz-
ing flows-based variational encoder-decoder
framework for Transformer-based summariza-
tion. Our approach tackles two primary chal-
lenges in variational summarization: insuffi-
cient semantic information in latent representa-
tions and posterior collapse during training. To
address these challenges, we employ normal-
izing flows to enable flexible latent posterior
modeling, and we propose a controlled alter-
nate aggressive training (CAAT) strategy with
an improved gate mechanism. Experimental
results show that FlowSUM significantly en-
hances the quality of generated summaries and
unleashes the potential for knowledge distilla-
tion with minimal impact on inference time.
Furthermore, we investigate the issue of pos-
terior collapse in normalizing flows and ana-
lyze how the summary quality is affected by
the training strategy, gate initialization, and the
type and number of normalizing flows used,
offering valuable insights for future research.

1 Introduction

Abstractive summarization (See et al., 2017; Paulus
et al., 2018; Wang et al., 2018) aims to gener-
ate summaries by rephrasing or introducing novel
words to capture the most salient information in
the source text. Many abstractive summarization
models (Liu and Lapata, 2019; Zhang et al., 2020a;
Rothe et al., 2020; Raffel et al., 2020) are based
on the Transformers architecture (Vaswani et al.,
2017) and have consistently produced state-of-the-
art summarization quality. However, issues such
as exposure bias (Ranzato et al., 2016; Qi et al.,
2020), lack of text generation diversity (Holtzman
et al., 2020), and insufficient capturing of semantic
information (Reimers and Gurevych, 2019; Wang
et al., 2020) remain.
Variational models have gained increasing re-

search interest (Zhang et al., 2016; Su et al., 2018;
Wang et al., 2019; Fu et al., 2020) as they address

these issues by introducing uncertainty in predic-
tions through learning a probability distribution
over latent variables. A variational model enables
diverse text generation (Du et al., 2022), smoother
output spaces, and semantically meaningful latent
codes (Wang et al., 2019) that guide the generation
of coherent and informative summaries.
Nonetheless, existing variational models have

not fully achieved the aforementioned desirable
properties due to two main challenges. Firstly, the
semantic information in the source text may pos-
sess a complex structure. However, since introduc-
ing latent variables complicates parameter estima-
tion, many current models (Fu et al., 2020; Zheng
et al., 2020) represent latent codes using a Gaussian
distribution, which is insufficient for capturing the
intricacies of the latent space and could potentially
reduce model performance. To enrich latent distri-
butions, researchers suggest replacing the highly re-
stricted isotropic Gaussian with normalizing flows
(Rezende and Mohamed, 2015). Normalizing flows
can generate complex distributions while preserv-
ing density in an analytical form, and they have
been integrated into variational autoencoder (VAE)
(Kingma and Welling, 2014; Rezende et al., 2014)
and variational encoder-decoder (VED) (Serban
et al., 2017; Zhou and Neubig, 2017) frameworks
to better approximate the latent posterior. This ap-
proach has found application in various domains,
including text generation (Wang et al., 2019), neu-
ral machine translation (Setiawan et al., 2020), and
dialogue generation (Luo and Chien, 2021). De-
spite this progress, the operating characteristics of
normalizing flows on summarization tasks have yet
to be investigated.

Secondly, as reported by previous studies (Bow-
man et al., 2016; Kingma et al., 2016; Chen et al.,
2017), variational models tend to experience pos-
terior collapse during training, which occurs when
the KL term vanishes to zero, indicating that the
model fails to learn meaningful latent codes. This
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problem becomes more severe when modeling dis-
crete data with a strong auto-regressive decoder
(He et al., 2019), which is the case for Transformer-
based summarization models. To resolve this is-
sue, several solutions have been proposed, such
as employing a less auto-regressive decoder net-
work (Yang et al., 2017; Semeniuta et al., 2017;
Shen et al., 2018a), modifying the training ob-
jective (Zhao et al., 2017; Tolstikhin et al., 2018;
Prokhorov et al., 2019), and proposing new train-
ing strategies (Kim et al., 2018; He et al., 2019).
However, most existing work focuses on the VAE
framework with Gaussian latent distribution, yet
limited work considers the VED framework with
normalizing flows. In particular, two questions re-
main unclear: (1) when the latent distribution is
modeled by normalizing flows, does the posterior
collapse problem still exist? (2) when posterior
collapse exists, what are the appropriate strategies
to achieve good summarization quality within the
VED framework?

This paper introduces FlowSUM1, a normaliz-
ing flows-based VED framework for Transformer-
based summarization, along with a controlled al-
ternate aggressive training (CAAT) strategy and a
refined gate mechanism to resolve the two challeng-
ing issues. Our contributions include:

1. We employ normalizing flows to enrich the
latent posterior distribution and integrate the
latent code into Transformer-based models
in a plug-and-play manner, demonstrating its
effectiveness through extensive experiments.

2. We propose a controlled alternate aggressive
training strategy and a refined gate mechanism
to mitigate the posterior collapse problem and
improve training efficacy.

3. Our findings suggest that FlowSUM facilitates
knowledge distillation while having a negligi-
ble effect on inference time, implying normal-
izing flows’ potential for transferring knowl-
edge from advanced large language models.

4. We investigate the posterior collapse problem
for different normalizing flows and examine
how the quality of a summary is impacted by
the training strategy, gate initialization, and
the type and depth of normalizing flows.

1Code is available at https://github.com/
yuyangstat/flowsum.

This article consists of five sections. Section 2
provides an overview of normalizing flows, VED,
and a summary of related studies. Section 3 de-
scribes the proposed model architecture and the
training strategies employed. Section 4 presents
the experimental setup and results, and Section 5
concludes the paper with some discussions.

2 Backgrounds

2.1 Normalizing Flows
Normalizing flows (NF) (Rezende and Mohamed,
2015) is a type of generative model that has gained
popularity in recent years. The fundamental idea in-
volves mapping a simple probability density (e.g.,
Gaussian) to a more complex one through a se-
ries of invertible transformations. One of the key
advantages of NF is that it allows for exact likeli-
hood evaluations, which is crucial for many appli-
cations such as density estimation (Papamakarios
et al., 2017), data generation (Tran et al., 2019),
and variational inference (Kingma et al., 2016).
A flow-based model consists of two components:
a base distribution pu(u) and a transformation
f(·) : RD → RD, where f must be invertible
and both f and f−1 must be differentiable. Let
x = f(u) where u ∼ pu(u), then the density of
x can be obtained via a change of variables (Bo-
gachev, 2007):

px(x) = pu(u) |det Jf (u)|−1

= pu(f
−1(x))

∣∣det Jf−1(x)
∣∣ .

(1)

In this paper, we examine several NFs, including
planar flows (Rezende and Mohamed, 2015), radial
flows (Rezende and Mohamed, 2015), Sylvester
flows (van den Berg et al., 2018), real-valued
non-volume preserving (RealNVP) transformation
(Dinh et al., 2017), inverse autoregressive flow
(IAF) (Kingma et al., 2016), rational-quadratic neu-
ral spline flows (RQNSF) (Durkan et al., 2019),
and rational-linear neural spline flows (RLNSF)
(Dolatabadi et al., 2020). We delegate the detailed
discussion of transformation and invertibility to Ap-
pendix J. Throughout the paper, for each type, we
composeK layers of transformation fK◦· · ·◦f1(·),
which remains invertible and differentiable.

2.2 Variational Encoder-Decoders
Variational encoder-decoders (VEDs) (Zhang et al.,
2016; Serban et al., 2017; Zhou and Neubig, 2017;
Shen et al., 2018b), which can be seen as an exten-
sion of variational autoencoders (VAEs) (Kingma
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and Welling, 2014; Rezende et al., 2014), have
been widely used to understand the conditional
data generation process. Given an input x, the
framework posits the existence of a latent variable
z ∼ p(z | x;ϕ), and the generation of y relies
on p(y|x, z; θ). With this premise, the conditional
data generation can be formulated as in Eq. 2.

p(y | x;ϕ, θ) =
∫
p(z | x;ϕ)p(y | x, z; θ)dz

(2)
Since the marginal p(y | x;ϕ, θ) is intractable, we
employ variational inference to estimate the param-
eters. This involves maximizing the evidence lower
bound (ELBO), a surrogate of the log-likelihood, as
defined in Eq. 3. The underlying idea is to propose
a parameterized distribution q(z | x, y;ψ), known
as the variational posterior, to approximate the true
posterior distribution p(z | x, y;ϕ, θ). The greater
the flexibility in q(z | x, y;ψ), the better the ap-
proximation, and the more effective the surrogate
ELBO becomes. See more details in Appendix B.

ELBOVED

= E
q(z|x,y;ψ)

[log p(y | x, z; θ)]− KL(q(z | x, y;ψ)∥p(z | x;ϕ))

(3)
For summarization, we parameterize p(y | x, z; θ)
as an encoder-decoder model that generates sum-
maries conditioned on the input text and latent
code.

2.3 Related Work
2.3.1 Transformer-based Summarization

Models
Transformer-based models equipped with pre-
training and fine-tuning techniques have enjoyed
significant success in many NLP tasks, including
text summarization. Liu and Lapata (2019) pro-
posed BertSUM for extractive and abstractive tasks,
utilizing the pre-trained BERT encoder (Devlin
et al., 2019). To better align the pre-trained en-
coder for document understanding with the decoder
trained from scratch for text generation, Rothe et al.
(2020) demonstrated the effectiveness of leverag-
ing pre-trained BERT (Devlin et al., 2019), GPT-2
(Radford et al., 2019), and RoBERTa (Liu et al.,
2019) checkpoints to build sequence-to-sequence
(S2S) models for tasks including summarization.
Another approach is to address both document un-
derstanding and generation in a unified framework
by first pre-training some general-purpose S2S
models and then fine-tuning on downstream tasks,

for instance, BART (Lewis et al., 2020), MASS
(Song et al., 2019), UniLM (Dong et al., 2019),
ProphetNet (Qi et al., 2020), and T5 (Raffel et al.,
2020). In addition, Zhang et al. (2020a) proposed
PEGASUS with a pre-training objective tailored
for abstractive summarization, achieving signifi-
cant improvements across multiple datasets.

2.3.2 Variational Summarization
Variational summarization models come in two dif-
ferent flavors: unsupervised and supervised. In the
unsupervised domain, researchers commonly uti-
lize variational autoencoders in conjunction with
specific control mechanisms for summary genera-
tion, as exemplified by prior work such as Schu-
mann (2018); Chu and Liu (2019); Brazinskas
et al. (2020). In the supervised realm, there are
generally two primary approaches. The first ap-
proach models the conditional probability of the
target sentences p(y | x) as in Eq. 2, whereas
the second approach models the joint probabil-
ity of the source and target sentences p(x, y) with∫
p(z)p(x | z)p(y | z, x)dz. Our model belongs to

the first category, akin to prior studies like Setiawan
et al. (2020); Fu et al. (2020). In contrast, other
works, including Zheng et al. (2020); Nguyen et al.
(2021); Zou et al. (2021), adopt the second type by
jointly modeling topics and sequence-to-sequence
generation. Most of them assume a simple Gaus-
sian latent prior, except for Nguyen et al. (2021),
which employs normalizing flows to model neural
topic models and enrich global semantics. How-
ever, they did not specify the choice of normalizing
flows and how they addressed posterior collapse.
To the best of our knowledge, there remains limited
research on the application of normalizing flows in
variational summarization models and their operat-
ing characteristics.

3 Normalizing Flows Enhanced
Summarization Model

3.1 FlowSUM Model Architecture

As illustrated in Fig. 1, FlowSUM consists of three
components: an NF latent module, a Transformer-
based encoder-decoder, and a refined gate mecha-
nism. The NF latent module focuses on modeling
the variational posterior q(z | x, y;ψ), whereas the
encoder-decoder, combined with the refined gate,
models the conditional generation p(y|x, z; θ) with
latent code. As a simplification, we assume the con-
ditional prior p(z | x;ϕ) is a standard Gaussian as
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Figure 1: FlowSUM Model Architecture, including
an NF latent module (in purple), a Transformer-based
encoder-decoder (in green), and a refined gate mecha-
nism (in orange)

in Setiawan et al. (2020). Throughout this section,
let e be the embedding size,m,n be the length of
the input source and target summary respectively,
ℓ be the latent dimension of the NF latent module,
d be the dimension of the decoder’s hidden states,
{xi}mi=1 be the input source text, {yj}nj=1 be the
target summary text, and x ∈ Re be the average
embedding of the untruncated input source text2.
NF Latent Module. To model the variational pos-
terior q(z | x, y;ψ), we follow Zhou and Neubig
(2017) and assume all the information in y is con-
tained in x3. Therefore, we have q(z | x, y;ψ) =
q(z | x;ψ), which allows us to parameterize q(z |
x;ψ) with neural networks (NNs) and normalizing
flows using the amortization and reparameteriza-
tion tricks (Kingma and Welling, 2014). The NF
latent module comprises of an inference network
q0(·) and a normalizing flows model. The inference
network takes x as input and produces two output
vectors, µ0 ∈ Rℓ and log(σ0) ∈ Rℓ. Using the
reparameterization trick, a random sample z0 ∈ Rℓ
is drawn from N(µ0, diag(σ20)). Afterward, the
normalizing flows model applies a sequence ofK
invertible transformations to z0 to obtain the latent

2Let V be the vocabulary size, {Ev}Vv=1 be the input em-
beddings, and {bv}Vv=1 be the Bag-of-Words (BoW) of the
input source text, then x = (

∑V
v=1 bvEv)/(

∑V
v=1 bv) ∈ Re.

In addition, when we don’t truncate the input text, bT1 = m
holds. However, if we truncate the input due to encoder con-
straints, then bT1 > m, and the BoW vector will contain
information that would otherwise have been lost.

3See detailed discussion in Appendix C.

code z = zK = fK ◦ · · · ◦ f1(z0) ∈ Rℓ.4 Note that
when K = 0, the model reverts to the traditional
VED framework, and we refer to this degenerated
version as VEDSUM.
Gated Transformer-based Encoder-Decoder.
Our model adopts the Transformer-based encoder-
decoder. The encoder processes the input text and
learns a sequence of hidden representations, and
the decoder generates a summary based on the en-
coder’s hidden states and the previously generated
tokens. We incorporate the latent information into
the decoder with a gate mechanism, which mixes
the latent vector zK with the decoder’s last layer of
hidden states {hj}nj=1. As pointed out in Gu et al.
(2020), the saturation property of traditional gating
mechanisms hinders gradient-based optimization.
Therefore, following their proposal, we use a re-
fined gate mechanism designed to allow for better
gradient flow. Let σ(·) be the sigmoid function.
We generate the gated fused hidden states {h′j}nj=1

as in Eq. 4.

z′K =W zzK ∈ Rd, whereW z ∈ Rd×ℓ

fj = δ
(
W f

[
hj ; z

′
K

])
∈ Rd, whereW f ∈ Rd×2d

rj = δ
(
W r

[
hj ; z

′
K

])
∈ Rd, whereW r ∈ Rd×2d

gj = (1− rj) · f2j + rj

(
1− (1− fj)2

)
∈ Rd

h′j = (1− gj) · hj + gj · z′K ∈ Rd
(4)

Afterward, the fused hidden states are passed to a
language model (LM) Head layer, where they are
transformed into vectors modeling the probabilities
of each word in the vocabulary.

3.2 Training Objective
Traditional VEDs usually assume q(z | x;ψ) to
be a Gaussian, allowing analytical computation of
the KL term in ELBO. However, in our normal-
izing flows-based VED, the variational posterior
q(z | x) = qK(zK | x) can be complex and hence
the KL term in Eq. 3 lacks an analytical form.
Therefore, we rewrite the ELBO via a change of
variables to enable analytical evaluation5:

ELBONF-VED

=Eq0(z0) [log p (y | x, zK) + log p (zK | x)]
−Eq0(z0)

[
log q0 (z0)−

∑K
k=1 log |det Jfk (zk−1)|

]
,

(5)
4The log-determinant of the Jacobian at each layer is

recorded along the forward call for loss computation.
5See derivation in Appendix B Eq. 9.
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where q0 is z0’s probability density function,
a Gaussian distribution modeled by NNs, and
det Jfk(·) is the determinant of fk’s Jacobian.
Let LCE denote the cross-entropy loss and LVI

denote the loss introduced by the variational latent
module. Applying the idea of Monte Carlo to Eq.
5, we obtain the training objective as below. Note
that LVI is a Monte Carlo estimate of the KL diver-
gence between the variational posterior qK and the
conditional prior distribution p(zK | x).

L = LCE + LVI
= −∑n

j=1 log p (yj | {xi}mi=1 , zK , y<j)

+ log q0 (z0)−
∑K

k=1 log |det Jfk (zk−1)|
− log p (zK | x)

(6)

3.3 Mitigating Posterior Collapse
To remedy posterior collapse, we consider two
strategies, aiming to preserve the expressiveness
of the latent variable and improve the overall sum-
mary quality. The first approach, called βC-VAE
(Prokhorov et al., 2019), replaces the KL term with
β|KL−C|, where β is a scaling factor, and C ≥ 0
is a threshold that regulates the magnitude of the
KL term. When C > 0, the KL term is expected to
be discouraged from getting close to 0.

We propose the second approach, Controlled Al-
ternate Aggressive Training (CAAT), inspired by
the lagging inference strategy (He et al., 2019).
This strategy uses the observation that the infer-
ence network cannot accurately approximate the
true posterior in the initial stages of training. As
outlined in Alg. 1 in Appendix A, CAAT comprises
two stages. In the first stage, we alternately update
the variational parameters and the entire parame-
ters6 for a specified number of steps. In the second
stage, we train all parameters jointly, as in basic
VAE training, for the remainder of the training.

3.4 NF-enhanced Knowledge Distillation
Normalizing flows can learn complex and multi-
modal distributions (Papamakarios et al., 2017),
which makes them a promising approach for knowl-
edge distillation tasks that involve integrating infor-
mation from multiple sources (Hinton et al., 2015).
To investigate the impact of normalizing flows
on knowledge distillation, we adopt two knowl-
edge distillation methods by Shleifer and Rush

6In our preliminary experiments, we find that if we alter-
nate between variational and encoder-decoder parameters, the
training becomes unstable and generates NaN values. There-
fore, we alternate between variational and all parameters.

(2020): Shrink and Fine-Tune (SFT) and Pseudo-
labels (PL). SFT shrinks the teacher model and
re-finetunes the shrunk model. In contrast, the
PL method initializes the student model with the
compressed version produced by SFT and then fine-
tunes using the pseudo-labeled data generated by
the teacher model. In this study, we fine-tune the
model on the augmented data with both original
and pseudo-labeled data, enabling it to more ef-
fectively switch between generated summaries and
ground truth, thereby mitigating exposure bias.

4 Experiments

4.1 Datasets

We evaluate the effectiveness of FlowSUM on six
public benchmark datasets7, including CNN/Daily
Mail (CNN/DM) (Hermann et al., 2015), XSum
(Narayan et al., 2018), Multi-News (Fabbri et al.,
2019), arXiv, PubMed (Cohan et al., 2018), and
SAMSum (Gliwa et al., 2019). These datasets ex-
hibit various summary styles and lengths, and their
corresponding statistics are shown in Table 1. Refer
to Appendix E for more details.

Datasets
Split

(train/val/test)
Avg. doc
length

Avg. summary
length

CNN/DM 287113/13368/11490 781 56
Multi-News 44972/5622/5622 2103 264
arXiv 203037/6436/6440 4938 220
PubMed 119924/6633/6658 3016 203
XSum 204045/11332/11334 431 23
SAMSum 14732/818/819 94 20

Table 1: Statistics of Summarization Datasets.

4.2 Implementation Details

We configure the inference net q0(z0|x) to be a
feedforward neural network and set the latent di-
mension ℓ to 300 and the number of NF layers
K ∈ {2, 4, 6, 8}. For models that use βC-VAE, we
set β = 1 and C = 0.1, and for those using CAAT,
we conduct one epoch of aggressive training with
nalt = 15 and two epochs of non-aggressive train-
ing. See more details in Appendix G.

4.3 Baselines

We use BART (Lewis et al., 2020) and
BERT2BERT (Rothe et al., 2020) as two backbone
models. We refer to the PL knowledge distilled

7We access them through Hugging Face Datasets, which
provides reproducible code for processing texts and generating
train/validation/test splits.
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FlowSUM as FlowSUM-PLKD. Our comparison
involves the following baselines: PG+Cov (See
et al., 2017), BERT2BERT (Rothe et al., 2020),
BERTSUM (Liu and Lapata, 2019), BART (Lewis
et al., 2020), PEGASUS (Zhang et al., 2020a),
VHTM (Fu et al., 2020), TAS (Zheng et al., 2020),
and PEGASUS+Flow-NTM (Nguyen et al., 2021).
See Appendix F for more detailed descriptions.

4.4 Results

4.4.1 Automatic Evaluation
We evaluate the generated summary quality us-
ing ROUGE scores (Lin, 2004) and BERTScore
(Zhang et al., 2020b)8. Specifically, we utilize the
overlap of unigrams and bigrams (ROUGE-1 and
ROUGE-2) to evaluate the informativeness, and
the longest common subsequence (ROUGE-L) for
fluency. Moreover, we report BERTScore, which
gauges semantic similarity based on contextual em-
beddings. Furthermore, we present rep-w (Fu et al.,
2021)9 and the average length of summaries to gain
a better understanding of the quality.
We compare the proposed model against base-

line models in ROUGE scores in Tables 2 and 3. On
CNN/DM, FlowSUM (BERT2BERT) greatly out-
performs BERT2BERT, whereas VEDSUM adds
noise to the model and leads to a decrease in per-
formance. With the BART backbone, FlowSUM
achieves an absolute improvement over the BART
model with +0.48, +0.08, and +0.75 in R-1, 2, and
L scores, respectively. However, on XSum, the
variational models do not perform well when the
gold summaries involve only one sentence. VED-
SUM leads to a significant decrease in performance,
whereas with FlowSUM, the decrease in ROUGE
scores is less severe, leading to +0.12, -0.15, and
-0.25 in R-1, 2, and L scores, respectively.

Table 4 uses BART as the backbone and com-
pares BART, VEDSUM, and FlowSUM across all
datasets. Overall, variational models produce sum-
maries of superior quality for datasets with long
summaries, such as CNN/DM, Multi-News, arXiv,
and PubMed, and FlowSUM further enhances the
performance beyond VEDSUM. However, when it
comes to datasets featuring short summaries such
as XSum and SAMSum, the variational compo-
nent markedly diminishes the model performance.

8We obtain both metrics using Hugging Face Evaluate and
report the F1 scores.

9rep-w is calculated as the proportion of the current token
that appears in the previous w tokens. Refer to Appendix D
for the detailed definition.

Model
ROUGE ↑

1 2 L

PG+Cov (See et al., 2017) 39.53 17.28 36.38
BERT2BERT (Rothe et al., 2020) 41.28 18.69 38.09
BERTSUM (Liu and Lapata, 2019) 42.13 19.60 39.18
BART (Lewis et al., 2020) 44.16 21.28 40.90
PEGASUS (Zhang et al., 2020a) 44.17 21.47 41.11

VHTM (Fu et al., 2020) 40.57 18.05 37.18
TAS (Zheng et al., 2020) 44.38 21.19 41.33
PEGASUS+NTM (Nguyen et al., 2021) 44.52 21.95 41.39

VEDSUM (BERT2BERT) 40.89 18.28 37.95
FlowSUM (BERT2BERT) 41.51 18.81 38.56

VEDSUM (BART) 44.36 21.09 41.37
FlowSUM (BART) 44.64 21.36 41.65
FlowSUM-PLKD (BART) 44.59 21.49 41.59

Table 2: Comparison with baselines on CNN/DM.

Model
ROUGE ↑

1 2 L

PG+Cov (See et al., 2017) 28.10 8.02 21.72
BERTSUM (Liu and Lapata, 2019) 38.81 16.50 31.27
BART (Lewis et al., 2020) 45.14 22.27 37.25
PEGASUS (Zhang et al., 2020a) 47.21 24.56 39.25

TAS (Zheng et al., 2020) 44.63 21.62 36.77
PEGASUS+NTM (Nguyen et al., 2021) 49.57 25.08 41.81

VEDSUM (BART) 43.62 20.27 35.06
FlowSUM (BART) 45.26 22.12 37.00
FlowSUM-PLKD (BART) 45.54 22.67 37.38

Table 3: Comparison with baselines on XSum.

We hypothesize that brief summaries may be more
susceptible to disturbances and are more prone
to being affected by noise. Nevertheless, incor-
porating NF modules alleviates these reductions
and accomplishes comparable outcomes. Further-
more, we observe that both variational models tend
to generate lengthier summaries, while FlowSUM
exhibits fewer issues with repetition compared to
VEDSUM.

4.4.2 On NF-enhanced Knowledge Distillation
We use PEGASUS as the teacher model to generate
pseudo-labels on the CNN/DM training set. In this
study, we explore the effects of knowledge distilla-
tion on BART and DistilBART, a shrunken version
of BART. We examine two variations of Distil-
BART: dBART-6-6, which replicates 6 layers10 of
the BART encoder and decoder, and dBART-12-3,
which duplicates all layers of the BART encoder
and 3 layers11 of the decoder.
Table 5 presents the impact of the PL approach

on the original BART model. Training the BART
10The 0, 2, 4, 7, 9, and 11th layer.
11The 0, 6, and 11th layer.
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Model
ROUGE ↑
1/2/L

BERT-
Score

↑ rep-w ↓ Length

CNN/DM

BART 44.16/21.28/40.90 89.40 8.31 84.11
VEDSUM 44.34/21.09/41.37 89.20 8.43 88.63
FlowSUM 44.64/21.36/41.65 89.46 8.43 92.24

Multi-News

BART 42.56/15.34/36.67 86.69 9.76 133.42
VEDSUM 43.91/16.68/38.10 87.04 9.95 128.79
FlowSUM 44.42/17.01/38.36 87.09 9.91 128.87

arXiv

BART 42.55/15.92/37.89 85.35 17.23 130.68
VEDSUM 43.05/16.34/38.26 85.44 16.63 130.92
FlowSUM 43.11/16.26/38.31 85.45 16.55 132.88

PubMed

BART 41.57/16.72/36.94 84.65 13.26 136.10
VEDSUM 44.21/19.20/39.32 85.07 12.76 138.70
FlowSUM 44.55/19.50/39.59 85.16 12.59 138.09

XSum

BART 45.14/22.27/37.25 92.16 4.63 25.54
VEDSUM 43.62/20.27/35.06 91.75 5.96 31.22
FlowSUM 45.26/22.12/37.00 92.13 4.95 28.71

SAMSum

BART 53.16/28.19/49.03 92.68 6.71 30.00
VEDSUM 51.91/26.74/47.41 92.40 7.53 30.92
FlowSUM 53.13/28.49/49.00 92.67 6.59 29.77

Table 4: Comparison of BART, VEDSUM (BART), and
FlowSUM (BART) on all six benchmarks.

model on augmented data worsens the performance
compared to training on the original data. In con-
trast, VEDSUM-PLKD achieves improvements in
all three ROUGE scores, and FlowSUM-PLKD
with RQNSF achieves the highest R-2 score, albeit
with some sacrifice in R-1 and R-L12. However,
planar flows appear to be unsuitable for knowledge
distillation via PL. To better understand FlowSUM-
PLKD, we visualize the latent distribution (see Ap-
pendix I) and demonstrate how the NF’s ability to
capture multi-modality could account for its im-
pressive performance.
Table 6 investigates the two DistilBART vari-

ants with RQNSF. With FlowSUM, both variants
achieve improvements, suggesting that NF is bene-
ficial for the SFT approach. Previous experiments
from Shleifer and Rush (2020) showed that PL per-
formed worse than SFT on CNN/DM. However,
our experiments reveal that the NF latent module
unleashes the potential of PL. When trained on
augmented data, FlowSUM-PLKD (dBART-6-6)

12This can be explained by the teacher model’s worse per-
formance in these two metrics.

Model
ROUGE ↑ BERT-

Score
↑ Length

1 2 L

BART 44.16 21.28 40.90 89.40 84.11
VEDSUM 44.34 21.09 41.37 89.20 88.63
FlowSUM (Planar) 44.62 21.32 41.64 89.20 90.78
FlowSUM (RQNSF) 44.64 21.36 41.65 89.46 92.24

PEGASUS 44.17 21.47 41.11 89.52 77.84

BART-PLKD 42.83 20.16 39.98 89.04 100.52
VEDSUM-PLKD 44.45 21.25 41.45 89.41 93.42
FlowSUM-PLKD (Planar) 44.19 21.03 41.15 89.34 92.38
FlowSUM-PLKD (RQNSF) 44.59 21.48 41.59 89.47 84.75

Table 5: PL Knowledge Distillation on BART on
CNN/DM.

Model
ROUGE ↑
1/2/L

BERT-
Score

↑ Length
# Params
(MM)

Inference
Time (MS)

↓

dBART-6-6

dBART-6-6 42.78/20.24/39.72 88.98 67.42 230 170.5
FlowSUM 43.41/20.33/40.41 89.18 91.25 238 234.9
FlowSUM-PLKD 43.70/20.71/40.73 89.24 91.10 238 239.7

dBART-12-3

dBART-12-3 43.39/20.57/40.44 89.20 85.48 255 199.6
FlowSUM 43.53/20.61/40.59 89.28 83.74 263 190.7
FlowSUM-PLKD 44.05/21.06/41.07 89.37 84.48 263 200.4

Table 6: Knowledge Distillation on DistilBART on
CNN/DM.

achieves R-1/2/L improvements of 0.92/0.47/1.01
over dBART-6-6, and FlowSUM-PLKD (dBART-
12-3) achieves improvements of 0.66/0.49/0.63
over dBART-12-3, much more than the SFT ap-
proach. Furthermore, FlowSUM does not intro-
duce additional computational burden at inference,
and the time cost is primarily related to the length
of the generated summaries.

4.4.3 Analysis on NF Types and Depth
We investigate the effect of NF types and the num-
ber of NF layers on the Multi-News dataset13. Ta-
ble 7 explores the effect of NF types. Simple flows
like Planar and Radial yield inferior performance
compared to the VAE counterpart, whereas more
complex flows tend to achieve greater improve-
ments. Overall, IAF and RQNSF emerge as the
best-performing NF types.
Table 8 delves further into IAF and RQNSF, in-

vestigating the effect of NF depth. The findings
indicate that adding more layers does not always
lead to improved performance. We hypothesize that
when the encoder-decoder model is well-trained,
the increased complexity of the NF module may
introduce more noise, outweighing the benefits of
better latent modeling and subsequently worsening
the summary quality.

13We choose Multi-News due to its smaller size, enabling
us to conduct experiments with reduced computational cost.
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Model
ROUGE ↑
1/2/L

BERT-
Score

↑ rep-w ↓ Length

BART 42.56/15.35/36.67 86.69 9.76 133.42
VEDSUM 43.91/16.68/38.10 87.04 9.95 128.79
FlowSUM (Planar) 43.85/16.61/37.97 87.03 10.04 128.84
FlowSUM (Radial) 43.84/16.68/37.98 87.04 9.92 128.72
FlowSUM (Sylvester) 44.18/16.71/38.15 87.08 9.80 128.76
FlowSUM (RealNVP) 44.19/16.64/38.15 87.05 9.81 128.76
FlowSUM (IAF) 44.42/17.01/38.36 87.09 9.91 128.87
FlowSUM (RLNSF) 44.25/16.86/38.14 87.06 9.80 128.80
FlowSUM (RQNSF) 44.31/16.98/38.27 87.07 9.91 128.81

Table 7: Effect of NF Types on Multi-News.

Model
ROUGE ↑
1/2/L

BERT-
Score

↑ rep-w ↓ Length

FlowSUM (IAF-4) 44.30/17.03/38.22 87.05 9.82 128.81
FlowSUM (IAF-6) 44.42/17.01/38.36 87.09 9.91 128.87
FlowSUM (IAF-8) 44.18/16.90/38.16 87.04 9.88 128.84

FlowSUM (RQNSF-2) 44.15/16.88/38.20 87.04 9.94 128.83
FlowSUM (RQNSF-4) 44.31/16.98/38.27 87.07 9.91 128.81
FlowSUM (RQNSF-6) 44.15/16.88/38.18 87.06 9.87 128.92

Table 8: Effect of Number of NF Layers on Multi-News.

4.4.4 Analysis on Training Strategies
We implement standard VAE training, βC-VAE,
and CAAT on VEDSUM and FlowSUM models,
and we evaluate their effectiveness with different
types of normalizing flows. Table 9 shows that
VEDSUM and FlowSUM models with residual
flows, including planar, radial, and Sylvester flows,
suffer from posterior collapse, whereas those with
more complex flows do not. Moreover, applying
βC-VAE to VEDSUM and FlowSUM models with
residual flows does not effectively mitigate poste-
rior collapse but even exacerbates the issue. Fur-
thermore, for models with planar, RealNVP, and
IAF flows, training with βC-VAE worsens ROUGE
scores, while for radial and Sylvester flows, it im-
proves performance. Notably, the two neural spline
flows are not impacted by βC-VAE training.
Concerning CAAT, we note that applying it to

treat severe posterior collapses such as VEDSUM
and FlowSUM with residual flows can cause in-
stability in training while producing NaN values.
Hence, it is only effective for models with KL di-
vergence that is not close to zero. Nonetheless,
when applicable, CAAT enhances the quality of
summaries, particularly when utilized with the top-
performing NFs, namely IAF and RQNSF.

In addition, we explore the impact of gate score
initialization. The standard method initializes gat-
ing weights with small deviations from zero, result-
ing in an initial gate score close to 0.5. In contrast,
the near-zero initialization method initializes gating
weights such that the resulting gate score is approx-

Model Training
ROUGE ↑ KL

Divergence1 2 L

VEDSUM standard 43.91 16.68 38.10 0.0117
VEDSUM βC-VAE 43.78 16.54 37.96 0.0082

FlowSUM (Planar) standard 43.85 16.61 37.97 0.2719
FlowSUM (Planar) βC-VAE 43.68 16.47 37.85 0.1815

FlowSUM (Radial) standard 43.63 16.37 37.82 0.0121
FlowSUM (Radial) βC-VAE 43.84 16.68 37.98 0.0096

FlowSUM (Sylvester) standard 43.68 16.51 37.87 0.0841
FlowSUM (Sylvester) βC-VAE 44.18 16.71 38.15 0.0348

FlowSUM (RealNVP) standard 44.19 16.64 38.15 4.7986
FlowSUM (RealNVP) βC-VAE 43.71 16.54 37.85 7.8938
FlowSUM (RealNVP) CAAT 44.12 16.82 38.11 5.2107

FlowSUM (IAF) standard 43.87 16.62 37.97 3.9146
FlowSUM (IAF) βC-VAE 43.81 16.58 37.91 3.9128
FlowSUM (IAF) CAAT 44.30 17.03 38.22 2.1108

FlowSUM (RLNSF) standard 44.25 16.86 38.14 104.9667
FlowSUM (RLNSF) βC-VAE 44.25 16.86 38.14 104.9667
FlowSUM (RLNSF) CAAT 44.14 16.82 38.05 95.3774

FlowSUM (RQNSF) standard 44.18 16.76 38.18 127.8106
FlowSUM (RQNSF) βC-VAE 44.18 16.76 38.18 127.8106
FlowSUM (RQNSF) CAAT 44.31 16.98 38.27 107.0794
a VEDSUM and FlowSUM with radial flows have no CAAT results as

the training is unstable and generates NaN values.

Table 9: Effect of Training Strategies.

Training Gate Initialization
ROUGE ↑

1 2 L

standard standard 40.82 18.29 37.92
standard near-zero 40.98 18.36 38.09
CAAT standard 41.51 18.81 38.56
CAAT near-zero 41.13 18.57 38.21

Table 10: Effect of CAAT and Gate Initialization.

imately 0.05. Our experiments using FlowSUM
(BERT2BERT) with RQNSF as the base model
reveal that CAAT + Standard Gate Score Initial-
ization yields the best results and the most stable
training process, as illustrated in Table 10 and Fig-
ures 2 to 3 in Appendix H. This suggests that by
setting a large initial gate score and forcing the
model to learn from the NF latent module, we can
better capture latent code information.

5 Conclusions and Discussions

This paper introduces FlowSUM, a normalizing
flows-based Variational Encoder-Decoder (VED)
framework for text summarization. It outperforms
a leading non-latent model across multiple datasets.
This enhanced performance is attributed to the flexi-
ble posterior distributions provided by normalizing
flows. We also analyze the operating characteristics
and the posterior collapse problem of normalizing
flows and propose an effective training strategy for
complex flows. Moreover, we demonstrate that in-
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corporating normalizing flows is highly effective
for knowledge distillation with minimal impact on
inference time.

FlowSUM illustrates the advantages of incorpo-
rating flexible latent modeling. Considering the
remarkable achievements of Latent Diffusion Mod-
els (LDMs) in generating images (Rombach et al.,
2022), adopting LDMs for capturing latent repre-
sentation may produce comparable or even superior
outcomes in text summarization. In this scenario,
the gating mechanism may not be an appropriate
choice. A direct correlation between the latent vec-
tor and the target text may be more suitable for
executing the diffusion process. Enhancing the ar-
chitecture to leverage diffusion models could be a
potential avenue for future research.

Limitations

FlowSUM has demonstrated excellent results on
datasets with long summaries. However, its perfor-
mance on short-summary datasets like XSum and
SAMSum has been unsatisfactory. The underlying
cause could be attributed to suboptimal hyperpa-
rameter tuning or the incompatibility of FlowSUM
with short summaries. Additional investigations
are needed to identify the root cause.

Furthermore, we did not fine-tune the hyper-
parameters of the normalizing flows model, such as
the latent dimension, the number of bins in spline
coupling layers, and the neural network in IAF, Re-
alNVP, RLNSF, and RQNSF. Moreover, we opted
for a small batch size due to memory limitations.
Adjusting these hyperparameters could potentially
enhance the model’s performance.

Due to limited computational resources, we uti-
lized BART and BERT2BERT as the backbone
models instead of newer architectures. Further re-
search may focus on verifying the effectiveness of
FlowSUM on more advanced structures.
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A Controlled Alternate Aggressive
Training (CAAT)

Algorithm 1 Controlled Alternate Aggressive
Training (CAAT)
Input: number of aggressive training steps nagg;
maximum number of training steps nmax; number
of alternating steps nalt.
1: θ,ψ ← Initialize encoder-decoder parameters

and variational parameters respectively
2: for i = 1, 2, · · · , nagg do
3: X← Random data minibatch
4: if i mod nalt = 0 then
5: Compute gθ,ψ ← ∇ψ,θL(X; θ,ψ)
6: Update θ,ψ using gradients gθ,ψ
7: else
8: Compute gψ ← ∇ψL(X; θ,ψ)
9: Update ψ using graidents gψ

10: for i = nagg, nagg + 1, · · · , nmax do
11: X← Random data minibatch
12: Compute gθ,ψ ← ∇ψ,θL(X; θ,ψ)
13: Update θ,ψ using gradients gθ,ψ
14: if early stopping criterion is met then
15: break

Another advantage of the controlled alternate ag-
gressive training (CAAT) strategy is that it provides
us with more control. It is commonly assumed that
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allowing the model more freedom to learn, even if
the NF latent module is not helpful, will not harm
performance. However, our experiments suggest
that this assumption does not hold, particularly for
short-summary datasets where the model will not
learn on its own to avoid hurting the original perfor-
mance. The CAAT strategy allows us to effectively
freeze the encoder-decoder parameters by setting
nagg and nalt to large values, ensuring that when
the nf module is unhelpful, it will not significantly
harm performance.

B Deeper Dive into the Evidence Lower
Bound (ELBO)

Within the VED framework, the conditional data
generation process can be expressed as follows:

p(y | x;ϕ, θ) =
∫
p(z | x;ϕ)p(y | x, z; θ)dz.

The subsequent challenge revolves around param-
eter estimation. Typically, the conditional latent
prior is assumed as p(z | x;ϕ) = N(0, I) for
simplification (hence eliminating the ϕ parameter).
Despite this, the likelihood p(y | x; θ) remains
computationally intractable to evaluate. Variational
inference tackles this issue by introducing a vari-
ational distribution q(z | x, y;ψ) from a specific
parametric family, aiming to approximate the actual
posterior p(z | x, y). Here, θ denotes the model pa-
rameters, and ψ refers to the variational parameters.
Instead of attempting to estimate θ solely through
maximizing the challenging log-likelihood, the ap-
proach involves joint estimation of both θ and ψ by
optimizing the ELBO.

Examining Eq. 7 and 8, it’s evident that
the ELBO represents a lower bound of the log-
likelihood. Moreover, a smaller value of KL(q(z |
x, y)∥p(z | x, y)) indicates a closer alignment be-
tween the variational posterior and the true pos-
terior, thereby bringing the ELBO closer to the
log-likelihood. This insight propels the adoption
of normalizing flows to model a flexible family of
variational posterior.

KL(q(z | x, y)∥p(z | x, y))

=Eq(z|x,y)[log q(z | x, y)]− Eq(z|x,y)

[
log

p(z, x, y)

p(x, y)

]

=Eq(z|x,y)[log q(z | x, y)]

− Eq(z|x,y)

[
log

p(z, x, y)

p(x, z)
· p(x, z)

p(x)
· p(x)

p(x, y)

]

=Eq(z|x,y)[log q(z | x, y)]− Eq(z|x,y)[log p(y | x, z)]
− Eq(z|x,y)[log p(z | x)] + Eq(z|x,y)[log p(y | x)]

=KL(q(z | x, y)∥p(z | x))− Eq(z|x,y)[log p(y | x, z)]
+ Eq(z|x,y)[log p(y | x)]

⩾0

(7)

ELBOVED

=Eq(z|x,y)[log p(y | x, z)]−KL(q(z | x, y)∥p(z | x))
= log p(y | x)−KL(q(z | x, y)∥p(z | x, y))
≤ log p(y | x)

(8)

ELBONF-VED

=Eq(z|x)[log p(y | x, z)] + Eq(z|x) log p(z | x)
− Eq(z|x)[log q(z | x)]

=Eq0(z0) [log p (y | x, zK) + log p (zK | x)]
− Eq0(z0) [log qK (zK)]

=Eq0(z0) [log p (y | x, zK) + log p (zK | x)]

− Eq0(z0)

[
log q0 (z0)−

K∑

k=1

log |det Jfk (zk−1)|
]
,

(9)

where q0 and qK are the probability density func-
tion for z0 and zK respectively.

C Discussion on q(z | x, y) = q(z | x)
we choose to assume q(z | x, y) = q(z | x) for
the following reasons. Firstly, this assumption is
grounded in the nature of summarization, where y
can be viewed as a condensed form of x and hence
it is sensible to assume all the information in y is
contained in x. Secondly, as evidenced by Zhang
et al. (2016), it is plausible to condition the pos-
terior on both x and y. However, their approach
suffers from difficulties during prediction. In pre-
diction, the target text y is not accessible, making it
hard to sample from q(z | x, y). Zhang et al. (2016)
suggests taking the prior’s mean as the latent code,
but in our paper, the prior is a Gaussian whereas
the posterior is a complex distribution modeled
by normalizing flows, and taking such a strategy
would diminish the benefit of using normalizing
flows. Thirdly, it has been shown empirically by
Eikema and Aziz (2019) that by restricting the con-
ditioning of the posterior to x alone, their model
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achieves higher accuracy. Therefore, we consider
q(z | x, y) = q(z | x) as our modeling strategy.

D Repetition Measures

Let s represent the sentences in a result set D, |s|
be the number of tokens in s, st be the tth token,
and si:j be the sub-sequence of s from the ith token
to the jth token. The rep-w (Fu et al., 2021) is then
defined by Equation 10.

rep-w =
1

|D|
∑

s∈D

1

|s|

|s|∑

t=2

1
[
st ∈ smax(t−w,1):t−1

]

(10)

E Datasets

CNN/Daily Mail (Hermann et al., 2015) consists
of 312,085 online news articles, with one article
paired with a multi-sentence summary. We use the
non-anonymized version as in See et al. (2017) and
follow the text processing14 in Lewis et al. (2020).
XSum (Narayan et al., 2018) contains 227k BBC
articles, each summarized in a single sentence.
Multi-News (Fabbri et al., 2019) is a multi-
document dataset comprising 56k pairs of news
articles and multi-sentence summaries.
arXiv, PubMed (Cohan et al., 2018) are two scien-
tific paper document datasets from arXiv.org (113k)
and PubMed (215k). Each pair consists of a scien-
tific article’s body document and its abstract.
SAMSum (Gliwa et al., 2019) includes 16k conver-
sations annotated with summaries by linguists. Un-
like structured texts, the information in dialogues
is scattered across different speakers’ utterances,
increasing the summarization difficulty.

F Baseline Models

PG+Cov (See et al., 2017) is a pointer-generator
(PG) network supplemented with a coverage mech-
anism that addresses the Out-Of-Vocabulary prob-
lem and minimizes word repetition.
BERT2BERT (Rothe et al., 2020) initializes both
the encoder and the decoder with the pre-trained
BERT checkpoints and adds cross-attention layers.
BERTSUM (Liu and Lapata, 2019) builds on top
of BERT and applies a fine-tuning scheduler to
better align the encoder and the decoder.
BART (Lewis et al., 2020) is a pretrained denois-
ing autoencoder with the standard sequence-to-

14We update the data loading script following https://
github.com/facebookresearch/fairseq/issues/1401.

sequence Transformer architecture. In this paper,
we use BART as the encoder-decoder backbone.
PEGASUS (Zhang et al., 2020a) is a large
Transformer-based S2S model, pre-trained on mas-
sive text data using a self-supervised objective
called gap sentence generation, designed for ab-
stractive summarization.
VHTM (Fu et al., 2020) is a variational hierarchical
model built on the PG network. It models the topic
proportion vector with isotropic Gaussian and fuses
in topic information at diverse granularity levels.
TAS (Zheng et al., 2020) is a topic-guided
Transformer-based S2S model that injects the topic-
word matrix into the LMHead layer and jointly
trains the NTM and encoder-decoder model.
PEGASUS+Flow-NTM (Nguyen et al., 2021) is a
topic-aware model built on PEGASUS. It utilizes
a Flow-based NTM and a contextualized gating
mechanism to integrate topic information into the
encoder and the decoder.

G Implementation Details

G.1 NF Latent Module

We configure the inference net q(z0|x) to be a feed-
forward neural network with three hidden layers
of dimension ∈ {300, 600}, Tanh activations, and
a 0.1 dropout rate. We set the latent dimension ℓ
to 300 and the number of NF layers ∈ {2, 4, 6, 8}.
For spline coupling layers (RLNSF and RQNSF),
we set the number of bins to 4, the bound to 3.0, the
split dimension to ℓ/2, and the neural network to
have two hidden layers with the dimension ℓ. For
RealNVP, the split dimension is ℓ/2, and the neu-
ral network has one hidden layer with a dimension
of 10ℓ. For IAF, the neural network features one
hidden layer of the dimension 3ℓ + 1. Moreover,
we set β = 1 and C = 0.1 for models that use βC-
VAE, and for models that use CAAT, we conduct
one epoch of aggressive training with nalt = 15,
followed by two epochs of non-aggressive training.

G.2 Optimization

We train the models using the Adam optimizer
(Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.999,
and ϵ = 10−8. The initial learning rate is 5× 10−5.
We employ a linear learning rate scheduler that in-
creases the learning rate from 0 to the initial learn-
ing rate during the warmup stage and decreases it
from the initial learning rate to 0 after the warmup
stage. We also apply the gradient clipping tech-
nique with a maximum gradient norm of 1.0. Fur-
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thermore, we terminate the training early when
the perplexity fails to improve for eight or sixteen
consecutive evaluation calls.

G.3 Model Hyper Parameters

Table 11 provides the hyper-parameters for the
models discussed in Table 4 - 7, for the sake of
reproducibility. To ensure fair comparisons, unless
otherwise specified, the VEDSUM models typi-
cally employ the same set of hyper-parameters as
their FlowSUM counterparts, except with standard
training and no NF layers applied. Additionally, the
models in Table 8 have the same hyper-parameters
as those in Table 7, except for the number of NF
layers used. Lastly, in Table 9, all FlowSUM mod-
els use 4 NF layers and the same set of hyper-
parameters as those in Table 7 but vary in their
training strategies.

H Experiments on Training Strategies
and Gate Initialization

The training curves for the methods in Table 10
are illustrated in Figure 2. The plot demonstrates
that the gate score decreases gradually and remains
high during aggressive training when CAAT is com-
bined with standard initialization. This combina-
tion compels the model to utilize the latent code
information effectively. Moreover, as presented
in Figure 2c, even though CAAT combined with
standard initialization starts with a high perplex-
ity, it achieves a lower perplexity level than other
approaches by the end. By examining the training
procedure in detail, Figure 3 further indicates that
CAAT contributes to greater training stability than
standard training.

I Visualization of Latent Distribution

To gain a better understanding of how normalizing
flows contribute to knowledge distillation, we se-
lected several examples from the CNN/Daily Mail
and XSum datasets and visualized the resulting la-
tent distribution generated by the FlowSUM-PLKD
model, as shown in Figure 4 and 5. For both cases,
the transformed latent code zK exhibited a highly
flexible distribution. Notably, in the CNN/Daily
Mail example, the first dimension of the second
example demonstrated a clear bi-modal distribu-
tion, indicating the model’s ability to capture in-
formation from multiple sources. Similarly, in
the XSum dataset examples, we observed distinct
multi-modal patterns.

(a) Gate Score (b) Training Perplexity

(c) Evaluation Perplexity

Figure 2: Comparison of training strategies and gate
initialization.

(a) CAAT (b) Standard Training

Figure 3: A closer look at the training process: CAAT
vs. Standard Training.

Figure 4: Visualization of the first two dimensions of
z0, zK , and N(0, I) by FlowSUM-PLKD on CNN/DM.
The right sub-figure demonstrates a clear bi-modality.
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FlowSUM in Table 4

Dataset
Number of
epochs

Number of
aggressive epochs

Batch
size

Inference net
hidden dim

NF type
Number of
NF layers

Beam
size

Length
penalty

Max input
tokens

Max target
tokens

CNN/Daily Mail 3 1 8 300 RQNSF 4 4 2.0 1024 128
Multi-News 3 1 8 600 IAF 6 4 2.0 1024 128
arXiv 4 1 16 600 RQNSF 4 4 2.0 1024 142
PubMed 4 1 16 600 RQNSF 6 4 2.0 1024 142
XSum 3 1 8 600 RQNSF 4 6 0.5 1024 62
SAMSum 12 12 8 600 RQNSF 4 6 1.0 1024 62

Models in Table 5

Model
Number of
epochs

Number of
aggressive epochs

Batch
size

Inference net
hidden dim

NF type
Number of
NF layers

Beam
size

Length
penalty

Max input
tokens

Max target
tokens

VEDSUM 3 0 8 600 -a - 4 2.0 1024 128
FlowSUM (Planar) 3 0 8 600 Planar 4 4 2.0 1024 128
FlowSUM (RQNSF) 3 1 8 300 RQNSF 4 4 2.0 1024 128
BART-PLKD 3 0 8 - - - 4 2.0 1024 128
VEDSUM-PLKD 3 0 8 600 - - 4 2.0 1024 128
FlowSUM-PLKD (Planar) 3 0 8 600 Planar 4 4 2.0 1024 128
FlowSUM-PLKD (RQNSF) 3 1 8 300 RQNSF 4 4 2.0 1024 128

Models in Table 6

Model
Number of
epochs

Number of
aggressive epochs

Batch
size

Inference net
hidden dim

NF type
Number of
NF layers

Beam
size

Length
penalty

Max input
tokens

Max target
tokens

dBART-6-6

FlowSUM 3 1 8 300 RQNSF 4 4 2.0 1024 128
FlowSUM-PLKD 3 1 8 300 RQNSF 4 4 2.0 1024 128

dBART-12-3

FlowSUM 3 1 8 300 RQNSF 4 4 2.0 1024 128
FlowSUM-PLKD 3 1 8 300 RQNSF 4 4 2.0 1024 128

Models in Table 7

Model
Number of
epochs

Training
strategy

Batch
size

Inference net
hidden dim

NF type
Number of
NF layers

Beam
size

Length
penalty

Max input
tokens

Max target
tokens

FlowSUM (Planar) 3 standard 8 600 Planar 4 4 2.0 1024 128
FlowSUM (Radial) 3 βC-VAE 8 600 Radial 4 4 2.0 1024 128
FlowSUM (Sylvester) 3 βC-VAE 8 600 Sylvester 4 4 2.0 1024 128
FlowSUM (RealNVP) 3 standard 8 600 RealNVP 4 4 2.0 1024 128
FlowSUM (IAF) 3 1/3 CAATb 8 600 IAF 6 4 2.0 1024 128
FlowSUM (RLNSF) 3 βC-VAE 8 600 RLNSF 4 4 2.0 1024 128
FlowSUM (RQNSF) 3 1/3 CAAT 8 600 RQNSF 4 4 2.0 1024 128
a "-" means not applicable.
b 1/3 CAAT: aggressive training for 1 epoch and non-aggressive training for 2 epochs.

Table 11: Model Hyper-parameters.

Figure 5: Visualization of the first two dimensions of z0,
zK , and N(0, I) by FlowSUM-PLKD on XSum. Both
sub-figures demonstrate distinct multi-modal patterns.

J Normalizing Flows

Planar flow Proposed by Rezende and Mohamed
(2015), the planar flow can be expressed as in
Eq. 11. It applies contractions or expansions
in the direction perpendicular to the hyperplane
w⊤z + b = 0. Its Jacobian determinant can be
computed in time O(D) as in Eq. 12, using the
matrix determinant lemma. In addition, we need
to note that this flow is not invertible for all values
of u and w. When the derivative of the activa-
tion function h′(·) is positive and bounded from
above, w⊤u > − 1

supx h
′(x) is sufficient to ensure

invertibility15.

15In our code, we perform a transformation on u : u ←
u+

[
log

(
1 + exp

(
w⊤u

))
− 1−w⊤u

]
· w
w⊤w

and restrict
the activation h(·) to be one of leakyrelu, relu, and tanh to
meet this condition.
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f(z) = z+ uh
(
w⊤z+ b

)
, (11)

det J = 1 + h′
(
w⊤z+ b

)
w⊤u (12)

where {u,w ∈ RD, b ∈ R} are free parameters
and h(·) is a smooth element-wise non-linear acti-
vation function with derivative h′(·).

Radial flow The radial flow (Tabak and Turner,
2013; Rezende andMohamed, 2015) takes the form
of Eq. 13. It applies radial contractions and expan-
sions around a reference point. Similar to the planar
flow, we can apply the matrix determinant lemma
to calculate the Jacobian determinant inO(D) time,
as in Eq. 14. To guarantee invertibility, we usually
require β > −α16.

f(z) = z+ βh(α, r) (z− z0) , (13)

det J =

(
1 +

αβ

h2

)
(1 + βh)D−1 (14)

where z0 ∈ RD is the reference point, β ∈ R, α ∈
R+ are free parameters, r = ∥z − z0∥ is the norm
of z − z0, and h(α, r) = 1

α+r .
Sylvester flow The Sylvester flows (van den

Berg et al., 2018) generalize the planar flows to
have M hidden units, as in Eq. 15. To achieve
better computational efficiency, van den Berg et al.
(2018) proposes the parameterization as in Eq. 16,
with which the Jacobian determinnant reduces to
Eq. 17 and can be computed in O(M). Simi-
lar to the planar flows, when h′(·) is positive and
bounded from above, R̃iiRii > − 1

supx h
′(x) for all

i ∈ {1, . . . , D} is sufficient to ensure invertibility.

f(z) = z+Uh
(
W⊤z+ b

)
, (15)

where {U ∈ RD×M ,W ∈ RD×M ,b ∈ RM} are
the free parameters and h(·) is an element-wise
activation function.

f(z) = z+QRh
(
R̃QT z+ b

)
, (16)

det J = det
(
IM + diag

(
h′
(
R̃QT z+ b

))
R̃R

)

(17)
whereR and R̃ are upper triangularM ×M matri-
ces, andQ = (q1 . . . qM ) consists of an orthonor-
mal set of vectors.

16In our code, we perform a transformation on β : β ←
−α+ log

(
1 + eβ

)
to guarantee invertibility.

Autoregressive Flows The masked autoregres-
sive flow (MAF) (Papamakarios et al., 2017) was
motivated by MADE (Germain et al., 2015), which
is an autoregressive model for density estimation.
MAF generalizes the conditional distribution to be
Gaussian and generates data in a recursive way as
in Eq. 18. Given a data point x, the inverse trans-
formation can be performed in parallel as in Eq.
19. The Jacobian of the inverse transformation is
lower-triangular by design due to the autoregres-
sive structure, hence its absolute determinant can
be expressed as in Eq. 20. The set of functions
{fµi , fαi} are autoregressive neural networks fol-
lowing the approaches in MADE.

xi = ui expαi + µi, (18)

where µi = fµi (x1:i−1) , αi = fαi (x1:i−1) and
ui ∼ N (0, 1).

ui = (xi − µi) exp (−αi) (19)

∣∣det J−1
∣∣ = exp

(
−
∑

i

αi

)
(20)

Likewise, the inverse autoregressive flow (IAF)
(Kingma et al., 2016) uses MADE with Gaussian
conditionals and generates data as in Eq. 21. Its Ja-
cobian determinant has a simple form as in Eq. 22.
The main difference between IAF and MAF lies
in the history variables. MAF uses previous data
variables x1:i−1 to compute µi and αi, whereas
IAF uses previous random variables u1:i−1 for the
computation. In terms of sampling and density
evaluation, IAF can sample in parallel and need to
evaluate sequentially, whereas MAF has to sample
sequentially and can evaluate in parallel. Since we
care more about the sampling efficiency in varia-
tional inference, we choose IAF in the paper.

xi = ui expαi + µi, (21)

where µi = fµi (u1:i−1) and αi = fαi (u1:i−1).

|det J | = exp

(∑

i

αi

)
(22)

Affine Coupling The affine coupling layer, pro-
posed in NICE (Dinh et al., 2015) and later gen-
eralized in RealNVP (Dinh et al., 2017) takes the
following form.
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{
y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d)) + t (x1:d)
(23)

where s : Rd 7→ RD−d and t : Rd 7→ RD−d

are scale and translation transformation function
respectively, and ⊙ is the element-wise product.

Its Jacobian determinant can be efficiently com-
puted as det J = exp

[∑
j s (x1:d)j

]
. Since the

computation does not involve the Jacobian of s
or t, we can make these two functions arbitrarily
complex and use neural networks to model them.
The coupling layers are usually composed of per-
mutation layers to ensure every component gets
modified, and since the Jacobian determinant of
permutation is 1, the Jacobian determinant remains
tractable.
Spline Coupling Neural spline flows (Durkan

et al., 2019; Dolatabadi et al., 2020) use monotonic
rational-quadratic splines or monotonic rational-
linear splines as the coupling transformation to
achieve more flexibility and yet remain differen-
tiable and invertible. The monotonic rational-
quadratic spline uses K + 1 monotonically in-
creasing knots

{(
x(k), y(k)

)}K
k=0

to set upK bins,
each of which is defined as a rational-quadratic
function17 that is monotonically increasing. It
maps [−B,B] to [−B,B] and defines the trans-
formation outside the range to be identity trans-
formation. Let sk =

(
yk+1 − yk

)
/
(
xk+1 − xk

)

and ξ(x) =
(
x− xk

)
/
(
xk+1 − xk

)
, the rational-

quadratic function in the kth bin takes the form of
Eq. 24 and the Jacobian determinant of the rational-
quadratic neural spline flows (RQNSF) can be writ-
ten as in Eq. 25.

α(k)(ξ)

β(k)(ξ)
= y(k) +

(y(k+1)−y(k))[s(k)ξ2+δ(k)ξ(1−ξ)]
s(k)+[δ(k+1)+δ(k)−2s(k)]ξ(1−ξ)

(24)

det J =
∏

k

d

dx

[
α(k)(ξ)

β(k)(ξ)

]

=
∏
k
(s(k))

2
[δ(k+1)ξ2+2s(k)ξ(1−ξ)+δ(k)(1−ξ)2]

[s(k)+[δ(k+1)+δ(k)−2s(k)]ξ(1−ξ)]2
(25)

The rational-linear neural spline flows (RLNSF)
work similarly, except with monotonically increas-
ing linear rational functions in each bin. Neural
splines combine the best of autoregressive flows

17A rational-quadratic function is defined as the quotient of
two quadratic polynomial functions.

and coupling layers (such as NICE and RealNVP)
in that it has both an analytic single-pass inverse
and sufficient flexibility, as demonstrated in Durkan
et al. (2019).

K Example Analysis

In this section, we analyze several instances from
CNN/Daily Mail and XSum, showcasing diverse
outcomes generated by different summarization
models.18

18It is worth mentioning that a few of the grammatical errors
in the summaries can be attributed to the source text itself.
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Original Text (truncated): It looks like an ordinary forest, with moss climbing up the walls and
brown leaves covering the floor. But if you look closely, you will see that this picture is not all it
seems. For the peaceful scene actually features a carefully painted female model. The amazing
illusion is the work of German body-painting artist Joerg Duesterwald, who spent hours painting
his model so she would blend in with her surroundings. The stunning set of pictures was taken in
a forest in Langenfeld, Germany, yesterday. Mr Duesterwald has been painting for more than 20
years.

Gold Summary: The illusion is the work of German body-painting artist Joerg Duesterwald, who
spent hours painting his model. Stunning set of pictures was taken in front of a rockface in a forest
in Langenfeld, Germany, yesterday.

BART: Stunning set of images was taken in a forest near Langenfeld, Germany, yesterday by
body-painting artist Joerg Duesterwald. It looks like an ordinary forest, with moss climbing up the
walls and brown leaves covering the floor. But, if you look closely, you will see that this picture is
not all it seems. For the peaceful scene actually features a carefully painted female model.

VEDSUM: The stunning set of pictures was taken in a forest in Langenfeld, Germany, yesterday. It
looks like an ordinary forest, with moss climbing up the walls and brown leaves covering the floor.
But, if you look closely, you will see that this picture is not all it seems. For the peaceful scene
actually features a carefully painted female model.

FlowSUM: Amazing illusion is the work of German body-painting artist Joerg Duesterwald. He
spent hours painting his model so she would blend in with surroundings. Stunning set of pictures
was taken in a forest in Langenfeld, Germany, yesterday.

Table 12: Example 6766 in the CNN/Daily Mail test set: FlowSUM > BART > VEDSUM.
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Original Text (truncated): UFC light heavyweight champion Jon Jones ran from a crash that
hospitalised a pregnant woman - but quickly came back to grab ’a large handful of cash’ from the car,
witnesses told police. According to police, the accident occurred in southeastern Albuquerque just
before noon on Sunday local time when the driver of a rented SUV jumped a red light. The driver,
whom an off-duty officer identified as Jones, ran from the scene but then returned for the cash before
fleeing again, police said. ’Witnesses stated he shoved the cash into his pants and ran north jumping
the fence,’ the report said. Officers found a pipe with marijuana in the vehicle as well as MMA
and rental car documents in Jones’ name, according to the police report. Police were searching
for UFC champion Jon Jones in connection with a hit-and-run accident. Albuquerque police were
seeking an arrest warrant for Jones on Monday. They said he would likely face a felony charge of
leaving the scene of an accident since the woman broke her arm in the crash. Police said in a news
release they’d been unable to reach Jones or his lawyer. However, Jones handed himself in later
the same day, with TMZ reporting he was being held at Bernalillo County Metropolitan Detention
Center. According to the warrant, the pregnant woman told police she was driving when she was
hit by a silver Buick SUV. · · · Although he is widely considered the world’s best pound-for-pound
mixed martial artist, Jones has endured legal problems and questionable behaviour as champion.

Gold Summary: UFC light heavyweight champion Jon Jones ran from a crash that hospitalised a
pregnant woman, witnesses told police. According to police, the accident occurred in Albuquerque
just before noon on Sunday when the driver of a rented SUV jumped a red light. The driver, whom
an off-duty officer identified as Jones, ran from the scene but then returned for the cash before fleeing
again, police said. Jones is widely considered the best pound-for-pound mixed martial artist.

BART: Albuquerque police were seeking an arrest warrant for Jones on Monday. They said he
would likely face a felony charge of leaving the scene of an accident since the woman broke her arm
in the crash. However, Jones handed himself in later the same day, withTMZ reporting he was being
held at Bernalillo County Metropolitan Detention Center.

VEDSUM: UFC light heavyweight champion Jon Jones ran from a crash that hospitalised a pregnant
woman. Witnesses said he returned for ’a large handful of cash’ from the car. Albuquerque police
were seeking an arrest warrant for Jones on Monday. They said he would likely face a felony charge
of leaving the scene of an accident since the woman broke her arm in the crash. Jones handed himself
in later the same day.

FlowSUM: UFC light heavyweight champion Jon Jones ran from a crash that hospitalised a pregnant
woman. Witnesses said he came back to grab ’a large handful of cash’ from the car, witnesses told
police. The driver, whom an off-duty officer identified as Jones, ran from the scene but then returned
for the cash before fleeing again, police said. Officers found a pipe with marijuana in the vehicle as
well as MMA and rental car documents in Jones’ name, according to the police report.

Table 13: Example 4627 in the CNN/Daily Mail test set: FlowSUM > VEDSUM > BART.
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Original Text (truncated): ... An Icelandic duo has created a snack that is made using cricket
flour. Called the Jungle Bar it also contains dates, sesame seeds and chocolate. Cricket flour is
said to be a good source of protein and other nutrients. The duo hopes it will encourage people
in the West to eat more insects. The Jungle Bar is being developed by Icelandic duo Búi Bjarmar
Aðalsteinsson and Stefán Atli Thoroddsen through their company Crowbar Protein. On Kickstarter
they are seeking £10,000 ($15,000) for the insect-powered protein bar. They previously rose to fame
with their Fly Factory, a micro-factory that used larvae to create foods including chocolate cake
and pâté. Ingredients. Dates, sesame, sunflower and pumpkin seeds, chocolate and cricket flour.
Nutrition information. The bar is 50 grams (1.7 ounces), 200 calories, contains 8 grams of high
quality protein (16 per cent of the bar) and has a shelf life of 1 year. The duo say that insects are a
largely untapped source of nutrients in the Western world, and they hope their product could spark a
change in diet habits. To make the bar, the team has cricket flour sent in, from farm-raised crickets
that have been ground down. It is then mixed with the other ingredients to make the unusual bar.

Gold Summary: Icelandic duo has created a snack that is made using cricket flour. Called the Jungle
Bar it also contains dates, sesame seeds and chocolate. Cricket flour is said to be a good source of
protein and other nutrients. The duo hopes it will encourage people in the West to eat more insects.

BART: An Icelandic duo has created a snack that is made using cricket flour. Called the Jungle
Bar it also contains dates, sesame seeds and chocolate. Cricket flour is said to be a good source of
protein and other nutrients. The duo hopes it will encourage people in the West to eat more insects.
On Kickstarter they are seeking £10,000 ($15,000) for the insect-powered bar.

VEDSUM: The Jungle Bar is being developed by Icelandic duo Búi Bjarmar Aðalsteinsson and
Stefán Atli Thoroddsen through their company Crowbar Protein. Cricket flour is said to be a good
source of protein and other nutrients. The duo hopes it will encourage people in the West to eat more
insects. To make the bar, the team has cricket flour sent in, from farm-raised crickets that have been
ground down.

FlowSUM: An Icelandic duo has created a snack that is made using cricket flour. Called the Jungle
Bar it also contains dates, sesame seeds and chocolate. The Jungle Bar is being developed by Búi
Bjarmar Aðalsteinsson and Stefán Atli Thoroddsen through their company Crowbar Protein. On
Kickstarter they are seeking £10,000 ($15,000) for the insect-powered protein bar. They previously
rose to fame with their Fly Factory, a micro-factory that used larvae to create foods including
chocolate cake and pâté.

Table 14: Example 4120 in the CNN/Daily Mail test set: BART > VEDSUM > FlowSUM.
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Original Text (truncated): The Office for National Statistics said industrial output fell 0.7%
compared with January, when it dropped 0.3%. Unexpectedly warm weather drove the change,
because it led to a fall in electricity and gas demand, the ONS said. Construction output fell by
1.7% in February, down from a revised January reading of zero growth. The construction figure,
the biggest drop in nearly a year, was mainly the result of a 2.6% fall in the housebuilding sector.
Meanwhile, the UK’s deficit in goods and services widened to Â£3.7bn in February, from a revised
figure of Â£3bn in January. According to the ONS, the deficit was fuelled by what it called "erratic
items", such as imports of gold and aircraft. "The overall trade deficit worsened, but excluding
erratic items, the picture improved, as imports fell more than exports," said ONS senior statistician
Kate Davies. Howard Archer, chief UK and European economist at IHS Markit, called the figures "a
disappointing package of data for the UK economy which fuels suspicion that GDP growth slowed
markedly, largely due to consumers becoming more cautious". He added: "We suspect UK GDP
growth in the first quarter of 2017 slowed to 0.4% quarter-on-quarter from 0.7% quarter-on-quarter
in the fourth quarter of 2016 - this would be the weakest growth rate since the first quarter of 2016."

Gold Summary: Activity in the UK’s industrial and construction sectors shrank in February, new
figures show.

BART: UK industrial output fell for the second month in a row in February, official figures have
shown.

VEDSUM: Industrial output in the UK fell for the second month in a row in February, official figures
have shown.

FlowSUM: Activity in the UK’s industrial and construction sectors shrank in February, according to
official figures.

Table 15: Example 2924 in the XSum test set: FlowSUM > BART > VEDSUM.
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Original Text (truncated): In December, the government announced finalised plans for a cull,
initially in pilot areas, as a way to curb the spread of tuberculosis in cattle. In applying for judicial
review, the Badger Trust says culling will not stop TB and may in fact help spread it. Other campaign
groups are considering action under the Bern Convention, which protects European wildlife. The
government’s plans are likely to result in farmers funding contractors to shoot badgers in a number of
areas of England, with two initial pilots in west Gloucestershire and west Somerset taking place later
this year. "We have identified some serious flaws in the way by which the Secretary of State [Caroline
Spelman] reached her decision to cull badgers," said Gwendolen Morgan of Bindmans solicitors,
lawyer for the Badger Trust. "Given that Defra’s proposals come at an enormous cost to farmers, and
threaten to prompt rather than prevent the spread of disease, we hope that this ill-conceived decision
will be struck down by the court." She pointed to government projections that culling would reduce
TB incidence by 12-16% over nine years.

Gold Summary: The Badger Trust has launched a new legal challenge to the government’s plans to
cull badgers in England.

BART: The Badger Trust has launched a legal challenge to the government’s plans to cull badgers in
England.

VEDSUM: The Badger Trust is taking legal action against the Department for Environment, Food
and Rural Affairs (Defra) over plans to cull badgers in England.

FlowSUM: The Badger Trust has launched a legal challenge to the UK government’s plans to cull
badgers in England and Wales.

Table 16: Example 5737 in the XSum test set: BART > FlowSUM > VEDSUM.
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Original Text (truncated): The response from many in that time has been: "Let’s get on with it."
That view was shared by the First Minister Carwyn Jones until recently when he altered his opinion
and said that we should only start the official Brexit negotiations in the early part of next year. My
sense is that the public will be flexible on the timing up to a point, as long as they are given a clear
sense of direction. The majority of the political establishment have had to come to terms with the
fact that most people ignored their advice to remain. So much for being in touch with the electorate.
In conversations with politicians on the remain side since, I have come across a mix of bewilderment,
frustration and sadness. And while people like me spend a lot of time talking and writing about
a Welsh political dynamic, on this subject at least, Wales was a carbon copy of England. In stark
contrast, those that supported leaving feel vindicated by their campaign, and now believe they are
the ones in touch with vast swathes of the population. The referendum result was a devastating
indictment of the effectiveness of the billions of pounds of EU funds spent trying to regenerate
economically deprived communities. The brutal reality is that those who were most likely to vote to
leave lived in communities where most EU money had been spent. It is an extraordinary paradox
that raised eyebrows far further afield than Wales.

Gold Summary: It has been a month since Wales voted to leave the European Union.

BART: It has been more than a year since the UK voted to leave the European Union.

VEDSUM: It has been a year since the EU referendum result, and in that time I have spent a great
deal of time talking to politicians on both sides of the political spectrum about what they think about
Brexit.

FlowSUM: Since the referendum result on 23 June, I have spent a lot of time talking about the
implications for Wales and the Welsh political establishment.

Table 17: Example 9512 in the XSum test set: BART > VEDSUM > FlowSUM.
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