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With the emergence of advanced spatial transcriptomic technologies, there has been a surge in research papers 
dedicated to analyzing spatial transcriptomics data, resulting in significant contributions to our understanding 
of biology. The initial stage of downstream analysis of spatial transcriptomic data has centered on identifying 
spatially variable genes (SVGs) or genes expressed with specific spatial patterns across the tissue. SVG detection 
is an important task since many downstream analyses depend on these selected SVGs. Over the past few years, a 
plethora of new methods have been proposed for the detection of SVGs, accompanied by numerous innovative 
concepts and discussions. This article provides a selective review of methods and their practical implementations, 
offering valuable insights into the current literature in this field.
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 Introduction

Recent advancements in Spatially-resolved transcriptomics (SRT) 
chnology have provided comprehensive gene expression data for 
ousands of genes across multiple samples or spatial spots, accompa-
ed by their respective spatial coordinates across a tissue which refers 
 a collection of cells that are organized in a specific manner and per-
rm a particular function or set of functions within an organism. It 
 a complex and dynamic landscape where the spatial arrangement 
 cells is integral to understanding gene expression patterns and their 
plications for health and disease. Depending on the specific technol-
y utilized, a sample could represent a single cell (as in the case of 
ARmap technology), a cell-sized local region (as with HDST tech-
logy [1]), or a localized region comprising dozens of cells (as seen 
 Slide-seq [2,3] and Visium technologies). The latest SRT platforms, 
ch as 10x Genomics Visium and Slide-seqV2, encompass thousands of 
atial locations within each tissue sample, with future developments 
ised to achieve even higher resolutions. As technology progresses, 
e demand for more robust statistical frameworks to effectively ana-
ze spatial data intensifies.
Although spatial transcriptomic (ST) data permit addressing a range 

 distinct questions, a fundamental initial step in the downstream 
alysis of spatial data is the identification of spatially variable genes 
VGs). These are genes that exhibit variations in expression levels ei-
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ther across the entire tissue or within predefined spatial domains. These 
genes can potentially unveil tissue heterogeneity and the underlying 
structural factors that drive distinct expression patterns across spatial 
locations, thus offering valuable insights into biology.

Numerous methods have been developed for the identification of 
SVGs. These methods encompass a spectrum of approaches, includ-
ing the utilization of standard spatial statistics measures like Moran’s 
I statistic [4] and Geary’s C statistic [5] to rank genes based on their 
spatial autocorrelation. More advanced methods employ model-based 
approaches such as SpatialDE [6], SpatialDE2 [7], SPARK and its ex-
tensions [8], nnSVG [9], BOOST-GP [10], marked point process frame-
works like Trendsceek [11] and scGCO [12], or model-free frameworks 
like sepal [13] and GLISS [14]. Additionally, there are toolboxes, such 
as MERINGUE [15], Giotto [16], Seurat [17], Squidpy [18] that inte-
grate some of these methods into comprehensive end-to-end analysis 
frameworks.

Downstream analysis involving SVGs encompasses various tasks, 
such as spatial clustering, deciphering spatial domains, and identifying 
spatial domain-specific SVGs. Additionally, there are numerous other 
downstream analyses that leverage additional information like scR-
NASeq data, histological images, and more, for tasks such as spatial 
decomposition of spots, gene imputation, the inference of cell-cell and 
gene-gene interactions and spatial location reconstruction for scRNA-
seq data. However, this review primarily concentrates on SVG detection 
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Table 1

A selective list of methods for SVG detection in ST data analysis categorized based on required 
input data type and the implemented computational framework.
Method Input data type Computational framework Data model

SpatialDE2 [7] Count model-based Poisson

SPARK [8] Count model-based Overdispersed Poisson

BOOST-GP [10] Count model-based Zero-inflated negative binomial

CTSV [27] Count model-based Zero-inflated negative binomial

GPcounts [21] Count model-based Negative binomial

SPARK-X [19] Count model-free -

SINFONIA [20] Count Model-free -

HEARTSVG [28] Count Model-free -

SpatialDE [6] Normalized model-based Multivariate Normal

SPARK-G [8] Normalized model-based Multivariate Normal

nnSVG [9] Normalized model-based Multivariate Normal

SOMDE [26] Normalized model-based Multivariate Normal

BOOST-MI [23] Normalized model-based Modified Ising model

Trendsceek [11] Normalized model-based Marked point process

scGCO [12] Normalized model-based Marked point process

sepal [13] Normalized Model-free -

GLISS [14] Normalized Model-free -

MULTILAYER [29] Normalized Model-free -

BSP [34] Normalized Model-free -
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ameworks and does not delve into these other downstream analy-
s.

Thus, it is the primary focus of this paper to discuss selected frame-
orks for SVG identification, serving as a valuable resource for re-
archers new to this field, enabling them to become acquainted with 
isting SVG identification frameworks, their unique characteristics, 
velty, as well as their pros and cons.

 Overview of the frameworks for detecting SVGs

Generally, in a spatial transcriptomics setup, the available spatial 
taset contains gene expression measures/counts for 𝑚 genes dis-
ibuted across 𝑁 known spatial coordinates or spots. This section 
tablishes the key symbols that will be frequently utilized. Specifically, 
= (𝑦1, 𝑦2, ..., 𝑦𝑁 ) is defined as the gene expression profiles/counts for a 
ven gene across spatial coordinates (referred to as samples or spots), 
noted by 𝑠 = (𝑠1, ..., 𝑠𝑁 ). The coordinates of the spatial locations are 
pically two-dimensional, i.e., 𝑠𝑖 = (𝑠𝑖1, 𝑠𝑖2), but any dimensional coor-
nates can be employed. The primary objective of these SVG detection 
odels is to ascertain which genes, out of the 𝑚 genes, are spatially 
riable across the tissue. In other words, the main goal is to determine 
hether the gene expression measure 𝑦 depends on or relates to the 
atial locations where the gene expression measures are collected.
Here, we classify SVG detection methods based on two primary cate-
ries: (1) based on input data type and (2) based on the computational 
amework. The initial categorization focuses on input data type, rep-
senting the foundational step in SVG detection. Therefore, we first 
scuss the input data pre-processing step in Section 2.1. Subsequently, 
ctions 2.2 and 2.3 delve into the detailed exploration of model-based 
d model-free approaches, respectively, aligning with the later cat-
orization based on the computational framework. Table 1 is then 
esented in this sequential order to reflect the dual categorization pro-
ss.

1. Gene expression data and pre-processing step

The gene expression measure 𝑦 is generally of count data type (orig-
ated from sequence based or image based technology). Various SVG 
tection models have been developed to specifically use count data 
 input following some mandatory filtering and quality control steps. 
me examples of these models include SPARK-X [19], BOOST-GP [10], 
NFONIA [20], and GPcounts [21]. The gene expression count data of-
n exhibit over-dispersion and contain numerous zero values, mainly 
e to the technology employed for data generation or simply because 
any genes are poorly expressed for biological reasons. These partic-
884

ar issues in count data are generally taken care of by using negative va
nomial models which handle over-dispersion well. For the issue of 
ro-inflation, Zhao et al., 2022 [22] showed that modeling zero infla-
n is not necessary in spatial transcriptomics, thus is not a concern in 
any method development. On the other hand, some methods, for ex-
ple SpatialDE [6], nnSVG [9], and BOOST-MI [23], use normalized 
ne expression data as input in the framework for easy implementa-
n, where in most of cases, the data is modeled using multivariate 
rmal distribution after transformation. Authors in SPARK [8] pro-
sed two different data models, SPARK and SPARK-G which uses 
unt data and normalized data, respectively. The data normalization 
ethod is not unique for these methods. The normalization step gen-
ally removes the bias due to differences in sequencing depth using 
ze factors and normalizes the data using log transformation (log10 or 
g2 transformations after adding a pseudo-count value 𝑐, preferably 
. The method sepal [13] uses a slightly different normalization proce-
re which involves mapping the log-transformed values to the interval 
, 1] and using a pseudocount 2. Other normalization methods, such 
 scran, scuttle, and scater R/Bioconductor packages [24,25], can also 
 applied. Table 1 provides information on some selective methods to-
ther with their required input data type and the implemented model.

2. Overview of model-based frameworks

2.1. Gaussian process (GP) regression based and similar models
The majority of the methods, including some of the state-of-the-art 

gorithms to detect SVG, are based on Gaussian process (GP) regression 
odels. For example, one of the first published SVG detection methods, 
atialDE [6], models the normalized gene expression 𝑦 for a given 
ne using the following multivariate normal model:

𝑦|𝜇,𝜎2
𝑠
, 𝛿,𝐾) ∼𝑁(𝑦|𝜇1, 𝜎2

𝑠
𝐾 + 𝛿𝐼), (1)

here the covariance term is decomposed into a spatial and a non-
atial part, where 𝛿𝐼 represents the non-spatial part and 𝜎2

𝑠
𝐾 is the 

atial covariance matrix, whose (𝑖, 𝑗)𝑡ℎ element in the kernel matrix 
denotes the spatial similarity between the 𝑖𝑡ℎ and 𝑗𝑡ℎ spot calculated 
sed on the corresponding coordinates 𝑠𝑖 and 𝑠𝑗 . The choice of the 
rnel function plays a very important role in detecting the spatial cor-
lation present in the gene expressions. More discussion about kernel 
nction is provided in the next subsection.
Other methods like SPARK-G [8] (the Gaussian version of SPARK), 
SVG [9], and SOMDE [26] implement similar GP models for model-
g normalized gene expression data with some extra features or added 
vel of complexity. SPARK-G and nnSVG provide the option to include 
tra covariate terms in the model. The covariates or the explanatory 

riables could contain batch information, cell-cycle information, or 
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Table 2

List of some popular SVG detection methods with model-fitting and testing information.
Method Bayesian/

Frequentist

Model fitting and parameter estimation Hypothesis testing method

SpatialDE Frequentist Maximizing marginal log likelihood Likelihood ratio test
SpatialDE2 Frequentist Only null model parameters needs to be 

estimated by BLUP
Score test based on Zhang and Lin [32]

SPARK Frequentist Approximate-inference algorithm based 
on the PQL approach

Satterthwaite method on the basis of 
score statistics

SPARK-G Frequentist Maximum likelihood Score test
nnSVG Frequentist Fast optimization algorithms for NNGP 

models (BRISC R package)
Likelihood ratio test

SOMDE Frequentist Gradient optimization Likelihood ratio test
CTSV Frequentist Approx. maximum likelihood using 

conjugate gradient (CG) algorithm
Wald tests (R package pscl)

GPcounts Frequentist Optimization of log marginal likelihood 
by variational approximation

Likelihood ratio test

BOOST-GP Bayesian Sampling from posterior using MCMC Bayes Factor or posterior probabilities 
of inclusion (PPI)
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her information that is important to adjust for during the analysis. 
MDE is a two-step procedure. This approach involves first utilizing 
self-organizing map to cluster neighboring cells into nodes. Subse-
ently, it employs a Gaussian process to model and analyze the spatial 
ne expression patterns at the node level.
Table 1 shows that methods like SPARK [8], SpatialDE2 [7], BOOST-

P [10], CTSV [27], and GPcounts [21] model count data directly. 
ARK models the count data using an overdispersed Poisson model 
here the logarithm of the unknown Poisson rate parameter is assumed 
 follow a stationary Gaussian process with similar spatial and non-
atial covariance components. BOOST-GP presents a novel Bayesian 
erarchical model to analyze spatial transcriptomic data, which mod-
s the count data using a zero-inflated negative binomial (ZINB) model. 
e logarithm of the normalized expression level, which is included in 
e expectation term in NB, can be seen as a GP with a spatial covari-
ce term representing the spatial variability in case there is a spatial 
ttern. GPcounts also uses negative binomial distribution to model the 
MI (Unique Molecular Identifier) data. SpatialDE2 employs a General-
ed Linear Mixed Model (GLMM) for count data modeling. In contrast 
 GP-based techniques that typically separate covariance into a spa-
l and a non-spatial component, SpatialDE2 dissects the covariance 
to several spatial components along with a non-spatial random com-
nent. CTSV implements a slightly different technique and does not 
e the GP model. In CTSV, the gene specific, spot specific and cell-type 
ecific relative mean expression level in the ZINB model is a linear 
mbination of ℎ1(𝑠.1) and ℎ2(𝑠.2) where the functions ℎ1(⋅) and ℎ2(⋅)
presents the underlying true spatial effect modeled with the kernel 
nction in GP model.

2.2. Statistical inference and selecting kernel function in GP-based 
ameworks

Typically, when evaluating the existence of spatial patterns within 
e data, an assessment is made by testing the alternative hypothesis, 
hich suggests the presence of a spatial covariance term in the model, 
ainst the null hypothesis, where the spatial covariance term is set to 
ro, indicating the absence of spatial variability. This comparison be-
een the model fitted under the alternative hypothesis and the null 
odel forms the basis of a significance testing procedure. This often in-
lves conducting significance tests and drawing conclusions based on 
values in frequentist approaches. For example, in model (1), testing 
G is equivalent to testing 𝐻0 ∶ 𝜎2𝑠 = 0.
As previously mentioned, selecting the appropriate kernel function 
r computing the spatial covariance matrix is a critically important 
ep in identifying spatial patterns within the data. Ideally, the kernel 
nction should accurately capture the true underlying relationship be-
885

een the 𝑦 values and the spatial coordinates 𝑠. In practice, the actual [2
derlying function remains unknown, and the closer the chosen ker-
l function approximates the true functional form, the more precise 
e model specification becomes, rendering the test more robust and 
werful.

SpatialDE employs a squared exponential covariance function (a.k.a. 
aussian kernel function or radial basis kernel function) to compute the 
atial covariance matrix:

𝐾𝑖,𝑗 = 𝑘(𝑠𝑖, 𝑠𝑗 ) = 𝑒𝑥𝑝(− |𝑠𝑖−𝑠𝑗 |2

2𝑙2 )

e hyperparameter 𝑙, recognized as the characteristic length scale or 
ndwidth, determines how rapidly the covariance decays as a func-
n of distance and is typically chosen by grid search. SOMDE also 
es the squared exponential (Gaussian) kernel in their model with ten 
fferent length scales and chooses the one that achieves the highest log-
elihood ratio value. GPcounts uses linear or periodic kernel based 
 BIC values. SPARK asserts that relying on a single kernel restricts 
e ability to robustly identify spatially variable genes across diverse 
atial patterns. Therefore, SPARK (and SPARK-G) adopts an approach 
volving a total of ten distinct spatial kernels. These comprise five 
riodic kernels (e.g., Cosine kernels) with varying periodicity param-
ers and five Gaussian kernels with different smoothness parameters. 
ARK proceeds to compute ten p-values, each derived from a different 
st employing these various kernel functions. These p-values are subse-
ently combined using the Cauchy combination rule [30,31]. Similar 
 SPARK, SpatialDE2 incorporates a variety of pre-defined kernels with 
rying structures and length scales. It also offers the flexibility to con-
ct an omnibus test as an alternative to independently testing each 
rnel and subsequently merging the p-values. nnSVG posits that genes 
n potentially display a vast spectrum of spatial patterns, and using the 
me set of kernel functions for all of the genes might lead to less pow-
ful tests. They consider the use of an exponential covariance function 
 a kernel function where the length scale parameter of the kernel func-
n is fitted for each gene, which allows capturing the unique spatial 
riability pattern of the gene. CTSV uses five different sets of functional 
rms for ℎ1(𝑠.1) and ℎ2(𝑠.2), which includes linear functions, squared 
ponential functions, and periodic functions with different sets of scal-
g parameters and the five p-values calculated from five different forms 
e combined using the Cauchy combination method.
Although different models discussed here have some similarities in 
sting procedures, the model fitting techniques implemented and the 
sting procedures utilized are different and are summarized in Table 2.
The statistical power of GP-based methods hinges on the selection 

 kernel functions [8], which can complicate the model selection and 
it SVG detection power. To address this challenge, the authors in 

3] introduced BOOST-MI. This novel approach employs Bayesian 
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odeling of spatial transcriptomics data via a modified Ising model 
 identify SV genes. As an initial step, BOOST-MI takes normalized 
ne expression data as input and dichotomizes the normalized ex-
ession levels into a binary spatial pattern. Subsequently, BOOST-MI 
oceeds to identify a wide spectrum of spatial patterns displayed by 
e genes by inferring the Ising model interaction parameter within a 
yesian framework. It achieves this by generating samples from the 
sterior distribution of the parameters through a double Metropolis-
astings (DMH) algorithm [33]. Subsequently, it computes the Bayes 
ctor based on these posterior samples, which are then used for select-
g SV genes.
Trendsceek [11], one of the earliest published SVG detection meth-
s, models data as marked point processes, where they assign points to 
present the spatial locations of spots and marks on each point to rep-
sent expression levels. The pivotal objective of Trendsceek revolves 
ound evaluating the dependency between the spatial distribution of 
ints and their respective marks through pairwise analyses as a func-
n of the inter-point distances. The underlying premise is that if there 
ists no dependency between marks and point locations, the resulting 
ores should remain constant across various distances. A resampling 
ocedure is executed to gauge the significance of a gene’s spatial ex-
ession pattern, involving permutations of expression values that cre-
e a null model with no spatial expression dependency.
Similar to Trendsceek, ScGCO [12] (single-cell graph cuts optimiza-
n) method also models gene expression data as a marked point pro-
ss where points represent the spatial locations of measured cells or 
ots, and marks are discrete gene expression states (such as, down-
gulated or up-regulated) associated with points. It analyzes the de-
ndency of points with a specific mark on spatial locations using a 
pothesis test. Under the null hypothesis (i.e., no spatial dependency), 
assumes that points with a specific mark in a 2D space are distributed 
 a completely random fashion and can be described by a homoge-
ous spatial Poisson process. Genes with spatial regions whose number 
 cells/spots of specific marks are associated with statistically signifi-
nt low probabilities under the null model are selected as SVG.

3. Overview of model-free frameworks

There are other SVG detection methods such as SPARK-X [19], sepal 
3], GLISS [14], and SINFONIA [20] which do not attempt to model 
e data generation process or rely on distributional assumptions. In-
ead, they use model-free techniques to detect SVGs. The authors in-
oduced sepal [13] (Spatial Expression Pattern Locator), an innovative 
ethod that leverages transcript diffusion simulations to identify genes 
hibiting spatial patterns. It simulates transcript diffusion within the 
atial domain and measures the time required for convergence. The 
re idea is that transcripts with random spatial distributions will con-
rge more quickly or reach a homogeneous state faster compared to 
ose with distinct spatial patterns. Consequently, the diffusion time 
rves as an indicator of a gene’s degree of spatial variability. Genes 
ith longer diffusion times exhibit less spatial randomness. Therefore, 
nking genes based on this indicator and selecting the top-ranked genes 
 SVGs is a logical approach.
SINFONIA [20] offers a scalable approach to initially identify spa-
lly variable genes through ensemble strategies as part of its spatial 
anscriptomic data analysis, with the ultimate goal of deciphering spa-
l domains. SINFONIA initially identifies the 𝑘 nearest neighbors in 
clidean space for each spot and builds a Spatial Neighbor Graph 
NG) using the weight matrix where the (𝑖, 𝑗)th element is determined 
 a function of the distance between the 𝑖th and 𝑗th spot. Next, SIN-
NIA calculates Moran’s I and Geary’s C statistics for each gene based 
 the weight matrix 𝑊 to assess spatial autocorrelation. The underly-
g concept is that genes with more pronounced spatial autocorrelation 
hibit more organized spatial expression patterns.
HEARTSVG [28] utilizes a unique, distribution-free, test-based ap-
886

oach that focuses on identifying non-SVGs first and then infers the fo
Computational and Structural Biotechnology Journal 23 (2024) 883–891

esence of SVGs using this information. The process involves assessing 
rial autocorrelations within the marginal expressions across the global 
atial context to pinpoint non-SVGs. This, in turn, enables the auto-
atic recognition of all other genes as SVGs, regardless of their spatial 
tterns. HEARTSVG asserts its superiority in terms of robustness and 
mputational efficiency by abstaining from assumptions about specific 
derlying spatial patterns for these variable genes.
SPARK-X [19] is a nonparametric method grounded in the following 
sight: if 𝑦 is independent of 𝑠, then the spatial distance between two 
cations 𝑖 and 𝑗 would also be unrelated to the gene-expression dif-
rence between those two locations. SPARK-X constructs two 𝑁 ×𝑁

ojection covariance matrices: (1) The expression covariance matrix 
sed on gene expression levels; and (2) the distance covariance matrix 
sed on all spatial locations. It employs a test statistic derived from 
e product of these two covariance matrices to evaluate the indepen-
nce between the gene expression (𝑦) and the spatial coordinates (𝑠). 
 simpler terms, if gene expressions are indeed independent of spatial 
ordinates, the product of these covariance matrices will yield a small 
lue. Conversely, if gene expressions are dependent on the spatial co-
dinates, the product of the matrices will yield a large value.
Similar to the kernel matrix used in methods like SpatialDE or 
ARK, the statistical power of the SPARK-X test inevitably hinges 
 how the distance covariance matrix is constructed and how well 
aligns with the true underlying spatial patterns exhibited by the gene 
 interest. To ensure robust identification of spatially varying genes 
ross diverse spatial expression patterns, SPARK-X explores various 
ansformations of the spatial coordinates (𝑠) and subsequently gen-
ates distinct distance covariance matrices. Specifically, the algorithm 
plies five Gaussian transformations with varying smoothness param-
ers and five cosine transformations to the spatial coordinates (𝑠). This 
ocess results in the creation of eleven distinct p-values, corresponding 
 the ten transformed distance covariance matrices and the original one 
nstructed using the original coordinates. These individual p-values 
e then combined using the Cauchy combination method.
MULTILAYER [29] treats spatially transcriptomics data as a raster 
age and uses digital image strategies to resolve tissue substructures. 
e basic unit in MULTILAYER is the “gexel”, gene expression element 
alogous to a pixel in a digital image. The gene expression levels per 
xel relative to the average gene expression are computed within the 
sue. Genes are considered upregulated or downregulated when their 
rmalized read counts per gene are above or below the average be-
vior, respectively. Differentially expressed genes are ranked based 
 the number of related gexels, providing a rapid view of genes that 
e overrepresented on the digital map based on their relative expres-
on.

GLISS [14] (Graph Laplacian-based Integrative Single-cell Spatial 
nalysis) utilizes a graph-based feature learning framework to detect 
d discover SVGs and recover cell locations in scRNA-seq data by 
veraging spatial transcriptomic and scRNA-seq data. The workflow in-
lves multiple steps. First, SV genes are identified from ST data using 
aph-based feature selection. Next, it determines the cells of interest in 
e scRNA-seq data based on unsupervised learning methods and lever-
e these selected SVGs to discover new SVGs in scRNA-seq data. The 
al goal of this workflow is to cluster genes based on their spatial pat-
rns.

The BSP (Big-Small Patch) [34] method, introduced in a recent 
blication, utilizes a non-parametric model for the identification of 
atially variable genes in 2D or 3D spatial transcriptomics data. The 
proach involves taking normalized spatial transcriptomics data as in-
t. It defines big and small patches for each spatial spot based on 
ighboring spots with larger or smaller radii, respectively. The method 
en calculates local means of gene expression for both big and small 
tches. Following this, it calculates the ratio between the variances of 
cal means for each gene, approximating a log-normal distribution for 
e distribution of these ratios. Subsequently, a p-value is determined 

r each gene based on this approximated distribution.
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Table 3

Compilation of SVG detection techniques Grouped by the method’s control of False Discov-
ery Rate (FDR).
Method If framework analytically 

controls FDR
How SVGs are selected

Trendsceek Yes Permutation based p-values, Benjamini–Hochberg 
procedure [36] for MC

SpatialDE Yes Analytically estimated p-values, q-value method 
[37] for MC

SpatialDE2 Yes Analytically estimated p-values, 
Benjamini–Yekutieli procedure [38] for MC

SPARK Yes Analytically estimated p-values, 
Benjamini–Yekutieli procedure for MC

SPARK-G Yes same as SPARK
SPARK-X Yes same as SPARK
nnSVG Yes Analytical approximate p-values, 

Benjamini–Hochberg method for MC
BOOST-GP Yes Based on Bayesian FDR controlled PPI threshold
GLISS Yes Permutation based p-values, Benjamini–Hochberg 

procedure for MC
scGCO Yes Analytically estimated p-values, 

Benjamini–Hochberg procedure for MC
CTSV Yes Analytically estimated p-values, q-value method 

for MC
HEARTSVG Yes Analytically estimated p-values, MC by 

Bonferroni/Holm/Hochberg

GPcounts Yes Analytical or permuted p-values, q-value method 
for MC

BSP yes Analytically estimated p-values, q-value method 
[37] for MC

SOMDE No Top ranked genes based on spatial variability 
score

sepal No Top 𝑘 genes with highest ranks
SINFONIA No Top 𝑘 genes with highest score and an ensemble 

technique

BOOST-MI No Based on specific Bayes Factor threshold
MULTILAYER No Based on the two-fold threshold of a test statistic
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 Statistical inference with multiple testing control

We have previously discussed both model-based and model-free 
ethods for detecting SVGs. The mathematical models employed for 
pturing the data generation process and the innovative model-free 
G detection technique have proven valuable for uncovering sig-
ficant SVGs that offer critical biological insights. However, from a 
atistical perspective, concerns arise regarding the potential for false 
scoveries of genes that lack genuine spatial variability. This concern 
comes more pronounced when a large number of genes are simul-
neously tested across most frameworks. If the false discovery rate or 
pe 1 error is not adequately controlled, it may lead to incorrect con-
usions and the selection of numerous genes that exhibit false spatial 
riability.

Various methods have been developed for multiplicity correction 
C) to address this concern. Some methods analytically constrain the 
lse discovery rate (FDR) to remain below a predetermined threshold, 
hile others do not analytically control the FDR and simply select a 
er-specified number of top genes as SVGs. Researchers may choose 
method that aligns better with their research goals and the type of 
wnstream analysis they intend to perform. In Table 3, we present an 
erview of these methods, organized around these critical questions. 
e permutation-based method is usually considered as the golden stan-
rd method as it is purely data-driven and distribution free. However, 
is the least scalable one since it is computationally more demanding. 
e FDR-based methods have been the commonly applied ones since 
ey offer type I error control while maintaining high power compared 
 the Bonferroni method. Nevertheless, depending on the downstream 
887

alysis goal, it is not necessary to strictly enforce the MC rule. For in
ample, when the goal is to find the low dimensional embedding of 
nes, such as in spatial PCA analysis [35] people usually choose top 
nked genes for further analysis. In such cases, strictly enforcing MC is 
t needed.

 Exploring performance, advantages, and limitations

In the preceding sections, we have explored the complexities asso-
ated with spatial count data. In many instances, these count data are 
aracterized by sparsity and overdispersion. Section 2 of this review 
assifies modeling frameworks based on whether they directly model 
e count data or opt for modeling the normalized data. Some litera-
res [19,10] argue against modeling normalized data with a Gaussian 
stribution due to concerns that such a parametric approximation may 
sult in reduced statistical power and difficulties in controlling type 1 
rors, especially when dealing with small p-values.
On the other hand, methods that employ normalized count data, 
ch as SpatialDE, SPARK-G, and nnSVG, offer advantages, including 
mpler model structures and reduced computational challenges. No-
bly, SPARK employs a dual modeling approach, encompassing both an 
erdispersed Poisson model (SPARK) and a Gaussian model (SPARK-G) 
r count data analysis. They declare that SPARK-G exhibits signifi-
ntly improved computational efficiency compared to the Poisson ver-
on of SPARK. Moreover, SPARK-G may demonstrate greater resilience 
 model misspecification, potentially enhancing its effectiveness in spe-
fic data applications.
Although many researchers prefer to model count data directly, 
ere is no consensus on the preferred approach for directly model-

g count data either. While some opt for Poisson distribution models, 
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hers argue that it may be insufficient to address issues of overdisper-
on, suggesting that a negative binomial distribution is more suitable 
 such cases. Furthermore, when data exhibit extreme sparsity, the uti-
ation of a zero-inflated Poisson or negative binomial model may be 
ore logical, although it tends to introduce greater complexity into the 
odel. But we need to note that direct modeling of sparse count data 
ith a negative binomial distribution or other over-dispersed Poisson 
stributions incurs algorithm stability issues [19,39,21].
With the continuous evolution of spatial transcriptomic technolo-
es, researchers now have access to increasingly vast and high-
solution spatial datasets. Analyzing these extensive datasets demands 
e use of efficient and scalable methods for downstream analysis. No-
bly, approaches like Trendsceek and BOOST-GP impose substantial 
mputational demands. In a study referenced from SRTsim [40], it was 
served that when applying these methods to synthetic data, Trend-
eek (v.1.0.0) required approximately 10 hours, while BOOST-GP 
eded about 8 hours to analyze a single synthetic dataset containing 
00 genes and 673 locations. In the same research context, SOMDE 
.0.1.8) struggled, failing to process nearly 90 percent of the genes 
d yielding NA values.
Another comprehensive comparison, outlined in a review paper 
1], assessed the performance of various SVG detection methods. The 
aluation considered computational time and memory usage across 20 
verse spatial datasets, each varying in the number of spots or samples. 
mong the methods examined, including SpatialDE, SPARK-X, nnSVG, 
MDE, Giotto KM, and Giotto Rank (both are implemented in the 
iotto package), SPARK-X emerged as the swiftest, with SOMDE fol-
wing as the second-best option, albeit notably slower than SPARK-X. 
atialDE exhibited poorer performance in larger datasets, while nnSVG 
oved faster than SpatialDE for larger datasets but relatively slower for 
tasets with fewer spatial locations. In particular, SPARK-X [19] scales 
early with the number of spatial locations, while other methods scale 
bically (e.g., SpatialDE) or quadratically (SpatialDE2, SPARK).
In terms of peak memory usage, study [41] revealed that SOMDE 
nsumed the least memory, with SPARK-X ranking second. Conversely, 
atialDE demonstrated high peak memory consumption. Considering 
e trade-off between speed and memory usage, SPARK-X and SOMDE 
erged as the two most efficient methods, as determined by the ex-
riment. Furthermore, the evaluation included other methods such as 
iotto KM, Giotto Rank, and Moran’s I, but none of these alternatives 
atched the efficiency of SPARK-X or SOMDE based on the experimen-
l findings.
In summary, each modeling framework comes with its own set of 
os and cons, necessitating careful consideration of the trade-off be-
een computational efficiency/cost and performance when selecting 
e most suitable approach for analyzing spatial count data. The model-
ee or nonparametric approaches do not try to capture the data genera-
n process and offer alternative frameworks to detect SVG. Most of the 
ethod frameworks are very intuitive but each comes with its own sets 
 restrictions or assumptions. For example, Trendsceek is a resampling-
sed method, which incurs a substantial computational load, rendering 
 application impractical for extensive ST datasets. SPARK-X exhibits 
pressive performance for high dimensional data, but the authors rec-
mend using it with large sample (e.g., spot) size, say 3,000 or more.

 Assessing input data and model outputs

For the various methodologies we reviewed so far, some of these 
proaches primarily focus on identifying genes that exhibit spatial 
riability across the entire tissue, exemplified by methods like Spa-
lDE and SPARK. In contrast, others are additionally equipped to 
tect genes with spatial variability within predefined spatial domains, 
 seen in nnSVG. Other methods like SpaGCN [42] and STAMarker 
3] are designed to identify Spatial domains and detect SVGs within 
888

atial domains. SV
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Additionally, certain methods aim to identify SVGs to facilitate 
wnstream analysis. For instance, SINFONIA, as cited in this work, 
ovides a scalable approach for the initial identification of spatially 
riable genes using ensemble strategies within the context of spatial 
anscriptomic data analysis. The ultimate objective of this method is to 
cipher distinct spatial domains within the tissue.
Furthermore, some of these methods leverage additional informa-
n as input, such as single-cell RNA sequencing (scRNA-seq) data, 
atial domain information, or tissue-specific markers, in conjunction 
ith spatial transcriptomic data. For instance, CTSV requires scRNA-seq 
ta and a set of marker genes as input alongside the spatial transcrip-
mic data. It employs deconvolution techniques like SPOTlight [44], 
TD [45], or SpatialDWLS [46] to estimate cell-type proportions for 
ch spatial spot. Ultimately, this approach identifies spatially variable 
nes specific to different cell types. Similarly, Trendsceek identifies 
nes with significant spatial trends and subsequently determines the 
bset of cells occupying spatial regions of interest.
Given the distinct ultimate objectives and input criteria for each 
ethod, it would be unfair to evaluate their performance solely based 
 a single parameter. Rather, the utility or superiority of these frame-
orks depends on the researcher’s specific goals and the nature of their 
search inquiries. In this context, we present a table that combines 
ese selective frameworks, including details about their typical inputs 
d primary research objectives (see Table 4).

 Publicly accessible code for major SVG detection methods

Every prominent SVG detection method featured in this paper has 
ade its code publicly available. Certain frameworks have packages 
blished in CRAN or available as Python modules, while others have 
ared their code on Github, and the package can be installed directly 
om Github. Here, we have compiled a list of the packages and reposi-
ries associated with these techniques, along with the coding language 
ey have used (see Table 5). This compilation aims to facilitate con-
nient access to their respective code bases, making it easier for re-
archers to choose a method based on their preferred programming 
nguage.

 Summary and outlook

We systematically reviewed recently developed frameworks for 
entifying spatially variable genes and grouped them into different 
tegories and delved into the unique aspects of their models and un-
rlying principles. Here, we provide a brief discussion encompassing 
rious facets, including pre-processing steps, modeling frameworks, 
ference techniques, scalability, and practical applicability of these 
ameworks. We explored the performance of select methods as re-
rted in previously published papers. Nevertheless, it is essential to 
te that we refrained from conducting evaluations based solely on the 
mber of SVGs detected or the trade-off between statistical power and 
R. This decision arises from the fact that the methods discussed in 
is paper often serve different research objectives, each tailored to 
ecific research questions. For example, a method primarily focused 
 spatial clustering may yield similar outcomes when considering the 
p 100 genes versus the top 110 genes. In contrast, a method geared 
ward accurately identifying genuine SVGs and scrutinizing individual 
Gs to glean deeper insights into biological mechanisms may prioritize 
ringent control of false discovery rates, making it a pivotal concern in 
eir evaluation. The evaluation criteria must align with the unique 
als and nuances of each method, akin to comparing apples to oranges 
hen attempting to gauge their performance solely based on the num-
r of SVGs selected.
This paper [41] has previously investigated several methods for 
tecting spatial gene expression variations and benchmarked their per-
rmance based on different measures. It reported that, although each 

G detection method successfully identifies a significant number of 
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Table 4

List of selective methods with input data type and main goal.
Method (publication) Input data Main goal
SpatialDE (2018) ST data Finding SVG

Spatial gene-clustering
SpatialDE2 (Archived, 2021) ST data Tissue region segmentation

Finding SVG
Spatial gene-clustering

SPARK (2020) ST data Finding SVG
SPARK-X (2021) ST data Finding SVG
nnSVG (2023) ST data Finding SVGs across tissue or within 

spatial domains
BOOST-GP (2021) ST data Finding SVG
SOMDE (2021) ST data Finding SVG
sepal (2021) ST data Finding SVG

Spatial gene-clustering
SINFONIA (2023) ST data Finding SVG for deciphering spatial 

domains

BOOST-MI (2022) ST data Finding SVG
scGCO (2022) ST data Finding SVG
BSP ST data Finding SVG
HEARTSVG (Archived, 2023) ST data Detecting SVG and spatial domain
MULTILAYER (2021) ST data Detecting SVG, dimensionality 

reduction, spatial clustering and more
STAMarker (Archived, 2022) ST data Spatial domain-specific variable genes
GPcounts (2021) ST data

scRNA-seq data
Finding SVG, identifying gene-specific 
branching locations and more

SpaGCN (2021) ST data
histology image data

Identifying spatial domains and SVG 
in domain

Trendsceek (2018) ST data
scRNA-Seq data

Finding SVG
Identifying cells in spatially 
significant gene expression regions

GLISS (Archived, 2020) ST data
scRNA-seq data

Finding SVG, recovering cell locations 
in scRNA-seq data and gene-clustering

CTSV (2022) ST data
scRNA-seq

set of marker genes

Detecting cell-type-specific SVG

Table 5

List of methods with implementing code language and package site.
Method Code language Package or GitHub or vignette

SpatialDE Python https://github.com/Teichlab/SpatialDE

SpatialDE2 Python https://github.com/PMBio/SpatialDE

SOMDE Python https://pypi.org/project/somde

https://github.com/XuegongLab/somde

sepal Python https://github.com/almaan/sepal

10.5281/zenodo.4573237

GLISS Python https://github.com/junjiezhujason/gliss

SINFONIA Python https://github.com/BioX-NKU/SINFONIA

ScGCO Python https://github.com/WangPeng-Lab/scGCO

MULTILAYER Python https://github.com/SysFate/MULTILAYER

GPcounts Python https://github.com/ManchesterBioinference/GPcounts

BSP Python https://github.com/juexinwang/BSP/

Trendsceek R https://github.com/edsgard/trendsceek

SPARK R https://github.com/xzhoulab/SPARK

SPARK-G https://xzhoulab.github.io/SPARK/01_about/

SPARK-X

nnSVG R https://bioconductor.org/packages/release/bioc/html/nnSVG.html

https://github.com/lmweber/nnSVG

BOOST-MI R https://github.com/Xijiang1997/BOOST-MI

CTSV R https://bioconductor.org/packages/devel/bioc/html/CTSV.html

HEARTSVG R https://github.com/cz0316/HEARTSVG.git
889

BOOST-GP R/C++ https://github.com/Minzhe/BOOST-GP

https://github.com/Teichlab/SpatialDE
https://github.com/PMBio/SpatialDE
https://pypi.org/project/somde
https://github.com/XuegongLab/somde
https://github.com/almaan/sepal
https://doi.org/10.5281/zenodo.4573237
https://github.com/junjiezhujason/gliss
https://github.com/BioX-NKU/SINFONIA
https://github.com/WangPeng-Lab/scGCO
https://github.com/SysFate/MULTILAYER
https://github.com/ManchesterBioinference/GPcounts
https://github.com/juexinwang/BSP/
https://github.com/edsgard/trendsceek
https://github.com/xzhoulab/SPARK
https://xzhoulab.github.io/SPARK/01_about/
https://bioconductor.org/packages/release/bioc/html/nnSVG.html
https://github.com/lmweber/nnSVG
https://github.com/Xijiang1997/BOOST-MI
https://bioconductor.org/packages/devel/bioc/html/CTSV.html
https://github.com/cz0316/HEARTSVG.git
https://github.com/Minzhe/BOOST-GP
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Gs, there is limited overlap in the SVGs detected when a significance 
toff is applied to filter the SVGs. The study’s simulation analysis re-
aled that, in most cases, the estimated FDRs do not accurately reflect 
e true FDRs. These findings indicate that there is room for improve-
ent in the commonly used methods for SVG detection and their asso-
ated FDR control approaches.
In the context of Gaussian process based methods, one potential is-
e could be related to the selection of kernel function. For instance, 
 an improvement to spatialDE, approaches like SPARK and SPARK-X 
ploy a variety of different kernels to robustly identify various traits. 
owever, they apply the same set of parameter values to all genes, even 
hen these genes may exhibit vastly different spatial patterns. While 
SVG offers improvements by allowing gene-specific kernel function 
rameter selection, it relies on a single type of kernel function. This 
ens room for further methodological development for optimal kernel 
lection when kernel-based methods are applied for SVG detection.
Furthermore, model-free techniques, in many cases, do not analyti-
lly control FDR, making it challenging to establish a specific cutoff for 
lecting SVGs. Many methods claim to detect more SVGs than others, 
ten undetected by alternative methods. However, the mere detection 
 more SVGs does not necessarily indicate the superiority of a frame-
ork if it does not effectively control the FDR. If the goal is to pinpoint 
e top 𝑘 (say 1000) SVGs for subsequent analysis without the neces-
ty of precisely quantifying detection uncertainty, these methods can 
 employed. However, for a more rigorous approach, it is crucial to im-
ement stringent FDR control measures to prevent false discoveries. In 
r empirical analysis, we observed that numerous methods exhibit ele-
ted false positive rates with inflated p-values (data not shown). There 
 an urgent demand for the development of more rigorous statistical 
proaches to enhance false positive control.
Model-based SVG detection techniques frequently incorporate co-
riate variables, such as cell type information or domain structure 
formation, into the model. However, the unavailability of this in-
rmation alongside spatial transcriptomics data poses a challenge. It 
mains unclear how to obtain covariate information without utiliz-
g the same data twice—once for identifying covariates and again for 
tecting SVG. Addressing this issue represents an ongoing challenge 
ithin the framework of SVG detection techniques. Hopefully, future 
ethods will be developed to effectively bridge this gap.
Finally, we acknowledge that benchmarking existing methods is 
sential to determine their efficiency in terms of scalability and accu-
te selection of SVGs. This is crucial for ensuring proper downstream 
alysis. To address this need, we present a foundational outline of 
benchmarking design. For data generation, they can be simulated 
rough methods such as SRTsim [40] and scDesign3 [47]. Both meth-
s are capable of simulating datasets that emulate the structure of a 
al spatial dataset by learning their parameters. SRTsim offers a ShinyR 
atform where spatial patterns can be visualized, and parameters can 
 configured to generate count data for spatially variable gene ex-
ession. Diverse datasets containing both spatial and non-spatial genes 
n be simulated, with various spatial effect strengths, sparsity levels, 
stinct spatial patterns. scDesign3 is another model-based simulation 
achinery where users can use real data to estimate parameters which 
low for a wide range of simulation scenarios, from homogeneous cell 
pulations to complex tissues with diverse cell types. Benchmarking 
volves assessing the performance of implemented methods by check-
g their power and false discovery rate (FDR) in detecting SVGs, their 
alability, as well as the impact on specific downstream analysis such 
 spatial domain detection.
In summary, we have provided a selective survey of recently pub-
hed and archived literature on SVG detection, offering an analysis 
 their practical utility, adaptability, innovation, and constraints from 
rious practical perspectives. This effort aims to facilitate new re-
archers in gaining a holistic understanding of the available methods 
d assist them in selecting a framework aligned with their specific re-
890

arch needs and questions.
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