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With the emergence of advanced spatial transcriptomic technologies, there has been a surge in research papers
dedicated to analyzing spatial transcriptomics data, resulting in significant contributions to our understanding
of biology. The initial stage of downstream analysis of spatial transcriptomic data has centered on identifying
spatially variable genes (SVGs) or genes expressed with specific spatial patterns across the tissue. SVG detection
is an important task since many downstream analyses depend on these selected SVGs. Over the past few years, a

plethora of new methods have been proposed for the detection of SVGs, accompanied by numerous innovative
concepts and discussions. This article provides a selective review of methods and their practical implementations,
offering valuable insights into the current literature in this field.

1. Introduction

Recent advancements in Spatially-resolved transcriptomics (SRT)
technology have provided comprehensive gene expression data for
thousands of genes across multiple samples or spatial spots, accompa-
nied by their respective spatial coordinates across a tissue which refers
to a collection of cells that are organized in a specific manner and per-
form a particular function or set of functions within an organism. It
is a complex and dynamic landscape where the spatial arrangement
of cells is integral to understanding gene expression patterns and their
implications for health and disease. Depending on the specific technol-
ogy utilized, a sample could represent a single cell (as in the case of
STARmap technology), a cell-sized local region (as with HDST tech-
nology [11), or a localized region comprising dozens of cells (as seen
in Slide-seq [2,3] and Visium technologies). The latest SRT platforms,
such as 10x Genomics Visium and Slide-seqV2, encompass thousands of
spatial locations within each tissue sample, with future developments
poised to achieve even higher resolutions. As technology progresses,
the demand for more robust statistical frameworks to effectively ana-
lyze spatial data intensifies.

Although spatial transcriptomic (ST) data permit addressing a range
of distinct questions, a fundamental initial step in the downstream
analysis of spatial data is the identification of spatially variable genes
(SVGs). These are genes that exhibit variations in expression levels ei-
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ther across the entire tissue or within predefined spatial domains. These
genes can potentially unveil tissue heterogeneity and the underlying
structural factors that drive distinct expression patterns across spatial
locations, thus offering valuable insights into biology.

Numerous methods have been developed for the identification of
SVGs. These methods encompass a spectrum of approaches, includ-
ing the utilization of standard spatial statistics measures like Moran’s
I statistic [4] and Geary’s C statistic [5] to rank genes based on their
spatial autocorrelation. More advanced methods employ model-based
approaches such as SpatialDE [6], SpatialDE2 [7], SPARK and its ex-
tensions [8], nnSVG [9], BOOST-GP [10], marked point process frame-
works like Trendsceek [11] and scGCO [12], or model-free frameworks
like sepal [13] and GLISS [14]. Additionally, there are toolboxes, such
as MERINGUE [15], Giotto [16], Seurat [17], Squidpy [18] that inte-
grate some of these methods into comprehensive end-to-end analysis
frameworks.

Downstream analysis involving SVGs encompasses various tasks,
such as spatial clustering, deciphering spatial domains, and identifying
spatial domain-specific SVGs. Additionally, there are numerous other
downstream analyses that leverage additional information like scR-
NASeq data, histological images, and more, for tasks such as spatial
decomposition of spots, gene imputation, the inference of cell-cell and
gene-gene interactions and spatial location reconstruction for scRNA-
seq data. However, this review primarily concentrates on SVG detection
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A selective list of methods for SVG detection in ST data analysis categorized based on required
input data type and the implemented computational framework.

Method Input data type Computational framework Data model
SpatialDE2 [7] Count model-based Poisson
SPARK [8] Count model-based Overdispersed Poisson
BOOST-GP [10] Count model-based Zero-inflated negative binomial
CTSV [27] Count model-based Zero-inflated negative binomial
GPcounts [21] Count model-based Negative binomial
SPARK-X [19] Count model-free -
SINFONIA [20] Count Model-free
HEARTSVG [28] Count Model-free

B gpeﬁiaTDE [g] T 7 7 Normalized = model-based | Multivariate Normal
SPARK-G [8] Normalized model-based Multivariate Normal
nnSVG [9] Normalized model-based Multivariate Normal
SOMDE [26] Normalized model-based Multivariate Normal
BOOST-MI [23] Normalized model-based Modified Ising model
Trendsceek [11] Normalized model-based Marked point process
scGCO [12] Normalized model-based Marked point process
sepal [13] Normalized Model-free
GLISS [14] Normalized Model-free
MULTILAYER [29] Normalized Model-free
BSP [34] Normalized Model-free

frameworks and does not delve into these other downstream analy-
ses.

Thus, it is the primary focus of this paper to discuss selected frame-
works for SVG identification, serving as a valuable resource for re-
searchers new to this field, enabling them to become acquainted with
existing SVG identification frameworks, their unique characteristics,
novelty, as well as their pros and cons.

2. Overview of the frameworks for detecting SVGs

Generally, in a spatial transcriptomics setup, the available spatial
dataset contains gene expression measures/counts for m genes dis-
tributed across N known spatial coordinates or spots. This section
establishes the key symbols that will be frequently utilized. Specifically,
y=(¥1,¥s,....yy) is defined as the gene expression profiles/counts for a
given gene across spatial coordinates (referred to as samples or spots),
denoted by s = (sy,....s5). The coordinates of the spatial locations are
typically two-dimensional, i.e., s; = (s;1, 5;5), but any dimensional coor-
dinates can be employed. The primary objective of these SVG detection
models is to ascertain which genes, out of the m genes, are spatially
variable across the tissue. In other words, the main goal is to determine
whether the gene expression measure y depends on or relates to the
spatial locations where the gene expression measures are collected.

Here, we classify SVG detection methods based on two primary cate-
gories: (1) based on input data type and (2) based on the computational
framework. The initial categorization focuses on input data type, rep-
resenting the foundational step in SVG detection. Therefore, we first
discuss the input data pre-processing step in Section 2.1. Subsequently,
Sections 2.2 and 2.3 delve into the detailed exploration of model-based
and model-free approaches, respectively, aligning with the later cat-
egorization based on the computational framework. Table 1 is then
presented in this sequential order to reflect the dual categorization pro-
cess.

2.1. Gene expression data and pre-processing step

The gene expression measure y is generally of count data type (orig-
inated from sequence based or image based technology). Various SVG
detection models have been developed to specifically use count data
as input following some mandatory filtering and quality control steps.
Some examples of these models include SPARK-X [19], BOOST-GP [10],
SINFONIA [20], and GPcounts [21]. The gene expression count data of-
ten exhibit over-dispersion and contain numerous zero values, mainly
due to the technology employed for data generation or simply because
many genes are poorly expressed for biological reasons. These partic-
ular issues in count data are generally taken care of by using negative
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binomial models which handle over-dispersion well. For the issue of
zero-inflation, Zhao et al., 2022 [22] showed that modeling zero infla-
tion is not necessary in spatial transcriptomics, thus is not a concern in
many method development. On the other hand, some methods, for ex-
ample SpatialDE [6], nnSVG [9], and BOOST-MI [23], use normalized
gene expression data as input in the framework for easy implementa-
tion, where in most of cases, the data is modeled using multivariate
normal distribution after transformation. Authors in SPARK [8] pro-
posed two different data models, SPARK and SPARK-G which uses
count data and normalized data, respectively. The data normalization
method is not unique for these methods. The normalization step gen-
erally removes the bias due to differences in sequencing depth using
size factors and normalizes the data using log transformation (log10 or
log2 transformations after adding a pseudo-count value ¢, preferably
1). The method sepal [13] uses a slightly different normalization proce-
dure which involves mapping the log-transformed values to the interval
[0,1] and using a pseudocount 2. Other normalization methods, such
as scran, scuttle, and scater R/Bioconductor packages [24,25], can also
be applied. Table 1 provides information on some selective methods to-
gether with their required input data type and the implemented model.

2.2. Overview of model-based frameworks

2.2.1. Gaussian process (GP) regression based and similar models

The majority of the methods, including some of the state-of-the-art
algorithms to detect SVG, are based on Gaussian process (GP) regression
models. For example, one of the first published SVG detection methods,
SpatialDE [6], models the normalized gene expression y for a given
gene using the following multivariate normal model:

p(lu,6%,8,K) ~ N(ylul, 6K +681), )

where the covariance term is decomposed into a spatial and a non-
spatial part, where 61 represents the non-spatial part and USZK is the
spatial covariance matrix, whose (i, )" element in the kernel matrix
K denotes the spatial similarity between the i"" and j** spot calculated
based on the corresponding coordinates s; and s;. The choice of the
kernel function plays a very important role in detecting the spatial cor-
relation present in the gene expressions. More discussion about kernel
function is provided in the next subsection.

Other methods like SPARK-G [8] (the Gaussian version of SPARK),
nnSVG [9], and SOMDE [26] implement similar GP models for model-
ing normalized gene expression data with some extra features or added
level of complexity. SPARK-G and nnSVG provide the option to include
extra covariate terms in the model. The covariates or the explanatory
variables could contain batch information, cell-cycle information, or
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List of some popular SVG detection methods with model-fitting and testing information.

Method Bayesian/ Model fitting and parameter estimation Hypothesis testing method
Frequentist

SpatialDE Frequentist Maximizing marginal log likelihood Likelihood ratio test

SpatialDE2 Frequentist Only null model parameters needs to be Score test based on Zhang and Lin [32]
estimated by BLUP

SPARK Frequentist Approximate-inference algorithm based Satterthwaite method on the basis of
on the PQL approach score statistics

SPARK-G Frequentist Maximum likelihood Score test

nnSVG Frequentist Fast optimization algorithms for NNGP Likelihood ratio test
models (BRISC R package)

SOMDE Frequentist Gradient optimization Likelihood ratio test

CTSV Frequentist Approx. maximum likelihood using Wald tests (R package pscl)
conjugate gradient (CG) algorithm

GPcounts Frequentist Optimization of log marginal likelihood Likelihood ratio test
by variational approximation

BOOST-GP Bayesian Sampling from posterior using MCMC Bayes Factor or posterior probabilities

of inclusion (PPI)

other information that is important to adjust for during the analysis.
SOMDE is a two-step procedure. This approach involves first utilizing
a self-organizing map to cluster neighboring cells into nodes. Subse-
quently, it employs a Gaussian process to model and analyze the spatial
gene expression patterns at the node level.

Table 1 shows that methods like SPARK [8], SpatialDE2 [7], BOOST-
GP [10], CTSV [27], and GPcounts [21] model count data directly.
SPARK models the count data using an overdispersed Poisson model
where the logarithm of the unknown Poisson rate parameter is assumed
to follow a stationary Gaussian process with similar spatial and non-
spatial covariance components. BOOST-GP presents a novel Bayesian
hierarchical model to analyze spatial transcriptomic data, which mod-
els the count data using a zero-inflated negative binomial (ZINB) model.
The logarithm of the normalized expression level, which is included in
the expectation term in NB, can be seen as a GP with a spatial covari-
ance term representing the spatial variability in case there is a spatial
pattern. GPcounts also uses negative binomial distribution to model the
UMI (Unique Molecular Identifier) data. SpatialDE2 employs a General-
ized Linear Mixed Model (GLMM) for count data modeling. In contrast
to GP-based techniques that typically separate covariance into a spa-
tial and a non-spatial component, SpatialDE2 dissects the covariance
into several spatial components along with a non-spatial random com-
ponent. CTSV implements a slightly different technique and does not
use the GP model. In CTSV, the gene specific, spot specific and cell-type
specific relative mean expression level in the ZINB model is a linear
combination of /;(s ;) and h,(s,) where the functions A;(-) and h,(:)
represents the underlying true spatial effect modeled with the kernel
function in GP model.

2.2.2. Statistical inference and selecting kernel function in GP-based
frameworks

Typically, when evaluating the existence of spatial patterns within
the data, an assessment is made by testing the alternative hypothesis,
which suggests the presence of a spatial covariance term in the model,
against the null hypothesis, where the spatial covariance term is set to
zero, indicating the absence of spatial variability. This comparison be-
tween the model fitted under the alternative hypothesis and the null
model forms the basis of a significance testing procedure. This often in-
volves conducting significance tests and drawing conclusions based on
p-values in frequentist approaches. For example, in model (1), testing
SVG is equivalent to testing H, : af =0.

As previously mentioned, selecting the appropriate kernel function
for computing the spatial covariance matrix is a critically important
step in identifying spatial patterns within the data. Ideally, the kernel
function should accurately capture the true underlying relationship be-
tween the y values and the spatial coordinates s. In practice, the actual
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underlying function remains unknown, and the closer the chosen ker-
nel function approximates the true functional form, the more precise
the model specification becomes, rendering the test more robust and
powerful.

SpatialDE employs a squared exponential covariance function (a.k.a.
Gaussian kernel function or radial basis kernel function) to compute the
spatial covariance matrix:

|5[—Sj |2
212

K,vvj =k(s,~,sj)=exp(— )

The hyperparameter /, recognized as the characteristic length scale or
bandwidth, determines how rapidly the covariance decays as a func-
tion of distance and is typically chosen by grid search. SOMDE also
uses the squared exponential (Gaussian) kernel in their model with ten
different length scales and chooses the one that achieves the highest log-
likelihood ratio value. GPcounts uses linear or periodic kernel based
on BIC values. SPARK asserts that relying on a single kernel restricts
the ability to robustly identify spatially variable genes across diverse
spatial patterns. Therefore, SPARK (and SPARK-G) adopts an approach
involving a total of ten distinct spatial kernels. These comprise five
periodic kernels (e.g., Cosine kernels) with varying periodicity param-
eters and five Gaussian kernels with different smoothness parameters.
SPARK proceeds to compute ten p-values, each derived from a different
test employing these various kernel functions. These p-values are subse-
quently combined using the Cauchy combination rule [30,31]. Similar
to SPARK, SpatialDE2 incorporates a variety of pre-defined kernels with
varying structures and length scales. It also offers the flexibility to con-
duct an omnibus test as an alternative to independently testing each
kernel and subsequently merging the p-values. nnSVG posits that genes
can potentially display a vast spectrum of spatial patterns, and using the
same set of kernel functions for all of the genes might lead to less pow-
erful tests. They consider the use of an exponential covariance function
as a kernel function where the length scale parameter of the kernel func-
tion is fitted for each gene, which allows capturing the unique spatial
variability pattern of the gene. CTSV uses five different sets of functional
forms for h;(s ;) and h,(s,), which includes linear functions, squared
exponential functions, and periodic functions with different sets of scal-
ing parameters and the five p-values calculated from five different forms
are combined using the Cauchy combination method.

Although different models discussed here have some similarities in
testing procedures, the model fitting techniques implemented and the
testing procedures utilized are different and are summarized in Table 2.

The statistical power of GP-based methods hinges on the selection
of kernel functions [8], which can complicate the model selection and
limit SVG detection power. To address this challenge, the authors in
[23] introduced BOOST-MI. This novel approach employs Bayesian
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modeling of spatial transcriptomics data via a modified Ising model
to identify SV genes. As an initial step, BOOST-MI takes normalized
gene expression data as input and dichotomizes the normalized ex-
pression levels into a binary spatial pattern. Subsequently, BOOST-MI
proceeds to identify a wide spectrum of spatial patterns displayed by
the genes by inferring the Ising model interaction parameter within a
Bayesian framework. It achieves this by generating samples from the
posterior distribution of the parameters through a double Metropolis-
Hastings (DMH) algorithm [33]. Subsequently, it computes the Bayes
factor based on these posterior samples, which are then used for select-
ing SV genes.

Trendsceek [11], one of the earliest published SVG detection meth-
ods, models data as marked point processes, where they assign points to
represent the spatial locations of spots and marks on each point to rep-
resent expression levels. The pivotal objective of Trendsceek revolves
around evaluating the dependency between the spatial distribution of
points and their respective marks through pairwise analyses as a func-
tion of the inter-point distances. The underlying premise is that if there
exists no dependency between marks and point locations, the resulting
scores should remain constant across various distances. A resampling
procedure is executed to gauge the significance of a gene’s spatial ex-
pression pattern, involving permutations of expression values that cre-
ate a null model with no spatial expression dependency.

Similar to Trendsceek, ScGCO [12] (single-cell graph cuts optimiza-
tion) method also models gene expression data as a marked point pro-
cess where points represent the spatial locations of measured cells or
spots, and marks are discrete gene expression states (such as, down-
regulated or up-regulated) associated with points. It analyzes the de-
pendency of points with a specific mark on spatial locations using a
hypothesis test. Under the null hypothesis (i.e., no spatial dependency),
it assumes that points with a specific mark in a 2D space are distributed
in a completely random fashion and can be described by a homoge-
neous spatial Poisson process. Genes with spatial regions whose number
of cells/spots of specific marks are associated with statistically signifi-
cant low probabilities under the null model are selected as SVG.

2.3. Overview of model-free frameworks

There are other SVG detection methods such as SPARK-X [19], sepal
[13], GLISS [14], and SINFONIA [20] which do not attempt to model
the data generation process or rely on distributional assumptions. In-
stead, they use model-free techniques to detect SVGs. The authors in-
troduced sepal [13] (Spatial Expression Pattern Locator), an innovative
method that leverages transcript diffusion simulations to identify genes
exhibiting spatial patterns. It simulates transcript diffusion within the
spatial domain and measures the time required for convergence. The
core idea is that transcripts with random spatial distributions will con-
verge more quickly or reach a homogeneous state faster compared to
those with distinct spatial patterns. Consequently, the diffusion time
serves as an indicator of a gene’s degree of spatial variability. Genes
with longer diffusion times exhibit less spatial randomness. Therefore,
ranking genes based on this indicator and selecting the top-ranked genes
as SVGs is a logical approach.

SINFONIA [20] offers a scalable approach to initially identify spa-
tially variable genes through ensemble strategies as part of its spatial
transcriptomic data analysis, with the ultimate goal of deciphering spa-
tial domains. SINFONIA initially identifies the k nearest neighbors in
Euclidean space for each spot and builds a Spatial Neighbor Graph
(SNG) using the weight matrix where the (i, j)th element is determined
by a function of the distance between the ith and jth spot. Next, SIN-
FONIA calculates Moran’s I and Geary’s C statistics for each gene based
on the weight matrix W to assess spatial autocorrelation. The underly-
ing concept is that genes with more pronounced spatial autocorrelation
exhibit more organized spatial expression patterns.

HEARTSVG [28] utilizes a unique, distribution-free, test-based ap-
proach that focuses on identifying non-SVGs first and then infers the
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presence of SVGs using this information. The process involves assessing
serial autocorrelations within the marginal expressions across the global
spatial context to pinpoint non-SVGs. This, in turn, enables the auto-
matic recognition of all other genes as SVGs, regardless of their spatial
patterns. HEARTSVG asserts its superiority in terms of robustness and
computational efficiency by abstaining from assumptions about specific
underlying spatial patterns for these variable genes.

SPARK-X [19] is a nonparametric method grounded in the following
insight: if y is independent of s, then the spatial distance between two
locations i and j would also be unrelated to the gene-expression dif-
ference between those two locations. SPARK-X constructs two N X N
projection covariance matrices: (1) The expression covariance matrix
based on gene expression levels; and (2) the distance covariance matrix
based on all spatial locations. It employs a test statistic derived from
the product of these two covariance matrices to evaluate the indepen-
dence between the gene expression (y) and the spatial coordinates (s).
In simpler terms, if gene expressions are indeed independent of spatial
coordinates, the product of these covariance matrices will yield a small
value. Conversely, if gene expressions are dependent on the spatial co-
ordinates, the product of the matrices will yield a large value.

Similar to the kernel matrix used in methods like SpatialDE or
SPARK, the statistical power of the SPARK-X test inevitably hinges
on how the distance covariance matrix is constructed and how well
it aligns with the true underlying spatial patterns exhibited by the gene
of interest. To ensure robust identification of spatially varying genes
across diverse spatial expression patterns, SPARK-X explores various
transformations of the spatial coordinates (s) and subsequently gen-
erates distinct distance covariance matrices. Specifically, the algorithm
applies five Gaussian transformations with varying smoothness param-
eters and five cosine transformations to the spatial coordinates (s). This
process results in the creation of eleven distinct p-values, corresponding
to the ten transformed distance covariance matrices and the original one
constructed using the original coordinates. These individual p-values
are then combined using the Cauchy combination method.

MULTILAYER [29] treats spatially transcriptomics data as a raster
image and uses digital image strategies to resolve tissue substructures.
The basic unit in MULTILAYER is the “gexel”, gene expression element
analogous to a pixel in a digital image. The gene expression levels per
gexel relative to the average gene expression are computed within the
tissue. Genes are considered upregulated or downregulated when their
normalized read counts per gene are above or below the average be-
havior, respectively. Differentially expressed genes are ranked based
on the number of related gexels, providing a rapid view of genes that
are overrepresented on the digital map based on their relative expres-
sion.

GLISS [14] (Graph Laplacian-based Integrative Single-cell Spatial
Analysis) utilizes a graph-based feature learning framework to detect
and discover SVGs and recover cell locations in scRNA-seq data by
leveraging spatial transcriptomic and scRNA-seq data. The workflow in-
volves multiple steps. First, SV genes are identified from ST data using
graph-based feature selection. Next, it determines the cells of interest in
the scRNA-seq data based on unsupervised learning methods and lever-
age these selected SVGs to discover new SVGs in scRNA-seq data. The
final goal of this workflow is to cluster genes based on their spatial pat-
terns.

The BSP (Big-Small Patch) [34] method, introduced in a recent
publication, utilizes a non-parametric model for the identification of
spatially variable genes in 2D or 3D spatial transcriptomics data. The
approach involves taking normalized spatial transcriptomics data as in-
put. It defines big and small patches for each spatial spot based on
neighboring spots with larger or smaller radii, respectively. The method
then calculates local means of gene expression for both big and small
patches. Following this, it calculates the ratio between the variances of
local means for each gene, approximating a log-normal distribution for
the distribution of these ratios. Subsequently, a p-value is determined
for each gene based on this approximated distribution.
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Compilation of SVG detection techniques Grouped by the method’s control of False Discov-

ery Rate (FDR).

Method If framework analytically How SVGs are selected
controls FDR

Trendsceek Yes Permutation based p-values, Benjamini-Hochberg
procedure [36] for MC

SpatialDE Yes Analytically estimated p-values, g-value method
[37] for MC

SpatialDE2 Yes Analytically estimated p-values,
Benjamini-Yekutieli procedure [38] for MC

SPARK Yes Analytically estimated p-values,
Benjamini-Yekutieli procedure for MC

SPARK-G Yes same as SPARK

SPARK-X Yes same as SPARK

nnSVG Yes Analytical approximate p-values,
Benjamini-Hochberg method for MC

BOOST-GP Yes Based on Bayesian FDR controlled PPI threshold

GLISS Yes Permutation based p-values, Benjamini-Hochberg
procedure for MC

scGCO Yes Analytically estimated p-values,
Benjamini-Hochberg procedure for MC

CTSV Yes Analytically estimated p-values, g-value method
for MC

HEARTSVG Yes Analytically estimated p-values, MC by
Bonferroni/Holm/Hochberg

GPcounts Yes Analytical or permuted p-values, q-value method
for MC

BSP yes Analytically estimated p-values, g-value method
[37] for MC

SOMDE No Top ranked genes based on spatial variability
score

sepal No Top k genes with highest ranks

SINFONIA No Top k genes with highest score and an ensemble
technique

BOOST-MI No Based on specific Bayes Factor threshold

MULTILAYER  No Based on the two-fold threshold of a test statistic

3. Statistical inference with multiple testing control

We have previously discussed both model-based and model-free
methods for detecting SVGs. The mathematical models employed for
capturing the data generation process and the innovative model-free
SVG detection technique have proven valuable for uncovering sig-
nificant SVGs that offer critical biological insights. However, from a
statistical perspective, concerns arise regarding the potential for false
discoveries of genes that lack genuine spatial variability. This concern
becomes more pronounced when a large number of genes are simul-
taneously tested across most frameworks. If the false discovery rate or
type 1 error is not adequately controlled, it may lead to incorrect con-
clusions and the selection of numerous genes that exhibit false spatial
variability.

Various methods have been developed for multiplicity correction
(MC) to address this concern. Some methods analytically constrain the
false discovery rate (FDR) to remain below a predetermined threshold,
while others do not analytically control the FDR and simply select a
user-specified number of top genes as SVGs. Researchers may choose
a method that aligns better with their research goals and the type of
downstream analysis they intend to perform. In Table 3, we present an
overview of these methods, organized around these critical questions.
The permutation-based method is usually considered as the golden stan-
dard method as it is purely data-driven and distribution free. However,
it is the least scalable one since it is computationally more demanding.
The FDR-based methods have been the commonly applied ones since
they offer type I error control while maintaining high power compared
to the Bonferroni method. Nevertheless, depending on the downstream
analysis goal, it is not necessary to strictly enforce the MC rule. For
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example, when the goal is to find the low dimensional embedding of
genes, such as in spatial PCA analysis [35] people usually choose top
ranked genes for further analysis. In such cases, strictly enforcing MC is
not needed.

4. Exploring performance, advantages, and limitations

In the preceding sections, we have explored the complexities asso-
ciated with spatial count data. In many instances, these count data are
characterized by sparsity and overdispersion. Section 2 of this review
classifies modeling frameworks based on whether they directly model
the count data or opt for modeling the normalized data. Some litera-
tures [19,10] argue against modeling normalized data with a Gaussian
distribution due to concerns that such a parametric approximation may
result in reduced statistical power and difficulties in controlling type 1
errors, especially when dealing with small p-values.

On the other hand, methods that employ normalized count data,
such as SpatialDE, SPARK-G, and nnSVG, offer advantages, including
simpler model structures and reduced computational challenges. No-
tably, SPARK employs a dual modeling approach, encompassing both an
overdispersed Poisson model (SPARK) and a Gaussian model (SPARK-G)
for count data analysis. They declare that SPARK-G exhibits signifi-
cantly improved computational efficiency compared to the Poisson ver-
sion of SPARK. Moreover, SPARK-G may demonstrate greater resilience
to model misspecification, potentially enhancing its effectiveness in spe-
cific data applications.

Although many researchers prefer to model count data directly,
there is no consensus on the preferred approach for directly model-
ing count data either. While some opt for Poisson distribution models,
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others argue that it may be insufficient to address issues of overdisper-
sion, suggesting that a negative binomial distribution is more suitable
in such cases. Furthermore, when data exhibit extreme sparsity, the uti-
lization of a zero-inflated Poisson or negative binomial model may be
more logical, although it tends to introduce greater complexity into the
model. But we need to note that direct modeling of sparse count data
with a negative binomial distribution or other over-dispersed Poisson
distributions incurs algorithm stability issues [19,39,21].

With the continuous evolution of spatial transcriptomic technolo-
gies, researchers now have access to increasingly vast and high-
resolution spatial datasets. Analyzing these extensive datasets demands
the use of efficient and scalable methods for downstream analysis. No-
tably, approaches like Trendsceek and BOOST-GP impose substantial
computational demands. In a study referenced from SRTsim [40], it was
observed that when applying these methods to synthetic data, Trend-
sceek (v.1.0.0) required approximately 10 hours, while BOOST-GP
needed about 8 hours to analyze a single synthetic dataset containing
1000 genes and 673 locations. In the same research context, SOMDE
(v.0.1.8) struggled, failing to process nearly 90 percent of the genes
and yielding NA values.

Another comprehensive comparison, outlined in a review paper
[41], assessed the performance of various SVG detection methods. The
evaluation considered computational time and memory usage across 20
diverse spatial datasets, each varying in the number of spots or samples.
Among the methods examined, including SpatialDE, SPARK-X, nnSVG,
SOMDE, Giotto KM, and Giotto Rank (both are implemented in the
Giotto package), SPARK-X emerged as the swiftest, with SOMDE fol-
lowing as the second-best option, albeit notably slower than SPARK-X.
SpatialDE exhibited poorer performance in larger datasets, while nnSVG
proved faster than SpatialDE for larger datasets but relatively slower for
datasets with fewer spatial locations. In particular, SPARK-X [19] scales
linearly with the number of spatial locations, while other methods scale
cubically (e.g., SpatialDE) or quadratically (SpatialDE2, SPARK).

In terms of peak memory usage, study [41] revealed that SOMDE
consumed the least memory, with SPARK-X ranking second. Conversely,
SpatialDE demonstrated high peak memory consumption. Considering
the trade-off between speed and memory usage, SPARK-X and SOMDE
emerged as the two most efficient methods, as determined by the ex-
periment. Furthermore, the evaluation included other methods such as
Giotto KM, Giotto Rank, and Moran’s I, but none of these alternatives
matched the efficiency of SPARK-X or SOMDE based on the experimen-
tal findings.

In summary, each modeling framework comes with its own set of
pros and cons, necessitating careful consideration of the trade-off be-
tween computational efficiency/cost and performance when selecting
the most suitable approach for analyzing spatial count data. The model-
free or nonparametric approaches do not try to capture the data genera-
tion process and offer alternative frameworks to detect SVG. Most of the
method frameworks are very intuitive but each comes with its own sets
of restrictions or assumptions. For example, Trendsceek is a resampling-
based method, which incurs a substantial computational load, rendering
its application impractical for extensive ST datasets. SPARK-X exhibits
impressive performance for high dimensional data, but the authors rec-
ommend using it with large sample (e.g., spot) size, say 3,000 or more.

5. Assessing input data and model outputs

For the various methodologies we reviewed so far, some of these
approaches primarily focus on identifying genes that exhibit spatial
variability across the entire tissue, exemplified by methods like Spa-
tialDE and SPARK. In contrast, others are additionally equipped to
detect genes with spatial variability within predefined spatial domains,
as seen in nnSVG. Other methods like SpaGCN [42] and STAMarker
[43] are designed to identify Spatial domains and detect SVGs within
spatial domains.
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Additionally, certain methods aim to identify SVGs to facilitate
downstream analysis. For instance, SINFONIA, as cited in this work,
provides a scalable approach for the initial identification of spatially
variable genes using ensemble strategies within the context of spatial
transcriptomic data analysis. The ultimate objective of this method is to
decipher distinct spatial domains within the tissue.

Furthermore, some of these methods leverage additional informa-
tion as input, such as single-cell RNA sequencing (scRNA-seq) data,
spatial domain information, or tissue-specific markers, in conjunction
with spatial transcriptomic data. For instance, CTSV requires scRNA-seq
data and a set of marker genes as input alongside the spatial transcrip-
tomic data. It employs deconvolution techniques like SPOTlight [44],
RCTD [45], or SpatialDWLS [46] to estimate cell-type proportions for
each spatial spot. Ultimately, this approach identifies spatially variable
genes specific to different cell types. Similarly, Trendsceek identifies
genes with significant spatial trends and subsequently determines the
subset of cells occupying spatial regions of interest.

Given the distinct ultimate objectives and input criteria for each
method, it would be unfair to evaluate their performance solely based
on a single parameter. Rather, the utility or superiority of these frame-
works depends on the researcher’s specific goals and the nature of their
research inquiries. In this context, we present a table that combines
these selective frameworks, including details about their typical inputs
and primary research objectives (see Table 4).

6. Publicly accessible code for major SVG detection methods

Every prominent SVG detection method featured in this paper has
made its code publicly available. Certain frameworks have packages
published in CRAN or available as Python modules, while others have
shared their code on Github, and the package can be installed directly
from Github. Here, we have compiled a list of the packages and reposi-
tories associated with these techniques, along with the coding language
they have used (see Table 5). This compilation aims to facilitate con-
venient access to their respective code bases, making it easier for re-
searchers to choose a method based on their preferred programming
language.

7. Summary and outlook

We systematically reviewed recently developed frameworks for
identifying spatially variable genes and grouped them into different
categories and delved into the unique aspects of their models and un-
derlying principles. Here, we provide a brief discussion encompassing
various facets, including pre-processing steps, modeling frameworks,
inference techniques, scalability, and practical applicability of these
frameworks. We explored the performance of select methods as re-
ported in previously published papers. Nevertheless, it is essential to
note that we refrained from conducting evaluations based solely on the
number of SVGs detected or the trade-off between statistical power and
FDR. This decision arises from the fact that the methods discussed in
this paper often serve different research objectives, each tailored to
specific research questions. For example, a method primarily focused
on spatial clustering may yield similar outcomes when considering the
top 100 genes versus the top 110 genes. In contrast, a method geared
toward accurately identifying genuine SVGs and scrutinizing individual
SVGs to glean deeper insights into biological mechanisms may prioritize
stringent control of false discovery rates, making it a pivotal concern in
their evaluation. The evaluation criteria must align with the unique
goals and nuances of each method, akin to comparing apples to oranges
when attempting to gauge their performance solely based on the num-
ber of SVGs selected.

This paper [41] has previously investigated several methods for
detecting spatial gene expression variations and benchmarked their per-
formance based on different measures. It reported that, although each
SVG detection method successfully identifies a significant number of



S. Das Adhikari, J. Yang, J. Wang et al.

Computational and Structural Biotechnology Journal 23 (2024) 883-891

Table 4
List of selective methods with input data type and main goal.

Method (publication) Input data Main goal

SpatialDE (2018) ST data Finding SVG
Spatial gene-clustering

SpatialDE2 (Archived, 2021) ST data Tissue region segmentation
Finding SVG
Spatial gene-clustering

SPARK (2020) ST data Finding SVG

SPARK-X (2021) ST data Finding SVG

nnSVG (2023) ST data Finding SVGs across tissue or within
spatial domains

BOOST-GP (2021) ST data Finding SVG

SOMDE (2021) ST data Finding SVG

sepal (2021) ST data Finding SVG
Spatial gene-clustering

SINFONIA (2023) ST data Finding SVG for deciphering spatial
domains

BOOST-MI (2022) ST data Finding SVG

5¢GCO (2022) ST data Finding SVG

BSP ST data Finding SVG

HEARTSVG (Archived, 2023) ST data Detecting SVG and spatial domain

MULTILAYER (2021) ST data Detecting SVG, dimensionality
reduction, spatial clustering and more

STAMarker (Archived, 2022) ST data Spatial domain-specific variable genes

GPcounts (2021) ST data Finding SVG, identifying gene-specific

SpaGCN (2021)

Trendsceek (2018)

GLISS (Archived, 2020)

CTSV (2022)

scRNA-seq data branching locations and more

ST data Identifying spatial domains and SVG
histology image data in domain
ST data Finding SVG

scRNA-Seq data Identifying cells in spatially

significant gene expression regions

ST data Finding SVG, recovering cell locations
scRNA-seq data in scRNA-seq data and gene-clustering
ST data Detecting cell-type-specific SVG
scRNA-seq

set of marker genes

Table 5

List of methods with implementing code language and package site.

Method Code language  Package or GitHub or vignette

SpatialDE Python https://github.com/Teichlab/SpatialDE

SpatialDE2 Python https://github.com/PMBio/SpatialDE

SOMDE Python https://pypi.org/project/somde
https://github.com/XuegongLab/somde

sepal Python https://github.com/almaan/sepal
10.5281/zenodo.4573237

GLISS Python https://github.com/junjiezhujason/gliss

SINFONIA Python https://github.com/BioX-NKU/SINFONIA

ScGCO Python https://github.com/WangPeng-Lab/scGCO

MULTILAYER Python https://github.com/SysFate/MULTILAYER

GPcounts Python https://github.com/ManchesterBioinference/GPcounts

BSP Python https://github.com/juexinwang/BSP/

Trendsceek R https://github.com/edsgard/trendsceek

SPARK R https://github.com/xzhoulab/SPARK

SPARK-G https://xzhoulab.github.io/SPARK/01_about/

SPARK-X

nnSVG R https://bioconductor.org/packages/release/bioc/html/nnSVG.html
https://github.com/Imweber/nnSVG

BOOST-MI R https://github.com/Xijiang1997/BOOST-MI

CTSV R https://bioconductor.org/packages/devel/bioc/html/CTSV.html

HEARTSVG R https://github.com/cz0316/HEARTSVG.git

BOOST-GP R/C++ https://github.com/Minzhe/BOOST-GP
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SVGs, there is limited overlap in the SVGs detected when a significance
cutoff is applied to filter the SVGs. The study’s simulation analysis re-
vealed that, in most cases, the estimated FDRs do not accurately reflect
the true FDRs. These findings indicate that there is room for improve-
ment in the commonly used methods for SVG detection and their asso-
ciated FDR control approaches.

In the context of Gaussian process based methods, one potential is-
sue could be related to the selection of kernel function. For instance,
as an improvement to spatialDE, approaches like SPARK and SPARK-X
employ a variety of different kernels to robustly identify various traits.
However, they apply the same set of parameter values to all genes, even
when these genes may exhibit vastly different spatial patterns. While
nnSVG offers improvements by allowing gene-specific kernel function
parameter selection, it relies on a single type of kernel function. This
opens room for further methodological development for optimal kernel
selection when kernel-based methods are applied for SVG detection.

Furthermore, model-free techniques, in many cases, do not analyti-
cally control FDR, making it challenging to establish a specific cutoff for
selecting SVGs. Many methods claim to detect more SVGs than others,
often undetected by alternative methods. However, the mere detection
of more SVGs does not necessarily indicate the superiority of a frame-
work if it does not effectively control the FDR. If the goal is to pinpoint
the top k (say 1000) SVGs for subsequent analysis without the neces-
sity of precisely quantifying detection uncertainty, these methods can
be employed. However, for a more rigorous approach, it is crucial to im-
plement stringent FDR control measures to prevent false discoveries. In
our empirical analysis, we observed that numerous methods exhibit ele-
vated false positive rates with inflated p-values (data not shown). There
is an urgent demand for the development of more rigorous statistical
approaches to enhance false positive control.

Model-based SVG detection techniques frequently incorporate co-
variate variables, such as cell type information or domain structure
information, into the model. However, the unavailability of this in-
formation alongside spatial transcriptomics data poses a challenge. It
remains unclear how to obtain covariate information without utiliz-
ing the same data twice—once for identifying covariates and again for
detecting SVG. Addressing this issue represents an ongoing challenge
within the framework of SVG detection techniques. Hopefully, future
methods will be developed to effectively bridge this gap.

Finally, we acknowledge that benchmarking existing methods is
essential to determine their efficiency in terms of scalability and accu-
rate selection of SVGs. This is crucial for ensuring proper downstream
analysis. To address this need, we present a foundational outline of
a benchmarking design. For data generation, they can be simulated
through methods such as SRTsim [40] and scDesign3 [47]. Both meth-
ods are capable of simulating datasets that emulate the structure of a
real spatial dataset by learning their parameters. SRTsim offers a ShinyR
platform where spatial patterns can be visualized, and parameters can
be configured to generate count data for spatially variable gene ex-
pression. Diverse datasets containing both spatial and non-spatial genes
can be simulated, with various spatial effect strengths, sparsity levels,
distinct spatial patterns. scDesign3 is another model-based simulation
machinery where users can use real data to estimate parameters which
allow for a wide range of simulation scenarios, from homogeneous cell
populations to complex tissues with diverse cell types. Benchmarking
involves assessing the performance of implemented methods by check-
ing their power and false discovery rate (FDR) in detecting SVGs, their
scalability, as well as the impact on specific downstream analysis such
as spatial domain detection.

In summary, we have provided a selective survey of recently pub-
lished and archived literature on SVG detection, offering an analysis
of their practical utility, adaptability, innovation, and constraints from
various practical perspectives. This effort aims to facilitate new re-
searchers in gaining a holistic understanding of the available methods
and assist them in selecting a framework aligned with their specific re-
search needs and questions.
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