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Abstract—Representation learning considering high-order rela-
tionships in data has recently shown to be advantageous in many
applications. The construction of a meaningful hypergraph plays
a crucial role in the success of hypergraph-based representation
learning methods, which is particularly nseful in hypergraph neu-
ral networks and hypergraph signal processing. However, a mean-
inglul hypergraph may only be available in specific cases. This
paper addresses the challenge of learning the underlyving hyper-
graph topology from the data itself. As in graph signal processing
applications, we consider the case in which the data possesses
certain regularity or smoothness on the hypergraph. To this end,
our method builds on the novel tensor-based hypergraph signal
processing framework (t-HGSP) that has recently emerged as a
powerful tool for preserving the intrinsic high-order structure of
data on hypergraphs. Given the hypergraph spectrum and fre-
quency coefficient definitions within the {-HGSP framework, we
propose a method to learn the hypergraph Laplacian from data by
minimizing the total variation on the hypergraph (TVL-HGSP).
Additionally, we introduce an alternative approach (PDL-HGSP)
that improves the connectivity of the learned hypergraph without
compromising sparsity and use primal-dual-based algorithms to
reduce the computational complexity. Finally, we combine the
proposed learning algorithms with novel tensor-bhased hypergraph
convolutional neural networks to propose hypergraph learning-
convolutional neural networks (t-HyperGLNN),

Index Terms—Hypergraph topology  learning, hypergraph
neural networks.

I. INTRODUCTION

ANY graph signal processing applications rely on graph
structures naturally chosen from the application domain,
e.g. geographical or social networks. There are, however, still
a large number of instances in which the underlying graph

Manuscript received 4 March 2023; revised 16 July 2023 and 12 November
2023; accepted | December 2023, Date of publication 20 December 2023;
date of current version 8 January 2024, This work was supported in part
by National Science Foundation under Grants CCF 2230161 and 2230162,
in part by AFOSR under Award FA9550-22-1-0362, and in part by the Institute
Financial Services Analytics at the University of Delaware. The associate editor
coordinating the review of this manuscript and approving it for publication was
Dr. Giulia Fracastoro. (Corresponding author: Gonzalo R. Arce.)

Karelia Pena-Pena, Lucas Taipe, and Gonzalo R. Arce are with the Department
of Electrical and Computer Engineering, University of Delaware, Newark, DE
19716 USA (e-mail: kareliap@udel.edu; Itaiper@udel.edu; arce@udel adu),

Fuli Wang is with the Institute for Financial Services Analytics, University
of Delaware, Newark, DE 19716 USA (e-mail: fuliwang @ udel.edu).

Daniel L. Lau is with the Department of Electrical and Computer Engineering,
University of Kentucky, Lexington, KY 40506 USA (e-mail: dllan@uky.edu).

This article has supplementary downloadable material available at
https:/idoi.org/ 10,1 109 TSIPN.2023.3345142, provided by the authors.

Digital Object Identifier 10.1109%TSIPN.2023.3345142

Bob
Am
(a)
Fig. 1. Inaco-authorship network, two different hypergraphs (b) H (c) Ha

are mapped to the same simple graph in (a) by the clique expansion. Hyperedges
are color-coded by publication, e.g. the red hyperedge (eg) indicates that Carl,
Dan, and Ed coauthored a publication.

topology is not readily available. Tn fact, common choices of
graphs for models may not necessarily describe well the intrinsic
relationships between the entities on the data [1]. In such case,
when the underlying graph structure is not available, many
algorithms have been developed under the umbrella of graph
signal processing (GSP) with the goal of revealing the graph
topology by leveraging the relationship between the signals and
the topology of the graph where they are supported. Graphs,
however, are limited in the sense that they only account for
pairwise node interactions. Consequently, significant interest
has emerged in extending graph signal processing tools to
more general representations such as hypergraphs. Compared
to simple graphs, hypergraph structures are more powerful
and flexible in modeling polyadic relationships in data. For
instance, in a co-authorship network where a group of authors
jointly contribute to a paper, a hyperedge can fully describe
this polyadic relationship as illustrated in Fig. 1(b)-(c), while
edges in conventional graphs (Fig. 1(a)) can only model pairwise
relationships, limiting GSP to single-way analysis. Apart from
co-authorship networks, high-order correlations among data
widely exist in a number of applications like neuronal networks,
social networks, and transportation networks [2], [3], [4]. To
capture the intrinsic polyadic interactions of hyperedges, the
hypergraph signal for each node is defined as the high-order
correlation between the underlying node and the other nodes.
Hypergraph neural networks (HyperGNNs), proposed Lo lever-
age the higher-order topology captured by hypergraphs, have
drawn a lot of attention and have been applied to many tasks, in-
cluding drug discovery [5], 3D pose estimation [6], action recog-
nition [7], recommendation system [8], collaborative networks
[9]. etc.
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As in the case of graphs. having a good hypergraph topol-
ogy plays a crucial role in the success of hypergraph signal
processing and representation leaming methods. Most efforts
on hypergraph learning have focused on hypergraph expansions
(i.e.. matrix representation of hypergraphs), which have been
shown to be subsumed in simple graph learning [10], and failing
to capture the high-order structure characteristic of the data [11],
[12], [13], [14]. As an example, one of the most common
hypergraph matrix-based representations, the clique expansion,
which replaces every hyperedge with a clique subgraph, fails
to provide an injective mapping. As shown in Fig. 1. two
different hypergraphs (b) H; (c) Hy are mapped to the same
simple graph in (a) by the clique expansion, clearly failing to
capture lower-dimensional relationships and not providing an
injective mapping for a hypergraph. While tensor-based hyper-
graph representations can differentiate these two hypergraphs,
matrix-based hypergraph representations cannot [2]. However,
the area of learning tensor-based hypergraphs is still in a very
nascent state. In fact, the theory of signal and data processing on
higher-order networks is largely unexplored compared to that of
simple graphs.

Recently, a tensor-based hypergraph signal processing
(HGSP) framework was introduced in [15] analogous to GSP
with a Fourier transform defined via the orthogonal symmetric
canonical polyadic (CP) decomposition of the hypergraph adja-
cency or Laplacian tensor. While CP-based HGSP was shown
effective indifferent applications, it has some fundamental draw-
backs given by the fact that the adjacency tensor does nol have
an exact CP orthogonal decomposition [16]. Later, Pena-Pena
etal. [16] exploited a novel set of t-product factorizations [17] to
develop a new hypergraph signal processing framework, dubbed
as I-HGSP, which is more stable and loss-free compared to CP-
based HGSP frameworks. The t-product factorizations are based
on a novel tlensor-tensor multiplication (1-product), in which the
familiar tools of linear algebra are extended to better under-
stand tensors [17], [18]. Based on the CP-based HGSP. Zhang
et al. [15] tackle the problem of learning a hypergraph from
point cloud data [19] where, in order to avoid the uncertainty
and high complexity of the CP-decomposition, they focus on
directly estimating the hypergraph eigenvectors and eigenvalues
pairs from the observed data instead of the hypergraph adjacency
tensor. Their theory depends on defining a supporting matrix
P = VAV' which maps the eigenvectors V and eigenvalues
A obtained from the CP-decomposition to a matrix. While some
limitations exist, such as the difficulty of finding a feasible
solution to the optimization problem in [ 15] that ensures a valid
adjacency tensor, Zhang et al. [15] successfully demonstrate
the effectiveness of their method in various applications such
as denoising and compression. Although an exact hypergraph
topology, represented by the adjacency tensor, is not explicitly
utilized in their experiments, the estimated eigenvectors and
eigenvalues offer valuable insights and enable significant im-
provements in the aforementioned tasks.

In this work, we propose a more general framework that not
only aims at exploiting the properties of the eigenvectors and
eigenvalues but also the hypergraph topology. To this end, we
extend the concepts of the new hypergraph signal processing
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Fig. 2. {(a) As input, we only have a set of hyperpraph signals associated with
each node or entity in a network whose topology is unknown. Once these signals
are fed to the hypergraph learning algorithm, the underlying (b) hypergraph
topology represented by the adjacency tensor A is unveiled. The adjacency
tensor A in (b) hence captures polyadic relationships from the data (a).

framework based on t-product factorizations, t-HGSP [16], to
propose an algorithm that learns a tensor-based hypergraph
representation from a sel of signals. As input, we consider
a set of hypergraph signals associated with each node in a
network whose topology is unknown (Fig. 2(a)), and the goal
of the proposed hypergraph learning algorithm is to unveil the
underlying hypergraph topology represented by the adjacency
tensor (Fig. 2(b)). Even though the proposed method does
not scale to large hypergraphs, it is a step forward toward
the generalization of hypergraphs learning from signals. In
our experiments, we not only demonstrate the effectiveness of
our approach by retrieving real hypergraphs from signals but
also show that the learned hypergraphs boost the performance
of recently introduced tensor-hypergraph convolutional neural
networks (T-HyperGNN) [20], [21] and hypergraph signal pro-
cessing applications such as clustering. In summary, the main
contributions of this paper are fourth fold.

* First, we introduce an algorithm that leamns the hypergraph
Laplacian tensor, hence the adjacency tensor, by mini-
mizing the cumulative total variation across all observed
hypergraph signals (TVL-HGSP).

* Secondly, we propose an alternative approach (PDL-
HGSP) that improves the connectivity of the learned hyper-
graph without compromising sparsity and takes advantage
of primal-dual-based algorithms to reduce time and space
complexity.

* Thirdly, we develop a new hypergraph learning convolu-
tional neural network framework that learns the hypergraph
topology and boosts the performance of recently intro-
duced tensor-hypergraph convolutional neural networks
(t-HyperGLNN).

* Fourthly, we validate the proposed approach through sim-
ulations and demonstrate its potential in real-word appli-
cations,

The rest of this paper is organized as follows. Given that

the proposed algorithms aim at generalizing graph learning
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methods, in Section 11, we review the background on graphs
signal processing and graph learning from data. In Section LI,
before introducing the proposed hypergraph learning algorithm,
we laid down the necessary definitions from (-HGSP. Next, an
alternative scalable hypergraph learning algorithm is presented
in Section IV which leads to Section V in which the new
hypergraph learning-convolutional neural network framework
is described. The numerical experiments are summarized in
Section VL

1. LEARNING GRAPHS FROM SMOOTH SIGNALS

In graph signal processing (GSP), a graph is denoted as
G = (V, W) with nodes or vertices, V = {vy,v9,....on}.
Here, we consider the weighted adjacency matrix to encode
the graph structure W = {w; 5}, where w, ; > 0 denotes the
weight connecting nodes i and j. A graph signal is then defined
as the mapping of nodes in V to real values such that = € RV
is a vector representation of the signal defined on the graph with
x; as the real value on the i*" node [22]. From G = (V, W),
GSP defines a shift operator, S, as a local operation that replaces
the signal’s value at each node with a linear combination of the
signal’s values from neighboring nodes according to Sz. The
notion of linear filtering the graph signal, @, by the filter, Q, is
achieved by multiplication y = Q, resulting in a new graph
signal y. While Q can be any arbitrary matrix, it is considered
a linear shift invariant (L.ST) operator if it satisfies the condition
that QSx = 5Qr.

While there is significant latitude regarding what constitutes a
shift operator, a commonly used operator is the graph Laplacian
defined as L, = D — W, where D is a diagonal matrix such
that Dy =} w; ;. From L specifically, GSP defines fotal
variation as a measure of how smoothly the signal varies on the
graph structure according to TV (x) = &' L. Now since L is
real and symmetric, it is diagonalizable by means of Eigenvalue
decomposition as L = UAU' where U is a unitary matrix
whose column vectors are eigenvectors and A is a diagonal
matrix of corresponding eigenvalues [23], [24]. As N-length
vectors, the columns of U are, themselves, graph signals whose
corresponding eigenvalues are measures of their total variations.
Furthermore, by forming a basis of BV such that any graph
signal, . can be written as a linear combination of column
vectors from U, the Graph Fourier Transform (GFT) of a signal
x on G can be defined as & = U’z with the eigenvalues
interpreted as frequencies [25], [26].

For the purpose of learning the interactions of signals between
nodes, one GSP [1] approach defines the problem of learning a
graph from a set of observed signals =, ... ,xp € BN, in order
to make certain properties or characteristics of the observations
explicit, such as smoothness with respect to G or sparsity in a
basis related to G. In the case of smoothness as a prior, the graph
edges or weights should be designed to diminish in strength with
the increasing deviation between nodes [27], [28], [29]. [30].
Many approaches have been developed based on the smoothness
prior [1], [31]. Dong et al. [27], in particular, proposed learning
a graph by minimizing the cumulative total variation across all

TABLET
EQUIVALENT TERMS FOR REPRESENTATIONS FROM S0TS £: Wh: W

LeLl W E Wi wE Wy
20X LX) IWaZ|,, 2w'z
(L) Wi, 2w'1=2wl,
- W5 2||wli3
diag(L) W1 Sw
17 log(diag(L) 1 log(W1) 17 log(Sw)
L IWIE + WG 2|wl3 + [Sw|i3

We use z= vectorform(Z), and linear operator $ that performs summation in
the vector form. This table was taken fiom [32].

observed signals according to
argming, trace(X'LX) +a|L||f, st Leg (1)

where X € BY*" holds the set of observed signals
ry,...,¢p € BN concatenated column-wise and £ denotes
the set of valid graph Laplacians. The Frobenius norm of the
Laplacian ||L||§- penalizes the formation of edges with large
weights, while « regulates the density of connections with larger
values of o leading to graphs with denser weight matrices.

Although the method proposed by Dong et al. [27]
successfully learns a graph considering a smoothness prior, their
proposed optimization (1) is difficult due to the many constrainls
on L and hence it is not scalable [32]. Moreover, the Frobenius
norm of L is not easily interpretable since L has elements
of different scales which are also linearly dependent [32]. To
address these challenges, Kalofolias et al. [32] proposed not only
a fast, scalable. and convergent primal-dual algorithm to solve
the method proposed by Dong et al. [27] but also introduced a
new effective model for learning a graph.

To this end, first, Kalofolias et al. [32] argued that searching
for a valid weighted adjacency matrix W instead of a valid
Laplacian L is more intuitive and thus leads to simplified prob-
lems. Using the transformations of Table I, it was shown in [32]
that it is possible to obtain an equivalent simplified model of (1)
in terms of the weighted adjacency matrix W as

agmin W@ Z||,, +a|[Wi|+e|Wlz, @)

WEW,,
st [[Wlh=s, 3)

where 1 € BY ! is an all ones vector with .. denoting the set
of all positive real numbers,  is the Hadamard product, and
Z  RY*V is the pairwise distance matrix computed as

Ziy = lxe— x4, @
where x,,x; € R"*" are the i-th and j-th row in the set of
signals X € BY*” | respectively. This optimization problem is
reduced even further when limiting the search space to W, =

W Rfm_lm} by considering only the unique elements
in a valid weighted adjacency matrix and dealing with the
symmeltry.
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Fig. 3. (a) Third-order tensor A divided into: (b} a matrix of tubal scalars,
(c) lateral slices (vector of tubal scalars), and (d) frontal slices.

Additionally, Kalofolias et al. [32] proposed a new model
that aims at giving a general-purpose model for learning graphs
when no prior information is available. To obtain meaningful
graphs, the method proposed in [32] ensures that each node has
at least one edge with another node by minimizing the following
optimization problem:

argmin  |[W @ ZJ|, , —a1'log(W1) + 8|W,, (5)
WeEWm
where the logarithmic barrier on the node degree vector forces
the degrees to be positive but does not prevent edges from becom-
ing zero, improving the overall connectivity of the graph, without
compromising sparsity. The Frobenius norm of W penalizes the
formation of big edges but does not penalize smaller ones.

For the optimization of both models, Kalofolias et al. [32]
proposed the use of primal-dual techniques that scale as the
ones reviewed by Komodakis and Pesquet in [33]. More details
about the optimization algorithms used to solve these models
can be found in [32].

In this paper, we proposed two learning models. The first,
which is introduced in the next section, aims at learning the
hypergraph Laplacian (TVL-HGSP) by extending the model
proposed by Dong et al. [27]. The second one, introduced in
Section 1V, was motivated by Kalofolias et al. [32] and aims
at giving a general-purpose scalable model for learning graphs
when no prior information is available.

IM1. HYPERGRAPH LAPLACIAN LEARNING (TVL-HGSP)

We first introduce the necessary background on hypergraph
signal processing using t-product factorizations, -HGSP [16].
Then, the proposed algorithm, TVL-HGSP, which learns a
hypergraph Laplacian from a set of signals by minimizing their
total variation (TV), is introduced. For the rest of this paper,
denote vectors by bold lowercase letters (e.g. a), matrices as
uppercase letters (e.g. A). and tensors as calligraphic letters
(e.g. A), we first define the (i, 7)-th tube scalar of the 3rd-order
tensor A as a;; which is illustrated in Fig. 3(b). The i-th
lateral slice of the tensor, shown in Fig. 3(c), is denoted as
Ay = A(:, j.2) € RYv*1*N2 which is a vector of tubal scalars.
The k-th frontal slice depicted in Fig. 3(d) is denoted as A*) =
Az, 5, k) € RN =Nl which is a matrix.

A. Background

A hypergraph H = (V(H), E(H)) is defined as the pair
of one set of nodes V(H)={vy,...,vy} and a set of
edges E(H) = {eq,...,ex} whose elements, different from

gimple graphs, are multi-element subsets of V(H) called
hyperedges. Let M = max{|e| : e; € E(H)} be the maximum
cardinality of the hyperedges, shorted as m.c.e(H). A hyper-
graph H = (V(H), E(H)) with N nodes and M = m.c.e(H)
can be represented by an Mth-order N-dimensional weighted
adjacency tensor A € RM" defined as A = Gpr g, pann 1
P1.P2, - - -, par < N.Forauniform hypergraph, in which all hy-
peredges have cardinality M, the entries of Aare ap, .. p,, >0
for any hyperedge e = {Vp,, Vpy, ..., Vp, } and zero other-
whise. Note that a hypergraph with M = 2 degrades to a simple
graph with adjacency matrix A € RV*N: hence, HGSPis a gen-
eralization of GSP. Non-uniform hypergraphs are explained in
detail in Appendix F in the supplemental material. The degree of
a vertex d( v ) is the number of hyperedges containing the node
vi. Then, the Laplacian tensor is defined as £ = D — 4 where
D is the superdiagonal degree tensor with diagonal elements

.k =d(vi) [15], [34].

In t-HGSP [16], a symmetric adjacency and Laplacian hyper-
graph tensor descriptors are introduced since the tensors .4 and
L introduced above are not symmetric under the t-product alge-
bra (Definition 9 in Appendix G in the supplemental malerial).
Therefore, the operator sym(.4) generates a symmetric version
A, € RVN<QAN+L) of 4 € RN*N*N by adding a matrix of
zeros Oy, v as the first frontal slice, dividing by 2, and reflecting
the frontal slices of A along the third dimension as

A, =sym(A) =

.
1 1 1 1

fold | |On.n, =AM ZA® AP AW ) (6

o ([NA.,? '3 R '3 (6)

For higher-order tensors, 4 € RN ”, a symmetric version of an
Mth-order tensor A, € RY*V N where N, = 2N + 1 is
obtained by recursively appending a (M — 1)th-order tensor of
zeros © € RN™ Y gt the front, dividing by 2, and reflecting the
(M — 1)th-order tensors A along the p-th dimension as

A; = sym(.A)

= fold ([O, %sym(flm]‘ %sym(Am), ey

%SW{A{E)L%SW‘:A{”}] ) ) (7

When applied to the degree tensor and the Laplacian tensor, we
obtain D, and L., respectively.

The hypergraph shift is then given by Y, = F. * X,, where »
represents tensor-tensor multiplication (t-product) [17], [35], i",
is the hypergraph signal, ), is the one-time shifted/filtered sig-
nal, and F, is the shifting operator that captures the relational
dependencies between nodes, including the adjacency tensor .4,
and the Laplacian £.. A detailed explanation of the t-product
is included in Definition 8 in Appendix G in the supplemental
material. In GSP. the graph signal is defined as an N-length
vector = [zy,..., ]| where each signal element is related
to one node in the graph. In the proposed framework, given
that the shifting operation is defined by the t-product and the
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Fig.4. (top-left) Hypergraph H with set of nodes V(H) = {vi,va....,v¥}
and set of hyperedges I/(H) = {e1, e2, ea}. (top-right) The hypergraph signal
maps 3 tubal scalar to each node. (bottom) Shifting of the signal X. by the
adjacency lensor As. Gray-colored tubes are all zero tubal scalars.
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shifting operator is a tensor of dimension N x N x NM-2,
the hypergraph signal A, and its one-time shifted signal Y.
are both tensors of size N x 1 x NM-2 (o have consisient
operations. Thus, a hypergraph signal is related to a tubal scalar
(Xs)iq € R1*¥1=NM2 1 < i < N, which is associated to each
node in the hypergraph as shown in Fig. 4{top-right). This
setting opens up the possibilities for different hypergraph signal
conligurations [ 16]. In this paper, we build the signals according
to the following definition.

Definition 1 (Hypergraph Signal from a One Dimensional
Signal): For a hypergraph with N nodes and m.c.e(H) =
M, let X be a (M — 1)th-order N-dimensional tensor com-
puted as the outer product of an original signal in the hygcr—
graphx = [£1,...,2y] e RV ie ¥ =zo0--come RNV
where cach entry position Aliy,42, ..., 15 1) equals the prod-
uct @y, iy, - - - qy, . Then, the hypergraph signal is obtained by
expanding on a new second dimension, ¥ = expand(X) where
A is an Mth-order tensor with dimensions N x 1 x NM-2
and by computing its symmelric version as X, = sym(ft") such
that X, € RV*1*N* Notice that as in the CP-based HGSP
framework [15], the hypergraph signal i, int-HGSP [16] is just
another representation of an original one-dimensional signal =
that aims al reflecting its properties in different dimensions. For
instance, for a hypergraph with M = 3, the hypergraph signal
highlights the properties of the 2-D signal components ;.

As an example, let the adjacency tensor be the shifling
operator,i.e. F; = A, € RVN*N*N and consider the 3-uniform
hypergraph [16] in Fig. 4(top). The shifted signal in node vy is
then computed as

(Yadrg = (Be)g g * (Xe)p + (As)7 g * (Xa)s
+(s)y 5 * (Xs)sy + (393?:6 * {xs]a,l . (8)

where, as shown in Fig. 4(bottom), (a, )7 2 and (a,) 3 are tubal
scalars of the symmetrized adjacency tensor .4, that represent

the hyperedge e = {Va, Va, vy } and (a,)y 5 and (a,)y g repre-
sent the hyperedge e3 = {vs, Vg, vz}, which are the only two
hyperedges that contain the node v7.

Given the shift operator F;. the eigendecomposition is de-
termined by F, = Vs A+ V where Ve R¥*N*N™ j5 ag
orthogonal tensor. The hypergraph Fourier transform of a
hypergraph signal, X, € RN <N 2 ig then X, =V + X,
with the inverse hypergraph Fourier transform given by
i’, =V= i’F,. Since the tensor V is orthogonal, perfect Fourier
representation and recovery of a signal are achieved.

In parallel to GSP theory, the Laplacian-based total varia-
tion is also defined in t-HGSP [16] and provides an ordering for
the hypergraph Fourier basis of the Laplacian tensor £,. Hence,
we define the Laplacian-based total variation on a hypergraph
as

-

TV ) =X, « L, + X, 9)
Then, the total variation (TV) of a Fourier basis vector \3; is

(10)

Hence, the eigenvectors of the Laplacian shifting operator are
ordered from lowest frequency to highest as g < kg < --- <
A <---< AN

Filtering and spectral analysis are intimately connected [36].
Notably, this fundamental concept has a natural parallel for-
mulation in the tensor-based hypergraph Fourier transform —
frequency filtering can be achieved by yp (X)) = by (&) =
xr, (M) where Y, (M), Xr, (A1), hip, () € RUTMY age,
respectively, the tubal scalars at frequency A; of the output
signal Vg, . the input signal A, and the filter response Hp,
in the frequency domain. When taking the inverse Fourier trans-
form of Vg, , the tubal scalars of ), are given by (v.);; =
Ef;l V1 * hi (A) # X, (A;), which can be written in tensor-
tlensor product notation as j)g =H=» ,-?t'; or equivalently as

TV (V) = Aj.

hp (hy) --- 0
j"g - V= . * 1; * {?a .
Iy
0 hp_(lN) Ar,

B. Learning the Laplacian Tensor

Given the t-HGSP definitions [16] and inspired by the method
proposed by Dong et al. [27] for learning graphs from data,
we formulaie the problem of leamning a hypergraph topology
as follows. Given a set of hypergraph signals Ay, A>,....dp €
RV 1N ohtained according to Definition 1, the tensor
X, € RV<P<NM™ gores these hypergraph signals concate-
nated along the second dimension. We infer the hypergraph
topology that governs the relationship between the N nodes by
minimizing the following optimization problem:

ad(X,,L,) + BO(L.),

argmin
g M-2
Jc.! ERN =N xNE )

sl Ly e}, (11)
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vee(Ly) = Mgy, Mg, vech(L,)
. — ~ -
e Pc
‘ L mgmxl
X - -
£I y |
S RN XD
NxNxN, ~ > -
R vee{£)
2 o - NxNu=N
- L R
]E.\r“‘ NN -

Fig. 5. Given the vector vech(L,) € RPe (top-right) which contains only
the distinct elements in L4, the binary matrix Mg,,, (nonzero entries in
black) replicates its entries to build the super-symmetric tensor £ € RN =N =N

(bottom-left) whose vector form is denoted as vee(C) € BV Now, given
vec(L). the matrix My, generates the t-symmetric version of £ by adding
a matrix of zeros Oy, x as the first frontal slice (top of matrix M, are
all zeros) followed by the vector-form of the Laplacian tensor vec{£) (given
by the big identity in Myp, (top-center)) and the reflection of each of the
frontal slices of £ along the third dimension (given by My, (bottom)). In
M iyp5 ,» NONZEro entries (black) have value 1/2 representing the division by
2 in the t-symmetrization operation.

where ¢(X,, £,) is a function that measures the smoothness of
the signals X, on the hypergraph, ©(L,) is a term that further
imposes structure on £, using prior information such as sparsity,
and (2 is the set of valid Laplacian tensors. Considering that the
TV on a hypergraph in (%) measures the smoothness of a signal
in the hypergraph, we let

B(X,. L) = traceag(X, » Lo« Xs) (12)

where trace () computes the trace of a tensor and aggregates
the resulting tubal scalar as explained in detail in Definition 5
in Appendix A. Similar to the method proposed by Dong et
al. [27], we consider ©(L,) = ||£,||3. which is the Frobenius
norm of L£,, penalizing the formation of hyperedges with big
weights but not the ones with smaller weights. Hence, more
dense hypergraphs are obtained for bigger values of 4. Replacing
these two terms in (11), one way to define an optimization
problem to learn a hypergraph from data is given by:

utraceﬁa({ﬁ * Ls*x Xs) + B LallF

argmin
L, ERNNx NEM 7

st L, e, (13)

which can be further simplified and cast to a convex optimization
problem. First, we consider the symmetry of the Laplacian
tensor, which means that we only need to solve for the D =
S (7)) unique elements in £,. We denote the vector-form
of the distinct elements in £, as vech(L,) € R”¢ and the

vector-form of £, as vec(L,) € RV MM Asshown inFig. 5,
the vector-form of the distinct elements vech( L. ) can be mapped
into the vector-form of the Laplacian tensor vec(L, ) by:

Mauyp,, Maup, vech(L,) = vec(L;),

Pevech(L,) = vec(L,), (14)

Kx
vee(L£,) Moy U a2 M vee( L, )
l ) NNHT KM ‘--.-‘-‘\ I
M2
Fig. 6. (Top) The vector-form of the Laplacian tensor £, in the Fourier

domain, vec(L,), is determined by the multiplication of the vector-form of the
Laplacian tensor vec(£L;) and the matrix K = Mg y2 M 9. Note that
52 is a block diagonal matrix with ' repeated N2 times along the diagonal.
(Bottom) The operator M o, transforms a vectorized tensor organized in frontal
slices (which are colored-coded) to a vectorized tensor organized in scalar tubes,
Mg reverses this operation.

where M,p,, and My, are duplication matrices that ac-
count for the symmetry of the super-symmetric tensor £ and
the t-symmetry of L;, respectively. Second, we consider the
connection of the t-product with the Discrete Fourier Transform
(DFT). For simplicity, let us consider the case of M = 3. If
we let I' be an N, x N, discrete Fourier transform matrix and
r-'= Nl'[" " be the inverse discrete Fourier transform matrix,

we can determine vec(L, ) from vec(L, ) as
Mgz;FNzNIfgg\"cCu:g} = VOC(B;J‘

K yvec(L,) = vec(L,), (15)

where, as depicted in Fig. 6, "y = is a block diagonal matrix with
T repeated N2-times along the diagonal and M yo, transforms
a vector organized in frontal slices to a vector organized in
scalar tubes and M, works in the reverse direction as shown
in Fig. 6(bottom).

Now, considering the above operations, we can compute
trace,g(-) in terms of vech(L,) as

traceag(, * Lo+ X.) = 1T 1C, K yPevech(L,), (16)

where C,, is computed as in Appendix B. Then, we can rewrite
the problem in (13) as

arghnlii; a1l T1C,KyPrvech(L,)+
vech( L,

Avech(L,) PLP svech(L,),
s.L. Avech(L;) =0,
Bvech(£;) = 0,

where A and B are the matrices that handle the equality and
inequality constraints that guarantee that £, is a valid Laplacian
tensor in the set £2. Same as in [27], the problem in (17) is a
quadratic problem with respect to the variable vech(L; ) subject
to linear constraints and can be efficiently solved via interior
points methods [37]. The computational and space complexity

(7
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increases with the number of vertices N and the maximum
cardinality of the hyperedges M. As point out in [32] for the
case of graphs, this optimization problem has two weaknesses.
First, using the Frobenius norm on the Laplacian tensor has
reduced interpretability since the entries of the Laplacian have
different scales. Second, this optimization is difficult due to the
many constrains to guarantee that £ is a valid Laplacian tensor.
As in the case of graphs, a simpler model than that in (17) is
obtained when reformulated in terms of the adjacency tensor as

arg(rlil'lﬂrlTl"_1 C,KnTevech(A)
vech( A4, )

+ Bvech(A,) T, Tovech(A,),

st |Jvech(As)l|11 = s, (18)

where T, is a linear operator that satisfies vec(L,) =
Tvech(.A;) as explained in detailed in Appendix C. Even
though the problem above is simpler, inspired by the model
proposed by Kalofolias et al. [32], we propose, in the next
chapter, an alternative approach (PDL-HGSP) that improves the
connectivity of the learned hypergraph without compromising
sparsity and use primal-dual-based algorithms to reduce the
computational complexity.

TV. LEARNING THE ADJACENCY TENSOR (PDL-HGSP)

In the same way as before, we are given a set of hypergraph

signals A, € RN *PxNEM® [Xy, X, ..., Xp] and we would
like to infer the underlying hypergraph topology. However,
for this method, we consider the fact that in simple graphs
searching for a valid weighted adjacency matrix W instead of
a valid Laplacian L is more intuitive and leads to simplified
problems [32]. Thus, we formulate the optimization problem in
terms of the hypergraph adjacency tensor A, as

argmin DX, As) + BO(As),

. piM-2)
A"-_Rﬂ.l.h «Ng

st A, e,

where $(A,, A,) is a function that measures the smoothness
of the signal X; in the hypergraph, ©(.4;) is a term that further
imposes structure on A, using prior information such as sparsity,
and ¥ is the set of valid adjacency tensors.

Considering that &(X,, A,) should measure the smoothness
of a signal in the hypergraph and motivated by the method
introduced in [32], we propose the following pair-wise distance
function:

b( X, A) = aggregate(combine(A,#Z.)),

(19)

(20)

T (M-3) - » . -
where 2, € RNV *N*N: is a pair-wise distance tensor whose
tubal scalars are given by

[M-2)
Zog = X - Al € ROUNTT

where .’ci, X e mP N are the i-th and j-th row of tubal
scalars in A’L which are the hypergraph signals associated to
the i-th and j-th node, respectively. The element-wise (-product
(%) the t-norm || - ||;, aggregate(-). and combine(-) operations
are all defined in Appendix A. As before, this function can

21

be computed efficiently in terms of the vector-form of the dis-
tinct elements in A, vech(A,) € RP4where D = M, (V).
Taking advantage of the symmelry and the Fourier domain
connection then

aggregate(combine(A,®2Z,))

=1"T'J,KyP vech(A,), (22)

where P4 is the matrix that considers the symmetry of the
adjacency tensor, Ky as defined in (15) applies the DFT along
the tubal scalars of the adjacency tensor, and the matrix J.
is computed as explained in detail in Appendix D. Different
metrics could be used to measure the smoothness of signals on
a hypergraph in terms of the Adjacency or the Laplacian tensor.
Note that in (22) the similarity of the nodal observations is
determined by their distance while in (16) this is determined
by their correlation. Different similarity measures could be used
to measure the smoothness of signals on a hypergraph in terms
of the Adjacency or the Laplacian tensor. Additionally, similar
to the method proposed by Kalofolias et al. [32], in order to
obtain a meaningful hypergraph, we would like to make sure that
each node has at least one hyperedge with other nodes and it is
also desirable to control the sparsity of the resulting hypergraph.
Thus, we let

O(A,) = —al log(Rvech(A,))
+ Bvech(A,) PP qvech(A,),

where R is a linear operator that satisfies vech(D.) =
Rvech(.A,) with vech(D,) € R" being the vector-form of the
unique elements of the degree tensor D, which corresponds
to the degree vector. Thus, the logarithmic barrier acting on the
node degree vector vech( D, ) forces the degree of each node to be
positive but does not prevent individual hyperedges from becom-
ing zero as in [32]. The second term, being the Frobenius norm
of the adjacency tensor, ||A4||2. = vech(A,) PP 4vech(A,),
controls the sparsity by penalizing the formation of hyperedges
with large weights but not those with small weights. Then, we
can rewrite the problem in (19) as

argmin 1" "' J. Ky P _qvech(A,)
vech(A. )

(23)

— al'log(Rvech(A,))
+ Avech(A,) PP qvech(A,).

As in [32], this problem is convex and can be solved by the
primal-dual algorithm. Thus, we write the problem as a sum
of three functions in order to fit it to primal-dual algorithms
reviewed by Komodakis et al. [33]:

argmin, 4,y f(vech(As))+g(Rvech(A;))+h(vech(A,)),

where f and g are functions for which we can efficiently com-

pute proximal operators, and h is differentiable with a gradient
that has Lipschitz constant ¢ € (0, +oc). R is a linear operator,
so g is defined on the dual variable Rvech(A.). Appendix E
details how the primal-dual algorithm is applied o solve the
proposed optimization problem which follows closely the steps
followed for the case of simple graphs in [32].

(24)
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Hlustration of a single layer of the proposed t-HyperGLNN for a toy hypergraph with 3 nodes. In each layer, three operations are involved: 1) hypergraph

signal shifting; 2) hypergraph t-convolution; and 3) hypergraph perception. Specifically, after obtaining the learned hypergraph structure, the first step is to perform
the hypergraph signal shifting to aggregate signals from neighboring nodes. With the shifted signal }’f.” . the hypergraph t-convolution is processed with a learnable
weight tensor H’f.”. In the weight tensor Wi, only the first frontal slice is a nonzero weight matrix, and the remaining frontal slices are all zero matrices. This is
in order to share parsmeters among different nodes. Depending on the shape of the weight tensor, the output tensor of t-convolution Zih can have different shape
from the shifled signal }VEI], In the example, )-',(,” c B3 1=T gnd Mh e R¥*3<7 50 the resulting convoluted tensor is Zﬁ” < R**3%7 The last step is simply
building hypergraph perceptrons by feeding the convoluted signal Zi“ to an activation function o (-). The output of the final layer of the t-HyperGLNN can be

used to compute a loss function value and thus guide toward the backpropagation.

Complexity and Convergence: The proposed PDL-HGSP
algorithm has acomplexity of (N ™) periteration, for N nodes
and maximum edge cardinality M = m.c.e(H). As in [32],
since the ohjective functions of the proposed model are proper,
convex, and lower-semicontinuous, the algorithm is guaranteed
to converge to the minimum [33]. For reference, in a proces-
sor 11th Gen Intel(R) Core(TM) i7-11800H, the per-iteration
runtime is roughly 5.6 x 10~ seconds for a hypergraph with
N =25 and M =3, and 56 seconds for a hypergraph with
N=25and M = 4.

V. HYPERGRAPH LEARNING-CONVOLUTIONAL NEURAL
NETWORKS (T-HYPERGLNN)

A. Problem Formulation

Leamning the hypergraph topology can boost the performance
of representation learning algorithms as in the case of hyper-
graph neural networks (HyperGNNs). HyperGNNs are a fam-
ily of neural networks that unlock higher-order relationships
among enlities, captured by hypergraphs, together with any
available node attributes. Formally. given a shifting operator

F and the associated node features X, the goal of Hyper-
GNNs is to identify a representation map ®(-) between the
data X and the target representation t = &(X, F, {W}) that
takes into account the hypergraph structure F. {W} is the set
of weight parameters learned by the model. In order to learn
the representation map, we consider a cost function J(-) and a
training set 7= {(X1,t1),....(X 7)), 1 )} with |T| training
data samples. The learned map is then ©(3; F. W') with

1
W= argminwl—ﬂ 3 J(@(xi: FW)). (25)

Depending on different downstream tasks such as node clas-
sification [38], link prediction [39] and hypergraph classifica-
tion [40], the cost function is chosen accordingly.

B. T-Hyperginn

In order to encode structural information about hypergraphs
in HyperGNNS, one of the most fundamental and appealing op-
erations is convolution, due to the greal success of convolutional
neural networks [41] on grid-like data and graph convolutional
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neural networks [42] on simple graph data. However, defin-
ing convolutions on hypergraphs is challenging. Unlike simple
graphs, a hypergraph has only one loss-free matrix representa-
tion — the incidence matrix B € RVN*FH) To define convo-
lutions that are dimension-preserving, existing hypergraph con-
volutional neural networks [43], [44] project out the hyperedge
dimension in the incidence matrix and use the adjacency matrix
A = BB as the hypergraph descriptor. Such projection, unfor-
tunately, does not provide a one-to-one mapping and can lead
to potential information loss [45], [46]. While HyperGNNSs can
also be formulated using other operations based on the incidence
matrix (e.g., HNHN [47], UniGNN [48]), the rectangular shape
of the incidence matrix hinders the development of spectral
HyperGNNs. As a result, we address the limitations in existing
HyperGNNs by proposing the tensor-based hypergraph learning
convolutional neural networks, coined as t-HyperGLNN, that
exploit the learned hypergraph topology to improve the overall
performance of recently introduced t-convolution neural net-
works (T-HyperGNN) [20]. The update rule of the proposed
t-HyperGLNN is defined as:

D = g(Are™ L XD W T =0,...L—1, (26)
where X! & RN xdO =N and XY & RN xd DX NIM-D
are the input hypergraph signals at the I'" and (I + 1)'" layer,
respectively. W' & R*" xad N s a learnable weight
tensor that has only the first frontal slice with nonzero elements.
The t-product operation A7 » X » W, which compultes lin-
ear weighted sums of neighboring features in the hypergraph
is called the hypergraph t-spectral convolution [20]. An ac-
tivation function o(-) is further applied to the output of the
t-spectral convolution to model nonlinear relationships. More
importantly, different from [20], the normalized adjacency ten-
sor A7, here, is learned from data using either the method
described in Sections 1T or TV. A detailed illustration of the
proposed -HyperGLNN is included in Fig. 7. Compared o
the most recent HGNNs, the novelties of t-HyperGLNNs are
three-fold: (1) Tensor representations of hypergraphs encode
polyadic relationships without reducing hypergraphs to graphs.
(2) The construction of hypergraph signals captures higher-order
interactions among nodes through cross-node multiplications.
(3) The hypergraph topology is learned from data, capturing the
underlying hypergraph topology and boosting the performance
of T-HyperGNN [20], mainly when a hypergraph topology is
not readily available.

V1. EXPERIMENTS

We evaluate the performance of the proposed hypergraph
learning algorithms. First, we consider the case in which a
target hypergraph is known and used as ground truth. Second,
when the ground truth hypergraph is unknown, we measure the
performance of different models on spectral clustering, whose
results solely depend on the hypergraph quality. Lastly, we
demonstrate the benefits of the proposed approach in a critical
real-world application.

TABLET
STATISTICS OF HYPERGRAPHS USED IN EXPERIMENT VI-A
DBLP (UN) DBLP (NUN) Com (UN) Cora (NUN)
TVTH]] an 58 21 61
|E(H))| 22 39 11 48
le| =2 - 17 - 30
le| =3 2 22 11 18

(LN} refers to uniform hypergraphs and (NUN) to non-uniform hypeegraphs.

A. Recovery of Target Hypergraphs

In this experiment, we test both proposed algorithms, TVL-
HGSP and PDL-HGSP, by recovering a target ground truth
hypergraph from a set of smooth signals. The target hyper-
graphs are subsets of uniform and non-uniform co-authorship
networks, Cora and DBLP, where a node is a paper and a
hyperedge is Tormed if a collection of papers are writlen by
the same author [50]. The statistical description of the hyper-
graphs used for this experiment is summarized in Table TI.
Even though each node has features provided by a bag-of-
words model, these signals are not necessarily smooth on the
co-authorship hypergraphs. Consequently, in order to recover
the ground truth co-authorship hypergraph from smooth hyper-
graph signals, we first generate signals that are smooth on this
hypergraph. From a set of Gaussian i.i.d one-dimensional sig-
nals (concatenated column-wise) X = [xy,...,Xxp] € RN*P,
we compute their corresponding set of hypergraph signals
X, € RVNxPxNMT (X3, Xy, ..., Xp] according to Defini-
tion 1. We normalize the Laplacian tensor such that £5"™ =
V& A™™ V1 where A™™ is a normalized diagonal tensor.
The k-th frontal slice of A" is computed in the Fourier domain
as (Amermy(k) — 3t |-LA() Next, using t-HGSP tools, we
filter each of the hypergraph signals according to the Tikhonov
filter hg, (X;) = (1 + ak;) " '. For all the cases, we used 100
signals (PP = 100) and performed a grid search to find the
best parameters for each model. Given that a feasible solution
to recover the hypergraph topology cannot always be found
in prior work on tensor-based hypergraph learning [19], we
choose a recently introduced matrix-based approach, dubbed as
GroupNet [49], as the baseline. In GroupNet [49], a hypergraph
is learned from node signals for a downstream lask, assuming
each node contributes to at least one hyperedge whose internal
nodes are highly correlated. Since we know the ground truth
hypergraph, the metrics of model performance that we use are
precision, given by the fraction of relevant hyperedges (i.e., those
in the ground truth) among the retrieved hyperedges: recall,
given by the fraction of relevant hyperedges that were retrieved:
and the f-measure that is the harmonic mean of edge precision
and recall.

Table 11l summarizes the results for all the different hyper-
graphs. Note that for non-uniform hypergraphs, we not only
compute the f-measure for all the hyperedges with varying
cardinality but also include the f-measure per set of hyperedges
with the same cardinality. Additionally, in Fig. 8, we visually
compared the hypergraph DBLP (UN) results, Our proposed
scalable algorithm, PDL-HGSP, outperforms the other models
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TABLE I
PERFORMANCE OF DIFFERENT MODELS RECOVERING CO- AUTHORSHIP
NETWORKS
GroupNet [49] TVL-HGSP  PDL-HGSP
DBLP (UN)
F-measure 0.8261 0.6250 09130
Precision 0.7917 0.5769 0.8750
Recall .8636 0.6818 09545
# Edges 24 26 26
DBLP
F-measure 04912 0.4950 0.7143
Fomeasure (M=2) 03158 03793 0.6531
F-measure (M=3) 0.6667 06512 0.7755
Precision 0.5278 0.4032 0.5932
Recall 04872 0.6410 0.8974
# Edges 75 62 59
Cora (UN)
F-measure {.B000 0.7619 10000
Precision (.8000 07273 1.0000
Recall 0.8000 0.8000 1.0000
# Edges 10 11 10
Cora
F-mensure 0.6107 05138 0.8000
F-measure (M=2) 0.6575 03611 0.7586
F-measure (M=3) 0.5517 0.8108 08649
Precision 04706 0.4444 0.7755
Recall L.EB69G 06087 0.8261
# Edges 85 a3 49

Fig. 8. Recovery of the ground truth hypergraph, DBLP (UN), from a set of
smooth signals, using: (a) GroupNet [49], (b) TVL-HGSP, and (c) PDL-HGSP.

Hyperedges are color-coded: (green) predicted hyperedges that are also in the GT
hypergraph, (red) predicted hyperedges that are not in GT, and (blue) hyperedges
in the GT that were not predicted. Note how the amount of miss-predicted
hyperedges decreases significantly for the proposed PDL-HGSP model.

in all cases, while TVL-HGSP and GroupNet [49] have similar
performance. This demonstrates not only the effectiveness of
the proposed approaches but also the benefits of the logarithmic
barrier method in PDL-HGSP.

B. Unsupervised Wound Image Segmentation

We also measure the performance of different hypergraph
generation models on spectral clustering, in which results solely
depend on the hypergraph quality. Note that in this case, the
actual ground truth hypergraph is unknown. To this end, we
consider the application of segmentation of wounds which is an
important topic in computer vision and health science. Accurate
wound area measurement is critical to evaluating and managing
chronic wounds to monitor the wound healing trajectory and
determine future interventions. However, manual measurement
is time-consuming and often inaccurate. Hence, wound segmen-
tation from images is a desirable solution to these problems that
not only automates the wound area measurement but also allows
efficient data entry into the electronic medical record of the
patient [51]. Several deep-learning methods have been recently

proposed for wound segmentation. However, these models re-
quire a lot of densely annotated images which can be expen-
sive for the need of wound professionals and are error-prone
(induced by labeling fatigue). Thus, we proposed unsupervised
and weakly-supervised algorithms as an alternative approach
with lower data requirements.

The data used in this experiment was fully annotated by wound
professionals in collaboration with the Advancing the Zenith
of Healthcare (AZH) Wound and Vascular Center, Milwaukee,
WI [51]. As depicted in Fig. 9, the wound input image is first
segmented into super-pixels by the SLIC method [52]. Each
super-pixel represents a homogeneous region from the image
and a node in the hypergraph. As in [53], the features of each
node are obtained from VGGI16 [54], which is a pre-trained
Convolutional Neural Network (CNN). Particularly, for this
experiment, we use the feature maps from the Sth layer. From
the RGB and VGG channels, the pooling feature extractor block
computes the mean, variance, asymmetry, and frequency [55].
Additionally, the centroids of each superpixel were considered,
yielding a total of PP = 642 features. In this experiment, we
used these features to generate different hypergraphs and apply
hypergraphs spectral clustering to segment the wound image as
shown in Fig. 9.

For comparison, we consider the method proposed by Li
et al. [56] and Ahn et al. [57] on hypergraph spectral clus-
tering (HSC) which is based on the eigenspace of what they
called the hypergraph processed similarity matrix. We also
compare our approaches to CP-based and (-HGSP hypergraph
spectral clustering using the hypergraph Fourier space given
by the symmetric orthogonal CP decomposition [15] and the
t-eigendecomposition [16], respectively. For these methods, hy-
pergraphs are not learned, but instead, they are obtained by the
image adaptive neighborhood hypergraph (LANH) model [58].
Additionally, we consider the prior work on tensor-based hy-
pergraph learning [ 19] (CP-learn), and apply spectral clustering
on the estimated hypergraph eigenvectors from data. Finally,
we included the baseline GSP learning algorithms proposed
by Dong et al. [27] (GSP Dong) and Kalofolias et al. [32]
(GSP Kalofolias). Given that the ground truth is available for
the segmentation task, we used traditional classification met-
rics accuracy, F-measure (F1), precision, and recall. Resulls
are depicted in Fig. 10 where we can see that both proposed
methods PDL-HGSP and TVL-HGSP have similar performance
and outperform prior art algorithms. Note that methods with
higher recall, have lower precision, because of the increase in
not only true positives but also false positives.

C. Hypergraph Learning-Convolutional Networks on
Co-Authorship Networks

In this experiment, we used a semi-supervised node classifi-
cation task to demonstrate the benefits of learning the underly-
ing hypergraph topology from data in representation learning
applications which is the inspiration of the proposed hyper-
graph learning-convolutional neural networks (1-HyperGLNN).
As before, we use different subsets of nodes from the co-
authorship networks, Cora and DBLP [50]. The node features
associated with each paper are the bag-of-words representations
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Fig. 9. Pipeline for wound segmentation using both unsupervised (Experiment VI-B) and weakly-supervised algorithms (Experiment VI-D). We used SLIC
super-pixel segmentation, VGG 16, and pooling feature extraction to obtained the signals in X from which we learn a hypergraph. Then, we apply either clustering
(unsupervised) or HyperGNNS (weakly-supervised) to segment the wound in the input image. Note that for HyperGNNS the input image is weakly labeled through

clicks.

PDL-HASP PCT learn GSP Kalcfolins
TVL-HGSP GSF Dong [0 CP TANH
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Fig. 10,  Performance comparison of different hypergraph spectral clustering
methods on wound segmentation.

TABLE IV
Stansncs oF HYPERGRAPHS USED IN EXPERIMENT VI-C
DBLP(N) DBLF(L) Cora(N) Cora(L)
[V{H)| 134 134 70 61
|E(H)| 91 469 54 124
M 3 3 3 3

{N) Refers to natwral hypergrapls that were sampled from cora mtiDBLP
[50] co-authorship networks and (L) refers hypergraphs leamed from the
feature signals using the proposed PDL-HGSP algorithm.

TABLE V
ACCURACY OF HYPERGRAPH LEARNING-CONVOLUTIONAL NETWORKS ON THE
CoRA CO-AUTHORSHIP NETWORKS

Condition  Nawral H  Learned H DELP Cora
[ v X 09259 0.6286
2 X v 08148 05268
3 ' 'l 0.9630 0.7357
Ablation study of -HyperGLNN.

summarized from the abstract of each paper, and the node
labels are classes of papers (e.g., algorithm, computing). Unlike
before, here, we exploil both the natural hypergraph and the
node feature such that the final hypergraph combines both
the natural hypergraph and the hypergraph learned from the
feature signals. The statistics of the natural hypergraphs and
learned hypergraphs used in this experiment are in Table TV, We
compare the performance against t-convolution neural networks
(T-HyperGNN) [20] that only use the natural co-authorship

TABLE VI
TESTING PERFORMANCE OF HYPERGRAPH LEARNING-CONVOLUTIONAL
NETWORKS FOR WEAKLY-SUPERVISED WOUND SEGMENTATION

Metric GroupNet [49]  TANH model [58] PDL-HGSP
Accuracy 0.7666 0.8023 0.8144
Fl 0.7707 0.8096 0.8179

hypergraph. We randomly split nodes into 80% training and 20%
lesting percentages. Nole that this experiment is also an ablation
study that examines the effect of using alearned hypergraph from
data in representation learning applications which is the key
component of the proposed hypergraph learning-convolutional
neural networks (t-HyperGLNN). For this and the following ex-
periments, we only consider, PDL-HGSP, given its performance
and scalability. We used accuracy as the comparison metric
and summarize the results in Table V. Clearly, combining both
the natural hypergraph and the learned hypergraph gives the
best performance. However, a natural hypergraph is not always
available which is the case of the next experiment.

D. Hypergraph Learning-Convolutional Networks for
Weakly-Supervised Wound Segmentation

Next, we revisit the wound segmentation application in
Section VI-B. However, in this case, we consider a weakly-
supervised approach in which clicks on the image are available as
weak signals as shown in Fig. 9. To this end, we randomly sample
10% of the super-pixels of each input image for which we know
the label. Note this task reduces to the same semi-supervised
node classification task as in Section VI-C, Given that a natural
hypergraph is not known, we used the proposed algorithm,
PDL-HGSEP. to learn the hypergraph from the features X. For
comparison, we also consider the hypergraphs generated by
GroupNet [49] and the IANH maodel [58]. We splil the data into
training (40%), validation (20%), and testing (40%). We used the
fully-labeled images in the validation set to tune the parameters
in the PDL-HGSP approach and in the IANH model [58].
Results on the testing set, summarized in Table V1, show that the
proposed method, PDL-HGSP, outperforms the state-of-the-art
approaches. The trained (-HyperGLNN could be further used to
generate pseudo masks and a segmentation network then could
be trained supervised by the generated pseudo annotations [59].
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VII. CoNcLUSION

Two novel tensor-based hypergraph learning algorithms were
proposed under the umbrella of t-HGSP. The proposed method,
PDL-HGSP, outperformed state-of-the-art algorithms while pro-
viding more scalability than TVL-HGSP. Additionally, we pro-
posed hypergraph learning-convolutional neural networks (-
HyperGLNN), which combined the learned hypergraphs with
the recently proposed tensor-hypergraph convolutional neural
networks (t-HyperGNN). We demonstrated the potential of this
work in real-world applications such as wound segmentation.
Given that the current approach does not scale for large hy-
pergraphs, our future work is focused on further improving the
scalability of the proposed algorithms and exploring some of
the myriad possible applications in representation learning and
signal processing.

APPENDIX A
TENSOR-PrRODUCT DEFINITIONS

Definition 2 (t-norm [60]): The t-norm of a vector of tubal
scalars X € MN1%1%Na 4o 4 1 % 1 x Ny tubal scalar and it can

be computed as

- o\ —
X le = (A’ *;t’) — ifft (v’X{*lTX“" peiy [I,S),
@7

where X(%) € RV "1 is the k-th frontal slice of X = fit (X, [], 3).
Definition 3 (Trace of a Tensor): In this paper, we define
the trace of a 3rd-order tensor A € RNt *Mi*Na ' denoted as
trace(.4),asal x 1 x Na tubal scalar and it can be computed
as trace(A) = S°M a,;, where a,; € RV s the i-th
tubal scalar along the diagonal of 4. Alternatively, by consider-
ing the connection with the Discrete Fourier transform:
trace(d) = ifft (tr (A{H) |f;1, 0, 3) \ (28)
where A%} € RNN1 s the k-th frontal slice of A=
fft( A, [|,3) and tr() represents the traditional trace of a matrix.
Definition 4 (Aggregation of a Tubal Scalar): This operation
aggregales the elements of tubal scalar t € R**"*> through
additionas T = aggregate(t) = Y 1, t*) suchthat T € R.
Definition 5 (Trace-Aggregation of a Tensor): By combining
the above definitions, we compule the trace-aggregation opera-
tion of a 3rd-order tensor A € RYN =*N1x<Ns g5 3 scalar, denoted
as traceag(.A). This operation aggregates the resulting trace
tubal scalar as

traceac(.A) = aggregate(trace(.A)). (29)

Definition 6 (Element-wise t-product): The element-wise t-
product of A € R¥1*¥2*Na gpd B & RV *¥2*Na 5 computed
as the element-wise matrix multiplication of each pair of frontal
slices in the Fourier Domain as

2 N Na
C= A+ B:= ifft ([Af*} ® B“‘}L_l 1 3) . (30)

where @ is the Hadamard product also known as the element-
wise product.

Definition 7 (Combination of Tubal Scalars): This operation
combines all the tubal scalars in a tensor. The combination of a
3rd-order tensor A € RN *N2xNa denoted as combine(.A), is
a tubal scalar t € R'*1*"3 obtained as

N1 Nz

t= combine(.,d}zzzt'—l,-.j‘ an
i=1 j=1
APPENDIX B
DETAILED EXPLANATION OF (16)
traceag(X, # Lo+ X)) = 1" T 'vee(t),  (32)
\—q‘,—i'

vec(t)

where vec(t) and vec(t) is the vector form of the tubal scalar t €
RN and its DFT, t € RV M- respectively, and whose
frontal slices are given by

£k — s (ﬁcg*f t{,*})"cg’“l) ‘ (33)

Then, following the properties of the trace, tr(XTLX)1=
\re:c.:(}ﬁ(}(1 )1vec{L}, we have that t*) = vec(XLk}ng] }T
vec[ﬂk]), where vec{f:iﬂ). being the k-th frontal slice of
L, can be computed in terms of vech(L,) as vcc(f;f.k}) =
S K yPevech(L,) where S®) € RN *N*N. jg g selection
matrix that keeps only the k-th frontal slice from vec(L.).
Then, by grouping slice operations, we define a new matrix
C, € RN-*N*N. computed as

.
vec (ﬁi”XE”T) s
: (34)

T

N . T
vec (xg”-Jxﬁ”-’ ) SIN=),

such that vec(t) = C, K yPcvech(L,).

APPENDIX C
DETAILED EXPLANATION OF (18)

traceag(X, = Lo+ Xs) = 1T 1C, Ky Pevech(L,), (35)

S ——

ve(L,)
where vec(L,) can be determined in terms of vech(.A,) as:

vec(L,) = vec(D,) — vec(A.)
= PpRvech(A,) — Pyvech(A,)
= (PpR — P ) vech(A,)
— —

Te

(36)
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where R is a linear operator that satisfies vech(D,) =
Ruvech(.A;) with vech(D;) € EV being the vector-form of the
unique elements of D, Ppand P 4 are matrices that consider the
symmetry of the degree and the adjacency tensor, respectively.
Then, by substituting 36 in (35):

traceag(t, + Lo+ X.) = 1T 1C, Ky Tevech(A,). (37)
Similarly, for the Frobenius norm of the Laplacian:

L)% = vee(L,) vee(Ls) (38)
= vech(A,) T, T vech(A,). (39)
APPENDIX D
DETAILED EXPLANATION OF (22)
aggregate(combine( A, Z,)) = 17 F_IV‘T{B): (40)
\_'\"_’

vec(b)

where vec(b) and vec(b) is the vector form of the tubal scalar
b e R¥*1%Ne and jts DFT, b e RI*1xN. respcclwcly, and
whose frontal slices are given by bk = vec{Zf}] vec{Am)
where vec(A ), being the k-th frontal slice of A,, can be
computed in terms of vech(.A4;) as

vec (}lf,"’) — SMK yP qvech(A,) @1

where $™) € R¥N**N*N- s again a selection matrix that keeps
only the k-th frontal slice from vec(.A4,). Then, by grouping
slice operations, we first define a new matrix J. € RV-*NN.
computed as

vec (ZE”)T S(1)

J. = : \ (42)
YEC (Z{;N' ])T SN
such that \rec( ) in (40) can be substituted by
vec(b) = J. Ky P qvech(A4,). (43)
APPENDIX E

OPTIMIZATION DETAILS AND ALGORITHM FOR MODEL IN (24)

Given that we write the problem as a sum of three functions in
order to fit it to primal-dual algorithms reviewed by Komodakis
et al. [33]:

argmin,_, 4, f(vech(A;))
+ g(Rvech(A;)) + h{vech(A;))

where
f(vech(A,)) = 1{vech(A,) > 0}+ (44)
1T 13, KnyP 4vech(A,). (45)
g(vech(D,)) = —a1'log(vech(D,)), (46)
h(vech(A,)) = Bvech(A,) PP 4vech(4,). (47)

Algorithm 1: Primal Dual Algorithm for Model in (24).

Input: e, 8, v" € B d" € RY 4, tolerancee
fori=1,...,1ma do

vt =vi—4(28P Pyv' + R'dY)

¥t = df +4(Rvi)

p' = max(0,y* — 7(1'T "I, KyP4)')

Pl = (v +/(¥')2 +4va)/2 Delementwise
q' = p' — (2P P4p' + R'p')

§ = ' +7(Rp')

vi =vi_yi+qi;
d! — d'! _Fl+q1;
it vt — v H|/]lvi | < e and
|ld* —d* H|/[|d* || < € then
break
end il
end for

Hence, [ and g are functions for which we can efficiently com-
pute proximal operators, and h is di ﬂ'erenll able with a gradient
that has Lipschitz constant { = 2;3||PAP_4 |. R is alinear opera-
tor, so g is defined on the dual variable vech(D;) = Rvech(.A.).
To obtain a primal-dual algorithm for our model (Algorithm 1),
we need the following:

.
prox, ¢ () = max (O‘y — A (IT[“IJ;KNPA) ) s
Wi+ \fy.? + i

2 ?
Vh(vech(A,)) = 28P P 4vech(A,),

¢ = 28PLP 4|l
(01}

T

(prox,,(v)), =

PP =

where ¢ is the Lipschitz constant of the gradient of h. Tn
Algorithm 1, the parameter 4 € (0,1 + ¢ + ||R||2) is the step-
size.
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