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Humans and other animals are able to perceive and represent a number of objects present in a scene, a core
cognitive ability thought to underlie the development of mathematics. However, the perceptual mechanisms
that underpin this capacity remain poorly understood. Here, we show that our visual sense of number derives
from a visual system designed to efficiently encode the location of objects in scenes. Using a mathematical
model, we demonstrate that an efficient but information-limited encoding of objects’ locations can explain
many key aspects of number psychophysics, including subitizing, Weber’s law, underestimation, and
effects of exposure time. In two experiments (N = 100 each), we find that this model of visual encoding
captures human performance in both a change-localization task and a number estimation task. In a third
experiment (N = 100), we find that individual differences in change-localization performance are highly
predictive of differences in number estimation, both in terms of overall performance and inferred model
parameters, with participants having numerically indistinguishable inferred information capacities across
tasks. Our results therefore indicate that key psychophysical features of numerical cognition do not arise
from separate modules or capacities specific to number, but rather as by-products of lower level constraints

on perception.
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Numerosity perception has been studied for at least 150 years
(Jevons, 1871), and its psychophysics has been well characterized
by experimental work (e.g., Dehaene, 2011; Feigenson et al., 2004;
Jevons, 1871; Kaufman et al., 1949; Revkin et al., 2008). However,
a basic unresolved question is whether the behavioral patterns found
in estimation result from numerical processing itself or from the
perceptual processes that feed into numerical perception. In the first
case, people may possess a “number system” that itself is the origin
of the phenomena seen in behavioral tasks involving number, such
as Weber’s law and underestimation. For instance, the noise and bias
observed in numerical estimation might arise from a sampling
process in which numerical information is extracted from visual
representations, rather than from noise inherent to visual
representations themselves (Dehaene & Changeux, 1993; Heng et

al., 2020; Woodford, 2020). Alternatively, such phenomena may
emerge as a consequence of more general visual processes, which
precede numerical estimation and indeed feed into it (Anobile et al.,
2020; Stoianov & Zorzi, 2012; Testolin, Dolfi, et al., 2020; Trick &
Enns, 1997; Zorzi & Testolin, 2018). Under this latter hypothesis,
the psychophysics of number in vision could result from constraints
inherent to visuospatial memory, and then we would expect people’s
behavior in nonnumerical visuospatial tasks to show equivalent
hallmarks to those seen in estimation. Suggestive of this possibility,
a host of studies have found that perception of numerosity—both in
the estimation and subitizing ranges—is strongly influenced by
purely visual factors such as item arrangement (Anobile et al., 2020;
Atkinson et al., 1976; Ginsburg, 1976; Krajcsi et al., 2013; G. S.
Starkey & McCandliss, 2014; Trick & Enns, 1997; Yang & Chiao,
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2016), eccentricity (Palomares et al., 2011), presentation time
(Cheyette & Piantadosi, 2019, 2020; Inglis & Gilmore, 2013), color
contrast (Cheyette & Piantadosi, 2020), and the entropy of
nonnumeric features (DeWind et al., 2020; Qu et al., 2022).

Our goal in this article is to formalize and test the relationship
between visuospatial memory and the perception of quantity to
determine whether the properties observed in the number literature—
including exact perception of small quantities, scalar variability for
larger quantities, and sensitivity to presentation time—result from
more general mechanisms of the visual system. If a model of basic
visuospatial processing fit to a nonnumerical task recovers the
hallmarks observed in visual number psychophysics, this would
suggest that features of number perception should really be
considered artifacts of basic vision rather than the number itself.
Conversely, if features of numerical perception are not latent in a
nonnumerical visual memory task that uses the same stimuli, they
have to be the result of specifically numerical processes.

We develop a computational model of bandwidth-limited scene
memory, which forms beliefs about where individual objects exist in
space; these beliefs can then be straightforwardly converted into
beliefs about the number of objects in that scene (i.e., by summing
over beliefs about where objects are in the scene). This approach
builds on recent neural network models that exhibit some numerical
properties as a consequence of imperfectly representing a scene
(Kim et al., 2021; Stoianov & Zorzi, 2012; Testolin, Dolfi, et al.,
2020; Testolin, Zou, et al., 2020; Zorzi & Testolin, 2018), but here
we derive the optimal form of this representation and empirically
test the predictions of the optimal model. We show that even though
the model is explicitly optimized only to detect and remember the
presence of objects in various locations, the resulting probability
distributions over numerosities closely match known properties of
number psychophysics, including both subitizing and Weber’s law.
Notably, although the model represents a probability distribution
over discrete individuals, it behaves like an “analog magnitude
system” (Carey, 2009; Gebuis & Reynvoet, 2012; Lourenco &
Longo, 2010) when its information capacity is exceeded.

Our account is closely related to the fingers of instantiation model
of spatial indexing developed by Pylyshyn (1989), and later
expanded by Trick and Pylyshyn (1993, 1994), who proposed that
subitizing is the result of a limited-capacity, parallel process for
individuating objects in space. On their account, there is a
preattentive visual mechanism for selecting items in space, akin
to “pointers,” which automatically picks out items’ locations in
space before feature-binding occurs; the limited number of available
pointers for indexing corresponds to the subitizing limit. However,
their stated goal was to distinguish subitizing from counting to
explain response time differences in exact enumeration (Mandler &
Shebo, 1982). They did not have an explanation for how people
inexactly, but still extremely quickly (Inglis & Gilmore, 2013),
approximately quantify larger sets. Our own proposal can be
thought of as a formalization and extension of their fingers of
instantiation model to cover both small and large cardinalities.
However, rather than assuming that individuation works with a fixed
and discrete set of pointers, we assume instead that there is a limited
amount of information available in early vision for individuating
and tracking items’ locations in space that can be expended as a
continuous resource (Alvarez & Franconeri, 2007; Ma et al., 2014,
Van den Berg et al., 2012; Vul et al., 2009). There is thus a fluid
transition from the regime of exact representation of items’ locations

when individuating small sets to approximate representation of
items’ locations when individuating larger sets, and the model
recovers subitizing and inexact estimation (Weber’s law) as
emergent properties of the same system below and above a capacity
bound.

This approach is also an extension and reconceptualization of our
previous work showing that a single system can account for the
discontinuity in estimation ability at four (Cheyette & Piantadosi,
2020). The key idea in that article was that an efficient encoding of
number, using at maximum some number of bits of information, will
prioritize representations of small numbers at the expense of large
numbers because people tend to need to represent small numbers
more frequently (Dehaene & Mehler, 1992; Piantadosi & Cantlon,
2017). That work therefore derived exactness for small numbers
(e.g., subitizing) and approximation for large numbers by solving a
single, unifying optimization. However, it did not explain the key
step of how numerosities are actually computed from visual input. In
fact, this model assumed that, all else being equal, small and large
numerosities are equally easy to perceive—their differing behav-
ioral signatures being solely a matter of frequency of use. Here, we
use a similar formal approach to Cheyette and Piantadosi (2020)
but apply it to the visual processing that precedes numerical
representations rather than to the number itself.

The resulting model makes predictions about the psychophysics
of spatial memory and numerosity perception, and how they should
covary as a function of an information-processing capacity limit
in visual memory. The model predicts that people’s ability to
remember the locations of objects in space will be near-perfect for
small groups but will degrade proportionally with the number of
objects in the scene for larger groups. The model additionally
predicts that when there is less available visual information (e.g.,
given shorter exposure time), people will become increasingly
unable to precisely remember the locations of even small groups of
objects. We can likewise derive predictions about the psychophysics
of numerical estimation as a function of cardinality and information
capacity, when the output of this bandwidth-limited system is used
as input for numerosity estimation. Many of these predictions have
been observed previously. Specifically, the visual model predicts the
following: (a) exact or near-exact estimation of small sets (e.g.,
Jevons, 1871; Kaufman et al., 1949; Mandler & Shebo, 1982); (b) a
subitizing range that increases as a function of display time (Cheyette
& Piantadosi, 2020; Haladjian & Pylyshyn, 2011; Mandler & Shebo,
1982); (c) roughly normally shaped response distributions for
estimation (e.g., Nieder & Dehaene, 2009; Pica et al., 2004); (d)
increasingly noisy estimation (scalar variability) for larger sets (e.g.,
Dehaene, 2011; Feigenson et al., 2004; Jevons, 1871; Nieder &
Miller, 2004; Xu & Spelke, 2000); (e) estimation acuity that increases
with display time (Alonso-Diaz et al., 2018; Inglis & Gilmore, 2013);
and (f) an underestimation bias for large sets (Izard & Dehaene, 2008;
Mandler & Shebo, 1982) that diminishes with increased display time
(Cheyette & Piantadosi, 2019).

To test these predictions about visuospatial memory and
numerical perception, we ran two preregistered experiments': a
change-localization task to probe participants’ memory for the
locations of objects (Experiment 1) and a numerical estimation task
(Experiment 2). In both experiments, we manipulated the amount of

! The preregistration of the model and both experiments can be found at
https://osf.io/vgm65/.
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information available to participants by varying the exposure time of
the presented objects. We found that participants’ ability to
remember the locations of objects—both for different exposure
times and for different numbers of objects present—predicts the
observed psychophysics of number under analogous conditions. A
replication of these experiments using a within-subjects design
(Experiment 3) found that individual differences in performance on
the change-localization task were strongly predictive of individual
differences in number estimation, with high correlations in model
parameters inferred separately from participants’ change-
localization and numeric estimation data. Since the patterns of
bias and noise observed in numerical estimation can be predicted
from the uncertainty people have about items’ locations in space,
this indicates that the psychophysics of number are governed by
limits of visuospatial memory, rather than processing specific to
quantity itself.

Model

The model aims to capture how an idealized, information-limited
perceptual system would perform assuming its goal is to accurately
represent the locations of objects in a scene. Although this formalizes
the idea of object memory—not specifically numerical estimation—it
implicitly encodes cardinality since its output is beliefs about the
objects present in a scene. For a given, observed scene containing
objects s, we will consider the probability distribution Q(s'|s), giving
the system’s belief that s was observed instead of s. We analytically
derive an optimal form of Q, by specifying three components: (a) a
prior distribution representing how likely the model is to encounter a
given scene a priori, (b) a loss function representing how good or bad
a given representation of the scene is, and (c) an information capacity
bound, representing the maximum allowable information processing.
These three elements define a constrained optimization problem,
which can be solved to determine the optimal psychophysical
distribution Q(-|s), corresponding to the optimal perceptual system.
This method is not identical with, but is somewhat analogous to,
Bayesian inference that begins with a prior distribution and combines
it with evidence to produce a “posterior” distribution; the key
difference is that the shape of the “posterior” Q(-|s) is not derived
from Bayes rule, but rather from minimizing the loss function (a)
subject to an information bound (b).

Figure 1 illustrates the basic setup, assuming for the sake of clarity
that there are only four possible object locations (or pixels). When a
person sees a particular scene, they encode a probability distribution
over each possible arrangement of objects, which is a weighted
combination of a prior for small numbers and how well the
representation matches their observation (akin to a likelihood). This
probability distribution can, in turn, be converted into a probability
distribution over numerosities by summing the probabilities of
each scene with a given number of objects. One key simplifying
assumption we make in modeling this setup is that spatial memory
encodes the presence or absence of objects in various locations as a
discrete matrix. In other words, we assume that visuospatial memory
represents a matrix with M black and white pixels to specify where
there are objects (and where there are not). We further assume a prior
on binary matrices where the number of 1’s in a matrix matches
the naturalistic frequency of a given number. Specifically, the
naturalistic frequency of a number n follows a nlz law, where
n represents cardinality (Dehaene & Mehler, 1992; Piantadosi &
Cantlon, 2017). There are IZ) matrices with cardinality n, so a
given matrix s with cardinality n has prior P(s) o 1 / <n2 . (?:))

When shown the matrix s, we assume the model’s goal is to
represent s with as high fidelity as possible, remembering whether an
object was present at each row i and column j, s;;. We define a loss
function L(s, s") specifying how closely a matrix s’ matches s or how
costly it would be to represent s with s’. Representations s’ that have
a high degree of overlap with s will have lower penalties and those
with less overlap will have higher penalties. We will assume that the
loss function L(s,s’) is proportional to some (perhaps unequal)
combination of the proportion of false negatives, P(s}; = Ols; = 1),
and the proportion of false positives, P(sj; = 1|s; = 0):

L(s,s") =a- P(sj;=0[s; = 1)

+ (1 —a)- P(sf; = l]s; =0), 1)

with o as a weighting parameter, where 0 < a < 1. The reason we
separate the contribution of false negatives and false positives here
is that it is natural to think that the visual system might care about
one more than the other. There are, of course, other plausible loss
functions, which in fact give qualitatively similar results (see

Figure 1
Conceptual Illustration of the Model
(N
[ ]
mmtmn sntem Entem
o o o0 o [ I J [ J o0 00 O o 00
[ J [ J [ ( J [ J ® 060 O ® 060 00 00
N I, J\ S
Y W Y )
P(1) = 0.22 P(2) =0.24 P(3)=0.48 P(4) =0.06
Note. 1In this example, a person sees a scene with three objects, which is represented as a probability distribution

over all possibilities of what she saw. Possible arrangements of objects are grouped by numerosity, shown as
different colors. To get the probability of a numerosity &, the model simply sums the probability of all possible
scenes with numerosity &, highlighted at the bottom. See the online article for the color version of this figure.
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Supplemental Materials)—though we note that the form of this loss
function was preregistered.

Given a loss function and prior, we now seek a function Q(:|s)
that minimizes the expected loss between possible inputs s and
representations s’, corresponding to the “best” representation
possible. If the set of possible scenes is S, the expected loss is

E[L(s,8)] =Y P(s)Y_Q(s]s) - L(s.5). )

SES ses

Unconstrained, the function Q(+|s) that minimizes the expected loss
would simply correctly encode the scene,

1, ifs'=s
0, otherwise.

ot = { @)

However, cognitive systems are constrained by the amount of
information they can process over a given span of time. We
incorporate this constraint into the model as a bound on the
maximum allowable Kullback—Leibler divergence (KL diver-
gence) between the prior distribution P(-) and resultant
distribution Q(-|s) over displays. The KL divergence here
represents the amount of information in bits needed to represent
the resultant distribution Q(:|s) starting with the distribution P(-),
which is equivalent to the total amount of information processing
required. Given an information bound B, we then have the
constraint on KL divergence from P(-) to Q(:|s), often notated

Dy, [O(-[)IIP()],

O(s's)
P(s)

ZQ(S’M - log <B VseR. 4)

s'eR

Using the method of Lagrange multipliers (see Supplemental
Materials), we can derive an analytic solution to maximize accuracy

while keeping the information processing below the information
bound B,

0st) xPls) - enp( -5 £, )

s

for A, chosen to satisfy (Equation 4) for each scene s. Note
that there is a unique A, that satisfies the information-bound
constraint for a given scene s and information bound B, which we
approximate using numerical methods (see Supplemental Materials
for details).

To illustrate how the model works—and the role of the
information capacity bound and the loss function parameter o—
we generated predictions at different information capacity bounds
and with different values of a, assuming a 7 X 7 grid of possible
object locations (as will be used in the eventual experiments). The
top row of Figure 2 shows the rate at which the model falsely
believes an object was in a particular location (a “hallucination”)
when there was no object there; and the bottom row shows the rate at
which the model does not encode an object that was present at a
particular location. These predictions are broken down by number
(x-axis), information capacity bound (color), and o (columns). The
rates of false negatives and false positives increase as a function of
quantity at each information capacity bound, reflecting both the
decreasing prior over numerosities and the fact that there are more
ways to arrange more numerous sets in the range shown. Also
apparent is that the model saturates in performance for small
quantities when the information bound is high, meaning that it can
veridically recall the scene it viewed when there are only a few
objects. Finally, this figure illustrates the role of the loss function
parameter, a, in controlling the relative cost of hallucinations (top
row) versus missing an object (bottom row): as o increases, the ratio
of false negatives to false positives increases as well.

Figure 2
Model Predictions for Errors in Spatial Memory
a=0.15 a=0.3 o=0.45

¢ 05 — 16 bits
=04 — 24 b!ts
g 03 32 bits
g 0.2
g o1 //—/—
o 0.0 e —
205
© 04
8 03
c
o 0.2
n
a 00

5 10 15 5 10 15 5 10 15

Number shown

Note. Model predictions for the probability of falsely believing that an object was in a particular
location (top row) and falsely believing that there was not an object in a particular location (bottom).
The predictions are broken down by quantity (x-axis), information capacity bound (color), and the loss-
function parameter o that specifies the cost of false positives relative to false negatives (columns). See

the online article for the color version of this figure.
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Critically, the model’s probability distribution over possible object
arrangements s’ can be converted into a probability distribution over
the total number of objects. Figure 3 shows the implicit distribution
(y-axis) of numerical estimates (x-axis) for each number 1-15 (lines),
at the same information bounds given in Figure 2 (rows). This visual
memory model exhibits several key properties of number psycho-
physics, most notably a transition from exactness to scalar variability.
The precise point of transition, as well as the acuity of estimation, is
determined by the information bound, as in Cheyette and Piantadosi
(2020). We show in Supplemental Materials that the model transitions
from subitizing to Weber’s law specifically (ratio-dependent
discrimination ability). The other variable highlighted in this figure
is the loss function parameter a (columns). At low values of a, it is
very costly to falsely believe that there was an object present
somewhere that there was not (i.e., to hallucinate), so the model
predicts very few false positives but has many false negatives—this is
true even for small sets under a low information capacity regime. On
the other hand, as « increases, it is more costly to miss an object that
was present somewhere, which results in less underestimation—and
increasingly even overestimation of small quantities.

As Figures 2 and 3 show, there are a range of possibilities for
exactly how visuospatial memory and numerical estimation can
behave under the model, since the information capacity bound and «
are free parameters. Some information capacity bounds would
predict veridical estimation up to 20 objects and others would
predict no subitizing range at all. Similarly, some values of o predict
a bias toward missing objects that were present rather than
hallucinating and hence predict underestimating the quantity of
observed sets; other values of o predict a bias toward hallucinating
rather than missing objects and hence predict overestimating the
quantity of observed sets. If this model is correct, then the
psychophysics of number are essentially latent in visuospatial
memory—and probing visuospatial memory in a nonnumeric task
should allow us to recover key properties of number representations.

Figure 3

Experiment 1

The goal of Experiment 1 is to understand how visuospatial
perception is modulated by processing time and the number of objects
in a scene. Our visual model predicts that, given sufficient processing
time, participants should be able to remember the locations of small
groups of objects with high fidelity but become increasingly
inaccurate for larger numerosities, which accords with basic intuition
and previous findings (Alvarez & Franconeri, 2007; Vul et al., 2009).
With only limited processing time, however, participants should
become increasingly incapable of localizing even small groups, and
the disparity in performance between smaller and larger groups
should decrease, as illustrated in Figure 2. In addition to testing
whether localization is well explained by the model, by fitting the
information bound and loss parameter o to data gathered from a
nonnumerical human spatial memory task, we can test whether the
inferred parameters are consistent with the psychophysics of number
(Figure 4).

Method

Experiments 1 and 2 were preregistered using the Open Science
Framework at https://osf.io/vgm65/. The code for the model and the
data collected were also preregistered at https://osf.io/vgm65/. The
method, data exclusions, and analyses were all preregistered except
where explicitly noted.

Participants

We recruited 110 registered users of Prolific, an online psychology
experiment platform. Participants were 18 years old or older, fluent
English speakers, and physically present in the United States based on
prescreening questions. Each participant who completed the task
received compensation of $3. Both experiments were approved by
the university’s institutional review board and complied with all

The Implied Number Psychophysics From Spatial Memory

a=0.15

a=0.3
1.0
0.5 l ’g:
P S— [ —_— S

224

a=0.45
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N
o
=
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o
=
w

5 10 15 5

10 15

Mental representation of number (k)

Note. The implied psychophysics of number from the model of spatial memory at different values of
o (columns) and information capacity bounds (rows). Each line shows beliefs (Q(k|n)) over estimates

(k) given numbers n =1 ...

15. See the online article for the color version of this figure.
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Figure 4
Hllustration of Experiment 1

2. Cells filled
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1. Fixation cross
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Note.

3. Noise mask

4. Cells changed

(600ms) (until response)
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Oo0ooooao
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Please click the cell that turned from white to gray.

Participants were first shown a fixation cross, followed by a 7 X 7 grid with some of the cells (1-15) filled in gray. A noise

mask then appeared after a short time (50 ms, 150 ms, or 450 ms). In the final step, participants were shown a display identical to
the one shown previously except for a single cell—one of the previously gray cells either turned white (“disappearance”) or one
of the previously white cells turned gray (“appearance”). Participants tried to guess which cell had changed. See the online article

for the color version of this figure.

relevant ethical regulations. Informed consent was obtained from all
participants before beginning the study. Following the preregistra-
tion, we removed the 10 participants with the highest error rate from
our analyses. Based on pilot studies and previous work (Cheyette &
Piantadosi, 2020), we believed the sample size included for analysis
(100 participants X 90 trials per participant = 9,000 data points)
would be sufficient to determine model parameters within a small
interval.

Materials

The experiment was designed in JavaScript using the psiTurk
framework (Gureckis et al., 2016). There were 49 grid cells (7 X 7),
with each grid cell 35 px® and an equal margin separating the cells.
Unfilled grid cells were white and filled grid cells were gray with hex
color No. AOAOAO. When a cell was clicked in the task, its border
was bolded and turned red. The noise mask was multicolored static
and had a size of 455 px” to cover the entire grid.

Design

There were four within-subject variables manipulated in the
study: the number of cells filled (1-15); the exposure time of the
displayed pattern (50 ms, 150 ms, 450 ms); and the direction of
the changed cell from the first to the second presentation (white-to-
gray or gray-to-white). Each multiple of number, time, and direction
was shown exactly once, for a total of 15 X 3 X 2 = 90 trials. The
initial direction of the changed cell was randomly chosen and then
remained constant for the first 45 trials, with the last 45 trials
assigned to the opposite direction. Within that constraint, the order
of the trials was randomized, that is, number—time pairs were
assigned randomly within each direction of change. The positions of
the filled cells were chosen randomly on each trial. If the direction of
change was white-to-gray, a random white cell from the initial
exposure would turn gray on the second presentation; conversely, if
the direction of change was gray-to-white, a random gray cell would
turn white.

Procedure

After providing consent and reading instructions, participants
began the first section of the experiment. Both halves of the
experiment—the white-to-gray section and gray-to-white section—
started with three practice trials. Participants were informed in both
the practice trials and the main task whether a cell would be
changing from white to gray, or vice versa. Each trial started with a
fixation cross displayed on the center for 1,000 ms, followed by the
grid with some cells filled in 50450 ms, and then a noise mask for
600 ms. Then, the grid reappeared, with one modified cell. Subjects
then clicked the cell they thought changed color and proceeded to
the next trial. The basic setup is illustrated in Figure 2.

Results

We first ran a logistic regression predicting participants’
accuracy from the number of gray cells, exposure time, and trial
type (“appear” or “disappear”), which revealed significant effects
of all three. There was a negative effect of the number shown (B =
—0.25, z = —38.6, p < .001), such that more gray cells decreased
accuracy, a positive effect of exposure duration (B = 3.08, z=20.3,
p < .001), and an effect of trial type such that participants
performed better on trials where a cell appeared than disappeared
(B =0.64, z=12.5, p <.001). The intercept was also significant
(B = 1.65, z = 24.3, p < .001). Note that these analyses were
performed post hoc (not preregistered) and run at the request of a
reviewer.

We next fit the model to the data. To fit model parameters, we
assumed that the information bound changes as a function of time
according to a power law B=a - t*, where a and k are free
parameters and ¢ is exposure time in seconds. The other key
parameter of the model is the weighting parameter in the loss
function «, capturing the extent to which false negatives (high a) or
false positives (low a) are more costly. To account for attention
lapses and mis-presses, we also included a guessing-rate parameter,
Dg» Which captured the rate participants chose randomly from the set
of valid alternatives (as opposed to via the model). We fit parameters
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under a hierarchical Bayesian model using Markov Chain Monte
Carlo, assuming partial pooling of parameter estimates across
participants (see Supplemental Materials).

The maximum a posteriori (MAP) estimates for the group-level
parameters were a = 33.5 (CI [32.2, 34.6]), k = 0.21 (CI [0.20,
0.22]), pg = 0.16 (CI [0.12, 0.19]), and o = .35 (CI [0.33, 0.37]).
This entails information bounds of 17.9, 22.5, and 28.3 bits at 50 ms,
150 ms, and 450 ms, respectively. The relatively high inferred rate of
guessing likely reflects the fact that the model does not account for
spatial errors, treating each cell independently. Figure 5a shows
the model’s predicted accuracy (x-axis) against human performance
(y-axis) across all exposure durations (facets). Comparing the points
to the dashed y = x line reveals that the model’s predictions tightly
align with human accuracy across exposure durations, though the
model is slightly biased to overestimate human performance at short
times (left facet). The correlation between model predictions and
human data across trials grouped by numerosity and exposure
duration was 0.96 (R* = 0.93), another indication that the model
provides a good fit to the data.

In line with participants, the model predicts near-veridical
memory for visual displays with small numbers of objects, at longer
exposure durations, and sharply increasing noise for larger numbers
of objects and shorter durations. Figure 5b shows human accuracy

(points and error bars), the model’s predicted accuracy (lines) as a
function of the total number of cells filled in, grouped by the
exposure duration (colors). As predicted by the model, participants’
performance saturates only for small numerosities at longer
durations and quickly degrades as a function of number in each
duration. The one notable discrepancy is that the model predicted
better performance on small numerosities (n < 4) at 50 ms than was
actually observed. Figure Sc depicts accuracy grouped by whether a
cell appeared or disappeared from the first to second display and
shows that participants performed substantially better on “appear”
trials than “disappear” trials—a trend the model captures. The model
would capture this trend even if a was fixed to 0.5, and in fact, higher
values of o exaggerate rather than reduce the gap between “appear”
and “disappear” trials.

To be clear, the fact that human performance on the change-
localization task is strongly affected by numerosity is not an
indication that the visual system is representing or using number. In
fact, the experiment was explicitly designed so that number could
not be used as a heuristic: Participants always knew that there was
either one more gray cell on the second display than the first display
(on “appear” trials) or one fewer (on “disappear” trials). Instead, the
effect of numerosity on performance is an indication that spatial
memory is making use of limited information in an efficient way,

Figure 5
Model Predictions and Data From Localization Task (Experiment 1)
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(a) Binned (25 bins/facet) model predictions (x-axis) and human data (y-axis) of performance on the change-

localization task. Each facet shows predictions at different exposure durations. In (b) and (c) model, predictions are
shown as lines, and human data from the change-localization task are shown as points with bootstrapped 95%
confidence intervals. (b) Accuracy (y-axis) in the change-localization task as a function of the number of grid cells
filled (x-axis) at each exposure duration. (c) Accuracy (y-axis) as a function of number (x-axis) grouped by whether
or not a cell appeared or disappeared from first-to-second presentation. See the online article for the color version of

this figure.
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combining a prior expectation that there will be fewer gray pixels
than white pixels with evidence gathered by observing the scene.
Additionally, the inability to precisely remember scenes with more
filled cells is a reflection of the fact that there are more ways to
arrange scenes with more filled cells (up to half the number of grid
cells), meaning that it takes more information to represent any one of
them precisely.

Experiment 2

While Experiment 1 showed that the model is able to account for
effects of number and exposure duration in spatial memory, it does
not answer the question of whether human numerical estimation
abilities arise from this same system. The goal of Experiment 2 is to
replicate previously reported properties of number psychophysics
and to test whether the model is able to capture these effects as well.
If the patterns of noise (zero uncertainty then Weber’s law) and bias
(underestimation) in estimation derive from limitations in spatial
memory, then the model of spatial memory should be able to explain
the psychophysics of estimation at exposure durations (i.e., across
different information capacities in visual memory); moreover, we
should be able to recover similar parameter values from the model fit
to a numerical estimation task as from the model fit to a spatial
memory task. Alternatively, to the extent that the psychophysics of
estimation derives from processing constraints that are independent
of spatial memory, the visual memory model should not capture the
psychophysics of estimation and the parameters recovered from
model fitting should differ from those inferred in Experiment 1. To
test these predictions, we ran a number estimation task with a design
matched to Experiment 1.

Method

The procedure and display were identical to Experiment 1 up to
the noise mask. After the noise mask, however, participants were
asked to estimate the number of cells that were filled by typing a one-
or two-digit numeric estimate into a text box. One hundred ten
adult participants from Prolific again completed 90 trials, with each
number (1-15) paired with duration (50 ms, 150 ms, 450 ms)
displayed twice. Following the preregistration, we removed the 10
participants with the highest mean absolute error in estimation from
our analyses and winsorized estimates to the 95% interval for each
numerosity.

Results

We first ran linear regressions to predict participants’ signed error
(bias) and absolute error from the number of gray cells shown and
the exposure duration. We found significant effects of both
predictors in both cases. For signed errors, there was a positive
intercept (B = 0.89, t = 16.5, p < .001), a negative effect of the
number of gray cells (B = —-0.22, t = —-43.69, p < .001), and a
positive effect of exposure duration (B = 0.72, t = 5.76, p < .001).
This means that participants slightly overestimated small quantities
at short exposures but increasingly underestimated larger quantities,
and it means that the underestimation bias diminished with
increasing exposure duration. For absolute errors, there was a
negative intercept (B = —0.17, t = -4.59, p < .001), a positive effect
of the number of gray cells (B = 0.26, t = 76.64, p < .001), and a

negative effect of exposure duration (B = -24.22,t = -24.22, p <
.001). This means participants became less accurate at estimating
larger quantities and more accurate with longer exposures.

We fit the same parameters in the model with the estimation
data as with the change-localization task. The MAP group-level
parameters were a = 32.9 (CI [30.9, 33.8]), k = 0.18 (CI [0.17,
0.20]), p, =0.03 (C1[0.02, 0.03]), and o = .31 (CI[0.29, 0.32]). The
implied average information bounds are therefore 19.2, 23.4, and
28.5 bits at 50 ms, 150 ms, and 450 ms, respectively. This is slightly
higher than the estimates derived from the change-localization task
data, but the differences at each exposure duration are small (<10%).
Table 1 provides a side-by-side comparison of the inferred MAP
parameters from both experiments. A notable difference between the
inferred parameters between the two tasks is the guessing rate,
which is much lower than in the change-localization task. As noted
previously, however, the relatively high guessing rate in the change-
localization task is likely due to the fact that the model does not
account for spatial errors or mis-presses (only completely random
guessing)—this would increase the inferred rate of guessing in the
change-localization task but not the estimation task.

The resulting psychophysical curves from the model (lines),
along with the data from the experiment (points and error bars), are
shown in Figure 6. The model captures the key psychophysical
trends observed in the data: an underestimation bias that diminishes
with exposure time; a subitizing range that increases with exposure
time; scalar variability in estimation; and acuity in estimation
that increases with exposure time. The nonzero but flat standard
deviation for small numerosities in Figure 6b reflects the influence of
guessing—without the guessing parameter it would show zero
variability. The model predictions diverge somewhat from human
performance on small numerosities (n < 4) at 50 ms—the model
predicts better performance than is actually observed. An analogous
discrepancy was observed in the change-localization task (also for
n < 4 at 50 ms). It is possible that this occurs because the model
assumes that participants each have a fixed guessing rate, when in
fact people may be more likely to miss a display altogether at short
exposure durations (e.g., if they are blinking).

Following the preregistration, we compared the model’s
maximum likelihood estimate (MLE) parameters for each subject
to a standard psychophysical model of numerical estimation
(Weber’s law), as well as a modified one that accounts for the
effects of time. The overall log likelihood of the model using MLE
estimates of participants’ parameters was —14,129. In the first
comparison model, we assume that participants’ estimates are drawn
from a Gaussian centered around the number shown, n, with mean n
and standard deviation w - n, where w is a free parameter (their
“Weber fraction”). We also fit a version of this where the standard
deviation could vary as a function of time, such that w = e"o+t"?,
where wg and w are fit and ¢ is time in seconds. The median MLE w

Table 1
MAP Parameters From Experiments 1 and 2

Experiment a k o Pg
Localization (E1) 33.5 0.21 35 0.16
Estimation (E2) 32.9 0.18 31 0.03
Note. MAP = maximum a posteriori; E = experiment.
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Figure 6

Model Predictions and Data From Estimation Task (Experiment 2)
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Note. (a) Mean estimates as a function of numerosity, grouped by exposure duration. (b) Standard

deviations as a function of numerosity, grouped by exposure duration. Data is shown as points with
95% confidence intervals; the model fit to the human data shown as lines. See the online article for the

color version of this figure.

fit in the static (non-time-varying) version was 0.24, with log
likelihood —16,166. In the time-varying version, the median MLE
wo was —1.15 and w, was —1.75, giving w’s of 0.29, 0.24, and 0.15
at 50 ms, 150 ms, and 450 ms, respectively, and had log likelihood
—15,428. The Weber models thus did not fit nearly as well as our
model, with Akaike information criterion differences of 3,974 and
2,498 (we preregistered Akaike information criterion differences of
10 as “significant”).

Experiment 3

Experiments 1 and 2 demonstrate that a single model can fit human
psychophysics of both a spatial localization task and a numerical
estimation task. Furthermore, both the inferred parameters and the
amount of information participants were inferred to have about the
spatial locations of black dots and the number of black dots was
numerically very close at each exposure duration, highly suggestive
of a shared representational capacity and a common process.
However, because Experiments 1 and 2 were between subjects, the
most we can say is that the average parameter values recovered from
both tasks are numerically close. To further assess whether there is a
common process underlying both spatial localization and numerical
estimation—and that our model provides a good account of that
process—we ran a within-subjects experiment testing participants on
both tasks. To the extent that participants’ performance covaries
across tasks and that this correlation is explained best by model
parameters (other than participants’ inferred guessing rate) in each
task, this would provide stronger evidence of a common process.”

Method

We again collected data from 110 adult participants from Prolific,
where each participant completed both the estimation task and the
change-localization task. This was divided into three phases consisting
of 45 trials each (135 total): Phase 1 was an estimation task identical in
method to Experiment 2, except for half the total number of trials;
Phase 2 was the change-localization task where a black cell always
appeared between displays; and Phase 3 was the change-localization

task where a black cell always disappeared (turned white) between
displays. Phases 2 and 3 are identical in method to Experiment 1,
except for that the order of appear and disappear trials was fixed.
As in the previous experiments, we removed the 10 lowest
performing participants, which this time was determined as the five
participants with the highest average absolute error on the
estimation task and the five participants with the highest average
error on the localization task (after removing the first five).

Results

We first ran a regression predicting participants’ mean accuracy
across all trials in the estimation task from their mean accuracy in the
localization task, which revealed a strong correlation, r = 0.63 (p <
.001). This is shown in Figure 7a. This is notably high, given that the
correlation between participants’ mean accuracy on appear and
disappear trials of the change-localization portion of the experiment
was numerically nearly identical, » = 0.61 (p < .001). One obvious
concern is that these high correlations may be mostly or entirely
driven by differences in attention or motivation. We therefore reran
a regression on only the participants who had above the 50th
percentile overall accuracy in estimation. This again revealed a
correlation between localization performance and estimation
performance, r = 0.51 (p < .001), which was again numerically
similar to the correlation between performance on appear and
disappear trials of the localization task, r = 0.56 (p < .001).
Differences in attention therefore seem unlikely to explain the
observed relationship between estimation and spatial localization
performance.

We next found MLE parameter estimates under the model given
each participant’s estimation and change-localization data (separat-
ing data from the two tasks). The mean parameter estimates for both
tasks are shown in Table 2. We tested the extent to which
participants’ inferred parameters were consistent across tasks and
found significant positive correlations for all inferred parameters

2 This experiment and the analyses performed were run at the suggestion
of a reviewer and not part of the preregistration.
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Figure 7
Data From Experiment 3
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Note. (a)Participants’ average accuracy in the localization task averaged across all trials (x-axis) versus their average
accuracy in the estimation task (y-axis). (b) Each participant’s inferred information in bits at each exposure time (color),
fit to their localization task data (x-axis) and their estimation task data (y-axis). (c) Bias in numeric estimation, grouped
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(d) Absolute estimation error, grouped by high (orange) and low (blue) inferred information capacity in localization.
Error bars are 95% confidence interval. See the online article for the color version of this figure.

apart from guessing rate®: r = 0.45 (p < .001) for a; r = 0.49 (p <
.001) fork; r=0.44 (p < .001) for a; and r = —0.05 (p < .062) for p,.
This means that, for example, we can predict the degree to which
someone will underestimate their loss parameter a inferred in the
localization task (Figure 7c). Participants’ inferred information
capacities over time were also highly correlated across tasks (Figure
7b): r =0.65 (p < .001). This was also true of inferred information
capacities within each exposure duration: r = 0.54 at 50 ms; r =0.52
at 150 ms; and r = 0.48 at 450 ms (p < .001). Figure 7c and 7d
illustrates two ways that inferred latent parameters from the
localization task predict behavioral differences in estimation. Figure
7c shows how bias in participants’ numeric estimation (i.e., signed

Table 2
Mean MLE Parameters From Experiment 3

Task a k o Pg
Localization 335 0.17 .33 0.15
Estimation 334 0.16 .26 0.03

Note. MLE = maximum likelihood estimate.

error from the true numerosity) is predicted by the a value inferred
from their localization task performance, such that those with lower
inferred o (<50th percentile) underestimate more than those with
higher inferred o (>50th percentile). Figure 7d shows how absolute
estimation error (i.e., absolute deviation from the true numerosity) is
modulated by the information capacity inferred from the localization
task, such that lower (<50th percentile) inferred information
capacity bounds result in higher absolute error than higher (>50th
percentile) inferred capacity bounds.

We also tested whether the estimated parameter values for
individual participants differed across tasks by running paired 7 tests
on their differences. The inferred parameter values from the estimation
task did not differ significantly from the inferred parameter values
from the localization task for either a, 1(99) = —0.06, p = .95, or k,
t(99) = —1.25, p = .21, which control how people accumulate
information over time. The loss function parameter o was inferred to
be lower in the estimation task (p = 0.26) than in the localization task

3 We reran all these analyses without removing the 10 worst-performing
participants, which gives nearly identical results (and no qualitative
differences).
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Figure 8

Group-Level Psychophysical Curves From Estimation and Localization
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Note. Group-level psychophysical curves showing the proportion (y-axis) of estimates k (x-axis) for each
numerosity presentedn =1 ... 15 (lines) at each exposure time tested in Experiment 3 (rows). The leftmost column
is the true human estimation data; the middle column shows the model fit to the data from the estimation task; and the
rightmost column shows the model fit to the data from the localization task. See the online article for the color

version of this figure.

(n=0.33), adifference that was significant, #(99) = —8.38, p < .001, as
was the inferred guessing rate, #99) = —10.9, p < .001. Despite the
small numeric difference in inferred o, the fit to the localization task
predicts number psychophysics that are remarkably consistent at both
the individual and group levels. Figure 8 highlights the alignment at
the group level, showing aggregate response distributions from the
estimation task on the left, average response distributions from the
model fit to participants’ estimation task data in the middle, and
average response distributions fit to participants’ localization task data
on the right.

Discussion

This article presented a model of visuospatial memory that captures
human performance both in a spatial memory task and in a quantity
estimation task. Crucially, many key properties of numerical
cognition—including a transition from exactness to approximation,
roughly Gaussian response distributions, underestimation, and effects
of time—can be recovered from a nonnumerical visual task using a
model optimized to remember items’ locations. Furthermore, we were
able to predict the degree of bias (under- or overestimation) and noise
in a person’s numerical estimates by fitting model parameters to their
performance in the spatial localization task. Our results therefore
indicate that the psychophysics of number in vision can largely be
attributed to uncertainty regarding the items displayed in a scene,
rather than to number-specific processing. While there must exist
some number-specific processing—quantity must be extracted from
visual memory—our findings indicate that Weber’s law, subitizing,
underestimation, and other effects observed in numerical estimation
are not the direct result of that processing.

Because the model accounts for subitizing as well as large number
estimation, it also demonstrates how a single mechanism might give
rise to the observed behavioral discontinuities between large and
small numbers. This is because the model predicts different patterns
of behavior above and below its capacity limit—visual representa-
tions are exact and perfect only when scenes are simple. After that, a
bounded-optimal perceptual system Q exhibits the known properties
of large number estimation, which arise here from imperfectly
individuating objects and tracking their locations. Finally, although
the large number system is commonly thought to represent analog
magnitudes on a continuous scale (Carey, 2009; Feigenson et al.,
2004), the model demonstrates how noisy beliefs over discrete
representations can give rise to what appears to be analog behavior
(see also Beck, 2015, Clarke & Beck, 2021, and Clarke, 2022, for
philosophical treatments related to this point).

Some studies have found a strong relationship between object-
tracking ability, visual memory capacity, and estimation acuity
outside the subitizing range, as predicted by our model (Bugden &
Ansari, 2016; Green & Bavelier, 2003, 2006; Passolunghi et al.,
2015). However, other studies have found a stronger link between an
individual’s visual working memory capacity and their subitizing
range than with their estimation acuity (Piazza et al., 2011; Revkin
et al., 2008), which seems to contradict predictions of our theory
or conflict with the results of Experiment 3. Importantly, though,
while the model does link both subitizing range and estimation to
visuospatial information capacity, differences in information capacity
do not necessarily cause equally large changes to the subitizing range
and estimation acuity. Specifically, modulating the information
bound tends to affect the subitizing range substantially more than the
(implicit) Weber fraction (see Supplemental Materials). Furthermore,
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the tasks meant to index visual working memory capacity employed
in those studies are subtly different than the one used here. Whereas
Revkin et al. (2008) and Piazza et al. (2011) used a change-detection
paradigm in which a property of one of the objects in the display (e.g.,
color) might change, our task involves tracking only the presence or
absence of objects at particular locations—not properties (like color)
bound to the objects. The task we employed, therefore, may better
index the specifically spatial component of visual memory we believe
underlies both individuation and subsequent enumeration (Pylyshyn,
1989; Trick & Pylyshyn, 1993, 1994).

Another challenge for our proposal is that it does not seem
consistent with the apparent failure observed in some cases when
infants and young children are asked to compare small quantities (1—
3) against large quantities (4+), Feigenson and Carey (2003),
Feigenson et al. (2002), Lipton and Spelke (2004), and Xu (2003);
though see Cordes and Brannon (2009a, 2009b), Mack (2006), and
Strauss and Curtis (1981) for conflicting evidence. For instance,
Feigenson et al. (2002) ran a manual search task where two
containers were baited with crackers and found that infants crawled
toward the container with more crackers when there were one versus
two crackers and two versus three crackers but not two versus four
crackers or three versus six crackers. These data have been taken as
evidence of two separate systems for processing small and large
quantities (Feigenson et al., 2004). However, there are two reasons
these findings do not necessarily conflict with our account. First,
given a low information capacity bound, the model predicts higher
performance comparing one versus two objects relative to two
versus four objects and three versus six objects; and although the
model would predict success in this case at, for example,
comparisons of one versus four and two versus eight, there is
also evidence that young infants discriminate these higher ratio
quantities (Cordes & Brannon, 2009a, 2009b). In fact, we fit the
model to the data presented in Feigenson et al. (2002) and found that
its predictions are compatible (see Supplemental Figure S7), falling
well within the 95% CI for each comparison tested. Second, our
claim is not that there is one rather than two systems. Instead, we are
proposing that the system for individuating objects is the input to the
system for computing numerosity. So, a simple extension of the
present model would be to suppose that, in infants, the individuation
system does not pass on information to the system for representing
quantities in cases of zero uncertainty.

In a previous article, we found that people underestimate less and
become more precise in estimation as they make saccades across a
scene containing a large (10-80) number of items (Cheyette &
Piantadosi, 2019). We interpreted this as people accumulating an
approximate count of objects in their visual path and not counting a
significant proportion of peripherally viewed objects. While our
account in this article was not mechanistic—and was not intended to
be—our findings here present an alternative interpretation of the
earlier results: that people were actually accumulating spatial
information about where items were located in the display, and this
resulted in downstream improvements in numerosity judgments. An
important future direction is therefore linking functional-level
accounts, like the one presented in this article, to mechanistic models
of the visual routines involved in object tracking and estimation. The
mechanics of visual attention may be necessary to explain the effects
of item arrangement and grouping (e.g., Anobile et al., 2020;
Atkinson et al., 1976; Ciccione & Dehaene, 2020; Ginsburg, 1976;
Krajesi et al., 2013; G. S. Starkey & McCandliss, 2014; Trick &

Enns, 1997; Van Oeffelen & Vos, 1982), though some effects
relating to complexity and regularity—such as an increased
subitizing range from canonical displays (e.g., Mandler & Shebo,
1982)—might be explained in terms of “ease of encoding” using
information-theoretic methods like the ones employed in this article.
Similarly, although our account is broadly consistent with studies
showing that numerosity judgments depend on object segmentation
(Franconeri et al., 2009), our model provides no way of describing
how or when a group may be perceived as a single entity and how
that subsequently affects representations of quantity.

It is worth highlighting two other important limitations of our
model and experiments that leave room for future work. First, the
model and experiments were only designed to capture numerical
perception in the domain of vision. However, innate numerical
abilities have been documented in audition, touch, and across
modalities (Barth et al., 2003; Mix et al., 1997; Plaisier et al., 2009;
P. Starkey et al., 1990). Though the model we presented here was
designed to deal with spatial rather than temporal integration (Meck
& Church, 1983), we believe similar principles of information
processing are likely to apply and hence the methods used in this
article could be adapted to capture, for example, the processing of
auditory sequences (Cheatham & White, 1954; Izard et al., 2009).
The other main limitation is our use of simplifying assumptions to
model spatial memory—specifically, in discretizing the space and in
assuming objects to be identical. The model would thus need to be
extended to capture, for instance, the influences of continuous visual
features such as surface area, convex hull, and density on
numerosity perception (e.g., Cantrell et al., 2015; Cantrell &
Smith, 2013; Gebuis et al., 2016; Gebuis & Reynvoet, 2012;
Leibovich et al., 2017; Lourenco & Longo, 2010, 2011; Mix et al.,
2002; Newcombe et al., 2015; Sokolowski et al., 2017). In fact, the
methods we employed in this article may be useful to understand
some of these effects: Because continuous features like surface area
are correlated with numerosity in the real world, principles of
efficient information compression dictate that their representations
will not be independent.
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