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Humans and other animals are able to perceive and represent a number of objects present in a scene, a core

cognitive ability thought to underlie the development of mathematics. However, the perceptual mechanisms

that underpin this capacity remain poorly understood. Here, we show that our visual sense of number derives

from a visual system designed to efficiently encode the location of objects in scenes. Using a mathematical

model, we demonstrate that an efficient but information-limited encoding of objects’ locations can explain

many key aspects of number psychophysics, including subitizing, Weber’s law, underestimation, and

effects of exposure time. In two experiments (N = 100 each), we find that this model of visual encoding

captures human performance in both a change-localization task and a number estimation task. In a third

experiment (N = 100), we find that individual differences in change-localization performance are highly

predictive of differences in number estimation, both in terms of overall performance and inferred model

parameters, with participants having numerically indistinguishable inferred information capacities across

tasks. Our results therefore indicate that key psychophysical features of numerical cognition do not arise

from separate modules or capacities specific to number, but rather as by-products of lower level constraints

on perception.
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Numerosity perception has been studied for at least 150 years

(Jevons, 1871), and its psychophysics has been well characterized

by experimental work (e.g., Dehaene, 2011; Feigenson et al., 2004;

Jevons, 1871; Kaufman et al., 1949; Revkin et al., 2008). However,

a basic unresolved question is whether the behavioral patterns found

in estimation result from numerical processing itself or from the

perceptual processes that feed into numerical perception. In the first

case, people may possess a “number system” that itself is the origin

of the phenomena seen in behavioral tasks involving number, such

asWeber’s law and underestimation. For instance, the noise and bias

observed in numerical estimation might arise from a sampling

process in which numerical information is extracted from visual

representations, rather than from noise inherent to visual

representations themselves (Dehaene & Changeux, 1993; Heng et

al., 2020; Woodford, 2020). Alternatively, such phenomena may

emerge as a consequence of more general visual processes, which

precede numerical estimation and indeed feed into it (Anobile et al.,

2020; Stoianov & Zorzi, 2012; Testolin, Dolfi, et al., 2020; Trick &

Enns, 1997; Zorzi & Testolin, 2018). Under this latter hypothesis,

the psychophysics of number in vision could result from constraints

inherent to visuospatial memory, and then wewould expect people’s

behavior in nonnumerical visuospatial tasks to show equivalent

hallmarks to those seen in estimation. Suggestive of this possibility,

a host of studies have found that perception of numerosity—both in

the estimation and subitizing ranges—is strongly influenced by

purely visual factors such as item arrangement (Anobile et al., 2020;

Atkinson et al., 1976; Ginsburg, 1976; Krajcsi et al., 2013; G. S.

Starkey & McCandliss, 2014; Trick & Enns, 1997; Yang & Chiao,
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2016), eccentricity (Palomares et al., 2011), presentation time

(Cheyette & Piantadosi, 2019, 2020; Inglis & Gilmore, 2013), color

contrast (Cheyette & Piantadosi, 2020), and the entropy of

nonnumeric features (DeWind et al., 2020; Qu et al., 2022).

Our goal in this article is to formalize and test the relationship

between visuospatial memory and the perception of quantity to

determine whether the properties observed in the number literature—

including exact perception of small quantities, scalar variability for

larger quantities, and sensitivity to presentation time—result from

more general mechanisms of the visual system. If a model of basic

visuospatial processing fit to a nonnumerical task recovers the

hallmarks observed in visual number psychophysics, this would

suggest that features of number perception should really be

considered artifacts of basic vision rather than the number itself.

Conversely, if features of numerical perception are not latent in a

nonnumerical visual memory task that uses the same stimuli, they

have to be the result of specifically numerical processes.

We develop a computational model of bandwidth-limited scene

memory, which forms beliefs about where individual objects exist in

space; these beliefs can then be straightforwardly converted into

beliefs about the number of objects in that scene (i.e., by summing

over beliefs about where objects are in the scene). This approach

builds on recent neural network models that exhibit some numerical

properties as a consequence of imperfectly representing a scene

(Kim et al., 2021; Stoianov & Zorzi, 2012; Testolin, Dolfi, et al.,

2020; Testolin, Zou, et al., 2020; Zorzi & Testolin, 2018), but here

we derive the optimal form of this representation and empirically

test the predictions of the optimal model. We show that even though

the model is explicitly optimized only to detect and remember the

presence of objects in various locations, the resulting probability

distributions over numerosities closely match known properties of

number psychophysics, including both subitizing and Weber’s law.

Notably, although the model represents a probability distribution

over discrete individuals, it behaves like an “analog magnitude

system” (Carey, 2009; Gebuis & Reynvoet, 2012; Lourenco &

Longo, 2010) when its information capacity is exceeded.

Our account is closely related to the fingers of instantiation model

of spatial indexing developed by Pylyshyn (1989), and later

expanded by Trick and Pylyshyn (1993, 1994), who proposed that

subitizing is the result of a limited-capacity, parallel process for

individuating objects in space. On their account, there is a

preattentive visual mechanism for selecting items in space, akin

to “pointers,” which automatically picks out items’ locations in

space before feature-binding occurs; the limited number of available

pointers for indexing corresponds to the subitizing limit. However,

their stated goal was to distinguish subitizing from counting to

explain response time differences in exact enumeration (Mandler &

Shebo, 1982). They did not have an explanation for how people

inexactly, but still extremely quickly (Inglis & Gilmore, 2013),

approximately quantify larger sets. Our own proposal can be

thought of as a formalization and extension of their fingers of

instantiation model to cover both small and large cardinalities.

However, rather than assuming that individuation works with a fixed

and discrete set of pointers, we assume instead that there is a limited

amount of information available in early vision for individuating

and tracking items’ locations in space that can be expended as a

continuous resource (Alvarez & Franconeri, 2007; Ma et al., 2014;

Van den Berg et al., 2012; Vul et al., 2009). There is thus a fluid

transition from the regime of exact representation of items’ locations

when individuating small sets to approximate representation of

items’ locations when individuating larger sets, and the model

recovers subitizing and inexact estimation (Weber’s law) as

emergent properties of the same system below and above a capacity

bound.

This approach is also an extension and reconceptualization of our

previous work showing that a single system can account for the

discontinuity in estimation ability at four (Cheyette & Piantadosi,

2020). The key idea in that article was that an efficient encoding of

number, using at maximum some number of bits of information, will

prioritize representations of small numbers at the expense of large

numbers because people tend to need to represent small numbers

more frequently (Dehaene & Mehler, 1992; Piantadosi & Cantlon,

2017). That work therefore derived exactness for small numbers

(e.g., subitizing) and approximation for large numbers by solving a

single, unifying optimization. However, it did not explain the key

step of how numerosities are actually computed from visual input. In

fact, this model assumed that, all else being equal, small and large

numerosities are equally easy to perceive—their differing behav-

ioral signatures being solely a matter of frequency of use. Here, we

use a similar formal approach to Cheyette and Piantadosi (2020)

but apply it to the visual processing that precedes numerical

representations rather than to the number itself.

The resulting model makes predictions about the psychophysics

of spatial memory and numerosity perception, and how they should

covary as a function of an information-processing capacity limit

in visual memory. The model predicts that people’s ability to

remember the locations of objects in space will be near-perfect for

small groups but will degrade proportionally with the number of

objects in the scene for larger groups. The model additionally

predicts that when there is less available visual information (e.g.,

given shorter exposure time), people will become increasingly

unable to precisely remember the locations of even small groups of

objects. We can likewise derive predictions about the psychophysics

of numerical estimation as a function of cardinality and information

capacity, when the output of this bandwidth-limited system is used

as input for numerosity estimation. Many of these predictions have

been observed previously. Specifically, the visual model predicts the

following: (a) exact or near-exact estimation of small sets (e.g.,

Jevons, 1871; Kaufman et al., 1949; Mandler & Shebo, 1982); (b) a

subitizing range that increases as a function of display time (Cheyette

& Piantadosi, 2020; Haladjian & Pylyshyn, 2011; Mandler & Shebo,

1982); (c) roughly normally shaped response distributions for

estimation (e.g., Nieder & Dehaene, 2009; Pica et al., 2004); (d)

increasingly noisy estimation (scalar variability) for larger sets (e.g.,

Dehaene, 2011; Feigenson et al., 2004; Jevons, 1871; Nieder &

Miller, 2004; Xu& Spelke, 2000); (e) estimation acuity that increases

with display time (Alonso-Diaz et al., 2018; Inglis & Gilmore, 2013);

and (f) an underestimation bias for large sets (Izard &Dehaene, 2008;

Mandler & Shebo, 1982) that diminishes with increased display time

(Cheyette & Piantadosi, 2019).

To test these predictions about visuospatial memory and

numerical perception, we ran two preregistered experiments1: a

change-localization task to probe participants’ memory for the

locations of objects (Experiment 1) and a numerical estimation task

(Experiment 2). In both experiments, we manipulated the amount of
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1 The preregistration of the model and both experiments can be found at
https://osf.io/vgm65/.
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information available to participants by varying the exposure time of

the presented objects. We found that participants’ ability to

remember the locations of objects—both for different exposure

times and for different numbers of objects present—predicts the

observed psychophysics of number under analogous conditions. A

replication of these experiments using a within-subjects design

(Experiment 3) found that individual differences in performance on

the change-localization task were strongly predictive of individual

differences in number estimation, with high correlations in model

parameters inferred separately from participants’ change-

localization and numeric estimation data. Since the patterns of

bias and noise observed in numerical estimation can be predicted

from the uncertainty people have about items’ locations in space,

this indicates that the psychophysics of number are governed by

limits of visuospatial memory, rather than processing specific to

quantity itself.

Model

The model aims to capture how an idealized, information-limited

perceptual system would perform assuming its goal is to accurately

represent the locations of objects in a scene. Although this formalizes

the idea of object memory—not specifically numerical estimation—it

implicitly encodes cardinality since its output is beliefs about the

objects present in a scene. For a given, observed scene containing

objects s, we will consider the probability distribution Qðs′jsÞ, giving
the system’s belief that s′ was observed instead of s. We analytically

derive an optimal form of Q, by specifying three components: (a) a

prior distribution representing how likely the model is to encounter a

given scene a priori, (b) a loss function representing how good or bad

a given representation of the scene is, and (c) an information capacity

bound, representing the maximum allowable information processing.

These three elements define a constrained optimization problem,

which can be solved to determine the optimal psychophysical

distribution Qð·jsÞ, corresponding to the optimal perceptual system.

This method is not identical with, but is somewhat analogous to,

Bayesian inference that begins with a prior distribution and combines

it with evidence to produce a “posterior” distribution; the key

difference is that the shape of the “posterior” Qð·jsÞ is not derived
from Bayes rule, but rather from minimizing the loss function (a)

subject to an information bound (b).

Figure 1 illustrates the basic setup, assuming for the sake of clarity

that there are only four possible object locations (or pixels). When a

person sees a particular scene, they encode a probability distribution

over each possible arrangement of objects, which is a weighted

combination of a prior for small numbers and how well the

representation matches their observation (akin to a likelihood). This

probability distribution can, in turn, be converted into a probability

distribution over numerosities by summing the probabilities of

each scene with a given number of objects. One key simplifying

assumption we make in modeling this setup is that spatial memory

encodes the presence or absence of objects in various locations as a

discrete matrix. In other words, we assume that visuospatial memory

represents a matrix with M black and white pixels to specify where

there are objects (and where there are not). We further assume a prior

on binary matrices where the number of 1’s in a matrix matches

the naturalistic frequency of a given number. Specifically, the

naturalistic frequency of a number n follows a 1
n2

law, where

n represents cardinality (Dehaene & Mehler, 1992; Piantadosi &

Cantlon, 2017). There are
�

M

n

�

matrices with cardinality n, so a

given matrix s with cardinality n has prior PðsÞ ∝ 1
.�

n2 ·
�

M

n

��

.

When shown the matrix s, we assume the model’s goal is to

represent swith as high fidelity as possible, remembering whether an

object was present at each row i and column j, sij. We define a loss

function L(s, s′) specifying how closely a matrix s′matches s or how

costly it would be to represent swith s′. Representations s′ that have

a high degree of overlap with s will have lower penalties and those

with less overlap will have higher penalties. We will assume that the

loss function Lðs, s′Þ is proportional to some (perhaps unequal)

combination of the proportion of false negatives, Pðs 0ij = 0jsij = 1Þ,
and the proportion of false positives, Pðs 0ij = 1jsij = 0Þ:

Lðs, s′Þ = α · Pðs 0ij = 0jsij = 1Þ

+ ð1 − αÞ · Pðs 0ij = 1jsij = 0Þ, (1)

with α as a weighting parameter, where 0 ≤ α ≤ 1. The reason we

separate the contribution of false negatives and false positives here

is that it is natural to think that the visual system might care about

one more than the other. There are, of course, other plausible loss

functions, which in fact give qualitatively similar results (see
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Figure 1

Conceptual Illustration of the Model

Note. In this example, a person sees a scene with three objects, which is represented as a probability distribution

over all possibilities of what she saw. Possible arrangements of objects are grouped by numerosity, shown as

different colors. To get the probability of a numerosity k, the model simply sums the probability of all possible

scenes with numerosity k, highlighted at the bottom. See the online article for the color version of this figure.
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Supplemental Materials)—though we note that the form of this loss

function was preregistered.

Given a loss function and prior, we now seek a function Qð·jsÞ
that minimizes the expected loss between possible inputs s and

representations s′, corresponding to the “best” representation

possible. If the set of possible scenes is S, the expected loss is

E½Lðs, s′Þ� =
X

s∈S

PðsÞ
X

s′∈S

Qðs′jsÞ · Lðs, s′Þ: (2)

Unconstrained, the function Qð·jsÞ that minimizes the expected loss

would simply correctly encode the scene,

Qðs′jsÞ =

�

1, if s′= s

0, otherwise:
(3)

However, cognitive systems are constrained by the amount of

information they can process over a given span of time. We

incorporate this constraint into the model as a bound on the

maximum allowable Kullback–Leibler divergence (KL diver-

gence) between the prior distribution Pð·Þ and resultant

distribution Qð·jsÞ over displays. The KL divergence here

represents the amount of information in bits needed to represent

the resultant distribution Qð·jsÞ starting with the distribution Pð·Þ,
which is equivalent to the total amount of information processing

required. Given an information bound B, we then have the

constraint on KL divergence from Pð·Þ to Qð· jsÞ, often notated

DKL½Qð· jsÞjjPð·Þ�,

X

s′∈R

Qðs′jsÞ · log
Qðs′jsÞ

Pðs′Þ
≤ B ∀s ∈ R: (4)

Using the method of Lagrange multipliers (see Supplemental

Materials), we can derive an analytic solution to maximize accuracy

while keeping the information processing below the information

bound B,

Qðs′jsÞ ∝ Pðs′Þ · exp

�

−
PðsÞ

λs
· Lðs, s′Þ

�

, (5)

for λs chosen to satisfy (Equation 4) for each scene s. Note

that there is a unique λs that satisfies the information-bound

constraint for a given scene s and information bound B, which we

approximate using numerical methods (see Supplemental Materials

for details).

To illustrate how the model works—and the role of the

information capacity bound and the loss function parameter α—

we generated predictions at different information capacity bounds

and with different values of α, assuming a 7 × 7 grid of possible

object locations (as will be used in the eventual experiments). The

top row of Figure 2 shows the rate at which the model falsely

believes an object was in a particular location (a “hallucination”)

when there was no object there; and the bottom row shows the rate at

which the model does not encode an object that was present at a

particular location. These predictions are broken down by number

(x-axis), information capacity bound (color), and α (columns). The

rates of false negatives and false positives increase as a function of

quantity at each information capacity bound, reflecting both the

decreasing prior over numerosities and the fact that there are more

ways to arrange more numerous sets in the range shown. Also

apparent is that the model saturates in performance for small

quantities when the information bound is high, meaning that it can

veridically recall the scene it viewed when there are only a few

objects. Finally, this figure illustrates the role of the loss function

parameter, α, in controlling the relative cost of hallucinations (top

row) versus missing an object (bottom row): as α increases, the ratio

of false negatives to false positives increases as well.
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Figure 2

Model Predictions for Errors in Spatial Memory
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Note. Model predictions for the probability of falsely believing that an object was in a particular

location (top row) and falsely believing that there was not an object in a particular location (bottom).

The predictions are broken down by quantity (x-axis), information capacity bound (color), and the loss-

function parameter α that specifies the cost of false positives relative to false negatives (columns). See

the online article for the color version of this figure.
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Critically, the model’s probability distribution over possible object

arrangements s′ can be converted into a probability distribution over

the total number of objects. Figure 3 shows the implicit distribution

(y-axis) of numerical estimates (x-axis) for each number 1–15 (lines),

at the same information bounds given in Figure 2 (rows). This visual

memory model exhibits several key properties of number psycho-

physics, most notably a transition from exactness to scalar variability.

The precise point of transition, as well as the acuity of estimation, is

determined by the information bound, as in Cheyette and Piantadosi

(2020).We show in SupplementalMaterials that themodel transitions

from subitizing to Weber’s law specifically (ratio-dependent

discrimination ability). The other variable highlighted in this figure

is the loss function parameter α (columns). At low values of α, it is

very costly to falsely believe that there was an object present

somewhere that there was not (i.e., to hallucinate), so the model

predicts very few false positives but has many false negatives—this is

true even for small sets under a low information capacity regime. On

the other hand, as α increases, it is more costly to miss an object that

was present somewhere, which results in less underestimation—and

increasingly even overestimation of small quantities.

As Figures 2 and 3 show, there are a range of possibilities for

exactly how visuospatial memory and numerical estimation can

behave under the model, since the information capacity bound and α

are free parameters. Some information capacity bounds would

predict veridical estimation up to 20 objects and others would

predict no subitizing range at all. Similarly, some values of α predict

a bias toward missing objects that were present rather than

hallucinating and hence predict underestimating the quantity of

observed sets; other values of α predict a bias toward hallucinating

rather than missing objects and hence predict overestimating the

quantity of observed sets. If this model is correct, then the

psychophysics of number are essentially latent in visuospatial

memory—and probing visuospatial memory in a nonnumeric task

should allow us to recover key properties of number representations.

Experiment 1

The goal of Experiment 1 is to understand how visuospatial

perception ismodulated by processing time and the number of objects

in a scene. Our visual model predicts that, given sufficient processing

time, participants should be able to remember the locations of small

groups of objects with high fidelity but become increasingly

inaccurate for larger numerosities, which accords with basic intuition

and previous findings (Alvarez & Franconeri, 2007; Vul et al., 2009).

With only limited processing time, however, participants should

become increasingly incapable of localizing even small groups, and

the disparity in performance between smaller and larger groups

should decrease, as illustrated in Figure 2. In addition to testing

whether localization is well explained by the model, by fitting the

information bound and loss parameter α to data gathered from a

nonnumerical human spatial memory task, we can test whether the

inferred parameters are consistent with the psychophysics of number

(Figure 4).

Method

Experiments 1 and 2 were preregistered using the Open Science

Framework at https://osf.io/vgm65/. The code for the model and the

data collected were also preregistered at https://osf.io/vgm65/. The

method, data exclusions, and analyses were all preregistered except

where explicitly noted.

Participants

We recruited 110 registered users of Prolific, an online psychology

experiment platform. Participants were 18 years old or older, fluent

English speakers, and physically present in the United States based on

prescreening questions. Each participant who completed the task

received compensation of $3. Both experiments were approved by

the university’s institutional review board and complied with all
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Figure 3

The Implied Number Psychophysics From Spatial Memory
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Note. The implied psychophysics of number from the model of spatial memory at different values of

α (columns) and information capacity bounds (rows). Each line shows beliefs ðQðkjnÞÞ over estimates

(k) given numbers n = 1 … 15. See the online article for the color version of this figure.

VISUAL CAPACITY EXPLAINS NUMBER PSYCHOPHYSICS 5



relevant ethical regulations. Informed consent was obtained from all

participants before beginning the study. Following the preregistra-

tion, we removed the 10 participants with the highest error rate from

our analyses. Based on pilot studies and previous work (Cheyette &

Piantadosi, 2020), we believed the sample size included for analysis

(100 participants × 90 trials per participant = 9,000 data points)

would be sufficient to determine model parameters within a small

interval.

Materials

The experiment was designed in JavaScript using the psiTurk

framework (Gureckis et al., 2016). There were 49 grid cells (7 × 7),

with each grid cell 35 px
2 and an equal margin separating the cells.

Unfilled grid cells were white and filled grid cells were gray with hex

color No. A0A0A0. When a cell was clicked in the task, its border

was bolded and turned red. The noise mask was multicolored static

and had a size of 455 px
2 to cover the entire grid.

Design

There were four within-subject variables manipulated in the

study: the number of cells filled (1–15); the exposure time of the

displayed pattern (50 ms, 150 ms, 450 ms); and the direction of

the changed cell from the first to the second presentation (white-to-

gray or gray-to-white). Each multiple of number, time, and direction

was shown exactly once, for a total of 15 × 3 × 2 = 90 trials. The

initial direction of the changed cell was randomly chosen and then

remained constant for the first 45 trials, with the last 45 trials

assigned to the opposite direction. Within that constraint, the order

of the trials was randomized, that is, number–time pairs were

assigned randomly within each direction of change. The positions of

the filled cells were chosen randomly on each trial. If the direction of

change was white-to-gray, a random white cell from the initial

exposure would turn gray on the second presentation; conversely, if

the direction of change was gray-to-white, a random gray cell would

turn white.

Procedure

After providing consent and reading instructions, participants

began the first section of the experiment. Both halves of the

experiment—the white-to-gray section and gray-to-white section—

started with three practice trials. Participants were informed in both

the practice trials and the main task whether a cell would be

changing from white to gray, or vice versa. Each trial started with a

fixation cross displayed on the center for 1,000 ms, followed by the

grid with some cells filled in 50–450 ms, and then a noise mask for

600 ms. Then, the grid reappeared, with one modified cell. Subjects

then clicked the cell they thought changed color and proceeded to

the next trial. The basic setup is illustrated in Figure 2.

Results

We first ran a logistic regression predicting participants’

accuracy from the number of gray cells, exposure time, and trial

type (“appear” or “disappear”), which revealed significant effects

of all three. There was a negative effect of the number shown (B =

−0.25, z = −38.6, p < .001), such that more gray cells decreased

accuracy, a positive effect of exposure duration (B= 3.08, z= 20.3,

p < .001), and an effect of trial type such that participants

performed better on trials where a cell appeared than disappeared

(B = 0.64, z = 12.5, p < .001). The intercept was also significant

(B = 1.65, z = 24.3, p < .001). Note that these analyses were

performed post hoc (not preregistered) and run at the request of a

reviewer.

We next fit the model to the data. To fit model parameters, we

assumed that the information bound changes as a function of time

according to a power law B = a · tk , where a and k are free

parameters and t is exposure time in seconds. The other key

parameter of the model is the weighting parameter in the loss

function α, capturing the extent to which false negatives (high α) or

false positives (low α) are more costly. To account for attention

lapses and mis-presses, we also included a guessing-rate parameter,

pg, which captured the rate participants chose randomly from the set

of valid alternatives (as opposed to via the model). We fit parameters
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Figure 4

Illustration of Experiment 1

Note. Participants were first shown a fixation cross, followed by a 7× 7 grid with some of the cells (1–15) filled in gray. A noise

mask then appeared after a short time (50 ms, 150 ms, or 450 ms). In the final step, participants were shown a display identical to

the one shown previously except for a single cell—one of the previously gray cells either turned white (“disappearance”) or one

of the previously white cells turned gray (“appearance”). Participants tried to guess which cell had changed. See the online article

for the color version of this figure.
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under a hierarchical Bayesian model using Markov Chain Monte

Carlo, assuming partial pooling of parameter estimates across

participants (see Supplemental Materials).

The maximum a posteriori (MAP) estimates for the group-level

parameters were a = 33.5 (CI [32.2, 34.6]), k = 0.21 (CI [0.20,

0.22]), pg = 0.16 (CI [0.12, 0.19]), and α = .35 (CI [0.33, 0.37]).

This entails information bounds of 17.9, 22.5, and 28.3 bits at 50 ms,

150ms, and 450ms, respectively. The relatively high inferred rate of

guessing likely reflects the fact that the model does not account for

spatial errors, treating each cell independently. Figure 5a shows

the model’s predicted accuracy (x-axis) against human performance

(y-axis) across all exposure durations (facets). Comparing the points

to the dashed y = x line reveals that the model’s predictions tightly

align with human accuracy across exposure durations, though the

model is slightly biased to overestimate human performance at short

times (left facet). The correlation between model predictions and

human data across trials grouped by numerosity and exposure

duration was 0.96 (R2 = 0.93), another indication that the model

provides a good fit to the data.

In line with participants, the model predicts near-veridical

memory for visual displays with small numbers of objects, at longer

exposure durations, and sharply increasing noise for larger numbers

of objects and shorter durations. Figure 5b shows human accuracy

(points and error bars), the model’s predicted accuracy (lines) as a

function of the total number of cells filled in, grouped by the

exposure duration (colors). As predicted by the model, participants’

performance saturates only for small numerosities at longer

durations and quickly degrades as a function of number in each

duration. The one notable discrepancy is that the model predicted

better performance on small numerosities (n < 4) at 50 ms than was

actually observed. Figure 5c depicts accuracy grouped by whether a

cell appeared or disappeared from the first to second display and

shows that participants performed substantially better on “appear”

trials than “disappear” trials—a trend the model captures. The model

would capture this trend even if αwas fixed to 0.5, and in fact, higher

values of α exaggerate rather than reduce the gap between “appear”

and “disappear” trials.

To be clear, the fact that human performance on the change-

localization task is strongly affected by numerosity is not an

indication that the visual system is representing or using number. In

fact, the experiment was explicitly designed so that number could

not be used as a heuristic: Participants always knew that there was

either one more gray cell on the second display than the first display

(on “appear” trials) or one fewer (on “disappear” trials). Instead, the

effect of numerosity on performance is an indication that spatial

memory is making use of limited information in an efficient way,
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Figure 5

Model Predictions and Data From Localization Task (Experiment 1)

(a)

(b) (c)

Note. (a) Binned (25 bins/facet) model predictions (x-axis) and human data (y-axis) of performance on the change-

localization task. Each facet shows predictions at different exposure durations. In (b) and (c) model, predictions are

shown as lines, and human data from the change-localization task are shown as points with bootstrapped 95%

confidence intervals. (b) Accuracy (y-axis) in the change-localization task as a function of the number of grid cells

filled (x-axis) at each exposure duration. (c) Accuracy (y-axis) as a function of number (x-axis) grouped by whether

or not a cell appeared or disappeared from first-to-second presentation. See the online article for the color version of

this figure.
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combining a prior expectation that there will be fewer gray pixels

than white pixels with evidence gathered by observing the scene.

Additionally, the inability to precisely remember scenes with more

filled cells is a reflection of the fact that there are more ways to

arrange scenes with more filled cells (up to half the number of grid

cells), meaning that it takes more information to represent any one of

them precisely.

Experiment 2

While Experiment 1 showed that the model is able to account for

effects of number and exposure duration in spatial memory, it does

not answer the question of whether human numerical estimation

abilities arise from this same system. The goal of Experiment 2 is to

replicate previously reported properties of number psychophysics

and to test whether the model is able to capture these effects as well.

If the patterns of noise (zero uncertainty then Weber’s law) and bias

(underestimation) in estimation derive from limitations in spatial

memory, then the model of spatial memory should be able to explain

the psychophysics of estimation at exposure durations (i.e., across

different information capacities in visual memory); moreover, we

should be able to recover similar parameter values from the model fit

to a numerical estimation task as from the model fit to a spatial

memory task. Alternatively, to the extent that the psychophysics of

estimation derives from processing constraints that are independent

of spatial memory, the visual memory model should not capture the

psychophysics of estimation and the parameters recovered from

model fitting should differ from those inferred in Experiment 1. To

test these predictions, we ran a number estimation task with a design

matched to Experiment 1.

Method

The procedure and display were identical to Experiment 1 up to

the noise mask. After the noise mask, however, participants were

asked to estimate the number of cells that were filled by typing a one-

or two-digit numeric estimate into a text box. One hundred ten

adult participants from Prolific again completed 90 trials, with each

number (1–15) paired with duration (50 ms, 150 ms, 450 ms)

displayed twice. Following the preregistration, we removed the 10

participants with the highest mean absolute error in estimation from

our analyses and winsorized estimates to the 95% interval for each

numerosity.

Results

We first ran linear regressions to predict participants’ signed error

(bias) and absolute error from the number of gray cells shown and

the exposure duration. We found significant effects of both

predictors in both cases. For signed errors, there was a positive

intercept (B = 0.89, t = 16.5, p < .001), a negative effect of the

number of gray cells (B = −0.22, t = −43.69, p < .001), and a

positive effect of exposure duration (B = 0.72, t = 5.76, p < .001).

This means that participants slightly overestimated small quantities

at short exposures but increasingly underestimated larger quantities,

and it means that the underestimation bias diminished with

increasing exposure duration. For absolute errors, there was a

negative intercept (B = −0.17, t = −4.59, p < .001), a positive effect

of the number of gray cells (B = 0.26, t = 76.64, p < .001), and a

negative effect of exposure duration (B = −24.22, t = −24.22, p <

.001). This means participants became less accurate at estimating

larger quantities and more accurate with longer exposures.

We fit the same parameters in the model with the estimation

data as with the change-localization task. The MAP group-level

parameters were a = 32.9 (CI [30.9, 33.8]), k = 0.18 (CI [0.17,

0.20]), pg= 0.03 (CI [0.02, 0.03]), and α= .31 (CI [0.29, 0.32]). The

implied average information bounds are therefore 19.2, 23.4, and

28.5 bits at 50 ms, 150 ms, and 450 ms, respectively. This is slightly

higher than the estimates derived from the change-localization task

data, but the differences at each exposure duration are small (<10%).

Table 1 provides a side-by-side comparison of the inferred MAP

parameters from both experiments. A notable difference between the

inferred parameters between the two tasks is the guessing rate,

which is much lower than in the change-localization task. As noted

previously, however, the relatively high guessing rate in the change-

localization task is likely due to the fact that the model does not

account for spatial errors or mis-presses (only completely random

guessing)—this would increase the inferred rate of guessing in the

change-localization task but not the estimation task.

The resulting psychophysical curves from the model (lines),

along with the data from the experiment (points and error bars), are

shown in Figure 6. The model captures the key psychophysical

trends observed in the data: an underestimation bias that diminishes

with exposure time; a subitizing range that increases with exposure

time; scalar variability in estimation; and acuity in estimation

that increases with exposure time. The nonzero but flat standard

deviation for small numerosities in Figure 6b reflects the influence of

guessing—without the guessing parameter it would show zero

variability. The model predictions diverge somewhat from human

performance on small numerosities (n < 4) at 50 ms—the model

predicts better performance than is actually observed. An analogous

discrepancy was observed in the change-localization task (also for

n < 4 at 50 ms). It is possible that this occurs because the model

assumes that participants each have a fixed guessing rate, when in

fact people may be more likely to miss a display altogether at short

exposure durations (e.g., if they are blinking).

Following the preregistration, we compared the model’s

maximum likelihood estimate (MLE) parameters for each subject

to a standard psychophysical model of numerical estimation

(Weber’s law), as well as a modified one that accounts for the

effects of time. The overall log likelihood of the model using MLE

estimates of participants’ parameters was −14,129. In the first

comparison model, we assume that participants’ estimates are drawn

from a Gaussian centered around the number shown, n, with mean n

and standard deviation w · n, where w is a free parameter (their

“Weber fraction”). We also fit a version of this where the standard

deviation could vary as a function of time, such that w = ew0+wt ·t ,

where w0 and wt are fit and t is time in seconds. The median MLE w
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Table 1

MAP Parameters From Experiments 1 and 2

Experiment a k α pg

Localization (E1) 33.5 0.21 .35 0.16
Estimation (E2) 32.9 0.18 .31 0.03

Note. MAP = maximum a posteriori; E = experiment.
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fit in the static (non-time-varying) version was 0.24, with log

likelihood −16,166. In the time-varying version, the median MLE

w0 was −1.15 and wt was −1.75, giving w’s of 0.29, 0.24, and 0.15

at 50 ms, 150 ms, and 450 ms, respectively, and had log likelihood

−15,428. The Weber models thus did not fit nearly as well as our

model, with Akaike information criterion differences of 3,974 and

2,498 (we preregistered Akaike information criterion differences of

10 as “significant”).

Experiment 3

Experiments 1 and 2 demonstrate that a single model can fit human

psychophysics of both a spatial localization task and a numerical

estimation task. Furthermore, both the inferred parameters and the

amount of information participants were inferred to have about the

spatial locations of black dots and the number of black dots was

numerically very close at each exposure duration, highly suggestive

of a shared representational capacity and a common process.

However, because Experiments 1 and 2 were between subjects, the

most we can say is that the average parameter values recovered from

both tasks are numerically close. To further assess whether there is a

common process underlying both spatial localization and numerical

estimation—and that our model provides a good account of that

process—we ran a within-subjects experiment testing participants on

both tasks. To the extent that participants’ performance covaries

across tasks and that this correlation is explained best by model

parameters (other than participants’ inferred guessing rate) in each

task, this would provide stronger evidence of a common process.2

Method

We again collected data from 110 adult participants from Prolific,

where each participant completed both the estimation task and the

change-localization task. This was divided into three phases consisting

of 45 trials each (135 total): Phase 1 was an estimation task identical in

method to Experiment 2, except for half the total number of trials;

Phase 2 was the change-localization task where a black cell always

appeared between displays; and Phase 3 was the change-localization

task where a black cell always disappeared (turned white) between

displays. Phases 2 and 3 are identical in method to Experiment 1,

except for that the order of appear and disappear trials was fixed.

As in the previous experiments, we removed the 10 lowest

performing participants, which this time was determined as the five

participants with the highest average absolute error on the

estimation task and the five participants with the highest average

error on the localization task (after removing the first five).

Results

We first ran a regression predicting participants’ mean accuracy

across all trials in the estimation task from their mean accuracy in the

localization task, which revealed a strong correlation, r = 0.63 (p <

.001). This is shown in Figure 7a. This is notably high, given that the

correlation between participants’ mean accuracy on appear and

disappear trials of the change-localization portion of the experiment

was numerically nearly identical, r = 0.61 (p < .001). One obvious

concern is that these high correlations may be mostly or entirely

driven by differences in attention or motivation. We therefore reran

a regression on only the participants who had above the 50th

percentile overall accuracy in estimation. This again revealed a

correlation between localization performance and estimation

performance, r = 0.51 (p < .001), which was again numerically

similar to the correlation between performance on appear and

disappear trials of the localization task, r = 0.56 (p < .001).

Differences in attention therefore seem unlikely to explain the

observed relationship between estimation and spatial localization

performance.

We next found MLE parameter estimates under the model given

each participant’s estimation and change-localization data (separat-

ing data from the two tasks). The mean parameter estimates for both

tasks are shown in Table 2. We tested the extent to which

participants’ inferred parameters were consistent across tasks and

found significant positive correlations for all inferred parameters
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Figure 6

Model Predictions and Data From Estimation Task (Experiment 2)

(a) (b)

Note. (a) Mean estimates as a function of numerosity, grouped by exposure duration. (b) Standard

deviations as a function of numerosity, grouped by exposure duration. Data is shown as points with

95% confidence intervals; the model fit to the human data shown as lines. See the online article for the

color version of this figure.

2 This experiment and the analyses performed were run at the suggestion
of a reviewer and not part of the preregistration.
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apart from guessing rate3: r = 0.45 (p < .001) for a; r = 0.49 (p <

.001) for k; r= 0.44 (p< .001) for α; and r=−0.05 (p< .062) for pg.

This means that, for example, we can predict the degree to which

someone will underestimate their loss parameter α inferred in the

localization task (Figure 7c). Participants’ inferred information

capacities over time were also highly correlated across tasks (Figure

7b): r = 0.65 (p < .001). This was also true of inferred information

capacities within each exposure duration: r= 0.54 at 50 ms; r= 0.52

at 150 ms; and r = 0.48 at 450 ms (p < .001). Figure 7c and 7d

illustrates two ways that inferred latent parameters from the

localization task predict behavioral differences in estimation. Figure

7c shows how bias in participants’ numeric estimation (i.e., signed

error from the true numerosity) is predicted by the α value inferred

from their localization task performance, such that those with lower

inferred α (<50th percentile) underestimate more than those with

higher inferred α (≥50th percentile). Figure 7d shows how absolute

estimation error (i.e., absolute deviation from the true numerosity) is

modulated by the information capacity inferred from the localization

task, such that lower (<50th percentile) inferred information

capacity bounds result in higher absolute error than higher (≥50th

percentile) inferred capacity bounds.

We also tested whether the estimated parameter values for

individual participants differed across tasks by running paired t tests

on their differences. The inferred parameter values from the estimation

task did not differ significantly from the inferred parameter values

from the localization task for either a, t(99) = −0.06, p = .95, or k,

t(99) = −1.25, p = .21, which control how people accumulate

information over time. The loss function parameter α was inferred to

be lower in the estimation task (μ = 0.26) than in the localization task
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Table 2

Mean MLE Parameters From Experiment 3

Task a k α pg

Localization 33.5 0.17 .33 0.15
Estimation 33.4 0.16 .26 0.03

Note. MLE = maximum likelihood estimate.

Figure 7

Data From Experiment 3

(a) (b)

(c) (d)

Note. (a) Participants’ average accuracy in the localization task averaged across all trials (x-axis) versus their average

accuracy in the estimation task (y-axis). (b) Each participant’s inferred information in bits at each exposure time (color),

fit to their localization task data (x-axis) and their estimation task data (y-axis). (c) Bias in numeric estimation, grouped

by participants who were inferred to have high (orange) and low (blue) α in the localization task, using a median split.

(d) Absolute estimation error, grouped by high (orange) and low (blue) inferred information capacity in localization.

Error bars are 95% confidence interval. See the online article for the color version of this figure.

3 We reran all these analyses without removing the 10 worst-performing
participants, which gives nearly identical results (and no qualitative
differences).
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(μ= 0.33), a difference that was significant, t(99)=−8.38, p< .001, as

was the inferred guessing rate, t(99) = −10.9, p < .001. Despite the

small numeric difference in inferred α, the fit to the localization task

predicts number psychophysics that are remarkably consistent at both

the individual and group levels. Figure 8 highlights the alignment at

the group level, showing aggregate response distributions from the

estimation task on the left, average response distributions from the

model fit to participants’ estimation task data in the middle, and

average response distributions fit to participants’ localization task data

on the right.

Discussion

This article presented amodel of visuospatial memory that captures

human performance both in a spatial memory task and in a quantity

estimation task. Crucially, many key properties of numerical

cognition—including a transition from exactness to approximation,

roughly Gaussian response distributions, underestimation, and effects

of time—can be recovered from a nonnumerical visual task using a

model optimized to remember items’ locations. Furthermore, wewere

able to predict the degree of bias (under- or overestimation) and noise

in a person’s numerical estimates by fitting model parameters to their

performance in the spatial localization task. Our results therefore

indicate that the psychophysics of number in vision can largely be

attributed to uncertainty regarding the items displayed in a scene,

rather than to number-specific processing. While there must exist

some number-specific processing—quantity must be extracted from

visual memory—our findings indicate that Weber’s law, subitizing,

underestimation, and other effects observed in numerical estimation

are not the direct result of that processing.

Because the model accounts for subitizing as well as large number

estimation, it also demonstrates how a single mechanism might give

rise to the observed behavioral discontinuities between large and

small numbers. This is because the model predicts different patterns

of behavior above and below its capacity limit—visual representa-

tions are exact and perfect only when scenes are simple. After that, a

bounded-optimal perceptual systemQ exhibits the known properties

of large number estimation, which arise here from imperfectly

individuating objects and tracking their locations. Finally, although

the large number system is commonly thought to represent analog

magnitudes on a continuous scale (Carey, 2009; Feigenson et al.,

2004), the model demonstrates how noisy beliefs over discrete

representations can give rise to what appears to be analog behavior

(see also Beck, 2015, Clarke & Beck, 2021, and Clarke, 2022, for

philosophical treatments related to this point).

Some studies have found a strong relationship between object-

tracking ability, visual memory capacity, and estimation acuity

outside the subitizing range, as predicted by our model (Bugden &

Ansari, 2016; Green & Bavelier, 2003, 2006; Passolunghi et al.,

2015). However, other studies have found a stronger link between an

individual’s visual working memory capacity and their subitizing

range than with their estimation acuity (Piazza et al., 2011; Revkin

et al., 2008), which seems to contradict predictions of our theory

or conflict with the results of Experiment 3. Importantly, though,

while the model does link both subitizing range and estimation to

visuospatial information capacity, differences in information capacity

do not necessarily cause equally large changes to the subitizing range

and estimation acuity. Specifically, modulating the information

bound tends to affect the subitizing range substantially more than the

(implicit) Weber fraction (see Supplemental Materials). Furthermore,
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Figure 8

Group-Level Psychophysical Curves From Estimation and Localization
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Note. Group-level psychophysical curves showing the proportion (y-axis) of estimates k (x-axis) for each

numerosity presented n = 1 … 15 (lines) at each exposure time tested in Experiment 3 (rows). The leftmost column

is the true human estimation data; the middle column shows the model fit to the data from the estimation task; and the

rightmost column shows the model fit to the data from the localization task. See the online article for the color

version of this figure.
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the tasks meant to index visual working memory capacity employed

in those studies are subtly different than the one used here. Whereas

Revkin et al. (2008) and Piazza et al. (2011) used a change-detection

paradigm in which a property of one of the objects in the display (e.g.,

color) might change, our task involves tracking only the presence or

absence of objects at particular locations—not properties (like color)

bound to the objects. The task we employed, therefore, may better

index the specifically spatial component of visual memorywe believe

underlies both individuation and subsequent enumeration (Pylyshyn,

1989; Trick & Pylyshyn, 1993, 1994).

Another challenge for our proposal is that it does not seem

consistent with the apparent failure observed in some cases when

infants and young children are asked to compare small quantities (1–

3) against large quantities (4+), Feigenson and Carey (2003),

Feigenson et al. (2002), Lipton and Spelke (2004), and Xu (2003);

though see Cordes and Brannon (2009a, 2009b), Mack (2006), and

Strauss and Curtis (1981) for conflicting evidence. For instance,

Feigenson et al. (2002) ran a manual search task where two

containers were baited with crackers and found that infants crawled

toward the container with more crackers when there were one versus

two crackers and two versus three crackers but not two versus four

crackers or three versus six crackers. These data have been taken as

evidence of two separate systems for processing small and large

quantities (Feigenson et al., 2004). However, there are two reasons

these findings do not necessarily conflict with our account. First,

given a low information capacity bound, the model predicts higher

performance comparing one versus two objects relative to two

versus four objects and three versus six objects; and although the

model would predict success in this case at, for example,

comparisons of one versus four and two versus eight, there is

also evidence that young infants discriminate these higher ratio

quantities (Cordes & Brannon, 2009a, 2009b). In fact, we fit the

model to the data presented in Feigenson et al. (2002) and found that

its predictions are compatible (see Supplemental Figure S7), falling

well within the 95% CI for each comparison tested. Second, our

claim is not that there is one rather than two systems. Instead, we are

proposing that the system for individuating objects is the input to the

system for computing numerosity. So, a simple extension of the

present model would be to suppose that, in infants, the individuation

system does not pass on information to the system for representing

quantities in cases of zero uncertainty.

In a previous article, we found that people underestimate less and

become more precise in estimation as they make saccades across a

scene containing a large (10–80) number of items (Cheyette &

Piantadosi, 2019). We interpreted this as people accumulating an

approximate count of objects in their visual path and not counting a

significant proportion of peripherally viewed objects. While our

account in this article was not mechanistic—and was not intended to

be—our findings here present an alternative interpretation of the

earlier results: that people were actually accumulating spatial

information about where items were located in the display, and this

resulted in downstream improvements in numerosity judgments. An

important future direction is therefore linking functional-level

accounts, like the one presented in this article, to mechanistic models

of the visual routines involved in object tracking and estimation. The

mechanics of visual attention may be necessary to explain the effects

of item arrangement and grouping (e.g., Anobile et al., 2020;

Atkinson et al., 1976; Ciccione & Dehaene, 2020; Ginsburg, 1976;

Krajcsi et al., 2013; G. S. Starkey & McCandliss, 2014; Trick &

Enns, 1997; Van Oeffelen & Vos, 1982), though some effects

relating to complexity and regularity—such as an increased

subitizing range from canonical displays (e.g., Mandler & Shebo,

1982)—might be explained in terms of “ease of encoding” using

information-theoretic methods like the ones employed in this article.

Similarly, although our account is broadly consistent with studies

showing that numerosity judgments depend on object segmentation

(Franconeri et al., 2009), our model provides no way of describing

how or when a group may be perceived as a single entity and how

that subsequently affects representations of quantity.

It is worth highlighting two other important limitations of our

model and experiments that leave room for future work. First, the

model and experiments were only designed to capture numerical

perception in the domain of vision. However, innate numerical

abilities have been documented in audition, touch, and across

modalities (Barth et al., 2003; Mix et al., 1997; Plaisier et al., 2009;

P. Starkey et al., 1990). Though the model we presented here was

designed to deal with spatial rather than temporal integration (Meck

& Church, 1983), we believe similar principles of information

processing are likely to apply and hence the methods used in this

article could be adapted to capture, for example, the processing of

auditory sequences (Cheatham & White, 1954; Izard et al., 2009).

The other main limitation is our use of simplifying assumptions to

model spatial memory—specifically, in discretizing the space and in

assuming objects to be identical. The model would thus need to be

extended to capture, for instance, the influences of continuous visual

features such as surface area, convex hull, and density on

numerosity perception (e.g., Cantrell et al., 2015; Cantrell &

Smith, 2013; Gebuis et al., 2016; Gebuis & Reynvoet, 2012;

Leibovich et al., 2017; Lourenco & Longo, 2010, 2011; Mix et al.,

2002; Newcombe et al., 2015; Sokolowski et al., 2017). In fact, the

methods we employed in this article may be useful to understand

some of these effects: Because continuous features like surface area

are correlated with numerosity in the real world, principles of

efficient information compression dictate that their representations

will not be independent.
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