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t-HGSP: Hypergraph Signal Processing Using
t-Product Tensor Decompositions
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Abstraci—Graph signal processing (GSP) technigues are pow-
erful tools that model complex relationships within large datasets,
being now used in a myriad of applications in different areas
including data science, communication networks, epidemiology,
and sociology. Simple graphs can only model pairwise relationships
among data which prevents their application in modeling networks
with higher-order relationships. For this reason, some efforts have
heen made to generalize well-known graph signal processing tech-
niques to more mn hs such as h which allow
capturing highe re tlnlﬂn}--nngdltl. this article, we
provide a new hypergraph signal processing framework (1-HGSP)
based on a novel tensor-tensor product algebra that has emerged
as a powerful tool for preserving the intrinsic structures of tensors.
The framework allows the generalization of traditional
GSP techniques while keeping the dimensionality characteristic of
the complex systems represented by hypergraphs. To this end, the
care elements of the -HGSP framework are introduced, including
the shifting operators and the hypergraph signal. The hypergraph
Fourier space is also defined, followed by the concept of bandlimited
signals and sampling. In our experiments, we demonstrate the
henefits of our approach in applications such as clustering and

denoising.
Index Terms—UGraph, Signal Processing, Tensor, Data Analysis.

I. INTRODUCTION

RAPH signal processing (GSP) has recently emerged

as a rich theoretical framework to analyze and process
signals that live on imregular grids — a trait that commonly
arises in a broad range of applications including biology [1].
neuroscience [2], urban transportation [3], sensors, and social
networks [4]. Nodes of a graph may represent individuals in
social networks, brain regions in neural networks, or transactions
in financial networks. Classical Digital Signal Processing (D5P)
principles such as sampling, filtering, compression, denoising,
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Fg 1. Inaco-authoship network, two different hypergraphs (b) Hy (c) Hs

arc mapped to the same stmple graph in (a) by the chgue cxpansion. Hyperedges
are color-coded by publication, c.g. the red hyperedge (23 ) indicates that Carl,
Dan, and Ed coauthored a publication. Since eq4 © e3, 24 is ignored in the
clique expansion represcntation.

and signal representations have thus been extended for signals
on graphs under the umbrella of GSP [5], [6]. [7].

Al the heels of GSP, a new and exciting set of tools for
processing data on complex structures is emerging, coined Hy-
pergraph Signal Processing (HGSP) [8], [9], [10], [11], [12].
The motivation lies first in the ability of hypergraphs to capture
high-order interactions between more than two nodes. In the
case of a co-authorship network, for instance, a hypergraph can
better represent the relationships between the different groups
of authors. While edges in conventional graphs (Fig. 1(a))
can only model pairwise relationships between nodes, limiting
GSP to single-way analysis, hyperedges connect more than two
nodes as illustrated in Fig. 1{b)}-(c). Hypergraph signals are thus
defined as those associated to the vertices of a hypergraph,
whose polyadic interactions are modeled by hyperedges. The
literature on data processing in high-order networks is sparse
compared to GSP [12], even though higher-order relationships
are widespread in many complex systems such as multiple neu-
rons firing at the same time [13], biochemical reactions having
more than two proteins [ 1], people interacting in small groups of
more than two people [14], and multilateral relationships among
several related points (e.g.. on a surface) in 3D point cloud [15].

A second motivation for advancing hypergraph signal pro-
cessing is to overcome the limitation of standard graphs to
model only single-layer connections. Many complex networks
in nature exhibit multiple-layer interactions between two nodes,
which can be modeled by multilayer graphs with each type of
interaction defining a layer [16], [17], [ 18]. Mathematically. the
matrix algebra of graphs cannot effectively model multi-layer
relationships as all entries in a matrix are considered equiva-
lent [9]; however, networks with multi-layer relationships have
been successfully studied by being mapped to hypergraphs [19].
Among the applications of multilayer graphs are multi-sensor
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point clouds, imaging spectroscopy, and multilayer social net-
works. Point cloud processing, in particular, is an area of sig-
nificant growth as it arises with new sensor technologies such
as LiDAR [20], tomographic synthetic aperture radar [21], and
time-of-flight spectral cameras [22], [23], [24]. Point clouds are
ubiquitous in computer vision and are essential in the exploration
of planetary bodies [25], [26].

The advantages of HGSP, however, are currently hindered by
several technical challenges including:

1. Choosing an appropriate algebraic descriptor: In GSP,
computation is enabled by encoding the graph structure in
an adjacency matrix or its associated Laplacian. Hypergraphs,
however, have many different algebraic descriptors for the same
higher-order interaction structure, and choosing an appropriate
algebraic descriptor is a key element when defining an HGSP
framework. In fact, hypergraphs can be described by both matri-
ces [27] and tensors [ 28]. GSP operations can easily be applied to
hypergraph matrix-based descriptors. Nevertheless, these fail to
capture the high-order structure of the data. Higher dimensional
tensors, on the other hand, allow capturing deeper insights from
high-order data.

2. Defining a hypergraph signal shifting operation: In GSFP,
the algebraic descriptors of the graph are called graph shift
aperatars which are a generalization of the classical time delay
in DSP. The shifting operation replaces a signal value at each
node of a graph with a linear combination of the signal values at
the neighbors of that node. When defining a new tensor-based
HGSP framework, modeling the hypergraph signal interactions
over hyperedges that connect more than two nodes is not as
straightforward as in the graph case.

3. Defining a loss-free hypergraph Fourier transform: In GSP,
the graph Fourier transform is defined based on the eigendecom-
position of the graph shift operator. In HGSP when considering
tensor algebraic descriptors, the hypergraph Fourier transform
is not uniquely generalized since the concept of eigendecompo-
sition of a matrix is not uniquely defined for high-order tensors.
Previous efforts relied on an approximated, yet computationally
intensive decomposition, that leads to subspace mappings of the
signal, hence, providing a lossy Fourier transform.

This article tackles these limitations by proposing a new
HGSP framework based on t-product factorizations. The main
contributions of this article can be enumerated as follows: (i) for-
mulate the core elements of the new HGSP framework, which in-
cludes the tensor-based algebraic representation of hypergraphs,
hypergraph signals, and the hypergraph shifting operation; (ii)
define a loss-free hypergraph Fourier transform using t-product
factorizations; (iii) provide an analysis of frequency and the
concept of bandlimited signals by defining a measure of the
total variation of signals on hypergraphs; (iv) introduce the
fundamentals for filtering, sampling, and recovery of hypergraph
signals.

II. BACKGROUND AND RELATED WORK

A. Graph Signal Processing Overview

An undirected simple graph on N data points is givenby G =
(V(G), E(G)), where V(G) is the set of nodes defined on the N

data points and E(G) is the set of edges describing the pairwise
interactions between these nodes. These interactions can also
be represented by the symmetric adjacency matrix A € RV*¥
whose eniries are A(u,v) = 1 if there is an edge connecting
the nodes u and v and 0 otherwise. The combinatorial graph
Laplacian associated with & and computed as L=D - A is
a symmetric positive semidefinite mairix where the diagonal
matrix ID stores the degrees of the nodes in the graph and its
entries are given by D(u, u) = 3oy () Alu, v). Areal valued
signal, € R", on the graph, G, is defined as a function = :
V(G) — R. The component x(v) represents the value of the
signal on the node v € V(G). From G = (V(G), E(G)), GSP
defines a shift operator, F, as a local operation that replaces
the signal’s value at each node with a linear combination of the
signal's values from neighboring nodes according to Fx. Several
graph shift operators such as the adjacency or the Laplacian can
be considered in order to exploit different properties of the graph
and to define a graph signal processing framework [6], [29].

The notion of linear filtering the graph signal, =, by the
filter, Q. is achieved by multiplication y = Qz. resulting in
a new graph signal y. While Q can be any arbitrary matrix,
it is considered a linear shift invariant (LSI) operator if it
salisfies the condition that QFz = FQz. Now since F is real
and symmetric, it is diagonalizable by means of the eigenvalue
decomposition as F = VAV where V is a unitary matrix
whose column vectors are eigenvectors and A is a diagonal
matrix of coresponding eigenvalues [30], [31]. Then, given a
filtering weight function g : R — R, alinear shift imvariant filter
can be written as Q = 33, g(As)Viv, = Vg(A)V", where
g(A) = diag(g(i1),...,q(in)) is the frequency response of
the filter Q. By spanning the set R such that any graph signal,
x, can be written as a linear combination of column vectors
from V. the Graph Fourier Transform (GFT) of a signal =
on G can then be defined as & = V' z and its inverse GFT as
x = Vz with the eigenvalues interpreted as frequencies [32].
As N-length vectors, the columns of V are, themselves, graph
signals whose corresponding eigenvalues are measures of their
total variations. The bandwidth of z is defined in terms of the
nonzero components of .

B. From Graphs to Hypergraphs

A hypergraph H = (V(H), E(H)) is defined as the pair of
one set of nodes V(H) = {vy,.... v~} and a set of edges
E(H) = {ey,...,ex} whose elements, different from simple
graphs, are multi-element subsets of V' (H) called hyperedges.
Let M = max{|e,| : €; € E(H)} be the maximum cardinality
of the hyperedges, shorted as m.c.e(H). H = (V(H), E(H))
can be represented using matricial or tensonial algebraic descrip-
tors. In the matrix-based approach, a hypergraph is represented
by the incidence matrix B € RV*E such that B, = 1 if the
veriex u is an element in the hyperedge ¢ and 0 otherwise.
Even though the matrix-based representation of the hypergraph
is simple, it fails to capture the high-dimensionality structure
of the hypergraph. For this reason, in this work, we use the
lensorial representation of hypergraphs to propose a new HGSP
framework.
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The adjacency tensor of a hypergraph H = (V(H), E(H))
with N nodes and M = m.c.e(H) is traditionally represented
by an Mth-order N-dimensional tensor 4 € RV" defined as
A = Op pa.....PM 1 <pi,pa,--.,pa < N. Ahyperedge g, =
{¥i,,¥1a,-.., v } € E(H) of cardinality c, = |e,| < M, is
represented in A by ap, p,....py = €1/, Where

> =

) kylko! - - - ke, !’
k11h...-.k=.-2‘1.2;‘=|h=” kc'

)

hy =

and ¢, out of the M indices in the set {py, p2 . .. pas } are exactly
the same as {I;,la,...,1 } and for the other M — ¢, indices
every possible subset combination from {Iy, s, . .., I, } istaken.
Observe that 1 enumerates all the possible combinations of c,
positive integers {k;, ks, ..., k. } whose summation satisfies
3.j21k; = M. Note that a hypergraph with M — 2 degrades
to a simple graph with a binary adjacency matrix .4 € RV*V;
hence, HGSP is a generalization of GSP.

The degree of a vertex v, € V(H) is the number of hyper-
edges containing v, ie., d(ve) = EZL, _____ 1 =10kt 05, -
Then, the traditional Laplacian tensor is defined as £ =D —
A € RVY where, D € RV is the degree tensor defined as
D =dp, py...pnes 1 <P1,p2,. .., pa < N, which is a super-
diagonal tensor with diagonal elementsdy, g =d(vi),1 <

S

k < N, and zero otherwise.

C. Related Work

The theory of signal processing on higher-order networks is
largely unexplored compared to that on graphs. The most promi-
nent abstractions for such polyadic data are simplicial com-
plexes [33] and hypergraphs [11], [34]. Simplicial complexes
are used as an alternative representation of hypergraphs, with
the particular drawback of the inclusion property, characteristic
of simplicial complexes, that is undesirable when representing
interactions that are exclusive to multiple nodes but do not imply
the interaction between all the subsets of nodes [11], [12]. For
instance, in a co-authorship network (Fig. 1), having a paper of
three or more authors does not imply that these authors have writ-
ten papers in pairs. While tensor-based hypergraph representa-
tions can differentiate these two cases, simple graphs, simplicial
complexes, and even matrix-based hypergraph representations,
which represent hypergraphs as graphs, cannot [12]. As shown
in Fig. 1, a common matrix-based hypergraph representations,
the clique expansion, replaces every hyperedge with a clique
subgraph, clearly failing to capture lower-dimensional relation-
ships and not providing an injective mapping for a hypergraph.

Recently, a tensor-based hypergraph signal processing frame-
work was introduced [9], which proceeds analogously to GSP.
In [9], much like the Fourier Transform in GSP is defined
via the eipen-decomposition of the graph Laplacian or adja-
cency matrix, the Fourier transform in HGSP is defined via
the canonical polyadic (CP) tensor decomposition of the hyper-
graph adjacency or Laplacian tensor. The canonical polyadic
(CP) decomposition expresses a tensor as the finite sum of
rank-one tensors (Fig. 2(a)). For instance, the CP decompo-
sition of a third-order tensor X' € RV1>*N2xNs jg represented

o, v L

14 [ ] 44+ [/
iy ...I]

Fg 2. Tensor X and its (a) CP decomposition, and (b) -5V decomposition.

as X=37 a cb,cc, where a, € R™, b, € R™, and
¢, € R™ and o represents the tensor outer product operation.
Particularly, the symmetric orthogonal-CP decomposition [35],
being a special case of the CP decomposition, is used in [9]
to decompose a super-symmetric tensor F € RV *V*N repre.
senting either the hypergraph adjacency or Laplacian tensor as
FaF A fof.of,, where the £.’s form an orthogonal
sel. The integer R is the smallest number of rank-one tensors
required to express JF and is referred to as the CP rank of F[36].
The CP rank has no relaxation which limits its applications.
While the CP-tensor decomposition approach to HGSP was
shown effective in some image processing applications [9],
[10], it has some drawbacks. The first drawback comes from
the fact that the hypergraph spectrum space is obtained from
the orthogonal-CP decomposition of the hypergraph adjacency
tensor 4, and, as shown in Fig. 3(a), this tensor does not have an
exact CP orthogonal decomposition. In fact, most tensors gen-
erally do not have an exact CP orthogonal decomposition [37].
Current efforts have focused on finding symmetric orthogonal
approximations [35]; however, emmors add uncertainty, affecting
the accuracy of the hypergraph Fourier transform which is
undesirable, particularly when filtering on the Fourier domain.
Second, finding the CP-rank R is an NP-hard problem which
invariably poses high computational complexity [38]. Third,
generally, the rank K is smaller than the number of nodes in
the hyperzraph N [9]. As a consequence, hypergraph signals in
RY are invariably mapped to a subspace of RY which does not
guaraniee perfect recovery on the inverse hypergraph Fourier
transform for any type of signal as depicted in Fig. 3({a).

An alternative setting for hypergraph signal processing that
can overcome all of the above-mentioned limitations is therefore
needed. Choosing the tensor decomposition that better parallels
the characteristics of the eigendecomposition in traditional GSP
frameworks becomes a key aspect when defining an HGSP
framework. To this end, we adopt an aliernative seiting based
on the more recently proposed tensor-tensor multiplication
(t-product), in which the familiar tools of linear algebra are
extended to better understand tensors [39]. The t-product of
two small tensors a € R17*1*Ma and b € R N3 known as
tubal scalars, is the tensor ¢ € R'*1*¥s computedasc = a« b,
where + denotes the circular convolution of two vectors. Thus,
by considering tensors as matrices of tubal scalars, tensor factor-
izations built from t-products are analog to matrix factorizations
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Fig. 3.  (Bottom-lefi) Hypergraph on the 16 = 16 CameraMan image built
wsing the method in [41] and its (top-left) 3™ -arder adjacency tensor represen-
tation 4. At the bottom of (a) and (b) is the signal afier applying the forward
and inverse hypergraph Founer transform and the commesponding absolute emmor

wsing: the symmetric orthogonal CP-based decomposition, and the proposed
t-product factonzation, respectively. At the top of (a) and (b) are the absolute

errars of the tensor decompositions. The advantages of the proposed approach
are readily scen.

such as the SVD, QR, and eigendecompositions [39]. The ten-
sor singular value decomposition, based on this t-product, was
coined t-SVD. The significance of these decompositions is that
they allow for the extension of familiar matrix analysis to the
multilinear setting while preserving the intrinsic structure of ten-
sors and avoiding the loss of information. The algebraic frame-
waork for higher-order tensors is thus analogous to that of matri-
ces such as the transpose, identity, orthogonality, and diagonal-
ization. The t-SVD of a third-order tensor X' € RV1*NaxNs g
for instance X = I{ + S = V! where * denotes the t-product [39],
U € RV *NaxNs apd VY € RV2*N2*Ns are orthogonal tensors,
and § € RV1*N2xNs j5 an f-diagonal tensor where the frontal
slices are diagonal matrices as shown in Fig. 2(b). Although
the t-SVD was first demonstrated on 3rd-order tensors, it is
easily extended to n-th (n > 3) order tensors [40]. The proposed
research exploits this novel set of t-product factorizations to
develop a new HGSP framework, dubbed as t-HGSP. that aims
at being more stable and, more importantly, loss-free compared
to previous tensor-based HGSP frameworks as demonstrated
in Fig. 3(b). To formulate the t-product and its algebra as the
backbone of our -HGSP framework the following definitions
need to be introduced.

D. t-Product Operations

Denoting vectors by bold lowercase letters (e.g. a), matrices
as uppercase letters (e.g. A), and tensors as calligraphic letiers
(e.g. A). we first define the (i, 7)-th tube scalar of the 3rd-order
tensor A as a;; which is illustrated in Fig. 4(b). The j-th lateral
slice of the tensor, shown in Fig. 4(c), is denoted as A; = A(:
.3, :) € RN1=1=N3 which is a vector of tubal scalars. The k-th
frontal slice depicted in Fig. 4(d) is denoted as A®) = A(:,:
k) € RNvxNax1 which is a matrix.

Definition I (t-product [40], [42]):

As mentioned before, the t-product of two tubal scalars a <
R1%1xNs apd b € R1*1*N3 i5 also a tubal scalar ¢ € R1*1*Ns
computed as¢ = a * b, where * denotes the circular convolution
of two vectors. Then, the t-product of two vectors of tubal

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 9, 2023
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Fig. 4. {a) Third-order tensor 4 divided into: (b) a matrix of tubal scalars,
(c) lateral shces (vector of tubal scalars), and (d) fromtal shoes.

scalars A € RM*1*Ns anq (B)' € R1*N2*Ms s 3 matrix of
tubal scalars C € RV1*¥2*Ns computed as

. Ay * bl,I ayg * h:,nr,
c-A«(B) - )

an, 1*by an,.1+byn,

In general, the t-product of two 3rd-order tensors 4 €
nN.tNaxN: and B ¢ RH;:H..:N: is the tensor C € RH.:H;vH_-.
computed as

C=A+B=fold(bcirc(.A) - unfold(B))

AN A (Na) A B

A Al A3 B
= fold

ANz} A (N3-1) AL BNs)

(3)

where the operator beirc(.A) converts the set of frontal slices of
the tensor .4 into a block circulant matrix and unf o1d(5) stacks
vertically the set of frontal slices of Bintoa NaNz x Ny matrix.
The operator £old() reverses this process, fold(unfold(A4)) =
A. Circulant matrices are diagonalized by the discrete Fourier
transform; hence, the i-product can be computed efficiently
in the Fourier domain as explained in [42]. Using MATLAB
notation, letA := ££t(A, [|,3) denote the tensor obtained by
applying the fast Fourier transform (FFT) along each tubal
element of A. For the remainder of this article, the hat notation
refers to a tensor that has gone through this operation. Thus, the
t-product of 4 € RV1*¥2*Ns apd B € RV2*Na*Ns caq also be
computed by matrix multiplication of each pair of frontal slices
in the Fourier Domain as
Ny

C— AsBie ifst ([‘Wﬁm]H N ],3). @)

The t-product can be easily extended to high-order tensors in
a recursive manner. The t-product of 4 £ RV *NaxNax—xN,
and B € RNaxLxNax—xN; 5 an order-p (p > 3) tensor C €
RNixLxNyx—xNe computed recursively as

C = A+ B = fold(bcirc(A) + unfold(B))

Authorized licensed use mited foc UNIWVERSITY OF KENTUCKY. Downloaded on June 24,2004 at 18:04:38 UTC from IEEE Xplore. Resirictions apply.



PENA-PENA et al.: T-HGSF: HYPERGRAPH SIGNAL PROCESSING USING T-PRODUCT TENSOR DECOMPOSITIONS 333

Al qINg) Al Bl

A{i} _4{1 ) A““ B2
= fold ) . . . * .

AW 4(N=1) AWM BWNy)

(5)

where A" and B are order-(p — 1) tensors formed from
holding the p-th index at [, respectively forl = 1,2, ..., N, [40].
Thus, each successive t-product operation involves tensors of
one order less and at the base label of recursion there is a
t-product of 3rd-order tensors.

Given that the exiension to high-order tensors is obtained
by recursion, for simplicity and without loss of generality, we
present our framework for the base case which is given by
hypergraphs with M = 3 whose adjacency tensor is a 3rd-order
tensor 4 € RV*N>N,

Definition 2 (Transpose and Symmetric tensors [42]): The
transpose of a Ird-order tensor 4 € RV1*Na*Ns | denoted as
A, is the tensor obtained by transposing each of the frontal
slices and then reversing the order of the transposed frontal slices
2 through N3. For a higher-order tensor 4 € RN #Nax—xNp
its transpose A € RMa*Nix-%Ny s obtained by recursively
transposing each A for [ = 1,2,... N, and then reversing
the order of the A"s from | = 2101 = Ny as

A

: AN
A =fold (6)
A

The tensor A is symmetricif 4 — A .
Definition 3 (Ordering [43]): Let a, b € R N3 be two
tubal scalars then

a<b when a® <bp® vk o
a<b when a® <p® vk,
that is a < b if and only if each of the components of a in the
Fourier domain @'*’ are pair-wise less than or equal than the
components of b in the Fourier domain 5%,

Definition 4 (Norm [43]): The norm of a vector of tubal
scalars X € RVM1*1*Ns jg 3 1 x 1 x N3 tubal scalar and it can

be computed as

= (¥ r)m ~stre (VRO KO, [,3), ®)

where X*) € RMi*! s the k-th frontal slice of A=
£££(X, [).3).

Definition 5 (Inverse of a Tensor [42]): A 3rd-order Ny x
Ny % Nz tensor A has B as its inverse if

AsB=TIynn, ad BsA=InnnN, O

where Iy, n, n, is the identity tensor whose first frontal slice is
the Ny x N identity matrix, and the other frontal slices are all
ZETOS.

Definition 6 (t-eigendecomposition  [42]): Let A€
RMi=NixNs_ If each frontal face of 4 is diagonalizable,
that is, A®) — V®A™ (V#)(-1) then A has the following
t-eigendecomposition form

A=VsA: V! (10)

where A € RV1*N1xNs i an f-diagonal tensor, and the follow-
ing holds

A:V=VsA
_A*i} =‘pj*1j

(1)
(12)

where A; € R'!*¥2 and ¥; € RV *1*Ns corresponds to an
eigen-tuple and its corresponding eigen-matrix. If 4 is symmet-
ricie, A= A then A = V+ A +V, where Vis an orthogonal
tensor and the set of eigen matrices {Vy, Va, ..., Vy, } form an
orthonormal set (Definition [13] in the Supplemental Material).
This decomposition can be efficiently computed in the Fourier
domain by means of matrix eigendecomposition as shown in
Algorithm 1 (for 3rd-order tensors).

Definition 7 (Multi-Rank [42]): The multi-rank of a 3rd-
order Ny x Na x N3 tensor 4 is the tubal scalar p({A) €
RI*1xNs with frontal slices p(.A)* being the rank of the
k-th matrix A®_ Since A™® is a N; x Np matrix, p(A4)® <
min(N,, Ny). The multi-nullity is the complimentary tubal
mn[A] c R1x1xNy WithIﬂIiESﬂ{A]IH = Ny —P{A}(H.

IIl. HYPERGRAPH SHIFTING OPERATION

In order to make these t-product operations the backbone
of our t-HGSP framework, we define the hypergraph shifting
operation as

Y=F+X (13)
where X is the hypergraph signal, )’ is the one-time
shifted/filtered signal and F is the shifting operator. As in
GSP. Fis any operator that captures the relational dependen-
cies between nodes, including the adjacency tensor A and the
Laplacian £. Motivated by the connection between the t-product
and the Fourier transform [39] and the fact that, in this article,
we are only considering undirected hypergraphs, we also define
symmeiric adjacency and Laplacian tensor descriptors. Note
that, for M = 2, the tensors .4 and £ introduced before are
not symmetric according to Definition 2. Therefore, we define
a symmetrization operator sym(.4) that generates a symmetric
version A, € RVXNx(AN+1) of g € RV*N*N by adding a
matrix of zeros Oy . as the first frontal slice, dividing by 2,
and reflecting the frontal slices of .4 along the third dimension
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A, = sym(A) = fold (14)

,A.;m
\ (A" ])

Now, if we let N, = 2N + 1, for a higher-order tensor
Ac RN its symmetric version is a Mth-order tensor A, €
RN =N =N ohtained by recursively appending a (M — 1)th-
order tensor of zeros @ at the front, dividing by 2, and reflecting
the (M — 1)th-order tensors A" along the last dimension as

([ o )
$sym(A")

avmf A@
A, = syn(A) = fold 4 "5'4 ',

(13)

Joyn(A®)
L“ L%BF[A“}}_, )]

where the (M — 1)-order tensors are obtain from holding the
M -th index at I, respectively, forl = 1,2, ..., N. When applied
to the degree tensor and the Laplacian tensor, we obtain D, and
L. respectively. Notice that this operation is reversible. The
symmetric hypergraph shifi is then given by

?5=Is*1,a~

In Section IV-A. we include further discussions on the effects
of the symmetrization operation given by the connection of the
t-product and the Fourier transform.

In GSP, the graph signal is defined as an N-length vector
x = [£y,...,Ty| where each signal element is related to one
node in the hypergraph. In the proposed framework, given that
the shifting operation is defined by the t-product and the shifting
operator is a tensor of dimension N = N = N, x --- x N, the
hypergraph signal X, and its one-time shifted signal Y, should
both be tensors of size N = 1 = N; % --- % N to have con-
sistent operations. Thus, we now relate a tubal scalar (%) 1 €
Rix1xNex—xNs 1 < § < N, to each node in the hypergraph as
shown in Fig. 5 (top-right). This setting opens up the possibilities
for different hypergraph signal configurations. Two different of
many possibilities are presented next.

Definition 8 (Hypergraph Signal from a Set of Signals):
Let X = [xy,x2,...,%x.] € RYV*L be a set of one dimensional
signals on the hypergraph. One can consider assigning to each
tubal scalar (%), € RY*1*Nax—xNe the set of signals comre-
sponding to that node, ie. {z;1,...,742}.1 <1< N.Thena
total number of L < N!™? signals can be jointly processed
on the hypergraph. This setting can be particularly useful when
processing signals that are correlated along the tubes, as it is
the case of hyperspectral information. We demonstrate this in

(16)
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Fig.5. (top-lcfi) Hypergraph H with sct of nodes VI(H) = {v1,va...., vr}
and set of hyperedges E(H) = {ey, 02, @3 ). (top-right) The hypergraph signal
maps a tubal scalar to cach node. (bottom) Shifting of the signal A, by the
adjacency tensor A ;. Gray colored tubes are all zero tubal scalars.

our experiments by considering the sparse representation of a
hyperspectral point cloud.

Definition 9 (Hypergraph Signal from One Dimensional Sig-
nal): For a hypergraph with N nodes and m.c.e(H) = M,
in [9], an alternative form of hypergraph signal is defined
as an (M — 1)th-order N-dimensional tensor A" computed as
the outer product of an original signal in the hy,

x =[x1,...,ZN] ER",i.e‘I=xu~nuz€RNm_ where
each entry position ATiy,d0,...,ix—1) equals the product
Ty, Ty, -~ - Tg,, ,- 1his definition of hypergraph signal can be
easily adapted to the proposed t-product framework by ex

ing on a new second dimension, ¥ = expand(.X) where Xis an
M th-order tensor with dimensions N »x 1 x N x --- x N and
by computing its symmetric version as X, — sym(.X) such that
X, € RV*1xNox—xN. Notice that as in the CP-based HGSP
framework [9], the hypergraph signal ¥, is just another repre-
sentation of an original one dimensional signal x that aims at
reflecting its properties in different dimensions. For instance,
for a hypergraph with M = 3, the hypergraph signal highlights
the properties of the 2-D signal components ,x;.

As an example, let the adjacency tensor be the shifting op-
erator, i.e. F, = A, € RY*¥*N._ and consider the 3-uniform
hypergraph in Fig. 5. The shified signal in node v, is then
computed as

(¥e)r1 = (As)r 2% (Xs)a1 + (2s)7 3+ (Xs)as
+(Be)rs* (Xa)s g + (Be)rg*(Xa)gy. (1)

where (a,);2 and (a.);z are tubal scalars of the sym-
metrized adjacency tensor .4, that represent the hyperedge

= {v2,va,v;} and (a,); 5 and (a,)7¢ represent the hyper-
edge e3 = {vs, Vg, v7}. which are the only two hyperedges that
contain the node v;. Note that the entries of the adjacency tensor
are very sparse, the tubal scalar (a,); 2. for instance, has only

1)
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two elements different from zero: (a, ]E.‘g which corresponds to
the entry a+23 € .4 and its reflection {a,}?’g} which is product of
the symmetrization operation. Given that {a,}m 1“33

araz /2, we will use, for simplicity, the entries of the a:lj.wemy

tensor aq . € .4 in this example. Then, for any hypergraph
signal, the [-th frontal slice of the i-th tubal scalar (¥, ), 1 can

be computed as:
iy _ i 3 k
()i > 1

{vi.v; v [ E(H)

(IE'TEHI"- +IE_1:|;J.—I'+“N.]
(18)
for 1<I<N, 1<1ijk<N. The operator [a]y, =a
mod N,.
Now, on one hand, one could consider a hypergraph signal
obtained from a set of signals X as in Definition 8, then from
18, the frontal slices of the shified signal in node v+ are given

by

0 = 252 (< xi7) + 252 (w2 + )
+ 755 (x4 ) + 2 ().
o = 52 (i +x0) + 52 (il + x7)

+ ";"“ (x5 +x50) + 5= (x61 +x67).
which represenis a linear combination of the signal tubes at
neighboring nodes. Note that there is a sequential shift along
the third dimension for each frontal slice of the shifted signal.
This sequential shift along the third dimension is beneficial to
signals that are naturally correlated along the third dimension,
as in the case of hyperspectral information. Then, the shifting
across the third dimension can exploit the correlation among
different channels and benefit applications such as compression
and denoising.

On the other hand, one could consider a hypergraph signal
from one dimensional signal x as in Definition 9, then from 18,
the frontal slices of the shifted signal in node v, are

(¥s)¥) = 1/2(azmazors + arsazazs
+ aresTeTs + ArseIsTs ),
2
(¥s)S) = 1/4(aza(z272 + Ta14) + azsa(zaty + T373)

+ ags6(TsTs + T5T7) + amss(TeTe + TETE)),

(¥s)o] = 1/4(ams(zazs + Toxs) + aras(zazs + T376)

+ arsg(TsTy + T5T3) + ags(TeTe + TeT3)),
(19)

where z; € x. Note that the first frontal slice (y,).  corre-
spond to the shifted signal proposed in the CF—busecl HGSP

Algorithm 1:
sor [42].

t-eigendecomposition for a 3-order ten-

lIIIFIiIt: F. e RNV =NxN,
OII‘]HII: Ac RNKNIN.I' Ve RNKNIN.
1: F, + ££¢(F., [,3)
Zifork « 1twoN,do
3 [V,D|=eig(Fi(: k)
4: Vi k)« V; Al k) « Dy
5: end for
6: A «— if£t(A,[),3)
7:V « iffe(V,[],3)

approach [9] but divided by two. Different from [9]. the frontal
slices 2 through N + 1 consider the cross-product of the signals
at nodes connected to node 7 and the rest of the nodes in the

graph.

IV. HYPERGRAPH SPECTRUM SPACE

Central to HGSP is the Fourier transform. In our formula-
tion, the generalization comes directly from the tensor eigen-
decomposition (i-eigendecomposition). Given the symmeitric
shifting operator F, € RV*N<N. the t-eigendecomposition
(Algorithm 1) is determined by

Fo=VsAsV, (20)

where V= [Vy,..., Vx| € RV*¥*N. i5 an orthogonal ten-
sor, A = diag(d;,....Ay) € RV*N*N. i5 an f-diagonal ten-
sor whose frontal slices are diagonal matrices, and (4,
RN, P, e R¥1*1xNs2) corresponds to the j-th eigen-pair
of eigen-tuple and its corresponding eizen-matrix. The hyper-
graph Fourier transform of a hypergraph signal X, € RN *1*N.
(t-HGFT) is then Xz, = V' = X.. with the inverse hypergraph
Fourier transform (t-IHGFT) given by X, = V+ X . Since the
tensor V forms an orthonormal set with cardinality N, ie.,
]f*V=Fth=INNN,.perfﬁiFm.iermﬁmmﬁunand
recovery of the signal is achieved. See Fig. 3(b).

A. Hypergraph Frequency

Given the above definition of the hypergraph Fourier trans-
form, the next step is to determine a notion of frequency, which
is key for filtering. In GSP. the notion of frequency is provided
by the eigenvalues and eigenvectors of the representing matrix
F ordered based on the total variation (TV) [44]. The total
variation and hence the frequency describes the rate of signal
changes among neighbors. For t-HGSP., the total variation of the
hypergraph Fourier basis can also be used to define a notion
of frequency. To this end, we first define the total vanation on
hypergraphs around the concept of the hypergraph shifting and
use this definition to determine an ordering of the eigen-tuples
of the adjacency tensor, .4, that provides a notion of frequency.

Definition 10 (Total Variation on a Hypergraph): Let F, —
Aj. The total variation of a hypergraph signal X, on H is defined
as the similarity measure between the hypergraph signal X, and
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its shifted version ), computed as
TVR(E) = | X = Vol = | X — F™ + X,

Jrom — Ve A" 4 V-1 where A™™ is a normalized diagonal
tensor. The k-th frontal slice of A™™ is computed in the Fourier
domain as (A"™™)®) = |A{E.|"A®)_ The normalization en-
sures numerical stability when filtering as it prevents excessive
scaling of the shifted signal [44]. The norm || - || is computed
according to the t-product Definition 4.

Since the TV describes how oscillatory the signal is on the
hypergraph, it leads to the concept of low and high frequencies
on the hypergraph Fourier spectrum, V, as shown next.

Theorem 1: Let F, = A, and A, and 1, be two eigen-tuples
of F, with corresponding eigen matrices V; and V;. Given that
JF. is symmetric, it has real eigen-tuples. If the eigen-tuples are
ordered as k; > &;, then the total variations of their eigenvectors
satisfy TVi(V;) < TVa(V)).

Proaf: See Appendix A.

Theorem 1 provides an ordering of frequency according to the
cigen-tuples 1;’s. As a result, the hypergraph Fourier basis of
the adjacency tensor .4, which are the eigen-pairs (i, V) are
ordered from lowest to highest frequency if 1y > Ay > --- >
A; > .- > ky. Recall that tubal scalars are ordered according
to Definition 3.

In parallel to GSP theory, we can also define the Laplacian-
based total variation and provide an ordering for the hypergraph
Fourier basis of the Laplacian tensor £,. Hence, we define the
Laplacian-based total variation on a hypergraph as

-

TVe(X,) = X, » L, + X
Then, the total variation of a Fourier basis vector V is

21

TVe(V)) =A,. (22)

In contrast to the Fourier basis obtained from the adjacency
tensor, the eigenvectors of the Laplacian shifting operator are
ordered from lowest frequency to highest as 4y < Ay <-.. <
Ay < --- < Ay. In simple graphs, the eigenspace of the graph
Laplacian L. = VAV provides a similar notion of frequency as
in classical Fourier analysis. The graph Laplacian eigenvectors
associated with smaller eigenvalues vary slowly across the graph
and the eigenvectors associated with larger eigenvalues oscillate
more rapidly and are more likely to have dissimilar values on
vertices connected by an edge [5]. For the hypergraph Fourier
transform defined here, in Fig. 6, we visually compare the
variation among three of the column vectors in V') which is the
first frontal slice ofV. Note that there is higher variation among
neighboring nodes as the value of the eigenvalue increases.
Given the notion of frequency, we then introduce the definition
the bandlimited signals on a hypergraph as follows.

_ Definition 11 (Band-limited Signal): A hypergraph signal
A, € RV*1xNa js a K-band-limited if its t- HGFT, X, , has tubal
scalars (Xg );,g = 0foralll > K where K € 1.2,... ,N. The
smallest K is called the bandwidth of X,.

Note that hypergraph band-limited signals are not required
to be low-pass or smooth, in which the eigen-tuples are sorted
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Fig. 6. (a) Hypergraph H: subsct of the DBLP coausthorship network; and,
l-4th frontal shice of three different cigen-matnces in the Founer domain:
) Vi, () Vg and (d) V 1) of the hypergraph Laplacian £, of H; ordered
ﬁmbmuﬂuﬁwr.ﬁﬁ#rm&mhmﬂjhw
vanation of the cipenvector signal values at neighbonng nodes. Hyperedges have
different cardinality: (green) je| = 3 and (purple) |e| = 2.

from low to high frequency as explained before. Instead, the
band-limited definition is equivalent to restricting the number
of nonzero tubal scalars in the hyperzraph Fourier spectrum
X, [29] with no specific ordering on the eigen-tuples.

V. DISCUSSIONS AND INTERPRETATIONS

In this section, we discuss the benefits of using t-product
as the core operation for the proposed HGSP framework. We
also establish the connection and advantages over classical GSP
frameworks, focusing on the aspects that help to interpret the
notion of hypergraph frequency.

A. Interpretation of Hyvpergraph Spectrum Space

To analyze the hypergraph spectrum space we consider not
only the connection of HGSP with DSP and GSP but also the
connection of the t-product with the Fourier transform.

I} Connection of the T-Product With the Fourier Transform:
To better understand the hypergraph spectrum of a signal,
we consider the connection of the t-product with the discrete
Fourier transform (DFT) [39]. As observed in Algorithm 1,
the t-eigendecomposition is efficiently computed by traditional
matrix eigendecomposition of the frontal slices of the shifting
operator F, in the Fourier domainF,. Note that, as depicted
in Fig. 7, a better interpretation of the hypergraph spectrum
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Lower — @ Higher

Fig. 7. The hypergraph spectrum space computed from the Laplacian tensor
L, of the hypergraph in Fig. S(top-left) is analyzed here. Better interpretability
is achieved by considering the connection of the t-product with the DET [39],
which also provides a notion of frequency along the third dimension. Then,
cach frontal slice of the t-cigendecomposition in the Fourier domain depicted in
this figure is efficicntly computed by traditional matrix-decomposition LE® —
vA™MY™ Then, for cach frontal slice, the notion of lower to higher
frequency is provided by the increasing ordering of the cigenvalues as explained
before in Section IV-A., and a notion of lower to higher frequency along the third
dimension is given by the DFT of the tubal scalars.

can be obtained by analyzing the t-eigendecomposition in the
Fourier domain. Then, for each frontal slice, the notion of
frequency is provided by ordering the eigenvalues as explained
in Section IV-A. Additionally, a notion of frequency along the
third dimension is provided by the DFT of the tubal scalars.

Note that one of the important properties of the DFT is that
when the signal is real and even, which is the case of the tubal
scalars in the symmetrized tensors, its Fourier spectrum is also
real and even. This can also be observed in Fig. 7 where the DC
component is represented by k£ = 1, and the rest of frequencies,
from lowest to highest, are given by the pair of frontal slices k =
p+lek=2(N+1l)—pforp=1,... N, withk=N+
14 k= N + 2 being the highest frequency. Here, we see that
by the symmetrization of the shifting operator, we guarantee that
its Fourier domain representation is real and even which also
leads to an eigendecomposition with real eigenvalues, which is
characteristic of undirected graphs and hence a desired property
for undirected hypergraphs.

2) Connection With DSP and GSP: To obtained an intuitive
interpretation on the hypergraph frequency, we consider its
relationship with DSP and GSP. In DSE the discrete Fourier
transform (DFT) of asignal s = {sp :n=0,1,...,N —1}is
§={%:k=0,1,...,N — 1} where each Fourier coefficient
is given by 5k = —= 30 g spe 5™ [6]. The discrete fre-
quencies wg = 2k /N, E=0,1,.. . N — 1 are related to the
degree of variation of the spectral components. To observe this,
we consider the definition of the total variation in DSP:

N-1

TV(s) = D [sn — Sfn1]x; 23)
n=0

= ||s — A.s||s, (24)

where sjn_1),, is the one-time shifted signal and this shifting
operation can be represented by multiplying by the circulant

| — |
00 02 04 06 08 L0

Fg 8 For the hypergraph example depicted in Fig. S(top-lefi), we analyre
As by considenng the connection of the t-product with the Founer domain.
(iop-left) Ist frontal shice of the st cigen-tensor in the Fourier domain V')
and (top-right) 1st frontal slice of the 3 rd cigen-tensor in the Founier domain
V") and (bottom) their respective shificd represcntations.

maltrix:
0 0 0 1
1 0 0 0
A= ' (25)
o 0 -.- 1 0

which is diagonalized by the DFT. Hence, the eigenvalues of
A arehy = e 77N q =0,..., N — 1 and the eigenvectors
Vp,n=0,...,N —1 are the columns of the inverse of the
discrete Fourier matrix DFT,'. Then, the total variation of
each eigenvector vy, computed as

TV(vp) = |1 — e /N, (26)

induces an ordering from lowest to highest frequencies on the
eigenvalues as g, Ay, Ax_1, 42, Ay_2, - - -, with the lowest fre-
quency commesponding to Ag and the highest frequency corre-
mdjﬂg mlNJp'_; for even NV WJ"{N:[}H for odd N1, which is
the conventional frequency ordering in DSP [45]. Hence, higher
frequency componenis change faster over time, which implies
larger total vanation.

Note that, the shift matrix A, can be seen as the adjacency
matrix of a cycle line graph [6]. Thus, we now consider the total
variation and frequency in GSP, replacing A . by the normalized
shifting operator of any graph as

TV(va) = lIs — F*"vall1, 2D

where F*™ = 1/|Amax|F. Then, Ay, is larger than graph fire-
quency A; if the TV(vy,) > TV(wv;) since larper vanation
indicates faster change is the signal values between neighboring
nodes on the graph, which represenis higher frequencies. For
undirected graphs, the eigenvalues are real numbers, and the
frequency decreases with the increase of the increasing the
eigenvalues as demonstrated for the general case of hypergraphs
in Section IV-A. If the graph is undirected, the eigenvalues are
complex and the frequency changes following a similar pattern
as explained before for DSP.
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Companison of the core elements of {(top) the CP-HGSP framework [9] and (bottom) the proposed t-HGSP framework. (a) Orthogonal Symmetnc CP

decomposition of F, (b) CP-HGFT, and (c) CP-IHGFT; (d) t-cigendecomposition of JF . (c) t-HGFT, and (f) t-IHGFT. Black clements represent zero values.

Now, we consider the generalization to HGSP by replacing
the shifting operator by an M-th order tensor F,. Then, the
generalized TV on hypergraphs in (21) measures the variation
on the eigen-tensors components as

TVa(Vy) == |[Vy — Fo™ « V|,

where Fy™ = Vs A V. As explained before, given that
we consider undirected hypergraphs and use symmetrized shift-
ing operators, the eigen-pairs are real in both the spatial domain
A,. V, and the Fourier domain 4,;. Then, as a generalization
of GSP and DSP, A, is larger than hypergraph frequency A; if
the TV (V) > TV (V) since larger variation indicates faster
changes in the signal values between neighboring nodes on the
hypergraph, which represents higher frequencies. To illustrate
this, consider the hypergraph example in Fig. 8 where, clearly,
there is higher variation between the eigen-tensor ¥; and its
shifted version 2™ + V, as the eigenvalues increase. Note that,
we analyze this in the Fourier domain given that the ordering of
the eizgen-tuples (Definition 3) is better analyzed by considering
the connection of the t-product with the Fourier transform.

B. Connections to Other Frameworks

1} Graph Signal Processing: HGSP aims at being a more
general framework than traditional GSP, enabling the processing
of signals in high-dimensional graphs that capture polyadic
relationships among the nodes. Thus, the proposed HGSP frame-
work is a generalization of traditional GSP which is a special case
of HGSP with M = 2. Consider this particular case (M = 2)in
the core elements of the proposed framework:

* Alpebraic descriptor: GSP considers the case in which each
edge connects exactly two nodes while HGSP considers
hyperedges that can connect more than two nodes. A graph
is a uniform hypergraph with maximum edge cardinality
M = m.c.e(H) = 2 represented by an 2nd-order adja-
cency tensor A € RV "N with entries ap, p, = apy p, = 1
if the node vy, is connected to node vp, and zero other-
wise. MNote that the symmetrization operation defined in

Section III is applied for M > 2 which excludes the case
of simple graphs given that they are already symmetric
according to Definition 2. Thus, this 2nd-order adjacency
tensor A € RV*V is the binary adjacency traditionally
used at the core of GSP.

* Signal Shifting: Consider M = 2 in the HGSP signals in
Definition 9 where the M — 1 outer product of the one-
dimensional signal is itself. Similarly, in Definition 8, only
one one-dimensional signal is processed by the hypergraph
when M = 2. As a consequence, the graph shifting is also
a special case of hypergraph shifting when M = 2.

e Spectral Properties: the t-eigendecomposition [42], be-
ing a generalization of traditional mairix algebra, reduces
to traditional matrix eigendecomposition when M = 2.
Hence, the t-HGFT is the same as the GFT when M = 2.

HGSP being a generalization of GSP not only holds the same

benefils as the traditional GSP framework but also provides
additional advantages. First, the adjacency tensor can, without
ambiguities. encode high-order relationships that are widespread
in many real-word applications [1], [13]. [14]. [15]. Second, the
high-order shifting operation can either jointly process multiple
signals (Definition 8) or consider cross-node relationships (Def-
inition 9), modeling the join effects of nodes within a hyperedge.

2) Hypergraph Signal Processing: Recently, the CP tensor

decomposition was used to define a hypergraph signal process-
ing framework [9]. This section compares the core elemenis
of the CP-based HGSP framework [9] with the ones in our
framework and states the benefits of wsing t-product tensor
decompositions for HGSP. As shown in Fig 9a), the HGSP
framework in [9] uses the orthogonal-CP decomposition of the
shifting operator F computed as

R
}_Hzlrrru"'c’rn

r=1

(28)
M —times

to define the matrix V=1[f; ... £ ... fﬂ]1r which is used
o compute the hypergraph Fourier transform. Remember that
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F represents either the Adjacency tensor A or the Laplacian
tensor £ which are super-symmetric tensors. As depicted in
Fig 9(b), [9] defines the spectrum of the signal x € RV on
the hypergraph as ¥ — Vx where v=[[fh ...,fx]". Then
for the hypergraph signal defined as IM_1]=ED.”DE,

M—1
the hypergraph Fourier space x can be computed as M — 1
times the Hadamard product of =, that is x =z @ ... @x =
M-1
[(fx)M-1 ..., (fyx)™~1]". The drawback of this approach
is that tensors in general do not have an exact CP symmet-
ric orthogonal decomposition [37] as shown in the example
in Fig. 3(a), and finding the rank R of a tensor is NP-hard.
Furthermore, since usually the CP-rank R < N, the authors
in [9] add additional vectors f, by using zero coefficients A, for
r=R+1,...,N. These N — R additional vectors f, should
meet the conditions of: (1) orthogonality £, L £, for r # 1, (2)
normalization with |f.| = 1, and (3) l':x = 0,¥r > R.However,
fr vectors satisfying these conditions can only be added when
the signal is band-limited with bandwidth W < R. Thus, as
illustrated in Fig %c) and in the example in Fig. 3(a), since
x lives in RY, the hypergraph Fourier transform defined in [9]
maps the signal to a subspace of RY when R < N. Hence,
perfect recovery on the inverse HGFT of x € R" is not guaran-
teed unless the signal is band-limited with bandwidth W < R.
Note that one might consider conditions different from [9] in
order 1o obtain a loss-free HGFT when using the CP symmetric
orthogonal decomposition. On the one hand, one could set the
rank to N, which would likely lead to higher errors on the tensor
decomposition since the rank is not optimal, but a loss-free
HGFT would be obtained. On the other hand, one might ignore
the third condition on the additional f. vectors, optimize the
rank to find the best tensor approximation, and then add N — R
additional vectors f, associated to zero A, coefficients which are
not necessarily orthogonal to the signal. For the latter, the notion
of frequency would be lost on these additional bases, given that
they are all assigned to zero eigenvalues.

In the framework introduced here, the t-eigendecomposition
always provides an exact tensor factorization of the shifting
operator. Particularly, as shown in Fig. 9(d), when this tensor is
symmetrized J,. the t-eigendecomposition is composed by an
orthogonal tensor of eigen-matrices V and an f-diagonal tensor
of eigen-tuples A. This representation allows for a loss-free
generalization of the basic elements in a HGSP framework: the
hypergraph Fourier transform (t-HGFT), in Fig. %(e). and the
inverse hypergraph Fourier transform (t-iHGFT), in Fig. 9(f).
Moreover, the HGFT and iHGFT, defined here, are more robust
than those obtained in the CP-based approach, given that any
t-product tensor decomposition algorithm could be used and
lead to reproducible results. In contrast, the performance of
the CP-based approach relies on selecting a suvitable tensor
decomposition algorithm. Then, the advantages of adopting
t-eigendecompositions to define an HGSP framework with re-
spect to previous approaches are compelling — (1) t-product
decompositions preserve the intrinsic structures of tensors; (2)
the high-dimensional nature of signals is preserved: (3) the
orthogonal eigenbasis spans the whole signal space which allows

for loss-free Fourier transforms [42] and the symmetric proper-
ties of the tensors together with the Fourier domain computation
of t-products allow for computationally efficient calculations.

In the following sections, essential tools in DSP are formu-
lated within the context of the proposed t-HGSP framework
and the aforementioned advantages are demonstrated through
simulations on different types of data.

VI. HYPERGRAPH FILTERS

Filtering is an essential tool used in signal processing appli-
cations as measurement noise is always present [46]. Filtering
in standard DSP amplifies or attenuates the contributions of
each of signal’s frequency components as gy(f) = g(f)=(f)
where g( f) is the transfer function of the filter. Multiplication
in the Fourier domain comresponds to convolution in the time
domain, i.e, y(t) = (g x)(t) [5]. Notably, these fundamental
concepis have a natural parallel formulation in the proposed
hypergraph Fourier transform — frequency filtering can be
directly generalized as yr, (L) = Qr, (A1) * X, (L), where
yr. (M), xp, (M), qr, (Ar) € R4V are, respectively, the
tubal scalars at frequency A; of the output signal, ),, the input
signal, &', and the filter response, Q. in the frequency domain.
When taking the inverse Fourier transform of Y, the tubal
scalars of Y, are given by

N
CANEDIRTEL TAHES T O

(29)
I=1
which can be written in iensor-tensor product notation as
?a =0, =+ i’a
qr, (A1) - 0
Vs VaX,. (30
S
0 qr.(An) Xe,

In GSP, graph spectral filtering is used to implement well-
known filtering techniques designed via optimization formu-
lations such as Gaussian smoothing, bilateral filtering, total
variation filtering, anisotropic diffusion, and nonlocal means
filtering [32]. Many of these filters, in fact, arise as solutions
of regularized ill-posed inverse problems such as denoising,
inpainting. and super resolution. Hypergraph filters can also be
designed via optimization approaches [9]. As an example, let Ve
be the second moments of the observed noisy signal. To enforce
a prion information that the second momenis of the clean signal
i’.msnmud]wilhlﬁpbctmﬂwundertﬂnghypﬂgmph,we
include a regularization term as

argming | X, — V|l + D[]+ (X, F), (3D

where d = ey, and D|d] is a diagonal tensor with d repeated
down the diagonal and $(.X,, F) is a function that measures the
smoothness of the signal X, in the hypergraph. Well-known
optimization problems with types of regularizations such as
the Tikhonov regularization have been previously formulated
and solved for third onder tensors in the literature [42]. A
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Fig. 10. Reconstruction MSE companison in the compression of the signal: (a) Cameraman, (b) movic ratings and (c) hyper-spectral point cloud. (d) Performance
comparison of hypergraph spectral clustening on the Zoo dataset by measunng the average silhouctic when having different number of clusters.

numerical experiment demonstrating this approach is included
in Section III of the Supplemental Material.

VII. SAMPLING ON HYPERGRAPHS

Sampling is one of the fundamental concepts in DSP. Stan-
dard sampling theory relies on concepts of frequency domain
analysis, shift-invariant signals, and band-limitedness. A com-
mon problem in networks, usually described by graphs, is to de-
termine which nodes play the most important role. Graph signal
sampling then becomes an essential tool for a GSP framework.
Traditional sampling theory and spectral graph theory have
been combined to generalize Nygquist sampling principles on
graphs [29], [47], [48], [49], [50], [51], [52], [53]. Suppose that
we want o sample (} tubal scalars from the hypergraph signal
X, € RV*1%N._ then the sampled signal X,(S) ¢ R@x1xN.
with Q < N and S = {sy,53,...,50} C V(H) denotes the
sequence of sampled nodes. For the sampling of these () tubal
scalars, the sampling operator is defined as a 3™-order tensor
¥ € R?*V*N: whose first frontal slice is given by

(32)

and the other frontal slices are all zeros. Now, to recover .3:’, S
RN *1xN. lets define an interpolation operator, & £ RV*@>N.
such that

X, —®+X(5),
—$+ T+ X,

(33)
(34)

where X, € RV*!*N. approximates X, either exactly or ap-
proximately [44]. For perfect recovery € = % must be equal
to the identity tensor which is, in general, not possible since
the multi-rank (Definition 7) of & + ¥, p(H + ¥) € RI*12N.
has frontal entries p(® + ¥)*! < Q < N. However, perfect
recovery can be achieved for band-limited signals considering
the following property.
Lemma {: If &, is a K-band-limited signal then

X, = Vi + (%x,) (35)

&)’

where Vig) = [V1,..., Vk] € RVEXINH and (X, )ix) €
RE 12N+ comespond to the K nonzero elements of the
hypergraph signal in the frequency domain Xy .

Proof: See Appendix B.

In this lemma, it is implied that K frequency components
carry all the information of the signal; hence the GSP theory
on the perfect recovery of band-limited signals [29] can be
generalized to hypergraphs by the following theorem.

Theorem 2: Let Vi) be the tensor formed by K lateral slices
of V, i.e. the orthonormal set {Vy,V,,..., Vi }, and let the
sampling operator ¥ € RY*N*Nu satisfy

p(¥ + Vi)™ = K, (36)

fori=1,2,...,2N + l.Sincep{'ll*v[K]]!t: < mmn(Q, K),
the sample size () has to be greater than or equal than the band-
width K. The interpolation operator & = Vig) + U € RV*@N-
with If + ¥ = 'F[K] = Ik xKk «n,. achieves perfect recovery, i.e.
X, = & + ¥ + X, for any K-bandlimited signal.

Proof: See Appendix C.

As in G5SP. from Theorem 2, we observe that an arbitrary
sampling operator may not lead to perfect recovery even for
band-limited hypergraphs signals [29]. To have perfect recovery,
the sampling operator ¥ must be a qualified sampling operator
by satisfying the multirank condition (36). The optimization of
the sampling pattern such that ¥ is qualified sampling operator
and robust to noise is part of our future work. It is important to
note that, for hypergraphs, a sampling operator ¥ that satisfies
the multirank condition (36) is not limited to the sampling of
tubal scalars as in 32, but instead a qualified sampling operator
¥ could be designed such that the sampled signal &(S) is
formed by the linear combination of the signals in X.,. This type
of sampling where only a linear combination of the orginal
signal can be obtained is present in many applications such
as compressive spectral imaging (CSI) systems which aim at
capturing large volumes of spatio-spectral information of a scene
of interest from a set of noisy undersampled observations [54],
[55].

Authorized licensed use mited foc UNIWVERSITY OF KENTUCKY. Downloaded on June 24,2004 at 18:04:38 UTC from IEEE Xplore. Resirictions apply.



PENA-PENA et al.: T-HGSF: HYPERGRAPH SIGNAL PROCESSING USING T-PRODUCT TENSOR DECOMPOSITIONS 31

VIII. EXPERIMENTS
A. Sparse Hypergraph Signal Representation

Sparse signal representations assume that most of the in-
formation can be captured by just a few basis functions in an
orthonormal basis set [56]. Moments and cumulants are com-
monly used in the statistical analysis of random variables [57].
However, storing empirical moment tensors can be prohibitively
expensive. Here, we demonstrate that the proposed hypergraph
Fourier Transform methodology can be successfully applied to
obtain a sparse representation of a hypergraph signal carrying
empirical moments (Definition 9). To this end, we consider the
“Cameraman” image of size 128 x 128 which is first tiled into
non-overlapping blocks of size 16 = 16. As in [9], for each
block, a hypergraph with a 3rd-order adjacency tensor, A, is
obtained by using the image adaptive neighborhood hypergraph
(IANH) model [41]. The hypergraph signal, X,, was built from
the one dimensional grayscale signal according to Definition 9,
capturing its 2-D properties. The sparse representation of the
hypergraph signal is then obtained by keeping only the largest
C unigue frequency coefficients in the hypergraph spectrum
domain, Xy, . We compare our results with the recently proposed
CP-based HGSP framework [9]. Given that finding the rank R
is an NP-hard problem and the signal is not necessarily band-
limited, i = IV was used in this experiment for the symmetric
orthogonal CP approximation [35]. Fig. 10(a) illustrates the
significant performance gains attained by the proposed 1-HGSP
framework over competing state-of-the-art methods.

As in |9], we also test the efficiency of t-HGSP sparse signal
representation over the Moviel.ens data sets [58] where each
movie data point has rating scores and tags from viewers. For
this numerical experiment, the scores of movies are considered
as signals and the graph model is constructed based on the
tag relationships, i.e., two or more movies are connected in a
hyperedge if they have similar tags [9]. For convenience, we used
a subset of 400 movies and we set M = 3. With the graph and
hypergraph models, the sparse hypergraph signal representation
is obtained using the same method explained above. Resulis
depicted in Fig. 10(b) demonstrate that the proposed -HGSP
framework outperforms competing state-of-the-art methods.

Additionally, we consider a hyper-spectral point cloud sensed
by NASA's Goddard's LIDAR, Hyperspectral and Thermal (G-
LiHT) airborne imaging system [26], [59]. A hypergraph with
a 3rd-order adjacency tensor 4 was then built based on the
similarities of the elements in the point cloud (N = 882). The
hypergraph signal X, was built from the set of 1-D signals in
the hyperspectral point cloud according to Definition 8. The
sparsified signal was obtained as before. To compare our resulis
to the CP hypergraph-based approach [9], [35] and GSP [45].
a sparse signal representation for each 1-D signal is obtained
independently. The simple graph [45] is also built based on sim-
ilarities. Fig. 10{c) illustrates large performance gains attained
by the t-HGSP framework over state-of-the-art methods which
demonstrates the benefit of jointly processing multiple signals.

B. Spectral Clustering
Clustering is key in many applications such as social network

analysis, compuier visiop, and compuiationg! hiskasy (601 1n . e nodes,

Algorithm 2: HGSP Fourier Speciral Clustering.

Input: Hypergraph H and number of clusters K.
Output: Partitions of the hypergraph dataset 5;...., Sk.
1: Compute the symmetrized Laplacian tensor L.
2: Compute the first K eigen-matrices
Vi) = [V1, Va,.... Vi of L,.

3: Let Vi, =Vix)(:,1,1) € RY*X be the first frontal slice
of the lensurﬁlm thal contains the K eigen-matrices in
the Fourier domain.

4:Fori=1,...,N,lety, € R"¥ be the i-th row of
1i,.-El]]

a1

5: Cluster the N nodes with features vectors (¥ )e=1___n~
in R¥ with the k-means algorithm into K clusters
{Cy,....Cx}

6: Use the clustering result to partition the hypergraph into
Sy,...,Sk such as S, = {v;|y; € G}, ie. the j-th
node belongs to the i-th partition if y; € C,.

recent years, spectral clustering has aroused more and more
attention due to its good clustering performance and solid the-
oretical foundation [61]. However, standard spectral clustering
methods consider only pairwise connections between nodes and
there are many applications in which interactions involving more
than two nodes occur. Hence, it is fundamental to extend spectral
clustering to hypergraphs. The definition of a suitable spectral
space is key when developing a hypergraph spectral clustering.
Liet al. [62] and Ahn et al. [60] proposed a hypergraph speciral
clustering approach based on the eigenspace of what they called
the hypergraph processed similarity matrix. Zhang et al. [9]
introduced a hypergraph spectral clustering approach based on
the hypergraph Fourier space given by the symmetric orthogonal
CP decomposition. In contrast, we generalize graph speciral
clustering technigues to our i-HGSP framework by means of the
hypergraph Fourier space of the Laplacian tensor (Algorithm 2).
Asin [9], we used the zoo dataset [63] to create an M = 3 hyper-
graph and compare our results with those from the hypergraph
similarity method (HSC) in [60] and CP-based HGSP [9]. The
average Silhouette [64] of nodes was used to asses clustering
quality among the different methods. This metric is particularly
useful if the ground truth labels are not known. The silhouette
value for each point is a measure of how similar that point is
to points in its own cluster, when compared to points in other
clusters. The silhovette value ranges from - 1 to 1. A high average
silhouette indicates a good clustering. Given that the ground
truth labels are known, we also used the Normalized Mutual
Information (NMI), weighted F1 score, and Jaccard index to
compare the clusiering performance [65]. In addition to the
already mentioned advantages of our framework, in Figs. 10(d)
and 12(a), it is shown that the proposed hypergraph Fourier
space of the Laplacian tensor is not only suitable for hypergraph
spectral clustering but also outperforms the prior art.
Additionally, to demonstrate the performance of the proposed
framework on higher-order (M > 3) hypergraphs, we consider
different subsets of two real-world dataset, the coauthorship net-
works, cora and DBLP, as depicted in Fig. 11 . In this hypergraph,
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Fig. 11. Hypergraphs on a subset of two real-world co-asthorshap networks
(left) DBLP (M = 4, N = 59) and (nght) Cora (M = 4, N = 96). Nodes
represent documents and all documents co-authored by an author are in one
hyperedge [66]. The labels classify nodes (papers) into calegonies such as
“algorithms” and “data mining”. Hyperedges” cardinality is color-coded: (red)
|e| = 4, (green) je| = 3, and (blue) je| =
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Fig. 12. Pedormance companscon of hypergraph spectral clustening on
(a) the Zoo dataset (M = 3, N = l'ﬂllmud(ifﬁ:.lmtsdndsufmndxldup
networks: (b) Com (M =5 N =30), (c) Cora (M =4,N =59), and
(d) DBLP (M = 4, N = 96).

by an author are in one hyperedge [66]. The labels classify nodes
{papers)into categories such as “algorithms”, “data mining™, and
50 on. For the higher-order orthogonal symmetric CP decompo-
sition, we used the algorithm proposed in [35]. As observed in
Fig. 12{b)}-(d), the proposed approach outperforms HSC [60] and
CP HGSP [9] when high-order hypergrahs are consider. More
details about the spectral clustering algorithm, metrics, and other
resulis can be found in the supplemental material.

C. Denoising

Hypergraph filters can be used to denoise a hypergraph signal.
Let z = x4+ n € R" be a one dimensional noisy signal with
noise n and Z, € RV*1*N- ji5 comesponding hypergraph sig-
nal. Assuming that the original signal is smooth on the graph,
a simple approach to denoising is by spectrum shrinkage where
filtering reduces to hard-thresholding of the spectral coeffi-
cienls [67] such that

1, ifd <A

0, otherwise, 37

ar, (A) = {

TABLE|
Visual QuaLmy oF DeseiseD IMAGES

Metic | GSP_ | CP HGSP | Proposed LHGSP |
Gaussian Distribution: N(0,0.01)
[ PSNR | 23.5687 | 21.0531
MSE | 00035 0.0078 0.0030
MSSIM | 09361 0.8918 0.9414

" (c) GSP {dfc'P-H{:sp (e) tHGSP

- | i '
(a) Original  (b) Noisy

Fig. 13.  (a) Zoom of the onginal Cameraman image. The image was contam-
(e} the proposed t-HGSP framework.

where A is a cut-off frequency. Then, the denoised signal is
X, = Q, = Z,. Since the frequency response of a clean signal is
expected to be dominated by low-frequency components, the
high-frequency components are most likely to be generated
by noise. This noise is thus attenuated by hard-thresholding
the transform coefficients [67]. To test, the performance of
our approach, we conducted a denoising experiment on the
“Cameraman” image. The experimental setup is similar to the
one in the compression experiment, except for noise addition and
the use of overlapping windows. The same hard-thresholding
filter design was used for GSP and CP-based HGSP denoising.
We contaminated the signal with Gaussian noise. The cut-off
frequency was optimized for the best performance in all the
cases. The proposed hypergraph framework outperforms CP-
based HGSP and GSP denoising as shown in Table 1. Even
though almost no improvement over GSP is observed on the
performance metrics, as shown in Fig. 13, the details of the
image are betier recovered by the proposed approach. A bigger
section of the image is included in Fig. 14 of the Supplemental
material.

IX. CoxOLusion

A novel tensor-based -HGSP framework wsing t-product
decompositions is introduced. The proposed framework not only
generalizes traditional GSP to high-dimensional hypergraphs
but more importantly is loss-free, preserves the dimensional-
ity of the signals, and is less computationally complex when
compared to the state-of-the-art. The core elements of the new
i-HGSP framework have been laid down, including the con-
cept of a hypergraph signal. hypergraph shifting, frequency
analysis, and band-limited signals. Additionally, fundamen-
tal tools such as sampling and filtering were introduced and
demonsirated experimenially. Notably, the proposed framework
outperforms state-of-the-art by considering high-order proper-
ties of one-dimensional signals or jointly processing a set of
signals, as demonsiraled in the denoising and sparse signal
representation experiments. Additionally, natural hypergraphs
such as co-authorship networks can be exploited for applications
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such as classification and clustering without being a map to
a low-dimensional graph. However, the key to the success of
hypergraph-based methods is having a meaningful hypergraph
that may only be readily available for some applications. Hence,
our current work is focused on learning optimal hypergraph
topologies from data that could further boost the performance
of the proposed --HGSP tools.

Given the proposed t-HGSP framework, many opportunities
emerge to continue exploring HGSP and its applications. For
instance, further interpretations on the t-HGSP spectrum could
be drawn by considering its connection with manifolds and the
connection of GSP with other areas such as information theory.
Moreover, other tensor decompositions such as HOSVD [68],
tensor-train [69], and O-SVD [70] could be potentially used to
define other HGSP frameworks with different properties. Our
future work is focused on optimizing sampling patterns for
different sampling operator configurations, hypergraph neural
networks, scalability, and generalizing hypergraph’s shifting
operators to tensors that are not symmetric under the t-product
algebra.

APPENDIX A
PROOF OF THEOREM |

Let F, = A, and A, and 1, be two eigen-tuples of F, with
corresponding eigen matrices V; and V). Given that F, is sym-
metric, it has real eigen-tuples. If the eigen-tuples are ordered
as &4 > Ly, then the total variations of their eigenvectors satisfy
TVi(V) < TVa(V)).

Proaf: Let V,. be any eigenvector of F . then the total variation
is calculated as

TV (V) = [V — F™ + V|
— IV = Vi + &y + abs(Amax) |
= |[Ve]l + abs(es — A + abs(kmax) ")
1 (38)

= abs(e; — Ay = abs(dpax )™

Then, TVa(V;) — TVa(Vi) = (ks — Xy) + abs(Amax) 2. Thus,
TVx(V)) > TV (V) iff &y < As.

APPENDIX B
PrOOF OF LEMMA 1

If ¥, is a K-band-limited signal then
Xy = Vi) » ( v.)

T.L [i;'h f:K] £ RV=Kx2N+1 gnq {;'E-F i) €
R’“‘” +H mlrespcnd to the K nonzero elements of the
hypergraph signal in the frequency domain .?F_
.
Proof: Since X, is band-limited, then (XF 11 = ‘F’; X, =0
when [ = K. Then, we have that

:?.='|-"*1f*r?,

. 39
K1 &

40

K T N T
=E ﬁ*f-’ftx,+ E Vi=V =&,
[ [

(1)
=t (Xre i i o
- + (X 42)
i+ (%)
APPENDIX C
Proor oF THEOREM 2

Let Vik) be the tensor formed by K lateral slices of V, i.e. the

orthonormal set {f?l,'l_j'g, e ,f-'p;},and let the sampling operator
¥ € ROV V. satisfy

p(% + Vi) ® = K

fori =1,2,...,2N + 1. Since p(¥ = Vi) ®) < min(Q, K),
the sample size ( has to be greater than or equal than the band-
width K. The interpolation operator & = Vi + I € RV *Q*N-
with I+ ¥ « V) = T . i« v, achieves perfect recovery, i.e.
X, = &+ ¥ + A, for any K-bandlimited signal.

Proof: To proof the theorem, we show that P = & = W is
a projector operator and that the range of @ is the space of
K-bandilimited signals as in [44]. Since p(W¥ + Vix))® = K
ft‘l‘i=1,2,...,2”-1—lﬂ'ldp{u:i'-lelj':ﬂ=ﬁfﬂl'i=
1,2,...,2N + 1, then p(l))'® = K fori=1,2,...,2N + 1.
Thus, the interpolation operator & — vllfr]*uen“*““”-
spans the set of K -bandlimited signals. To prove that P is a
projector, we show that P2 = P+ P = Pas

(43)

PesP=®+TxP=¥ (44)
=v[x]=|=u*i'tleltut I (45)
{;Jv[x]*u*i‘ =P, (46)

where (a) follows from I{ = ¥ = Vi) = Ik« k.- Notice that
when M =K,Hiuheim'em‘:ufi*lel;mﬂwhenjf =K,
Uis the pseudo-inverse of ¥ + Vx| as in the traditional matrix-
based sampling theory.
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