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Abstract

Persistent homology is a powerful mathematical tool that summarizes useful information about the
shape of data allowing one to detect persistent topological features while one adjusts the resolution.
However, the computation of such topological features is often a rather formidable task necessitating
the sub-sampling the underlying data. To remedy this, we develop an efficient quantum computation of
persistent Betti numbers, which track topological features of data across different scales. Our approach
employs a persistent Dirac operator whose spectrum relates to that of the persistent combinatorial
Laplacian, and thus allows us to recover the persistent Betti numbers which capture the persistent
features of data. In addition, our algorithm can also extract the non-harmonic spectra of the Laplacian,
which can be used for data analysis as well. We also test our algorithm on a point cloud data.

Keywords: topological data analysis, quantum persistent homology, persistent Dirac operator, persistent
combinatorial Laplacian

1 Introduction

In recent years, topology and geometry blended with statistical methods have seen increasing application
to the study of data analysis, visualization, and dimensionality reduction [1-9]. These applications range
from classification and clustering in fields such as action recognition [10], handwriting analysis [11], and
biology [12-16], to classification of high entropy alloy [17] and gas separation [18], to the analysis of
complex biological networks [19], and other complex dynamical systems [20, 21] and sensor networks
[22-26].

Persistent homology [27-31], the workhorse of topological data analysis (TDA), has helped to com-
press nonlinear point cloud data from a new geometrically faithful point of view. In the realm of signal
analysis, classification and clustering based on topological features of the signal identifies features that
traditional signal analysis techniques fail to detect [10, 12, 32-34]. Topological features, such as the num-
ber of connected components, cycles, and higher-dimensional voids, respectively, represent multi-stability,

periodicity, and chaos in a dynamical system [12, 35].



The effective computation of persistence diagrams has become an area of intense active research,
including a significant successful effort toward facilitating previously challenging computations. For
example, the creation of persistence diagrams with packages such as Dionysus [36] and Ripser [37] take
advantage of certain properties of simplicial complexes [38]. Point cloud data typically consist of many
points. A set of n such points possesses 2" potential subsets that could contribute to the topology.
Classical algorithms for persistent homology (e.g., see [39]) typically need O(23") operations to diag-
onalize a 2™ x 2™ boundary matrix and obtain the topological information. For this reason, classical
implementations often restrict attention to features of lower dimensions.

More recently, quantum algorithms that compute topological features of data were developed. The
first such algorithm was introduced in [40] with run time O(n®/a?), which seems to be exponentially
faster than the best known classical algorithms. This algorithm was designed for a discrete-variable (DV)
quantum system based on qubits, and it was extended to a continuous-variable (CV) substrate in [41].
These two algorithms compute Betti numbers by analyzing a linear operator called the Dirac operator
whose square is the combinatorial Laplacian. However, the study did not address any real implementation
on data. To that end, a few recent attempts on data for tracking the non-persistent topological features
were studied. Indeed, the work in [42] demonstrates a quantum algorithm presented in [40] by employing
a six-photon quantum processor to successfully analyze the topological features of a network including
three data points. Moreover the work in [43] developed a quantum annealing approach for topologically
analyzing point cloud data, and [44] gives a quantum circuit to construct all maximal cliques of an
n-node network using Grover’s search algorithm. Further studies [45-47] propose new implementations
that attempt to avoid the quantum memory and fault tolerance requirements of [40]. However, as it
was noted in [48], these algorithms do not compute persistent topological features so that one may
track how topological features persist as the resolution of data changes and the underlying noise may
vary. The works in [49, 50] tackle this issue using quantum singular value transformation on a unitary
block encoding of the projection operators onto the kernels of the restricted boundary and coboundary
operators that appear in the persistent combinatorial (or Hodge) Laplacian, see [51, 52].

The contribution of our manuscript is as follows. We introduce a persistent Dirac operator similar to
the Dirac operator presented in [40], with the key difference being that ours is able to track features across
different scales. We show that the eigenvalues and eigenspaces of a shifted version of this persistent Dirac
operator correspond to the spectrum of the persistent combinatorial Laplacian, and we provide a quantum
algorithm that relies on Grover’s search and quantum phase estimation to recover the dimensions of these

eigenspaces. In contrast to other quantum algorithms for persistent homology [49, 50], ours not only



obtains the persistent Betti numbers, but also the non-harmonic spectra of the persistent combinatorial
Laplacian, which can also be used for data analysis tasks, e.g. see [51, 53, 54].

Our paper is organized as follows. In Section 2, we review persistent homology by introducing the
important concepts relevant to the algorithm, such as the persistent combinatorial Laplacian and per-
sistent Betti numbers. In Section 3, we introduce the persistent Dirac operator and show its relationship
with the persistent combinatorial Laplacian, we also present an outline of the quantum algorithm to
recover the spectra of the persistent Dirac operator and detail our main contributions. In Section 4, we
apply our algorithm to a data set whose points are organized in squares, which was suggested in [48] as a
case in which persistent Betti numbers differ from Betti numbers. Finally, we offer concluding remarks in
Section 5. Details of subroutines needed for our quantum algorithm are provided in Appendices A, B, and

C (Membership oracle, Grover’s search, and implementation of an exponential operator, respectively).

2 Persistent Homology

Persistent homology studies objects called simplicial complexes. The classical algorithms that perform
topological data analysis use the data to construct simplicial complexes, e.g., by connecting all the points
in a point cloud within a certain distance from each other (Vietoris-Rips complex) and then varying the
distance to obtain a filtration of simplicial complexes. After that, the algorithms proceed to compute
the eigenvalues and eigenvectors of linear operators, such as the boundary operator and the persistent
combinatorial Laplacian that act on the complexes.

We start by defining simplicial complexes and homology, an algebraic descriptor for coarse shape
in topological spaces, and in turn persistent homology, which harnesses the power of homology to the
description of subspace filtrations of topological spaces.

Definition 1. A k-dimensional manifold X is a topological space such that if every point x that belongs
to X has a homeomorphic neighborhood to an open neighborhood in the k-dimensional Euclidean space.

Next, we expand the definition of the k-dimensional manifold to x-simplex which may be topologically
treated as a k-dimensional manifold including its boundary.

Definition 2. A k-simplex is defined by k + 1 linearly independent vertices as the collection of all their

convexr combinations:

0 = Vg, .y V) = {Zaﬂh’ : Zai =1 and a; > 0 for all z} ) (1)

=0 =0

An oriented simplex is expressed as the ordered list of its vertices, such as [vg,v1,vs]. The faces of a

simplex consist of all the simplices generated by a subset of its vertex set.



Fig. 1: Simplices of dimension 0 through 3.

Fig. 1 shows the simplices of dimensions zero (vertex), one (edge), two (triangle), and three
(tetrahedron).

Definition 3. A simplicial complezx K is a collection of simplices satisfying the following
(i) if o € K, then all its faces T C o are also in K, and

(i) the intersection o1 N og of any pair of simplices 01,09 € K is another simplex in K.
The collection of k-simplices within K is written here as K.

Furthermore, we can use these basis-like collections to define a space of formal sums of simplices.
These spaces are called chain groups and are akin to vector spaces, an important feature since quantum
states are elements of a Hilbert space over C.

Definition 4. Let’s denote with Cy(K) the chain group of dimension k on a simplicial complez K, which

is defined by

C.(K) = { > neoin, € c}. (2)

geE,

Relying on Def. 4, one understands that chain groups give an algebraic way to describe subsets of
simplices as a formal sum. For example, the boundary of a triangle (Fig. 2) is considered the sum of its
three edges, and the boundary of an edge yields the sum of its endpoints. The presence of sign specifies
the simplex’s orientation. This notion of a boundary is fundamental to persistent homology and is
formalized as a map between chain groups.

Definition 5. The x-th boundary map is a homomorphism on the chain groups 0y : Cy(K) — Cr_1(K)

defined by its action on each simplex:

K

an[’UOa ey vl‘i] = Z(il)n[voa sy Un—15Untlyeees Un]a (3)
n=0
as an alternating sum over the faces of dimension k — 1.
One may obtain a chain complex by taking into account chain groups (and their boundary maps) of
any dimension

VO o) 2 o (0) 2 L2 co) S o (4)
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Fig. 2: Boundary of a triangle

As it can be shown, e.g., see in [3], the composition of subsequent boundary maps 9x+19, = 0, which
yields that im(9x41) C ker(d,). The x-Betti number, denoted by S, is the dimension of the homology
group H,(K) = ker(9x)/im(dp+1).

The homology groups are generated by the topological features of the complex K, i.e., generators for
the 0-homology group correspond to connected components, generators of 1-homology group correspond
to holes in K, etc.

Next, when analyzing a discrete data set € = {vi}f-vzl that belongs to a metric space (X, d) it is not
enough to consider the set itself as a simplicial complex for its homology would simply yield the number
of data points in the set. Instead, we take advantage of the metric d to obtain more information. Indeed,
we fix a radius r > 0 and consider the collection of neighborhoods (think of them as balls centered at
each datum) U = {U;} = {B(vs,r)} along with its union ¢, = U; B(v;,). The collection of sets {4}, cp+
provides information about the arrangement of the dataset « at different scales r (see e.g. Fig. 3). To
make homological computations tractable for U,., one may consider the Vietoris-Rips (VR) complexes.
Definition 6. The Vietoris-Rips complex of the point cloud data = {v;} at scale €, denoted by S¢(x)
(or simply S€), is the simplicial complex where a k-simplex o = [v4y, ..., v;,.| is in S€(x) if and only if
diam(c) < €, where diam(o) 1= max; {d(vij,vij,)} denotes the diameter of the simplicial complex S°
defined as the mazimal distance between Vi;, Vi, € Se.

Unfortunately the tools defined so far would only allow to obtain the Betti numbers at a fixed scale
€. However data analysis often requires to consider them at different scales so that we verify which
topological features persist for various € as in Def. 6, while those that persist for a short time may be
just noise. So, we must extend the notions above to include multiple simplicial complexes at once.

Consider a nested sequence or filtration of simplicial complexes
DC Ky CKyC...CKn. (5)
Given a point cloud data set &, one can construct a filtration of VR complexes ) C St C S C ... C

SN = S by choosing an increasing sequence of scales 0 < €1 < €3 < ...¢€p, see Figure 3 for an example.

Indeed, it follows from Def. 6 that if ¢ < € then S¢ C S Moreover, one can check that there is a



maximum of 2™ simplices that can be built from a data set with n points. So, there is a maximal VR
complex S of size 2" that contains all VR complexes S°.

Each complex K; in Eq. (5) has associated chain groups Cy (K;), boundary operators 9% and Homology
groups H! as before. But now the inclusion maps ¢ : K; — K; between complexes induce homomorphisms
hid =1, : Cu(K;) = Cu(K;) between their corresponding chain groups.

Definition 7. For two nested simplicial complezes K; C K; we define their k-th persistent Homology
group HI as

H = Im(h}) = Ker(0,)/(Im(9]. ;) N Ker(9})) ©)

where Ker(d%) is viewed as a subgroup of Ker(d%). The dimension of H'7 is the k-th persistent Betti
number 347,
Let C’;il = {x € Crt1(Kj) = 8i+1x € C’,{(IQ-)}, that is, the subgroup of C\41(K;) defined by the
(k + 1)-simplices in K; with boundary in ;. Then we can define the k-th persistent combinatorial
Laplacian
L7 =070 + 01,075, (7)
where 5211 is the restriction of the boundary operator 8% 41 to C’Z’il. Using [51], one may show that the

dimension of the kernel of £%7 is the k-th persistent Betti number 3%7.

3 Quantum algorithm

Our quantum algorithm proceeds by first mapping the simplices and other concepts from persistent
homology onto quantum states and Hermitian operators. We choose a direct mapping between the n
vertices of a point cloud and n qubits. In this manner, all 2" possible simplices can be mapped onto
quantum computational basis states in an n-qubit Hilbert space, using exponentially fewer memory space
than the classical case. This allows us to use the fermionic representation of the boundary operator
[45, 55], which is defined in terms of Pauli operators. Moreover, the chain groups are identified by closed
subspaces of the n-qubit Hilbert space, so we can use their respective orthogonal projection to restrict
the boundary operator as in Eq. (7) for the persistent combinatorial Laplacian. To implement these
projections we suggest the use of a quantum memory along with Grover’s search, however NISQ friendly
alternatives have been discussed in other works [45—47]. Finally, our algorithm uses quantum phase
estimation to recover the spectra of the persistent combinatorial Laplacian, including the persistent Betti
numbers. Our main contributions include the implementation of a projection onto the closed subspace
that encodes the chain group Ce< . In addition, we introduce the persistent Dirac operator, which allows
our algorithm to recover the full spectrum of the persistent combinatorial Laplacian, in contrast to other

quantum algorithms for persistent homology [49, 50] that can only obtain the kernel.



3.1 Representing simplices and chain complexes with quantum states

A k-simplex o = [v;,,...,v;, | can be stored in a n-qubit register as |o) = |v1) ® -+ ® |v,), with 1s at

the positions of its k + 1 vertices v;,, ..., v;, and Os elsewhere. Let S denote the collection of all possible

.
quantum basis states of n qubits given by a string of n Os and 1s, then S effectively encodes the maximal
VR complex described in Section 2 with all possible simplices that can be formed with n vertices or data
points. Moreover, H, the Hilbert space over C with basis S encodes the chain group of that complex.
We denote by Sk the subset of states in S encoding k-simplices, and by Hj, the corresponding closed
subspace of 1 which encodes the k-th chain group defined in Eq. (2). Notice that the dimension of a
simplex can be recovered from its quantum state encoding by counting the number of qubits in state 1.
Similarly, we write S for the subset of S encoding simplices of diameter at most €, in other words
the VR complex at scale € as in Def. 6, and H¢ for the corresponding closed subspace of H. We also

need to consider the closed subspace of H that encodes the chain group << of elements present at scale

¢’ with boundary in scale e. This subspace is given by

He = {|p) € H 1 O|p) € HOY). (8)

A boundary operator can be defined on H using Pauli gates X,Y, Z as

n—1

0:=) 78 XT@I%, (9)

i=0

where X* = 2(X £iY). Since X [1) = |0) and X |0) = 0, it maps Hj, to Hj—1. This representation
of the boundary map introduced in [45] has various properties. In particular, notice that 0 is a bounded
continuous linear operator on H such that 92 = 0. The reader may refer to [55] for further details on
these properties, and its advantages over the representation introduced in [40]. Mapping Hy—1 to Hp,
its adjoint is given by 0* := Z?;ol Z®(n=1-1) & X~ ® I®". In order to obtain a Hermitian version of the
boundary operator in Eq. (9) that can act on the subspaces considered by the persistent combinatorial

Laplacian in Eq. (7), we attach two ancillary qubits and define the Dirac operator
B = (|0) (1] + [1) (2]) ® 9+ (11) (0] + [2) (1]) ® 0" (10)

on the Hilbert space spanned by states {|0),|1),|2)}, where |0) = |0) ® |0), |1) = |0) ® |1), and |2) =
1) & 10).



3.2 Projections

To implement a projection Py onto the subspace Hj generated by simplices of dimension k it suffices to
count the number of qubits in state 1. Indeed, computational basis states in Hj are exactly those that
have k + 1 qubits in state 1. The reader may refer to [45, 47] for details on efficient implementations.

On the other hand, for a scale €, we assume the existence of an oracle
00)[0) = |o)ag) , (11)

where af = 1,cg< determines the membership in 5S¢, which in turn encodes the simplices in the e-complex.
For completeness we provide a construction of such oracle in Appendix A.

The oracle in Eq. (11) can be used for the implementation of the projection operators,

P =" |o)(al, (12)
oese
onto H¢, the subspace of H spanned by the simplices in S¢, which will be needed to construct the
persistent Dirac operator later in Section 3.3. To implement the projection P€¢, we perform amplitude
amplification [56] based on Grover’s search algorithm [57] (for details, see Appendix B).

For a NISQ implementation of the projections P¢, i.e. an implementation that doesn’t require a fault
tolerant computer like Grover’s search algorithm or a quantum memory, see the approach by Ubaru et.
al. [45]. This approach involves classical computation of the pairwise distance of the vertices as well as
the n x n e-adjacency matrix {4, ;}. The quantum circuit is then built by adding gates conditional to
the values A; ;.

To implement the projection P<< onto the subspace H¢ defined in Eq. (8), we introduce the operator
W= (]0) (1] + 1) (0]) @I —|0) (2| ® 0 —|2) (0| ® 0*, defined with the aid of a pair of qubits, along with the
projection Q¢ = |0) (0| ® I +[1) (1| ® P +[2) (2| ® P<'. Then, we consider, WS¢ = Q¢ (I — W) Q“*,
acting on a vector of the form @) = |0) [po) +[1) [#1) + [2) [p2). Notice that W acts as the identity on

states that satisfy

0P |¢2) = P*|¢n) (13a)
(I = P9)|¢1) = P |¢o) (13Db)
(I = P%)|¢2) = PO | o) - (13¢)



In particular, (13b) and (13c) only hold if both sides are equal to zero. Thus, we may conclude that
|p1) € HE and |py) € HE. It follows then from Eq. (13a) that d|py) € H€, so that |pg) € HE.
Therefore, the projection operator P can be implemented by projecting onto the eigenspace of wee

with eigenvalue 1.

3.3 Persistent Dirac operator

For persistent homology, we need to restrict the space on which the Dirac operator acts. Precisely, the
Dirac operator should act on quantum states of the form |0) (o) +|1) [1)1) +2) [¥2), where |¢bg) € HS,_,
[1) € Hy,, and [1)g) € Hi’il. Moreover, we want the boundary operator and its adjoint to act like the
restricted boundary and coboundary in Eq. (7) of the Laplacian. To that end, we introduce the persistent
Dirac operator which plays a central role in our quantum algorithm.

Definition 8. Let P and P be the respective orthogonal projections onto the closed subspaces H¢ and
HE of H, defined in Section 3.2. Then, the persistent Dirac operator B is defined as B¢ = —PBP,

where B is the Dirac operator in Eq. (10) and
P =(10) 0] = [1) (1) ® P+ |2) 2] @ P (14)
We can visualize this operator as a block matrix

0 PeoPe 0
Be,s' — Pea*Pe 0 Peape,e' (15)
0 PCo*Pe 0

The importance of the persistent Dirac operator is that we can use it to recover the eigenvalues of the
persistent combinatorial Laplacian from Eq. (7). This is summarized below in Theorem 1.
Theorem 1. The positive eigenspaces of the persistent combinatorial Laplacian introduced in Eq. (7)
have a one-to-ome correspondence with the eigenspaces of the persistent Dirac operator introduced in
Def. 8 corresponding to positive eigenvalues. That is, A > 0 is an eigenvalue of the persistent Dirac
operator, defined in Eq. (15), with eigenvector |0) [1o) + |1) |¥1) + |2) |¥b2) if and only if |[¢o) , |1h1) € HE
and |2) € He | and [th1) is an eigenvector of the persistent combinatorial Laplacian L5 from Eq. (7)

with eigenvalue \2. Moreover, 1) and |1bs) are uniquely defined by |11).



Proof. The vector |0) |tho) 4 |1) [11) +12) |12) is an eigenstate of the persistent Dirac operator if and only

if it satisfies the conditions

PCOP [Yh1) = Altho) (16a)
PEOPS [1hy) 4+ P9* P ihg) = A i) (16b)
PO Pe i) = A i) (16¢)

Notice that the left hand side of Equations (16a) and (16b) are contained in H¢ because of the projections,
implying that |¢0) , [¢1) € H¢. Similarly, Eq. (16¢) is satisfied when |5) € H . Moreover, since A # 0,
Egs. (16a) and (16¢) express |1g) and |¢)2) in terms of |11), and substituting into Eq. (16b), we obtain
(P€6*8P‘ + apae’a*zae) 1) = A2 ). O

However, the above theorem does not hold for A = 0, because the states [tg) and |¢)2) are no longer
uniquely defined by [¢)1). In particular, the kernel of the persistent Dirac operator contains elements of
HeL and HEE L. To recover information about the kernel of the persistent combinatorial Laplacian, i.e.,
the persistent Betti numbers, we must introduce a gap in the spectrum by considering a shifted version
of the persistent Dirac operator.

Definition 9. Let B¢ denote the persistent Dirac operator introduced in Def. 8, and take & > 0. Then
we define the &-shift persistent Dirac operator B¢ [€] as B9 [¢] := B9 —&P, where P is defined in (14).

Based on Definition 9, one may rewrite B [€] as a block matrix

—EP¢ PeOPc 0
B[] = | peorpe ¢p Popec |- (17)
0 Pe,e’a*Pe _gpe,el

Next, by shifting the persistent Dirac operator, we introduce a gap in its spectrum which is needed to
avoid overcounting of vectors in the kernel of the persistent combinatorial Laplacian. Theorem 2 states
that we can use the positive eigenvalues of the shifted persistent Dirac operator to recover the full
spectrum of the persistent combinatorial Laplacian Lo

Theorem 2. The eigenspaces of the persistent combinatorial Laplacian introduced in Eq. (7) have a one-
to-one correspondence with the eigenspaces of the &-shift persistent Dirac operator introduced in Def. 9
corresponding to a positive eigenvalue. In particular, for any eigenvalue v of the persistent combinatorial

Laplacian L5 with corresponding eigenvector [t1), there is a unique choice of X > 0, |tg) and |i9)

10



such that the quantum state |0) [o) + |1) [1) + |2) [1b2) is an eigenvector of BS€ [€] with eigenvalue .

Moreover, 1), |11) € HE and |1bs) € HE , and the eigenvalues satisfy N2 — €2 = ~.

Proof. The vector |0) |¢o) + |1) [t1) + |2) |1h2) is an eigenstate of the £-shift persistent Dirac operator if

and only if it satisfies the conditions

—€P* tho) + POP* [th1) = A [tho) (18a)
POP [thg) + EPC [th1) + PO P [tho) = A 1) (18b)
P9 P [ihy) — EPS [ih) = Alda) (18c)

Notice that for A > 0 the left hand side of Egs. (18a) and (18b) are again contained in 1€, similarly the left
side of Eq. (18c) is in H“¢ . This implies that the corresponding eigenvectors must satisfy |¢bo) , [t01) € H

and |1)2) € Ho¢ . Therefore, we may rewrite the conditions as

POP<[ih1) = (A +£) o) (19a)
PeOPS [ihy) + PO P< ihg) = (A — €) [th1) (19b)
P9 P fihy) = (A +€) [ih2) (19¢)

Furthermore, since A # —¢&, we can express |¢p) and |¢)2) in terms of [¢1) using Equations (19a)
and (19¢), respectively, and then substitute into Eq. (19b) to obtain (PW*@PE + BPE’E/(?*P‘> [t1) =
(A2 — £2) |¢f1). Therefore, [¢1) is an eigenvector of the persistent combinatorial Laplacian £5¢ with
eigenvalue v = \2 — ¢2. In particular, the kernel of £5<" and hence the persistent Betti numbers are given

by A =¢&.

3.4 Quantum Phase Estimation

We may recover the persistent Betti number ﬁ;’e/ as the dimension of the eigenspace of the &-shift
persistent Dirac operator Be¢ [€] introduced in Def. 9 with eigenvalue A = £. To estimate the dimensions
of the eigenspaces of the shifted persistent Dirac operator we use a quantum phase estimation algorithm
described below, see Figure 5 for an example quantum circuit. This method not only yields the persistent
Betti numbers but also the non-harmonic spectra of the Laplacian in Eq. (7).

For explicit calculations, we restrict B¢ [€] to the desired dimension k, by restricting attention to

the Hilbert space of states |¢)) = |0) |¢o) + |1) [11) 4+ |2) |102), where |1o) € Hp—1, [11) € Hp, |th2) € Hita

11



(see Appendix C). Starting with the uniform state in Eq. (C3), we copy the basis states to create the
maximally entangled state [8),, = \/Lﬁ SN lea); lea),. Since BOC[¢] is self-adjoint, we can find an
orthonomral basis A of eigenvectors |\) and rewrite |3),, = \/Lﬁ 2iven A1 Ao

Next, we introduce a register of qubits R in the state |R), = ﬁ 23/[:61 ly) r and entangle the

registers 2 and R by applying Up, a unitary version of BZ’GI [€] given by

Up = 2B 6/, (20)

where M and [ are positive integers that can be adjusted at will. We obtain the quantum state

Ug|8)12|R)p = a7 2inen 224:701 2 A M NY |A), |y) . For details of the implementation of Eq.

(20), see Appendix C.

Finally, we perform the quantum Fourier transform Ugpr|y) = ﬁ Z;Vigl e=2my/M |p) on the
register R, and the state of the system becomes
1 M—1M-1
UarrUs |8, |Rin = srme 3 AT ), 13), ) @)
A€A y=0 p=0
eQTr'ilA -1
Notice that we can sum over y to rewrite the coefficients in Eq. (21) as ————————_ Moreover,

e2mi(Ix—p)/M _ 1

these coefficients are strongly peaked at p = [\, and at the peaks, the coefficients are approximately
equal to M. Therefore, UgprUp |8),5 |R) g = \/Lﬁ Dinea N1 N [N g
A measurement of the register R yields p with probability P(p) = ||z (p| UgrrUs |8)15 |R) z||° which

can be written as

1 . 1 sin® 7w\
Pp) = ~ > aalp) , with  ga(p) = W2 2 7D (22)
X M

Approximately, the probability P(p) vanishes for all p, except at p = I\. At the peaks, each eigenvalue
contributes 1/IN. Therefore, each peak is approximately proportional to the multiplicity of the corre-
sponding eigenvalue. In particular, for p = [£, which corresponds to the eigenvalue of interest A = &, the

probability in Eq. (22) becomes

&€’ 1 sin? i\
_ P
P) = N + SN ARG (23)
! A£E M

In the limit of Eq. (23) as M — oo, the sum over eigenvalues A\ # £ vanishes, and we obtain BZ’EI =

NP(I£).

12



If one is interested in the whole spectrum of the persistent combinatorial Laplacian, M and [ must
be chosen in a way that the positive spectrum of the shifted Dirac operator is covered with the different
values of p. Notice that each eigenvalue is approximated as A ~ . If we are only interested in the
harmonic spectra of the persistent combinatorial Laplacian, we only need to capture the peak at p =~ [§

and make sure it is resolved from other neighboring peaks.

4 An application

This Section demonstrates how our algorithm computes persistence Betti numbers, which track topo-
logical features across different scales. This extends previous work in [40] and [41] where the proposed
quantum algorithms calculated Betti numbers only without addressing persistence features. To do this,

we apply our method to the data set suggested in [48] and described below for the sake of completeness.

- J— Ve \ e X
4 V4 A\ [ o ) [ o ) [ .
‘\ A / AN - \ ~ \
U 2\ - — N N -
> S B — /~ N\
/ ' \ TN\ \
‘ “ N4 Y
N A J e | [ o | W/ y ]
- o /) \_ - - /\.
(b) (c)

Fig. 3: (a) A two square point cloud data set with the same characteristics as featured in [48];
Construction of the VR at two different scales. Precisely, (b) at €1; and (c) at €2 > €;.

Consider a point cloud of 8 points consisting of two well-separated squares, as in Figure 3a. The
smaller square has sides of length 1, while the larger square has sides of length v/2. The distance between
the two squares exceeds 2. It is easy to see that the smaller square produces a loop in the VR complex
at scale 1 (Figure 3b) which disappears at scale V2, while at the same time the larger square produces
a new loop (Figure 3c). It follows that for 1 < €; < v/2 < €3 < 2, the one-dimensional persistent Betti

numbers corresponding to the point cloud of Figure 3 are

Bilyﬁl — 1 , i27€2 — 1 , i17€2 — 0 . (24)

It should be pointed out that the algorithms proposed in [40, 41] can detect the number of loops in the

VR complex at scales €; and €2 by computing 1" and 87>, respectively. However these Betti numbers

do not hold any persistence information. The algorithms in [40, 41] cannot calculate the persistence Betti
€1,€2

number 3] which holds the persistence information (number of loops present at scale €; that persist

to scale e3). Thus, these algorithms cannot track topological features across different scales. Moreover,

13



even though B7"" = 51>, the persistence Betti number cannot be deduced from S7** and S7**. This

is because it indicates that the loops at scales across v/2 are different, which is additional information to

the existence of a loop encoded in the other two Betti numbers.

Fig. 4: Probability density corresponding to the persistent Dirac operator (a) B{***[¢], (b) B{***[¢], and
(c) B{"?[¢], with € = 1,1 = 3, M = 16. The heights at p = 3, multiplied by the dimension of the Hilbert
space (8, 22, and 12, respectively), yield the Betti numbers 8;"* = 372" = 1, and the persistent Betti

number ;" = 0.
(7]
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Fig. 5: Quantum circuit for the calculation of Betti number 57"“.
Figure 5 shows the quantum circuit for the calculation of Betti number 37**“*. The Dirac operator
B{'2[¢] acts on an 12-dimensional Hilbert space. For ¢ = 1, the eigenvalues are A = —1,4+/5, each
of degeneracy 4. Notice that 1 is not an eigenvalue, therefore S;> = 0. This is confirmed by the

probabilities from the quantum algorithm depicted in Figure 5 as explained below.
A register of 4 qubits initially in the state |0000); is brought into the state iZi«io |x)1, by acting

with the Hadamard matrix on each. Then we use them as control to apply CNOT on each of 4 qubits

14



in an additional register in the state |0000)2, thus entangling them to the state %2;5:0 |z), |z),. We
introduce a third register of 4 qubits (choosing M = 16) in the state |0000)z and act on each with the
Hadamard gate to bring them into the state } 2;520 |y) r. We then use them as control to act on register
2 with the exponential of the shifted Dirac operator (see Section 3.4 for details). Finally, we measure all
4 qubits in the register R. The result is the probability distribution P(p), where p = 0,1,...,15 (Eq.
(22)) depicted in Figure 4c. With the choice [ = 3, M = 16, a measurement of the register of 4 qubits

€1,€2

yields no peak at p = 3, showing that ] = 0.

The persistent Betti number 37! is calculated using an eight-dimensional Hilbert space. The eigen-
values of the persistent Dirac operator for £ = 1 are +1,4+/3,4/5. Two of the eigenvalues (£+/3) are
degenerate with multiplicity 2. We are interested in the multiplicity of the eigenvalue A = £ = 1, which is

shown to be 1 by the peak at p = 3 of height 1/8 (see Fig.4a). The closest eigenvalue to A = 1is A = /3

which is near p = 5. Thus, the peak at the nearest eigenvalue is well separated from the one of interest

2
87

(in Figure 4a), one can see a dip at p = 4, and the height P(5) &~ £, confirming the double degeneracy
of the eigenvalue A\ = v/3). The quantum circuit flows as the one in Figure 5 but with registers 1 and 2
having 3 qubits each.

The calculation of Betti number 87**“* proceeds similarly. The Hilbert space is 22-dimensional and for
¢ = 1, the eigenvalues are the same as for 5{*!, but with degeneracies 1, 3, 2, 7 for A = 1, -1, +v/3, +/5,
respectively. The distance from the eigenvalue of interest (A = 1) to its closest one (A = v/3) is same as
before, therefore we can choose I = 3, M = 16, again. The quantum circuit is similar to the one in Figure
5 except that registers 1 and 2 need 5 qubits each. The resulting probability distribution is depicted in

Figure 4b showing that 57> = 1.

5 Conclusion

Our work established a quantum persistent homology algorithm that detected and computed the topolog-
ical features of point cloud data as their resolution changes. Our method considered the persistent Dirac
operator, generalizing the Dirac operator discussed in [40, 41]. We provided an implementation on the
challenging problem of two particular point cloud squares proposed in [48] as an example in which persis-
tent Betti numbers cannot be deduced from Betti numbers. Our algorithm can encode the full simplicial
complex with only O(n) qubits, using exponentially less memory than a classical counterpart However,
it is unlikely that the same can be true about the number of operations [58—60]. In particular, the depth
of Grover’s search algorithm required to implement projections depends on a ratio of the dimensions
of the subspaces H€, H¢ and H to the whole Hilbert space ‘H, which could result in an exponential

depth as discussed in [60]. Still, our algorithm could provide at least Grover-like speedup over classical

15



algorithms. In addition, classical algorithms often have issues computing features of higher dimensions,
which is where most quantum algorithms including ours obtain the greatest advantage [60]. Moreover,
our algorithm can also recover non-harmonic spectra from the persistent combinatorial Laplacian, while
other quantum algorithms for persistent homology [49, 50] can only estimate the dimension of its kernel.

Last, our algorithm is flexible enough and could be extended to consider other type of data, including

time series data sets, e.g. see in [61].
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Appendix A Membership Oracle

We can encode the order k of a simplex o in a state |k) (k = 0,1,...,n — 1) by starting from |0) and
performing permutations 0 -+ 1 — --- — n—1 — 0, conditional upon the corresponding digit of ¢ being
1. Thus, we perform k permutations mapping |0) — |k). This can be implemented efficiently because the
permutation is a 1-sparse matrix.

To encode the scale € we need information on the data points that can be stored in quantum parallel
in QRAM, if it is available, and accessed efficiently [62, 63]. For any ¢,7 = 1,2,...,n, QRAM]|é)|5)|0) =
[i)|7)1d(Z, 7)), where d(4, j) is the distance between points i and j. Notice that the size of the memory is
only logarithmic on the number of data points. We introduce a register of qubits to record the parameter
€ as |e). We need to know when d(7,j) < e to form a VR complex. This information will be stored in a
qubit initially in the state |0), and flipped if the membership condition is satisfied. This is implemented

with a unitary test that uses the qubit registers storing d(i, 7) and € as controls to flip the last qubit,

.. .. .. . 0,d(i,j) >e
Utest|d(i, 7)) [€)[0) = [d(d, j))e)|a® (4, 7)) , a“(4,5) = (A1)
1,d(i,j) <e

Next, in order to know if o € S¢, we must check if d(i, j) < e for all (7, j) pairs such that v; = v; = 1. To
this end, we make O(k?) calls to QRAM, where k is the dimension of o. For each pair (i, ), we use |o)
as control to call QRAM and apply the test provided v; = v; = 1, QRAMTUS QRAM|0)[i)])]0)|€)|0) =
|o)]3)|7)|0)]€)|a(Z, 5)). The membership of o in the VR complex, S¢, is decided if for all (¢, j) we end up

with a(i, j) = 1.
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Appendix B Grover’s algorithm

Here we review the salient features of amplitude amplification [56] and Grover’s search algorithm [57]
which are needed for the implementation of the projection P¢ (Eq. (12)), for completeness.

Let |¥y) € Hj be a state in the span of the k-simplex states. We wish to construct the normalized
projected state |Uf) = % € Hj, assuming that it exists. To this end, we introduce the unitary
operator Ug = —Uy, U° , with Uy, = I —2|Uy) (¥x| and U = I — 2P°. Since HS, is a closed subspace,
we may write |Uy) as |Uy) = sin@|P§) + cosf |PE), where |¥S) € H and |PE) € Hl. Notice that
sin @ = || P |¥y)||. We can think of [¥}) as the vector (sin 6, cos#)T in the two-dimensional space spanned
by {|¥$),|¥5)}, then Ug acts as a rotation by an angle 26. Applying it K times, we obtain the state
UE |Wr) =sin(2K + 1)0 |¥5) + cos(2K + 1) |¥). This is close to the desired state for (2K + 1) ~ .
Therefore, the number of Grover steps needed is K = | J;|. As discussed in [60], K could be exponential

on the number of data points if || P |¥)| is small, for example when the number of simplices present in

S}, is only polynomial on the number data points.

Appendix C Implementation of an exponential operator

Relying on [64], we review the construction of the exponential operator By [€] where the shifted Dirac
matrix B;’el [€] is defined in Eq. (17). This construction is needed for the phase estimation algorithm
described in Section 3.4 (See Eq. (20)). We start by constructing the SWAP g operator from the shifted

Dirac operator BZ’E/ (€1,

§=SWAPp =Y By [d)w.0)|6) (Wl ® [4) (¢] . By ldlw.0) = (| B lello) . (C2)

.9
where [1) = |0) [tbo) +[1) [¢1) +2) [vh2), with [h0) € Hi—1, [¥h1) € H, [1b2) € Hi+1, and similarly for |¢).
Let IN be the dimensionality of the Hilbert space in which |¢)) and |¢) live and {|e,),a =1,...,N} an
orthonormal basis for the Hilbert space under consideration. With the choice £ = 1, all matrix elements
of the N x N matrix BZ’S/ [€](eqsep) € {0,£1} and the matrix S can be efficiently constructed. Then we
iALS

construct the exponential SWAP g operator e , which can be done efficiently because S is a one-sparse

matrix. Next, we act on the state |s) ® |¥), where |s) is the uniform state

1 N
|s) = \/—N;ﬁa); (C3)
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and | ) is an arbitrary state in the subspace on which B;’e/ [€] acts. After tracing over the space in which

|s) lives, we obtain try [e A1 |s) (s| @ [U) (¥]e'AS] = e—iBy 7 [E1AY/N | W) (W] B EIAY/N | O(At?),

which projects onto the state e ~*Bx" &A1/ N | W) up to second order in At. The desired state e 5+ €] | )

for finite ¢ can be obtained by repeating the above construction as many times as needed.
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