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Abstract. We present an adaptive-order positivity-preserving conservative finite-
difference scheme that allows a high-order solution away from shocks and discontinuities
while guaranteeing positivity and robustness at discontinuities. This is achieved by
monitoring the relative power in the highest mode of the reconstructed polynomial and
reducing the order when the polynomial series no longer converges. Our approach is
similar to the multidimensional optimal order detection (MOOD) strategy, but differs
in several ways. The approach is a priori and so does not require retaking a time

step. It can also readily be combined with positivity-preserving flux limiters that have
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gained significant traction in computational astrophysics and numerical relativity. This
combination ultimately guarantees a physical solution both during reconstruction and
time stepping. We demonstrate the capabilities of the method using a standard suite
of very challenging 1d, 2d, and 3d general relativistic magnetohydrodynamics test

problems.
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1. Introduction

Godunov’s theorem[1] tells us that in the numerical solution of conservation laws, high-
order linear schemes cannot prevent oscillations from appearing, be they physical or
unphysical. Nonlinear hybridization has been used to circumvent Godunov’s theorem by
reconstructing a high-order polynomial using nonlinear combinations of the variables. All
modern methods such as essentially non-oscillitary (ENO)[2, 3, 4, 5, 6], weighted ENO
(WENO)(7, 8], and weighted compact nonlinear schemes (WCNS)[9, 10, 11] use nonlinear
hybridization to achieve higher-than-first-order accuracy. WENO and WCNS schemes
are commonly used to construct high-order finite-difference (FD) schemes. One major
challenge in using high-order FD schemes with complicated equations is maintaining
physical realizability of the solution, such as positivity of the density and pressure. We
develop a new adaptive order WENO-type method that guarantees physical realizability
during the reconstruction by reconstructing the primitive variables as opposed to the
conserved or characteristic variables. We expect such methods to be particularly effective
for binary neutron star merger simulations, both magnetized and unmagnetized, where
achieving high-order convergence is attracting increasingly more efforts [12, 13, 14, 15, 16].

Existing WENO and WCNS schemes work by combining several low-order stencils
into a high-order stencil that interpolates the solution within a FD cell. How much each
low-order stencil contributes to the final result is determined by use of an oscillation or
smoothness indicator. The more oscillatory a stencil is, the less it contributes to the
overall reconstruction polynomial. FD schemes fall into two broad categories: flux vector
splitting (FVS) and flux difference splitting (FDS). FVS schemes write the numerical flux
as a linear combination of a right- and left-moving part, then reconstruct the numerical
fluxes to the cell boundaries. FDS schemes reconstruct the conserved, primitive, or
characteristic variables to the cell boundaries, and then use a numerical flux at the cell
boundary. The advantage of FDS over FVS is that more numerical fluxes can be used
with them since the numerical flux need not be split (see, e.g. [17] for a helpful review).

Reconstructing the characteristic variables yields very good results with FDS
schemes (e.g. [18]). However, for increasingly complex physical systems computing the
characteristic variables becomes analytically intractable and needs to be done numerically.
Unfortunately, computing the characteristic variables numerically is often very expensive
for these systems and so does not present a realistic alternative. An important example

in practice is the equations of general relativistic magnetohydrodynamics (GRMHD).
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Another issue that arises when reconstructing the conserved or characteristic
variables is that the reconstructed solution may not be physically realizable. For
example, the density of the reconstructed state may be negative (see, e.g. [19, 20, 21]).
Reconstructing the primitive variables permits straightforward guarding against such
unphysical reconstructed states. Flux limiters have been used to maintain a physically
realizable solution [22] when using FVS schemes, even in numerical relativity [13].
However, when a characteristic decomposition is not available, the dissipative Rusanov
or local Lax-Friedrichs numerical flux needs to be used in the FVS scheme. Another
strategy for maintaining positivity when reconstructing the conserved variables is the
flattener algorithm [23], which was originally proposed for finite-volume methods. The
flattener smoothly interpolates between a first-order and high-order reconstruction in a
way that the reconstructed polynomial is physically realizable. The main disadvantage
of the flattener compared to the new method presented here is that the flattener does
not provide a way of determining what order FD derivative should be used.

Adaptive-order WENO schemes have recently been presented that combine one or
more high-order stencils with robust low-order stencils[24, 25, 26, 27, 28]. The high-order
stencil is used if it is not too oscillatory, while the low-order standard WENO stencils are
used if the high-order stencil is inadmissible. A similar approach called multidimensional
optimal-order detection (MOOD)[29, 30, 31] has also been presented where unlimited
reconstruction is generally used, but the order is decreased a posterior: and discretely.
That is, after a time step is taken, the result is accepted only if the solution passes
numerical and physical admissibility conditions; otherwise the time step is redone using
a lower order scheme.

We address the difficulty of achieving high-order accuracy while maintaining physical

realizability and robustness by:
e introducing a new oscillation indicator that directly measures the amount of power
in the high-order polynomials of the reconstruction,
e weighting the reconstructed stencils by physical realizability instead of just numerical
admissibility,
e adapting the order of the FD derivative according to the order of the reconstruction
to avoid differentiating across discontinuities,

e providing two general implementations, one using weighting of the different stencils

and one discretely selecting the highest order admissible stencil.



A positivity-preserving adaptive-order finite-difference scheme for GRMHD 4

We present the new oscillation indicator in §2.2, describe how to include physical
realizability into the scheme in §2.3, and discuss the FD derivative adaptation in §2.4.
In §2.6 we discuss how to make the discrete stencil selection process described in
§2.2 continuous by combining the new oscillation indicator with physical realizability
conditions and using a sigmoid-like function for blending the stencils. This method of
including the physical realizability conditions into the stencil weights can readily be
incorporated into other WENO and WCNS schemes. Finally, in §3 we show results from
a large variety of standard and difficult test problems in 1d, 2d, and 3d GRMHD. In
Appendix A we briefly comment on how the scheme presented here can be used in a

discontinuous Galerkin-finite difference hybrid method as described in [32].

2. Method

We first present the new a prior: adaptive order scheme in 1d, including a description of
the positivity-preserving strategy. We then use the equations of ideal general relativistic
magnetohydrodynamics (GRMHD) as a concrete example.

We are interested in solving general conservation laws of the form
Opu + 0, F'(u) = S(u), (1)

where u is the vector of conserved variables, Latin indices later in the alphabet (such
as 1) denote spatial indices, F" is the flux vector, and S is the source vector. Here
and throughout we implicitly sum over repeated indices. We denote the primitive
variables as p. Since we are ultimately interested in systems where the characteristic
variables are either not known or are very expensive to compute, we seek to develop a
robust, positivity-preserving non-oscillatory scheme where the primitive variables are
reconstructed to cell interfaces.

Conservative finite-difference schemes evolve the cell-center values, but require the
cell-face values (the midpoints along each axis) for solving the Riemann problem and for
computing the finite-difference derivatives of the flux. That is, the semi-discrete form of
Eq. 1 is
Gngl/Q - G%q/z

Azt

where hatted indices denote grid points/cells, and G* is the numerical flux given by

3tui +

= 5. )

(approximately) solving the Riemann problem at the cell interface. The FD derivative in

Eq. 2 is of second order, but we show how this can be extended to higher order in §2.4.
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In §2.4 we also describe our new method of adjusting the order of the finite-difference
derivative based on the local smoothness of the solution.

WENO and WCNS schemes use nonlinear reconstruction and are very robust when
applied to the characteristic variables. When applied to the primitive variables they
can lead to staircasing, where small-scale oscillations are present in smooth regions [33].
We opt for a different approach to obtain a high-order non-oscillatory scheme that
somewhat resembles multidimensional optimal-order detection (MOOD)[29, 30, 31]. We
combine several new ingredients: first, we present a new method of obtaining a high-
order polynomial based on spectral elements; second we present a new a prior: detection
algorithm for determining whether or not the reconstructed stencil is acceptable; third
we present a method to combine our adaptive-order scheme with a positivity-preserving
strategy; and finally we present a method of adjusting the FD order to increase stability
without the accuracy of the scheme deteriorating in smooth regions. We will refer to
the method we present as a positivity-preserving adaptive-order (PPAOZ) scheme where
we postfix with hyphens the orders used. For example, we denote a PPAO scheme with
the order decrementing from fifth to third to first as PPAO5-3-1. In §2.1 we carry out a
detailed derivation of the fifth-order scheme. We then provide a table of the coefficients

for seventh- and ninth-order schemes.

2.1. High-order reconstruction

We construct a fifth-order scheme using a polynomial of degree four from the solution
{pj—2,Pj—1,Pj, Pj+1, Dj+2}, where j indexes the cell. We do this by setting up a spectral
element on the interval [x;_5/2,%;15/2] With Legendre basis functions. The interval is
remapped to the logical coordinate £ € [—1, 1] where the Legendre basis functions are
defined. It is important to note that this differs from the more common approach of
remapping the interval [x;_q/, 2;41/2] to § € [—1,1]. Defining the basis functions over
the larger interval is key to detecting oscillations over the region the polynomials are fit.
This is one crucial way our method differs from previous literature and is what makes
it very robust at detecting non-smooth solutions. We denote the n'® degree Legendre

polynomials by P, (£). Within the spectral element we expand the solution as
N
n=0

1 Pronounced “pow”.
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Table 1. Coefficients for reconstructing the polynomials at the cell-face values at
different orders.

Degree  Face j—4 -3 j=-2 j-1 7 J+1  j+2  73+3 j+4

. 3 3 T

2 I O B
e S B S

TR F R B F =
J+1/2 s 3 ol 2 s
i 1/2 7 55 535 175 175 9f 5

6 J 1024 512 1024 256 1024 2 1024
i+ 1/2 e P T 175 525 55 7
J 1024 512 1024 256 1024 512 1024
i—1/2 .45 63 735 2205 11025 735 441 45 35

8 J 32768 4096 8192 096 16384 4096 192 4096 32768
i+ 1/2 35 it 441 735 11025 2205 ‘735 63 '
J 32768 4096 8291 4096 16384 4096 8192 4096 32768

where c;,, are the modal coefficients for the expansion about the 7*" cell. The coefficients

¢;n are computed by solving the linear system
Po(§5-2)  Pi(&-2)

P2(§j—2) P3(fj—2) P4(§j—2) Co Pj—2

Po(§-1) Pi(&-) Pa(§-1) Ps(§-1) Palon) | | a Pj-1
P& P (&) B(&G) Pag) ol=1 | (4)

Po(Ge1)  Pi(&)  Po(&1)  Ps(§en) Pa(&) | | s Pi+1

Po(Gr2)  Pi&2)  Po(§e2)  Ps(§r2) PalGea) /) \ca Pj+2

where we have used the notation £(z;) to represent the function that maps the z

coordinates into the & coordinates. Assuming uniform spacing in £ we find that

275/1152

25,288

co 67/192  25/288  275/1152\ [pis
¢ —55/96  —5/48 0 5/48 55,96 Pi
¢y | = | 1525/2016 —475/504 125/336 —475/504 1525/2016 | | p; (5)
cs —25/48  25/24 0 —25/24  25/48 o
ca 125/336  —125/84  125/56 —125/84  125/336 ) \pis

In practice we never need to perform the matrix multiplication in Eq. (5) since we can
precompute the values p;_1 /o and pj;1/2 analytically in terms of {p;j—2, pj—1,Dj, Dj+1, Pi+2}-
The reconstructed face values are

— _ 5 . 15 45, 5. 3 .
pj—1/2 — 128]7]—2 + 32]9]—1 + 64pj 32p]+1 + 128p]+27

Pir12 = 1378]9572 - %qu + é*ipj + %Pjﬂ - %pﬂz- )
Here p;_1/5 is the right state of the j — 1/2 interface and pji1/o is the left state of the
J+1/2 interface. By using the same stencil but shifted by one cell to the left or right, the
left state on j — 1/2 and the right state on j+ 1/2 are computed. We show coefficients

for evaluating polynomials of degree 2, 4, 6, and 8 at the cell interfaces in table 1.
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2.2. Oscillation detection

With a polynomial for reconstructing the face values in hand, we need to determine how
oscillatory the polynomial is and whether or not to use it. For a spectral expansion
such as the one given in Eq. 3, higher-degree basis functions are more oscillatory and so
a large coefficient cy for the highest-degree basis function means the solution is quite
oscillatory. We make this precise by using the troubled cell indicator presented in [34]

for the discontinuous Galerkin method. We define p; as

D) = v P (§), (7)

i.e. only the highest-degree term in Eq. 3. Then we consider a polynomial admissible if
1 1

N [ gde < ke, ®)
—1 —1

where ay = 4 is generally a good choice since this is when the Legendre basis stops
converging [35]. Specifically, this guarantees that the coefficients decay at least as 1/N2.

We can rewrite the integrals as

02 N C2
N S n ) (9)
2N +1~ = 2n+1

2C!N

This effectively requires that the total power in the highest mode of the Legendre basis
expansion is a sufficiently small fraction of the total power. In practice, our PPAO
method drops to the next lowest order if Eq. 9 is violated. If the lower-order polynomial
violates Eq. 9, the order is dropped again. This is repeated until a second-order scheme,
such as monotonized central [36], is used.

We can rewrite the integrals in terms of the primitives directly. For convenience we

define

i
RN = 10
WEON+ 1 (10)
N2
— n_ 11
N nz::o on + 1 (1)
Then we write the oscillation indicator at third order as
_ 273 3 3 2
Fa = ¢ (4pj+1 — 5P + 4pj—1> ; (12)
<3 n 1 + 3 ) <31 1 + 11 ) (13)
Ko = | —ps i —pil — Vi — —Di+ —Diq | .
2= \ghirt T P ghim1 ) 9Pt = P T 9Pt
The fifth-order terms are given by:
3 2 (125 125 + 125 125 + 125 )2 (14)
Kag = — —Ds_o — ——Ps_ —_—Ds — —DP~ —1D2
47 g \336P 2T gy Pt T g P T gy Pl T gggPiz )
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B < 4015 925 2707 2305 16855 )
4 pu—

12096772 7 302471V 201677 T 302477+ T 12006172

§ < 25 % 6T 25 27 )
11520772 T 5ggPi-1 Pit1 T 159Pit2 ) -

19277 " 288
The seventh-order terms are given by:

__f2<16807 16807 16807 16807
~ 13 \9504077% 7 158407772 T 6336 D1 T y7m P
16807 16807 16807 )2

6336 L T 15840772 T 9502070
( 52087 2089 43757 72629
6:

5851207773 ~ 100080772 " 9504071 T 285120"
43757 2989 52087 ) .

95020771 100080772 T 28512077
( 748741 559769 0241603

20652487772 T 1235520772 T 194208070
145879 2928709 1769887 1777657 )

“ 57015 77 T 9ssa16 Pt T 193552072 T 134782017
The ninth-order terms are given by:

2 ( 531441 531441 031441 531441

= 17 (64064007 ~ 80080073 T 228300772 ~ 1144007
531441 531441 531441 531441

91520 P T 1142007 T 228800772 T 30080077
531441 )2

610640077+
( 62705408397 25040347967 26778669537
8:

9139557120007 ~ 3049446400072 T §712704000 P72
23833259907 95763924917 28082791047

T 1356352000 P71 T 3485081600 ¥ T 4356352000 I
39963815817 54884086937 97939637637 > .

8712704000 P2 T 3049446400077 T 22177792000 P
( 9600579 673539 9532053

630784007 ~ 738480072 T 15760600772
508383 1357457 508383

~ 7168007 T 126156877 ~ 7168007
9532053 673539 9600579 )

15760600772 ~ 788480077 T 6307840077+

(15)

Ke

(16)

kg

(18)

(19)

2.3. Positivity-preserving strateqy

In many physical systems there are requirements on certain variables, for example
the density and pressure must remain positive. A few different strategies for
maintaining positivity with WENO-type schemes have been presented for Newtonian

hydrodynamics[37, 38, 39, 23, 22| and also for ideal non-relativistic MHDI[40, 41]. For



A positivity-preserving adaptive-order finite-difference scheme for GRMHD 9

more complicated physical systems, such as general relativistic magnetohydrodynamics,
generalizations of these strategies are non-trivial or not possible. We seek to ensure that
the reconstructed polynomials (6) are physically realizable in a way that is easily tailored
to whatever physical constraints are present in the system. While negative densities
and pressures could still occur from time integration, this can be avoided by using a
positivity-preserving flux limiter [22, 13]. A very simple, efficient, and robust method for
preserving positivity in the reconstruction is to check that the cell-face values are positive.
If the reconstructed cell-face values are not positive we consider the polynomial to be
invalid and switch to a lower-order polynomial. This is repeated until the reconstructed
polynomial is positive, which is guaranteed to be true for the first-order scheme.

It is also possible to guarantee that the reconstructed polynomial is positive over
the entire region used to construct it. For the fifth-order case this can be done as follows.

We can write the derivative of the fourth-degree reconstructed polynomial as

where

625

“T 96 (pj—2 — 4pj—1 + 6p; — 4pjy1 + Pjr2) (1)
125

b=-o (=pj—2 + 2pj—1 — 2pje1 + Pjs2) . (22)

25 25 125 25 25

€= TP T g T gt g T gl %
5 5 5 b

d= oqPi—2 = 3Pt gPier = 5 Pji2-s (24)

At this point one can use standard methods for finding the roots of a cubic to obtain
the & coordinates at which the extrema of the reconstructed polynomial occur. If the
extrema occur on the interval [—1, 1] one must check that the reconstructed polynomial
is positive there. This can be done by using the coefficients computed from Eq. (5) to
evaluate the reconstructed polynomial at the extrema and check it is positive.
Rigorously verifying that the entire polynomial is positive is quite expensive,
especially for higher than fifth-order reconstruction. An alternative is to evaluate
the polynomial at several additional predetermined nodes, similar to [23]. For a linear
solution, the extrema occur at the end points so evaluating at the additional nodes
¢ € {—1,1} seems natural. Reasonable additional choices are the cell faces not already
required for the Riemann problem. We provide the stencils for evaluating the polynomial

at the additional cell faces in table 2. We only write the 7 — N/2 coefficients, since the
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J+ N/2 coefficients are given by reflecting the stencils about the cell. In practice we
have not found evaluating at the additional nodes to be necessary since the coefficients
are already decaying as ~ 1/N? or faster and thus the high frequency components that
would lead to large extrema between the nodes are absent. However, this argument does
not in principle prevent the end points from being negative. Nevertheless, our current
implementation checks for positivity only on the cell-face values, as described in the first

paragraph of this subsection, and does not check for positivity at any additional points.

Table 2. Coeflicients for reconstructing the polynomials at the additional cell-face
values for ensuring positivity of the reconstructed polynomial at different orders. The
coefficients for the faces to the right of the cell are obtained by reflecting the coefficients

about j.
Degree  Face j—4 7—-3 j—2 7j—1 Vi 7+1 7+2  j+3 7+4

= 15 5 T

2 ] 3/2 g -7 -3
5 315 _ 105 189 _ 45 35

R U [ T
J=3/2 128 3 —51 E

6 - 7/2 3003 3003 9009 _ 2145 5005 _ 819 231
J 1024 512 1024 256 1024 512 1024
i— 52 231 693 _ 1155 231 _ 495 a7 21
J 1024 512 1024 256 1024 512 1024
i—3/2 5 189 945 105 189 id 7
J 1024 512 1024 256 512 1024

) j—g/o 109895 50465 153153 109395 426425 69615 58905 7293 6435
J 32768 4096 8192 1096 16384 1096 8192 1096 32768
- 7/2 6435 6435 _ 15015 9009 _ 32175 5005 4095 495 _T429
J 32768 1096 8192 2096 16384 2096 8192 4096 32768
j_5/2 420 1287 9009 _ 3003 9009 _ 1287 1001 _ 117 99
J 32768 1096 8192 2096 16384 1096 8192 2096 32768
j—3/2 99 _ 165 3465 3465 _ 5775 693 _ 495 55 Y
J 32768 1096 8192 2096 16384 1096 8192 4096 32768

2.4. Finite-difference order adaptation

The final ingredient in our adaptive-order scheme is changing the order of the FD
derivative used to approximate the flux divergence in Eq. 2. We must first decide
how to take the FD derivative, that is, what nodes to use. In the ECHO scheme
presented in [42], a high-order FD derivative is obtained by directly using a fourth-order
stencil using the interface numerical fluxes G;_3/2, Gj-1/2, Gj41/2, Gj+3/2. Nonomura and
Fujii [18] find that using cell-centered fluxes in the FD derivative helps stabilize the
scheme, making the conservative FD scheme nearly as robust as F'V schemes, while
remaining computationally cheaper. For a sixth-order FD derivative Nonomura and
Fujii use G;_3/2, Fj—1,Gj-1/2, Gj11/2, F+1, Gj13/2. This idea was further expanded by
Chen, Té6th, and Gombosi [43] (CTG), who use only the nearest cell-interface numerical
fluxes and cell-centered fluxes otherwise. For a sixth-order FD derivative CTG use

Fy_o, F5_1,Gj-1/2, Gjp1y2, Fjy1, Fjpo. The advantage of using only cell-centered fluxes to
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obtain high-order convergence is that this minimizes reconstruction and communication
between different processors on a distributed system. CTG also write the high-order
FD derivatives as corrections to the numerical flux G. This makes applying a positivity-
preserving flux limiter straightforward, unlike if high-order FD derivative stencils are
used.

For the above reasons we use the approach taken by CTG, writing the numerical
flux G as

2 4 6 10)

Gir1/2 = G]E-i-)l/Q - G]§+)1/2 + G§+)1/2 - G§+1/2 + G§+1/2a (25)
where G\? it1/2 18 the standard numerical flux obtained by solving the Riemann problem
at the interface and

1
4
G§+)1/2 6 ( 2Ga+1/2 * Fi“) : (26)
(6) 1
G = 150 (Fiot = 9F; 416G, ), — 9F341 + Fiia) (27)
® 1 25 256 (2
G = 5100 (F S 508, — G, + 50F
25
—§Fj+2 + Fj+3> ; (28)
10 1 49 2048 o
G, = 17640 (Fj—3 — 5 Fia H A9 — 24585+ G§+)1/2
49
—245Fyp1 +49F;5 — +Fiea + Fj+4> . (29)

We now need to decide which correction orders to include. CTG and Nonomura and
Fujii use one order higher than their reconstruction scheme. That is, if fifth-order
reconstruction is used, a sixth-order FD derivative is used, which would mean we include
G™W and G©. We store the polynomial order used for reconstruction in each cell. Then
the order we use at j + 1/2 is given by Oj11/2 = min(O;, O;11), guaranteeing that
we do not differentiate across a discontinuity. For example, if cell ) used fifth-order
reconstruction and cell j+ 1 used second-order reconstruction, Gj,1/2 = a?

+1/2°

2.5. Extension to higher dimensions

The extension to higher dimensions is straightforward since for a finite-difference scheme

each dimension can be treated separately.
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2.6. Weighted adaptive order schemes

We can hybridize the multiple stencils into a single WENO-type stencil, replacing the
conditionals by shifted tanh functions. We denote the weight functions for hybridization
by ©(v) where NN is the degree of the scheme. ©(y) is one where the stencil should be
used and zero where the stencil is invalid. Denoting the stencil of order N by S™) we

write the PPAQO9-5-3-1 scheme as:

8
Prs1/2 = S 0)
@
+(1—-6) {Si2) 20

2 0
+ (1 - @<4>) {59&)1/2@@) + (1 - @(2)) S]Ej:)l/2}} : (30)
The weight functions based on the oscillation indicators are
1

1+ exp (—vsh +any)’
where 7 controls how quickly the transition occurs and should be chosen the same for all

stencils. For positivity preservation we use the weight function

1
@ SEN) ; Pmin ) = 7
p ( jx1/2 ) 1+ exp [—(100/pm1n)SJE]ivl)/2 +50

where pnin is the value above which the stencil should be used. That is, if we require the

(32)

stencil SN) be used when its value at the reconstruction point is equal to 1072 then
Pmin = 10712 should be used. When both smoothness and positivity need to be enforced,
the weight functions can simply be multiplied together. In this way a general weight
function can be obtained that enforces any number of constraints. Finally, the order of

the reconstructed polynomial is given by

0; =90 + (1 - 6s)) {50 + (1 = Ow)) [302) + (1 - O)) 1]} . (33)

3. Numerical results

We now present a series of numerical tests to demonstrate the capabilities of our
PPAO schemes. Unless stated otherwise, all tests use a third-order strong-stability-
preserving Runge-Kutta scheme (SSP-RK3) for the time evolution[5], and an HLL
Riemann solver [44]. We solve the GRMHD equations in conservative form with
divergence cleaning. Unless stated otherwise, the second-order reconstruction scheme
is monotonized central [36]. See [45] for details of the implementation in SpECTRE
and [46, 47, 48] for more detailed discussions of the GRMHD system. All simulations are
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performed using SpECTRE [49] with the implementation of the algorithms described being
publicly available. All features used to perform the simulations described are available
in the v2023.04.07 release of SpECTRE [49].

The goal of this section is to get an overview of whether certain choices of
reconstruction and FD derivative order are significantly better or worse than others. When
comparing schemes we name them both by the PPAO approach and the associated FD
derivative approach. PPAQO9-5-2-1 means that first unlimited ninth-order reconstruction
is attempted, if that fails unlimited fifth-order reconstruction is attempted, if that fails
second-order reconstruction is attempted, and if that results in an unphysical solution
first-order reconstruction is used. By comparison, PPAO5-2-1 means unlimited fifth-order
reconstruction is attempted, if that fails second-order reconstruction is attempted, if
that results in an unphysical solution first-order reconstruction is used. When using
the same FD derivative order independent of the reconstruction order we use notation
like FD-8 for eighth-order FD derivatives, and FD-2 for second-order FD derivatives.
When using adaptive-order FD derivatives, we note the order associated with each
reconstruction order. For example, if we use PPAO9-5-2-1 with FD-10-6-2-2 (denoted
PPAQO9-5-2-1+FD-10-6-2-2), then for ninth-order reconstruction we use tenth-order
derivatives, for fifth-order reconstruction we use sixth-order derivatives, for second-order
reconstruction we use second-order derivatives, and for first-order reconstruction we also

use second-order derivatives.

3.1. 1d Smooth Flow

We consider a simple 1d smooth flow problem to verify that the algorithm converges at
the expected order for smooth solutions in the absence of magnetic fields. A smooth
density perturbation is advected across the domain with a velocity v*. The analytic

solution is given by
p =1+0.7sin[k'(z" — v't)], (34)

vt = (0.8,0,0), (35)

k' =(1,0,0), (36)
(37)

(38)

1 37

p
B' = (0,0,0),

Y

38
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and we close the system with an adiabatic equation of state,

p=pel=1), (39)

where T is the adiabatic index, which we set to 1.4. We use a domain given by [0, 27|%, and
apply periodic boundary conditions in all directions. The time step size is At = 27/5120
so that the spatial discretization error is larger than the time stepping error for all
resolutions that we use. The final time is chosen to be 27, and we use a bHth-order
Dormand-Prince time integrator [50, 51, 52]. The high-order time stepper combined
with the small step size ensure that the spatial errors dominate.

We perform convergence tests at different FD derivative orders and present the
results in table 3. We show both the L, norm of the error and the convergence rate. The

L5 norm is defined as

1

1 M
u2, (40)

L2 (U) = M <
where M is the total number of grid points and u; is the value of u at grid point ¢ and

the convergence order is given by

Ly Order = log, lIM] , (41)
2(EN,

We always use the PPAO9-5-2-1 scheme, but since the solution is smooth ninth-order
reconstruction is used. We observe the expected convergence rate except for the 8th-order
derivative case, where the convergence order is slightly above the expected rate. This
ultimately demonstrates that our PPAO scheme is able to achieve high-order convergence

for smooth solutions in the absence of magnetic fields.

3.2. Alfvén Wave

We now verify that our scheme achieves high-order convergence in the presence of
magnetic fields. To achieve this we evolve an Alfvén wave across the domain [42]. The
magnetic field B in the Alfvén wave solution is the sum of a background static magnetic
field By and a transverse time-dependent magnetic field B;. We define the auxiliary

magnetic velocities vp, and vp, as

s (Bo)? s (By)?

UBO - ph/"_ BQ? vBl - ph + BQ' (42)
The Alfvén speed and fluid speed are then given by:
V7 v?
0124 = Ho ) UJ% = 1 = : (43)

1 1 1 1,2 .2
5 T\ 1~ VBB 5 T\ 1~ VBB
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Table 3. The errors and local convergence order for the smooth flow problem using
different FD derivative orders but always using a PPAQO9-5-2-1 reconstruction. Since
the solution is smooth the reconstruction always ends up being 9th order. We observe

the expected convergence rate except for the 8th-order derivative it is slightly higher

than expected.

Derivative Order N,  La(E(p)) Lo Order
2 11 2.41440e-2
22 6.04972e-3 2.00
44 1.51327e-3 2.00
88  3.78368e¢-4 2.00
4 11 2.81416e-4
22 1.76480e-5 4.00
44 1.10441e-6 4.00
88  6.90479e-8 4.00
6 11 7.40386e-6
22 9.86855e-8 6.23
44 1.53525e-9 6.01
88  2.39498e-11 6.00
8 11 3.25675e-6
22 6.79011e-9 8.91
44 1.37058e-11 8.95
88  1.19152e-13 6.85
10 11 3.27319e-6
22 6.79768e-9 8.91
44 1.35104e-11 8.97
88  1.15890e-13 6.87
10-6-2-2 11 3.27319e-6
22 6.79768e-9 8.91
44 1.35104e-11 8.97
88  1.15890e-13 6.87
10-4-2-2 11 3.27319e-6
22 6.79768e-9 8.91
44 1.35104e-11 8.97
88  1.15890e-13 6.87

We use an ideal fluid equation of state with I' = 1.6

The circularly polarized wave is best described in a basis aligned with the initial

magnetic fields at the origin. To this end we define the unit vectors 130, Bl, and é as

5, B _ B

b,

The analytic solution is given by

By

b
x=0,=0

é:b(]Xbl.

v(x,t) = —vy {cos(5¢)f)1 + sin(égb)é} :
B(x,t) = By + By [cos(d¢)by + sin(d)é| ,

(44)
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with d¢ given by
dp(x,t) =k (x- by — vat) , (47)

where k is the wave number, and p and p are spatially constant. We choose p =1, p =1,
k=3, By =[1,1,1], and B4(0,0) = [vV2,-1/v2,-1/v/2].

We use an adaptive Dormand-Prince 5 [50, 51, 52] time integrator with an absolute
tolerance of 10715 and a relative tolerance of 1072, and evolve to a final time of .
In table 4 we present convergence results of B’ at the final time. We always use the
PPAQ9-5-2-1 scheme, but since the solution is smooth, ninth-order reconstruction is
used. From table 4 we see that we get high-order convergence for the Alfvén wave
problem, though when using tenth-order FD derivatives we still only achieve eighth-order
convergence. We have not yet understood why this is, though given the time stepper
tolerance and the small errors, we are not concerned about it. In realistic astrophysical

simulations one is highly unlikely to be able to achieve relative errors of 10712

3.3. 1d Riemann Problems

Having verified the order of convergence of our PPAO scheme for smooth solutions, we
now turn to testing them in the presence of discontinuities. One-dimensional Riemann
problems are a standard test for any scheme that must be able to handle shocks. We will
focus on the five Riemann problems (RP-5) of [53] and the fast shock problem of [54].
The initial conditions for the Riemann problems are given in table 5. We use a domain
given by [—0.5,0.5] x [—1,1]?, with 704 grid points in the z-direction and 11 grid points
in y and z, analytic boundary conditions in the z-direction and periodic in y and z, and
use a time step size At = 5 x 10~%. The initial conditions for the fast shock are given

by [54]

:{ 1.0, ifz<00 (48)

25.48, x> 0.0,

_ { if £ <0.0 (49)
367.5, x> 0.0,

_ { (20.0,25.02,0.0), if 2 < 0.0 (50)
(20.0,49.0,0.0), = > 0.0,

:{(2500000) if # < 0.0 51)
(1.091,0.392,0.0), = > 0.0,
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Table 4. The errors and local Lo convergence order for the Alfvén wave problem using
different FD derivative orders but always using a PPAO9-5-2-1 reconstruction. We
show the error and order for each component of the magnetic field separately, and in all
cases observe high-order convergence. We have not yet understood why the tenth-order
derivatives only converge at eighth order, though given the time stepper tolerance and
the small errors, we are not concerned about it.

OFD) N, Ly(&(B*)) O(B.) La(E(BY)) O(BY) Ly(&(B%) OB

2 22 1.08968e-2 1.08968e-2 1.08968¢-2
44 2.72631e-3 2.00 2.72631e-3 2.00 2.72631e-3 2.00
88  6.81709e-4 2.00  6.81709e-4 2.00 6.81709e-4 2.00

4 22 4.43192e-5 4.43192e-5 4.43192e-5
44 2.77829¢-6 4.00  2.77829e-6 4.00  2.77829¢-6 4.00
88  1.73745e-7 4.00  1.73745e-7 4.00 1.73745e-7 4.00

6 22 3.10693e-7 3.10693e-7 3.10693e-7
44 4.95066e-9 5.97  4.95066e-9 5.97  4.95066e-9 5.97
88  7.89883e-11 5.97  7.8988le-11 5.97  7.89882e-11 5.97

8 22 1.45926e-7 1.45926e-7 1.45926e-7
44 5.66948e-10 8.01  5.66949¢-10 8.01  5.66949e-10 8.01
88  5.58414e-12 6.67  5.58425e-12 6.67  5.58425e-12 6.67

10 22 1.49272e-7 1.49272e-7 1.49272e-7
44 5.80746e-10 8.01  5.80746e-10 8.01  5.80745e-10 8.01
88  5.63870e-12 6.69  5.63867e-12 6.69  5.63866e-12 6.69

10-6-2-2 22 1.49272e-7 1.49272e-7 1.49272e-7
44 5.80746e-10 8.01  5.80746e-10 8.01  5.80745e-10 8.01
88  5.63870e-12 6.69  5.63867e-12 6.69  5.63866e-12 6.69

10-4-2-2 22 1.49272e-7 1.49272e-7 1.49272e-7
44 5.80746e-10 8.01  5.80746e-10 8.01  5.80745e-10 8.01
88  5.63870e-12 6.69 5.63867e-12 6.69 5.63866e-12 6.69

(52)

using a domain [—0.5,2] x [—1,1]? with 352 grid points in the z-direction and 11 grid
points in y and z, analytic boundary conditions in all directions, and we use a time step
size of At = 1073,

We plot the rest mass density p at the final time in the left panels of figure 1 and
figure 2, and the y-component of the magnetic field BY at the final time in the right
panels for the various Riemann problems and the fast shock problem. The PPAQ9-5-2-1
reconstruction scheme is always used and different FD derivative orders are shown. We
find that FD-8 fails for RP4, while both FD-2 and the adaptive FD-10-6-2-2 are robust.
For RP3, we see that the adaptive-order FD derivatives leads to larger oscillations
in BY around z = 0.35 than the FD-8 scheme. This is because the FD-8 scheme is
more dissipative than the adaptive approach, and so there is essentially a low-pass filter

applied that smooths out additional oscillations, be they physical or unphysical. In all
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Table 5. The initial conditions for Riemann Problems 1, 2, 3, 4, and 5 of [53]. The
domain is = € [—0.5,0.5], the final time is t; = 0.4 for problems 1-4 and ¢y = 0.55 for
problem 5. An ideal fluid equation of state is used with an adiabatic index of 2 for
Riemann Problem 1 and 5/3 for Riemann Problems 2, 3, 4, and 5.

Problem p P vl B!

RP 1 <0 1.0 1.0 ( 00 , 0.0,00) (O 1.0, 0.0)
x>0 0.125 0.1 ( 0.0 , 0.0,0.0) ( 0 5 —1.0, 0.0)

RP 2 z<0 1.0 300 ( 0.0 , 0.0,0.0) (5. 0 6.0, 6.0)
z>0 1.0 1.0 ( 00 , 0.0,00) (5 0.7, 0.7)

RP 3 <0 1.0 1000.0 ( 0.0 , 0.0,0.0) (10 O 7.0, 7.0)
x>0 1.0 01 ( 0.0 , 0.0,0.00 (10.0, 0.7, 0.7)

RP 4 <0 1.0 0.1 ( 0.999, 0.0,0.0) (10.0, 7.0, 7.0)
z>0 1.0 0.1 (-0.999, 0.0,0.0) (10.0,—7.0,—7.0)

RP 5 r<0 1.08 095 ( 04 , 03,0.2) (20, 0.3, 0.3)
x>0 1.0 1.0 (=045 ,-0.2,0.2) ( 2.0,—0.7, 0.5)

cases we see that adapting the order of the FD derivative increases accuracy without
additional Gibbs phenomena or decreased shock capturing compared to the second-order
scheme. This demonstrates that the combined PPAOQ9-5-2-14FD-10-6-2-2 scheme is
able to achieve high-order convergence in smooth regions while accurately and robustly
capturing strong shocks and discontinuities, at least for 1d test problems. We explore

the scheme’s capabilities of handling 2d and 3d problems below.

3.4. 2d Cylindrical Blast Wave

The cylindrical blast wave [55, 42] is a standard test problem in which a magnetized
fluid obeying a I' = 4/3 ideal fluid equation of state starts at rest in a constant magnetic
field along the z-axis is evolved. A dense cylinder is surrounded by a lower density fluid
into which the cylinder expands. The presence of a magnetic field causes the expansion

to be non-axially symmetric. The initial density p and pressure p of the fluid are

p(r < 0.8) =102, (53)
p(r>1.0) =104, (54)
p(r <0.8) = (55)
p(r >10)_5><1o4 (56)

In the region 0.8 < r < 1, the solution transitions such that the logarithms of the

pressure and density are linear functions of . The fluid begins threaded with a magnetic
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Figure 1. The left panels show the rest mass density p at the final for Riemann
problems 1-3 going from top to bottom, while the right panel shows BY at the final
time. In all cases we show the exact solution in solid black and our PPAO-9-5-2-1
scheme with different derivative orders. We see that for all three Riemann problems
the adaptive-order derivatives provide the best balance between accurately resolving
shocks and minimizing oscillations near discontinuities.
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Figure 2. The left panels show the rest mass density p at the final for Riemann
problems 4-5 and the Komissarov fast shock going from top to bottom, while the right
panel shows BY at the final time. In all cases we show the exact solution in solid black
and our PPAO-9-5-2-1 scheme with different derivative orders. The FD-8 solver fails
for RP4 and does quite poorly for the fast shock problem. In all cases the adaptive
order scheme is accurate and robust.
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field:
(B*,BY, B*) = (0.1,0,0). (57)

For all simulations we use a time step size At = 1072,

We evolve the blast wave to time t; = 4.0 using a 240 x 240 x 15 FD grid on a cubical
domain of size [—6,6]> and apply periodic boundary conditions in all directions. We
show the logarithm of the rest mass density p at t; in figure 3 for different FD derivative
orders but always using the PPAO9-5-2-1 reconstruction method. We label the panels
FD-N, where N is the FD derivative order. The 10-6-2-2 and 10-4-2-2 use tenth-order
FD derivatives when ninth-order reconstruction is used, sixth (fourth) order derivatives
when fifth-order reconstruction is used, and second-order derivatives when first- and
second-order reconstruction is used. Despite the high-order nature of the method, it is
able to robustly capture the sharp features that arise, demonstrating that the scheme
robustly detects discontinuities and reduces the reconstruction order in so as to remain
stable. We show the reconstruction order alongside p and pressure p in figure 4. In
this case discontinuous features in p and p are at the spatial locations and the scheme
correctly identifies them. A similar plot for the Kelvin-Helmholtz instability discussed
below (§ 3.7) shows that the code can track both shocks and contact discontinuities.

A particularly challenging case is when the initial magnetic field is increased to
B* = 0.5, as was done in [56]. In this case we must use minmod reconstruction [57] at
second order instead of monotonized central in order for the simulations to remain stable,
but the PPAO scheme is otherwise able to evolve the solution without any challenges.

We show results analogous to the weaker field case in figure 5.

3.5. 2d Magnetic Rotor

The 2d magnetic rotor problem was first proposed for non-relativistic MHD [58, 59] and
later generalized to the relativistic case [60, 61]. A rotating cylinder of dense fluid is
surrounded by a lower density fluid, with uniform pressure and magnetic field. Magnetic
braking ultimately slows the rotor and an approximately 90 degree rotation is completed
by the final time ¢; = 0.4. We set up the problem on a 272 x 272 x 17 grid with domain
size [—0.5,0.5]3, periodic boundary conditions in all directions, and a time step size

At =1073. A T =5/3 ideal fluid equation of state is used with initial conditions:
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Figure 3. Cylindrical blast wave p at t = 4 showing the results using different FD
derivative orders and always using the PPAO9-5-2-1 reconstruction method. In all
cases the scheme is stable, meaning we are able to achieve high-order in smooth regions
while being robust and stable at discontinuities and shocks. In all cases the scheme is
stable. There are 30 contours linearly spaced between 1072 and 104
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Reconstruction Order in z Reconstruction Order in y

— 1.0e-3 — 4.0e-2

—75e-4

5.0e-4 1.0e2

2.5e-4

1.0e-3

Figure 4. Results from the cylindrical blast wave problem. The panels in the top
row show the reconstruction and FD derivative order used in the z-direction (left) and
y-direction (right) at the final time, while the bottom left panel shows the rest mass
density and the bottom right the pressure at the final time. We see that the adaptive-
order FD scheme accurately tracks non-smooth features in the solution, specifically the
rest mass density and pressure, adjusting the order as necessary.

| 42, 29,0), if 1 < Rugger = 0.1
o = | CYB0), 7S B (60)
(0,0,0), otherwise,

10, if r < Rigtor = 0.1
p = . (61)
1, otherwise,

where 2 = 9.95 is the angular velocity, guaranteeing that the maximum velocity of the

fluid (0.995) is below the speed of light.

We show the results of our evolutions in figure 6. Again, we label the panels FD-N,

where N is the FD derivative order. The 10-6-2-2 and 10-4-2-2 use tenth-order FD

derivatives when ninth-order reconstruction is used, sixth (fourth) order derivatives
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Figure 5. Strongly magnetized (B* = 0.5) cylindrical blast wave p at t = 4 showing
the results using different FD derivative orders and always using the PPAO9-5-2-1
reconstruction method, where at second order minmod reconstruction is used. In all
cases the scheme is stable. There are 30 contours linearly spaced between 10~3 and
10~

1.0e-4
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when fifth-order reconstruction is used, and second-order derivatives when first- and
second-order reconstruction is used. Just as in the cylindrical blast wave test case, our
adaptive order scheme is able to robustly evolve the discontinuous parts of the solution

while maintaining high order where the solution is smooth.

3.6. 2d Magnetic Loop Advection

The 2d magnetic loop advection problem [62] gives a nice test of how well the method
is able to advect magnetic fields through the domain, and if the divergence cleaning
is working properly. In this problem, a magnetic loop is advected through the domain
until it returns to its starting position. We use an initial configuration very similar

to [63, 64, 65, 66|, where

p =1 (62)

p =3 (63)

v = (1/1.2,1/2.4,0) (64)
—Aloopy/ Rin, if 7 < Riy

B* = ¢ —Aopy/T, if Rin <7 < Rioop (65)
0, otherwise,

Aloopx/Rina if r S Rin
BY = Aloopx/ra if Rin <r< Rloop (66)

0, otherwise,

with Rioop = 0.3, Rin = 0.001, Ajep = 1073 and an ideal gas equation of state with
[' =5/3. The FD grid is 240 x 240 x 15 and the domain size is [—0.5, 0.5]* with periodic
boundary conditions. We use a time step size of At = 1072 and evolve to a final time of
ty = 2.4, one period.

In the left half of each plot in figure 7 we plot B* at t = 0, while in the right half
we plot B* at t; = 2.4. If the numerical method perfectly preserved the structure the
two halves would look identical. However, we see that using second-order derivatives
everywhere (top left panel) creates additional oscillations in the cone that are not present
when high-order (labeled FD-4, FD-6, and FD-10) or adaptive-order (labeled FD-10-6-2-2
and FD-10-4-2-2) derivatives are used. We show the divergence cleaning field ® in figure 8,
which is a direct measure of the 9;B° = 0 constraint violation. We see that in addition

to a random background, the high-order derivatives have larger constraint violations
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Figure 6. Magnetic rotor p at ¢t = 0.45 showing the results using different FD derivative
orders and always using the PPAO9-5-2-1 reconstruction method. In all cases the
scheme is stable, meaning we are able to achieve high-order in smooth regions while
being robust and stable at discontinuities and shocks.
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at the outer edge of the loop (r = Rioep = 0.3). However, the violations at Ry, are
still of the same scale as the background violations and so do not adversely affect the
overall solution. This demonstrates that our high-order and adaptive-order methods do

not adversely affect the divergence cleaning properties of the GRMHD system.

3.7. Kelvin-Helmhotz instability

Next we study a magnetized Kelvin-Helmholtz (KH) instability, similar to [67]. The
domain is [—0.5,0.5]3, periodic boundary conditions are applied in all directions, and we

use initial conditions similar to [68]:

1, ly — 0.5] < 0.25

po=9 _ (67)
107, otherwise,

p =10, (68)
0.5, —0.5] < 0.25

o — |y | (69)
—0.5, otherwise,

. (y —0.75)? (y — 0.25)?
v — ) B C N
v¥ = 0.1sin(4mz) lexp < 007072 + exp 007072 : (70)

v¥ = 0.0, (71)
B' = (107%,0,0). (72)

An ideal gas equation of state is used with I' = 4/3 and simulation to a final time
ty = 1.6 with a CFL factor of 0.7. We find that using second-order FD derivatives
and the adaptive-order derivatives the simulations are stable with a CFL of 0.9, while
derivatives orders four through ten are unstable with such a large CFL.

We plot the rest mass density p from a high-resolution, 14082, reference simulation
using PPAQ9-5-2-1 and FD-2 in figure 9 to compare our results to. The high-resolution
simulation has four times as many points per dimension as our standard resolution. We
plot the rest mass density p at the final time ¢; = 1.6 in figure 10 for simulations using
the PPAQO9-5-2-1 reconstruction scheme but using different order FD derivatives. All
schemes are stable, though the FD-2 is able to resolve additional small-scale vortices at
(x,y) ~ (0.5,0.25) and FD-10-6-2-2 is almost able to resolve these. We find that reducing
the CFL factor to 0.5 allows the FD-10-6-2-2 scheme to resolve the additional vortices,
similar to those seen in the high-resolution simulation shown in figure 9. We show the
reconstruction order alongside p and pressure p in figure 11, nicely demonstrating that

the PPAO scheme accurately tracks non-smooth features in both p and p. This ultimately
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Figure 7. B? for the magnetic loop advection problem. The left half of each plot is at
the initial time, while the right half is after one period (¢; = 2.4). The different panels
all use the same PPAQ9-5-2-1 reconstruction method but use different derivative orders.
We see that the second-order FD derivative generates spurious oscillations throughout
the loop, while the high-order and adaptive-order FD derivatives produce a cleaner

solution.
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Figure 8. The divergence cleaning field ® for the magnetic loop advection problem after
one period (ty = 2.4). The different panels all use the same PPAO9-5-2-1 reconstruction
method but use different derivative orders. We see that high-order FD derivatives
generate additional 9; B" = 0 constraint violations at the edge of the loop, but at an
amplitude comparable to that of the background noise.
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means that both shocks and contact discontinuities are tracked and resolved. While
there is not a clear best scheme, the important aspect for us is that the FD-10-6-2-2
method maintains reasonable shock capturing ability and is not significantly more diffuse

than FD-2.

05 0.0 0.5

Figure 9. Rest mass density p from a high-resolution, 14082, Kelvin-Helmholtz
instability simulation at t = 1.6. The results in figure 10 below should be compared to
this.

3.8. Orszag-Tang vortex

The relativistic version of the Orszag-Tang vortex is a 2-dimensional test case for GRMHD
systems [67]. The initial conditions (and hence the states at later times) are periodic in

both x and y with period 1. The initial conditions are:
25

_ 73
P =g (73)
5
- 4
Po= (74)
. 1 1
vt o= [—2 sin(27my), 5 sin(27z), O} (75)

A 1
B' = [_\/E sm(27ry),msm(47rx),0] (76)

closed by an ideal equation of state with I' = 5/3. We use a domain [0, 1]*> with periodic
boundary conditions and evolve until a final time ¢y = 1 using a CFL factor of 0.7.
We plot the rest mass density p at the final time ¢y = 1 in figure 12 for simulations

using the PPAQ9-5-2-1 reconstruction scheme but using different order FD derivatives.
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Figure 10. Kelvin-Helmholtz instability p at t = 1.6 showing the results using different
FD derivative orders and always using the PPAQ9-5-2-1 reconstruction method. In all
cases the scheme is stable, though the FD-2 case is able to resolve additional small-scale
vortices and the FD-10-6-2-2 case is almost able to resolve them. Reducing the CFL
factor to 0.5 allows the FD-10-6-2-2 scheme to resolve the additional vortices.
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Figure 11. Results from the Kelvin-Helmholtz instability problem. The panels in
the top row show the reconstruction and FD derivative order used in the z-direction
(left) and y-direction (right) at the final time, while the bottom left panel shows the
rest mass density and the bottom right the pressure at the final time. We see that
the adaptive-order FD scheme accurately tracks non-smooth features in the solution,
specifically the rest mass density and pressure, adjusting the order as necessary.

All schemes perform equally well with no discernible differences between them. We show

the reconstruction order alongside p and pressure p in figure 13, nicely demonstrating

that the PPAO scheme accurately tracks non-smooth features in both p and p for this

problem as well.

3.9. Slab jet

To study our scheme’s ability to handle explosions akin to what one would encounter in

core-collapse supernova simulations, we run a slab jet simulation similar to that of [54].

We use the domain [—0.5,20] x [—14, 14] x [-0.5,0.5] with resolution 176 x 352 x 11.
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Figure 12. Orszag-Tang vortex p at t = 1 showing the results using different FD
derivative orders and always using the PPAO9-5-2-1 reconstruction method. In all
cases the scheme perform equally well for resolving the rest mass density.

We impose periodic boundary conditions in the z-direction and use Dirichlet boundary
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Figure 13. Results from the Orszag-Tang vortex. The panels in the top row show the
reconstruction and FD derivative order used in the z-direction (left) and y-direction
(right) at the final time, while the bottom left panel shows the rest mass density and
the bottom right the pressure at the final time. We see that the adaptive-order FD
scheme accurately tracks non-smooth features in the solution, specifically the rest mass
density and pressure, adjusting the order as necessary.

conditions fixed to the initial conditions in x and y. The initial conditions are given by

10, <05andz <0
_ || = (77)
0.1, otherwise,

p =001, (78)

20,0,0), <05andz <0

[ 20.0.0), Jyl<05andz )
(0,0,0,  otherwise,

B' = (1,0,0), (80)

and an ideal fluid equation of state is used with I' = 4/3. We evolve to a final time of

ty = 27 with a CFL factor of 0.5. We find that for larger CFLs the FD-4, FD-6, FD-8,
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and FD-10 algorithms become unstable.

We plot the rest mass density p at the final time ¢; = 27 in figure 14 for simulations
using the PPAQO9-5-2-1 reconstruction scheme with various FD derivative orders. The
FD-4 and FD-8 schemes produce significant deviations from symmetry about the y =0
plane, while all other scheme preserve the symmetry quite well. In particular, we find
that the FD derivative order adaptation (FD-10-6-2-2) is as robust as the FD-2 scheme,

and can be run with larger CFL factors than the non-adaptive high-order derivatives.

3.10. TOV star

To test the proposed method’s ability to simulate fluids in curved spacetimes, we evolve
a Tolman-Oppenheimer-Volkoff (TOV) star [69, 70]. We perform simulations of both
magnetized and non-magnetized TOV stars. We adopt the same configuration as

in [71, 45, 32]. Specifically, we use a polytropic equation of state,

p(p) = Kp* (81)
with T' = 2, K = 100, and a central density p. = 1.28 x 1073M ;2. This choice of K and

[ mean we use geometric units where G = ¢ = My = 1. For the magnetized case, we

choose a magnetic field given by a vector potential
Aqb - Ab (xZ + yz) max (p — Pcut; 0)715 ) (82)

with Ay = 2500, pews = 0.04pmax, and ng = 2. This configuration yields a magnetic
field strength in CGS units of |Bcgg| = 1.03 x 109 G. The magnetic field is only a
perturbation to the dynamics of the star, since (pmag/p)(r = 0) ~ 5x 107°. The magnetic
field is given by

1 zz
Bx — —7714 S — Fcu me—l T
N o1s(D — Peut)™  Orp (83)
1 yz
BY = ——=—A s — Pcu ns_lar ) 84
7 (P — Peut) p (84)
Ay z? + y? 1
BZ — — 2 — Mcu s S — FMcu e T 9
7 (p = Pew)™ + ———15(p = peut)™ "' Opp (85)
away from r = 0 and by
B* =0, (86)
BY =0, (87)
2 Ab n
B* = 72(]) - pcut) S? (88)

val
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at r = 0.

All simulations are done in full 3d with no symmetry assumptions, but in the Cowling
approximation, i.e. the spacetime is static. We use a cube [—13,13]® in geometric units,
which is slightly higher resolution than was used in [71, 45, 32]. We convert grid spacing
to meters assuming a maximum mass of the neutron star of M., = 2M,. We run
simulations to a final time of {; = 5ms and monitor the maximum density over the
domain as a function of time. In figure 15 we plot the relative change of the maximum
rest mass density at three resolutions in the left panels and its power spectrum in the
right panels. We compare the oscillation frequencies to the known frequencies [72, 73| and
find good agreement in all cases. In particular, the PPAQ9-5-2-24+FD-10-6-2-2 scheme
very nicely resolves the seven frequencies plotted in figure 15. The PPAO5-2-2+FD-
6-2-2 scheme starts to lose accuracy around the sixth peak, while PPAO5-2-2+FD-4
resolves the first six frequencies and arguably the seventh, but not as cleanly as the
PPAO9-5-2-2+FD-10-6-2-2 scheme. Overall, our PPAO scheme works very well for
TOV simulations. We do not plot the magnetized case since the behavior is effectively
identical to the non-magnetized case, so much so that the plots are indistinguishable by
eye. In figure 16 we show volume renderings of the z = —0.1 plane for the three different
methods at the highest resolution. The PPAO5-2-24+-FD-4 scheme smears the surface
of the star out more than the two adaptive schemes, while PPAO9-5-2-2+FD-10-6-2-2
has spurious artifacts just outside the star. Given that these artifacts are absent in the
PPAO5-2-24+FD-6-2-2 case, it might be possible to more aggressively drop from ninth
to fifth order to remove them, but we have not tested this. Ultimately, this leads us to
conclude that the adaptive scheme is able to produce crisp surfaces while achieving high

order in smooth regions.

3.11. Rotating neutron star

As a final challenging 3d test case, we simulate a uniformly rotating neutron star with a
ratio of polar to equatorial radii of 0.7, as in [45, 32| and similar to [74]. The initial data
is constructed using the RotNS code described in [75, 76]. We again use a polytropic
equation of state with I' = 2 and K = 100. The simulations are done on a cubical
domain of size [—13,13] x [—13,13] x [—11, 11] to give roughly the same number of grid
points across the star in all three dimensions. We show the ratio of the maximum rest
mass density as a function of time to the maximum rest mass density at ¢ = 0 in the

left panels of figure 17, while the right panels show the power spectrum of the rest mass
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density ratio. We show three different numerical schemes, PPAO5-2-2+FD-4, PPAO5-2-
24+FD-6-2-2, and PPAQO9-5-2-2+FD-10-6-2-2. We see that the adaptive-order derivative
schemes are less dissipative while also resolving high-frequency radial pulsations. This
demonstrates that our proposed adaptive-order schemes are able to produce stable
long-term simulations of interesting astrophysical systems, and marks the first set of

simulations that are ninth order in space.

4. Conclusions

We presented a new positivity-preserving adaptive-order (PPAO) finite-difference scheme
that adjusts both the order of the unlimited cell-centered polynomial and the order
of the finite-difference derivative based on a new oscillation indicator and physical
admissibility criterion. The scheme reconstructs the primitive variables, which makes
satisfying physical realizability relatively easy even for complicated systems such as
general relativistic magnetohydrodynamics. The scheme does not make any assumptions
about what the physical realizability conditions are and allows for combining an
arbitrary number of admissibility conditions when selecting the reconstruction polynomial.
We implemented the PPAO scheme in the publicly available code SpECTRE [49]. To
demonstrate the efficacy of the proposed scheme, we perform a number of standard
and difficult test problems in 1d, 2d, and 3d general relativistic magnetohydrodynamics.
The scheme was also used to successfully simulate hybrid quark-hadron stars in [77].
The PPAO scheme is capable of evolving strongly magnetized and rotating neutron
stars, and adapting the order of the FD derivative proves to significantly increase the
robustness for challenging test problems. Adapting the FD derivative order also allows
simulations to remain stable with larger time step sizes than when only high-order FD
derivatives are used. Given the promising results, we share the viewpoint of [23] that
physical realizability of the solution is as important as conservation.

We plan on adopting the flux limiter of [22, 13] to arrive at a scheme that is
positivity-preserving for both the reconstruction and the time integration. Additionally,
we have combined the PPAO scheme with our discontinuous Galerkin-finite difference
hybrid scheme [32] and are working towards using the PPAO scheme to evolve the
spacetime together with the GRMHD equations. We are also adding support for moving
and semi-unstructured meshes, like cubed-sphere domains. The PPAO scheme naturally

lends itself to semi-unstructured meshes since the linear polynomial can be obtained
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from any grid structure with our admissibility criterion remaining easily implemented.
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Appendix A. Use with discontinuous Galerkin-finite difference hybrid
methods

We ultimately will use our PPAO scheme together with our discontinuous Galerkin-FD
(DG-FD) hybrid method [32]. We leave a detailed discussion to future work, but briefly
summarize our approach here. In practice we expect to use PPAO5-2-1 with derivative
orders 4-2-2 (or possibly 6-2-2) to achieve formally fourth (fifth) order convergence
on the FD grid, while the discontinuous Galerkin (DG) method will be at least sixth
order. One question is whether to use the high-order flux GG or the second-order flux
G® on boundaries between DG and FD. Using G significantly simplifies the code but
formally violates conservation. However, if the DG solver is being used, the solution is
smooth anyway, meaning that no discontinuities are nearby, and so strict conservation is
not necessary. We advocate for using G given the simplicity this offers. One way of
guaranteeing the DG-FD interfaces are far from discontinuities is to use a halo of FD

cells around discontinuities.
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Figure 14. Slab jet simulation p at t = 27 showing the results using different FD
derivative orders and always using the PPAQ9-5-2-1 reconstruction method. We see
significant symmetry breaking with FD-4 and FD-8, while all other schemes respect the
symmetry quite well. Importantly, the FD-10-6-2-2 scheme is as robust as the FD-2
scheme while being very accurate.
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Figure 15. Results from evolutions of a TOV star to a final time of bms using different
PPAO reconstruction and FD order schemes. The left panels show the maximum rest
mass density as a function of time divided by the maximum rest mass density at ¢ = 0,
which oscillates about 1 with the amplitude decaying over time. The right panels
show a power spectrum of the left panels with vertical dashed grey lines showing the
analytically known radial oscillation frequencies [72, 73]. We see that the PPAO9-5-2-2
scheme does especially well at resolving higher frequency modes.
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Figure 16. Visualization of the log of the rest mass density on the z = —0.1 plane at

t = 4.7ms. The PPAO5-2-2+FD-4 scheme smears the surface more that the PPAO5-2-
24+ FD-6-2-2 scheme, while the PPAO9-5-2-2+FD-10-6-2-2 scheme produces spurious
artifacts just outside the star. Dropping from ninth to fifth order earlier might remove
the spurious artifacts, but we have not tested this. Ultimately, the adaptive order
scheme is able to produce crisp surfaces while achieving high order in smooth regions.
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Figure 17. Results from evolutions of a rotating star with polar to equatorial radii
ratio of 0.7 to a final time of 4.2ms using different PPAO reconstruction and FD order
schemes. The left panels show the maximum rest mass density as a function of time
divided by the maximum rest mass density at ¢ = 0, which oscillates about 1 with the
amplitude decaying over time. The right panels show a power spectrum of the left

panels.
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