Influence of Rician Noise on Cardiac MR Image Segmentation using Deep Learning
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Abstract. Precision in segmenting cardiac MR images is critical for accurately
diagnosing cardiovascular diseases. Several deep learning models have been
shown useful in segmenting the structure of the heart, such as atrium, ventricle
and myocardium, in cardiac MR images. Given the diverse image quality in
cardiac MRI scans from various clinical settings, it is currently uncertain how
different levels of noise affect the precision of deep learning image segmentation.
This uncertainty could potentially lead to bias in subsequent diagnoses. The goal
of this study is to examine the effects of noise in cardiac MRI segmentation using
deep learning. We employed the Automated Cardiac Diagnosis Challenge MRI
dataset and augmented it with varying degrees of Rician noise during model
training to test the model’s capability in segmenting heart structures. Three
models, including TransUnet, SwinUnet, and Unet, were compared by
calculating the SNR-Dice relations to evaluate the models' noise resilience.
Results show that the TransUnet model, which combines CNN and Transformer
architectures, demonstrated superior noise resilience. Noise augmentation during
model training improved the models' noise resilience for segmentation. The
findings under-score the critical role of deep learning models in adequately
handling diverse noise conditions for the segmentation of heart structures in
cardiac images.
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1. Introduction

Magnetic Resonance Imaging (MRI) segmentation is pivotal in medical image analysis, which
offers tissue localization that facilitates diagnosis and interpretation of the outcome. The accuracy
of segmentation is dependent on an in-depth understanding of tissue structures and the associated
MRI contrast. Compared to manual segmentation, computer-aided image segmentation greatly
improves efficiency when analyzing large image dataset. Traditional unsupervised clustering
algorithms, such as Fuzzy C-Means (FCM), have been used for segmenting brain images with
noise [1, 2]. Despite some FCM-based algorithms incorporating spatial information, clustering
methods struggle to separate the connected tissues that exhibit the same contrast in MRI images.

Recently, deep learning has demonstrated significant potential in medical image segmentation.
A few deep learning models have been developed to automatically identify and segment tissue
structures. While the image quality may be highly variable in cardiac MRI acquired across
different clinical settings, the effect of different noise levels on the accuracy of deep learning
image segmentation remains unclear.

The objective of this study is to investigate the impact of image noise on the segmentation
accuracy of different deep learning models. We utilized the publicly available Automated Cardiac
Diagnosis Challenge (ACDC) MRI dataset [3] and augmented with various Rician noise [4, 5]
to test three segmentation models, including Convolutional Neural Networks (CNN) [6-8],
Transformers [9, 10], and CNN- Transformer hybrid architectures [11, 12].



2. Related work

Segmentation of MRI images under noisy conditions has been explored using both traditional
methods and deep learning techniques. Traditional methods like FCM have been applied for MRI
brain imaging segmentation. Gharieb et al. enhanced the FCM algorithm by incorporating local
data and membership details, leading to the creation of LMREFCM and LDMREFCM algorithms
[1], which significantly improved noise resilience and homogeneity in region clustering of noisy
MRI images. Rahman et al. advanced segmentation techniques by integrating a power mean
function and a fuzzy-membership function into a variational framework, thereby increasing
accuracy in noisy, multi-object scenarios [13].

In recent years, deep learning has realized remarkable advances in medical image analysis.
The seminal U-Net [6] architecture substantially improved segmentation accuracy over earlier
methods. Variants including ResU-Net [8] and U-Net++ [7] were later introduced. Beyond
CNNs, Transformers leverage attention to model long-range dependencies and expand contextual
learning [14]. In particular, Swin Transformers capture hierarchical feature representations
through shifted windows [10, 15]. Hybrid CNN-Transformer networks synergize the
complementary strengths of both architectures [11, 12].

Image quality critically impacts segmentation outcomes. Noise pervades clinical MRI
acquisition [16]. Studies have shown deep learning performance deteriorates with increased noise
levels [17]. Noise augmentation during training provides partial mitigation [5]. These
developments indicate deep learning is a promising direction for addressing challenges posed by
noise in medical imaging segmentation.

3. Methodology

3.1 MRI Dataset

The ACDC MRI dataset contains 3D images of 100 patients acquired from two temporal
frames in a cardiac cycle, end diastole (ED) and end systole (ES) [3]. Images were acquired using
Steady-State Free Precession (SSFP) pulse sequence by 1.5T or 3T clinical scanners, with slice
thickness ranging from 5 to 10 mm (some with a 5 mm gap). The in-plane image resolution
ranged from 1.34 to 1.68 mm?. Three cardiac regions were labeled in the dataset as the ground
truth to delineate right ventricle (RV), myocardium (MY), and left ventricle (LV). This study
employed 2D images for model training, since not all dataset contains complete 3D images. The
dataset was divided into training, validation, and test sets with a ratio of 70-10-20, respectively.

3.2 Rician Noise in MRI Image

MRI utilizes magnetic field gradient to generate spatially encoded frequencies and phase
encoding of nuclear spin precessions within the sample. The yielding data includes the real and
imaginary parts of the free induction decay. Through Fourier transformation, signals from local
nuclear spins are obtained and converted into a magnitude image for display. Hence, it can be
assumed that the image contains noise from both real and imaginary parts [18, 19]:

S = (AR+nR)+l(AI+n1) (1)
In Eq. 1, Ag; represents the real and imaginary parts of the signal without noise, while

ng j represents the noise in those parts. It is assumed that the noise follows a Gaussian
distribution:
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Here, o represents the standard deviation of the Gaussian noise distribution. After converted to
magnitude image, MRI signals with noise follow a Rician distribution:
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Where m represents the pixel signal in the magnitude image, 4 is the image amplitude without
noise, and o is the Gaussian noise distribution standard deviation for both the real and imaginary
parts. I, is the Bessel function of the first kind, defined as:

Ih(2) = ifozn pZcoscos a gy 5)

Since the ACDC dataset provides only image amplitude, it is assumed that the amplitude
image (Image) contributes solely from the real part. Rician noise can be added to the magnitude
image using Eq. 6:

M = ./(Image + ng)? + n;? (©)
Signal-to-Noise Ratios (SNR)[20] was calculated for each image by:
SNR = 0.66 S / Onpise (7)

Here, S represents the averaged signal intensity of an image within the Region of Interest (ROI)
in the LV, RV and MY, and 0,,,;,, represents the standard deviation of noise in the background.

3.3 AI Segmentation Models

Deep learning image segmentation models typically utilize an encoder-decoder (U-
Net) structure to extract spatial features of objects in images. Both encoder and decoder can be
composed of different variations of the backbone. In this study, we compared three deep learning
models:

Unet (U): A CNN with a ResNet backbone for both the encoder and decoder [8].
SwinUnet (S): A pure Transformer architecture for image segmentation [10].
TransUnet (T): A CNN-Transformer hybrid architecture for image segmentation [11].

These models were evaluated in the context of their effectiveness in segmenting heart
structures (RV, MY, LV) within the images by Dice coefficient.

Models were trained with images without noise augmentation (wo), or with noise augmented
in either ~12% (w12), ~30% (w30), or ~48% (w48) of the images. Then, a random choice of
noise level in a range of 0.05 to 0.3 of the noise's standard deviation was added.

3.4 Assessing the Noise Resilience of the Model

To evaluate a model's resilience to noise, SNR-Dice characteristic curves were derived. The
curves were divided into high-precision and low-precision prediction range for comparison. A
parameterized logistic function was used to fit the curves:
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Dice = 1+exp(—k(SNR—-Ssp)) (8)

, where Dy, is the maximum Dice coefficient under high SNR conditions, Ss, represents the
SNR at which Dice decreases to 50% of D,,4y, and k is the curve's logistic growth rate or
steepness. As the simulated noise values do not encompass scenario where SNR reaches zero, a
minimum boundary condition was established for S5o during the fitting process. This minimum
boundary condition was based on the lowest simulated SNR to prevent errors arising from the
absence of low-precision data. The model performance was evaluated by obtaining the SNR
threshold, where the Dice coefficient started to decrease rapidly. SNRg, was defined when the
Dice coefficient dropped to 80% of Dqx:

log(% -1 ©)

SNRgO = 550 - k

4. Result

Distribution of the added Rician noise in this study can be observed by subtracting the original
image from the noisy image (Figure 1).
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Fig. 1. Simulated Rician Noise distribution in MRI magnitude images with standard deviation of
0.3.

Figure 2 illustrates the TransUnet segmentation results trained without noise augmentation
(Two) and with 30% noise augmentation (Tw30), tested under varying noise levels. It is
noticeable that, in the Two models, RV was segmented with significant distortion at SNR 2.38,
where it was completely indistinguishable at SNR 1.94. In contrast, the Tw30 model retained the
ability to predict the RV region at SNR 1.94. The experiment demonstrates that noise
augmentation during model training can improve segmentation results in high-noise images.
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Fig. 2. Segmentation results from TransUnet trained (a) without noise augmentation and
(b) with 30% noise augmentation. The three ROIs' average SNR and Dice index are
displayed above each image.

Figure 3 compares the segmentation results from the three models trained with 30% noise
augmentation for low-SNR images. Among the tested models, TransUnet demonstrated superior
performance in segmenting cardiac structures in noisy images. Unet exhibited significant
shortcomings in segmenting the RV and MY regions, while SwinUnet showed partial
deficiencies in defining the RV.

Ground Truth TransUnet SwinUnet Unet
SNR: 1.66 Dice: 0.758 Dice: 0.702 Dice: 0.692

Fig. 3. TransUnet (Tw30), SwinUnet (Sw30), Unet (Uw30) on high-noise data of 30% noise
augmentation.

The comparison of noise’s influence on models subjected to different training conditions can
be observed in Figure 4. The averaged Dice coefficient from three regions that were segmented
by the models was calculated and plotted against the average SNR of the corresponding ground
truth. Since the image quality in the ACDC dataset varied widely, the SNR distribution was broad
(103495). Dice coefticients of the models that were trained without noise augmentation showed
a rapid decrease as SNR decreased. On the other hand, models that were trained with noise
augmentation demonstrated noise resilience. Nevertheless, training models with a higher
proportion of noisy images resulted in reduced segmentation accuracy on raw image data.
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Fig. 4. A comparison of the segmentation models trained by different proportions of noise
augmentation (a) Unet, (b) TransUnet, and (c) SwinUnet.

In Figure 5, the models' Dice coefficient at high SNR, increased in the order of LV (green
line) > RV (red line) > MY (blue line). At low SNR, among the models trained without noise
augmentation, the MY regions were mostly observable. Compared to other models, TransUnet
demonstrated better noise resistance at low SNR conditions. For the models trained with noise
augmentation, a significant improvement was observed when segmenting the cardiac structures
in the images with higher noise levels.

Table 1 presents the results of SNR-Dice curve fitting (black line in Figure 5) between models.
Among them, the SwinUnet model without noise augmentation achieved the highest D,y 4, of
0.864. On the other hand, the TransUnet model with 48% noise obtained the lowest SNRgq at
1.709, implying its excellent performance in high-noise images. Considering all the performance
metrics, TransUnet demonstrated the best overall performance, validating the advantages of a
model architecture that combined CNN and Transformer for handling noisy images.
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Fig. 5. Results of SNR-Dice curve fitting using Equation (10) for Unet, TransUnet, and
SwinUnet, in respect to noise augmentation strategies.

Table 1. Comparison of Average SNR-Dice Curve Fitting Metrics for Model Noise Robustness

Model Dimax Sso k SNRg,
Uwo 0.839 3.941 1.569 4.825
Uwl2 0.809 1.537 4.049 1.879
Uw30 0.797 1.500 4.199 1.831
Uw48 0.798 1.500 4412 1.815
Two 0.861 2.283 3.586 2.669

Twi2 0.826 1.500 4.918 1.782



Tw30 0.811 1.500 5.941 1.734

Tw48 0.805 1.500 6.639 1.709

Swo 0.864 3.484 1.981 4.184

Swi2 0.809 1.500 3.224 1.931

Sw30 0.799 1.500 4.156 1.834

Sw48 0.800 1.500 4.200 1.831
5. Discussion

Segmentation of MRI images relies significantly on the tissue contrast to distinguish various
anatomical regions. Factors, such as the proton density, T1 and T2 relaxation, presence of
diffusion or flow, and imaging acquisition parameters, may influence MR image contrast. MRI
signals exhibit rapid decay as image resolution increases. When acquiring cardiac images, it is
essential to maintain sufficient temporal resolution to capture cardiac phase cycles, making it
challenging to increase SNR by taking more averaging. Low resolution images may not reveal
subtle pathologies, but high image resolution can lead to low tissue contrast due to decreased
SNR, affecting image segmentation accuracy.

In this study, Rician noise was introduced to simulate low-SNR MRI images. The
performance of three deep learning segmentation models (Unet, TransUnet, and SwinUnet) was
evaluated in the presence of noise. The ROI analysis revealed similar signal intensities in the LV
and RV, but the LV exhibited a higher Dice coefficient (Fig. 5). This phenomenon may be due
to a better-defined MY area surrounding LV, which provided better contrast and made it easier
for pattern recognition. In low-SNR conditions, the model demonstrated better noise resilience
in segmenting MY, potentially due to the learning from the training data with MY feature in
lower SNR. Consequently, even when the signal in the MY region was exceedingly noisy, the
model could still use the remaining signal from the adjacent areas (e.g., LV) to make predictions
for that region.

Among the three tested models, the exceptional performance of TransUnet model may be
attributed to the integration of both Transformer and CNN architectures. Compared to the pure
CNN model Unet, TransUnet introduces a Transformer encoder, which expands the receptive
field and enhances the utilization of global semantic information. This architecture allows
TransUnet to mitigate high-frequency noise to some extent. In contrast, a pure CNN encoder
specializes in local features, making it more susceptible to high-frequency noise and potentially
capturing erroneous features. They could lead to receiving incorrect features in the decoder.
Compared to SwinUnet, TransUnet, with its combination of Transformer and CNN encoder,
reduces the interference from high-frequency noise, which allows accurate extraction of the
structural boundary. By using a CNN decoder, the models can recover local details more
effectively.

With respect to noise augmentation strategies, increasing the proportion of noisy training data
improved the model's performance on segmenting low-SNR images. However, it also reduced
the segmentation accuracy on original clean data. These results might be due to the inclusion of
a large proportion of noisy data during the model training, resulting in insufficient fit to the data
without noise augmentation. Additionally, the incomplete MRI signal in the ACDC dataset,
lacking real and imaginary parts, may limit our simulation's accuracy in replicating real-world
noise distributions.
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6. Conclusion

In this study, we investigated the impact of MRI Rician noise on the performance of medical
image segmentation using deep learning. The deep learning models that were trained without
noise augmentation showed a significant decrease in performance in segmenting a low-SNR
image. In contrast, models trained with noise augmentation exhibited superior noise resilience.
These results indicate that noise augmentation strategies were effective in improving a model's
resistance to noise. We introduced the SNR-Dice curve as an indicator to assess model
performance and noise resilience. Through curve fitting analysis, we could quantitatively
evaluate the performance of different models under various noise levels. The approach offered a
useful technique for analyzing model performance. The TransUnet model performed
exceptionally well in high-noise environments, possibly due to its integration of the advantages
of CNN and Transformer architectures, allowing it to extract local features and model long-range
dependencies simultaneously. In summary, our study emphasizes the importance of noise
handling in medical image segmentation tasks and provides an effective noise augmentation
strategy to enhance the noise resilience of deep learning models.
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