
 
   

 

 
   

 

Influence of Rician Noise on Cardiac MR Image Segmentation using Deep Learning 
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Abstract. Precision in segmenting cardiac MR images is critical for accurately 
diagnosing cardiovascular diseases. Several deep learning models have been 
shown useful in segmenting the structure of the heart, such as atrium, ventricle 
and myocardium, in cardiac MR images. Given the diverse image quality in 
cardiac MRI scans from various clinical settings, it is currently uncertain how 
different levels of noise affect the precision of deep learning image segmentation. 
This uncertainty could potentially lead to bias in subsequent diagnoses. The goal 
of this study is to examine the effects of noise in cardiac MRI segmentation using 
deep learning. We employed the Automated Cardiac Diagnosis Challenge MRI 
dataset and augmented it with varying degrees of Rician noise during model 
training to test the model’s capability in segmenting heart structures. Three 
models, including TransUnet, SwinUnet, and Unet, were compared by 
calculating the SNR-Dice relations to evaluate the models' noise resilience. 
Results show that the TransUnet model, which combines CNN and Transformer 
architectures, demonstrated superior noise resilience. Noise augmentation during 
model training improved the models' noise resilience for segmentation. The 
findings under-score the critical role of deep learning models in adequately 
handling diverse noise conditions for the segmentation of heart structures in 
cardiac images. 
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1. Introduction 

Magnetic Resonance Imaging (MRI) segmentation is pivotal in medical image analysis, which 
offers tissue localization that facilitates diagnosis and interpretation of the outcome. The accuracy 
of segmentation is dependent on an in-depth understanding of tissue structures and the associated 
MRI contrast. Compared to manual segmentation, computer-aided image segmentation greatly 
improves efficiency when analyzing large image dataset. Traditional unsupervised clustering 
algorithms, such as Fuzzy C-Means (FCM), have been used for segmenting brain images with 
noise [1, 2]. Despite some FCM-based algorithms incorporating spatial information, clustering 
methods struggle to separate the connected tissues that exhibit the same contrast in MRI images. 

Recently, deep learning has demonstrated significant potential in medical image segmentation. 
A few deep learning models have been developed to automatically identify and segment tissue 
structures. While the image quality may be highly variable in cardiac MRI acquired across 
different clinical settings, the effect of different noise levels on the accuracy of deep learning 
image segmentation remains unclear. 

  The objective of this study is to investigate the impact of image noise on the segmentation 
accuracy of different deep learning models. We utilized the publicly available Automated Cardiac 
Diagnosis Challenge (ACDC) MRI dataset [3] and augmented with various Rician noise [4, 5] 
to test three segmentation models, including Convolutional Neural Networks (CNN) [6–8], 
Transformers [9, 10], and CNN- Transformer hybrid architectures [11, 12]. 
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2. Related work 

 Segmentation of MRI images under noisy conditions has been explored using both traditional 
methods and deep learning techniques. Traditional methods like FCM have been applied for MRI 
brain imaging segmentation. Gharieb et al. enhanced the FCM algorithm by incorporating local 
data and membership details, leading to the creation of LMREFCM and LDMREFCM algorithms 
[1], which significantly improved noise resilience and homogeneity in region clustering of noisy 
MRI images. Rahman et al. advanced segmentation techniques by integrating a power mean 
function and a fuzzy-membership function into a variational framework, thereby increasing 
accuracy in noisy, multi-object scenarios [13]. 

In recent years, deep learning has realized remarkable advances in medical image analysis. 
The seminal U-Net [6] architecture substantially improved segmentation accuracy over earlier 
methods. Variants including ResU-Net [8] and U-Net++ [7] were later introduced. Beyond 
CNNs, Transformers leverage attention to model long-range dependencies and expand contextual 
learning [14]. In particular, Swin Transformers capture hierarchical feature representations 
through shifted windows [10, 15]. Hybrid CNN-Transformer networks synergize the 
complementary strengths of both architectures [11, 12]. 

Image quality critically impacts segmentation outcomes. Noise pervades clinical MRI 
acquisition [16]. Studies have shown deep learning performance deteriorates with increased noise 
levels [17]. Noise augmentation during training provides partial mitigation [5]. These 
developments indicate deep learning is a promising direction for addressing challenges posed by 
noise in medical imaging segmentation. 

3. Methodology 

3.1 MRI Dataset 

The ACDC MRI dataset contains 3D images of 100 patients acquired from two temporal 
frames in a cardiac cycle, end diastole (ED) and end systole (ES) [3]. Images were acquired using 
Steady-State Free Precession (SSFP) pulse sequence by 1.5T or 3T clinical scanners, with slice 
thickness ranging from 5 to 10 mm (some with a 5 mm gap). The in-plane image resolution 
ranged from 1.34 to 1.68 mm². Three cardiac regions were labeled in the dataset as the ground 
truth to delineate right ventricle (RV), myocardium (MY), and left ventricle (LV). This study 
employed 2D images for model training, since not all dataset contains complete 3D images. The 
dataset was divided into training, validation, and test sets with a ratio of 70-10-20, respectively. 

3.2 Rician Noise in MRI Image 

MRI utilizes magnetic field gradient to generate spatially encoded frequencies and phase 
encoding of nuclear spin precessions within the sample. The yielding data includes the real and 
imaginary parts of the free induction decay. Through Fourier transformation, signals from local 
nuclear spins are obtained and converted into a magnitude image for display. Hence, it can be 
assumed that the image contains noise from both real and imaginary parts [18, 19]: 

 𝑠𝑠 = (𝐴𝐴𝑅𝑅 + 𝑛𝑛𝑅𝑅) + 𝑖𝑖(𝐴𝐴𝐼𝐼 + 𝑛𝑛𝐼𝐼) (1) 

 In Eq. 1, 𝐴𝐴𝑅𝑅,𝐼𝐼 represents the real and imaginary parts of the signal without noise, while 
𝑛𝑛𝑅𝑅, 𝐼𝐼 represents the noise in those parts. It is assumed that the noise follows a Gaussian 
distribution: 
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Here, 𝜎𝜎 represents the standard deviation of the Gaussian noise distribution. After converted to 
magnitude image, MRI signals with noise follow a Rician distribution: 

 𝑚𝑚 = �(𝐴𝐴𝑅𝑅 + 𝑛𝑛𝑅𝑅)2 + (𝐴𝐴𝐼𝐼 + 𝑛𝑛𝐼𝐼)2 =
�(𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 + 𝑛𝑛𝑅𝑅)2 + (𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑 + 𝑛𝑛𝐼𝐼)2  

(3) 

The probability density function (PDF) for the Rician distribution is given by: 

 𝑃𝑃(𝑚𝑚) =
𝑚𝑚
𝜎𝜎2 𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝐴𝐴2 + 𝑚𝑚2

2𝜎𝜎2 �  𝐼𝐼0(
𝐴𝐴𝐴𝐴
𝜎𝜎2 ) (4) 

Where m represents the pixel signal in the magnitude image, 𝐴𝐴 is the image amplitude without 
noise, and 𝜎𝜎 is the Gaussian noise distribution standard deviation for both the real and imaginary 
parts. 𝐼𝐼0 is the Bessel function of the first kind, defined as: 

 𝐼𝐼0(𝑧𝑧) = 1
2𝜋𝜋 ∫

2𝜋𝜋
0 𝑒𝑒𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑑𝑑𝑑𝑑  (5) 

Since the ACDC dataset provides only image amplitude, it is assumed that the amplitude 
image (Image) contributes solely from the real part. Rician noise can be added to the magnitude 
image using Eq. 6: 

 𝑀𝑀 = �(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑛𝑛𝑅𝑅)2 + 𝑛𝑛𝐼𝐼2 (6) 

Signal-to-Noise Ratios (SNR)[20] was calculated for each image by: 

 𝑆𝑆𝑆𝑆𝑆𝑆 = 0.66 𝑆𝑆 / 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  (7) 

Here, S represents the averaged signal intensity of an image within the Region of Interest (ROI) 
in the LV, RV and MY, and 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 represents the standard deviation of noise in the background. 

3.3 AI Segmentation Models 

 Deep learning image segmentation models typically utilize an encoder-decoder (U-
Net) structure to extract spatial features of objects in images. Both encoder and decoder can be 
composed of different variations of the backbone. In this study, we compared three deep learning 
models: 

Unet (U): A CNN with a ResNet backbone for both the encoder and decoder [8]. 

SwinUnet (S): A pure Transformer architecture for image segmentation [10]. 

TransUnet (T): A CNN-Transformer hybrid architecture for image segmentation [11]. 

These models were evaluated in the context of their effectiveness in segmenting heart 
structures (RV, MY, LV) within the images by Dice coefficient. 

Models were trained with images without noise augmentation (wo), or with noise augmented 
in either ~12% (w12), ~30% (w30), or ~48% (w48) of the images. Then, a random choice of 
noise level in a range of 0.05 to 0.3 of the noise's standard deviation was added.  

3.4 Assessing the Noise Resilience of the Model 

To evaluate a model's resilience to noise, SNR-Dice characteristic curves were derived. The 
curves were divided into high-precision and low-precision prediction range for comparison. A 
parameterized logistic function was used to fit the curves: 
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 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

1+𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑘𝑘(𝑆𝑆𝑆𝑆𝑆𝑆−𝑆𝑆50))
  (8) 

, where 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum Dice coefficient under high SNR conditions, 𝑆𝑆50 represents the 
SNR at which Dice decreases to 50% of 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚, and 𝑘𝑘 is the curve's logistic growth rate or 
steepness. As the simulated noise values do not encompass scenario where SNR reaches zero, a 
minimum boundary condition was established for 𝑆𝑆50 during the fitting process. This minimum 
boundary condition was based on the lowest simulated SNR to prevent errors arising from the 
absence of low-precision data. The model performance was evaluated by obtaining the SNR 
threshold, where the Dice coefficient started to decrease rapidly. 𝑆𝑆𝑆𝑆𝑆𝑆80 was defined when the 
Dice coefficient dropped to 80% of 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚: 

 
𝑆𝑆𝑆𝑆𝑆𝑆80 = 𝑆𝑆50 −

𝑙𝑙𝑙𝑙𝑙𝑙 ( 1
0.8 − 1)
𝑘𝑘  

(9) 

4. Result 

Distribution of the added Rician noise in this study can be observed by subtracting the original 
image from the noisy image (Figure 1).  

 
Fig. 1. Simulated Rician Noise distribution in MRI magnitude images with standard deviation of 
0.3. 

Figure 2 illustrates the TransUnet segmentation results trained without noise augmentation 
(Two) and with 30% noise augmentation (Tw30), tested under varying noise levels. It is 
noticeable that, in the Two models, RV was segmented with significant distortion at SNR 2.38, 
where it was completely indistinguishable at SNR 1.94. In contrast, the Tw30 model retained the 
ability to predict the RV region at SNR 1.94. The experiment demonstrates that noise 
augmentation during model training can improve segmentation results in high-noise images. 
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Fig. 2. Segmentation results from TransUnet trained (a) without noise augmentation and 
(b) with 30% noise augmentation. The three ROIs' average SNR and Dice index are 
displayed above each image. 

Figure 3 compares the segmentation results from the three models trained with 30% noise 
augmentation for low-SNR images. Among the tested models, TransUnet demonstrated superior 
performance in segmenting cardiac structures in noisy images. Unet exhibited significant 
shortcomings in segmenting the RV and MY regions, while SwinUnet showed partial 
deficiencies in defining the RV. 

 
Fig. 3. TransUnet (Tw30), SwinUnet (Sw30), Unet (Uw30) on high-noise data of 30% noise 
augmentation. 

The comparison of noise’s influence on models subjected to different training conditions can 
be observed in Figure 4. The averaged Dice coefficient from three regions that were segmented 
by the models was calculated and plotted against the average SNR of the corresponding ground 
truth. Since the image quality in the ACDC dataset varied widely, the SNR distribution was broad 
(103±95). Dice coefficients of the models that were trained without noise augmentation showed 
a rapid decrease as SNR decreased. On the other hand, models that were trained with noise 
augmentation demonstrated noise resilience. Nevertheless, training models with a higher 
proportion of noisy images resulted in reduced segmentation accuracy on raw image data. 

   



6 

 
   

 

(a) (b) (c) 

Fig. 4. A comparison of the segmentation models trained by different proportions of noise 
augmentation (a) Unet, (b) TransUnet, and (c) SwinUnet. 

In Figure 5, the models' Dice coefficient at high SNR, increased in the order of LV (green 
line) > RV (red line) > MY (blue line). At low SNR, among the models trained without noise 
augmentation, the MY regions were mostly observable. Compared to other models, TransUnet 
demonstrated better noise resistance at low SNR conditions. For the models trained with noise 
augmentation, a significant improvement was observed when segmenting the cardiac structures 
in the images with higher noise levels.  

Table 1 presents the results of SNR-Dice curve fitting (black line in Figure 5) between models. 
Among them, the SwinUnet model without noise augmentation achieved the highest 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 of 
0.864. On the other hand, the TransUnet model with 48% noise obtained the lowest 𝑆𝑆𝑆𝑆𝑆𝑆80 at 
1.709, implying its excellent performance in high-noise images. Considering all the performance 
metrics, TransUnet demonstrated the best overall performance, validating the advantages of a 
model architecture that combined CNN and Transformer for handling noisy images.  

 
Fig. 5. Results of SNR-Dice curve fitting using Equation (10) for Unet, TransUnet, and 
SwinUnet, in respect to noise augmentation strategies. 

Table 1. Comparison of Average SNR-Dice Curve Fitting Metrics for Model Noise Robustness  

Model 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆50 𝑘𝑘 𝑆𝑆𝑆𝑆𝑆𝑆80 

Uwo 0.839 3.941 1.569 4.825 

Uw12 0.809 1.537 4.049 1.879 

Uw30 0.797 1.500 4.199 1.831 

Uw48 0.798 1.500 4.412 1.815 

Two 0.861 2.283 3.586 2.669 

Tw12 0.826 1.500 4.918 1.782 
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Tw30 0.811 1.500 5.941 1.734 

Tw48 0.805 1.500 6.639 1.709 

Swo 0.864 3.484 1.981 4.184 

Sw12 0.809 1.500 3.224 1.931 

Sw30 0.799 1.500 4.156 1.834 

Sw48 0.800 1.500 4.200 1.831 

5. Discussion 

Segmentation of MRI images relies significantly on the tissue contrast to distinguish various 
anatomical regions. Factors, such as the proton density, T1 and T2 relaxation, presence of 
diffusion or flow, and imaging acquisition parameters, may influence MR image contrast. MRI 
signals exhibit rapid decay as image resolution increases. When acquiring cardiac images, it is 
essential to maintain sufficient temporal resolution to capture cardiac phase cycles, making it 
challenging to increase SNR by taking more averaging. Low resolution images may not reveal 
subtle pathologies, but high image resolution can lead to low tissue contrast due to decreased 
SNR, affecting image segmentation accuracy. 

In this study, Rician noise was introduced to simulate low-SNR MRI images. The 
performance of three deep learning segmentation models (Unet, TransUnet, and SwinUnet) was 
evaluated in the presence of noise. The ROI analysis revealed similar signal intensities in the LV 
and RV, but the LV exhibited a higher Dice coefficient (Fig. 5). This phenomenon may be due 
to a better-defined MY area surrounding LV, which provided better contrast and made it easier 
for pattern recognition. In low-SNR conditions, the model demonstrated better noise resilience 
in segmenting MY, potentially due to the learning from the training data with MY feature in 
lower SNR. Consequently, even when the signal in the MY region was exceedingly noisy, the 
model could still use the remaining signal from the adjacent areas (e.g., LV) to make predictions 
for that region. 

Among the three tested models, the exceptional performance of TransUnet model may be 
attributed to the integration of both Transformer and CNN architectures. Compared to the pure 
CNN model Unet, TransUnet introduces a Transformer encoder, which expands the receptive 
field and enhances the utilization of global semantic information. This architecture allows 
TransUnet to mitigate high-frequency noise to some extent. In contrast, a pure CNN encoder 
specializes in local features, making it more susceptible to high-frequency noise and potentially 
capturing erroneous features. They could lead to receiving incorrect features in the decoder. 
Compared to SwinUnet, TransUnet, with its combination of Transformer and CNN encoder, 
reduces the interference from high-frequency noise, which allows accurate extraction of the 
structural boundary. By using a CNN decoder, the models can recover local details more 
effectively.  

With respect to noise augmentation strategies, increasing the proportion of noisy training data 
improved the model's performance on segmenting low-SNR images. However, it also reduced 
the segmentation accuracy on original clean data. These results might be due to the inclusion of 
a large proportion of noisy data during the model training, resulting in insufficient fit to the data 
without noise augmentation. Additionally, the incomplete MRI signal in the ACDC dataset, 
lacking real and imaginary parts, may limit our simulation's accuracy in replicating real-world 
noise distributions. 
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6. Conclusion 

In this study, we investigated the impact of MRI Rician noise on the performance of medical 
image segmentation using deep learning. The deep learning models that were trained without 
noise augmentation showed a significant decrease in performance in segmenting a low-SNR 
image. In contrast, models trained with noise augmentation exhibited superior noise resilience. 
These results indicate that noise augmentation strategies were effective in improving a model's 
resistance to noise. We introduced the SNR-Dice curve as an indicator to assess model 
performance and noise resilience. Through curve fitting analysis, we could quantitatively 
evaluate the performance of different models under various noise levels. The approach offered a 
useful technique for analyzing model performance. The TransUnet model performed 
exceptionally well in high-noise environments, possibly due to its integration of the advantages 
of CNN and Transformer architectures, allowing it to extract local features and model long-range 
dependencies simultaneously. In summary, our study emphasizes the importance of noise 
handling in medical image segmentation tasks and provides an effective noise augmentation 
strategy to enhance the noise resilience of deep learning models.  
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