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Fast Quantum State Discrimination with Nonlinear Positive
Trace-Preserving Channels

Michael R. Geller

Models of nonlinear quantum computation based on deterministic positive
trace-preserving (PTP) channels and evolution equations are investigated. The
models are defined in any finite Hilbert space, but the main results are for
dimension N=2. For every normalizable linear or nonlinear positive map 𝝓 on
bounded linear operators X, there is an associated normalized PTP channel
𝝓(X)∕tr[𝝓(X)]. Normalized PTP channels include unitary mean field theories,
such as the Gross–Pitaevskii equation for interacting bosons, as well as
models of linear and nonlinear dissipation. They classify into four types,
yielding three distinct forms of nonlinearity whose computational power are
explored. In the qubit case, these channels support Bloch ball torsion and
other distortions studied previously, where it has been shown that such
nonlinearity can be used to increase the separation between a pair of close
qubit states, suggesting an exponential speedup for state discrimination.
Building on this idea, the authors argue that this operation can be made
robust to noise by using dissipation to induce a bifurcation to a novel phase
where a pair of attracting fixed points create an intrinsically fault-tolerant
nonlinear state discriminator.

1. Introduction

Quantum nonlinearity, beyond the stochastic nonlinearity pro-
vided by projective measurement, might be a powerful computa-
tional resource.[1–17] However, there is no experimental evidence
for physics beyond standard linear quantum mechanics.[18–21]

It is well known to be challenging to even formulate a consis-
tent, fundamentally nonlinear quantum theory in accordance
with general principles.[22–44] In this paper, we consider the ap-
plication of effective quantum nonlinearity to information pro-
cessing, while at the same time accepting that quantum physics
is fundamentally linear. Effective means that it arises in some
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approximate (e.g., low-energy) quantum de-
scription, is a consequence of constraints
on a linear system, or emerges in the limit
of a large number of particles.[45–51] An early
example from particle physics is the low-
energy reduction of electroweak theory to
Fermi’s simpler 1933 model ℒ = 𝜓 i∕𝜕𝜓 −
g (𝜓𝛾a𝜓)

2, containing a four-fermion inter-
action. Effective nonlinearity is also com-
mon in condensed matter (Breuer and
Petruccione[51] give an excellent introduc-
tion). It is a natural byproduct of dimen-
sional reduction, where the dynamics of
a complex quantum many-body system is
described by a model with fewer degrees
of freedom. A well-known case is self-
consistent mean field theory: For n quan-
tum particles moving in D dimensions,
such an effective model reduces a problem
with nD degrees of freedom to one involv-
ing only D, at the expense of nonlinear-
ity and errors (usually). Examples include
mean field models for superfluids, super-
conductors, and laser fields. Beyond mean

field theory, various forms of nonlinearity have been proposed
to describe friction and dissipation in quantum mechanics,[49–58]

and for open systems more generally.[49–63]

It is not known whether effective nonlinearity can actually be
used to enhance quantum information processing. Perhaps, any
nonlinear advantage is an artifact of approximations and could
never be realized.[12–14] Childs and Young[14] used the speedup
predicted for optimal qubit state discrimination with Gross–
Pitaevskii nonlinearity to derive a complexity theoretic bound
on the long-time accuracy of the Gross–Pitaevskii equation itself
(though weaker than a known bound.[14]) Can a different nonlin-
earity be used, or can the Gross–Pitaevskii nonlinearity be used
in another way? Is speedup the only possible advantage; what
about noise resilience? The purpose of this paper is to explore
these questions by providing a framework for studying known
nonlinear channels from an information processing perspective,
and for proposing new ones that might be experimentally realiz-
able in the near future. The framework should be applicable to
strongly correlated quantum materials, such as non-Hermitian
exciton–polariton condensates[64,65] that are open and operated
under extreme conditions. We aim to impose as little structure as
possible on the allowed evolution beyond preserving the Hermi-
tian symmetry, positive semi-definiteness, and trace of the den-
sity matrix X . Stochastic nonlinearity,[43,44,54] including projec-
tive measurement with postselection[66–71] and weak continuous
measurement,[72–75] is known to be a useful resource, but is not
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considered here.[76] Therefore, we restrict ourselves to determin-
istic nonlinear positive trace-preserving (PTP) channels.[77] We
do not attempt to derive an effective nonlinear theory from an un-
derlying physical model, but instead try to identify what types of
nonlinearity are desirable, andwhy.However, wewill only scratch
the surface of this formidable problem.
Interestingly, according to work by Abrams and Lloyd,[2]

Aaronson,[4] and Childs and Young,[14] nonlinearity is not re-
quired in large quantities: Even one “nonlinear qubit” would pro-
vide a computational benefit when coupled to a linear quantum
computer. This is because nonlinearity can be used to increase
the trace distance between a pair of qubit states,[1–4,14] implying
an exponential speedup for unstructured search and hence for
any problem in the class NP. We mainly focus on this N=2 case.
While these results are intriguing, it should be emphasized that
they apply in an idealized setting, where model errors are ne-
glected.
Building on a growing body of similarly motivated work,[49–63]

we study a family of normalized PTP channels of the form
𝜙(X )∕tr[𝜙(X )], where 𝜙(X ) is a positive linear or nonlinear map
on bounded linear operatorsX satisfying tr[𝜙(X )]≠0. Normalized
PTP channels fall into four classes, yielding three distinct forms
of nonlinearity. As in the classical setting, rich dynamical struc-
tures result from the interplay of nonlinearity and dissipation,
and we will see that PTP channels allow for greater control over
engineered linear dissipation than completely positive channels
do. Our main result is the identification of a nonlinear channel
where the Bloch ball separates into two basins of attraction, which
can be used to implement fast intrinsically fault-tolerant state dis-
crimination. Although we do not address the model error issue
directly, we hope that the predicted phase will survive in realistic
models and be observable experimentally. Section 1 mainly cov-
ers the definition of a PTP channel and can be skipped by many
readers. Normalized PTP channels are classified in Section 2, and
fault-tolerant nonlinear state discrimination is explained in Sec-
tion 3. The main results are summarized in Section 4.

2. PTP Channels

2.1. Notation

Let  = (span{|ei⟩}Ni=1, ⟨x|y⟩) be the system Hilbert space with
inner product ⟨x|y⟩ = ∑N

i=1 x
∗
i yi, complete orthonormal basis

{|ei⟩}Ni=1 (⟨ei|ej⟩=𝛿ij,
∑N

i=1 eii=IN, eij := |ei⟩⟨ej|), and norm ‖|x⟩‖ =√⟨x|x⟩. Here, x∗ denotes complex conjugation and IN is the
N×N identity. Let X :  →  be a linear operator on  (iso-
morphic to a matrix X ∈ ℂN×N) and let X† be its adjoint. Also

let |X| = √
X†X . The set of these bounded linear operators form

a second complex vector space B(,ℂ); this space is our main
focus. Let Her(,ℂ) = {X ∈ B(,ℂ) : X = X†} be the subset of
self-adjoint observables, and Her≥0(,ℂ) = {X ∈ Her() : X ⪰
0} be the positive semidefinite (PSD) subset. Quantum states
live in the subset of Her≥0(,ℂ) with unit trace: Her≥01 (,ℂ) =
{X ∈ Her≥0(,ℂ) : tr(X ) = 1}. In the qubit case, the elements
X = (I2 + r ⋅ 𝝈)∕2 of Her≥01 (,ℂ) are mapped, using the basis
of Pauli matrices (𝜎a)a=1,2,3, to real vectors r = (x, y, z) ∈ ℝ3 with|r| ≤ 1, the closed Bloch ball 𝔹1[0].

2.2. Nonlinear Positive Maps

Definition 1 (Linear map). Let L : B(,ℂ) → B(,ℂ) be a map on
bounded linear operators satisfying i) L(X + Y) = L(X ) + L(Y), and
ii) L(𝛼X ) = 𝛼L(X ), for every X, Y ∈ B(,ℂ) and 𝛼 ∈ ℂ. Then, L is
a linear map on B(,ℂ).

Lemma 1. Let L : B(,ℂ) → B(,ℂ) be a linear map on finite-
dimensional bounded linear operators. Then, L has a representation

X  → L(X ) =
m∑
𝛼=1

A𝛼XB𝛼 , A𝛼 , B𝛼 ∈ ℂN×N, m≤N2, N = dim()

(1)

Proof. Every linear map is specified by its action on a complete
matrix basis eab = |ea⟩⟨eb| ∈ ℂN×N, (eab)a′b′ = 𝛿aa′𝛿bb′ :

X  → L(X ) = L

(
N∑

a,b=1
Xab eab

)
=

N∑
a,b=1

Xab L(eab) (2)

The set {L(eab)}
N
a,b=1 defines the map. Let 𝛼 = (a, b) be a compos-

ite index with a, b ∈ {1,… , N}, and rewrite (1) with m = N2 as
L(X ) =

∑N
a,b=1 AabXBab with Aab, Bab ∈ ℂN×N . Aab and Bab can al-

ways be chosen to implement the map (2): the choice Aab = eab
leads to ⟨ea|L(X )|ed⟩ = L(X )ad =

∑
b,c Xbc (Bab)cd. The same matrix

element of (2) is
∑

b,c Xbc L(ebc)ad, so the choice (Bab)cd = L(ebc)ad
reduces this to (2) as required.

Definition 2 (Hermitian map). Let T : B(,ℂ) → B(,ℂ) be a
map on bounded linear operators satisfying T(X )† = T(X†) for every
X ∈ B(,ℂ). Then, T is aHermitian map on B(,ℂ).

Hermitianmaps have the property T(Her(,ℂ)) ⊆ Her(,ℂ),
and they can be nonlinear.

Definition 3 (Positive map). Let 𝜙 : B(,ℂ) → B(,ℂ) be a Her-
mitian map on bounded linear operators satisfying 𝜙(X ⪰ 0) ⪰ 0 for
all X ∈ B(,ℂ), where ⋅ ⪰ 0means it’s an element of the PSD subset
Her≥0(,ℂ). Then 𝜙 is a positive map on B(,ℂ).

We reserve the symbol 𝜙 for positive maps.

Proposition 1Linear positive map[59,78]. Let 𝜙 : B(,ℂ) →
B(,ℂ) be a positive linear map on finite-dimensional bounded
linear operators. Then, 𝜙 has a representation[79]

X  → 𝜙(X ) =
m∑
𝛼=1

𝜆𝛼A𝛼XA
†
𝛼
, A𝛼 ∈ ℂN×N, tr(A†

𝛼
A𝛽 ) = 𝛿𝛼𝛽 ,

𝜆𝛼 ∈ ℝ, m≤N2 (3)

Proof. Define a Choi operator C :=
∑N

i,j=1 𝜙(eij)⊗ eij in an
expanded Hilbert space A⊗B consisting of two copies of our
system , with dim(A,B)=N. The matrix elements of C in the
product basis {|ea⟩⊗ |eb⟩}Na,b=1 are (⟨ea|⊗ ⟨eb|)C (|ea′⟩⊗ |eb′⟩) =⟨ea|𝜙(ebb′ )|ea′⟩ = 𝜙(ebb′ )aa′ . Using the Hermitian prop-
erty 𝜙(X )† = 𝜙(X†) we see that C ∈ ℂN2×N2 is Hermitian:
(⟨ea|⊗ ⟨eb|)C† (|ea′⟩⊗ |eb′⟩) = (⟨ea′ |⊗ ⟨eb′ |C |ea⟩⊗ |eb⟩)∗ =
𝜙(eb′b)

∗
a′a = 𝜙(ebb′ )aa′ = (⟨ea|⊗ ⟨eb|)C (|ea′⟩⊗ |eb′⟩). It therefore

has a spectral decomposition C =
∑N2

𝛼=1 𝜆𝛼 |V𝛼⟩⟨V𝛼|, 𝜆𝛼 ∈ ℝ,
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where the eigenvectors {|V𝛼⟩}N2

𝛼=1 form a complete orthonormal
basis inA⊗B. Any |𝜓⟩ ∈ A⊗B can be obtained by the ap-
plication of an operatorN

1
2 A⊗ IN to |Ψ⟩ := N− 1

2
∑N

i=1 |ei⟩⊗ |ei⟩,
with Aij = ⟨ei|A|ej⟩ = (⟨ei|⊗ ⟨ej|) |𝜓⟩. Then, |V𝛼⟩⟨V𝛼| =
N (A𝛼 ⊗ I)|Ψ⟩⟨Ψ|(A†

𝛼
⊗ I) where ⟨ei|A𝛼|ej⟩ = (⟨ei|⊗ ⟨ej|) |V𝛼⟩.

Also note that |Ψ⟩⟨Ψ| = N−1 ∑N
i,j=1 eij ⊗ eij, so

C = N
N2∑
𝛼=1

𝜆𝛼 (A𝛼 ⊗ I)|Ψ⟩⟨Ψ|(A†
𝛼
⊗ I) =

N∑
i,j=1

(
N2∑
𝛼=1

𝜆𝛼A𝛼eijA
†
𝛼

)
⊗ eij

(4)

Then,𝜙(eij) =
∑N2

𝛼=1 𝜆𝛼A𝛼eijA
†
𝛼
, and by linearity and completeness,

𝜙(X ) =
∑N2

𝛼=1 𝜆𝛼A𝛼XA
†
𝛼
, as required. Furthermore, because the|V𝛼⟩ are orthonormal, ⟨V𝛼|V𝛽⟩ = tr(A†

𝛼
A𝛽 ) = 𝛿𝛼𝛽 . □

Having established a general representation for positive linear
maps, we give some nonlinear examples. The first is X  → 𝜙(X ) =
(A† + CXB†)(A + BXC†) = [𝜙(X†)]†, A, B, C ∈ ℂN×N . On any PSD
input, 𝜙(X ) = |A + BXC†|2 ⪰ 0, so 𝜙 is positive. Two examples
of discrete nonlinear positive maps are X  → 𝜙±(X ) = (tr(X )IN ±
X )2 = [𝜙±(X

†)]†, which reduce to |tr(X )IN ± X|2 ⪰ 0 on PSD in-
puts. Another example is X  → 𝜙(X ) = |det(X )| ⋅ IN = [𝜙(X†)]†,
which (after normalization) maps every input to the infinite-
temperature thermal state. Permanents and determinants have
also been used to construct nonlinear completely positive trace-
preserving (CPTP) channels.[80]

Definition 4PTP channel[77]. Let Λ : Her≥01 (,ℂ) → Her≥01 (,ℂ)
be a positive map satisfying tr(Λ(X)) = 1 for all X ∈ Her≥01 (,ℂ).
Then Λ is a positive trace-preserving (PTP) channel.

In this paper, Λ always refers to a PTP channel. The PTP
channels defined here are endomorphisms on the state space
Her≥01 (,ℂ), and are only required to act properly on physical
inputs. They may be composed of maps defined on operators
outside of Her≥01 (,ℂ) as well. In this case, the behavior of the
extended PTP channels on inputs outside of Her≥01 (,ℂ) is not
constrained by Definition 4.[81]

3. PTP Models

In this paper we investigate models of nonlinear quantum
computation based on a category of PTP channels that take
the form of a nonlinear positive channel rescaled to conserve
trace.[55,56,59,60] Although normalized PTP channels do not pro-
vide an exhaustive classification of nonlinear channels, they are
sufficient to illustrate some of the different types of effective non-
linearity that are available or might become available in the near
future.

Definition 5Normalized PTP channel[55,56,59,60]. Let 𝜙 :
Her≥01 (,ℂ) → Her≥01 (,ℂ) be a positive map satisfying
tr[𝜙(X )] ≠ 0 for all X ∈ Her≥01 (,ℂ). Then, the PTP map

Λ𝜙 : Her
≥0
1 (,ℂ) → Her≥01 (,ℂ) given by X  → Λ𝜙(X ) =

𝜙(X )
tr[𝜙(X )]

(5)

is a normalized PTP channel.

Normalized PTP channels are common because they can be
constructed from any positive map 𝜙 satisfying a normalizabil-
ity condition tr[𝜙(X )] ≠ 0.[82] From positivity alone, tr[𝜙(X )] ≥
0. Normalizability requires the more restrictive condition that
tr[𝜙(X )] > 0. The condition tr[𝜙(X )] > 0 is important in (5) be-
cause it ensures the positivity of Λ𝜙. Normalized PTP channels
naturally fall into four classes, according to whether 𝜙 is linear
(or not) and trace-preserving (or not):

A. Linear positive 𝜙 and tr[𝜙(X )] = 1 for all X ∈ Her≥01 (,ℂ).
This is the class of general linear positive channels, which
includes linear CPTP channels.

B. Linear positive 𝜙 and tr[𝜙(X )] ≠ 1 for some X ∈ Her≥01 (,ℂ).
These can be called nonlinear in normalization only (NINO)
channels.

C. Nonlinear positive 𝜙 and tr[𝜙(X )] = 1 for all X ∈
Her≥01 (,ℂ). This class includes state-dependent CPTP
channels.

D. Nonlinear positive 𝜙 and tr[𝜙(X)] ≠ 1 for some X ∈
Her≥01 (,ℂ). These are the most general channels con-
sidered here. They support rich dynamics similar to that of
classical nonlinear systems.

These classes are discussed below in Sections 2.1–2.4.

3.1. Linear PTP and CPTP Channels

A standard form for linear PTP channels is provided in Proposi-
tion 1. While every linear positive map can be put in the form
(3), not every map of the form (3) is positive (because the 𝜆𝛼
can be negative). The necessary conditions for (3) to represent
a positive (P) or completely positive (CP) map can be obtained as
follows: Let S>={𝛼 :𝜆𝛼 >0} ≠ ∅ and S<={𝛼 :𝜆𝛼 <0} be the index
sets of positive and negative Choi eigenvalues, and decompose 𝜙
into 𝜙 = 𝜙> − 𝜙<, where 𝜙>(X ) =

∑
𝛼∈S>

𝜆𝛼 A𝛼XA
†
𝛼
and 𝜙<(X ) =∑

𝛼∈S<
|𝜆𝛼|A𝛼XA

†
𝛼
are each manifestly positive. Upon rescaling,

each can be put into the form Φ(X ) =
∑

𝛼
A𝛼XA

†
𝛼
, A𝛼 ∈ ℂN×N .

Maps of this form also satisfy the stronger condition of com-
plete positivity, meaning that they remain positive when com-
bined with a second Hilbert space B, of any finite dimen-
sion, on which the identity acts: [Φ⊗ idB](X ⪰ 0) ⪰ 0. Here X ∈
B(A ⊗B,ℂ). Each term in Φ clearly has the required prop-
erty: ⟨𝜓|(A𝛼 ⊗ I)X (A†

𝛼
⊗ I)|𝜓⟩ = ⟨𝜓𝛼|X|𝜓𝛼⟩ ≥ 0 for every |𝜓⟩ ∈

A⊗B, where |𝜓𝛼⟩ = (A†
𝛼
⊗ I)|𝜓⟩. The condition for positiv-

ity is therefore 𝜙>(X ) ⪰ 𝜙<(X ) for every X ⪰ 0, whereas the con-
dition for complete positivity is 𝜙<(X ) = 0. An important CP
map is the completely-positive trace-preserving (CPTP) channel,
which has a nonnegative Choi spectrum 𝜆𝛼 ≥ 0 and therefore an
operator-sum representation[59,78]

X  → Φ(X ) =
m∑
𝛼=1

A𝛼XA
†
𝛼
,

m∑
𝛼=1

A†
𝛼
A𝛼 = IN, A𝛼 ∈ ℂN×N, m≤N2

(6)

This follows from Proposition 1 (but with different A′s as to en-
force trace conservation and absorb a factor of

√
𝜆𝛼). The integer

m is the Choi rank. In this paper, Φ always refers to a linear CP
(and usually TP) map.
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There is a large body of work on linear P channels that are not
CP, called non-CP maps.[83–87] The distinction between CP and
non-CP maps is the possibility of non-CP maps generating neg-
ative states on entangled inputs, requiring their restriction to a
subset of the state space where this unphysical output is avoided.
Although non-CP operations are well known for their use in en-
tanglement detection,[88] the question of whether linear non-CP
channels could provide a computational advantage over linear CP
channels appears to be largely unexplored.[87] However, non-CP
communication channels in which the environment is measured
(and the results used to correct the channel) enable increased
capacity.[89–91] In the presence of nonlinearity, we also find that
the distinction between CP and non-CP is significant, due to the
larger space of nonunitary processes supported by non-CP chan-
nels.

3.2. NINO Channels

Definition 6 (NINO channel). Let𝜙 : Her≥01 (,ℂ) → Her≥01 (,ℂ)
be a positive linearmapwith tr[𝜙(X )] ≠ 0 for every X ∈ Her≥01 (,ℂ),
and tr[𝜙(X )] ≠ 1 for one or more X ∈ Her≥01 (,ℂ). Then, the PTP
map

Λ𝜙 : Her
≥0
1 (,ℂ) → Her≥01 (,ℂ) given by X  → Λ𝜙(X ) =

𝜙(X )
tr[𝜙(X )]

(7)

is called a nonlinear-in-normalization only (NINO) channel.

We stress that the positive map 𝜙 in Definition 6 is linear,
but not unitary 𝜙U(X ) = UXU†, U†U=IN (because tr[𝜙U(X )] =
tr(X ) = 1 for all X ). NINO channels inherit, from linear maps,
the powerful ability to characterize them through their action on
a complete basis (because 𝜙 has this property). Next, extending
Rembieliński and Caban,[60] we obtain a general representation
and Markovian evolution equation for NINO channels.

Proposition 2 (NINO representation). Let Λ be a NINOmap of the
form (7) with 𝜙 linear. Then, Λ has a representation

X  → Λ(X) =

m∑
𝛼=1

𝜁𝛼A𝛼XA
†
𝛼

tr(FX )
, F :=

m∑
𝛼=1

𝜁𝛼A
†
𝛼
A𝛼 ≠ IN, A𝛼 ∈ ℂN×N,

𝜁𝛼 = ±1, m≤N2 (8)

Proof. This follows from Proposition 1 after substituting 𝜆𝛼 =
𝜁𝛼|𝜆𝛼|, 𝜁𝛼 = sign(𝜆𝛼), and rescaling the A

′s. □

Our main objective is to study NINO channels from a dy-
namical perspective, via evolution equations. Much of the fol-
lowing analysis will carry over to the other classes as well. Let,
X ∈ Her≥01 (,ℂ) be the state of a physical system which evolves
continuously in time according to

X (t)  → X (t + Δt) = ΛΔt,t
(
X (t)

)
, Δt ≥ 0, Λ0,t = id for all t ∈ ℝ

(9)

Here,ΛΔt,t is a two-parameter family of PTP channels continuous
in both t andΔt. Because we want to study the simplest instances

that illustrate computational advantages, we make several addi-
tional simplifying assumptions:

i) Stationarity: ΛΔt,t = ΛΔt for all t ∈ ℝ.
ii) Semigroup: Λs◦Λt = Λs+t, 0 ≤ s ≪ 1, 0 ≤ t ≪ 1.
iii) The nonlinearity can be turned off, recovering linear CPTP

evolution.
iv) N = 2.

From (9), we have thatΛΔt, defined in (i), is continuous and satis-
fies Λ0 = id. Stationarity excludes time-dependent Hamiltonians
that arise when a physical system is driven with time-dependent
fields (precisely what we want to do to run a device). While it is
possible to formulate the problem with time-dependent gener-
ators and obtain some of the results in terms of time-ordered
exponentials, we will not cover that case here. Instead, we as-
sume that the strength of the nonlinearity, g, can be turned on
and off, and while in the off state, the full toolkit of linear quan-
tum information processing can be applied. The additional as-
sumptions (i) and (ii) are sufficient to define, for any PTP chan-
nel, a Markovian evolution equation that extends linear Marko-
vian CPTP evolution by the Gorini–Kossakowski–Sudarshan–
Lindblad (GKSL) equation.[92,93] Our approach follows a large
body of work on nonlinear evolution equations.[45–63] Especially
relevant are the recent papers by Kowalski and Rembieliński,[55]

Fernengel and Drossel,[50] and Rembieliński and Caban.[60] In
contrast with ref.[60], we do not assume a semigroup property
at long times, which can be violated in the presence of initial
system–environment correlation.[86,94] The restriction to qubits
is not used in the derivation of the evolution equations, but is
needed for their subsequent analysis.
Before deriving an evolution equation for (8), we briefly con-

sider the m = 1 case to illustrate one of the differences between
NINO and linear CPTP channels. Suppose A = etL is a continu-
ous time-dependent linear operator infinitesimally generated by
some L ∈ B(). Decompose the generator into Hermitian and
anti-Hermitian contributions L = L+ + L−, with L± := (L ± L†)∕2.
Then, X (0)  → X (t) = Λt(X (0)) = (etL X (0) etL† )∕[tr[etL†etLX (0)]] and
dX
dt

= [L−, X ] + {L+, X} − 2g tr(L+X )X (10)

with g = 1. This evolution equation has been discussed pre-
viously by several authors in different contexts.[55,58,60,95] Here,
{⋅, ⋅} is an anticommutator. Tracing gives d

dt
tr(X )=2 tr(L+X )−

2g tr(L+X ) tr(X )=0 assuming tr(X ) = 1, showing how the nonlin-
ear term fixes the normalization. The equation of motion (10)
includes unitary evolution generated by a Hamiltonian H = iL−,
together with linear dissipation and amplification (if L+ has posi-
tive eigenvalues). Or we can say that the dynamics is generated by
a non-HermitianHamiltonian[96] Hnon := iL = H + iL+.

[58] NINO
channels expand the utilization of linear maps by conserving the
trace nonlinearly.
Now, we obtain an evolution equation for general m. Continu-

ous one-parameter NINO channels have the form

Λt(X ) =

m∑
𝛼=1

𝜁𝛼 A𝛼(t)X A†
𝛼
(t)

tr(FtX )
, Ft :=

m∑
𝛼=1

𝜁𝛼 A
†
𝛼
(t)A𝛼(t) ≠ IN,

𝜁𝛼 = ±1, t ≥ 0 (11)
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The operators A𝛼(t) ∈ ℂN×N are analytic functions of time for t ≥
0, which can be classified into two types, jump and nonjump,
according to their t → 0 behavior. We assume that k > 0 of them
operators have nonzero limits

lim
t→0

A𝛼(t) = A0
𝛼
≠ 0, 𝛼 ∈ {1,… , k} (nonjump) (12)

while the others vanish

lim
t→0

A𝛼(t) = 0, 𝛼 ∈ {k+1,… , m} (jump) (13)

The jump/nonjump terminology comes from the unraveled
stochastic picture, where one or more rare but disruptive “jump”
operations are applied randomly to a simulated open system, on
top of a smooth background of unitary plus nonunitary evolution,
with the nonunitary component fixed to conserve trace. There
is no restriction on the number of jump operators; however no
more than N2 are required. The only restriction on the number
of nonjump operators is that k > 0: At least one is required to ob-
tain the desired t → 0 limit. Note that if Ft = IN , the nonlinear
generator disappears and we recover linear GKSL evolution.[92,93]

The constant matrices A0
𝛼
∈ ℂN×N in (12) are not arbitrary;

the condition limt→0 Λt(X ) = X for all X ∈ Her≥01 (,ℂ) requires
A0

𝛼
= z𝛼 IN, 𝛼 ∈ {1,… , k}, where the z𝛼 ∈ ℂ satisfy a “normaliza-

tion” condition
∑k

𝛼=1 𝜁𝛼|z𝛼|2 = 1 (recall that 𝜁𝛼 = ±1). To satisfy
the semigroup property, it is sufficient to let

A𝛼(t) =

{
z𝛼 e

tL𝛼 for 𝛼 ∈ {1,… , k},

B𝛼

√
t for 𝛼 ∈ {k+1,… , m}

(14)

where L𝛼 , B𝛼 ∈ B(,ℂ). To see why, note that in the short-time
limit

m∑
𝛼=1

𝜁𝛼 A𝛼(t)XA
†
𝛼
(t) = X + t

[
k∑

𝛼=1
𝜁𝛼|z𝛼|2(L𝛼X + XL†

𝛼

)
+

m∑
𝛼>k

𝜁𝛼B𝛼XB
†
𝛼

]
+ O(t2) (15)

and

Ft =
m∑
𝛼=1

𝜁𝛼 A
†
𝛼
(t)A𝛼(t) (16)

= IN + t

[
k∑

𝛼=1
𝜁𝛼|z𝛼|2(L𝛼 + L†

𝛼

)
+

m∑
𝛼>k

𝜁𝛼B
†
𝛼
B𝛼

]
+O(t2) (17)

= IN + t
dF0
dt

+O(t2) (18)

Then, if tr(X ) = 1,

Λt(X ) = X + t

[
k∑

𝛼=1
𝜁𝛼|z𝛼|2(L𝛼X + XL†

𝛼

)
+

m∑
𝛼>k

𝜁𝛼B𝛼XB
†
𝛼
− tr

(
X
dF0
dt

)
X

]
+O(t2) (19)

and

Λs(Λt(X )) = Λs+t(X ) +O(s2) +O(st) +O(t2) for every

X ∈ Her≥01 (,ℂ) (20)

as required for short times. TheNINO evolution equation follows
from (19):

dX
dt

=
k∑

𝛼=1
𝜁𝛼|z𝛼|2(L𝛼X + XL†

𝛼

)
+

m∑
𝛼>k

𝜁𝛼B𝛼XB
†
𝛼
− tr

(
X
dF0
dt

)
X

=
k∑

𝛼=1
𝜁𝛼|z𝛼|2([L𝛼−, X ] + {L𝛼+, X}

)
+

m∑
𝛼>k

𝜁𝛼B𝛼XB
†
𝛼
− g tr

(
X
dF0
dt

)
X

(21)

where, in the second line, each linear operator L𝛼 has been
decomposed into Hermitian and anti-Hermitian parts accord-
ing to L𝛼 = L𝛼+ + L𝛼−, with L𝛼± := (L𝛼 ± L†

𝛼
)∕2. For future refer-

ence, we also introduced a nonlinear coupling strength g = 1.
The anti-Hermitian {L𝛼−}

k
𝛼=1 each generate a unitary time evo-

lution with Hamiltonian H𝛼 = iL𝛼− = H†
𝛼
, whereas the {L𝛼+}

k
𝛼=1

and {B𝛼}
m
𝛼>k generate nonunitary time evolution. The brackets in

(21) are commutators and anticommutators {A, B} = AB + BA.
Note that the parameters z𝛼 can be absorbed into rescaled gen-
erators |z𝛼|2 L𝛼 → L𝛼 with no essential change. After doing this,
we obtain, for the common case of a single nonjump operator
(k = 1),

dX
dt

= [L−, X ] + {L+, X} +
∑
𝛼

𝜁𝛼B𝛼XB
†
𝛼
+ g tr(XΩ)X (22)

where

Ω := −2L+ −
∑
𝛼

𝜁𝛼 B
†
𝛼
B𝛼 (23)

To the best of our knowledge, the NINO evolution equa-
tion (10) without jump operators was first obtained by Brody
and Graefe,[95] and (22) was first obtained by Zloshchastiev and
Sergi.[58] Trace dynamics, according to (22), satisfies

d𝜏
dt

= (g𝜏−1) tr(XΩ), 𝜏 := tr(X ) (24)

In the g = 0 linear case, trace is conserved by requiring Ω = 0,
whereas in the nonlinear case trace conservation requires g =
1∕𝜏 = 1.
A principal difference between Markovian NINO and Marko-

vian CPTP evolution is in the form of the nonjump operators. In
a linear CPTP channel, 𝜁𝛼 = 1 and trace is conserved through the
requirement L+ = − 1

2

∑
𝛼
B†
𝛼
B𝛼 , which setsΩ = 0 in (22) and (24).

In this case, the total Hermitian generator L+ is always negative
semidefinite, leading to nonexpansive evolution and usually to a
single stable fixed point. However in a NINO channel, the L𝛼+ are
free parameters, and they can have positive eigenvalues. An ex-
ample of this distinction occurs when m=1: Rank 1 CPTP chan-
nels are unitary and nondissipative, whereas m=1 NINO chan-
nels already support dissipation and amplification [recall (10)].
Therefore, we can think of theNINOevolution equations (21) and
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(22) as generalizations of the linear GKSL equation to support lin-
ear evolution by one or more non-Hermitian Hamiltonians.[58]

A well known NINO channel is projective measurement fol-
lowed by postselection.[97] In this case, the positive linear map in
Definition 6 is 𝜙(X ) = AXA† where A ∈ ℂN×N is the selected mea-
surement operator. However, postselected measurement does
not implement a deterministic channel and using it comes with
an overhead determined by the frequency of rejected measure-
ment outcomes. Furthermore, postselected measurement does
not implement the continuous-time evolution equation (22). For
these reasons, we do not consider postselected measurement
channels in this paper.

3.3. State-Dependent CPTP Channels

Next, we discuss the class of normalized PTP channels (5) with
nonlinear positive 𝜙 and tr[𝜙(X )] = 1 for all X ∈ Her≥01 (,ℂ).
These include the important subset of parametrically nonlinear
CPTP channels, which can be called state-dependent CPTP chan-
nels.

Definition 7 (State-dependent CPTP). Let X ∈ B(,ℂ) and
A𝛼(X ) ∈ ℂN×N be a set of X-dependent matrices satisfying

1. A𝛼(X
†) = A𝛼(X ),

2.
∑m

𝛼=1 A𝛼(X )
†A𝛼(X ) = IN,

for all X ∈ B(,ℂ) and any finite m. Then

X  → Λ(X) =
m∑
𝛼=1

A𝛼(X )X A𝛼(X )
† (25)

is a state-dependent CPTP channel.

Channels in this class have been investigated by many
authors.[1–4,11–14,22–52] The associated evolution equation is the
state-dependent GKSL equation. Many early proposals for non-
linear extensions of quantum mechanics, including the Wein-
berg model,[24] and unitary models based on a nonlinear
Schrödinger equation, are in this class. A rank 1 example is

X  → Λ(X) = U(X )X U(X )†, U(X ) := ei tr(AX)B = U(X†),

A, B ∈ Her(,ℂ) (26)

This map applies a generator B scaled by the mean ⟨A⟩ = tr(AX)
of observable A. A generalization of (26) to multiple nonlinear
generators isU(X ) = ei

∑
𝛼 tr(A𝛼X)B𝛼 , which includes arbitrary state-

dependentHamiltonians and unitarymean field theories, includ-
ing the Gross–Pitaevskii equation for interacting bosons.
For a qubit in the Pauli basis,X = (I2 + r ⋅ 𝝈)∕2 ∈ Her≥01 (,ℂ),

r = tr(X𝝈) ∈ 𝔹1[0], anyMarkovian PTP evolution equation can be
put in the form[98]

dX
dt

= 𝜎a

2

(
dra

dt

)
, dra

dt
= tr

(
dX
dt

𝜎a

)
= Gab(r) rb + Ca,

G(r) ∈ ℝ3×3, Ca ∈ ℝ3 (27)

where we sum over repeated indices a, b ∈ (1, 2, 3). Here, G(r)
is a state-dependent generator, which can be decomposed into
linear and nonlinear parts: Gab(r) = Lab + gNab(r), with nonzero
coupling g indicating the presence of nonlinearity. If Nab(r)=0,
(27) describes a general affine transformation on X and r (strictly
linear if Ca=0). Every G(r) can be decomposed into symmet-
ric and antisymmetric components G = G+ +G−, with G± :=
(G ±G⊤)∕2, which have distinct actions on the Bloch vector
length: d

dt
|r|2 = 2Gab(r) rarb + 2raCa = 2Gab

+ (r) r
arb + 2raCa. Anti-

symmetric components G− conserve Bloch vector length; they
result from (possibly state-dependent) “unitary” transformations
X  → U(X )X U(X )†. Linear antisymmetric generators correspond
to rigid rotations of the Bloch ball and result from strictly lin-
ear unitary transformations on X . General symmetric genera-
tors G+(r) can amplify some qubit states, increasing their Bloch
vector, while decreasing others. A process that increases (de-
creases) |r| is called amplifying (dissipative), and amplification
is entropy decreasing. Linear symmetric generators G+ result-
ing from CPTP channels have nonpositive G+ [see discussion
following (22)] but can increase |r| if the channel is nonunital
(Ca ≠ 0). Thus, Bloch vector amplification does not immediately
imply nonlinearity of the evolution equation.
Instead, we consider a geometric characterization of the dy-

namics that is specifically sensitive to the presence of a nonlinear
or non-CP map: The divergence of the qubit velocity field is

∇ ⋅ (dr∕dt) = tr[G+(r)] + g rb𝜕aG
ab(r) (28)

where g = 1, which has contributions from both linear symmet-
ric and nonlinear generators and can take either sign. By contrast,
the divergence is nonpositive in linear CPTP channels (because
G+ ⪯ 0). So a positive divergence implies nonlinearity or non-CP
evolution or both. Similarly, the vorticity

𝝎 = ∇ × (dr∕dt), 𝜔a = 𝜀abc𝜕b[G
cd(r)rd] = 𝜀abcGcb

− (r) + g 𝜀abc [𝜕bG
cd(r)] rd

(29)

also has linear and nonlinear contributions (𝜀 is the Levi-Civita
symbol and g = 1). The 𝜀abcGcb

− (r) term will contribute if G(r) ∈
ℝ3×3 has an antisymmetric (|r|-conserving) part.
The divergence and vorticity faithfully characterize the veloc-

ity field, but do not adequately quantify the computational ben-
efits of nonlinearity. This is because the velocity field describes
how single states X𝛼 follow their streamlines, but does not di-
rectly convey the relative motion between potential trajectories.
For a more sensitive characterization, we want to consider how
pairs of states (X𝛼 , X𝛽 ) transform under the channel. To further
motivate this, consider a common setting for quantum algo-
rithms, where a subroutine accepts as input a sequence of quan-
tum states (X1, X2, X3,…), then applies the same channel Λ to
each in order to learn something about those states or compute
some function of those states. For example, we might know that
the states can only take values from a given set {Y1, Y2,…}, and
we want to identify which. Previous authors[1–4,14,87] have noted
the intriguing computational power afforded by the ability to in-
crease the distinguishability between a pair of potential inputs X𝛼

and X𝛽 , that is, to increase their trace distance ‖X𝛼 − X𝛽‖1, which
Adv. Quantum Technol. 2023, 6, 2200156 2200156 (6 of 11) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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is prohibited in linear CPTP channels. Let’s examine this for a

qubit in the Pauli basis: The differential of ‖X‖p := [tr(|X|p)] 1p
for any square matrix X is d‖X‖p = ‖X‖1−pp tr(|X|p−1d|X|). Now
let X = X𝛼 − X𝛽 =

1
2
(r𝛼 − r𝛽 ) ⋅ 𝝈 be the difference between a pair

of qubit states with Bloch vectors r𝛼,𝛽 ∈ 𝔹1[0] and separation‖X𝛼 − X𝛽‖p = 2
1
p
−1 |r𝛼 − r𝛽 |measured in Schatten norm. Then,

d
dt

‖X𝛼 − X𝛽‖p = 2
1
p
−1 r𝛼 − r𝛽|r𝛼 − r𝛽 | ⋅

(
dr𝛼
dt

−
dr𝛽
dt

)
≤ 2

1
p
−1||||dr𝛼dt −

dr𝛽
dt

||||
(30)

characterizes the expansivity of the channel: d
dt
‖X𝛼 − X𝛽‖p < 0

means that the channel is strictly contractive on the pair, d
dt
‖X𝛼 −

X𝛽‖p = 0 means it’s distance preserving on the pair, and d
dt
‖X𝛼 −

X𝛽‖p > 0means it’s expansive. Expansivity allows for the distance
between two nearby states (X𝛼 , X𝛽 ) to increase. In the notation of
(27), the rate of change of state separation is

d
dt

‖X𝛼 − X𝛽‖p = 2
1
p
−1 ra

𝛼
− ra

𝛽|r𝛼 − r𝛽 |
[
Gab(r𝛼) r

b
𝛼
−Gab(r𝛽 ) r

b
𝛽

]
(31)

Expanding about the midpoint R = (r𝛼 + r𝛽 )∕2 gives, to second
order in |r𝛼 − r𝛽 |,
d
dt

‖X𝛼 − X𝛽‖p ≈ 2
1
p
−1 [G

ab
+ (R)+Kab

+ (R)](ra
𝛼
−ra

𝛽
)(rb

𝛼
−rb

𝛽
)|r𝛼 − r𝛽 | ,

Kab(R) := gRc 𝜕bG
ac(R) (32)

Here, the coupling g = 1 is added to indicate the presence of non-
linearity. We note the two distinct sources of expansivity in (32):
The antisymmetric part ofG(R) does not contribute to the expan-
sivity, but positive eigenvalues in the symmetric part do. This is
an alternative expression of the same results we found above for
d|r|2∕dt, and for the tr[G+(r)] term in the divergence. The second
term contributes to expansivity if the symmetric part of the ma-
trix K ∈ ℝ3×3 has positive eigenvalues.
In the remainder of this section, we apply this geomet-

ric characterization to a state-dependent CPTP channel with
torsion,[1,2,14]

dra

dt
= Gab(r) rb, Gab(r) = gzJabz , Jz =

⎛⎜⎜⎝
0 −1 0
1 0 0
0 0 0

⎞⎟⎟⎠, g ∈ ℝ (33)

Here, Jz is an SO(3) generator. G(r) ∈ ℝ3×3 is antisymmetric and
hence |r|-preserving. G(r) generates z rotations with a rate that
increases linearly with Bloch coordinate z, changing direction
for z < 0, a type of twist. The divergence (28) vanishes every-
where and the flow is incompressible. The vorticity (29) is 𝝎 =
(−x,−y, 2z)g. The z component 𝜔3 describes rigid body rotation
within each plane of constant z, with a z-dependent frequency,
while 𝜔1 and 𝜔2 reflect the associated shear. We can use (32) to
discover expansive trajectories: In the torsionmodel (33), thema-

trix Kab(R) defined in (32) is

K =
g
2

⎛⎜⎜⎝
0 0 −(y𝛼 + y𝛽 )
0 0 (x𝛼 + x𝛽 )
0 0 0

⎞⎟⎟⎠ ,
K+ =

g
4

⎛⎜⎜⎝
0 0 −(y𝛼 + y𝛽 )
0 0 (x𝛼 + x𝛽 )

−(y𝛼 + y𝛽 ) (x𝛼 + x𝛽 ) 0

⎞⎟⎟⎠ (34)

K+ has eigenvalues 0 and ±(|g|∕4)√(x𝛼 + x𝛽 )2 + (y𝛼 + y𝛽 )2. For

a pair of nearby states X𝛼 , X𝛽 , their difference r𝛼 − r𝛽 is a short
vector located at midpoint position R = (r𝛼 + r𝛽 )∕2. Expansive
trajectories occurwhenKab(R)(ra

𝛼
− ra

𝛽
)(rb

𝛼
− rb

𝛽
) = 𝜕bG

ac(R)Rc(ra
𝛼
−

ra
𝛽
)(rb

𝛼
− rb

𝛽
) is positive. In the torsionmodel this condition simpli-

fies to

g
[
Rx(y𝛼 − y𝛽 ) − Ry(x𝛼 − x𝛽 )

]
(z𝛼 − z𝛽 ) > 0 (35)

Let r𝛼 = ( 1
2
,
𝜂y

2
, 𝜂z
2
) and r𝛽 = ( 1

2
,− 𝜂y

2
,− 𝜂z

2
) be a pair of states with

midpoint position R = ( 1
2
, 0, 0) along the positive x axis. The

states are separated by 𝜂y in the y direction and 𝜂z in the z direc-
tion. For nonzero 𝜂y and 𝜂z, the two states move in opposite direc-

tions and separate at a rate d
dt
‖X𝛼 − X𝛽‖p = 2

1
p
−2g(𝜂y𝜂z∕

√
𝜂2y + 𝜂2z ).

3.4. General Normalized PTP Channels

Next, we discuss channels with nonlinear positive 𝜙 and
tr[𝜙(X )] ≠ 1 for some X ∈ Her≥01 (,ℂ), the most general PTP
channels considered here. This class combines the nonunitary
features of the NINO channels with the nonlinearity of state-
dependent CPTP channels. Suppose we want to add linear dis-
sipation/amplification to the torsion model (33) by adding a lin-
ear part G to the generator. What are the allowed values of G? To
answer this question, we use generators from the NINO evolu-
tion equation (22), namely dX∕dt = [L−, X ] + {L+, X} + 𝜁2BXB

†,
where we have included one jump operator B and one non-
jump operator L.[99] In the Pauli basis the first term in dX∕dt
leads to dra∕dt = Gabrb, with Gab = tr(𝜎aL−𝜎

b − 𝜎bL−𝜎
a)∕2, re-

sulting in an antisymmetric contribution to G. To see its con-
nection with unitary dynamics, expand L− = −L†− in the Pauli
basis as L− = i(𝜉0I + 𝜉a𝜎

a), where 𝜉0,… , 𝜉3 ∈ ℝ are real coor-
dinates for L−. In this basis Gab = 2𝜀abc𝜉c = −i tr(L−𝜎c) 𝜀abc, a
real but otherwise arbitrary linear combination of SO(3) gener-
ators. Any linear antisymmetric G can be implemented by con-
trolling these generators. Similarly, the {L+, X} term leads to a
real symmetric Gab = tr(𝜎aL+𝜎

b + 𝜎bL+𝜎
a)∕2 plus an inhomoge-

neous part Ca = tr(𝜎aL+). Expanding L+ = L†+ in the Pauli basis
as L+ = 𝜉0I + 𝜉a𝜎

a, where 𝜉0,… , 𝜉3 ∈ ℝ are again real, leads to a
diagonalmatrixG = 2𝜉0I3 = tr(L+)I3. And the 𝜁2 BXB

† term leads
to Gab = 𝜁2 tr(𝜎

aB𝜎bB†)∕2 and Ca = 𝜁2 tr(𝜎
aBB†)∕2 in the Pauli

basis. Expanding B ∈ ℂ2×2 as B = 𝜉0I + 𝜉a𝜎
a, with 𝜉0,… , 𝜉3 ∈ ℂ

complex coordinates for B, we have

Gab = 𝜁2
(|𝜉0|2 − |𝜉1|2 − |𝜉2|2 − |𝜉3|2)𝛿ab + 2𝜁2 Im(𝜉∗0𝜉c)𝜀

abc

+ 2𝜁2 Re(𝜉
∗
a𝜉b) (36)
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The first term is diagonal. The second term is antisymmetric
(both L− and B contribute to unitary evolution if this term is
nonzero). The third term is symmetric. Let 𝜉0 = 0; then

G = −𝜁2 (|𝜉1|2 + |𝜉2|2 + |𝜉3|2)I + 2𝜁2 Re
⎡⎢⎢⎣
⎛⎜⎜⎝
𝜉∗1
𝜉∗2
𝜉∗3

⎞⎟⎟⎠⊗
(
𝜉1 𝜉2 𝜉3

)⎤⎥⎥⎦
(37)

where I is the identity. Consider now a pair of jump operators
with the same 𝜁2 and coordinates 𝜉 = (1, 1, 0) and (0,0,1):

G(1,1,0) = 𝜁2

⎛⎜⎜⎝
0 2 0
2 0 0
0 0 −2

⎞⎟⎟⎠ , G(0,0,1) = 𝜁2

⎛⎜⎜⎝
−1 0 0
0 −1 0
0 0 1

⎞⎟⎟⎠ (38)

Combining them gives

G(1,1,0) +G(0,0,1) = 𝜁2(2𝜆1 − I), 𝜆1 =
⎛⎜⎜⎝
0 1 0
1 0 0
0 0 0

⎞⎟⎟⎠ (39)

where 𝜆1 is a Gell-Mann matrix. Similarly, G(1,0,1) +G(0,1,0) =
𝜁2(2𝜆4 − I) andG(0,1,1) +G(1,0,0) = 𝜁2(2𝜆6 − I), where 𝜆4 and 𝜆6 are
Gell–Mann matrices. By combining Hamiltonian control with
jump operator engineering, a large set of linear generatorsG can
be implemented.

4. Fault-Tolerant Nonlinear State Discrimination

In the remainder of the paper, we consider an extension
of the qubit torsion channel (33) that includes linear dis-
sipation and amplification, applied to the problem of state
discrimination.[100–104] Using the techniques of Section 2.4, jump
operators are chosen such that

dX
dt

= 𝜎a

2

(
dra

dt

)
, dra

dt
= tr

(
dX
dt

𝜎a
)
= Gab(r) rb = (m 𝜆4 − 𝛾I + gzJz)

abrb

(40)

where I is the 3×3 identity,

𝜆4 =
⎛⎜⎜⎝
0 0 1
0 0 0
1 0 0

⎞⎟⎟⎠, and Jz =
⎛⎜⎜⎝
0 −1 0
1 0 0
0 0 0

⎞⎟⎟⎠ (41)

Here, 𝜆4 is an SU(3) generator, Jz is an SO(3) generator, and
we sum over repeated indices a, b ∈ (1, 2, 3). The dimensionless
model parameters m, 𝛾 , and g are real variables of either sign.
The fixed-point equations are

dx
dt

= mz − 𝛾x − gyz = 0 (42)

dy
dt

= −𝛾y + gxz = 0 (43)

dz
dt

= mx − 𝛾z = 0 (44)

The origin is always a fixed point, rfp0 = (0, 0, 0), although not al-
ways stable. Assuming r ≠ (0, 0, 0), 𝛾 ≠ 0, and eliminating z, the
fixed point equations are

m2 − 𝛾2 = gmy (45)

𝛾2y = gmx2 (46)

If g = 0, any fixed points must be confined to the y = 0 plane.
There are no additional fixed points unless 𝛾 = ±m, in which case
there is a set of fixed points rfp,g=0z=±x on the line rz=±x = {(x, 0,±x) :
x ∈ ℝ}, shown in Figure 1. The settings 𝛾 = ±m are singular
lines in the parameter space of the model. Manipulating these
singularities in the presence of nonlinearity is the key to engi-
neering useful information processing.
When g > 0, any fixed points must be confined to the plane

my = (m2 − 𝛾2)∕g. However, (46) requires y to have the same sign
as that ofm. Therefore,my > 0, which is only possible whenm2 >

𝛾2. Therefore, when m2 < 𝛾2, the only fixed point is rfp0 , and this
fixed point is stable for allm2 < 𝛾2. If instead the conditionm2 >

𝛾2 is satisfied, and g > 0, there is a pair of stable fixed points at

rfp± =
(
± |𝛾|

g

√
𝛿, m

g
𝛿, ± sign(𝛾)m

g

√
𝛿

)
, 𝛿 := m2 − 𝛾2

m2
∈ (0,∞]

(47)

For these fixed points to be contained within the Bloch ball re-
quires |g| > gmin, where gmin =

√
(𝛾2 +m2)𝛿 +m2𝛿2. The dynam-

ics between fixed points rfp− , r
fp
0 , and r

fp
+ can be understood as fol-

lows: When g = 0 we have

dx
dt

= mz − 𝛾x (48)

dy
dt

= −𝛾y (49)

dz
dt

= mx − 𝛾z (50)

Note that the y motion is decoupled from x and z, and that it is
always stable for 𝛾 > 0. Furthermore, the linearized model has
an additional symmetry which becomes explicit after changing
variables to 𝜉± = (z ± x)∕2:

d𝜉+
dt

= (m − 𝛾)𝜉+ (51)

d𝜉−
dt

= −(m + 𝛾)𝜉− (52)

The 𝜉+ and 𝜉− variables are also decoupled. 𝜉+ is the coordinate
along the line z = x mentioned above, and 𝜉− is the coordinate
along the perpendicular line z = −x. Motion in the 𝜉+ direction
is stable form < 𝛾 ; in this case each point on the line z = x flows
to the fixed point rfp0 at the origin. However, the 𝜉+ motion be-

comes unstable when m > 𝛾 . In this regime, rfp0 is unstable, and
each point on the line z = x (other than z=x=0) flows outward

Adv. Quantum Technol. 2023, 6, 2200156 2200156 (8 of 11) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 1. Illustration of the dynamics in the neighborhood of the origin for m, 𝛾 ≥ 0. When m < 𝛾 , two unstable fixed points at infinity (red) feed the

stable fixed point rfp0 at the origin (black). However, if m > 𝛾 , rfp0 is unstable (red). The 𝜉− axis (green) is the separatrix. rfp0 feeds two new stable fixed

points rfp+,− (black). At the critical point m = 𝛾 , all points on the 𝜉+ axis (blue dots) are fixed points.

Figure 2. Simulation solutions of the torsion channel (40) with 𝛾 = 1,m =
0.9, and g = 1, showing attraction to rfp0 . The x, y, and z axes are Bloch
vector coordinates. Red dots indicate random initial conditions. The Bloch
sphere is outlined in yellow.

to infinity. We can interpret this unstable case as having two sta-
ble fixed points at (∞, 0,∞) and (−∞, 0,−∞), at the ends of the
line z = x. By contrast, close to the singularity at m = 𝛾 , the per-
pendicular 𝜉− motion is stable unless m and 𝛾 are both negative.
In this picture, the most important effect of the nonlinearity is
to move the two stable fixed points at infinity to the finite po-
sitions (47). This is illustrated in Figure 1. In Figure 2, we plot
the trajectories for a cloud of randomly chosen initial states (red
dots) within the Bloch ball 𝔹1[0], close to the bifurcation but in
the m2 < 𝛾2 phase. In Figure 3, we show the same plot in the
m2 > 𝛾2 phase. These simulations further support the picture de-
scribed above.
The 𝜉+ dynamics near the unstable fixed point rfp0 can be

used to achieve robust state discrimination with the exponen-
tial speedup supported by expansive nonlinear channels.[1–4,14]

Points very close to rfp+ have |r| ≪ 1, so the nonlinearity can be
neglected there. Equations (51) and (52) then apply to the dy-
namics near rfp0 even when g ≠ 0. Consider the plane passing

Figure 3. Simulation solutions to (40) with 𝛾 = 1,m = 1.1, g = 1, and 𝛿 =
0.2, showing attraction to rfp± .

through the origin and perpendicular to the 𝜉+ axis. The velocity
field smoothly changes sign across this plane; that is, it is a sep-
aratrix between basins of attraction for rfp+ and rfp− . Suppose that
a qubit is prepared in a state from the set {X𝛼 , X𝛽}, with X𝛼 and
X𝛽 close in trace distance 𝜖 = ‖X𝛼 − X𝛽‖1 but on opposite sides
of the separatrix. Then, we implement a gate by turning on the
nonlinearity for a time t = O(1∕g), during which X𝛼 and X𝛽 flow
to different fixed points. After this evolution, the nonlinearity is
turned off and the qubit is measured. This nonlinear gate leads to
an exponential speedup if the initial separation is exponentially
small: 𝜖 = 2−k.[2,4,14]

Positivity of the dissipative torsion channel requires that the
Bloch vector r remain in the Bloch ball |r| ≤ 1. However, the evo-
lution equation (40) does not itself enforce this condition. There-
fore, the positivity condition must be implemented dynamically
through control of the qubit Hamiltonian, or added depolariza-
tion, and trajectories leaving the Bloch ball are regarded as un-
physical. We note that a breakdown of positivity is expected in
some open systems with initial system-environment entangle-
ment that result in non-CP channels.[87]

Adv. Quantum Technol. 2023, 6, 2200156 2200156 (9 of 11) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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5. Conclusion

“Our mistake is not that we take our theories too seriously,
but that we do not take them seriously enough.” Steven
Weinberg[105]

In this paper, we introduced a classification for nonlinear chan-
nels, and explored the computational power of three classes of
associated nonlinear evolution equations (for qubits). Geomet-
ric characterizations of the dynamics, including flow divergence
and expansivity, are shown to indicate the presence of particu-
lar forms of nonlinearity and non-complete positivity. This ap-
proach to classifying nonlinear maps appears to be new. The
type B NINO channels,[55,58,60,95] and especially the type C state-
dependent CPTP channels,[1–4,11–14,22–52] have been discussed pre-
viously. To the best of our knowledge, type D channels, a main
focus of this paper, have not been discussed previously. In this
work, we did not try to justify the channels physically or provide
microscopic models for them. Instead, in the spirit ofWeinberg’s
famous quote, we impose only the minimal requirements of pos-
itivity and trace preservation, and ask what types of nonlinearity
might be realized in principle, and what computational advan-
tages they would provide. We see that engineering both nonlin-
earity and dissipation allows one to implement rich dynamics
similar to that of classical nonlinear systems. Our main result
is the identification of a novel phase where the Bloch ball sep-
arates into two basins of attraction, which can be used to im-
plement fast quantum state discrimination[2,4,14] with intrinsic
fault-tolerance. In particular, the states do not have to be ini-
tialized with high accuracy, but only in the appropriate basin of
attraction.
Although appealing, this gate has limitations: i) First, finite ex-

perimental resolution and control will limit the smallest values
of initial state separation 𝜖 achievable in practice. If the inputs
to the discriminator are the outputs of a preceding process, they
will also come with errors. ii) Second, the fixed points rfp+,− are
not perfectly distinguishable. Although there is considerable flex-
ibility in choosing their location, in practice they need to be well
within the Bloch ball to ensure positivity. If the rfp+,− are too close
to the surface |r| = 1, trajectories approaching them may lead to
unphysical solutions leaving the Bloch ball. iii) Third, there will
likely be errors associated with the effective model itself.
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