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Proposal for a Lorenz qubit
Michael R. Geller 

Nonlinear qubit master equations have recently been shown to exhibit rich dynamical phenomena 
such as period doubling, Hopf bifurcation, and strange attractors usually associated with classical 
nonlinear systems. Here we investigate nonlinear qubit models that support tunable Lorenz 
attractors. A Lorenz qubit could be realized experimentally by combining qubit torsion, generated by 
real or simulated mean field dynamics, with linear amplification and dissipation. This would extend 
engineered Lorenz systems to the quantum regime, allowing for their direct experimental study and 
possible application to quantum information processing.

Several recent papers1–7 have considered nonlinear generalizations of the Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) master equation8,9 for qudits. The superoperators resulting from these evolutions each take 
the form of a positive trace-preserving (PTP) channel10,11 X  → φ(X)/tr[φ(X)] , with X a density matrix and φ a 
positive map. The positivity of this normalized PTP channel follows from the positivity of φ and tr[φ(X)] > 0 . 
It’s trace preservation property is actually a trace fixing one, but these are physically equivalent when applied to 
normalized initial states. Kowalski and Rembieliński1, and also Rembieliński and Caban3, considered cases with 
linear φ and tr[φ(X)] �= 1 , extending Gisin’s 1981 model12 to mixed states. We call these channels nonlinear in 
normalization only (NINO) to emphasize that the nonlinearity in this case serves only to conserve trace. We 
might think of NINO channels as being “mildly” nonlinear. In particular, they satisfy a convex quasilinear-
ity property13, preventing superluminal signaling14–18. The main difference between linear completely positive 
trace-preserving (CPTP) and NINO channels are that the generators of linear CPTP evolution are negative 
definite, leading to strictly nonexpansive dynamics, whereas NINO channels support non-CP19–22 and entropy 
decreasing1 processes that amplify the Bloch vector1,6. Hence we can interpret the NINO master equation as 
extending the GKSL equation to non-Hermitian Hamiltonians. Fernengel and Drossel2 studied cases where φ is 
nonlinear and tr[φ(X)] = 1 , a family of state-dependent CPTP channels obtained by adding state-dependence 
to a Hamiltonian and set of Lindblad jump operators. This is a stronger form of nonlinearity, supporting rich 
dynamical phenomena such as such Hopf bifurcations and strange attractors usually associated with classical 
nonlinear systems2. State-dependent CPTP channels also support Bloch-ball torsion. Torsion can be created 
from the product of an SO(3) rotation generator Jµ with the projection of the Bloch vector along the twist axis. 
Abrams and Lloyd23 and Childs and Young24 investigated state discrimination with z-axis torsion. Kłobus et al. 7 
observed Feigenbaum’s universal period doubling in a mean field model simulating torsion. Torsion also arises in 
a qubit friendly extension25 of a rigorous duality between nonlinear mean field theory and the BBGKY hierarchy 
for n interacting bosons in the n → ∞ limit26–30. Many of these nonlinear models come from mean field theory.

Methods
In this paper we investigate qubit PTP channels with both nonlinear φ and tr[φ(X)] �= 1 that support generalized 
Lorenz attractors. The first version, which we call Lor63, implements Lorenz’s 1963 model31

where r = (x, y, z) = tr(Xσ ) is the Bloch vector. However here we increase the nonlinearity by a factor of g ≫ 1 
to shrink the attractor sufficiently as to contain it within the Bloch sphere. The master equation for the Lor63 
qubit in the Pauli basis is

(1)
dx

dt
= σ(y − x),

(2)
dy

dt
= ρx − y − gxz,

(3)
dz

dt
= − βz + gxy,
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where a, b ∈ {1, 2, 3} and

X ∈ C
2×2 is a Hermitian positive-semidefinite matrix with unit trace. Model parameters ρ , σ , β , g are given in 

Table 1. The nonlinear generator Gab(r) is a 3× 3 real matrix that depends on the Bloch vector r . We decompose 
it into a linear ( r independent) operator L plus x-axis torsion. The J ’s are SO(3) generators: (Ja)bc = −εabc with ε 
the Levi-Civita symbol. L is decomposed into symmetric and antisymmetric parts implementing a non-Hermitian 
Hamiltonian iL. �1 is a Gell-Mann matrix. Note that �1 has a positive eigenvalue corresponding to an amplifying 
and entropy decreasing non-CP process1. Techniques for constructing Gell-Mann matrices and other symmetric 
generators from jump operators are given in6.

Result and discussion
The Lor63 qubit is simulated in Fig. 1. The blue points indicate random initial conditions. Trajectories rapidly 
approach one of the two disc-shaped sets (pink or cyan) and bounce back and forth between them in an unpre-
dictable manner, mirroring the aperiodic reversals of the Malkus waterwheel lying in its Fourier representation32.

A Lorenz-like attractor can also be created from the z-axis torsion coming from the Gross-Pitaevskii (GP) 
equation24,33,34, leading to an aesthetic attracting set shown in Fig. 2. We call this channel the GP butterfly. The 
GP butterfly qubit has an especially simple master equation:

where m = 10 , g = 40 , and

(4)
dX

dt
=

σ a

2

(

dra

dt

)

,
dra

dt
= tr

(

dX

dt
σ a

)

= Gab(r) rb = (L + gxJx)
abrb,
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, D=

(

σ 0 0
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)

, Jx=

(

0 0 0
0 0 − 1
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)

, Jz=

(

0 − 1 0
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0 0 0

)

.

(7)
dra

dt
= tr

(

dX

dt
σ a

)

= Gab(r) rb = (m�4 + gzJz)
abrb,

Table 1.   Lor63 model parameters.

Original Here

ρ 28 28

σ 10 10

β 8/3 8/3

g 1 80

Figure 1.   Bloch ball dynamics of the Lor63 qubit. The faint yellow wireframe shows the Bloch sphere. Equator 
states |±� = 2

−1/2(|0� ± |1�) and |±i� = 2
−1/2(|0� ± i|1�) are also indicated with black dots and cyan lines. The 

model parameters used in the simulation are given in Table 1.
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is another Gell–Mann matrix. The symmetric generator �4 can be implemented with Lindblad jump operators6.

Conclusion
In conclusion, we have proposed nonlinear PTP channels for the generation of Lorenz-like attractors in the Bloch 
ball. Despite its early prominence the Lorenz system defied rigorous analysis until rather recently when, in 2002, 
Tucker35 established the existence of a strange attractor. Classical electrical circuits have been used to imple-
ment the Lorenz attractor and other chaotic and hyperchaotic attractors36–39, which might find cryptographic 
application40,41. It is tempting to speculate that chaotic attractors will find application in quantum technology as 
well. However it is important to recognize the very large nonlinear coupling strengths required, making experi-
mental realization especially challenging.

Data availability
All data generated or analysed during this study are included in this published article.
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