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OPEN Proposal for a Lorenz qubit

Michael R. Geller

Nonlinear qubit master equations have recently been shown to exhibit rich dynamical phenomena
such as period doubling, Hopf bifurcation, and strange attractors usually associated with classical
nonlinear systems. Here we investigate nonlinear qubit models that support tunable Lorenz
attractors. A Lorenz qubit could be realized experimentally by combining qubit torsion, generated by
real or simulated mean field dynamics, with linear amplification and dissipation. This would extend
engineered Lorenz systems to the quantum regime, allowing for their direct experimental study and
possible application to quantum information processing.

Several recent papers'~” have considered nonlinear generalizations of the Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) master equation®”® for qudits. The superoperators resulting from these evolutions each take
the form of a positive trace-preserving (PTP) channel'®!! X > ¢ (X)/tr[¢(X)], with X a density matrix and ¢ a
positive map. The positivity of this normalized PTP channel follows from the positivity of ¢ and tr[¢ (X)] > 0.
It’s trace preservation property is actually a trace fixing one, but these are physically equivalent when applied to
normalized initial states. Kowalski and Rembieliniski!, and also Rembieliniski and Caban?, considered cases with
linear ¢ and tr[¢ (X)] # 1, extending Gisin’s 1981 model'? to mixed states. We call these channels nonlinear in
normalization only (NINO) to emphasize that the nonlinearity in this case serves only to conserve trace. We
might think of NINO channels as being “mildly” nonlinear. In particular, they satisfy a convex quasilinear-
ity property'?, preventing superluminal signaling'-'. The main difference between linear completely positive
trace-preserving (CPTP) and NINO channels are that the generators of linear CPTP evolution are negative
definite, leading to strictly nonexpansive dynamics, whereas NINO channels support non-CP"-?? and entropy
decreasing' processes that amplify the Bloch vector'®. Hence we can interpret the NINO master equation as
extending the GKSL equation to non-Hermitian Hamiltonians. Fernengel and Drossel® studied cases where ¢ is
nonlinear and tr[¢(X)] = 1, a family of state-dependent CPTP channels obtained by adding state-dependence
to a Hamiltonian and set of Lindblad jump operators. This is a stronger form of nonlinearity, supporting rich
dynamical phenomena such as such Hopf bifurcations and strange attractors usually associated with classical
nonlinear systems?. State-dependent CPTP channels also support Bloch-ball forsion. Torsion can be created
from the product of an SO(3) rotation generator ], with the projection of the Bloch vector along the twist axis.
Abrams and Lloyd® and Childs and Young® investigated state discrimination with z-axis torsion. Ktobus et al. 7
observed Feigenbaum’s universal period doubling in a mean field model simulating torsion. Torsion also arises in
a qubit friendly extension® of a rigorous duality between nonlinear mean field theory and the BBGKY hierarchy
for n interacting bosons in the n — oo limit**~*". Many of these nonlinear models come from mean field theory.

Methods
In this paper we investigate qubit PTP channels with both nonlinear ¢ and tr[¢ (X)] # 1that support generalized
Lorenz attractors. The first version, which we call Lor63, implements Lorenz’s 1963 model*
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wherer = (x, y,z) = tr(Xo) is the Bloch vector. However here we increase the nonlinearity by a factor of g > 1
to shrink the attractor sufficiently as to contain it within the Bloch sphere. The master equation for the Lor63
qubit in the Pauli basis is
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X e C?*?is a Hermitian positive-semidefinite matrix with unit trace. Model parameters p, o, f, gare given in
Table 1. The nonlinear generator G**(r)is a3 x 3 real matrix that depends on the Bloch vector r. We decompose
it into a linear (r independent) operator L plus x-axis torsion. The J’s are SO(3) generators: (Jo)pc = —&aqpc With &
the Levi-Civita symbol. L is decomposed into symmetric and antisymmetric parts implementing a non-Hermitian
Hamiltonian iL. 4, is a Gell-Mann matrix. Note that 4; has a positive eigenvalue corresponding to an amplifying
and entropy decreasing non-CP process'. Techniques for constructing Gell-Mann matrices and other symmetric

generators from jump operators are given in®.

Result and discussion

The Lor63 qubit is simulated in Fig. 1. The blue points indicate random initial conditions. Trajectories rapidly

approach one of the two disc-shaped sets (pink or cyan) and bounce back and forth between them in an unpre-

dictable manner, mirroring the aperiodic reversals of the Malkus waterwheel lying in its Fourier representation®.
A Lorenz-like attractor can also be created from the z-axis torsion coming from the Gross-Pitaevskii (GP)

equation®****, leading to an aesthetic attracting set shown in Fig. 2. We call this channel the GP butterfly. The

GP butterfly qubit has an especially simple master equation:

dr? dxX
= (Eaa) =G®)r® = (miy + g2J,)*r% )

where m = 10, g = 40, and
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Table 1. Lor63 model parameters.
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Figure 1. Bloch ball dynamics of the Lor63 qubit. The faint yellow wireframe shows the Bloch sphere. Equator
states |4) = 27'/2(|0) = |1)) and|i) = 27'/2(|0) = i|1)) are also indicated with black dots and cyan lines. The
model parameters used in the simulation are given in Table 1.
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Figure 2. Bloch ball dynamics of the GP butterfly qubit. Blue dots indicate random initial conditions.
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is another Gell-Mann matrix. The symmetric generator 14 can be implemented with Lindblad jump operators®.

Conclusion

In conclusion, we have proposed nonlinear PTP channels for the generation of Lorenz-like attractors in the Bloch
ball. Despite its early prominence the Lorenz system defied rigorous analysis until rather recently when, in 2002,
Tucker™® established the existence of a strange attractor. Classical electrical circuits have been used to imple-
ment the Lorenz attractor and other chaotic and hyperchaotic attractors®*-*%, which might find cryptographic
application®®*!. It is tempting to speculate that chaotic attractors will find application in quantum technology as
well. However it is important to recognize the very large nonlinear coupling strengths required, making experi-
mental realization especially challenging.
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