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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Unprecedented wildfires have increased 
smoke density and aerosol pollution. 

• MAIAC provides robust estimates of 
AOD under medium and high smoke 
density. 

• MAIAC under- and overestimates AOD 
under mixed and smoke aerosol, 
respectively. 

• MAIAC overestimates ground-based 
AOD most over barren land.  
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A B S T R A C T   

Wildfires produce smoke that can affect an area >1000 times the burn extent, with far-reaching human health, 
ecologic, and economic impacts. Accurately estimating aerosol load within smoke plumes is therefore crucial for 
understanding and mitigating these impacts. We evaluated the effectiveness of the latest Collection 6.1 MODIS 
Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm in estimating aerosol optical depth 
(AOD) across the U.S. during the historic 2020 wildfire season. We compared satellite-based MAIAC AOD to 
ground-based AERONET AOD measurements during no-, light-, medium-, and heavy-smoke conditions identified 
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using the Hazard Mapping System Fire and Smoke Product. This smoke product consists of maximum extent 
smoke polygons digitized by analysts using visible band imagery and classified according to smoke density. We 
also examined the strength of the correlations between satellite- and ground-based AOD for major land cover 
types under various smoke density levels. MAIAC performed well in estimating AOD during smoke-affected 
conditions. Correlations between MAIAC and AERONET AOD were strong for medium- (r = 0.91) and heavy- 
smoke (r = 0.90) density, and MAIAC estimates of AOD showed little bias relative to ground-based AERONET 
measurements (normalized mean bias = 3 % for medium, 5 % for heavy smoke). During two high AOD, heavy 
smoke episodes, MAIAC underestimated ground-based AERONET AOD under mixed aerosol (i.e., smoke and 
dust; median bias = −0.08) and overestimated AOD under smoke-dominated (median bias = 0.02) aerosol. 
MAIAC most overestimated ground-based AERONET AOD over barren land (mean NMB = 48 %). Our findings 
indicate that MODIS MAIAC can provide robust estimates of AOD as smoke density increases in coming years. 
Increased frequency of mixed aerosol and expansion of developed land could affect the performance of the 
MAIAC algorithm in the future, however, with implications for evaluating wildfire-associated health and welfare 
effects and air quality standards.   

1. Introduction 

Driven by the compounding effects of climate change and human 
activity, wildfires are increasing in frequency and intensity across many 
regions of the globe (Abatzoglou and Williams, 2016; Dennison et al., 
2014; Ellis et al., 2022; Jones et al., 2022). In the continental U.S., recent 
wildfires have exposed millions of people to toxic smoke (Burke et al., 
2021; Childs et al., 2022; Peterson et al., 2021) and have had profound 
impacts on terrestrial and aquatic environments (e.g., McKendry et al., 
2019; Olson et al., 2023; Scordo et al., 2021). Close monitoring of the 
timing, location, and spatial extent of wildfire smoke is thus critical to 
determine the short- and long-term effects of smoke on human health 
(Chen et al., 2021; Holloway et al., 2021; Roberts and Wooster, 2021) 
and to better understand smoke risks to socio-ecological systems (e.g., 
Geng et al., 2018; Ponette-González et al., 2016). 

Satellite earth observation products can provide continuous, 
consistent, and timely information on wildfire activity (Wooster et al., 
2021) and associated smoke plumes, including their spatial and tem
poral distribution, source, and thickness (e.g., Bian et al., 2020; Brey 
et al., 2018; Filonchyk et al., 2022; O’Dell et al., 2020; Vadrevu et al., 
2011). One such remote sensing-derived product extensively utilized in 
wildfire impacts research is aerosol optical depth (AOD). AOD provides 
a quantitative estimate of the amount of aerosol in the atmosphere and 
an efficient means to detect and characterize wildfire smoke over large 
geographic areas. Generally speaking, AOD values (at ~400–800 nm) 
can be used to indicate atmospheric conditions ranging from relatively 
clear with greater transmission of radiation (i.e., AOD < 0.2) to hazy 
with elevated aerosol concentrations and more light extinction (i.e., 
AOD > 0.6) (Martins et al., 2017). However, the accuracy and robust
ness of satellite-based AOD estimations depends on land surface char
acteristics (e.g., Falah et al., 2021; Loría-Salazar et al., 2016), 
atmospheric conditions (e.g., Tao et al., 2017), and assumptions in the 
algorithms regarding aerosol optical properties and ground surface 
reflectance (Falah et al., 2021). As such, changes in smoke density, 
composition, and distribution may not be accurately reflected in 
satellite-based AOD estimates, especially in the future as these charac
teristics change, with implications for models that use AOD to predict 
smoke impacts on air quality (Li et al., 2020b), agricultural productivity 
(Corwin et al., 2022), solar power production (Juliano et al., 2022), and 
climate (Tosca et al., 2013). 

Given these implications, we used data from the historic 2020 U.S. 
wildfire season (1 July to 31 October 2020) to evaluate the utility of the 
Moderate Resolution Imaging Spectroradiometer (MODIS) Multi-Angle 
Implementation of Atmospheric Correction (MAIAC) AOD product 
across the continental U.S. in a more fire- and smoke-prone future. We 
compared satellite-based MAIAC AOD retrievals with ground-based AOD 
measurements from the Aerosol Robotic Network (AERONET) under 
varying smoke density levels (none, light, medium, heavy). We selected 
MAIAC AOD over other AOD products for three reasons. First, the MAIAC 
algorithm uses a “smoke test” to discriminate smoke from clouds 

(Lyapustin et al., 2012), increasing the amount of valid AOD observations 
during fire periods. Second, MAIAC AOD is widely used in smoke and 
modeling studies in the U.S. and other regions (e.g., Aguilera et al., 2021; 
Filonchyk et al., 2022; Li et al., 2020b; Loría-Salazar et al., 2021; Nguyen 
and Wooster, 2020). Third, compared to previous algorithms, such as 
Dark Target and Deep Blue, MAIAC provides more refined aerosol char
acteristics and higher spatial resolution (Tao et al., 2019). 

The historic 2020 fire season provides a unique test case to assess the 
application of MAIAC for retrieving AOD during extreme fire and smoke. 
Between 2010 and 2019, an average of 64,000 fires burned ~2.8 million 
hectares (ha) across the continental U.S. (National Interagency Fire 
Center, 2020a). In 2020 alone, ~59,000 fires burned ~4.1 million ha, 
~50 % more than the 2010–2019 decadal average. Among these were 
four of the 12 largest fires in the historical record (Keeley and Syphard, 
2021). In the U.S. West, 27 megafires (i.e., burning >40,500 ha) in 
Arizona, California, Colorado, Oregon, Washington, and Wyoming 
(National Interagency Fire Center, 2020b) produced massive smoke 
plumes (e.g., 18 August to 25 August 2020, 11 September to 23 
September 2020), some of which lofted and mixed with dust (González- 
Olalla et al., 2024). Others spanned the entire continental U.S., spilling 
into Canada, Mexico, and neighboring oceans. By every measure, 2020 
was a historic fire and smoke year (Safford et al., 2022). 

Here we evaluate satellite-based AOD estimates during a period of 
historic, continent-wide wildfire smoke, under varying smoke density 
levels, and over major U.S. land cover types. Building on previous 
studies that have examined the sensitivity of AOD products to land cover 
(e.g., Falah et al., 2021; Martins et al., 2017; Shaylor et al., 2022) and 
aerosol type (Falah et al., 2022), this work uniquely extends knowledge 
through evaluation under varying smoke conditions. In addition, this 
work evaluates the latest Collection 6.1 of the MAIAC algorithm. We 
discuss the implications of our findings in the context of future wildfire 
scenarios in which smoke is expected to be thicker, dust more prevalent, 
and developed land more expansive. 

2. Material and methods 

2.1. Data product descriptions 

MODIS has been providing global AOD data with high temporal 
resolution for over 20 years. The MCD19A2 data product offers daily 1- 
km resolution land AOD grids by combining measurements from MODIS 
sensors aboard NASA’s Aqua and Terra satellites, which have a local 
equator crossing time of 01:30 pm and 10:30 am, respectively. 

The product employs the MAIAC algorithm (Lyapustin et al., 2018), 
which utilizes MODIS data from the preceding four to 16 days to create a 
baseline image of the surface background using multiple viewing angles 
that result from daily variations in satellite orbit path. Time series 
analysis and advanced image processing techniques allow the algorithm 
to decouple the surface background from the atmospheric data and 
improve the accuracy of satellite-based AOD retrievals (Lyapustin and 
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Wang, 2018). In Collection 6.1, the MAIAC algorithm has known limi
tations (Lyapustin and Wang, 2022): (1) high sun zenith angles (>70◦) 
are expected to reduce performance; (2) in desert regions, it generates 
persistent high AOD in areas with bright salt pans, leading to missing 
surface retrievals; and (3) near coastlines, there are likely to be frequent 
artifacts in cloud mask and surface bidirectional reflectance factor, 
while AOD values may be higher. 

The MCD19A2 Science Dataset layers include blue band AOD at 470 
nm and green band AOD at 550 nm. The 550 nm band was used in this 
study due to lower sensitivity to atmospheric interference and higher 
overall consistency (Ranjan et al., 2020). Two AOD Quality Assurance 
layers were employed to filter potential outlier retrievals to obtain the 
best quality data (Lyapustin and Wang, 2018): the cloud mask to identify 
clouds immediately over a given pixel and an adjacency mask to assess 
cloud presence in the surrounding pixels. 

We acquired the MCD19A2 data for the continental U.S. from the 
Atmospheric Archive and Distribution System Distributed Active 
Archive Center, spanning 1 July to 31 October 2020. Data from each of 
the standard MODIS tiles are reported with a single timestamp. Each of 
the tile’s MAIAC AOD measurements is reported independently and 
depends on the satellite’s orbit overpass time (Terra or Aqua). We 
focused on this time period to minimize the effects associated with 
seasonal changes in land cover and to maximize our ability to analyze 
different smoke densities due to the prevalence and severity of large fires 
at this time. In 2020, approximately 40 % (~23,000) of all fires and ~70 
% of all hectares burned (~2.9 million) occurred between July and 
October (National Interagency Fire Center, 2020a). In addition, the 
average fire size during the study period was two times larger compared 
to the average fire size for July to October 2000–2019. The spatial and 
temporal distribution of burned area in 2020 also differed from previous 
years. Burned area peaked in September, when fires burned 1.4 million 
ha of land, the most on record. Spatially, 40 % of all hectares burned in 
the U.S. were in California and > 80 % were spread across the U.S. West. 
Of the 50 largest fires in 2020, all but one (in Alaska) occurred in the U. 
S. West. Although fires were concentrated in the U.S. West, smoke dis
tribution was nearly continent-wide, with much of the U.S. experiencing 
smoke frequencies ranging from 40 to 100 days (Fig. S1). 

We used ground-based AERONET AOD (hereafter AERONET AOD), 
also for the period 1 July to 31 October 2020, as the validation dataset. 
AERONET is a global instrument network of sun photometers estab
lished by NASA and PHOTONS that collects ground-based measure
ments of aerosol optical properties at unevenly distributed locations but 
at a higher accuracy than satellite-based retrievals (Holben et al., 1998). 
For the visible and near-infrared wavelengths, the AOD uncertainty of 
the AERONET instrument is 0.01, while for ultraviolet wavelengths the 
uncertainty is 0.02; this low uncertainty makes AERONET an ideal 
validation data set for satellite remote sensing products (Eck et al., 1999; 
Giles et al., 2019; Holben et al., 1998). AERONET AOD values as high as 
7 can be measured (Eck et al., 2019). There are 446 AERONET sites in 
the continental U.S. A total of 94 AERONET sites reporting valid data 
during the study period were included in this analysis (Table S1). These 
sites represent diverse land cover types and fire regimes (Fig. S2). 

AERONET AOD data are collected every 15 min (Holben et al., 2018) 
with three levels of data available: Level 1 unscreened data, Level 1.5 
cloud-screened and quality-controlled data, and Level 2.0 quality- 
assured data (https://aeronet.gsfc.nasa.gov/new_web/index.html). 
AERONET Version 3 Level 2 AOD data were used in this study (Giles 
et al., 2019). In addition to AOD, we used the Ångström exponent at 
440–675 nm as a proxy for particle size (Eck et al., 1999). Aerosol size 
distributions dominated by coarse mode particles such as dust and 
seasalt generally have Ångström exponents <1, whereas aerosol distri
butions dominated by fine mode particles such as smoke and urban 
aerosol have values >1 and often closer to 2. 

We used the Hazard Mapping System (HMS) Fire and Smoke Product 
to determine smoke-affected days during the study period and to provide 
a qualitative indicator of smoke density. Described in detail by Rolph 

et al. (2009) and Brey et al. (2018), HMS is an interactive tool developed 
by NOAA NESDIS to provide daily fire locations and smoke plumes 
across North America (https://www.ospo.noaa.gov/Products/land/h 
ms.html#maps). The HMS relies on automated fire detections from 
the imagery of seven NOAA and NASA satellites; the spatial resolution of 
these observations ranges from 375 m to 2 km. Due to the error asso
ciated with automatic detections, trained analysts visually verify auto
mated fire detections by comparing them with satellite images. False fire 
detections are removed, and undetected fires are added to the dataset. 

Fire locations producing smoke are then used as the basis for smoke 
detection, which is conducted using visible band imagery primarily from 
Geostationary Operational Environmental Satellites (GOES) and occa
sionally from polar orbiting satellites. When smoke is identified, the 
analyst outlines the maximum aerial horizontal extent of smoke plumes. 
These smoke polygons provide information on smoke presence in the 
atmospheric column. Smoke plumes are then qualitatively classified into 
three density categories––light, medium, or heavy––based on approxi
mate smoke thickness in the satellite imagery. Smoke detection using 
visible imagery is restricted to daylight hours (i.e., nighttime smoke 
detection is not possible) and detection can be limited by cloud cover 
(Rolph et al., 2009). In certain regions, it can also be challenging to 
distinguish between smoke and haze (Brey et al., 2018). Thus, the HMS 
smoke plume data represent a conservative (i.e., lower bound) estimate 
of smoke occurrence. Despite these caveats, the HMS Fire and Smoke 
Product has been shown to be useful for a variety of applications and is 
now widely used in research to track smoke plumes and as an indicator 
of smoke density (e.g. Buysse et al., 2019; Bian et al., 2020; Dang et al., 
2022; O’Dell et al., 2019; Wen et al., 2023). 

To delineate land cover, we used the National Land Cover Database 
(NLCD)––an operational land cover monitoring program providing land 
cover information for the U.S. that is updated every few years (htt 
ps://www.mrlc.gov/data/nlcd-2016-land-cover-conus). Derived from 
Landsat imagery, the NLCD has 30-meter spatial resolution and is clas
sified into eight Level I categories using a supervised classification 
approach: water, developed, barren, forest, shrubland, herbaceous, 
planted/cultivated, and wetlands (Homer et al., 2007). The Level I 
overall accuracy of the 2016 product is 90.6 % via a third-party accuracy 
assessment (Wickham et al., 2021). 

2.2. AOD pre-processing and MAIAC-AERONET AOD spatio-temporal 
matching 

To ensure consistency, we interpolated AERONET AOD data to a 
wavelength of 550 nm since original data were not provided at this 
wavelength. The closest available wavelengths were 440 nm, 532 nm, 
551 nm, and 675 nm. The optimal wavelengths for interpolation were 
based on the number of available data points. There were fewer missing 
values for the 440 nm and 675 nm wavelengths. Thus, these wave
lengths were selected for interpolation using the following equation: 

τ550nm = τλ0 *
(

λ
λ0

)−α  

where τλ is the AOD at the target wavelength λ (550 nm), τλ0 is AOD at a 
reference wavelength λ0 (440 nm), and α is the Ångström exponent at 
440–675 nm provided by AERONET (Yang et al., 2018). 

To compare MAIAC and AERONET AOD, we matched data as closely 
as possible in space and time (Fig. 1). MODIS satellite imagery was the 
limiting temporal factor given the lower measurement frequency 
(typically 3–5 times per day over the CONUS) of the sensors compared to 
AERONET (~15 min). The location of the AERONET site was the 
limiting spatial feature given that AERONET provides AOD measure
ments for discrete points across the continental U.S. while MAIAC pro
vides retrievals over a much larger area. For the matchups, buffer zones 
centered on each AERONET site were created with radii of 500 m, 1 km, 
17.5 km, and 27.5 km (Table S1). Both smaller and larger averaging 
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Fig. 1. Spatio-temporal matching procedure. The top panel describes the temporal matching of the data, and the bottom panel describes the spatial matching of the 
data. On is the satellite’s nth orbit overpass time, Δtx is the difference in measurement time between On and the nearest AERONET reporting times, dn is the day n 
corresponding to any single day on which analysis occurred, and tm is the mth orbit overpass time on day n, where m is the number of MODIS orbit overpass times for 
the current day n. r in the spatial matching is the buffer radius. Land cover was determined using ‘majority voting’ (i.e., the mode land cover within the buffer). 
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areas have been used in other validation studies of MAIAC and Deep 
Blue AOD products (Eibedingil et al., 2021; Falah et al., 2021; Petrenko 
et al., 2012; Shaylor et al., 2022; Superczynski et al., 2017). 

Each MAIAC AOD measurement has an orbit overpass time which 
must be mapped to an AERONET AOD measurement on the ground. 
Therefore, for each orbit overpass time, the AERONET AOD measure
ment whose timestamp most closely matched that of the orbit overpass 
time was selected to provide a temporal match. If no AERONET AOD 
measurement existed within a ± 30-minute interval of the overpass 
time, the MAIAC measurement was discarded to reduce errors from AOD 
change over time (Eibedingil et al., 2021). For each of the temporal 
matches, MAIAC pixels were spatially matched to the most proximate 
AERONET site. To ensure a consistent, single timestamp within all given 
buffers, the AERONET sites with buffers overlapping multiple MODIS 
tiles were removed from the analysis. 

Daily smoke polygons were temporally matched to the MAIAC- 
AERONET AOD matchups and spatially matched to each AERONET 
site. Since the frequency of MAIAC-AERONET AOD matchups was 
higher than that of the HMS polygons, there were instances when a 
single smoke polygon was assigned to multiple matchups to determine 
smoke density level for these matchups. For example, in cases with 
extensive smoke polygons and AERONET sites in close proximity, a 
single smoke polygon extended to cover multiple AERONET sites. Once a 
smoke polygon was assigned to a matchup time, smoke density (light, 
medium, heavy) was determined for each AERONET site. The NLCD data 
were also intersected with the MAIAC-AERONET AOD matchups. 

2.3. Sensitivity analyses 

A sensitivity analysis was conducted to examine how MAIAC AOD, 
averaged over different-sized sampling buffers around the AERONET 
sites (500 m, 1 km, 17.5 km, and 27.5 km; Table S1), would influence the 
relationship between MAIAC and AERONET AOD and to determine the 
optimal buffer size for spatial matching between the two AOD products. 
MAIAC pixels whose center fell within the buffer zones were averaged to 
obtain a single MAIAC AOD value for comparison with a single AERO
NET AOD value for that site, time, and buffer size. We examined changes 
in correlation coefficients between MAIAC and AERONET AOD with 
increasing buffer size. 

We also examined the influence of land cover averaging area on 
relationships between MAIAC and AERONET AOD. For this analysis, we 
used sampling buffers with radii of 500 m, 1 km, and 10 km. We 
quantified the dominant land cover within the buffer zone around each 
AERONET site via majority voting (i.e., the mode land cover). Spatial 
matching was performed by assigning the dominant land cover type to 
each AERONET site. 

The MAIAC AOD averaging area had a minimal effect on correlations 
between MAIAC and AERONET AOD at small buffer sizes (i.e., 500 m 
and 1 km radius), and this was consistent across smoke density levels 
(Fig. S3). However, at the larger buffer sizes of 17.5 km and 27.5 km, 
correlations between MAIAC and AERONET AOD generally decreased 
during light, medium, and heavy smoke density (Fig. S3). This general 
pattern held true regardless of land cover buffer size. Correlation co
efficients between MAIAC and AERONET AOD also changed little with 
increasing land cover buffer size. Given these results, we selected a 
MAIAC AOD averaging area of 500 m around each AERONET site and a 
land cover averaging area of 500 m. Similar to Falah et al. (2021), we 
sought to take advantage of the high spatial resolution of the MAIAC 
AOD product, which captures fine-scale variability in aerosol and sur
face reflectance. 

2.4. Statistical analysis 

We used One-Way Analysis of Variance and Tukey’s HSD post hoc 
tests to examine differences in mean AOD among smoke density levels 
and land cover types. To evaluate the relationship between MAIAC and 

AERONET AOD for varying smoke conditions and land cover types, we 
computed the Pearson correlation coefficient (r), which indicates the 
direction and the strength of the relationship between the two AOD 
measurement methods, and the normalized mean bias (NMB), which 
quantifies the average over- or under-prediction by MAIAC with respect 
to AERONET AOD. We used an expected error (EE) envelope to provide a 
visual and numerical representation of the acceptable range of error. 
Ideally, the EE envelope should contain ~68 % of the matchups (rep
resenting an accuracy of ±1σ) between satellite- and ground-based AOD 
(Levy et al., 2013). Here EE10 was calculated as 

EE10 = ± (0.05 + 0.10*AODAERONET)

after Falah et al. (2021). Finally, we examined the relationship between 
bias (MAIAC AOD - AERONET AOD) and the Ångström exponent to 
better understand the sensitivity of MAIAC AOD to particle size. All 
statistical analyses were performed in R. Significance was set at p < 0.05. 

3. Results 

3.1. AERONET AOD by smoke density level and land cover 

Across all observations, AERONET AOD differed significantly by 
smoke density level. Mean AERONET AOD values were 3.2–8.5-fold 
higher during heavy- (mean = 0.77) compared to medium- (mean =

0.24), light- (mean = 0.13), and no-smoke- (mean = 0.09) conditions. 
For heavy smoke, the majority of AOD values were very high (i.e., first 
quartile = 0.27) relative to those for medium (first quartile = 0.12) and 
light (first quartile = 0.07) smoke. Maximum observed AERONET AOD 
was also considerably higher during heavy (4.49) than medium (2.45), 
light (1.81), and no smoke (0.53) (Table S2). 

Within smoke density levels, there were marked variations in AER
ONET AOD among land cover types (Table S2). During heavy smoke, 
mean AERONET AOD ranged from 0.49 to 0.94 and was significantly 
higher over developed land (0.94) and shrubland (0.83) compared to all 
other land cover types. There was less variation among land cover types 
(range 0.21–0.26) under medium smoke, but planted/cultivated (0.26), 
shrubland (0.26), and developed land (0.25) exhibited higher mean 
AOD than herbaceous land (0.21). Similarly, under light smoke condi
tions, land cover differences in mean AERONET AOD were small (range 
0.11–0.14) and showed the same general pattern (i.e., high AOD over 
planted/cultivated, shrubland, developed land and low AOD over her
baceous). AOD values during no-smoke conditions (0.07–0.11) were 
highest for developed and planted/cultivated land, lowest for shrubland, 
barren, and herbaceous land and intermediate for forests and wetlands. 
Developed land had the highest maximum AOD values under all smoke 
density levels: light (1.81), medium (2.45), and heavy (4.49). In 
contrast, maximum AOD was observed over forest land during smoke- 
free conditions. 

3.2. MODIS MAIAC performance during smoke 

During July to October 2020, sites affected by heavy smoke (n = 63) 
were concentrated in the western U.S. (Fig. 2). Compared to heavy 
smoke, medium smoke occurred more frequently at eastern and south
ern U.S. sites (n = 82). No-smoke conditions were prevalent at a larger 
number of sites (n = 93) as were light-smoke conditions (n = 87), and 
these sites were distributed across the continental U.S. 

Overall, site-level correlation coefficients between MAIAC and 
AERONET AOD values for light, medium, and heavy smoke were much 
stronger than for no-smoke conditions (Table S3), with the Mountain 
West and California showing weak correlations during smoke-free con
ditions and strong correlations during smoke-affected conditions 
(Fig. 2). There was also less spatial variation in the strength of the 
correlations during smoke events compared to no-smoke conditions. The 
MODIS MAIAC algorithm overestimated AOD at several sites during no 
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smoke and underestimated AOD at more sites as smoke intensity 
increased (Fig. 2). 

MODIS MAIAC overestimated AOD most during no-smoke conditions 
and overestimation decreased with increasing smoke density (Fig. 3). 
The correlation between satellite- and ground-based AOD was weakest 
for no smoke, and strongest for medium and heavy smoke density levels 
(Table S4). 

3.3. Effect of particle size on MODIS MAIAC performance 

During the study period, two heavy smoke events with high AOD 
peaks and contrasting Ångström exponents were identified (Fig. 4, top). 
The first, which spanned four days in mid-August (19 August to 22 
August 2020) and encompassed 35 sites, had a mean MAIAC AOD of 
0.76 and mean Ångström exponent of 1.73 (Fig. 4, middle). The second 

event occurred in mid-September (10 September to 12 September 2020) 
and affected 27 sites. Aerosol loading during the September event was 
higher (mean MAIAC AOD = 1.23), while the Ångström exponent was 
lower (mean = 1.1) than that of the August event. Differences in particle 
size between these events, as reflected in the Ångström exponents, were 
related to MAIAC AOD bias (Fig. 4, bottom). As Ångström exponents 
became smaller, MAIAC AOD showed increasing negative bias. Overall, 
MAIAC slightly overestimated AERONET AOD during the August event 
and underestimated AERONET AOD during the September event. 

3.4. Interactions between smoke density and land cover on MODIS 
MAIAC performance 

The correlation coefficient between satellite- and ground-based AOD 
was weakest while the magnitude of bias was greatest under smoke-free 

Fig. 2. Correlation coefficient and bias (unitless) between satellite-based (MAIAC) and ground-based (AERONET) observations of aerosol optical depth (AOD) during 
no smoke, light smoke, medium smoke, and heavy smoke across the continental U.S. for the study period (1 July to 31 October 2020) The color gradient shows the 
correlation coefficient (r) between MAIAC and AERONET AOD at the study sites. Upward-facing triangles indicate positive average normalized mean bias (NMB), 
downward-facing triangles indicate negative average NMB, and circles have an average NMB of no more than ±5 % across the study period. 

Fig. 3. Relationships between satellite- (MAIAC) and ground-based (AERONET) observations of aerosol optical depth (AOD) across smoke density levels for all 
matches across the study period (1 July to 31 October 2020). n is the number of data points, r is the correlation coefficient, NMB is the normalized mean bias, and 
EE10 is the expected error envelope. 
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conditions for all land cover types (Fig. 5). MODIS MAIAC overestimated 
AOD compared to AERONET AOD for all medium and heavy smoke-land 
cover combinations and, with few exceptions, the degree of over
estimation became smaller as smoke density level increased (Fig. 5). 

The MAIAC algorithm estimated AOD best over herbaceous and 
forest land cover across smoke density levels. Correlation coefficients 
between MAIAC and AERONET AOD were strong (Table S4), and the 
algorithm did not strongly over- or underestimate AOD. The strong 
performance of MAIAC over forest land cover was not surprising as 
forests––especially conifer forests––exhibit temporal stability, dark 
surfaces, and low background reflectance, which all lead to improved 
accuracy of AOD retrievals (e.g., Petrenko and Ichoku, 2013). Weaker 
correlations and higher levels of MAIAC AOD overestimation were seen 
for barren land under both light (NMB = 43 %) and medium smoke 
(NMB = 19 %). Under medium and heavy smoke, MAIAC was effective 

in estimating AERONET AOD over developed land: correlations between 
the products were strong and bias was small. 

4. Discussion 

4.1. Estimating AOD under worsening wildfire smoke 

During the 2020 historic wildfire season, MAIAC performed very 
well in estimating AOD under all smoke density levels, especially under 
medium and heavy smoke when AERONET AOD reached values as high 
as 4.5. Previous versions of the algorithm were limited in the charac
terization of strong aerosol emissions causing MAIAC to underestimate 
AOD at high aerosol loading and for intense smoke plumes (Loría-Sal
azar et al., 2021; Lyapustin et al., 2018; Superczynski et al., 2017). 
Given the known underestimation of AOD for biomass burning aerosol 

Fig. 4. The top panel shows a timeline of all MAIAC AOD values for all days between 1 July and 31 October 2020, and AERONET study sites in the continental U.S. 
Dot size is proportional to smoke density level, and color indicates the mean Ångström exponent value for each day. Grey bars indicate two high AOD heavy smoke 
events: 19 August to 22 August 2020 (Event 1) and 10 September to 12 September 2020 (Event 2). The middle panel shows only AERONET sites experiencing heavy 
smoke during the August and September heavy smoke events. Ångström exponent value for each site represents the average for each event. The bottom panel displays 
bias in satellite-based AOD (MAIAC AOD – AERONET AOD) by Ångström exponent values. Bottom left is the median bias for the August and September events. 
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Fig. 5. Relationships between satellite-based (MAIAC) and ground-based (AERONET) observations of aerosol optical depth (AOD) across smoke density levels and 
land cover types for the period 1 July to 31 October 2020. n is the number of data points, r is the correlation coefficient, and NMB is the normalized mean bias. 
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during heavier smoke events, updates to the regional aerosol models 
were made in Collection 6.1 based on an analysis of AERONET data 
(Lyapustin and Wang, 2022). In addition, MAIAC C6.1 increased 
maximum AOD at 470 nm from 4 to 6. 

In our analysis, we found strong correlations between MAIAC and 
AERONET AOD under medium and heavy smoke and a significant 
improvement in both overall bias and accuracy compared to Collection 
6.0 (Fig. S4). Thus, our results confirm that updates to the MAIAC al
gorithm not only led to better AOD estimations under medium and 
heavy smoke but also demonstrate that these improvements are evident 
during a period of historic, continent-wide wildfire smoke. 

Several characteristics of the fire and smoke events that occurred 
across the Western U.S. in 2020 could present challenges for the satellite 
retrieval of AOD in the future, however. Since the early 2000s, the 
number of smoke days across the U.S. has increased by approximately 
two days per year (Burke et al., 2021) and more of these smoke days are 
extreme (Wilmot et al., 2021). Intense fires can lead to exceptionally 
high AOD (Eck et al., 2023) and, under the most extreme conditions, can 
generate pyrocumulonimbus clouds that prevent AOD retrievals. Recent 
work suggests that there may be greater pyrocumulonimbus activity 
across various ecoregions in the western U.S. (Wilmot et al., 2022a). 
Furthermore, Eck et al. (2023) found that extreme forest fire events in 
the western U.S. were characterized by large variability in particle size 
and absorption properties. Such variability is a problem for satellite 
retrievals and regional aerosol models, which have difficulty with the 
complexity of smoke aerosol, particularly as it ages (Brown et al., 2021). 
In sum, in a more fire- and smoke-prone world, more extreme wildfire 
smoke and fire clouds could increase the uncertainty of satellite-based 
AOD retrievals. 

4.2. Estimating AOD under co-occurring smoke and dust 

Several record-breaking fires erupted in August and September 2020. 
The August Complex, the largest wildfire in California history, began in 
mid-August 2020 when thunderstorms and lightning associated with 
Tropical Storm Fausto triggered wildfires across the state (Cal Fire, 
2020). The August Complex burned 418,000 ha and emitted large 
quantities of smoke and black carbon into the atmosphere, which then 
spread across the U.S. West (Patel, 2020). Consistent with high black 
carbon concentrations, 32 of 35 AERONET sites affected by heavy smoke 
between August 19–22 had Ångström exponents >1.6, indicating the 
dominance of fine-mode particles. 

In mid-September, a cold front moving south from Canada generated 
high downslope winds along the mountains of Washington, Oregon, and 
California generating airborne dust while fueling existing fires and 
igniting new ones (Voiland, 2020). Wildfire smoke mixed with airborne 
dust forced road closures in Washington (White, 2020), while smoke and 
dust plumes were observed off the mountains in Oregon and Utah 
(Nelson, 2020). In California, firefighters faced concurrent threats of 
smoke and dust devils (Fedschun, 2020). During this period, 22 out of 
the 27 AERONET sites impacted by heavy smoke had Ångström values 
≤1.2, indicating the influence of coarse mode aerosol and a mixed 
particle size distribution. 

Smoke and dust can co-occur during fire events (Schlosser et al., 
2017), driving differences in smoke properties among regions (Bian 
et al., 2020). Our analysis demonstrates that even during very heavy 
smoke, the MAIAC algorithm is sensitive to these differences. MAIAC 
overestimated AERONET AOD during the August smoke-dominated 
event and underestimated AERONET AOD during the September dust- 
affected smoke event. This finding is in line with the results of Falah 
et al. (2021) who, in a multi-region study, showed that periods of 
moderate to high aerosol loading dominated by coarse particles resulted 
in AOD underestimation by the MAIAC algorithm. Superczynski et al. 
(2017) also found greater bias in AOD retrievals during periods of high 
AOD with coarse or mixed particle sizes. Zhang et al. (2019) attributed 
large MAIAC AOD bias over desert regions to the algorithm’s aerosol 

model. Should smoke and dust mixtures become more frequent as the 
scale and intensity of wildfires increase (Chauhan et al., 2018; Wagner 
et al., 2021), our findings suggest that this could affect the performance 
of the MAIAC algorithm. 

4.3. Estimating AOD in developed areas and within the wildland-urban 
interface 

While it is well known that the performance of the MAIAC algorithm 
is dependent on land cover (Falah et al., 2021; Martins et al., 2017; 
Shaylor et al., 2022), there are several reasons why the interface be
tween developed and undeveloped land—the wildland-urban inter
face—in the western U.S. presents challenges for satellite-based AOD 
retrievals during smoke-affected periods. Between July and October 
2020, mean and maximum AERONET AOD values over developed land 
across the continental U.S. were either the highest or among the highest 
under light, medium, and heavy smoke density levels. These high AOD 
values over developed land reflect a combination of local anthropogenic 
and transported smoke emissions. Notwithstanding, MAIAC was effec
tive in estimating AERONET AOD over developed land during medium 
and heavy smoke: correlations between the two products were strong 
and normalized mean bias was small. These results differ with findings 
from previous evaluations of the Collection 6 MAIAC algorithm, which 
indicate that satellite retrievals are hampered over developed land by 
emissions from multiple pollution sources and the extensive and 
spatially varying coverage of bright surfaces (e.g., roads and buildings; 
Martins et al., 2017; Qin et al., 2021). 

In contrast to developed land, satellite- and ground-based AOD were 
not as strongly correlated for barren land under the various smoke 
density levels, and there was considerable positive bias under light and 
medium smoke. The issue of bright surfaces affecting retrievals has been 
observed in other desert regions (but see Sever et al., 2017), where 
MAIAC has been found to overestimate AOD and result in a higher 
proportion of missing AOD values (Eibedingil et al., 2021; Li et al., 
2020a; Qin et al., 2021; Zhang et al., 2019). The fact that many cities in 
the western U.S. are surrounded by desert complicates AOD retrievals in 
these areas (Li et al., 2020b; Loría-Salazar et al., 2016), and likely at 
their interface. Further expansion of developed land into undeveloped 
land will only increase the area over which satellite AOD retrievals can 
be difficult. 

Fires that occur at the transition between developed and undevel
oped land also generate emissions with distinct chemistries when 
compared with those of natural fuels (Jaffe et al., 2020). Coupled with 
the large number and concentration of emission sources in cities, smoke- 
affected developed areas are enveloped by increasingly complex aerosol 
mixtures. We and others (e.g., Rogozovsky et al., 2021; Superczynski 
et al., 2017) have shown that such mixtures are less well captured by the 
MAIAC algorithm and lead to underprediction of AOD. 

While developed land continues to expand, recent estimates indicate 
that the wildland-urban interface now encompasses 5.6 %–18.8 % of the 
total land area across the conterminous U.S. (Carlson et al., 2022), 
including some 49 million residential homes (Burke et al., 2021). Fire 
prevalence in this transition zone heightens wildfire risk to communities 
and housing (Radeloff et al., 2018) and contributes to episodic AOD (and 
therefore particulate matter) spikes within cities (Filonchyk et al., 2022; 
Yang et al., 2021). As such, future research on satellite-based AOD es
timates in the expanding transition zones between developed and 
neighboring areas during smoke periods is warranted. 

5. Implications 

Our research suggests that MAIAC provides robust estimates of AOD 
under worsening wildfire smoke, but that increased frequency of smoke- 
dust aerosol mixtures and expansion of developed land may affect the 
performance of the MAIAC algorithm. In a more fire- and smoke-prone 
future, accurately estimating AOD is crucial for developing robust 
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models of fine particulate matter, which rely on AOD as input data 
(Loría-Salazar et al., 2016). High-resolution estimates of near-surface air 
quality are critical both in the context of increasing population exposure 
to large fires (Peterson et al., 2021) and to the negative downwind ef
fects of wildfire-emitted fine particulate matter––PM2.5 (e.g., Buysse 
et al., 2019; Wilmot et al., 2022b). As smoke distributions increasingly 
overlap with population distributions (Peterson et al., 2021), accurate 
satellite-based AOD estimates will become ever more important for 
evaluating wildfire-associated health effects (Geng et al., 2018) and 
current air quality standards. 
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