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Slow Kill for Big Data Learning
Yiyuan She, Jiahui Shen, and Adrian Barbu

Abstract—Big-data applications often involve a vast number
of observations and features, creating new challenges for vari-
able selection and parameter estimation. This paper presents
a novel technique called “slow kill,” which utilizes nonconvex
constrained optimization, adaptive ℓ2-shrinkage, and increasing
learning rates. The fact that the problem size can decrease
during the slow kill iterations makes it particularly effective for
large-scale variable screening. The interaction between statistics
and optimization provides valuable insights into controlling
quantiles, stepsize, and shrinkage parameters in order to relax
the regularity conditions required to achieve the desired level of
statistical accuracy. Experimental results on real and synthetic
data show that slow kill outperforms state-of-the-art algorithms
in various situations while being computationally efficient for
large-scale data.

Index Terms—Top-down algorithms, sparsity, nonconvex op-
timization, nonasymtotic analysis, sub-Nyquist spectrum sensing

I. INTRODUCTION

This paper studies how to build a parsimonious and predic-
tive model in big data applications, where both the number of
predictors and the number of observations can be extremely
large. Let y ∈ Rn be a response vector with n samples and
X = [x1, . . . , xp] ∈ Rn×p be a design matrix consisting of
p features or predictors. Consider a general learning problem
with loss l0(Xβ; y) to measure the discrepancy between Xβ
and y. As p can be much larger than n, a sparsity-promoting
regularizer is often used to capture model parsimony

min
β∈Rp

l0(Xβ; y) + P (β;λ), (1)

where λ is a regularization parameter. There are numerous
options for l0 and P , neither of which are necessarily convex.
In many cases, l0 may be a negative log-likelihood function,
but we will consider a more general setup that may not be
based on likelihood.

Over the past decade, there have been significant advance-
ments in statistical theory for the minimizers of the penalized
problem (1). However, modern scientists often encounter chal-
lenges with big data, making it impractical to obtain globally
optimal estimators even when convexity is present. This paper
aims to incorporate computational considerations into statisti-
cal modeling, resulting in a new big-data learning framework
with theoretical guarantees. When tackling these challenges
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in large-scale variable selection, the desired algorithms should
possess the following traits:

(a) Ease in tuning. It is common in practice to seek a
solution with a prescribed cardinality (or a specific number
of variable, denoted by q). However, using an algorithm
designed for the penalized problem (1) may require excessive
computation, and the regularization parameter λ may not
be as intuitive when attempting to achieve this objective.
Many practitioners perform a grid search for λ. However,
when dealing with big data, the grid must be fine enough to
encompass potentially useful candidate models, resulting in a
substantial computational burden.

(b) Scalability. In addition to being efficient, an ideal algo-
rithm should be easy to implement. Since ad-hoc procedures
can be unreliable, it is preferable to employ an algorithm
based on optimization rather than relying on heuristics. It
would also be advantageous if the algorithm could adapt its
parameters according to the available computational resources,
which necessitates an understanding of the algorithm’s itera-
tion complexity and per-iteration cost.

(c) Statistical guarantee. It is widely recognized that the
lasso is effective for variable selection when the design matrix
exhibits low coherence and the signal is sufficiently strong
[1, 2]. Some simpler and faster methods, such as those for
variable screening [3], are based on the assumption of indepen-
dent (or only mildly correlated) features. While these weak-
correlation assumptions allow for aggressive feature elimina-
tion, they are often restrictive for real-world high-dimensional
data. Evaluating a globally optimal solution to (1) with an
ℓ0-type penalty [4] does have a statistically sound guarantee
regardless of coherence, but is only computationally feasible
for small datasets. Therefore, a more pressing challenge is
to design an iterative process that can relax the stringent
regularity conditions required for attaining optimal statistical
accuracy.

This work proposes a new approach called slow kill to
tackle the aforementioned challenges. The main features of
the algorithm are as follows.

• Interestingly, slow kill works in the opposite direction
of forward pathwise methods and boosting algorithms,
which all build up a model from the null [5–9].

• Slow kill incorporates adaptive ℓ2-shrinkage and growing
learning rates to handle coherent designs and reduce
computational burden. Its roots in optimization make it
computationally scalable and easy to tune parameters.

• Theoretically, slow kill enjoys rigorous, provable guaran-
tees of accuracy and linear convergence in a statistical
sense. In particular, our theory supports backward quan-
tile control and fast learning.

The rest of the paper is organized as follows. Section II
investigates a hybrid regularized estimation in the regres-
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sion setting to motivate some basic elements of slow kill
and compares it to related works. Section III introduces the
general slow kill procedure for a differentiable loss function
and analyzes how the statistical error changes as the cycles
progress. Section IV performs extensive simulations and real
data experiments to compare slow kill to some state-of-the-
art methods in terms of both efficiency and accuracy. We
summarize our findings in Section V. More technical details
are provided in the appendix.

Notations and symbols. The following notations and sym-
bols will be used. Let [n] = {1, . . . , n} and ⌊x⌋ be the largest
integer smaller than or equal to x. Define a ∨ b = max(a, b)
and a∧b = min(a, b). We use a ≲ b to denote a ≤ cb for some
positive constant c, and the constants denoted by c or C may
not be the same at each occurrence. Given any β ∈ Rp, we use
J (β) ⊂ [p] to denote its support, i.e., J (β) = {j : βj ̸= 0},
and J(β) = |J (β)| = ∥β∥0 =

∑p
j=1 1βj ̸=0. Given I ⊂ [p],

we use XI to denote the sub-matrix of X formed with the
columns in I , and βI the subvector associated with I . In
particular, xj denotes the jth column of X for any j ∈ [p].
When A is a symmetric matrix, we use AI to denote the sub-
matrix of A formed with the columns and rows indexed by
I , and λmax(A), λmin(A) to denote its largest and smallest
eigenvalues, respectively.

Given X ∈ Rn×p, the restricted isometry numbers ρ+(s),
ρ−(s) [10] are the smallest and largest numbers, respectively,
that satisfy

ρ−(s)∥β∥22 ≤ ∥Xβ∥22 ≤ ρ+(s)∥β∥22, ∀β ∈ Rp : ∥β∥0 ≤ s,
(2)

and their dependence on X is omitted. Obviously, 0 ≤
ρ−(s) ≤ ρ+(s) ≤ ρ+(p) = ∥X∥22, where ∥X∥2 denotes the
spectral norm of X .

For ease of presentation, we introduce a quantile-
thresholding operator Θ# which performs simultaneous
thresholding and ℓ2-shrinkage [11]. Given any s =
[s1, . . . , sp]

T ∈ Rp, Θ#(s; q, η) = [t1, . . . , tp]
T satisfying

t(j) = s(j)/(1 + η) if 1 ≤ j ≤ q, and 0 otherwise, where
s(1), . . . , s(p) are the order statistics of s1, . . . , sp satisfy-
ing |s(1)| ≥ · · · ≥ |s(p)|, and t(1), . . . , t(p) are defined
similarly. To avoid ambiguity, we make a Θ#-uniqueness
assumption in performing Θ#(s; q, η) throughout the paper:
either |s(q)| > |s(q+1)| or s(q) = s(q+1) = 0 occurs. The
multivariate quantile thresholding function Θ⃗#(S; q, η) for any
S = [s1, . . . , sp]

T ∈ Rp×m is defined as a p × m matrix
T = [t1, . . . , tp]

T with tj = sj/(1+ η) if ∥sj∥2 is among the
q largest elements in {∥sj∥2 : 1 ≤ s ≤ p}, and 0 otherwise.

II. WHY BACKWARD SELECTION?

This section is to motivate a “top-down” algorithm design
in the fundamental regression setting. The quadratic loss is an
important case of strongly convex losses and examining this
case will provide a foundation for more general studies under
restricted strong convexity.

Assume y = Xβ∗ + ϵ, where β∗ ∈ Rp, ∥β∗∥0 ≤ s with
s ≤ p ∧ n. To begin with, we consider an ℓ0-constrained,

ℓ2-penalized optimization problem to estimate the coefficient
vector in high dimensions,

min
β

1

2
∥y −Xβ∥22 +

η0
2
∥β∥22 ≡ f(β) s.t. ∥β∥0 ≤ q. (3)

When X, y are not centered, an intercept term 1α should be
added in the loss, and α is subject to no regularization. The
hybrid regularization in (1) differs from the commonly used
linear combination of ℓ1 and ℓ2 penalties in the elastic net
[12]. Compared to the regular ℓ1 penalty and other nonconvex
penalties, ∥ · ∥0 is arguably an ideal choice for enforcing
sparsity and does not incur any unwanted bias. The constraint
parameter q (≤ p) directly controls the number of variables
in the resulting model, making it more convenient to use
than a penalty parameter λ. The simultaneous ℓ2-penalty is
to compensate for collinearity and large noise, and is later
used to overcome some obstacles in backward elimination. The
associated regularization parameter η0 can be easily tuned and
is not highly sensitive in experiments. Our theoretical analysis
will reveal the benefits of a carefully designed shrinkage
sequence for both numerical stability and statistical accuracy.

Problem (3) is nonconvex and includes a discrete constraint.
While it can be challenging to computationally solve prob-
lems of this nature, it is possible to find a local minimum
using a scalable iterative optimization algorithm. Moreover,
in the era of big data, it may not be necessary to fully
solve (3) in order to achieve good statistical performance
for “regular” problems and analyzing algorithm-driven non-
global estimators is crucial to discovering new and cost-
effective methods for improving the statistical performance of
nonconvex optimization. Concretely, to introduce a prototype
algorithm, we first construct a surrogate function g(β, β−) for
(3),

g(β, β−) =
1

2
∥y −Xβ−∥22 + ⟨XT (Xβ− − y), β − β−⟩

+
ρ

2
∥β − β−∥22 +

η0
2
∥β∥22,

with ρ > 0 to be chosen later, and then define a sequence of
iterates by

β(t+1) = arg min
β:∥β∥0≤q

g(β, β(t)). (4)

Recall the quantile-thresholding operator Θ# defined at the
end of Section I. With some simple algebra (details omitted),
we obtain an iterative quantile-thresholding algorithm

β(t+1) = Θ#
{
β(t) − 1

ρ
XT (Xβ(t) − y); q, η0

ρ

}
. (5)

The first step amounts to the sure independence screening [3]
when β(0) = 0. However, (5) iterates to lessen greediness with
a low per-iteration cost.

The update rule in (5) possesses some desirable compu-
tational properties. For instance, if ρ is large enough (more
specifically, ρ ≥ ρ+(2q) with ρ+(·) defined in (2)), then
the algorithm shows a worst-case sublinear convergence rate,
regardless of the problem’s dimensions, coherence, and sig-
nal strength. The obtained solutions (though not necessarily
optimal) can be characterized as fixed points of the algorithm
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mapping defined in (4). For more results and technical details,
please refer to Theorem A.1.

This class of procedures has been used in signal and
information processing [11, 13], and in the special case of
η0 = 0, the plain update rule of (5) falls under the category
of iterative hard-thresholding (IHT) algorithms [14, 15] which
only exhibit mediocre performance (cf. Remark 3 and Section
IV). In fact, there is much potential for improvement by
adaptively adjusting the three key parameters ρ, η0, q in (5),
which has not been systematically explored in the literature.

A. Statistical error analysis: power and limitations

While optimization error is important for analyzing an
algorithm, our main focus is on statistical error. This sub-
section investigates the prototype algorithm (5) to motivate
new techniques in later sections. In order to obtain sharp
nonasymptotic results for this algorithm, it is important to note
that the thresholds vary from iteration to iteration and the final
estimator may not be globally optimal.

Recall y = Xβ∗ + ϵ with ∥β∗∥0 ≤ s. Let

ϑ := q/s

with ϑ > 1 throughout the paper. A fixed point β̂ associated
with (5) that satisfies the following equation is called a Θ#-
estimator,

β̂ = Θ#
{
β̂ − 1

ρ
XT (Xβ̂ − y); q, η̄0

}
, with η̄0 = η0/ρ. (6)

Theorem 1 studies the statistical accuracy of these estimators.

Theorem 1. Assume that ϵ is a sub-Gaussian random vector
with mean zero and scale bounded by σ (cf. Definition A.1 in
the appendix). Let β̂ be any estimator satisfying (6) for some
η0 ≥ 0 with ∥β̂∥0 = q, and ρ > 0 be chosen such that

ρ− {(2− ε)
√
ϑ− 1}η0√

ϑ
∥β∥22 ≤ (2− δ)∥Xβ∥22,

∀β : ∥β∥0 ≤ (1 + ϑ)s

(7)

for some ε, δ > 0. Then with probability at least 1− Cp−c,

∥X(β̂−β∗)∥22∨
η0ε

δ
∥β̂−β∗∥22 ≲

1

δ2
σ2ϑs log

ep

ϑs
+
η0
δε
∥β∗∥22,

(8)
where C, c > 0 are constants.

From the error bound, (5) can achieve the minimax optimal
error rate of O(σ2s log(ep/s)) [16], under the assumption
of (7) and when ϑ, δ, ε are treated as constants. The result
does not need η0 to be exactly zero. In fact, a positive η0 can
actually be beneficial in satisfying the condition of (7) (e.g.,
ρ = (1.9

√
ϑ − 1)η0 + 1.9

√
ϑρ−(q + s) and ε = δ = 0.1,

applicable to q > n). Another interesting observation is
that ρ should be chosen to be properly small to achieve
good statistical accuracy, which is in contrasts to the bound
ρ ≥ ρ+(2q) mentioned earlier for numerical convergence. The
remarks below make some further extensions and comparisons.

Remark 1 (Estimation error bounds and faithful variable se-
lection). The ℓ2-recovery result of Theorem 1 is fundamental,

and can be used to derive estimation error bounds in other
norms under proper regularity conditions.

Theorem 2. In the setup of Theorem 1, suppose the regularity
condition (7) is replaced by{ρ− (2

√
ϑ− 1)η0√
ϑ

+ δρ+((1 + ϑ)s)
}
∥β∥22 ≤ 2∥Xβ∥22,

∀β : ∥β∥0 ≤ (1 + ϑ)s

(9)

for some δ > 0. Then

∥β̂ − β∗∥22 ≲
1

δ2ρ+((1 + ϑ)s)
σ2ϑs log

ep

ϑs

+
η20

δ2ρ+((1 + ϑ)s)
∥β∗∥22

(10)

holds with probability at least 1 − Cp−c, for some C, c > 0.
Moreover, under

ν∥β∥∞ ≤ ∥(XTX+η0I)β∥∞/n, β : ∥β∥0 ≤ (1+ϑ)s (11)

for some ν > 0, any fixed-point β̂ satisfies

∥β̂ − β∗∥∞ ≤
(ρ+ η0)

nν
√
ϑ− 1

∥β̂ − β∗∥2√
s

+
∥XT ϵ∥∞

nν
+
η0
nν
∥β∗∥∞,

(12)

∥(β̂ − β∗)J ∗∥∞ + (1− ρ+ η0
nν

)∥(β̂ − β∗)Ĵ \J ∗∥∞

≤ ∥X
T ϵ∥∞
nν

+
η0
nν
∥β∗∥∞, (13)

where J ∗ = J (β∗), Ĵ = J (β̂).

Compared with (7), the condition of (9) replaces δ∥Xβ∥22
by δρ+((1+ϑ)s)∥β∥22. When q and s are small, ρ+((1+ϑ)s)
is of the order O(n). Therefore, (10) becomes ∥β̂ − β∗∥22 ≲
{σ2s log(ep/s)}/n, assuming δ, ϑ are constants and η0 is
properly small.

Moreover, the element-wise error bound (12) implies faithful
variable selection under regularity condition (11) (which, like
previous regularity conditions, favors low coherence, i.e., the
off-diagonal entries of XTX/n should be relatively small
in magnitude). Specifically, assuming ϑ, ν, δ are constants,
∥xj∥2 ≲

√
n, ρ + η0 ≲ n and the beta-min condition

minj∈J ∗ |β∗
j | > cσ{log(ep)/n}1/2 with a sufficient large

constant c, (12) indicates that the s largest elements in |β̂j |
correspond to J ∗ = {j : β∗

j ̸= 0} with high probability.

Remark 2 (Fixed points vs. globally optimal solutions). The
statistical accuracy results (8), (10), and (12) are proved
for all nonglobal fixed-point estimators defined by (6). Our
proof can be slightly modified to show that if a globally
optimal solution can be computed, the statistical error rate
remains unchanged but the left-hand side of (7) becomes
0, indicating that the regularity condition always holds for
any δ ≤ 2. However, relying on multiple starting points to
obtain a globally optimal solution and thus improve statistical
performance can be inefficient for large datasets.

Remark 3 (Comparison with some theoretical works). The
aforementioned class of IHT algorithms may refer to the
use of hard-thresholding ΘH(s;λ) = [si1|si|≥λ] with a fixed
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threshold λ, or a varying threshold as the q/p-th quantile of
|si| (1 ≤ i ≤ p) by fixing q [14, 15]. In comparison, the ℓ2
component in (5) should not be ignored, and it may result in
a different sparsity pattern in the presence of high coherence
and large p. Fairly speaking, the performance of IHT is not on
par with some standard statistical methods and packages (such
as the lasso). This is why we performed theoretical analysis
in the hopes of discovering and developing new techniques.

In a theoretical study, [17] obtained a convergence result
in terms of function value under

ϑ > ρ2+(2q)/ρ
2
−(2q),

which improves the condition in [18]

ϑ > 32ρ2+(2q)/ρ
2
−(2q).

Our condition in Theorem 1 is even less restrictive. For
example, a sufficient condition for (7) is

ϑ > {ρ+(2q) + η0}2/[4{ρ−(q + s) + η0}2],

or
ϑ > {ρ+(2q) + η0}2/[4{ρ−(2q) + η0}2)]

because ρ−(q + s) ≥ ρ−(2q), which becomes ϑ >
ρ2+(2q)/{4ρ2−(2q)} in the worst case of η0 = 0.
In conclusion, 32ρ2+(2q)/ρ

2
−(2q) ≥ ρ2+(2q)/ρ

2
−(2q) ≥

ρ2+(2q)/{4ρ2−(2q)} ≥ ρ2+(2q)/[4{ρ−(q + s)}2] ≥ {ρ+(2q) +
η0}2/[4{ρ−(q + s) + η0}2], and our obtained error rate of
σ2s log(ep/s) is minimax optimal.

Interested readers may also refer to [19–21, 9, 17, 22],
for example, for the analyses of various penalties and mixed
thresholding rules, with an error rate of σ2s log(ep). Since
our purpose is to design a new backward selection algorithm
for problems with a predetermined number of features, we
will not discuss their technical assumptions. The experiments
in Section IV make a comprehensive comparison of different
methods in various scenarios.

B. New means of improvement for large-scale data

Providing provable guarantees for prediction, estimation,
and variable selection is reassuring. But the real challenge lies
in finding innovative techniques that can relax the required
regularity conditions to ensure good statistical accuracy, while
being more cost-effective than using multiple random starts.
To gain further insights, we can use the restricted isometry
numbers (as defined in (2)) to provide a sufficient condition
for (7):

ρ < 2
√
ϑρ−(q+s)+(2

√
ϑ−1)η0 or 4ϑ >

(ρ+ η0)
2

(ρ−(q + s) + η0)2
.

(14)
1) “Fast” learning: One key takeaway from the results

presented in Section II-A is the importance of the inverse
learning rate, ρ. In the field of machine learning, it is com-
monly advised to use a “slow” learning rate when training
a nonconvex model. This can ensure good computational
performance, as evidenced by the lower bound of ρ in Theorem
A.1. However, it is important to note that according to (14),

using an excessively large value for ρ may compromise the
statistical guarantee of the model.

In fact, (7) suggests that smaller values of ρ are preferred,
and combining statistical and numerical analysis leads to the
following range for ρ:

ρ+(2q) ≤ ρ ≤ 2
√
ϑρ−(q + s) + (2

√
ϑ− 1)η0. (15)

In convex programming, the choice of stepsize does not
affect the optimality of the solution as long as the algorithm
converges. However, in our case of nonconvex constrained
optimization, it is important to choose a large enough value
for 1/ρ not only to gain fast convergence, but also to ensure
statistical accuracy. To the best of our knowledge, this is a
novel finding. Since it may not be easy to determine the
theoretical restricted isometry numbers in practice, a routine
line search for the step size can be used. Specifically, according
to the proof in Appendix A, one can use the majorization con-
dition f(β(t+1)) ≤ g(β(t+1), β(t)) or ∥X(β(t+1) − β(t))∥22 ≤
ρ∥β(t+1)−β(t)∥22 to prevent ρ from becoming too large while
still preserving the convergence properties stated in Theorem
A.1. The concept of using an iteration-varying sequence ρt
will be important in the next section.

2) “Backward” selection: Another important discovery is
the influence of cardinality control. If we use a conservative
inverse learning rate of ρ = ρ+(2q), then (14) imposes a limit
on the restricted condition number of the design matrix:

ϑ > [ρ+(2q) + η0]
2/{4[ρ−(q + s) + η0]

2)}. (16)

This suggests a promising approach to relax the regularity
condition by increasing the value of ϑ.

Figure 1 confirms the point assuming random designs: the
larger the value of q is, the more likely it is for (14) to hold
on large-scale data. Random matrix theory also supports this
idea.

1 2 3 4 5 6 7 8 9 10
0.6

1

1.4

1.8

2.2

4
-2 (q

+s
)/

2 +(2
q)

Fig. 1: An illustration of how 4ϑρ2−(q+s)/ρ
2
+(2q) varies as ϑ

increases. Here, the rows of X are independently drawn from
a multivariate Gaussian distribution with zero mean and the
covariance Σ = [0.5|i−j|], n = 2,000, p = 4,000, s = 4. To
determine ρ± for a given matrix X , we perform a random
sampling. The results are averaged over 100 independent X’s
that are generated from the same distribution.

Theorem 3. Assume that the rows of the random matrix X ∈
Rn×p are independent and identically distributed as N(0,Σ),
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where Σii ≤ 1. Let λ(2q)max be the largest eigenvalue of ΣI for all
I ⊂ [p] with |I| ≤ 2q, and λ(q+s)min be the smallest eigenvalue
of ΣI for all I ⊂ [p] with |I| ≤ q+s. Then for any 0 < c < 1,

ρ+(2q)

ρ−(q + s)
≤

 (1 + c)

√
λ
(2q)
max +

√
{2λ(2q)maxq log(ep/q)}/n+

√
2q/n

(1− c)
√
λ
(q+s)
min −

√
{λ(q+s)min (q + s) log(ep/q)}/n−

√
(q + s)/n


2

(17)

with probability at least 1 − 2 exp(−nc2/2), assuming n ≥
{2(q + s)/(1− c)2}{1/λ(q+s)min + log(ep/q)}.

The results can be extended to sub-Gaussian designs (by
using, for example, Theorem 6.2 of [23] and Weyl’s theorem).
Let us consider the Toeplitz design Σ = [τ |i−j|] with 0 ≤ τ <
1. By the interlacing theorem,

1− τ
1 + τ

= λmin(Σ) ≤ λ(q+s)min ≤ λ(2q)max ≤ λmax(Σ) =
1 + τ

1− τ
,

and so the right-hand side of (17) is bounded by a constant
with high probability as n ≫ q log (ep/q). Accordingly, the
regularity condition can be satisfied with a properly large ϑ.

Of course, the error bound in (8) also increases with larger
values of q. To address this issue, we propose employing a de-
creasing sequence of qt to progressively tighten the cardinality
constraint. Based on previous discussions, it is thus advisable
to use increasing learning rates 1/ρt (such as 1/ρ+(2qt))
in the iterative process. It may also be beneficial to adjust
the shrinkage parameter to a sequence ηt, particularly when
qt > n. This resulting algorithm, which combines progressive
quantiles, ℓ2-shrinkage, and learning rates, will be referred to
as “slow kill.” It differs from the pure optimization algorithm
(5) with a fixed q and from various bottom-up boosting and
greedy algorithms that are commonly used in the literature.

The purpose of this section is to provide a compelling ratio-
nale for certain aspects of slow kill techniques. We will present
results in a more general setting, including fast convergence of
the iterates and how slow kill improves the quality of the initial
estimate as qt approaches q, further relaxing the regularity
conditions.

III. ADAPTIVE CONTROL OF QUANTILES, LEARNING
RATES, AND ℓ2-SHRINKAGE

Given a general loss, based on the discussions in the last
section, we pursue sparsity in β via

min
β∈Rp

l0(Xβ; y) +
η0
2
∥β∥22 ≡ l(β) +

η0
2
∥β∥22 ≡ f(β)

s.t. ∥β∥0≤ q,
(18)

where for notational ease, l0(Xβ; y) is often abbreviated as
l(β). Again, the use of hybrid regularization is intended to
address collinearity and large p. We assume that the regular-
ization parameters q, η0 are given in the algorithm design and
theoretical analysis. (Of course, given q, one can easily tune
the value of η0 using methods such as AIC; as for the selection
of q, an information criterion is provided in the Appendix H.)
The generalized Bregman function for a differentiable l is one
of the main tools we use to handle a variety of losses:

∆l(β1, β2) := l(β1)− l(β2)− ⟨∇l(β2), β1 − β2⟩, (19)

where the differentiability can be replaced by directional
differentiability to analyze a wide range of algorithms in statis-
tical computation [22]. If l is also strictly convex, ∆l becomes
the standard Bregman divergence [24, 25]. When l(·) = ∥ ·
∥22/2, ∆l(β1, β2) = ∥β1−β2∥22/2, which is symmetric, and we
abbreviate it to D2(β1, β2). Define the symmetrized version of
∆l(β1, β2) by ∆̄l(β1, β2) := {∆l(β1, β2)+

∖
∆l (β1, β2)}/2,

where ∖
∆l (β1, β2) = ∆l(β2, β1). As an extension of (2),

we introduce two generalized restricted isometry numbers
ρl+(s1, s2), ρ

l
−(s1, s2) that satisfy

∆l(β1, β2) ≤ ρl+(s1, s2)D2(β1, β2), ∀βi : ∥βi∥0 ≤ si, i = 1, 2
(20)

∆l(β1, β2) ≥ ρl−(s1, s2)D2(β1, β2), ∀βi : ∥βi∥0 ≤ si, i = 1, 2.
(21)

We differentiate s1, s2 because ∆l may not be symmetric.
These numbers will be convenient and useful for theoretical
purposes; for example, Theorem 4 and Theorem 5 will use
positive ρl+(q, q) and ρl+(q, s), respectively, while Theorem
6 will use nonnegative ρl−. When l(β) = ∥Xβ − y∥22/2,
∆l(β1, β2) = ∥Xβ1 − Xβ2∥22/2 and ρl+(s1, s2) = ρ+(s1 +
s2). More generally, if the gradient of l0(·; y) is L-Lipschitz
continuous, as is the case in regression or logistic regression,

∥∇l0(ξ1; y)−∇l0(ξ2; y)∥2 ≤ L∥ξ1 − ξ2∥2, (22)

for all ξ1, ξ2 ∈ Rn, then it is easy to show that

ρl+(s1, s2) ≤ Lρ+(s1 + s2) (≤ L∥X∥22). (23)

A. Numerical convergence and statistical accuracy for the
general optimization algorithm

First, we extend the previous iterative quantile-thresholding
algorithm to handle losses that may not be quadratic. Construct
the following surrogate function

g(β, β−) = l0(Xβ; y)+
η0
2
∥β∥22+(ρD2−∆l)(β, β

−), (24)

which is by linearizing the loss (only). Then, similar to the
derivation in Section II, (24) leads to an algorithm

β(t+1) = Θ#
{
β(t) − 1

ρ
XT∇l0(Xβ(t); y); q,

η0
ρ

}
. (25)

Some basic numerical properties are summarized as follows.

Theorem 4. Assume that infξ,y l0(ξ; y) > −∞. Consider (25)
starting from an arbitrary feasible β(0). Then ρ ≥ ρl+(q, q)
guarantees that for all t ≥ 0, f(β(t+1)) ≤ g(β(t+1), β(t)) and
(ρ − ρl+(q, q))D2(β

(t+1), β(t)) ≤ f(β(t)) − f(β(t+1)), and
so the objective function values converge as t → ∞. Assume
ρ > ρl+(q, q), η0 > 0 and ∇l0 is continuous. Then every
accumulation point β̂ of β(t) satisfies the fixed-point equation

β̂ = Θ#{β̂ −XT∇l0(Xβ̂; y)/ρ; q, η0/ρ}. (26)

Furthermore, if l0(·; y) is convex, limt→∞ β(t) = β̂, and under
∥β̂∥0 = q, β̂ is a local minimizer to problem (18) and the
support of β(t) stabilizes in finitely many iterations.

Next, we turn to the statistical accuracy of the estimators
that are defined by (26). To overcome the obstacle that the
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loss is not necessarily associated with a probability density
function, we define the concept of effective noise with respect
to the statistical truth β∗ as

ϵ = −∇l0(Xβ∗; y), (27)

where we treat X as fixed and y as random in this section. The
definition of effective noise in (27) does not depend on the reg-
ularizer. In the special case of a generalized linear model with
cumulant function b and canonical link function g = (b′)−1,
the loss is l(β) = l0(Xβ; y) = −⟨y,Xβ⟩ + ⟨1, b(Xβ)⟩, and
so ϵ = y− g−1(Xβ∗) = y− Ey. For regression, the effective
noise term ϵ is equivalent to the raw noise, which is usually
assumed to be Gaussian. In the case of classification using
the logistic deviance, ϵ is bounded, making it sub-Gaussian.
In fact, any loss function with a bounded derivative, such as
Huber’s loss, Hampel’s loss, or the hinge loss, will always
result in a sub-Gaussian ϵ, regardless of the distribution of y.
In this section, we assume that the effective noise is a sub-
Gaussian random vector with mean zero and scale bounded
by σ. However, our proof techniques can be applied more
generally. The following theorem provides a risk bound for
the estimators obtained by (25), and also demonstrates the
impact of the quality of the starting point on the regularity
condition.

Theorem 5. Let β̂ : ∥β̂∥0 = q be an estimate obtained
from (25) with a feasible starting point β(0), namely, β̂ ∈
min∥β∥0≤q g(β, β̂) and f(β̂) ≤ f(β(0)) with ∥β(0)∥0 ≤ q.
Define

Po(q) = q log(ep/q). (28)

Suppose that β(0) satisfies

ED2(β
(0), β∗) = O(M)

σ2Po(q) + σ2

n
for some 1 ≤M ≤ +∞.

(29)

Let Q = {ρ+(q+s)M/n}1/2+{ρl+(q, s)+η0}M/n. Assume
for some δ > 0, 0 < ε ≤ 1 and large K ≥ 0,

Kσ2Po(ϑs) +
{
2(1− 1

M
)∆̄l0 +

C

M(Qδ ∨ 1)
∆l0 − δD2

}
(Xβ,Xβ′)

≥ 1− 1/M√
ϑ

[
ρ− {(2− ε)

√
ϑ− 1}η0

]
D2(β, β

′) (30)

∀β, β′ : ∥β∥0 ≤ ϑs, ∥β′∥0 ≤ s,

where C is some positive constant. Then

E
{
D2(Xβ̂,Xβ∗) ∨ η0ε

δ
D2(β̂, β

∗)
}

≲
Kδ ∨ 1

δ2

{
σ2ϑs log

( ep
ϑs

)
+ σ2

}
+

η0
δε
∥β∗∥22.

(31)

Therefore, we can achieve the desired level of statistical
accuracy as long as K, δ, ϑ are constants and η0 is not
excessively large. When M = +∞ (no requirement on β(0)),
the regularity condition (30) becomes

ρ− {(2− ε)
√
ϑ− 1}η0√

ϑ
D2(β, β

′) ≤
(
2∆̄l0 − δD2

)
(Xβ,Xβ′)

+Kσ2Po(ϑs), ∀β, β′ : ∥β∥0 ≤ ϑs, ∥β′∥0 ≤ s,

which includes (7) as a special case. But when one uses
a decent starting point, (30) is much more relaxed. In the

extreme case where M = 1, the right-hand side of (30)
becomes 0, and so with µ-restricted strong convexity (∆̄l0 −
µD2)(Xβ,Xβ

′) ≥ 0 for ∥β∥0 ≤ ϑs, ∥β′∥0 ≤ s, (30) is
always satisfied.

B. Slow kill: algorithm design & sequential analysis

Using a multi-start strategy to select a high-quality initial
value for β(0) may be computationally infeasible for large-
scale data. Fortunately, we will see that designing iteration-
varying thresholding and shrinkage can effectively relax the
statistical regularity conditions and improve the statistical
accuracy of the sequence of iterates.

More concretely, slow kill modifies the optimization
algorithm (25) by introducing three auxiliary sequences
ρt+1, qt+1, ηt+1

β(t+1) = Θ#
{
β(t) − ρ−1

t+1X
T∇l0(Xβ(t); y); qt+1, η̄t+1

}
with η̄t+1 = ηt+1/ρt+1

(32)

where qt → q, ηt → η0. The scaled shrinkage sequence η̄t will
be more convenient to use than the raw sequence ηt in later
analysis. We want to understand whether adapting the inverse
learning rate, cardinality, and ℓ2-shrinkage parameters during
the iteration can lead to improved performance. Specifically,
we aim to investigate how the statistical accuracy of β(t)

changes as t increases, and under what conditions the error
converges geometrically fast. The focus of Theorem 6 is on
the statistical error of β(t) with respect to the statistical truth
β∗, rather than on their optimization errors relative to a specific
minimizer βo. We will see that in principle, slow kill benefits
from decreasing qt and ρt. It is also worth noting that the error
bound in (35) places no requirements on ϑt, ρt, ηt.

Theorem 6. Let the sequence of iterates β(t) : ∥β(t)∥0 = qt
be generated from (32) with a feasible β(0). Given any t ≥ 1,
define

h−1
t = (1− 1√

ϑt
)(ρt + ηt) + (1− ε)(ρl−(qt, s) + ηt) (33)

κt = (ρt − ρl−(s, qt))ht, (34)

where ε is an arbitrary number in (0, 1]. Then the following
recursive statistical error bound

D2(β
∗, β(T+1)) +

T∑
t=0

(
ΠT

τ=thτ+1

)
(ρt+1D2 −∆l)(β

(t+1), β(t))

≤
T∑

t=0

(
κt+1 · · ·κT+1

)
·{

Aσ2

ε

ρ+(qt+1 + s)( ρl−(qt+1,s)

ρt+1
∨ η̄t+1

)(
1− ρl−(s,qt+1)

ρt+1

)
ρ2t+1

· ϑt+1s log
( ep

ϑt+1s

)
+

η̄t+1(
1− ρl−(s,qt+1)

ρt+1

)
ε
∥β∗∥22

}
+

(
ΠT

t=0κt+1

)
D2(β

∗, β(0)).

(35)

holds for all T ≥ 0, with probability at least 1 − Cp−cA,
where C, c are positive constants.

The corollary below showcases the usefulness of the theo-
rem on algorithm configuration.
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Corollary 1. In the setup of Theorem 6, given any ε ∈ (0, 1],
if ρt and ηt are chosen to satisfy

ρt+1 ≥ ρl+(qt+1, qt) (36)

η̄t ≥ 0 ∨ (1/
√
ϑt + ε)− 2(ρl−(s, qt) ∧ ρl−(qt, s))/ρt

2− 1/
√
ϑt − ε

(37)

so that (ρt+1D2−∆l)(β
(t+1), β(t)) ≥ 0 and κt ≤ (1+ ε)−1,

then with probability at least 1− Cp−cA the statistical error
of {β(t)} decays geometrically fast,

D2(β
∗, β(T+1))

≤
(

1

1 + ε

)T+1

D2(β
∗, β(0)) +

1

ε

T∑
t=0

(
1

1 + ε

)T−t+1

Et+1

(38)

for all T ≥ 0, where

Et+1 =
{
1− ρl−(s, qt+1)

ρl+(qt+1, qt)

}−1
{

Aσ2

ρl−(qt+1,s)

ρl+(qt+1,qt)
∨ η̄t+1

·

ρ+(qt+1 + s)

(ρl+(qt+1, qt))2
ϑt+1s log

( ep

ϑt+1s

)
+ η̄t+1∥β∗∥22

}
.

(39)

The theoretical results provide valuable insights into the
design of the three main elements of slow kill. Let’s first apply
Theorem 6 to analyze the basic optimization algorithm with
fixed quantiles qt ≡ q and universal values ρt ≡ ρ, η̄t ≡ η̄.
(38) then shows linear convergence of the statistical error, with
the first term on the right-hand side indicating the impact of
the initial point. Because ΣTt=0{1/(1 + ε)}T−t+1 ≤ 1/ε, the
final error is of the order

ρ+(q + s)

(ρl+(q, q))
2
σ2ϑs log

( ep
ϑs

)
+ η̄∥β∗∥22, (40)

where the restricted condition number ρl+(q, q)/{ρl−(s, q) ∧
ρl−(q, s)} and ε are assumed to be constants. The lower bound
derived in (37) can help reduce the bias, and suggests the
benefit of using a large quantile in this regard.

On the other hand, large quantiles can lead to an inflated
variance term ϑt+1s log{ep/(ϑt+1s)} in (39), which motivates
the use of decreasing quantiles, the most distinctive feature of
slow kill. Indeed, a more careful examination of (38) shows
that the factor 1/(1 + ε)T−t+1 allows for much larger qt to be
used in earlier iteration steps. This is because for small t, the
associated error Et+1 will be more heavily shrunk in the final
bound. Although it can be difficult to theoretically derive the
optimal cooling scheme for the sequence qt, various schemes
seem to perform well in practice, such as qt+1 = ⌊q + (T −
t)/(aT t + bT )⌋ (inverse) or ⌊q + (p − q)/1 + a exp(bt/T )

c⌋
(sigmoidal), among others.

After qt is given, the choice of ρt+1 can be determined
theoretically using (36): ρt+1 ≥ ρl+(qt+1, qt), which gives
an upper bound of the stepsize to prevent slow kill from
diverging. In implementation, ρl+(qt+1, qt) is often unknown.
With regular design matrices (such as Toeplitz), a constant
multiple of L{n+ qt+1 log(ep/qt+1)} can be employed based
on (A.17) in the proof of Appendix D, assuming that ∇l0 is
L-Lipschitz continuous. More generally, seen from the second
term on the left-hand side of (35), we can use a line search
with criterion

(ρt+1D2 −∆l)(β
(t+1), β(t)) ≥ 0. (41)

See Appendix I for some implementation details of the line
search. (41) enforces the majorization condition at (β(t+1),
β(t)), and so the resulting ρt+1 can be even smaller than
ρl+(qt+1, qt). The importance of limiting the size of ρt was
previously discussed in Section II-B for ℓ0-constrained regres-
sion. Similarly, having a smaller ρt+1 can help achieve a larger
ε, which in turn leads to faster convergence and smaller error,
as demonstrated in (33) and (37).

The lower bound for the scaled ℓ2-shrinkage sequence η̄t in
Corollary 1 can be rewritten as

2
√
ϑt >

ρt+1 + η̄tρt
ρl−(s, qt) ∧ ρl−(qt, s) + η̄tρt

. (42)

It is similar to a restricted condition number condition, and
extends (16) to a general loss. Specifically, when 2qt > n, (37)
implies η̄t > (1/

√
ϑt)/(2− 1/

√
ϑt) = 1/(2

√
ϑt − 1), and as

a result, we recommend using a scaled shrinkage sequence
defined by

η̄t = 1/(2
√
qt/s̄− 1), (43)

where s̄ = q ∧ nL2/ log(ep) (a surrogate for s, according to
Appendix F) and L is the Lipschitz parameter of ∇l0. (43)
plays an important role in early slow kill iterations and is
independent of the learning rate.

Our analyses support the use of the ℓ2-assisted backward
quantile control to gradually tighten the constraint. The update
formula (32) used in slow kill has a strong foundation in
optimization, which gives it an advantage over heuristics based
multi-stage procedures. The fast geometric convergence estab-
lished in Theorem 6, together with a strong signal strength,
indicates that the zeros in β(t) represent irrelevant predictors
with high probability (cf. Remark 1 and Appendix G). This
allows us to occasionally squeeze the design matrix using
J (β(t+1)) (e.g., when qt+1 reaches p/2k) to reduce the
problem size (Appendix I). The apparent junk features are thus
removed at an early stage, saving computational cost, while the
more difficult to identify irrelevant features are addressed only
when we are close to finding an optimal solution. This trait
makes slow kill particularly well-suited for big data learning.
Slow kill offers similar advantages in group variable selection
[11] and low-rank matrix estimation [26].

In contrast, forward pathwise and boosting algorithms [5,
27, 6–8, 19, 9] grow a model from the null in a bottom-up
fashion. Such algorithms must consider almost all features at
each iteration, making them computationally intensive, as they
often require hundreds or thousands of boosting iterations.
Motivated by the ℓ0-optimization perspective, we can also
investigate a class of “steady grow” procedures in which qt
increases from 0 to q in (32). Compared with boosting, the
update and selection would incorporate the effect of the pre-
vious estimate in addition to the gradient. A retaining option
can be introduced in steady grow that works in the opposite
way to the squeezing operation in slow kill. The investigation
of retaining and squeezing, as well as a combination of slow
kill and steady grow, is left for future research.

Finally, how to obtain a sparse model with a prescribed
cardinality is the problem of interest throughout the paper. But
if one wants to determine the best value for q, we suggest using
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a predictive information criterion [28] that can guarantee the
optimal prediction error rate in a nonasymptotic sense (which
is presented in Appendix H).

IV. EXPERIMENTS

A. Simulations

In this part, we conduct simulation studies to compare the
performance of slow kill (abbreviated as SK in tables and
figures below) with some popular sparse learning methods
in terms of prediction accuracy, selection consistency, and
computational efficiency. Unless otherwise mentioned, the
rows x̃Ti of the predictor matrix X = [x̃1, . . . , x̃n]

T ∈ Rn×p
are independently generated from a multivariate normal distri-
bution with covariance matrix Σ, where Σ either has a Toeplitz
structure [τ |i−j|] or has equal correlations [τ1i̸=j ]. High cor-
relation strengths such as τ = 0.9 will be included in our
experiments. We consider both regression and classification
with a sparse β∗: β∗

j = 1, if j = 10k + 1, 0 ≤ k < s and so
s = ∥β∗∥0. In the regression experiments, y = Xβ∗ + ϵ with
ϵi ∼ N(0, 1), and for the classification experiments, yi = 1 if
x̃Ti β

∗ > 0 and 0 otherwise.
In addition to slow kill, the following methods are included

for comparison: lasso [29], elastic net (ENET) [12], MCP
[4], SCAD [30], and IHT and NIHT ([15, 31], for regression
only). (We also evaluated the performance of picasso [9]
in simulations as an improved version of [19]. However,
its pathwise computation resulted in worse error rates and
missing rates than standard nonconvex optimization on the
synthetic data. Therefore, we did not present the results. We
will include the algorithm in our experiments with real data
in later sections.) The quadratic loss is used in regression and
the logistic deviance is used in classification. For slow kill,
we take a simple single starting point β(0) = 0 and η0 = 50;
an inverse cooling schedule qt+1 = ⌊q + (T − t)/{tT/(p −
q) + 2T/(p − 2q)}⌋ (0 ≤ t ≤ T ) is used so that qT = q
and q1 = p/2, and we set T = 100 in all experiments for
convenience and efficiency. We use the R package glmnet to
implement lasso and elastic net, the package ncpen [32] for the
aforementioned nonconvex penalties, and the package sparsify
for IHT methods. (The core of glmnet is implemented using
Fortran subroutines, while ncpen is mainly based on C++.
Our implementation of slow kill could potentially be made
more efficient and require less memory by using C or Fortran,
but it already performs comparably or better than the other
methods, as shown in later tables and figures.) To ensure a fair
comparison and eliminate the influence of different parameter
tuning schemes, we select the estimate with 1.5s nonzeros
for each method. To calibrate the bias, we refit each obtained
model using only the selected variables. All other algorithmic
parameters are set to their default values.

Given each simulation setup, we repeat the experiment for
50 times and evaluate the performance of each algorithm
according to the measures defined below: the missing rate
×100% and the prediction error. Concretely, the missing rate is
the fraction of undetected true variables, and in regression, the
prediction error is calculated by 10 times (β̂−β∗)TΣ(β̂−β∗)
using the true signal, while in classification, it refers to the

misclassification error rate ×100% on a separate test set
containing the same number of observations as the training
dataset. The total computational time (in seconds) is also
included to describe the computational cost. Since the imple-
mentation of a penalized method often uses warm starts, we
terminate the algorithm once it reaches an estimate with the
prescribed cardinality.

Table I shows some experiment results in the regression
setup. Figure 2 plots more results of some representative
methods when varying the sparsity level s and the correlation
strength τ (excluding elastic net and IHT, because their
performance is similar to that of lasso and poor, respectively).
It can be seen that slow kill outperforms the other methods
in terms of both statistical accuracy and computational time,
particularly in more challenging situations with more relevant
features and coherent designs.

TABLE I: Regression: performance comparison in terms of prediction
error, missing rate and computational time with different correlation struc-
tures. In more details, p = 5,000, n = 150, s = 10 and Σ = [τ |i−j|] or
[τ1i̸=j ] with τ = 0.9

Toeplitz structure Equal correlation

Error Miss Time Error Miss Time
LASSO 16 32 5 15 83 13
ENET 16 31 13 14 82 34
IHT 85 68 55 16 88 57
NIHT 12 22 4 17 80 18
MCP 12 23 34 18 78 24
SCAD 12 23 13 16 85 6
SK 2 2 1 12 50 1

For classification, Table II and Figure 3 make a comparison
between different methods with various correlation structures
and problem dimensions, and similar conclusions can be
drawn. It is important to note that the excellent statistical
accuracy of slow kill is not accompanied by a sacrifice in
computational time compared to other methods. In fact, as seen
in Figure 3, slow kill offers substantial time savings especially
when n is large, while being very successful at selection and
prediction.

Next, we present some experiments in which the signal
strength is varied. Recall that in the regression setup, we set
β∗
j = 1 for j ∈ J (β∗). For n = 100, p = 5000, σ = 1,

the minimax optimal rate is approximately σ
√
(log p)/n(≈

0.292) (ignoring the constant factor for which a sharp value

TABLE II: Classification: performance comparison in terms of pre-
diction error, missing rate and computational time with different corre-
lation structures. In more details, p = 2,000, n = 500, s = 10 and
Σ = [τ |i−j|] or [τ1i̸=j ] with τ = 0.9

Toeplitz structure Equal correlation

Error Miss Time Error Miss Time
LASSO 8.0 24 10 5.1 95 49
ENET 8.0 25 31 4.7 95 135
MCP 6.9 23 15 5.0 93 20
SCAD 7.0 22 22 5.1 94 16
SK 2.2 2 4 3.9 78 4
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Fig. 2: Regression: performance comparison in terms of prediction error, missing rate and computational time when varying the sparsity and the
correlation strength of the model. In more details, p = 10,000, n = 150, s = 6, 8, 10, 12 and Σ = [τ1i̸=j ] with τ = 0.5, 0.7, 0.9.

may be difficult to derive). We conducted additional exper-
iments by setting β∗

j = 0.8, 0.6, 0.4, 0.2. The comparison
results for different methods are demonstrated in Figure 4. As
the signal strength was low (e.g., β∗

j = 0.2, 0.4), all methods
performed poorly. For higher values, slow kill outperformed
the other methods by a large margin.

We conducted another experiment to explore larger values
of ∥β∗∥22. (As a reminder, in the previous setting where s =
10 and β∗

j = 1, ∀j ∈ J (β∗), we had ∥β∗∥22 = 10.) We
tested ∥β∗∥22 = 50, 100, 150, 200 by scaling up each β∗

j by a
corresponding factor. The results of this experiment are shown
in Figure 5. As ∥β∗∥22 increases, NIHT, MCP, and slow kill
exhibit clear advantages, with the latter two showing similar
prediction errors and missing rates.

B. Handwritten digits classification
The Gisette dataset [33] was created to classify the highly

confusing digits 4 and 9 for handwritten digit recognition.
There are 5,000 predictors, including various pixel constructed
features as well as some ‘probes’ with little predictive power.
Because the exact number of relevant features is unknown, we
assess the performance of different methods given the same
model cardinality to make a fair comparison. We randomly
split the 7,000 samples into a training subset with 3,000

samples and a test subset with 4,000 samples for 20 times
to report the average misclassification error rate and total
computational time.

Due to the relatively large size of the data, computational
efficiency is a major concern. Many statistical packages were
unable to deliver meaningful results in a reasonable amount of
time. Here, we compare the glmnet [34], logitboost [35, 36],
picasso with the MCP option [37], and slow kill with different
numbers of selected features.

According to Figure 6, logitboost and picasso achieved
better misclassification error rates on the dataset than glmnet,
but slow kill consistently performed the best. In terms of
computational cost, glmnet and slow kill were extremely
scalable; logitboost was quite expensive even for just q = 40,
and picasso suffered a similar issue when q ≥ 60.

C. Breast cancer microarray data
The breast-cancer microarray dataset [38] from the Curated

Microarray Database contains 35,981 gene expression levels
of 143 tumor samples of patients with breast cancer and
146 paired adjacent normal breast tissue samples. The goal
is to identify some differentially expressed genes to help the
classification of normal and tumor tissues. We randomly split
the dataset into a training subset (60%) and a test subset (40%)



10

600 800 1000 1200

100

300

500

700

Ti
m

e

600 800 1000 1200
0

20

40

60

80

100

M
is

si
ng

 ra
te

600 800 1000 1200

4

6

8

10

12

14

Pr
ed

ic
tio

n 
er

ro
r

Correlation strength  = 0.5

LASSO
MCP
SCAD
SK

600 800 1000 1200

100

300

500

700

600 800 1000 1200
0

20

40

60

80

100

600 800 1000 1200

5

6

7

8

9
Correlation strength  = 0.7

600 800 1000 1200

100

300

500

700

600 800 1000 1200
70

80

90

100

600 800 1000 1200
3

3.5

4

4.5

5

5.5
Correlation strength  = 0.9

Fig. 3: Classification: performance comparison in terms of prediction error, missing rate and computational time with different correlation structures
and sample sizes. In more details, p = 10,000, n = 600, 800, 1000, 1200, s = 15 and [τ1i̸=j ] with τ = 0.5, 0.7, 0.9.
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Fig. 4: Comparison of prediction errors (left) and missing rates (right)
of different methods under different signal strengths. The details of the
regression setup are given in Section IV-A, and we set p = 5,000, n =

100, s = 10, τ = 0.8, and β∗
j = 0.2, 0.4, 0.6, 0.8 for j ∈ J (β∗).

for 20 times and report the misclassification error rates and
total computational time of different methods in Table III.

According to Tables III, logitboost has the highest com-
putational complexity, and picasso shows the worst overall
classification performance on this dataset. In contrast, glmnet
and slow kill can achieve lower misclassification error rates,
and the latter is much more cost-effective according to our
experiments.
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Fig. 5: Comparison of prediction errors (left) and missing rates (right) of
different methods for large signals. The details of the regression setup are
given in Section IV-A, and we set p = 5,000, n = 100, s = 10, τ = 0.8,
and ∥β∗∥22 = 50, 100, 150, 200 (by scaling up each β∗

j ).

D. Sub-Nyquist spectrum sensing and learning

Sub-Nyquist sampling-based wideband spectrum sensing
for millimeter wave is an important topic for next-generation
wireless communication systems. With a multi-coset sampler
[39], a multiple-measurement-vector model in signal process-
ing can be formulated as Y = XB∗ + E , where the goal
is to exploit the joint (row-wise) weak sparsity of B∗ to
reconstruct the spectrum. Here, all the matrices are complex
(e.g., Y ∈ Cn×m, X ∈ Cn×p), and the size of the predictor
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Fig. 6: Gisette data. Left panel: mean misclassification error rate, right
panel: total computational time, with different numbers of selected fea-
tures. Picasso is too costly compared with the other methods and only part
of its cost curve is shown.

TABLE III: Breast cancer microarray data: misclassification error rate
(×100%) and total computational time (in seconds)

q = 60 q = 80 q = 100 q = 120 q = 140

Error Time Error Time Error Time Error Time Error Time

GLMNET 10.9 19 10.7 19 10.5 50 10.2 50 10.2 50

PICASSO 11.4 43 11.3 43 11.1 48 11.3 48 11.2 42

LogitBoost 11.2 500 11.2 680 10.9 860 10.6 1080 10.8 1220

SK 10.8 10 10.2 11 10.2 11 10.1 11 9.8 11

matrix X is determined by the number of cosets and the
number of channels; interested reader may refer to [40]
for more detail. Nicely, with the Hermitian inner product
⟨A,B⟩ ≜ tr{AHB} in place of the real inner product, and
the generalized Bregman function redefined as ∆l(B1, B2) =
l(B1)− l(B2)−⟨∇l(B2), B1−B2⟩/2−⟨B1−B2,∇l(B2)⟩/2,
all of our theorems and algorithms can be extended to the
complex group sparsity pursuit.

We compared our method with two popular methods, SOMP
[41] and JB-HTP [42], on a benchmark time-domain dataset
in [43]. Table IV shows the normalized mean square error
∥B̂−B∗∥F /∥B∗∥F of each method as we vary q (the number
of selected channels). A demonstration of spectral recovery is
plotted in Figure 7, where the predictive information criterion
in Appendix H was used for model selection in slow kill.

TABLE IV: Spectrum reconstruction error in terms of normalized mean
square error

q = 3 q = 4 q = 5 q = 6 q = 7 q = 8
SOMP 0.83 0.93 0.82 0.91 0.92 0.94
JB-HTP 0.94 1.00 0.99 0.95 1.07 0.96
SK 0.74 0.65 0.53 0.38 0.42 0.50

V. SUMMARY

This paper proposed a new slow kill method for large-scale
variable selection. It is a scalable optimization-based algorithm
that uses three carefully designed and theoretically justified
sequences of thresholds, shrinkage, and learning rates.

Intuitively, slow kill uses a novel backward quantile control
with adaptive ℓ2 shrinkage and increasing learning rates to
relax regularity conditions and overcome obstacles in back-
ward elimination. This method is significantly different from
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Fig. 7: Spectrum sensing results by different methods.

boosting and many forward stagewise procedures in the ex-
isting literature. Our theoretical studies led to insights on
how to design a progressive hybrid regularization to achieve
the optimal error rate and fast convergence. The technique is
applicable to a general loss that is not necessarily a negative
log-likelihood function, and its ability to reduce the problem
size throughout the iteration makes it attractive for big data.

APPENDIX

The definition of a sub-Gaussian random variable or a sub-
Gaussian random vector is standard in the literature.

Definition A.1. We call ξ a sub-Gaussian random variable if
it has mean zero and the scale (ψ2-norm) for ξ, defined as
inf{σ > 0 : E[exp(ξ2/σ2)] ≤ 2}, is finite. We call ξ ∈ Rp a
sub-Gaussian random vector with scale bounded by σ if all
one-dimensional marginals ⟨ξ, α⟩ are sub-Gaussian satisfying
∥⟨ξ, α⟩∥ψ2

≤ σ∥α∥2, for any α ∈ Rp. Similarly, a random
matrix ξ is called sub-Gaussian if vec (ξ) is sub-Gaussian.

A. Theorem A.1 and Theorem 4

First, for the algorithm (5) defined in the setup of Section
II, we have the following numerical properties.

Theorem A.1. Given any X, y and β(0), the sequence of
iterates β(t) generated by (5) satisfies f(β(t))− f(β(t+1)) ≥
ρ∥β(t+1)−β(t)∥22/2−∥X(β(t+1)−β(t))∥22/2, ∀t ≥ 0 and so
when ρ ≥ ρ+(2q), f(β(t)) converges, and β(t) satisfies

min
0≤t≤T

∥β(t+1) − β(t)∥22 ≤
1

T + 1

2f(β(0))

ρ− ρ+(2q)
.

Moreover, as long as ρ > ρ+(2q) and η0 > 0, β(t) has a
unique limit point β̂ that satisfies the “fixed-point” equation

β = Θ#{β −XT (Xβ − y)/ρ; q, η0/ρ},

and when ∥β̂∥0 = q, β̂ is also a local minimizer of problem
(3).
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To prove the first conclusion in Theorem A.1, notice that in
the regression setting,

g(β(t+1), β(t))− f(β(t+1))

=ρ∥β(t+1) − β(t)∥22/2− ∥X(β(t+1) − β(t))∥22/2,

and thus

f(β(t))− f(β(t+1))

≥ρ
2
∥β(t+1) − β(t)∥22 −

1

2
∥X(β(t+1) − β(t))∥22, ∀t ≥ 0.

Taking the summation from t = 0 to t = T and using the fact
that ∥X(β(t+1)−β(t))∥22 ≤ ρ+(2q)∥β(t+1)−β(t)∥22, we have

(ρ− ρ+(2q))
2

T∑
t=0

∥β(t+1) − β(t)∥22 ≤ f(β(0))− f(β(T+1)),

which leads to

min
0≤t≤T

∥β(t+1) − β(t)∥22 ≤
2

(T + 1)(ρ− ρ+(2q))
f(β(0)).

Next, we consider the general problem and prove Theorem
4, which implies the second part of Theorem A.1. From
infξ,y l0(ξ; y) > −∞, we assume without loss of generality
that l0(ξ; y) ≥ 0. Recall l0(Xβ; y) is abbreviated as l(β) and
thus ∇l(β) = XT∇l0(Xβ) by the chain rule.

From the construction g(β, β(t)) = f(β) + (ρD2 −
∆l0)(β, β

(t)), we get

(ρD2−∆l0)(β
(t+1), β(t))+f(β(t+1)) ≤ g(β(t), β(t)) = f(β(t)).

When ρ ≥ ρl+(q, q), (ρD2 − ∆l0)(β
(t+1), β(t)) ≥ 0, from

which it follows that the sequence of f(β(t)) is non-increasing
and convergent. In fact, one just needs

f(β(t+1)) ≤ g(β(t+1), β(t)) (A.1)

to enjoy the function value convergence, which can be used
for line search.

In addition, we obtain

(ρ− ρl+(q, q))D2(β
(t+1), β(t)) ≤ f(β(t))− f(β(t+1)).

Finally, let us study the limit points of the sequence of
iterates. We first notice that {β(t)}∞t=0 is uniformly bounded
under η0 > 0, since

η0∥β(t)∥22/2 ≤ f(β(t)) ≤ f(β(0)).

From limt→∞{f(β(t)) − f(β(t+1))} = 0, limt→∞(ρD2 −
∆l0)(β

(t+1), β(t)) = 0, and because ρ > ρl+(q, q),

lim
t→∞

(β(t+1) − β(t)) = 0.

Let β̂ be any limit point of β(t) satisfying β̂ = limk→∞ β(jk)

for some sequence jk. Then

0 = lim
k→∞

(β(jk+1) − β(jk))

= lim
k→∞

Θ#{β(jk) −∇l(β(jk))/ρ; q, η0/ρ} − β̂

= Θ#{β̂ −∇l(β̂)/ρ; q, η0/ρ} − β̂,

where the second equality is due to the continuity of ∇l(β)
and the Θ#-uniqueness assumption.

Define Ĵ = {j : β̂j ̸= 0}. Then we get

β̂Ĵ = β̂Ĵ /(1 + η0/ρ)−XT
Ĵ∇l0(XĴ β̂Ĵ ; y)/(ρ+ η0),

or equivalently,

η0β̂Ĵ +XT
Ĵ∇l0(XĴ β̂Ĵ ; y) = 0.

Therefore, given Ĵ , β̂Ĵ is a stationary point of

min
γ
l0(XĴ γ; y) + η0∥γ∥22/2. (A.2)

When l0(·; y) is convex and η0 > 0, (A.2) is strongly convex
and thus β̂Ĵ is the unique minimizer.

By Ostrowski’s convergence theorem, the set of limit points
of β(t) must be connected. On the other hand, the set of all
restricted optimal solutions {β̂Ĵ } is finite, and so

lim
t→∞

β(t) = β̂.

Under ∥Ĵ ∥0 = q, it is easy to see that the neighborhood
{β : ∥β − β̂∥∞ < ϵ, J(β) ≤ q} with 0 < ϵ < minj∈Ĵ |β̂j |
is just {β : J (β) = Ĵ , |βj − β̂j | < ϵ, ∀j ∈ Ĵ }. The local
optimality of β̂ and support stability of β(t) thus follow.

B. Proof of Theorem 1

We first introduce some lemmas that are helpful in proving
the theorem. The first is a generalization of Lemma 9 in [44].

Lemma A.1. Let J (B) denote the row support of matrix B
and define J(B) = ∥B∥2,0 = |J (B)|. Consider the following
problem with 0 ≤ q ≤ p, η ≥ 0:

min
B∈Rp×m

1

2
∥Y −B∥2F+

η

2
∥B∥2F = l(B) subject to ∥B∥2,0 ≤ q.

Then B̂ = Θ⃗#(Y ; q, η) (recall Θ⃗# defined in Section I) gives a
globally optimal solution, and for any B satisfying J(B) ≤ s,
we have

l(B)− l(B̂) ≥ (1− L(J , Ĵ ))(1 + η)
∥B̂ −B∥2F

2
(A.3)

where J = J (B), Ĵ = J (B̂), and L(J , Ĵ ) =√
|J \ Ĵ |/|Ĵ \ J |. When J(B̂) = q with ϑ(≡ q/s) ≥ 1,

L(J , Ĵ ) ≤
√
|J |/|Ĵ | ≤ 1/

√
ϑ. In the above statement, 0/0

is understood as 1.

Lemma A.2. There exist universal constants A,C, c > 0 such
that for any a > 0, the following event

sup
β1,β2

⟨ϵ,X(β1 − β2)⟩ −
1

2a
∥X(β1 − β2)∥22

− a

2
Aσ2{J(β1) ∨ J(β2)} log

{ ep

J(β1) ∨ J(β2)

}
≥ a

2
σ2t

(A.4)

occurs with probability at most C exp (−ct)p−cA where t ≥ 0.

First, by definition, it is easy to show that β̂ satisfies

β̂ ∈ argmin
β

g(β, β̂),
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where g(β, β−) = ∥y − Xβ−∥22/2 + ⟨XT (Xβ− − y), β −
β−⟩+ρ∥β−β−∥22/2+η0∥β∥22/2. By g(β̂, β̂) ≤ g(β∗, β̂) and
Lemma A.1,

1

2
∥β∗ − β̂ +

1

ρ
XT (Xβ̂ − y)∥22 −

1

2
∥1
ρ
XT (Xβ̂ − y)∥22

+
η0
2ρ
∥β∗∥22 −

η0
2ρ
∥β̂∥22 ≥ (1 +

η0
ρ
)
1− L(J ∗, Ĵ )

2
∥β̂ − β∗∥22,

where J ∗ = J (β∗), Ĵ = J (β̂), and L(J ∗, Ĵ ) ≤ 1/
√
ϑ.

It follows from the model y = Xβ∗ + ϵ that

∥Xβ̂ −Xβ∗∥22 +
η0
2
∥β̂∥22

≤ρ− (
√
ϑ− 1)η0

2
√
ϑ

∥β̂ − β∗∥22 +
η0
2
∥β∗∥22 + ⟨Xβ̂ −Xβ∗, ϵ⟩,

which gives

∥Xβ̂ −Xβ∗∥22 +
η0
2
∥β̂ − β∗∥22

≤ρ− (
√
ϑ− 1)η0

2
√
ϑ

∥β̂ − β∗∥22 + η0⟨β̂ − β∗,−β∗⟩

+ ⟨Xβ̂ −Xβ∗, ϵ⟩

≤ρ− (
√
ϑ− 1)η0

2
√
ϑ

∥β̂ − β∗∥22 +
bη0
2
∥β̂ − β∗∥22

+
η0
2b
∥β∗∥22 + ⟨Xβ̂ −Xβ∗, ϵ⟩ (A.5)

for any b > 0. Applying Lemma A.2 with t = 0, we can show
that for any a > 0, the following event

⟨Xβ̂−Xβ∗, ϵ⟩ ≤ 1

2a
∥Xβ̂−Xβ∗∥22+

a

2
Aσ2ϑs log

ep

ϑs
(A.6)

occurs with probability at least 1− Cp−c, where A,C, c > 0
are some universal constants.

Combining (A.5), (A.6) and the regularity condition (7)
yields

η0(ε− b)
2

∥β̂ − β∗∥22 +
(δ
2
− 1

2a

)
∥Xβ̂ −Xβ∗∥22

≤ η0
2b
∥β∗∥22 +

a

2
Aσ2ϑs log

ep

ϑs

with probability at least 1−Cp−c. By choosing a = 2/δ and
b = ε/2, we have the bound for the prediction error as

∥Xβ̂ −Xβ∗∥22 +
η0ε

δ
∥β̂ − β∗∥22

≤4η0
δε
∥β∗∥22 +

4

δ2
Aσ2ϑs log

ep

ϑs
≲
η0
δε
∥β∗∥22 +

1

δ2
σ2ϑs log

ep

ϑs
,

which holds with probability at least 1− Cp−c.

Proof of Lemma A.1 In this proof, given a matrix B ∈ Rp×m
and an index set I ⊂ [p], we use BI to denote the submatrix
of B by extracting its rows indexed by I. Let J1 = J ∩ Ĵ ,
J2 = Ĵ \ J and J3 = J \ Ĵ . Then J = J1 ∪ J3 and
Ĵ = J1 ∪ J2.

It can be easily shown that B̂J1
= YJ1

/(1 + η) and B̂J2
=

YJ2
/(1+η). By writing BJ1

= YJ1
/(1+η)+∆J1

and BJ3
=

YJ3
/(1 + η) + ∆J3

, we have

l(B)− l(B̂) =
1 + η

2
∥∆J1

∥2F +
1

2(1 + η)
∥YJ2
∥2F

+
1 + η

2
∥∆J3

∥2F −
1

2(1 + η)
∥YJ3
∥2F ,

1 + η

2
∥B̂ −B∥2F =

1 + η

2
∥∆J1

∥2F +
1

2(1 + η)
∥YJ2
∥2F

+
1 + η

2
∥ 1

1 + η
YJ3

+∆J3
∥2F .

Let K ≤ 1 satisfy

l(B)− l(B̂) ≥ K

2
(1 + η)∥B̂ −B∥2F ,

which is implied by
1

2(1 + η)
∥YJ2
∥2F +

1 + η

2
∥∆J3

∥2F −
1

2(1 + η)
∥YJ3
∥2F

≥ K

2(1 + η)
∥YJ2
∥2F +

K(1 + η)

2
∥ 1

1 + η
YJ3

+∆J3
∥2F .

(A.7)

(A.7) is equivalent to

(1−K)∥YJ2
∥2F + (1 + η)2∥∆J3

∥2F

≥(1 + η)2K∥ 1

1 + η
YJ3

+∆J3
∥2F + ∥YJ3

∥2F .
(A.8)

By construction, ∥yi∥2 ≥ ∥yj∥2 for any i ∈ J2 and j ∈ J3.
Thus ∥YJ2

∥2F ≥ J2∥YJ3
∥2F /J3, from which it follows that

(A.8) is implied by

{(1−K)
J2
J3
− (1 +K)}∥YJ3

∥2F + (1−K)(1 + η)2∥∆J3
∥2F

≥2K(1 + η)⟨YJ3
,∆J3

⟩.

Therefore, restricting K to (1 + K)/(1 − K) ≤ J2/J3 or
K ≤ (J2 − J3)/(J2 + J3) ≤ 1, the largest possible K should
satisfy

{(1−K)(J2/J3)− (1 +K)} · (1−K) = |K|2

or (1−K)2 = J3/J2, or K = 1−
√
J3/J2(≤ (J2−J3)/(J2+

J3)). This gives

L = 1−K = (J3/J2)
1/2.

Note that when J2 = ∅, K can take −∞ for J3 ̸= ∅ and 0
for J3 = ∅ to ensure (A.8).

Now assume J(B̂) = q with ϑ ≥ 1. If J2 ̸= ∅, L ≤√
(J3 + J1)/(J2 + J1) =

√
J/Ĵ ≤ 1/

√
ϑ. Otherwise, we

must have J3 = ∅, J = Ĵ and ϑ = 1. The proof is complete.
The lemma can be used in the analysis of ℓ0-constrained

(elementwise) sparsity pursuit, as well as group variable
selection (cf. Section IV-D).

Proof of Lemma A.2 Given a matrix A, denote by PA the
orthogonal projection onto its range, and P⊥

A its orthogonal
complement. In the proof, PJ is used as a short notation for
PXJ

in the proof for any J ⊂ [p]. Let J1 = J (β1),J2 =
J (β2), J1 = |J1|, J2 = |J2|.
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First, note that the term {J(β1) ∨ J(β2)} log[ep/{J(β1) ∨
J(β2)}] is used in (A.4), instead of J(β1 − β2) log{ep/J(β1
− β2)}, and although J(β1 − β2) ≤ J(β1) + J(β2), J(β1) +
J(β2) can be larger than p. To tackle the issue, we employ a
decomposition trick

Xβ1 −Xβ2 = PJ1
X(β1 − β2) + P⊥

J1
X(β1 − β2)

= PJ1
X(β1 − β2) + P⊥

J1
PJ2

X(β1 − β2).

Let ∆ = β1 − β2. Then

⟨ϵ,X∆⟩ = ⟨ϵ, PJ1
X∆⟩+ ⟨ϵ,P⊥

J1
PJ2

X∆⟩. (A.9)

Let us bound the first term on the right-hand side of (A.9).
Define Po(J) = σ2J log(ep/J) for 0 ≤ J ≤ p, which is an
increasing function, and ΓJ = {α ∈ Rp : ∥α∥2 ≤ 1, α ∈
PJ for some J ⊂ [p], |J | ≤ J}. Then for any a, b > 0

⟨ϵ,PJ1
X∆⟩ − 1

a
∥PJ1

X∆∥22 − bLPo(J1)

≤∥PJ1
X∆∥2⟨ϵ,

PJ1
X∆

∥PJ1
X∆∥2

⟩ − 2∥PJ1
X∆∥2

√
b

a
LPo(J1)

≤ 1

a
∥PJ1

X∆∥22 +
a

4
sup
J1≤p

sup
∆∈ΓJ1

{
⟨ϵ,∆⟩ − 2

√
(b/a)LPo(J1)

}2

+

≡ 1

a
∥PJ1

X∆∥22 +
a

4
sup
J1≤p

R2
J1
,

where RJ1
:= sup∆∈ΓJ1

{
⟨ϵ,∆⟩ − 2

√
(b/a)LPo(J1)

}
+

with
L a sufficiently large constant. When J1 = 0, RJ1

= 0. When
J1 ≥ 1, for any t ≥ 0, if 4b/a is a constant greater than 1,
we have

P( sup
1≤J1≤p

RJ1
≥ tσ)

≤
p∑

J1=1

P
(

sup
∆∈ΓJ1

⟨ϵ,∆⟩ −
√
LPo(J1) ≥ tσ

+ 2

√
b

a
LPo(J1)−

√
LPo(J1)

)
≤C exp(−ct2)

p∑
J1=1

exp[−c(2
√
b/a− 1)2LPo(J1)/σ

2]

≤C exp(−ct2) exp(−cL log p)

p∑
J1=1

exp(−cLJ1)

≤C exp(−ct2)p−cL. (A.10)

The second inequality is due to Lemma 6 of [21], and we
used J log(ep/J) ≥ J + log p for any J ∈ [p] in the third
inequality. Therefore, for any a, b > 0, 4b > a and t ≥ 0, we
have

P
{
⟨ϵ,PJ1

X∆⟩ − 2

a
∥PJ1

X∆∥22 − bLPo(J1) ≥
a

4
tσ2

}
≤ C exp(−ct)p−Lc. (A.11)

Similarly, for the second term in (A.9), we can use Lemma
7 of [13] to prove that for any t ≥ 0,

P
[
⟨ϵ,P⊥

J1
PJ2

X∆⟩ − 2

a
∥P⊥

J1
PJ2

X∆∥22 − bL{Po(J1) + Po(J2)}

≥ a

4
tσ2

]
≤ C exp(−ct)p−Lc. (A.12)

Combining (A.11), (A.12) and using the fact that
∥PJ1

X∆∥22 + ∥P⊥
J1
PJ2

X∆∥22 = ∥X∆∥22, we get for any
a, b > 0, 4b > a and t ≥ 0,

P
[
⟨ϵ,X∆⟩ − 4

a
∥X∆∥22 − 3bL{Po(J1) ∨ Po(J2)} ≥

a

2
tσ2

]
≤C exp(−ct)p−Lc. (A.13)

Finally, using the increasing property of Po(J) for J ∈ [0, p],
we have Po(J1) ∨ Po(J2) ≤ (J1 ∨ J2) log{ep/(J1 ∨ J2)}. A
reparameterization of (A.13) gives the conclusion.

C. Proof of Theorem 2
From the proof of Theorem 1, we get with probability 1−

Cp−c,

∥Xβ̂ −Xβ∗∥22 +
η0(1− b)

2
∥β̂ − β∗∥22

≤ ρ− (
√
ϑ− 1)η0

2
√
ϑ

∥β̂ − β∗∥22 +
η0
2b
∥β∗∥22+

1

2a
∥Xβ̂ −Xβ∗∥22 +

a

2
Aσ2ϑs log

ep

ϑs
,

which gives

∥Xβ̂ −Xβ∗∥22 −
η0b

2
∥β̂ − β∗∥22

≤ ρ− (2
√
ϑ− 1)η0

2
√
ϑ

∥β̂ − β∗∥22 +
η0
2b
∥β∗∥22+

ρ+((1 + ϑ)s)

2a
∥β̂ − β∗∥22 +

a

2
Aσ2ϑs log

ep

ϑs
.

Under the regularity condition (9), choosing a = 2/δ and
b = δρ+((1 + ϑ)s)/(4η0) give (10). (The result applies to
η0 = 0 as well.)

To show the second result, note that from Theorem 1,
the fixed-point solution β̂ must satisfy β̂ = Θ#{β̂ −
XT∇l0(Xβ̂; y)/ρ; q, η0/ρ}, which means∥∥∥β̂(1 + η0

ρ
)− β̂ +

1

ρ
XT∇l0(Xβ̂)

∥∥∥
∞
≤ (1 +

η0
ρ
) min
j∈Ĵ
|β̂j |

=⇒
∥∥∥η0β̂ +XT (∇l0(Xβ̂)−∇l0(Xβ∗))−XT ϵ

∥∥∥
∞

≤ (ρ+ η0) min
j∈Ĵ
|β̂j |

=⇒
∥∥∥XT (∇l0(Xβ̂)−∇l0(Xβ∗)) + η0(β̂ − β∗)

∥∥∥
∞

≤ ∥XT ϵ∥∞ + η0∥β∗∥∞ + (ρ+ η0) min
j∈Ĵ
|β̂j |.

By definition, ∇l0(Xβ̂)−∇l0(Xβ∗) = X(β̂ − β∗).
Next, we introduce a lemma.

Lemma A.3. Let β̃, β ∈ Rp satisfying ∥β̃∥0 = q > s ≥
∥β∥0, and for short, denote J (β̃) and J (β̃) by J̃ and J ,
respectively. Then

min
j∈J̃
|β̃j | ≤ min

j∈J̃ \J
|β̃j | ≤

∥(β̃ − β)J̃ \J ∥2√
|J̃ \ J |

≤
∥(β̃ − β)J̃ \J ∥2√

q − s
≤ ∥β̃ − β∥2√

q − s
(A.14)

min
j∈J̃
|β̃j | ≤ max

j∈J̃ \J
|β̃j | = ∥(β̃ − β)J̃ \J ∥∞ ≤ ∥β̃ − β∥∞.

(A.15)
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The proof is simple and omitted. Now, combining the
regularity condition (11) and (A.14) or (A.15) gives the desired
result.

D. Proof of Theorem 3

By definition, we have

ρ+(2q) = sup
I∈[p]:|I|=2q

λmax(X
T
I XI),

and under q + s ≤ n,

ρ−(q + s) = inf
I∈[p]:|I|=q+s

λmin(X
T
I XI).

By Theorem of 6.1 of [23], we have

P

{√
λmax(XT

I XI)

n
≥ (1 + c0)

√
λmax(ΣI) +

√
tr(ΣI)

n

}
≤ exp(−nc20/2), ∀I : |I| = 2q

and

P

{√
λmin(XT

I XI)

n
≤ (1− c0)

√
λmin(ΣI)−

√
tr(ΣI)

n

}
≤ exp(−nc20/2), ∀I : |I| = q + s

for all c0 > 0. Applying the union bound gives

P

{√
ρ+(2q)

n
≥ (1 + c0)

√
λ
(2q)
max +

√
2q

n

}

≤
(
p

2q

)
exp(−nc20/2).

(A.16)

Let nc2 = nc20−log
(
p
2q

)
. Then using log

(
p
2q

)
≤ 2q log (ep/q),

c0 ≤ c+
√
2q log(ep/q)/n. Therefore for any c > 0,

P
{√ρ+(2q)

n
≥ (1 + c)

√
λ
(2q)
max

+

√
2q log(ep/q)

n

√
λ
(2q)
max +

√
2q

n

}
≤ exp(−nc2/2).

(A.17)

Similarly,

P
{√ρ−(q + s)

n
≤ (1− c)

√
λ
(q+s)
min

−
√

(q + s) log(ep/q)

n

√
λ
(q+s)
min −

√
q + s

n

}
≤ exp(−nc2/2).

Let c ∈ (0, 1) and assume n ≥ {2(q+s)/(1−c)2}{1/λ(q+s)min +
log(ep/q)}. Then

ρ+(2q)

ρ−(q + s)
≤ (1 + c)

√
λ
(2q)
max +

√
{2λ(2q)

maxq log(ep/q)}/n+
√

2q/n

(1− c)

√
λ
(q+s)
min −

√
{λ(q+s)

min (q + s) log(ep/q)}/n−
√

(q + s)/n


2

holds with probability at least 1− 2 exp(−nc2/2).

E. Proof of Theorem 5

Let E := σ2Po(q) + σ2. Similar to the proof of Theorem
1, from the construction of g and Lemma A.1, we have

ρ(1− 1/
√
ϑ)(1 + η0/ρ)D2(β

∗, β̂) + g(β̂, β̂) ≤ g(β∗, β̂),

and thus

2∆̄l0(Xβ̂,Xβ
∗) +

η0
2
∥β̂∥22

≤ρ− (
√
ϑ− 1)η0√
ϑ

D2(β̂, β
∗) +

η0
2
∥β∗∥22 + ⟨ϵ,Xβ̂ −Xβ∗⟩.

(A.18)

Applying Lemma A.2 gives

⟨ϵ,Xβ̂−Xβ∗⟩ ≤ δD2(Xβ̂,Xβ
∗)+

1

δ
Aσ2Po(q)+R (A.19)

for any δ > 0, where R := supβ1,β2
{⟨ϵ,Xβ1 − Xβ2⟩ −

δD2(Xβ1, Xβ2)−Aσ2Po(q)/δ}+ and

P(δR > σ2t) ≤ C exp(−ct)p−cA,

where A,C, c > 0 are some constants. Therefore,

E⟨ϵ,Xβ̂−Xβ∗⟩ ≤ E{δD2(Xβ̂,Xβ
∗)}+ C

δ
(σ2Po(q)+σ

2).

(A.20)
Combining (A.18) and (A.20) gives

E{(2∆̄l0 − δD2)(Xβ̂,Xβ
∗) + η0D2(β̂, β

∗)}

≤E
{ρ− (

√
ϑ− 1)η0√
ϑ

D2(β̂, β
∗) + η0⟨−β∗, β̂ − β∗⟩

}
+
C

δ
E,

(A.21)

and so

E
[
(2∆̄l0 − δD2)(Xβ̂,Xβ

∗)− ρ− {(2− ε)
√
ϑ− 1}η0√

ϑ
D2(β̂, β

∗)
]

≤ C

δ
E +

η0
2ε
∥β∗∥22 (A.22)

for any ε, δ > 0.
Next, from l0(Xβ̂)+η0∥β̂∥22/2 ≤ l0(Xβ(0))+η0∥β(0)∥22/2,

we have

∆l0(Xβ̂,Xβ
∗) + η0D2(β̂, β

∗)

≤∆l0(Xβ
(0), Xβ∗) + η0D2(β

(0), β∗) + η0⟨−β∗, β̂ − β∗⟩
− η0⟨−β∗, β(0) − β∗⟩
+ ⟨ϵ,Xβ̂ −Xβ∗⟩ − ⟨ϵ,Xβ(0) −Xβ∗⟩.

(A.23)

Therefore, for any δ′, δ′′, ε′ > 0

E{(∆l0 − δ′D2)(Xβ̂,Xβ
∗) + η0D2(β̂, β

∗)}

≤E
{
(∆l0 + δ′′D2)(Xβ

(0), Xβ∗) + η0D2(β
(0), β∗)

+
η0
2ε
∥β∗∥22 + η0εD2(β̂, β

∗) +
η0
2ε′
∥β∗∥22

+ η0ε
′D2(β

(0), β∗)
}
+ CE

( 1
δ′

+
1

δ′′
)
.

By the assumption of the starting point E{D2(β
(0), β∗)} ≤

CME/n, we have

E{D2(Xβ
(0), Xβ∗)} ≤ Cρ+(q + s)ME/n,

E{∆l0(Xβ
(0), Xβ∗)} ≤ Cρl+(q, s)ME/n.
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Taking 1/δ′′ =
√
ρ+(q + s)M/n, we obtain

E{(∆l0 − δ′D2)(Xβ̂,Xβ
∗) + η0(1− ε)D2(β̂, β

∗)}

≤CE
( 1
δ′

+

√
ρ+(q + s)M

n
+
ρl+(q, s)

n
M +

η0(1 + ε′)

n
M

)
+ η0

(1
ε
+

1

ε′
)∥β∗∥22

2
.

Let Q0 :=
√
ρ+(q + s)M/n+ρl+(q, s)M/n+η0(1+ε

′)M/n.
Then

CE
( 1
δ′

+Q0

)
≤ C

c1 ∧ c2
E
(c1
δ′

+ c2Q0

)
for any c1, c2 > 0. Taking δ′ : δ2 = δ′2/(c1 + c2Q0δ

′) and
ε′ : 1/ε + 1/ε′ = (1/δ′ + Q0)c3δ/ε for some large constant
c3 > 0, we get

E{( δ
δ′
∆l0 − δD2)(Xβ̂,Xβ

∗) +
δ

δ′
η0(1− ε)D2(β̂, β

∗)}

≤ CE

c1 ∧ c2
1

δ
+ c3

η0
2ε
∥β∗∥22.

(A.24)

Multiplying (A.22) by (1− 1/M) and (A.24) by 1/M and
adding the two inequalities yield

E
[
(1− 1

M
)
{
2∆̄l0(Xβ̂,Xβ

∗)

− ρ− {(2− ε)
√
ϑ− 1}η0√

ϑ
D2(β̂, β

∗)
}

+ (
δ

Mδ′
∆l0 − δD2)(Xβ̂,Xβ

∗)

+
δ

Mδ′
η0(1− ε)D2(β̂, β

∗)
]

≤C
(E
δ
+
η0
ε
∥β∗∥22

)
. (A.25)

Simple calculation shows

δ′

δ
=
c2Q0δ +

√
c22Q

2
0δ

2 + 4c1
2

≤
√
2 + 1

2
{c2Q0δ ∨

√
4c1} ≤ C(Q0δ ∨ 1).

It follows that

ε′ ≤ ε

C(Q0δ ∨ 1) + δQ0 − 1
≤ C ε

Q0δ ∨ 1
≤ Cε

for some large constant C, and so Q0 ≲ Q. Under the
condition that

Kσ2Po(ϑs) +
{
2(1− 1

M
)∆̄l0

+
C

M(Qδ ∨ 1)
∆l0 − 2δD2

}
(Xβ̂,Xβ∗)

≥1− 1/M√
ϑ

[
ρ− {(2− ε)

√
ϑ− 1}η0

]
D2(β̂, β

∗)

− C

M(Qδ ∨ 1)
η0(1− ε)D2(β̂, β

∗),

(A.26)

(A.25) yields

E[D2(Xβ̂,Xβ
∗)] ≤K

δ
σ2Po(ϑs) +

CE

δ2
+ C

η0
ε
∥β∗∥22

≲
Kδ ∨ 1

δ2
E +

η0
δε
∥β∗∥22. (A.27)

With a reparameterization, the regularity condition (30) im-
plies (A.26).

F. Proof of Theorem 6

For convenience, denote D2(Xβ,Xβ
′) by D2,X(β, β′).

From Lemma A.1, we have

g(β∗, β(t))− g(β(t+1);β(t))

≥ρt+1(1− Lt+1)(1 + η̄t+1)D2(β
(t+1), β∗), (A.28)

where Lt+1 = L(J (β∗),J (β(t+1))) ≤ 1/
√
ϑt+1. (Recall

ϑt+1 = qt+1/s > 1, and s ≥ ∥β∗∥0.)
Substituting g(β, β(t)) = l(β)+ηt+1D2(β, 0)+(ρt+1D2−

∆l)(β, β
(t)) and l(β∗) − l(β(t+1)) = ⟨ϵ,Xβ(t+1) −

Xβ∗⟩− ∖
∆l (β

∗, β(t+1)) into (A.28) gives

{ρt+1(1− Lt+1)(1 + η̄t+1)D2+
∖
∆l}(β∗, β(t+1))

+ ηt+1D2(β
∗, β(t+1)) + (ρt+1D2 −∆l)(β

(t+1), β(t))

≤ (ρt+1D2 −∆l)(β
∗, β(t)) + ⟨ϵ,Xβ(t+1) −Xβ∗⟩

+ ηt+1⟨−β∗, β(t+1) − β∗⟩. (A.29)

From Lemma A.2, with probability at least 1− Cp−cA

⟨ϵ,Xβ(t+1) −Xβ∗⟩
≤δt+1D2,X(β∗, β(t+1)) + δ−1

t+1Aσ
2Po(qt+1), for all t ≥ 0

(A.30)

given any δt+1 > 0, where A is a constant. Moreover, for any
εt+1 > 0,

⟨−β∗, β(t+1) − β∗⟩ ≤ εt+1D2(β
∗, β(t+1)) + ε−1

t+1D2(β
∗, 0).

(A.31)
Plugging these bounds into (A.29) gives{

ρt+1(1− Lt+1)(1 + η̄t+1)D2+
∖
∆l +(1− εt+1)ηt+1D2

− δt+1D2,X

}
(β∗, β(t+1)) + (ρt+1D2 −∆l)(β

(t+1), β(t))

≤ (ρt+1D2 −∆l)(β
∗, β(t)) + δ−1

t+1Aσ
2Po(qt+1)

+ ε−1
t+1ηt+1D2(β

∗, 0). (A.32)

By the definition of (generalized) isometry numbers and using
Lt+1 ≤ 1/

√
ϑt+1, we have{

ρt+1

(
1− 1√

ϑt+1

)
(1 + η̄t+1) + ρl−(qt+1, s)

+ (1− εt+1)ηt+1 − δt+1ρ+(qt+1 + s)
}
D2(β

∗, β(t+1))

+ (ρt+1D2 −∆l)(β
(t+1), β(t))

≤
{
ρt+1 − ρl−(s, qt+1)

}
D2(β

∗, β(t)) + δ−1
t+1Aσ

2Po(qt+1)

+ ε−1
t+1ηt+1D2(β

∗, 0). (A.33)

Let ε0 be any number ∈ (0, 1]. Taking εt+1 = ε0/2, δt+1 =
(ε0ρ

l
−(qt+1, s) + ε0ηt+1/2)/ρ+(qt+1 + s), we have

(1− 1/
√
ϑt+1)(1 + η̄t+1)ρt+1 + ρl−(qt+1, s)

+ (1− εt+1)ηt+1 − δt+1ρ+(qt+1 + s)

= (1− 1/
√
ϑt+1)(1 + η̄t+1)ρt+1 + (1− ε0)ρl−(qt+1, s)

+ (1− ε0)ηt+1.
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Let

Et+1 =
1

ρt+1 − ρl−(s, qt+1)
×

{Aσ2

ε0

ρ+(qt+1 + s)

ρl−(qt+1, s) + ηt+1/2
Po(qt+1) +

ηt+1

ε0
∥β∗∥22

}
≤ Aσ2

ε0
×

ρ+(qt+1 + s)

(ρl−(qt+1, s)/ρt+1 ∨ η̄t+1)(1− ρl−(s, qt+1)/ρt+1)ρ2t+1

Po(qt+1)

+
η̄t+1

ε0(1− ρl−(s, qt+1)/ρt+1)
∥β∗∥22

for any t ≥ 0. By the definitions of κt, ht, we can obtain

D2(β
∗, β(t+1)) + ht+1(ρt+1D2 −∆l)(β

(t+1), β(t))

≤κt+1D2(β
∗, β(t)) + κt+1Et+1. (A.34)

Applying a recursive argument with t = T, . . . , 0 gives

D2(β
∗, β(T+1)) +

T∑
t=0

(
ΠTτ=thτ+1

)
(ρt+1D2 −∆l)(β

(t+1), β(t))

≤
(
ΠTt=0κt+1

)
D2(β

∗, β(0)) +
T∑
t=0

(
ΠTτ=tκτ+1

)
Et+1,

and thus the bound (35) follows.
To ensure

ρt − ρl−(s, qt)
(1− 1/

√
ϑt)(1 + η̄t)ρt + (1− ε)(ρl−(qt, s) + ηt)

≤ 1

1 + α
(A.35)

for some α > 0, we need

η̄t ≥
(α+ 1/

√
ϑt)− (2 + α− ε){ρl−(s, qt) ∧ ρl−(qt, s)}/ρt

2− 1/
√
ϑt − ε

.

(A.36)
The result in the corollary follows by taking α = ε
and noticing that ρt+1 ≥ ρl+(qt+1, qt) implies (ρt+1D2 −
∆l)(β

t+1, βt) ≥ 0.

G. A recursive coordinatewise error bound under restricted
isometry

Recall the general procedure defined in (32),

β(t+1) = Θ#
{
β(t) − ρ−1

t+1X
T∇l0(Xβ(t); y);qt+1, η̄t+1

}
,

with η̄t+1 = ηt+1/ρt+1. (A.37)

Following a similar approach to Theorem 2 for the set of
fixed points, an error bound for β(t+1) in the ∞-norm can
be established under appropriate regularity conditions.

To facilitate the proof, we first recall the definition of
ρl−(s1, s2) as given in (21). In particular, in the regression
setup, ρ−(s1, s2) satisfies ∥X(β1 − β2)∥22 ≥ ρ−(s1, s2)∥β1 −
β2∥22, ∀βi : ∥βi∥0 ≤ si, or equivalently,

(β1 − β2)T (ρI −XTX)(β1 − β2)
≤ (ρ− ρ−(s1, s2))∥β1 − β2∥22, ∀βi : ∥βi∥0 ≤ si.

The presence of positive restricted eigenvalues in the Gram
matrix XTX implies the existence of proper upper bounds
on the restricted eigenvalues of the matrix ρI − XTX . So

when considering the∞-norm error for β(t+1), it appears more
manageable to work with the matrix ρI − XTX than with
XTX .

Motivated by this, given l, X , and si, we introduce a
generalized restricted isometry number υ(s1, s2) that satisfies

∥ρ(β1 − β2)−XT {∇l0(Xβ1)−∇l0(Xβ2)}∥∞
≤(ρ− υ)∥β1 − β2∥∞∀βi : ∥βi∥0 ≤ si, ρ ≥ υ. (A.38)

In the case where l0(Xβ) = ∥Xβ − y∥22/2, we have
∇l0(Xβ1) − ∇l0(Xβ2) = X(β1 − β2) and ρ(β1 − β2) −
XT (∇l0(Xβ1) − ∇l0(Xβ2)) = (ρI − XTX)(β1 − β2).
Therefore, (A.38) can be understood as a variant of low
coherence for the design matrix in the context of the∞-norm.

Theorem A.2. For the sequence of iterates generated by
procedure (A.37) and υt denoting υ(qt, s) as defined by
(A.38), the following recursive coordinatewise error bound on
β(t+1) holds for any t ≥ 0:

∥β(t+1) − β∗∥∞

≤ (1− υt + ηt+1

ρt+1 + ηt+1
)∥β(t) − β∗∥∞ +

∥XT ϵ∥∞
ρt+1 + ηt+1

+
ηt+1∥β∗∥∞
ρt+1 + ηt+1

+
1√

ϑt+1 − 1

∥β(t+1) − β∗∥2√
s

.

Proof. The proof follows similar lines of the proof of Theorem
2. First, by the definition of Θ#,∥∥∥(1 + η̄t+1)β

(t+1) − β(t) +
1

ρt+1
XT∇l0(Xβ(t))

∥∥∥
∞

≤ (1 + η̄t+1) min
j∈J (β(t+1)

j )
|β(t+1)
j |

and so

∥(ρt+1 + ηt+1)β
(t+1) − ρt+1β

(t)

+XT (∇l0(Xβ(t))−∇l0(Xβ∗))−XT ϵ∥∞
≤(ρt+1 + ηt+1) min

j∈J (β(t+1)

j )
|β(t+1)
j |.

Writing

(ρt+1 + ηt+1)β
(t+1) − ρt+1β

(t)

=(ρt+1 + ηt+1)(β
(t+1) − β∗)− ρt+1(β

(t) − β∗) + ηt+1β
∗

and using the sub-additivity of the ∞-norm, we get

(ρt+1 + ηt+1)∥β(t+1) − β∗∥∞
≤∥ρt+1(β

(t) − β∗)−XT (∇l0(Xβ(t))−∇l0(Xβ∗))∥∞
+ ∥XT ϵ∥∞ + ηt+1∥β∗∥∞ + (ρt+1 + ηt+1) min

j∈J (β(t+1)

j )
|β(t+1)
j |.

By (A.14) of Lemma A.3 and the definition of υt, we get

(ρt+1 + ηt+1)∥β(t+1) − β∗∥∞
≤(ρt+1 − υt)∥β(t) − β∗∥∞ + ∥XT ϵ∥∞

+ ηt+1∥β∗∥∞ + (ρt+1 + ηt+1)
∥β(t+1) − β∗∥2√

qt+1 − s
.
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Additionally, we can obtain (ρt+1 + ηt+1)∥(β(t+1) −
β∗)J ∗∥∞ ≤ (ρt+1−υt)∥β(t)−β∗∥∞+∥XT ϵ∥∞+ηt+1∥β∗∥∞
or

∥(β(t+1) − β∗)J ∗∥∞

≤ (1− υt + ηt+1

ρt+1 + ηt+1
)∥β(t) − β∗∥∞

+
∥XT ϵ∥∞
ρt+1 + ηt+1

+
ηt+1∥β∗∥∞
ρt+1 + ηt+1

,

by applying (A.15).

H. Model selection by predictive information criterion

Although parameter q as an upper bound of the true model
support size can often be directly specified based on domain
knowledge, this section develops a new information criterion
for the tuning of q to achieve the best prediction performance
in finite samples. We assume multiple responses to cover the
application in Section IV-D. Let Y ∈ Rn×m, X ∈ Rn×p
be the response matrix and predictor matrix, respectively, and
l0(XB;Y ) be the given loss. We use J (B) to denote the row
support of B and define J(B) = |J (B)|. Assume the true
B∗ ∈ Rp×m is row-sparse and let s∗ = J(B∗). The problem
considered in the main sections corresponds to the special case
m = 1. To choose the best (row) support size, we advocate
the following complexity penalty to be added to the loss in
the predictive information criterion:

P (B) = J(B)m+ J(B) log{ep/J(B)}. (A.39)

Recall D2(A1, A2) = ∥A1 −A2∥2F /2 in the matrix context.

Theorem A.3. Let the effective noise E = −∇l0(XB∗) be
sub-Gaussian with mean zero and scale bounded by a constant
and B∗ ∈ M and B∗ ̸= 0. Assume that there exist constants
δ > 0 and A0 ≥ 0 such that (∆l0 − δD2)(XB,XB

′) +
A0(P (B) + P (B′)) ≥ 0, for all B,B′ ∈ M. Then for a
sufficiently large constant A, any B̂ that minimizes

l0(XB;Y ) +AP (B) (A.40)

subject to B ∈M must satisfy

E{∥XB̂−XB∗∥2F ∨P (B̂)} ≲ ms∗+s∗ log(ep/s∗). (A.41)

Theorem A.3 does not involve any regularization parameters
(like q, λ), but it achieves the minimax optimal error rate
(A.41). Moreover, the justification of (A.40) does not require
an infinite-sample-size, design coherence or signal-to-noise
ratio conditions.

When the noise distribution has a dispersion parameter
σ2, Theorem A.3 still applies, but the penalty in (A.40)
becomes Aσ2P (B) with an unknown factor. A preliminary
scale estimate can be possibly used. But an appealing result
for regression is that the estimation of σ can be bypassed. We
give a scale-free form of predictive information criterion by

mn log{∥Y −XB∥2F }+AP (B), (A.42)

where A is an absolute constant.

Theorem A.4. Let Y = XB∗ + E , where E = [ϵi,k] has in-
dependent centered sub-Gaussian(σ2) entries and Eϵ2i,k ≳ σ2

with σ2 unknown. Define l0(XB;Y ) = ∥XB−Y ∥2F . Assume
the true model is not over-complex in the sense that P (B∗) ≤
mn/A0 for some constant A0 > 0. Let δ(B) = AP (B)/(mn),
where A is a positive constant satisfying A < A0, and so
δ(B∗) < 1. Then, for sufficiently large values of A0 and A, any
B̂ that minimizes log l0(XB;Y ) + δ(B) subject to δ(B) < 1
must satisfy D2(XB̂,XB

∗) ≲ σ2{s∗m+s∗ log(ep/s∗)} with
probability at least 1−Cp−c exp{−cm}−C exp(−cmn) for
some constants C, c > 0.

A more general form of AP (B) can be expressed as “α1×
degrees-of-freedom + α2 × inflation” with α1, α2 as absolute
constants. The two theorems can proved based on modifying
the proofs of Theorems 2 and 3 in [28]. For completeness, we
present some details below. Note that although the logarithmic
form of the scale-free predictive information criterion is widely
used, other non-asymptotic forms exist [28]. In fact, a key
trick in the proof is to convert these forms into a fractional
scale-free predictive information criterion, which is essential
for establishing the desired properties.

Proof. We first prove Theorem A.3 under the assumption that
vec (E) is subGaussian with mean 0 and scale σ. From the
definition of B̂, ∆l0(XB̂,XB

∗)+Aσ2P (B̂) ≤ Aσ2P (B∗)+
⟨E , XB̂−XB∗⟩. Similar to the proof of Lemma A.2, we can
show that for any a, b, a′ > 0, 4b > a, and t > 0,

⟨E , XB −XB∗⟩ ≤ (
2

a
+

2

a′
)D2(XB,XB

∗) + a′σ2t

+ 4bLσ2{P (B∗) + P (B)}, ∀B ∈ Rp×m (A.43)

occurs with probability at least 1−Cp−c exp(−cm) exp(−ct),
where L, c, C are positive constants. (The probability bound
can be derived by setting L to a sufficiently large constant and
observing that Jm + J log(ep/J) ≥ m + log(ep) holds for
J ≥ 1, and the union bound calculation, as in (A.10), does
not need to cover the case J = 0.)

Now, substituting B̂ for B in (A.43) and taking the expec-
tation, we have for any a, b, a′ > 0, 4b > a,

E{∆l0(XB̂,XB
∗) +Aσ2P (B̂)}

≤E
{
Aσ2P (B∗) + (

2

a
+

2

a′
)D2(XB̂,XB

∗)

+ ca′σ2 + 4bLσ2[P (B∗) + P (B̂)]
}
.

Combining it with the regularity condition gives

E
{
(δ − 2

a
− 2

a′
)D2(XB̂,XB

∗) + (A− 4bL− C)P (B̂)
}

≤(A+ 4bL+ C)σ2P (B∗) + ca′σ2.

Since P (B∗) ≥ c > 0, choosing the constants satisfying
(1/a + 1/a′)(1 + 1/b′) < δ/2, 4b > a, and A > 4bL + C
yields the conclusion.

Next, we prove Theorem A.4. We begin with a proof for
B̂ selected by a fractional form of scale-free form of pre-
dictive information criterion: l0(XB;Y )/(1 − δ(B)) subject
to δ(B) ≤ 1. Let h(B;A) = 1/{mn − AP (B)}. From the
optimality of B̂, l0(XB̂;Y )h(B̂;A) ≤ l0(XB

∗;Y )h(B∗;A)
or

l0(XB̂;Y )− l0(XB∗;Y ) ≤ l0(XB∗;Y )
(h(B∗;A)

h(B̂;A)
− 1

)
,
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where we used h(B̂;A) > 0. Using the Bregman divergence
for the quadratic function, we get

D2(XB̂,XB
∗)

≤l0(XB∗;Y )
(h(B∗;A)

h(B̂;A)
− 1

)
+ ⟨E , XB̂ −XB∗⟩. (A.44)

From the definition of h and the model parsimony assump-
tion, (A.44) becomes

D2(XB̂,XB
∗)

≤l0(XB∗;Y )
AP (B∗)−AP (B̂)

mn−AP (B∗)
+ ⟨E , XB̂ −XB∗⟩

=
1

2

A∥E∥2F
mnσ2 −Aσ2P (B∗)

σ2P (B∗)− 1

2

A∥E∥2F
mn−AP (B∗)

σ2P (B̂)

+ ⟨E , XB̂ −XB∗⟩

≤1

2

A∥E∥2F
(1−A/A0)mnσ2

σ2P (B∗)− 1

2

A∥E∥2F
mnσ2

σ2P (B̂)

+ ⟨E , XB̂ −XB∗⟩. (A.45)

The stochastic term ⟨E , XB̂ − XB∗⟩ can be bounded
similarly by (A.43): for any a1, b1, a2 > 0 satisfying 4b1 > a1,

⟨E , XB̂ −XB∗⟩ ≤ 2(1/a1 + 1/a2)D2(XB̂,XB
∗)

+ (b1)L1σ
2{P (B̂) + P (B∗)},

with probability at least 1 − Cp−c exp{−cm} for some
c, C, L1 > 0. Plugging it into (A.45) gives

(
1− 2

a1
− 2

a2

)
D2(XB̂,XB

∗)

≤ 1

2

{ A∥E∥2F
(1−A/A0)mnσ2

+ 2b1L1

}
σ2P (B∗)

− 1

2

{A∥E∥2F
mnσ2

− 2b1L1

}
σ2P (B̂).

Since ϵi,k are independent and non-degenerate, c1mnσ2 ≤
E∥E∥2F ≤ c2mnσ

2 for some constants c1, c2 > 0. Let γ
be some constant satisfying 0 < γ < 1. On E = {c1(1 −
γ)mnσ2 ≤ ∥E∥2F ≤ c2(1 + γ)mnσ2}, we have

A∥E∥2F
(1−A/A0)mnσ2

≤ c2(1 + γ)A0A

A0 −A
,
A∥E∥2F
mnσ2

≥ c1(1− γ)A.

Regarding the probability of the event, we write ∥E∥2F =
vec (E)A vec (E)T with A = I ∈ Rnm×nm and bound it
with the Hanson-Wright inequality. In fact, from Tr(A) =
mn, ∥A∥2 = 1, ∥A∥F =

√
mn, the complement of E occurs

with probability at most C ′ exp{−c′mn}.
Now, with A0, A, a1, a2, b1 large enough such that (1/a1+

1/a2) < 1/2, 4b1 > a1, A > 2b1L1/{c1(1−γ)} and A0 > A,
we can obtain the desired prediction error rate for the fractional
form. Finally, based on the fact that 1/(1 − δ) ≥ exp(δ) ≥
1/(1− δ/2) for any 0 ≤ δ < 1, the same error rate holds for
the logarithmic form (see [28] for more details).

I. More implementation details

Slow kill is extremely simple to implement and a summary
is given below. For ease of presentation, we define an η̄
function based on Theorem 6 and its discussions,

η̄(q+, ρ+) =


1

2
√
q+/s̄−1

, if q+ > 2q and q ≥ n/2
η0

ρ+

, if q+ ≤ 2q,
η0

ρ+

∧ 1

2
√
q+/s̄−1

, otherwise,

(A.46)
where s̄ = q ∧ nL2/ log(ep) ≥ s with L the Lipschitz
parameter of ∇l0 and η0 is a user defined parameter. (Like
q, η0 is a regularization parameter customizable by the user.)
We also define a β function

β(q+, ρ+, β
−) = Θ#

{
β−−ρ−1

+ XT∇l0(Xβ−; y); q+, η̄(q+, ρ+)
}
,

(A.47)
based on (32). (Often, an intercept should be included (say
β1) that is subject to no regularization. We can add a column
of ones in the design matrix and redefine the Θ# in (A.47) to
keep the first entry and perform quantile-thresholding on the
remaining subvector.)

Recall the line search criterion for a trial ρ:

(ρD2 −∆l)(β(qt+1, ρ, β
(t)), β(t)) ≥ 0 (A.48)

or
ρ

2
∥β(qt+1, ρ, β

(t))− β(t)∥22
≥ l0(Xβ(qt+1, ρ, β

(t)))− l0(Xβ(t))

− ⟨∇l0(Xβ(t)), Xβ(qt+1, ρ, β
(t))−Xβ(t)⟩.

Then the algorithm can be summarized as follows.

Input: X, y, a quantile parameter sequence qt → q ∈ [p], a target
ℓ2-shrinkage η0 ≥ 0.

Initialization: β(0), ρ0 (say 0 and L∥X∥22, respectively).
For each qt+1 (t ≥ 0), perform the following
a) Find ρt+1 by line search with the criterion (A.48).
b) Perform β(t+1) ← β(qt+1, ρt+1, β

(t)) according to (A.47).

We can also add a squeezing operation as step c): X ←
XJ (β(t+1)) from time to time (say when qt+1 reaches p/2k for
k greater than some k0). In addition, after qt+1 reaches q and
when the sparsity pattern of β(t+1) stabilizes, one can use a
classical optimization method to solve a smooth problem to get
the nonzero entries of the final estimate. As for step a), many
standard line search methods can be used, e.g., backtracking
[45]. We use an adaptive search with warm starts. Concretely,
given α ∈ (0, 1), we begin with ρ ← ρt, and set ρ ← αρ if
(A.48) is satisfied for β(qt+1, ρ, β

(t)) and ρ← ρ/α otherwise,
until a small enough ρt+1 makes (A.48) hold while αρt+1 does
not. In practice, it is wise to limit the number (M ) of searches.
We use α = 0.5,M = 5 for implementation.
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