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Multiple-scattering frequency-time hybrid solver for the
wave equation in interior domains

Oscar P. Bruno* and Tao Yinf
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Abstract

This paper proposes a frequency-time hybrid solver for the time-dependent wave equation in two-
dimensional interior spatial domains. The approach relies on four main elements, namely, 1) A multiple
scattering strategy that decomposes a given interior time-domain problem into a sequence of limited-
duration time-domain problems of scattering by overlapping open arcs, each one of which is reduced (by
means of the Fourier transform) to a sequence of Helmholtz frequency-domain problems; 2) Boundary
integral equations on overlapping boundary patches for the solution of the frequency-domain problems
in point 1); 3) A smooth “Time-windowing and recentering” methodology that enables both treatment
of incident signals of long duration and long time simulation; and, 4) A Fourier transform algorithm that
delivers numerically dispersionless, spectrally-accurate time evolution for given incident fields. By recast-
ing the interior time-domain problem in terms of a sequence of open-arc multiple scattering events, the
proposed approach regularizes the full interior frequency domain problem—which, if obtained by either
Fourier or Laplace transformation of the corresponding interior time-domain problem, must encapsu-
late infinitely many scattering events, giving rise to non-uniqueness and eigenfunctions in the Fourier
case, and ill conditioning in the Laplace case. Numerical examples are included which demonstrate the
accuracy and efficiency of the proposed methodology.

Keywords: wave equation in interior domains, multiple scattering, Fourier transform, integral equation

MSC: 35L05, 65M80, 65T99, 65R20

1 Introduction

The numerical solution of the classical scalar second-order wave equation remains a challenging problem,
with significant impact, directly and indirectly, on the simulation of propagation and scattering of time
dependent acoustic, elastic and electromagnetic waves. Methods often utilized in both the literature and
applications, such as the finite difference method [56], the finite element (FE) method [35,41,60] and the
discontinuous Galerkin (DG) method [36,58], rely on use of volumetric discretizations of the spatial domain
in conjunction with appropriate time-stepping discretization methods; recent related contributions include
the unconditionally stable space-time FE/DG methods [11,45] which can avoid use of fine temporal meshes
even in the common situations in which fine spatial meshes are required for resolution of challenging
geometric features. Volumetric discretization approaches can treat problems in general geometries and
including spatially varying media. As is well known, however, such methods often suffer from spatial and
temporal numerical dispersion errors (also known as pollution errors |7,42]), and they therefore require use
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of fine spatial and temporal meshes—and thus, large computer-memory and run-times—to achieve accurate
solutions in applications involving high frequencies and/or long time simulations.

The time-domain boundary integral equation method (TDBIE) for the wave equation, which, based
on use of the retarded-potential Green’s function, only requires discretization of lower-dimensional domain
boundary, has attracted attention recently [1,13,16,32,52,53,59]. This method requires treatment of the
Dirac delta function, and it therefore leads to integration domains given by the intersection of the light
cone with the overall scattering surface. As a result, the schemes resulting from the discretization of the
TDBIE are generally complex, and, additionally, they have presented challenges concerning numerical sta-
bility [13]. The “Convolution Quadrature” method [10,16,46,51] (CQ), in turn, relies on the combination of
a finite-difference time discretization and a Laplace-like transformation to reduce the time-domain problem
to modified Helmholtz problems over a range of frequencies. The Helmholtz problems in the CQ context are
tackled by means of frequency-domain integral equations, and, thus, the CQ method effectively eliminates
spatial dispersion. The solution method inherits the dispersive character of the finite-difference approxima-
tion that underlies the time-domain scheme, however. A certain “infinite tail” in the CQ time history that
results from “the passage through the Laplace domain” also presents “a serious disadvantage” [51, Chap-
ter 5.1].

A frequency-time hybrid solver has recently been proposed [6], in which the time evolution is evaluated by
means of a certain “windowing and time-recentering” procedure. The algorithm presented in that reference
simply decomposes the incident time signal as a sum of a sequence of smooth compactly supported incident
“wave packets”. Using Fourier transformation in time, the solution for each one of the wave packets is
expressed in terms of regular-Helmholtz frequency-domain solutions—thus eliminating spatial dispersion,
just like the CQ method. The “recentering” strategy then allows for use of a fixed set of frequency-
domain solutions for arbitrarily long times. A tracking strategy is used to determine the time interval
during which the solution associated with each wave packet must be kept as part of the simulation. An
efficient implementation of the required Fourier transformation processes is introduced in [6] which includes
specialized high-frequency algorithms, including, e.g. “time re-centering” of the wave as well as Chebyshev
and Fourier-Continuation Fourier transform representations. Unlike other approaches, the hybrid method [6]
can provide highly accurate numerical solutions for problems involving complex scatterers for incident fields
applied over long periods of time. The method allows for time leaping, parallel-in-time implementation and,
importantly, spectral accuracy in time. The CQ approach and other hybrid methods [31, 48|, in contrast,
have only provided solutions for incident signals of very brief time duration, as indicated in the various
comparisons with other methods provided in [6].

The present paper proposes an extension of the time-domain method [6] to problems posed in interior
physical domains. An immediate challenge arises as such a program is contemplated, namely, that the
interior-domain Helmholtz equation is not uniquely solvable at any frequency whose negative square is an
eigenvalue of the Laplace operator. This problem does not arise if the CQ method is used instead: the
resulting modified Helmholtz problems are uniquely solvable for all Laplace frequencies. In order to avoid
the aforementioned time-dispersion and infinite tail difficulties inherent in the CQ method, however, the
present paper retains the use of the Fourier transform, and it re-expresses the full time-evolution as a
problem of multiple scattering among various portions of the domain boundary. Thus, taking into account
the wave’s finite speed of propagation, the original domain boundary is decomposed into a number Ny
of overlapping open-arcs, each one of which gives rise to a corresponding scattering problem, in absence
of all other arcs in the decomposition. For simplicity, this paper restricts attention to the case Ny = 2,
but a numerical illustration is presented for a simple Nu > 2 case. (Complete details concerning the
algorithm and its implementation for arbitrary Nu,. > 2 will be presented elsewhere [12].) In view of
Theorems 2.8 and 3.4 below (see also Algorithms 1-4), by appropriately accounting for multiple scattering,
solutions for such open-arc problems can be combined into a full solution, which is mathematically exact
and numerically accurate, for the given interior domain problem. Crucially, the frequency-domain open-arc
scattering problems that result upon Fourier transformation are uniquely solvable.
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Solution via e.g. a Laplace transformation in time, in contrast, while also eliminating the difficul-
ties arising from the existence of interior-eigenvalues (and associated lack of existence and uniqueness for
the necessary frequency-domain problems), entails the instability inherent in numerical inverse Laplace
transformation. We suggest that this Laplace-transform instability reflects precisely the use of frequency-
domain solutions that incorporate infinitely many multiple scattering events, from which the solution up
to a given finite time T is then to be obtained—somehow eliminating, via high-frequency cancellations, all
contributions from multiple scattering events beyond time T', and thereby, in view of such cancellations,
incorporating a powerful source of ill conditioning at any finite spatio-temporal discretization level. Note
that each frequency-domain solution in the Laplace frequency domain indeed contains infinite-time infor-
mation, as is evidenced by the fact that the same set of frequency-domain solutions can theoretically be
used to propagate the time-domain solution of the wave equation up to arbitrarily long times. The proposed
multiple-scattering algorithm avoids the instability by restricting the number of multiple scattering events
considered to what is strictly necessary to advance the solution up to a given finite time.

In the proposed algorithm the necessary frequency-domain open-arc scattering problems are obtained by
means of a frequency-domain integral equation solver, as indicated in Algorithm 2. In view of the classical
regularity theory for open-surface problems (see |21, 29,43, 50, 54]), the open arc solutions are singular
at the arc endpoints: they behave like a non-integer power of the distance to the endpoint and, e.g., in
the case of Dirichlet boundary conditions considered in this paper, they tend to infinity as the endpoint
is approached. The two-dimensional version [25] of the Chebyshev-based rectangular-polar discretization
methodology [18], which incorporates a change of variables introduced in |24, Eq. (4.12)], is utilized to
evaluate the corresponding integrals with a high order of accuracy. Together with an appropriate geometrical
description, such as those provided by engineering NURBS-based models—which include parametrizations
expressed in terms of certain types of Rational B-Splines—the overlapping-patch boundary-partitioning
strategy can be used to tackle interior wave-equation problems in general three-dimensional engineering
structures. Such extensions of the proposed methods, however, are not considered in this paper, and are
left for future work.

This paper is organized as follows. Section 2.1 describes the wave propagation and scattering problem
under consideration. Section 2.2 introduces the overlapping-arc scattering structure, and the time-domain
boundary integral equations for the open-arc time-domain scattering problems. A necessary Huygens-
like domain-of-influence condition is introduced in Section 2.3, which simply states that, as in free space,
waves move along boundaries at the speed of sound. Surprisingly, to the best of the authors knowledge,
such a result has not been established as yet. A discussion in this regard is presented in Section 2.3,
including a rigorous proof of validity in a simple geometrical context as well as clear numerical evidence
of validity in other cases; the rigorous proof of validity of this condition for general curves is left for
future work. As a byproduct of the constructions concerning the Huygens condition, a 2D double-layer
time-domain formulation is introduced in Remark A.2 in Appendix A which bypasses certain difficulties
encountered previously. On the basis of these materials, Section 2.4 re-expresses the interior time-domain
problem in terms of a proposed open-arc “ping-pong” multiple-scattering approach, and it presents the main
theoretical result of this paper, Theorem 2.8—which establishes that the interior time-domain problem is
indeed equivalent to the proposed ping-pong problem. Section 2.5 then re-expresses the ping-pong problem
in terms of associated open-arc frequency-domain problems, and Section 2.6 presents the aforementioned
windowing and time-recentering strategy that is used to enable the treatment of problems of arbitrary
long time duration. The numerical implementation of the multiple scattering approach is presented in
Section 3, including the windowed Fourier-transform algorithm [6] used (Section 3.1), the methods utilized
for the evaluation of singular frequency-domain integral operators, and a novel arc-extension approach
that facilitates the avoidance of open-arc endpoint singularities (Section 3.2). The overall computational
implementation is outlined in Section 3.3. Numerical examples demonstrating the accuracy and efficiency
of the proposed approach, finally, are presented in Section 4.
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2 Hybrid frequency-time multiple scattering interior solver

2.1 Wave equation problem

Let Q C R? denote a bounded domain with piecewise smooth boundary I' = 9Q, and let u‘(z,t) denote
a given incident field defined for t € R and = € I', which vanishes for ¢ < 0. In what follows we consider
the wave equation initial and boundary-value problem

832;( 1) — AU (z,t) =0, (2,t) €QXR,,
( )_ 8t( 70)207 x €, (21)
ud(z,t) = —u'(z, 1), (z,t) € T x Ry,

for the scattered field u®(z,t) throughout 2, where the constant ¢ > 0 denotes the wave-speed and Ry :=
{t e R:t > 0}. Since ui(x,t) = 0 for t < 0, problem (2.1) can be equivalently written in the form

P (1,1) — PAuS(3,1) =0, (2,1) € A x R,
w(z,t) = —u'(z,1), (z,t) €T xR,

(2.2)

by invoking the causality condition u®(z,t) = 0,2 € Q,t < 0. Throughout this paper a number of wave-
equation problems will be considered which, assuming vanishing boundary data for ¢ < 0, will be expressed
in a form similar to (2.2), without explicit mention of vanishing initial conditions at ¢ = 0. The well-
posedness of the wave equation problem (2.1) (and, equivalently, (2.2)) in an appropriate Sobolev space is
addressed in Theorem 2.1 below.

As indicated in Section 1, this paper proposes a fast hybrid method, related to that presented in [6], for
the numerical solution of this problem. As noted in that section, however, the frequency-domain solutions
required by the hybrid method [6] fail to exist, in the present interior-domain context, at frequencies
corresponding to Laplace eigenvalues in the domain Q—and, thus, the exterior-domain hybrid approach [6]
does not apply in the present interior-domain setting. The hybrid approach proposed in the present paper
relies, instead, on a multiple scattering strategy that transforms the original wave equation problem in a
bounded domain into a sequence of wave equation problems of scattering by overlapping open-arcs—for
which the frequency domain solutions exist at all frequencies, and for which, therefore, general time-
domain solutions can effectively be obtained via the windowing and recentering Fourier-transform methods
introduced in [6]. The overlapping-arc scattering structure used as well as necessary theoretical results
concerning open-arc time-domain scattering problems are presented in the following sections.

T 1Ty
no 5=
1—' 1 1
Overlap
0 o
Y ry
i i

(a) (b) ()

Figure 1: Decomposition of closed boundaries I' into pairs of overlapping open arcs. (b) Decomposition of
the rectangular boundary I" depicted in (a); (¢) Decomposition of a circular closed curve T
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2.2 Overlapping-arc geometry and time-domain boundary integral equations

The proposed multiple scattering algorithm relies on a boundary decomposition strategy based on use
of overlapping patches. While the algorithm can utilize an arbitrary numbers of patches, for simplicity,
this paper only considers decompositions consisting of two patches, but an algorithm based on an arbitrary
number of patches can be constructed. (This is illustrated in Section 4 by means of a numerical example
wherein three patches are used; full details concerning the multi-patch algorithm and its implementation
will be presented elsewhere [12]|.) Thus, as illustrated in Figure 1(b), the scattering surface I" in Figure 1(a)
is covered by two overlapping patches I'y =Ty Cc I'and I'y = Ty c I, I' = I'; U Ty, whose intersection
I'1o = I'1 NIy equals the disjoint union I'1p = I'l, UT?, of two connected components 'l and I'%,. (Here the
overline denotes the closure of the corresponding set.) A similar decomposition is presented in Figure 1(c)
for a different curve I'. The “truncation” of I'y and I'y by I'15 results in the truncated arcs I‘;r =T'j\T'2,
j = 1,2. The distance between the arcs I'{" and T'Y, which is denoted by

12 = dist{T%" TY}, (2.3)

plays an essential role in our theory and algorithms.

Let us now consider the unbounded domains ; = R*\T'; (j = 1,2) and the corresponding time-domain
problems of scattering by the arcs I';, which underly the proposed multiple scattering solution strategy.
Given an incident signal gj(x,t) defined for x € I'; (j = 1,2) and t € R, which vanishes for t < 0, we
consider the following wave equation problem for the function w} (z,1):

T (o) — PAwi(3,8) = 0, (2,1) €0 xR, 2.4)
wi(z,t) = g](ac,t), (x,t) eI'; x R.
As is well known [51], the solution w‘;-(x, t) admits the single-layer representation
wj(x,t) = 8j[))(x.1), = €9, (2.5)
where Jj is the solution of the time-domain integral equation
Sjldjl =g; on Ty (2.6)
Here the time-domain single-layer potential g‘j is defined by
t—c He—yl
S W x,t) / / %( ") drdsy, x €y, (2.7)
o JE—r? —c 2 —yP
and the time-domain single-layer boundary integral operator 5*]. = ’ng‘j is given by
t—cHa—y|
S [w x,t) / / %( ) drdsy, x€ly, (2.8)
o V== a—yP

where 7 : HE o(R, H(Q;)) — Hbo(R, H'/>(T';)) denotes the trace operator. Here, for given o > 0 and
a,p € R, and for a given Hilbert space D, we have used the spatio-temporal Sobolev spaces HY (R, D) of
functions with values in D which vanish for ¢ < . The spaces Hj (R, D) are defined by |9, 26]

co+io

HY, (R, D) = {f e 2,u0): |

—o0+10

SPPILLA(5) s < oo} (2.9)
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together with the norm

oco+1i0 1/2
1flgz .0y = </ |S|2p\ﬁ[f](8)!%d8> ; (2.10)

—oo+1i0

where L[f] denotes the Fourier-Laplace transform of f given by
L[f](s) := / ft)etdt, seC,:={weC:Im(s) > o >0}, (2.11)

and where £, (D) := {¢ € D, (D) : e=7'¢ € S,,(D)} is defined in terms of the sets D, (D) and S/, (D) of
D-valued distributions and D-valued tempered distributions that vanish for ¢ < «, respectively. We also
call

HE(B, D) = {f(x,D)lie(—c0,) : [ € HE o (R, D)}

the set of all restrictions of functions f € H5 »(R, D) to the interval —oco < t < 3. It can be easily checked
that, as suggested by the notation used, the space H%(/3, D) does not depend on o. This can be verified for
integer values of p by using a norm equivalent to (2.10) that is expressed in terms of derivatives with respect
to the variable ¢, in conjunction with smooth and compactly-supported window functions of ¢ which equals
one over the restriction interval (—oo, 5] for a given value of 8. The equivalence for non-integer values of p
follows by interpolation.

The well-posedness of the wave equation problems (2.1) and (2.4) is established in the following theo-
rem [26,61].

Theorem 2.1. For given p € R, a > 0 and for j = 1,2 we have:

(a) Given u' € HE,(R,H/*(T)), the wave equation problem (2.2) admits a unique solution u® €
Hy o (R, H(9).

(b) Given g; € HE (R, HY/2(T;)), the wave equation problem (2.4) admits a unique solution wi €
HE (R, HY(9)).

2.3 Huygens-like domain-of-influence along boundaries

The multiple scattering algorithm proposed in this paper depends in an essential manner on a certain
domain-of-influence condition, stated as Condition 2.2 below, which is in essence a variant of the well
known Huygens principle in a form that is applicable to the problem of scattering by obstacles and open
arcs. Thus, Condition 2.2 expresses a well accepted principle in wave physics, namely, that solutions of
the wave equation propagate at the speed of sound, and that the wave field vanishes identically before
the arrival of a wavefront. This property has been rigorously established by the method of spherical
means [8] for the problem of propagation of waves in space without scatterers. Further, some mathematical
results have previously been given for the corresponding problem of scattering by obstacles [51, Proposition
3.6.2]. But previously available results for obstacle-scattering problems are not sharp, as they only ensure
that the field propagates away from the complete boundary (with speed equal to the speed of sound),
but they do not account for propagation along the scattering boundary. In particular, for incident fields
illuminating a subset of the boundary of a scatterer, previous theoretical results do not establish that the
field propagates at the speed of sound along the scattering boundary. This boundary-propagation character
provides a crucial element in the main theorem of this paper, Theorem 2.8—which, showing that the exact
solution of the problem (2.1) can be expressed as the sum of a series of multiple-scattering iterates, forms
the basis of the ping-pong multiple-scattering algorithm proposed in this paper. Although we conjecture
that Condition 2.2 is always valid, to the best of our knowledge such a result has not previously been
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established. A full theoretical treatment of this problem is beyond the scope of this paper, but, as indicated
in Remark 2.3, this paper does include a complete proof for the case of straight arcs as well as clear
numerical supporting evidence for the validity of this condition for curved arcs.

Let C denote an Lipschitz open arc. Given an incident signal g(x,t) defined for x € C and ¢ € R, which
vanishes for ¢t < 0, consider the wave equation problem

ot?

Put (x 4) — A Awd(z,t) =0, (z,t) € RAC x R, (21
wi(x,t) = g(x, 1), (xz,t) e C xR. '

Using these notations, the necessary Huygens-like condition is presented in what follows.

Condition 2.2. We say that an open Lipschitz curve C with endpoints e; and es satisfies the restricted
Huygens condition iff for every Lipschitz curve C™¢ C C satisfying dist(C'¢, {e1,e2}) > 0, and for every
function g € HY (R, H'Y2(C)) defined in C such that

{recC|gxt)#0}yCC™ forall t>0, (2.13)
we have
{z € R? | w(x,t) # 0} CA%(t) forall t<c 'dist(C™, {ey,ea}), (2.14)
where
AS(t) = {z € R? | dist(x,C™) < ct}.

Remark 2.3. We conjecture that Condition 2.2 holds for arbitrary open and closed Lipschitz curves C
(where, in the case of closed curves, the wave equation problem is posed either in the interior or the exterior
of the curve) and for all t > O (without the restriction t < ¢~ 'dist(C™, {e1,ea})). The proof is left for
future work. The validity of Condition 2.2 for the case in which C is a line segment is established in the
following lemma. We have also verified numerically the validity of this condition for a wide range of curved
open arcs; one such verification is presented in Section 2.5.1 below.

In what follows we denote R3 := {x = (z1,22) € R? : 29 = 0} and R2 := {x = (z1,22) " € R? : 25 = 0}.

Lemma 2.4. Let ¢; < ca. Then the (straight) open arc C = (c1,c2) x {0} C RZ satisfies the restricted
Huygens Condition 2.2.

Proof. Let C™™¢ C C denote an arc contained in C satisfying dist(C™, {(c1,0), (c2,0)}) > 0, let a function
g € HY (R, H'Y2(C)) be given that satisfies the assumption (2.13), extend g to all of RZ by setting g = 0
in R%\C , and consider the problems

ot?

QUS
vl (2,t) — 2Avi(z,t) =0, (v,t) € RL xR, (2.15)
vi(z,t) = g(x,1), (z,t) e RZ2 x R '

for the functions v = v5 (x,t). In view of equation (A.7) in Appendix A it follows that

T2

t—cz—y| x29(y,T) mgg(l)(y,r)
/ c/o [(t_T)Z\/(t_T)2—C2|SE—y|2 + (t—T)\/(t—T)Q—C*2|:L‘—y|2 drds, (2.16)

1
vi(zr,t) = —
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for all z € R2 and all ¢ > 0, where ¢V (z,t) = %(w,t). Noting that for ¢t > 0 and = ¢ A®(t) we have
t—c Yz —y|l <0 forall y € C™, and since g(-,¢) = 0 for all ¢ < 0 by assumption, we conclude that
{z € R? | vi(x,t) # 0} C A%(¢) for all ¢ > 0. Similarly, {x € R? | v (z,t) # 0} C A5(t) for all ¢ > 0. It
follows that

for € RAC and t<c dist(C™ {(c1,0), (c2,0)}).

This implies that

vi(z,t), z€ Ri,
S(x,t), zeR:,  t<c tdist(C™, {(c1,0), (c2,0)}),

w’(z,t) = < vs
0, r € R3\C,

is the unique solution to the wave equation problem (2.12) for ¢ < ¢~ ldist(C™, {(c1,0), (c2,0)}). Hence,
the condition

{z e R? | w®(z,t) #0} C A%(t) forall t<c ldist(C™C, {(c1,0), (c2,0)})

for the function w® follows from the corresponding properties, established above, for the functions v%, and
the proof of the lemma is complete. O

For ease of reference, in the following lemma we present the Huygens Condition 2.2 in the form that
will be used in the proof of Theorem 2.8. In order to match the setting of the theorem, for an integer j we
introduce the notation

j =mod(j,2)+1 (j€N), (2.17)

where, for integers a and b, mod(a, b) denotes the remainder of the division of a by b. In our context, where
the index values j = 1,2 refer to the corresponding arcs I'1, 'y, we have j' = 1 (resp. j' = 2) for j = 2

(resp. 7 =1).

Lemma 2.5. Let j € {1,2}, p € R, and Ty > 0, and assume that, for j € {1,2}, (a) g; €
H(I;”TO(R,HVQ(F]‘)) satisfies

gj(z,t) =0 for (z,t) €2 xR, (2.18)
and, (b) T'; satisfies Condition 2.2. Then, recalling equation (2.3), letting to = d12/c > 0, and calling
wj € Hg}‘z(R, H(9Q;)) the unique solution of the wave equation problem (2.4), we have

wi(z,t) =0 for (z,t)€ I’;-f X (—o0, Tp + to)- (2.19)

2.3.1 Numerical verification of the Huygens condition for elliptical arcs.

As indicated above, we have conducted a number of numerical tests which clearly suggest that, as
expected, Condition 2.2 and Lemma 2.5 are universally valid. For reference in this section we present the
results of one such test. To introduce our example we let

'y = {z = (cosh,1.5sin6) : 6 € (0.5m,1.57)},

I'Y = {z = (cos0,1.5sin6) : 6 € (—0.5m,0.5m)},
I'i2 = {z = (cosh,1.5sin6) : § € (0.57,0.757) U (1.257, 1.57) },
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and we consider the wave equation problem (2.4) with 7 = 1 and
[1 —cos4(f — 0.757)] exp(—16(t — 3)?), (z,t) = (cosf,1.5sind) € TY x (T, c0),
gl($7t) = 07 (Ilf,t) € PIZ X (T07OO)7
0, (x,t) el x (—OO,T()].
where Ty = 1.74. (This selection of Ty makes g1(z,t) “approximately continuous” at t = Tp, since, as is
easily checked, [1 — cos4(f — 0.757)] exp(—16(t — 3)?) < 107! for (z,t) € T} x (—o00,Tp).) It can also be
checked that tg = d12/c ~ 0.83 for the geometry under consideration.
Table 1 presents the maximum values of |ws(x,t)| over several time intervals at four points on T'Y

x1 = (0.031,1.499), 1z =(0.5,1.299), x3= (0.866,0.75), x4 = (1,0);

note, in particular, that the point (0.031,1.499) is very close to I'y. The first column in this table shows
that for all four points z; € T¥, j = 1,---,4, and for ¢t < Ty + to, the relation (2.19) is verified up to
the numerical error, of order O(10711), inherent in the numerical solution used. To further illustrate the
validity of the Huygens condition for this test case, we let t, = ¢~ 1dist{z,, T{}, £ = 2,3, 4 which gives

ty ~ 1.23, i3 ~ 1.60 and ty = 2.

The maximum values of |wj(zy,t)| listed in the last three columns in Table 1, which correspond to the time
intervals ¢ € (0,Tp + to + t¢), ¢ = 2,3,4, illustrate, more generally, the Huygens-like domain-of-influence

property

wi(z,t) =0 for (z,t) €Y x (=00, Ty +t), ty=c ‘dist{z,{}.

Table 1: Maximum values of |w$(z,t)| over various time intervals at four points on T'Y.

x max |wj(x,t)| max |ws (x,t)] max |ws (x,t)] max |ws (x,t)]
te(0,To+to) te(0,To+to+t2) te(0,To+to+ts) te(0,To+to+t4)

x1 1.81 x 10712 2.32 x 1078 1.71 x 1074 1.70 x 1072

T 4.59 x 10~ 12 4.59 x 10~ 12 1.29 x 1077 1.49 x 1073

x3 5.23 x 10712 5.23 x 10712 5.23 x 10712 7.93 x 10~

T4 6.98 x 10712 7.17 x 10712 7.39 x 10712 2.61 x 10711

2.4 Two-arc “ping-pong” multiple scattering construction

Taking into account the finite propagation speed that characterizes the solutions of the wave equation,
we propose to produce the time-domain solution of the original problem (2.1) in the interior domain 2 as
the sum of “ping-pong” wave-equation solutions produced under multiple scattering by the arcs I'y and I's.
To describe the ping-pong multiple-scattering scheme we introduce a few useful notations and conventions.
We call

j(m) =2 —mod(m,2),

m=12.3,... (2.20)

(in other words, j(m) equals 1 or 2 depending on whether m is odd or even, respectively), and, as detailed in
Definition 2.6, we inductively define boundary-condition functions f,,(x,t) (m > 1) and associated wave-
equation solutions vy, (z,t) (m > 1), all of which are causal—that is to say, they vanish identically for
t <0.
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Definition 2.6. For m € N we inductively define v3,(x,t) as equal to the solution wj.(m) (x,t) of the open-arc
problem (2.4) with boundary data

vo (z,t) = fu(x,t)  for (z,t) € Ly X R, (m e N), (2.21)

where fm(x,t) : Tjin) X R — C denotes the causal functions defined inductively via the relations

fi(z,t) = —u'(z,t) on T, folz,t) = —u'(x,t) —vi(x,t) on Ty, (2.22)
and,
fm(2,t) = —vp_1(2,1), on Tjgy, m=>3. (2.23)

Remark 2.7. The proposed multiple-scattering strategy relies crucially on the relations
fm(z, ) =0 for (x,t)€eTi2 xR, meN, m>2 (2.24)

which can easily be established inductively, as indicated in what follows. Considering first the case m = 2,
in view of Definition 2.6, we have vi(z,t) = fo(x,t) = —u'(z,t) — vi(x,t) on T2, on one hand, and
vi(x,t) = —ul(z,t) on Ty, on the other. We conclude that v§(x,t) =0 for (z,t) € T'12 x R, as desired. The
inductive step is equally simple: assuming, for £ € N, ¢ > 2, that fy(x,t) vanishes for (z,t) € ' x R, and
in view of (2.21) and (2.23), we have fry1(x,t) = —vj(x,t) = —fo(x,t) =0 for (x,t) € T'12 xR, and (2.24)
follows.

The main theorem of this paper, which is presented in what follows, shows that the solution u® = u*(x, t)
of equation (2.1) can be produced by means of the M-th order multiple-scattering sum

M
wi(,t) = 3 o), (225)
m=1
which includes contributions from the “ping-pong” scattering iterates vy, (z,t) with m =1,..., M.

Theorem 2.8. Let M € N, M > 2, p € R, and let T = T(M) = (M — 1)d12/c. Then, given
ut € HQO(R,HUQ(F)), we have uj; € HgiS/Q(T(M),Hl(Q)) and v’(x,t) = uy,(z,t) for all (z,t) €
Q x (—oo, T(M)].

Proof. By construction, for all m € N the function v}, (x,t) satisfies the homogeneous wave equation for
(x,t) € Q x R as well as vanishing boundary conditions for ¢ < 0. Using Theorem 2.1(b) inductively, it

follows that, for all m € N, f,,, € Hgfog(mfl)(R, HY2(T;)), and v, € Hg,ggm(R,Hl(Q)). In particular,
—3M
uiy € HY M (R, HY(Q)).
To complete the proof of the theorem, it suffices to show that the function uj, satisfies

uSy(x,t) +u'(x,t) =0 for (x,t) €T x (—o0, T(M)]. (2.26)

Indeed, from this relation it follows that u® — uj, satisfies trivial boundary condition up to time

T(M). Then it follows from Theorem 2.1(a) that u® — uj}, € H” 392%)(R, H'(Q)), and, in particular,
u® — uf,, vanishes throughout  for all t+ < T(M). In other words, uj|(—so,r(a)] = ©°|(—oo,r(a) €
Hg_3M(T(M),H1(Q)). But from Theorem 2.1(a) we also know that u® € Hg53/2(R, H(9)), and, thus,
u®|(—oo,(M)] € Hgi3/2(T(M), H(Q)). It follows that, as claimed, uj, is a solution of the wave equation

that coincides with v up to time 7'(M) and satisfies u3;|(—oo,7(a1)] € Hg_3/2(T(M), HY(Q)).
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The validity of the relation (2.26), and thus, the proof of the theorem, are established in what follows
by induction on the integer M. We first verify the relation (2.26) in the case M = 2. Since uj(x,t) =
vi(x,t) + v5(z,t) for (x,t) € I' x R, to establish the M = 2 result it suffices to show that

vi(x,t) +vs(x,t) +u'(z,t) =0 for (z,t) €T x (—o0,d12/d], (2.27)
which, in view of (2.22), results from the conditions
vi(z,t) +vi(x,t) +u'(x,t) =0 for (x,t) €Ty xR (2.28)
and
vi(z,t) =0 for (x,t) € T} x (—o0,d12/c]. (2.29)

Equation (2.28) follows immediately from Definition 2.6 since per (2.21) and (2.22) we have v5(x,t) =
fo(z,t) = —u'(z,t) —v§(z,t) on Ty for all t € R. To verify (2.29), we note from (2.24) that fo(w,t) vanishes
for (z,t) € I'ia x R. Then in view of Lemma 2.5, equation (2.29) results and thus, the proof for the case
M = 2 follows.

Using the notation j'(m) = mod(j(m),2) + 1 (equation (2.17)), to complete the inductive proof we
assume that for any M € N with 2 < M < L, L > 2, the following two relations hold:

uSy(z,t) +ul(z,t) =0 for (z,t) € Lo X R, (2.30)
and
vis(x,t) =0 for (z,t) € FEE(M) X (—o0, (M — 1)d12/c]. (2.31)

We then show that the same relations and, as a result, the relation (2.26), hold for M = L + 1. To do this
we note that equation (2.23) tells us that v;_(z,t) + vj(z,t) = 0 for (z,t) € j141) X R. Therefore, the
M = L — 1 condition (2.30) implies that

uSL+1(I)t) =+ U’L(LU,t) = UiJrl(xvt) + ’Ui({l},t) =+ uifl(xat) + UZ(LU7t) =0 (232)

for (x,t) € T'j(r41) x R. Noting that j'(L) = j(L + 1) and using (2.24) and (2.31) with M = L we see that
frei(w,t) =0 for (z,t) € Tjp41) X (=00, (L — 1)d12/c] UT'12 x R, and, thus, Lemma 2.5 tells us that

vi i (z,t) =0 for (x,t)€ FE‘I;(L+1) X (—o00, Ld12/c] (2.33)

—or, in other words, the relations (2.30) and (2.31) hold for M = L + 1. Combining the relation (2.31)
and the condition (2.30) for M = L, it follows that

ug i (z,t) + ui(x, t) = v (x,t) +up(z,t) + ui(x, t)=0 (2.34)

for (z,t) € I‘;l,”(LH) X (—o0, Ld12/c]. The relation (2.26) for M = L+1 results from (2.32) and (2.34), which

completes the proof. O

Remark 2.9. As detailed in Section 3.2, a variant of the setting considered in Theorem 2.8, involving
certain “extended” open arcs fj, 1s utilized in the actual numerical implementation we propose. The use of
extended arcs eliminates numerical accuracy losses that arise from the solution singularities that exist at
the open-arc endpoints. As indicated in that section, the theorem and proof remain essentially unchanged.
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The proposed multiple scattering strategy for the solution of the wave equation problem (2.1) for
(z,t) € Q x (—o0, T(M)] (M = 2,3,...), which is embodied in Theorem 2.8, the associated ping-pong
solutions v3,, and the sum (2.25) (m = 1,---,M), is summarized in Algorithm 1. Note that, in this
algorithm, the necessary solutions v (x,t) are obtained by means of the hybrid frequency-time approach

presented in Section 2.5.

Algorithm 1 Multiple scattering algorithm
. Dom=1,2,--- M
2:  Evaluate the boundary data f,, via relations (2.22)-(2.23).
3. Compute vy, (7,1), (z,t) € (QU () X (=00, T(M)] in Definition 2.6 using the open-arc hybrid
solver presented in Section 2.5.
4: End Do
5: Compute uf,(x,t), (x,t) € Q x (—oo, T(M)] using equation (2.25).

2.5 Frequency-domain multiple scattering algorithm

Call F(w) the Fourier transform of a function f(t) € L?(R),

+oo

Flw) = F()(w) = / Fb)e dt, (2.35)

—0o0

and let the corresponding inverse Fourier transform of a frequency-domain function F' € L?(R) be denoted
by

T or

+oo )
£(t) = FL(F)(w) 1/ Fw)e™ ! du. (2.36)

—0o0

Then, calling k = w/c the spatial wave number, the Fourier transform V;? (z,w) of the solution v, (z,t)
of the wave equation is a solution of the Helmholtz equation AV + 2V = 0 in Qj(m) with Dirichlet
boundary conditions V5 = Fy, on T,y where Fy, (7, w) = F(fy)(7,w). As is well known, the solution
V? (z,w) admits the representation

Vrfz,(wi) = Sj(m) [d)m](m’w) = /1" (I)w(xvy)wm(y)dsy7 VS Q](m)a (237)
i(m)

where 1), is the solution of the integral equation
S](m) [wm] = Fm on Fj(m)' (238)

Here, using the notations introduced in [54], S; : H1/2 (T;) — HY*(T;) denotes the single-layer operator

83118)(, w) o= / Do(2, Y)Y (y)ds,, @ €T, (2.39)

Ly

where, calling Hél) the Hankel function of first kind and order zero, @, (z,y) = %Hél)(/dx —1y|) denotes the

fundamental solution associated with the Helmholtz equation Aw + x?w = 0 in R?. Our approach relies on
the existence and uniqueness of solution of equation (2.38), which are guaranteed by the following theorem.

Theorem 2.10. Giwven F,, € H1/2(Fj(m)) the integral equation (2.38) admits a unique solution in
ﬁ_1/2(Fj) for any frequency w > 0.

Proof. Provided in [54]. O
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In view of Definition 2.6, the boundary function F;, is determined inductively by the relations
Fi(z,w) = —F(u')(z,w) on Ty, Fyr,w)=—-Fu')(z,w)— Vim—1(z,w) on Ty, (2.40)

and,
Fo(rv,w) ==V, 1(z,w) on Dju,y, m=>3. (2.41)

The frequency-domain component of the proposed frequency-time hybrid multiple scattering algorithm,
which produces the solutions v;, for m = 1,.--, M, is obtained by re-expressing Algorithm 1 via an
application of the Fourier transform. The result is Algorithm 2 below.

Algorithm 2 Hybrid multiple scattering algorithm

1: Dom=12,--- M
2 Evaluate the boundary data F),, via relations (2.40)-(2.41).
3 Solve the integral equation (2.38) with solution .
4: Compute V; (7, w), (z,w) € (QUT i) x R via (2.37).
5
6:

Compute vy, (z,t) = F~1(V3)(2, 1), (z,1) € (QU L)) % [0, T(M)].
End Do

2.6 Windowing and time-recentering

For a given signal f,,(x,t), the time-domain open-arc solution described in Section 2.5 is obtained via
the following sequence of operations:

CIDCI, ys (1, w) T 08 (2, 1), (2.42)

(@, 1) 5 B (2, w)
Clearly, the function f,,,(z,t) may represent a signal of arbitrarily long duration: this is merely a smooth
compactly supported function for ¢ € [0, T], with a potentially large value of T' > 0. For such large values
of T the Fourier transform F,,,(z,w) is generally a highly oscillatory function of w, as a result of the fast
oscillations in the Fourier transform integrand factor e™*—see e.g. [6, Fig. 1]. Under such a scenario a very
fine frequency-discretization, requiring O(T') frequency points, and, thus, a number O(T) of evaluations
of the frequency-domain boundary integral equation solver, is required to obtain the time-domain solution
vy (z,t). This makes the overall algorithm unacceptably expensive for long-time simulations. To overcome
these difficulties, a certain “windowing and time-recentering” procedure was proposed in [6, Sec. 3.1], that
decomposes a scattering problem involving an incident time signal of long duration into a sequence of
problems with smooth incident field of a limited duration, all of which can be solved in terms of a fixed set
of solutions of the corresponding frequency-domain problems for arbitrarily large values of T'.

1.5

0

t
Figure 2: Windowing functions wg(t), k = 1,2,3 with H = 10.

For a given final time 7', the windowing-and-recentering approach is based on use of a smooth partition
of unity P = {xx(t) | k € K}, K = {1,---, K}, where the functions x, satisfy >, xx(t) = 1fort € [0,T]
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and where, for a certain sequence si (k € K), each x(t) is a non-negative, smooth windowing function of
t, supported in the interval [sy — H, sx + H| of duration 2H. The partition-of-unity P can be generated on
the basis of the smooth function 7n(t;tg,t1) given by

17 |t| < th
e—1/s
n(tito ) = Qe =, g < |t < ty,s = =, (2.43)
0, t] > t1.
Without loss of generality, in this work we set
T 3
H=—— =—(k—1)H 2.44
and
n(s/H;1/2,1), —~H/2<s<H,
W) = x(t—si). x(8) = { 1= n(s/H +3/21/2,1), —H < s < —H/2,
07 |S| Z Ha

—a prescription that clearly ensures that sx + H/2 =T and Zszl Xk(t) =1 for all t € [0,T]. A depiction
of such a partition of unity, with H = 10, is presented in Figure 2.

Utilizing the partition-of-unity P, any smooth long-time signal f(t), t € [0,7], can be expressed in the
form

=D fel),  fr(t) = FE)xk(D), (2.45)

ke
where fi is compactly supported in [sg — H, s; + H]. The corresponding Fourier transform is then given by

To . .
=Y Fi(w), Felw)= [ felt)e™ dt = e Fy you(w), (2.46)
kek 0

where, defining by

H .
Fk,slow(f)(w) = /—H f(t + Sk:)Xk(t)elwtdta

the si-centered slow Fourier-transform operator, we call F, 0w (w) = Fi_siow (f)(w); note that, as suggested
by the notation used, F} g0, is a slowly-oscillatory function of w.

For k € K, we now call F, = Fi_siow(fm) the slow Fourier-transform of the m-th iterate f,,, and we
let

where 1, ;. is the solution of the integral equation
Simymrl = Fng on Lo (2.48)
It follows that 4
Fn(z,w) =Y " Foy (2, w), (2.49)
kel

and

=S E NV - s (2:50)

ke

note that F~ (VS p)(@,t) =0 for t < s — H. Adopting the time-recentering strategy described in this
section, Algorlthm 2 leads to the more efficient Algorithm 3.
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Algorithm 3 Hybrid multiple scattering algorithm with time-recentering

1: Dom=12--- M
Evaluate the boundary data f,(z,t), (z,t) € T X [0, sk + H] via relations (2.22)-(2.23).
Set vy, (w,t) = 0, (x,t) € (2 x [0,T]) U (Tjr(my x [0, 55 + HJ).
Dok=1,2,--- K

Evaluate the boundary data Fy,, (2, w) = Fr siow (fm) (7, w), (v,w) € Tjm) X R,

Solve the integral equation (2.48) with solution ¢, .

Compute V7, (z,w), (z,w) € (QUTLj(y)) X R through (2.47).

Compute v}, (z,t)+ = F_l(Vn‘ijk)(:L‘,t — k), (2, 1) € (Q x [0, T]) U(Ljr(my x [0, sx + H]).
9: End Do
10: End Do

3 Hybrid multiple scattering strategy: numerical implementation

This section presents algorithms necessary for the numerical implementation of the hybrid multiple scat-
tering strategy introduced in Algorithm 3, including algorithms for accurate evaluation of layer potentials,
boundary integral operators, and inverse Fourier transforms of certain singular functions.

3.1 Fourier transform algorithm

Recalling the forward and inverse Fourier transform expressions (2.35) and (2.36), we note that, for
smooth and compactly supported functions f, the corresponding Fourier transforms F' decay superalge-
braically fast (i.e., faster than any negative power of w) as w — +oo. Thus, the errors in approximation

AL .

flt) =~ / F(w)e ™tdw (3.1)
2 W

decays super-algebraically fast as W — oo in H*([0,T])-norm, for any s > 0, as it follows easily by iterated

integration by parts: the infinite-domain Fourier transform integral can be replaced by the corresponding

integral over a finite interval with superalgebraically small errors. As is known [47, 57|, however, the

frequency-domain solutions of the Helmholtz equation in two dimensions vary as an integrable function

of logw which vanishes at w = 0, and, thus, the integration process requires some care to produce the

needed integrals with high-order accuracy. To do this, in what follows we employ the recently developed

Fourier-continuation (FC) based approach [6] for the numerical evaluation of such singular inverse Fourier

transform integrals.

Thus, utilizing a decomposition of the form

we only need to consider 1) Integrals of the form
b .
PIF|(t) = / Flw)e “tdw, (3.3)
a
where F' is a smooth non-periodic function, and 2) The half-interval integrals

We ) 0 )
IS“C[F](t):/O F(w)e ™“'dw and IOwC[F](t):/ F(w)e ™“'dw, (3.4)

—We

where F'(w) contains a logarithmic singularity at w = 0.
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To treat the integral I°[F](t), we re-express it in the form

A _
IPIF|(t) = e—iét/ Flo+ 0)e—ldy, §=270 4022
—A

. (3.5)

Although F(w+90) is not a periodic function of w in the integration interval [— A, A], it can be approximated,
in this interval, by a Fourier-continuation trigonometric polynomial [23]

L/2—1

Fw+8)= Y cpelm (3.6)

m=—L/2

of a certain periodicity P, with high-order convergence as L grows. Indeed, an accurate Fourier approxi-
mation of a certain period P > 2A can be obtained on the basis of the FC(Gram) Fourier Continuation
method [3,23] from which the approximation errors decay as a user-prescribed negative power of L. Sub-
stituting (3.6) into (3.5) and integrating term-wise gives the approximation

L/2-1
IS[F](t) — 7151‘/ Z Cm/ 1 (at— m)wdw
m=—L/2
L/2—-1
. P 2 A
_ —i0t : _
= e Z:Z/ CmTr(at—m) sm< Iz (at m)), (3.7)
m=—L/2

with errors that are uniform in the time variable ¢. For a given user-prescribed equi-spaced time-evaluation
grid {t,, = nAt}n ,» the quantities I 5[F](t,) can be obtained via an FFT-accelerated evaluation of scaled
discrete convolutions, see Section 4.1.2 in [6] for more details. But here, for simplicity, we evaluate the
quantities I°[F](t,) directly.

In order to evaluate the integral I*[F](t) at fixed cost for arbitrarily large times ¢, in turn, we utilize a
certain modified “Filon-Clenshaw-Curtis” high-order quadrature approach developed in [6] which relies on

a graded set
J ¢
{Mﬂ_wc<9> 7.j__17"'7Q}7

of points in the interval (0, w.) and associated integration subintervals (s, ptj41),7 = 1,- -+ , Q. The integral
IY°[F](t) is thus approximated in accordance with the expression

Q-1

th, Z Iuy+1

=1

.

in which the integral ;"' [F](t) is obtained via the Clenshaw-Curtis quadrature rule. This algorithm
results in high-order convergence in spite of the logarithmic singular character of the function F'. In detail,
letting n, denote the selected number of Clenshaw-Curtis mesh points and assuming that ¢ > ne, + 1, the
errors resulting from this approximation strategy decay as O(Q~("ert1) as ngy, — 400.

Algorithm 3 also requires the evaluation of the Fourier transform

H .
Pl ) 1= [+ sptyear
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for the smooth boundary-values function f. This computation proceeds in a manner analogous to that used
for the evaluation of IV [F](t), except that, instead of Fourier continuation approximation of the function
F' used in that case, here a regular Fourier expansion

L/2-1
FlE+sexet) = > che'am™, (3.8)
m:ff/Q

of periodicity interval [—H, H], is used—which results in high-order convergence on account of the smooth
vanishing of the function x(t) at the endpoints of the interval [-H, H]. The approximation of F, g0, (f)(w)
is then obtained via an expression analogous to (3.7)—with uniform errors for all w € R, which are deter-
mined solely by the error in the approximation (3.8).

3.2 Layer-potentials and integral-operator evaluations

The numerical implementation of the hybrid multiple scattering strategy additionally requires evaluation
of the layer-potentials S;, 7 = 1,2 and the integral operators S;, j = 1,2 (equations (2.37)and (2.39),
respectively), both of which can be expressed as integrals of the form

/H(wi) = / ®w(xvy)¢(y7w)dsyv HAS F]') r€ or x€ F\Fja (39)
T

J

for certain densities ¥ (y,w). Depending on the location of observation point z, the integral H(z,w) may
be weakly-singular, nearly-singular or non-singular. The numerical evaluation of H(z,w) with high ac-
curacy can be achieved by means of a suitably modified version of the two-dimensional Chebyshev-based
rectangular-polar discretization method [25] (cf. [18]) which adequately accounts for the singular character
of the unknown potential ¢ at the endpoints of the open-arcs I';. In detail [29], the density function ¢ can
be expressed in the forms 1) = a/w near the endpoints where « is a smooth function and w ~ d*'? where d;
denotes the distance to the endpoint of I';. Then a special change of variables introduced in |24, Eq. (4.12)]
(see also [4,21]), which eliminates the 1/w singularity, is utilized here to evaluate the integrals H(z,w) with
high-order accuracy.

extension of I',

y endpoint of I',

“y , nhormal direction

extension of I'y
N o

Figure 3: Extended arcs utilized in the numerical implementation.

In view of the aforementioned density singularity, it can be easily shown that the collected boundary data
F,, (m > 1) is also singular: it behaves like djl.(i) near the endpoints of the arc I'j(,,). Graded meshes near
the endpoints could be employed to ensure high-order accuracy in the solution of the associated boundary
integral equations. But a different approach is utilized in this paper, whereby the edge singularity in
the boundary data may be entirely avoided by slightly and smoothly extending the boundary I'; in the
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direction normal to I'j—as illustrated in Figure 3. More precisely, letting « = z(s) and v = v(s) denote
a parametrization of I' = I'y UT's and its normal vector, respectively, the curve I'; is prolonged beyond its
endpoints into an extended open arc I';. Here the extension arc, denoted by I'j = I';\I';, is given by

y(s) = 2(s) +als) - v(s) (3.10)

for s in a neighborhood beyond each parameter value s = sg corresponding to an endpoint of I';. In order to
ensure sufficient smoothness, leading to high-order accuracy, a certain number of derivatives of the function
a are required to vanish at s = sg. The extended arcs fj used are such that their endpoints are far from the
region where the corresponding fields must be evaluated. Since the problems for the extended open-arcs
are handled with high accuracy (by means of the numerical method [18,25]), and since the corresponding
solutions are evaluated away from the extended-arc singular points, the difficulties arising from endpoint
singularities are completely eliminated.

Remark 3.1. The incident field u* can easily be extended to each one of the two curves fj, j=1,2; the
corresponding extensions will be denoted in what follows by ué», 7 = 1,2. The necessary extensitons can be

obtained either by simply evaluating on the extended curves an incident field function u' defined in all of R?,
whenever, as is often the case, such a function is provided, or, alternatively, by using a Sobolev extension
theorem such as [49, Theorem 3.10] on each curve I';.

This extension procedure, which provides great flexibility, does not negatively affect any aspect of the
proposed multiple scattering algorithm. Indeed, letting QJ = R? \F and considering the wave equation
problem

ot?

wi(w,t) = gj (aﬁ,t), (z,t) € T; x R, (3.11)

2~s ~
{‘9 L(a,t) — PAT (2,1) = 0, () € Q x R,

we have the following result analogous to Lemma 2.5.

Lemma 3.2. Let j € {1,2}, p € R, and Ty > 0, and assume that, for j € {1,2}, (a) g; €
HP ;. (R, HY/2(T))) satisfies
gi(z,t) =0 for (z,t) € (T2 UT]) x R; (3.12)

and, (b) fj satisfies Condition 2.2. Then, recalling equation (2.3), letting to = d12/c > 0, and calling
w;j € Hg_Tg’(R, HY(Q;)) the unique solution of the wave equation problem (3.11), we have

w;(z,t) =0 for (z,t)€ I‘Ef X (—o00, Ty + to)- (3.13)
Definition 2.6, in turn, needs to be adjusted as follows.

Definition 3.3. For m € N we inductively define v, (x,t) as equal to the solution zﬂ;(m) (z,t) of the open-arc
problem (3.11) with boundary data

U,(2,t) = fm(z,t) for (2,t) €Tjomy xR, (meN), (3.14)

where fm(m‘,t) : fj(m) X R — C denotes the causal functions defined inductively via the relations

fi(z,t) = —ui(z,t) on T4, (3.15)
Fala,t) = {0 uh(z,t) = (@, ), ii? (3.16)
9 29

and,

m > 3. (3.17)

{—’27211(35,@, x € Fj(m),
0, x €T,
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The new inductive relations give rise to the following slightly modified version of Theorem 2.8.

Theorem 3.4. Let M € N, M > 2, pe R, and let T = T(M) = (M — 1)d12/c. Denote an M-th order
multiple-scattering sum

M
W, t) =Y U (x,8), (3.18)
m=1
which includes contributions from all M “ping-pong” scattering iterates U5, (x,t) with m = 1,..., M. Then,

given u® € HY (R, HY2(T")) and uz € H (R, H1/2(fj)), Jj = 1,2 as indicated in Remark 3.1, we have

uy, € Hg_3/2(T(M),H1(Q)) and v’ (x,t) = uy,(x,t) for all (x,t) € Q x (—o0, T'(M)].

The proof of this theorem is essentially identical to the proof of Theorem 2.8, and it is therefore omitted
for brevity.

Incorporating the Fourier transform and time-windowing and recentering strategies introduced in pre-
vious sections, we are led to a new version of the hybrid multiple scattering algorithm which, except for
straightforward modifications related to arc extensions, is entirely analogous to Algorithm 3, and whose
slightly modified pseudocode is once again omitted. The overall algorithm for evaluation of the numerical
solution u* of equation (2.1), incorporating the extended arcs I';, is presented as Algorithm 4 in Section 3.3.

Clearly, the weakly-singular integrals H(z,w) need to be evaluated at a sufficiently large number of
frequency discretization-points w in the interval [-W, W]. The computational cost required for such eval-
uations can be reduced by utilizing the decomposition

Dy, (2,y) = Volz,y) + K21 (2, y) + Ho(z,y), (3.19)
where
Uo(r,y) = ———loglz —y (3.20)
ofz,y) = —5-logle—yl, :
2
ny) = Wiogle ) (3.21)
and
CIJw(:c,y)—(I)o(x,y)—ﬁcﬁl(x,y), x#?]?
Hy(2,y) = (3.22)
L — L(ce +1og(k/2)), r=y,

(ce = 0.57721566 - - - is the Euler constant). The function H, is more regular than the Green function
®,,(z,y) itself, and its integration under a given error tolerance is therefore less onerous. The discretization
matrices associated with the weakly-singular and nearly-singular integrals of the form

Holrw) = | Wilep)oe)ds, el 0o T\E), £=0.1, (3.23)

Ly

in turn, are independent of frequency, and can thus be precomputed before the ping-pong iterative process
is initiated.

In this work, the two-dimensional Chebyshev-based rectangular-polar integral solver [18,25] is employed
for the evaluation of all singular integrals. The remaining integrals involving the smoother kernels H,, can be
integrated efficiently and accurately by means of Fejer’s quadrature rule, and they can be further accelerated
e.g. by the methods presented in [14,22,44] and references therein, but such accelerations were not utilized
in this work. In our numerical implementation, prior to the ping-pong iteration process we additionally use
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the Lapack function ZGESV to pre-compute the inverses Aj_l(w) of the coefficient matrixes A;(w) (j = 1,2)
resulting from the discretizations of the integral operators

Ha () + 52 Ha (2, w) + / Ho(a, y)d(y,w)ds,, zely j=1,2 (3.24)
I

these inverse matrices are then used repeatedly to obtain the numerical solution @ka(:n, w) of the integral
equation

/~ Doy (21, ) o (1, )5y = Fopoi(r,0) on Tymy (3.25)
r

J(m)

with ﬁmk = Fhslow(fm) and j = j(m) forall ke K and all m =1,--- , M.

3.3 Numerical implementation: overall outline

The overall algorithm for evaluation of the numerical solution u* of equation (2.1) relies on the concepts
presented in Sections 3.1-3.2 and the following notations and conventions.

With reference to Section 3.1, we denote by F = {w1,--- ,ws} a set of frequencies used for the Fourier
transformation process, which includes an equi-spaced grid in the frequency intervals [-W, —w,] and [w,, W],
as well as a combination of the Clenshaw-Curtis mesh points in the intervals (—pj41, —p;) and (p5, 1),
j=1,---,Q — 1, for a total of J = oL + 2neh(Q — 1) frequency discretization points. For the necessary
time-domain discretization, in turn, we use the mesh 7 = {t,, = nAt}nNil of the time interval [0, sx + H],
where At = (sg + H)/Nr, and we call To = T N[0,T]. With reference to Section 3.2, on the other hand,
frequency-independent meshes M, are used on the curves fj, j = 1,2 for all frequencies considered. The
set of discrete spatial observation points at which the scattered field is to be produced, finally, is denoted
by R.

Using these notations, a version of Algorithm 3, including certain details concerning our numerical
implementation, is presented in Algorithm 4.

4 Numerical examples

This section presents a variety of numerical tests that illustrate the character of the proposed frequency-
time hybrid ping-pong integral-equation solver embodied in Algorithm 4. The numerical errors presented in
5 um — Usoe| where, with exception
of the test cases considered in Example 3 and 6, for which the exact solutions are known, the reference
solutions u;  were obtained as numerical solutions produced by means of sufficiently fine discretizations.
(Our use of absolute errors is justified since, as evident from the numerical solution plots in each case, we
only consider solutions whose maximum values are quantities of order one.) All of the numerical tests were
obtained on the basis of Fortran numerical implementations, parallelized using OpenMP, on an 10-core HP
Desktop with an Intel Core processor 19-10900.

Example 1. Our first test case concerns the accuracy of the numerical solver for the frequency domain
integral equation (2.38) on the single open-arc I'; shown in Figure 1(c), with point-source boundary data

this section were calculated in accordance with the expression max;co 7 |u

Fl=-U = —%Hél)(m\ﬂ) on Ti. (4.1)

Figure 4 displays errors in the solution evaluated by means of the single-layer potential (2.37), at the
points (0.5,0), (0,2),(0,1.01),(—0.99,0), as functions the number N of Chebyshev points used in each
one of the patches associated with the Chebyshev-based discretization methodology [25]. Clearly, uniform
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Algorithm 4 Numerical hybrid multiple scattering algorithm with time-recentering

1: Pre-compute the matrices A;l(w) for j =1,2, w e F.
22 Dom=1,2,--- .M B
3:  Evaluate the boundary data f,(v,t), (v,t) € M,y x T via relations (3.15)-(3.17).

4: Initialize v;,(z,t) = 0, (z,1) € (R x To) U (M) x T).
5: Dok=1,2,--- | K
6: For w € F, evaluate the vectors By, (w) whose elements are
Fm,k(xa W) = Fk,slow(fm)(x7w)a T c Mj(m)7
by the Fourier transform algorithm presented in Section 3.1.
7: Compute the approximation of the solution ¥, x(7,w), (z,w) € M) x F of the integral equation
(3.25) given by Aj_l(w)IB%m,k(w).
8: Evaluate ﬁi}k(a:,w), (z,w) € (RU M) x F through
Vosww) = [ @l g)lmalyo)ds,
Lj(m)
and rectangular-polar Chebyshev-based integration (Section 3.2).
9: Evaluate v?, (z,t) = 05, (x,t) + F_l(Vn‘ik)(:L‘,t —s1), (z,t) € (R xTo)U(Mj(mmy x T) by the Fourier
transform algorithm presented in Section 3.1.
10: End Do
11: End Do
12: Evaluate the numerical solution
M
W (2,1) = > Tp(2,),  (2,1) € R X Ty, (3.26)
m=1
107 10
——x=((0.5,0)) ——x=(0.5,0)
10° oo 10° B
——x=(-0.99,0) ——x=(-0.99,0)
5 10 5 10
& 1070 . 1070
1072 1072
107 10™
5 10 15 20 25 30 35 5 10 15 20 25 30 35
N N
(a) k =10 (b) kK =50

Figure 4: Numerical errors observed in the frequency-domain solutions considered in Example 1, at various
points x, as functions of the number N of discretization points used.
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fast convergence of the numerical solutions is obtained at all points, independently of the distance to
the boundary. For this example a total of 5 patches (resp. 25 patches) where used for test cases with
wavenumber k = 10 (resp. k = 50).

Example 2. We now consider test cases that demonstrate the accuracy of the time-domain solver for
the problem scattering by a single open-arc I'y depicted in Figure 1(c). We consider incident fields of two
different kinds, namely, 1) A Gaussian-modulated point source uf(z,t) equal to the Fourier transform of
the function

(w—wg)?

LD (] — 2])e A gt (4.2)

2
with respect to w, with 0 = 2, wg = 15, tg = 4 and z = (0,0); and 2) A plane-wave incident field

Ullx,w) =

ub(z,t) = —sin(4g(z, t))e_l'ﬁ(g(x7t)_3)2, gz, t) =t — tag — x - d™ (4.3)

along the incident direction d"® = (1,0) with t,,, = 2. Together with a sufficiently fine fixed spatial
discretization, the fixed numerical frequency intervals w € [5,25] and w € [—20,20] were used for the
incident fields uf and uj, respectively. Figures 5 and 6 present the scattered field as a function of time ¢
at the observation point x = (0.5,0) and the corresponding numerical errors at that point, respectively, as
functions of the number of frequencies used—demonstrating the fast convergence of the algorithms as the
frequency-domain discretization is refined.

0.6 102
—Real(u®) 4
0.4 —— Imag(u®) 10
S o2 10
@
z S e
5§ o = 10
= |
35 -10
2-02 10
04 10712
-0.6 10 5 3
0 2 4 6 8 10 10 10

t Number of frequencies

(a) (b)

Figure 5: Scattered field and errors obtained for the problem considered in Example 2. (a) Real and
imaginary parts of scattered field at # = (0.5,0) resulting from the incident field u¢. (b) Convergence of
the complex scattered field at z = (0.5,0) as a function of the number of frequencies used.

Example 3. This example presents the solutions produced by the full hybrid ping-pong multiple
scattering algorithm for the wave equation problem (2.1) in two different domains 2, namely, the unit disc
centered at the origin and the unit square Q = [~1,1]?, for ¢ € [0, 10], and for each one of the two time-
domain sources considered in Example 2: the point source u(z,t) and the plane wave source u}(z,t). For
the plane-wave incidence case the exact solution is given by u®(z,t) = —u4(z,t) for x € Q. In this example,
the extensions fj of I'; for j = 1,2 are constructed by means of portions of tangent circular arcs of radii
0.1. For the wave equation problem (2.1) in a unit disc domain, the numerical errors as a function of M
are displayed in Figures 7 and 8: clearly, rapid convergence and high accuracy are observed. Figures 9 and
10 display the total field within the rectangular domain {2 at various times, for two different point-source
locations z, and two different values of wy in (4.2), and using a total of M = 10 ping-pong iterations; we
have verified that, in this case, the numerical errors are less than 10~ for all ¢ € [0, 10].

Example 4. We now use Algorithm 4 to solve wave equation problems in a disc-shaped domain
(Figure 1(c)) and a T-shaped domain (Figure 11(a)), up to final times 7" = 10, and using M = 7 ping-pong
iterations. The incident wave is a pulse function given by

ui(z,t) = f(t— |z — 20|/c), f(s) = sin(4s)e 16(=3), (4.4)
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—Real(u®) 4
’/\\ 10
o 05 [ \ 10°
= of
3 Al _ 10°
g Vol 9 47
s 0 T & 10
3 \ 3’ 10°
® 05 \ | 10°
|
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-1 10" > ;
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t Number of frequencies

(a) (b)

Figure 6: Scattered field and errors obtained for the problem considered in Example 2. (a) Real and
imaginary parts of scattered field at = = (0.5,0) resulting from the incident field u. (b) Convergence of
the complex scattered field at z = (0.5,0) as a function of the number of frequencies used.
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1 10°
— Real(us) i 0_2 //

10710
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o
A

solution value
\
Error

Figure 7: Scattered field and errors obtained for the problem considered in Example 3. (a) Real and
imaginary parts of scattered field at = = (0.5,0) resulting from the incident field u%. (b) Numerical errors
as functions of time ¢ for various values of M.
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Figure 8: Scattered field and errors obtained for the problem considered in Example 3. (a) Real and
imaginary parts of scattered field at x = (0.5,0) resulting from the incident field u%. (b) Numerical errors
as functions of time ¢ for various values of M.
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~ (0 N Tay =
Figure 9: Real part of the total fields for the problem considered in Example 3 with point source located
from left to right in each row

at z = (0,0). Upper row: wg = 15. Lower row: wy = 50. Fields at times ¢ = 4, 6, 8 and 10 are displayed

s
A

displayed from left to right in each row.

Figure 10: Real part of the total fields for the problem considered in Example 3 with point source located
at z = (—0.6,—0.5). Upper row: wg = 15. Lower row: wy = 50. Fields at times ¢ = 4, 6, 8 and 10 are
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which is displayed in Figure 11(b). Figure 11(c) displays the corresponding Fourier transform, in view of
which the fixed numerical bandwidth value W = 15 was used for this example. Figures 12-14 display the
total field within €2 at various times and for different source point locations.

1 1

2 —real part
) 05 05" i |q1ag|naw part!
0 0 0 v/ hS
R i Al

-0.5 -0.5- H ([
-2

0 5 1
t

-1
0 -10 10

-4 2 0 2

0
(a) T-shaped domain. (b) u’(z,t) for |z — 2| = 1. (c) Ul(z,w).

Figure 11: Setup utilized for the test case considered in Example 4, including, (a) The T-shaped domain
used, as well as, (b) The time-domain incident wave u‘(z,t), and, (c) Its Fourier transform U?(z,w). The
Fourier transform displayed in (c) is smaller than 1078 outside the w-range considered in the figure.

0O00O
Do

Figure 12: Total fields in the disc-shaped domain considered in Example 4. Upper row: zy = (0,0). Lower
row: zg9 = (—0.5,0). Fields at times ¢t =4, 6, 8 and 10 are displayed from left to right in each row.

Example 5. This example concerns a long time propagation and scattering problem in a unit disc
domain under the incident wave (4.4) with zo = (0,0). For this example we have used 12 = 2sin {5 ~ 0.618,
M = 45, K = 4 (so that sx + H = 55), W = 20, J = 454, and At = 0.11, and we have computed
the necessary frequency domain solutions using open-arc discretizations M;, j = 1,2, each one of which
contains 224 discretization points. Note that the exact solution values at the points x = (—+/3/4,1/4) and
x = (0.5,0) coincide (since |(—v/3/4,1/4)| = |(0.5,0)| = 0.5). This simple symmetry relation provides a
valuable verification of the numerical solution—which, as illustrated Figure 15, is closely satisfied by the
numerical solution. Tables 2 and 3, finally, present the numerical solution errors maxe(o 7(a1)] [Unum — gt
for the present problem at the point x = (0.5,0), for various values of M and corresponding final times
T(M), together with other statistics such as precomputation time and total computational times. Note in
particular that the solution errors do not grow as the final times increase.

Example 6. In our final example we briefly demonstrate the feasibility of a version of the proposed
multiple scattering algorithm which utilizes more than two patches. This extended algorithm requires use
of appropriately windowed boundary data for the open-surface wave equation problems associated with
multiple patches. At each step, the multiple wave equation problems can be solved in parallel. Complete

details concerning the algorithm and its implementation will be presented elsewhere [12]. In the example
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(a) t =3 (b)t=5

o) ofl
-

(c)t=7 (d)t=9

Figure 13: Total fields in the T-shaped domain considered in Example 4, with point source located at
2o = (—2,0), at various times t.

(a)t=3 (b)t=5
-
(T G T
-
(c)t=7 (d)t=9

Figure 14: Total fields in the T-shaped domain considered in Example 4, with point source located at
29 = (0,0), at various times t.

2 1 T
x=(-sqrt(3)/4,1/4)

1 - x=(0.5,0) 1
S v
Z 0 \J .
9=
]

=

2 ! ! ! ! ! ! ! ! !

0 5 10 15 20 25 30 35 40 45 50

t

Figure 15: Time-domain solutions u!J(x,t),t € [0,50] considered in Example 5 at = (—/3/4,1/4)7 and
x = (0.5,0)" with M = 45. As illustrated in the figure, these two functions coincide, by symmetry.
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Table 2: Numerical errors, precomputation time and total computational times required by the problem
considered in Example 5 for various values of M. J = 254 frequencies were used in all cases.

M 15 25 35 45
T(M) 8.652 14.832 21.012 27.192
Error 6.57 x 107 [ 4.74 x 107° | 1.87 x 107° | 5.56 x 10~°
Time (precomputation) 9.1s
Time (M iterations) 30.0 s 592.2's 73.1s 94.4 s

Table 3: Numerical errors, precomputation time and total computational times required by the problem
considered in Example 5 for various values of M. J = 454 frequencies were used in all cases.

M 15 25 35 45
T(M) 8.652 14.832 21.012 27.192
Error 124 x 1077 [ 2.59 x 107® | 1.10 x 107 [ 4.36 x 10~°
Time (precomputation) 16.8 s
Time (M iterations) 46.3 s 78.4 s 109.8 s 141.3 s

presented here a three-patch decomposition of the boundary I', as shown in Figure 16, is utilized to solve
once again the wave equation problem (2.1) on the unit disc, under plane-wave incidence u%(a:, t), considered
in Example 2, and the exact solution is given by u®(z,t) = —ul(z,t) for x € Q. The numerical solutions
at x = (0.5,0) as functions of time t for various values of M are displayed in Figure 17. The maximum
numerical errors are of the same order as those displayed in Figure 8(b) for the two-patch case.

1.5

1

0.5

Figure 16: Decomposition of a circular closed curve using three overlapping patches with extension.

5 Conclusions

This paper proposed a frequency-time hybrid integral-equation method for the wave equation problem
in an interior two-dimensional bounded spatial domain. The solver is based on a novel ping-pong multiple
scattering strategy that reduces the original problem to a sequence of problems of scattering by open-arcs.
Exploiting the Huygens principle, relying on a domain decomposition strategy based on use of overlapping
patches, and utilizing boundary integral equation formulations for frequency-domain sub-problems and an
efficient Fourier transform algorithm, the proposed method produces the interior time-domain solution
efficiently and with high accuracy. An extension of the ping-pong algorithm that incorporates arbitrary
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Figure 17: Comparison of the numerical and exact solutions as functions of time ¢ for various values of M.

numbers of overlapping subdomains should enable application of the method to complex 2D and 3D geome-
tries. The method can also be extended to enable solution of elastic and electromagnetic wave problems,
and including problems of scattering by impenetrable obstacles, problems of transmission for penetrable
structures and problems in multi-layered media. Such extensions, which lie beyond the scope of this paper,
are left for future work.
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A Appendix

This appendix obtains the explicit expression (2.16), used in the proof of Lemma 2.4, for the solution
v% (z,t) of problem (2.15), where g is a causal function (g(z,t) = 0 for ¢ < 0) defined on RZ x R, which
satisfies the assumption (2.13) for a bounded subset C™¢ C R3. The construction utilizes the associated
frequency-domain Green’s function G (z,y), which, for each y € R2 | is defined as the solution of the
problem

AGy(z,y) + /fQGw(:c, y) = —0y(z), (z,w)e€ Ri xR, k=w/c,
Gu(z,y) =0 (x,w) € Rg x R.
As is well known, the method of images yields

1

4

Gula,y) = JHi (el —yl) = JH" (vl —y), @ # 1y, (A1)
where 2/ = (21, —x2) denotes the image point of z = (z1,22) € R? with respect to R3, and where Hél)
denotes the Hankel function of first kind and order zero. Let now V§(z,w) denote the Fourier transform of
v (z,t) with respect to t for x € Ri; clearly V7 is a solution of the Helmholtz equation with wavenumber x
in R?, and with Dirichlet boundary conditions V¥ = g on RZ—where g(z,w) denotes the Fourier transform
of g(x,t) with respect to t. Clearly g(x,w) vanishes for z ¢ C™° since, in view of (2.13), so does g(z,t).

Use of Green’s theorem together with the Green function G,, [30] yields
Vi(z,w) = /inc Ou, Gu(z,y)g(y, w)dsy, x € Ri, (A.2)
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where, denoting by v, = (0,1)T the unit upward normal on RZ,

K T2 1
Ov, Gu(T,y) = 2 Tr—y (

(ke = yl).
It follows that, for z € R2, v (z,t) equals the inverse Fourier transform of (A.2). To proceed with the
construction we introduce the following notations. We call R3 = ]R% X R the plane in three dimensional
space with cross-section R we let ¥ = (27,0)T ¢ R}, § = (y',2)" € R} and ¥ = V72 + 22 with
r=|z—y| =/ (z1 —y1)? + (2 — y2)2. Using the unit normal v, = (0,1)" of R, finally, the corresponding
unit normal on R} is denoted by v = (0,1,0)".

In preparation for the main result of this appendix we establish the following Lemma.

Lemma A.1. The following formulas hold:

1 00 LIKT

e ) 1
w7 dz = ZHO( )(m'), (A.3)
1 o9 1KT ;
I () dz = 50, B (sr), i=1,2 (A4)
—00

Proof. The expression (A.3) is established in [27, Lemma 3.1]. Using the notations
o= (e + (22 —2)* + 2712,

to establish the y; component of (A.4) (the y2 component follows analogously), it suffices to show that

Y1 o) eim“' o) eim*()
/ dyl/ y1< Z >dz-/1 Z dz—/1 2 dz; (A.5)

the result then follows by differentiation with respect to y;. To establish (A.5), we seek to utilize Fubini’s
Theorem on the left hand integral, but, unfortunately, the integrand does not satisfy the hypothesis of
Fubini’s theorem: it is not an integrable function of the variable (y1,z). To address this difficulty we
integrate by parts the left-hand integral: using the relation

e = —0 e (A.6)

1RZ

we obtain

o) eim* © 1 . 1 . © 1 o
— IRT _ IRT 1IKT
/1 Dy, <7g> dz = /1 @@ayle dz = —%%6 . —1—/1 2 Dy, " dz.

Fubini’s Theorem can now be applied to the last integral, and we thus obtain

/yl dyl / dz = _ieimx mro /yl dyl / mrdz
A F iK 2=1 Oy
— _i KT + 1 emro +/ (emr _ €mro)d2.
iK =1 iK =1 J; ikz2
Now, replacing z=2 = —d,2~! and integrating by parts in the last integral, and then using (A.6) once again,
equation (A.5) results, as desired. The proof is now complete. O
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To establish (2.16) we proceed as follows. In view of Lemma A.1 and equation (A.1), and noting that
for z € R2,y € R(Q) we have 9 — Yo # 0, the normal derivative of the Green function on the boundary ]R%
is given by

0u,Gu(z,y) = %QH( )( r) = %GyQHél)(kn“) = % /_Z Oy, <€z:r> dz = —% h zm;; 11‘26“@2
and, therefore, equation (A.2) gives
Vi(z,w) = 1 imtig_la@emz g(y,w)dsy, x¢€ R%r.
21 Joineyr T
Taking the inverse Fourier transform we obtain
vi(z,t) = % /c . /Ot [;35(75 — 7 —c ) (t—7— 0_11*)} x2 g(y, T)dTdsy
inc x
_ 1 1 1y (1)
= 2 s [%3g(y,t —c )+ VQg (y,t —c~ )] zadsy.

where g™ (x,t) = %( t). Using the relations dsy = dzds, we thus obtain
+oo
vl (x / / (12 + 2273 2g(y,t — 712 + 22)
gDyt — 2 + 22)} zodzds,.

Utilizing the change of variables 7 = t — ¢~ 1v/72 + 22, or equivalently z = ¢\/(t — 7)2 — ¢~ 272, and dz =
—cz7 /12 4+ 22dr, we then obtain

+c(r2 + 22)

(r2 + 22)_3/2dz = — dr

and
1 1
———dz
c(r? + 22) At — T)\/(t —7)2 —c?r2

It then follows that, for z € RZ,

v (1) = — (A7)

t—c 1|:c Yl z2 g(y,T) o g(l)(y,T)
/mc/ [ (t —7)2 \/(t—7)2—c*2|x—y|2 + (t—T)\/(t—T)2 e PP drdsy, (A.8)

as desired.

Remark A.2. Although not used in this paper, it is worthwhile to note here that, for an arbitrary two-
dimensional Lipschitz curve T, and letting [ =T x R, the changes of variables used in this appendiz can
easily be utilized to obtain an expression for the time-domain double-layer potential in two-dimensions,
which had heretofore mot been successfully derived. Utilizing once again the notations used above, from
the Kirchhoff formula [55, Eq. (22), Sec. 8.1], we know that the classical three-dimensional time-domain
double-layer potential is given by

1 oF

o 2—1
Dap()at) = - [[| 2ot =) = Lo g = o) sy
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The two-dimensional double-layer potential Dap can then be obtained by assuming that the causal signal ¢
is independent of z. Then using the change of variables T =t — ¢ 1\/r2 + 22 we obtain

DZD(¢)(x’t)
R () oy, 7) (z—y) - 19N (y.7)
. /F /0 [(t_T) N drds,.

2/(t—T12—c2z—y]2 (t—-7)/{t—T)2—c 2z —y]?

which provides a correction to the expression presented in [51, Page 19]. The contributions [8, Sections 6.3-
6.5/, |38, Page 42| and references therein outline some of the difficulties previously encountered in regard
to the 2D double-layer potential.
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