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Abstract5

This paper proposes a frequency-time hybrid solver for the time-dependent wave equation in two-6

dimensional interior spatial domains. The approach relies on four main elements, namely, 1) A multiple7

scattering strategy that decomposes a given interior time-domain problem into a sequence of limited-8

duration time-domain problems of scattering by overlapping open arcs, each one of which is reduced (by9

means of the Fourier transform) to a sequence of Helmholtz frequency-domain problems; 2) Boundary10

integral equations on overlapping boundary patches for the solution of the frequency-domain problems11

in point 1); 3) A smooth “Time-windowing and recentering” methodology that enables both treatment12

of incident signals of long duration and long time simulation; and, 4) A Fourier transform algorithm that13

delivers numerically dispersionless, spectrally-accurate time evolution for given incident fields. By recast-14

ing the interior time-domain problem in terms of a sequence of open-arc multiple scattering events, the15

proposed approach regularizes the full interior frequency domain problem—which, if obtained by either16

Fourier or Laplace transformation of the corresponding interior time-domain problem, must encapsu-17

late infinitely many scattering events, giving rise to non-uniqueness and eigenfunctions in the Fourier18

case, and ill conditioning in the Laplace case. Numerical examples are included which demonstrate the19

accuracy and efficiency of the proposed methodology.20
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1 Introduction23

The numerical solution of the classical scalar second-order wave equation remains a challenging problem,24

with significant impact, directly and indirectly, on the simulation of propagation and scattering of time25

dependent acoustic, elastic and electromagnetic waves. Methods often utilized in both the literature and26

applications, such as the finite difference method [56], the finite element (FE) method [35, 41, 60] and the27

discontinuous Galerkin (DG) method [36,58], rely on use of volumetric discretizations of the spatial domain28

in conjunction with appropriate time-stepping discretization methods; recent related contributions include29

the unconditionally stable space-time FE/DG methods [11,45] which can avoid use of fine temporal meshes30

even in the common situations in which fine spatial meshes are required for resolution of challenging31

geometric features. Volumetric discretization approaches can treat problems in general geometries and32

including spatially varying media. As is well known, however, such methods often suffer from spatial and33

temporal numerical dispersion errors (also known as pollution errors [7,42]), and they therefore require use34
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of fine spatial and temporal meshes—and thus, large computer-memory and run-times—to achieve accurate35

solutions in applications involving high frequencies and/or long time simulations.36

The time-domain boundary integral equation method (TDBIE) for the wave equation, which, based37

on use of the retarded-potential Green’s function, only requires discretization of lower-dimensional domain38

boundary, has attracted attention recently [1, 13, 16, 32, 52, 53, 59]. This method requires treatment of the39

Dirac delta function, and it therefore leads to integration domains given by the intersection of the light40

cone with the overall scattering surface. As a result, the schemes resulting from the discretization of the41

TDBIE are generally complex, and, additionally, they have presented challenges concerning numerical sta-42

bility [13]. The “Convolution Quadrature” method [10,16,46,51] (CQ), in turn, relies on the combination of43

a finite-difference time discretization and a Laplace-like transformation to reduce the time-domain problem44

to modified Helmholtz problems over a range of frequencies. The Helmholtz problems in the CQ context are45

tackled by means of frequency-domain integral equations, and, thus, the CQ method effectively eliminates46

spatial dispersion. The solution method inherits the dispersive character of the finite-difference approxima-47

tion that underlies the time-domain scheme, however. A certain “infinite tail” in the CQ time history that48

results from “the passage through the Laplace domain” also presents “a serious disadvantage” [51, Chap-49

ter 5.1].50

A frequency-time hybrid solver has recently been proposed [6], in which the time evolution is evaluated by51

means of a certain “windowing and time-recentering” procedure. The algorithm presented in that reference52

simply decomposes the incident time signal as a sum of a sequence of smooth compactly supported incident53

“wave packets”. Using Fourier transformation in time, the solution for each one of the wave packets is54

expressed in terms of regular-Helmholtz frequency-domain solutions—thus eliminating spatial dispersion,55

just like the CQ method. The “recentering” strategy then allows for use of a fixed set of frequency-56

domain solutions for arbitrarily long times. A tracking strategy is used to determine the time interval57

during which the solution associated with each wave packet must be kept as part of the simulation. An58

efficient implementation of the required Fourier transformation processes is introduced in [6] which includes59

specialized high-frequency algorithms, including, e.g. “time re-centering” of the wave as well as Chebyshev60

and Fourier-Continuation Fourier transform representations. Unlike other approaches, the hybrid method [6]61

can provide highly accurate numerical solutions for problems involving complex scatterers for incident fields62

applied over long periods of time. The method allows for time leaping, parallel-in-time implementation and,63

importantly, spectral accuracy in time. The CQ approach and other hybrid methods [31, 48], in contrast,64

have only provided solutions for incident signals of very brief time duration, as indicated in the various65

comparisons with other methods provided in [6].66

The present paper proposes an extension of the time-domain method [6] to problems posed in interior67

physical domains. An immediate challenge arises as such a program is contemplated, namely, that the68

interior-domain Helmholtz equation is not uniquely solvable at any frequency whose negative square is an69

eigenvalue of the Laplace operator. This problem does not arise if the CQ method is used instead: the70

resulting modified Helmholtz problems are uniquely solvable for all Laplace frequencies. In order to avoid71

the aforementioned time-dispersion and infinite tail difficulties inherent in the CQ method, however, the72

present paper retains the use of the Fourier transform, and it re-expresses the full time-evolution as a73

problem of multiple scattering among various portions of the domain boundary. Thus, taking into account74

the wave’s finite speed of propagation, the original domain boundary is decomposed into a number Narc75

of overlapping open-arcs, each one of which gives rise to a corresponding scattering problem, in absence76

of all other arcs in the decomposition. For simplicity, this paper restricts attention to the case Narc = 2,77

but a numerical illustration is presented for a simple Narc > 2 case. (Complete details concerning the78

algorithm and its implementation for arbitrary Narc ≥ 2 will be presented elsewhere [12].) In view of79

Theorems 2.8 and 3.4 below (see also Algorithms 1-4), by appropriately accounting for multiple scattering,80

solutions for such open-arc problems can be combined into a full solution, which is mathematically exact81

and numerically accurate, for the given interior domain problem. Crucially, the frequency-domain open-arc82

scattering problems that result upon Fourier transformation are uniquely solvable.83
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Solution via e.g. a Laplace transformation in time, in contrast, while also eliminating the difficul-84

ties arising from the existence of interior-eigenvalues (and associated lack of existence and uniqueness for85

the necessary frequency-domain problems), entails the instability inherent in numerical inverse Laplace86

transformation. We suggest that this Laplace-transform instability reflects precisely the use of frequency-87

domain solutions that incorporate infinitely many multiple scattering events, from which the solution up88

to a given finite time T is then to be obtained—somehow eliminating, via high-frequency cancellations, all89

contributions from multiple scattering events beyond time T , and thereby, in view of such cancellations,90

incorporating a powerful source of ill conditioning at any finite spatio-temporal discretization level. Note91

that each frequency-domain solution in the Laplace frequency domain indeed contains infinite-time infor-92

mation, as is evidenced by the fact that the same set of frequency-domain solutions can theoretically be93

used to propagate the time-domain solution of the wave equation up to arbitrarily long times. The proposed94

multiple-scattering algorithm avoids the instability by restricting the number of multiple scattering events95

considered to what is strictly necessary to advance the solution up to a given finite time.96

In the proposed algorithm the necessary frequency-domain open-arc scattering problems are obtained by97

means of a frequency-domain integral equation solver, as indicated in Algorithm 2. In view of the classical98

regularity theory for open-surface problems (see [21, 29, 43, 50, 54]), the open arc solutions are singular99

at the arc endpoints: they behave like a non-integer power of the distance to the endpoint and, e.g., in100

the case of Dirichlet boundary conditions considered in this paper, they tend to infinity as the endpoint101

is approached. The two-dimensional version [25] of the Chebyshev-based rectangular-polar discretization102

methodology [18], which incorporates a change of variables introduced in [24, Eq. (4.12)], is utilized to103

evaluate the corresponding integrals with a high order of accuracy. Together with an appropriate geometrical104

description, such as those provided by engineering NURBS-based models—which include parametrizations105

expressed in terms of certain types of Rational B-Splines—the overlapping-patch boundary-partitioning106

strategy can be used to tackle interior wave-equation problems in general three-dimensional engineering107

structures. Such extensions of the proposed methods, however, are not considered in this paper, and are108

left for future work.109

This paper is organized as follows. Section 2.1 describes the wave propagation and scattering problem110

under consideration. Section 2.2 introduces the overlapping-arc scattering structure, and the time-domain111

boundary integral equations for the open-arc time-domain scattering problems. A necessary Huygens-112

like domain-of-influence condition is introduced in Section 2.3, which simply states that, as in free space,113

waves move along boundaries at the speed of sound. Surprisingly, to the best of the authors knowledge,114

such a result has not been established as yet. A discussion in this regard is presented in Section 2.3,115

including a rigorous proof of validity in a simple geometrical context as well as clear numerical evidence116

of validity in other cases; the rigorous proof of validity of this condition for general curves is left for117

future work. As a byproduct of the constructions concerning the Huygens condition, a 2D double-layer118

time-domain formulation is introduced in Remark A.2 in Appendix A which bypasses certain difficulties119

encountered previously. On the basis of these materials, Section 2.4 re-expresses the interior time-domain120

problem in terms of a proposed open-arc “ping-pong” multiple-scattering approach, and it presents the main121

theoretical result of this paper, Theorem 2.8—which establishes that the interior time-domain problem is122

indeed equivalent to the proposed ping-pong problem. Section 2.5 then re-expresses the ping-pong problem123

in terms of associated open-arc frequency-domain problems, and Section 2.6 presents the aforementioned124

windowing and time-recentering strategy that is used to enable the treatment of problems of arbitrary125

long time duration. The numerical implementation of the multiple scattering approach is presented in126

Section 3, including the windowed Fourier-transform algorithm [6] used (Section 3.1), the methods utilized127

for the evaluation of singular frequency-domain integral operators, and a novel arc-extension approach128

that facilitates the avoidance of open-arc endpoint singularities (Section 3.2). The overall computational129

implementation is outlined in Section 3.3. Numerical examples demonstrating the accuracy and efficiency130

of the proposed approach, finally, are presented in Section 4.131
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2 Hybrid frequency-time multiple scattering interior solver132

2.1 Wave equation problem133

Let Ω ⊂ R2 denote a bounded domain with piecewise smooth boundary Γ = ∂Ω, and let ui(x, t) denote134

a given incident field defined for t ∈ R and x ∈ Γ, which vanishes for t ≤ 0. In what follows we consider135

the wave equation initial and boundary-value problem136 
∂2us

∂t2
(x, t)− c2∆us(x, t) = 0, (x, t) ∈ Ω× R+,

us(x, 0) = ∂us

∂t (x, 0) = 0, x ∈ Ω,

us(x, t) = −ui(x, t), (x, t) ∈ Γ× R+,

(2.1)

for the scattered field us(x, t) throughout Ω, where the constant c > 0 denotes the wave-speed and R+ :=137

{t ∈ R : t > 0}. Since ui(x, t) = 0 for t < 0, problem (2.1) can be equivalently written in the form138 {
∂2us

∂t2
(x, t)− c2∆us(x, t) = 0, (x, t) ∈ Ω× R,

us(x, t) = −ui(x, t), (x, t) ∈ Γ× R,
(2.2)

by invoking the causality condition us(x, t) = 0, x ∈ Ω, t ≤ 0. Throughout this paper a number of wave-139

equation problems will be considered which, assuming vanishing boundary data for t ≤ 0, will be expressed140

in a form similar to (2.2), without explicit mention of vanishing initial conditions at t = 0. The well-141

posedness of the wave equation problem (2.1) (and, equivalently, (2.2)) in an appropriate Sobolev space is142

addressed in Theorem 2.1 below.143

As indicated in Section 1, this paper proposes a fast hybrid method, related to that presented in [6], for144

the numerical solution of this problem. As noted in that section, however, the frequency-domain solutions145

required by the hybrid method [6] fail to exist, in the present interior-domain context, at frequencies146

corresponding to Laplace eigenvalues in the domain Ω—and, thus, the exterior-domain hybrid approach [6]147

does not apply in the present interior-domain setting. The hybrid approach proposed in the present paper148

relies, instead, on a multiple scattering strategy that transforms the original wave equation problem in a149

bounded domain into a sequence of wave equation problems of scattering by overlapping open-arcs—for150

which the frequency domain solutions exist at all frequencies, and for which, therefore, general time-151

domain solutions can effectively be obtained via the windowing and recentering Fourier-transform methods152

introduced in [6]. The overlapping-arc scattering structure used as well as necessary theoretical results153

concerning open-arc time-domain scattering problems are presented in the following sections.154

(a) (b) (c)

Figure 1: Decomposition of closed boundaries Γ into pairs of overlapping open arcs. (b) Decomposition of
the rectangular boundary Γ depicted in (a); (c) Decomposition of a circular closed curve Γ.
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2.2 Overlapping-arc geometry and time-domain boundary integral equations155

The proposed multiple scattering algorithm relies on a boundary decomposition strategy based on use156

of overlapping patches. While the algorithm can utilize an arbitrary numbers of patches, for simplicity,157

this paper only considers decompositions consisting of two patches, but an algorithm based on an arbitrary158

number of patches can be constructed. (This is illustrated in Section 4 by means of a numerical example159

wherein three patches are used; full details concerning the multi-patch algorithm and its implementation160

will be presented elsewhere [12].) Thus, as illustrated in Figure 1(b), the scattering surface Γ in Figure 1(a)161

is covered by two overlapping patches Γ1 = Γ1 ⊂ Γ and Γ2 = Γ2 ⊂ Γ, Γ = Γ1 ∪ Γ2, whose intersection162

Γ12 = Γ1∩Γ2 equals the disjoint union Γ12 = Γ1
12∪Γ2

12 of two connected components Γ1
12 and Γ2

12. (Here the163

overline denotes the closure of the corresponding set.) A similar decomposition is presented in Figure 1(c)164

for a different curve Γ. The “truncation” of Γ1 and Γ2 by Γ12 results in the truncated arcs Γtr
j = Γj\Γ12,165

j = 1, 2. The distance between the arcs Γtr
1 and Γtr

2 , which is denoted by166

δ12 = dist{Γtr
1 ,Γ

tr
2 }, (2.3)

plays an essential role in our theory and algorithms.167

Let us now consider the unbounded domains Ωj = R2\Γj (j = 1, 2) and the corresponding time-domain168

problems of scattering by the arcs Γj , which underly the proposed multiple scattering solution strategy.169

Given an incident signal gj(x, t) defined for x ∈ Γj (j = 1, 2) and t ∈ R, which vanishes for t ≤ 0, we170

consider the following wave equation problem for the function wsj (x, t):171 {
∂2wsj
∂t2

(x, t)− c2∆wsj (x, t) = 0, (x, t) ∈ Ωj × R,
wsj (x, t) = gj(x, t), (x, t) ∈ Γj × R.

(2.4)

As is well known [51], the solution wsj (x, t) admits the single-layer representation172

wsj (x, t) = S̃j [ψ̃j ](x, t), x ∈ Ωj , (2.5)

where ψ̃j is the solution of the time-domain integral equation173

S̃j [ψ̃j ] = gj on Γj . (2.6)

Here the time-domain single-layer potential S̃j is defined by174

S̃j [ψ̃j ](x, t) =
1

2π

∫
Γj

∫ t−c−1|x−y|

0

ψ̃j(y, τ)√
(t− τ)2 − c−2|x− y|2

dτdsy, x ∈ Ωj , (2.7)

and the time-domain single-layer boundary integral operator S̃j := γjS̃j is given by175

S̃j [ψ̃j ](x, t) =
1

2π

∫
Γj

∫ t−c−1|x−y|

0

ψ̃j(y, τ)√
(t− τ)2 − c−2|x− y|2

dτdsy, x ∈ Γj , (2.8)

where γj : Hp
σ,α(R, H1(Ωj)) → Hp

σ,α(R, H1/2(Γj)) denotes the trace operator. Here, for given σ > 0 and176

α, p ∈ R, and for a given Hilbert space D, we have used the spatio-temporal Sobolev spaces Hp
σ,α(R, D) of177

functions with values in D which vanish for t ≤ α. The spaces Hp
σ,α(R, D) are defined by [9, 26]178

Hp
σ,α(R, D) :=

{
f ∈ L′σ,α(D) :

∫ ∞+iσ

−∞+iσ
|s|2p‖L[f ](s)‖2Dds <∞

}
(2.9)
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together with the norm179

‖f‖Hp
σ,α(R,D) :=

(∫ ∞+iσ

−∞+iσ
|s|2p‖L[f ](s)‖2Dds

)1/2

, (2.10)

where L[f ] denotes the Fourier-Laplace transform of f given by180

L[f ](s) :=

∫ ∞
−∞

f(t)eistdt, s ∈ Cσ := {ω ∈ C : Im(s) > σ > 0}, (2.11)

and where L′σ,α(D) := {φ ∈ D′α(D) : e−σtφ ∈ S ′α(D)} is defined in terms of the sets D′α(D) and S ′α(D) of181

D-valued distributions and D-valued tempered distributions that vanish for t ≤ α, respectively. We also182

call183

Hp
α(β,D) = {f(x, t)|t∈(−∞,β] : f ∈ Hp

σ,α(R, D)}

the set of all restrictions of functions f ∈ Hp
σ,α(R, D) to the interval −∞ < t ≤ β. It can be easily checked184

that, as suggested by the notation used, the space Hp
α(β,D) does not depend on σ. This can be verified for185

integer values of p by using a norm equivalent to (2.10) that is expressed in terms of derivatives with respect186

to the variable t, in conjunction with smooth and compactly-supported window functions of t which equals187

one over the restriction interval (−∞, β] for a given value of β. The equivalence for non-integer values of p188

follows by interpolation.189

The well-posedness of the wave equation problems (2.1) and (2.4) is established in the following theo-190

rem [26,61].191

Theorem 2.1. For given p ∈ R, α ≥ 0 and for j = 1, 2 we have:192

(a) Given ui ∈ Hp
σ,α(R, H1/2(Γ)), the wave equation problem (2.2) admits a unique solution us ∈193

H
p−3/2
σ,α (R, H1(Ω)).194

(b) Given gj ∈ Hp
σ,α(R, H1/2(Γj)), the wave equation problem (2.4) admits a unique solution wsj ∈195

Hp−3
σ,α (R, H1(Ωj)).196

2.3 Huygens-like domain-of-influence along boundaries197

The multiple scattering algorithm proposed in this paper depends in an essential manner on a certain198

domain-of-influence condition, stated as Condition 2.2 below, which is in essence a variant of the well199

known Huygens principle in a form that is applicable to the problem of scattering by obstacles and open200

arcs. Thus, Condition 2.2 expresses a well accepted principle in wave physics, namely, that solutions of201

the wave equation propagate at the speed of sound, and that the wave field vanishes identically before202

the arrival of a wavefront. This property has been rigorously established by the method of spherical203

means [8] for the problem of propagation of waves in space without scatterers. Further, some mathematical204

results have previously been given for the corresponding problem of scattering by obstacles [51, Proposition205

3.6.2]. But previously available results for obstacle-scattering problems are not sharp, as they only ensure206

that the field propagates away from the complete boundary (with speed equal to the speed of sound),207

but they do not account for propagation along the scattering boundary. In particular, for incident fields208

illuminating a subset of the boundary of a scatterer, previous theoretical results do not establish that the209

field propagates at the speed of sound along the scattering boundary. This boundary-propagation character210

provides a crucial element in the main theorem of this paper, Theorem 2.8—which, showing that the exact211

solution of the problem (2.1) can be expressed as the sum of a series of multiple-scattering iterates, forms212

the basis of the ping-pong multiple-scattering algorithm proposed in this paper. Although we conjecture213

that Condition 2.2 is always valid, to the best of our knowledge such a result has not previously been214
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established. A full theoretical treatment of this problem is beyond the scope of this paper, but, as indicated215

in Remark 2.3, this paper does include a complete proof for the case of straight arcs as well as clear216

numerical supporting evidence for the validity of this condition for curved arcs.217

Let C denote an Lipschitz open arc. Given an incident signal g(x, t) defined for x ∈ C and t ∈ R, which218

vanishes for t ≤ 0, consider the wave equation problem219 {
∂2ws

∂t2
(x, t)− c2∆ws(x, t) = 0, (x, t) ∈ R2\C × R,

ws(x, t) = g(x, t), (x, t) ∈ C × R.
(2.12)

Using these notations, the necessary Huygens-like condition is presented in what follows.220

Condition 2.2. We say that an open Lipschitz curve C with endpoints e1 and e2 satisfies the restricted221

Huygens condition iff for every Lipschitz curve Cinc ⊆ C satisfying dist(Cinc, {e1, e2}) > 0, and for every222

function g ∈ Hp
σ,0(R, H1/2(C)) defined in C such that223

{x ∈ C | g(x, t) 6= 0} ⊆ Cinc for all t > 0, (2.13)

we have224

{x ∈ R2 | ws(x, t) 6= 0} ⊆ Λs(t) for all t ≤ c−1dist(Cinc, {e1, e2}), (2.14)

where225

Λs(t) = {x ∈ R2 | dist(x, Cinc) ≤ ct}.

Remark 2.3. We conjecture that Condition 2.2 holds for arbitrary open and closed Lipschitz curves C226

(where, in the case of closed curves, the wave equation problem is posed either in the interior or the exterior227

of the curve) and for all t > 0 (without the restriction t ≤ c−1dist(Cinc, {e1, e2})). The proof is left for228

future work. The validity of Condition 2.2 for the case in which C is a line segment is established in the229

following lemma. We have also verified numerically the validity of this condition for a wide range of curved230

open arcs; one such verification is presented in Section 2.3.1 below.231

In what follows we denote R2
± := {x = (x1, x2) ∈ R2 : x2 ≷ 0} and R2

0 := {x = (x1, x2)> ∈ R2 : x2 = 0}.232

Lemma 2.4. Let c1 < c2. Then the (straight) open arc C = (c1, c2) × {0} ⊂ R2
0 satisfies the restricted233

Huygens Condition 2.2.234

Proof. Let Cinc ⊆ C denote an arc contained in C satisfying dist(Cinc, {(c1, 0), (c2, 0)}) > 0, let a function235

g ∈ Hp
σ,0(R, H1/2(C)) be given that satisfies the assumption (2.13), extend g to all of R2

0 by setting g = 0236

in R2
0\C, and consider the problems237 {

∂2vs±
∂t2

(x, t)− c2∆vs±(x, t) = 0, (x, t) ∈ R2
± × R,

vs±(x, t) = g(x, t), (x, t) ∈ R2
0 × R

(2.15)

for the functions vs± = vs±(x, t). In view of equation (A.7) in Appendix A it follows that

vs+(x, t) =
1

πc2∫
Cinc

∫ t−c−1|x−y|

0

[
x2g(y, τ)

(t− τ)2
√

(t− τ)2 − c−2|x− y|2
+

x2g
(1)(y, τ)

(t− τ)
√

(t− τ)2 − c−2|x− y|2

]
dτdsy (2.16)
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for all x ∈ R2
+ and all t > 0, where g(1)(x, t) = ∂g

∂t (x, t). Noting that for t > 0 and x /∈ Λs(t) we have238

t − c−1|x − y| < 0 for all y ∈ Cinc, and since g(·, t) = 0 for all t ≤ 0 by assumption, we conclude that239

{x ∈ R2 | vs+(x, t) 6= 0} ⊆ Λs(t) for all t > 0. Similarly, {x ∈ R2 | vs−(x, t) 6= 0} ⊆ Λs(t) for all t > 0. It240

follows that241 {
vs+(x, t) = vs−(x, t) = 0

∂x2v
s
+(x, t) = ∂x2v

s
−(x, t) = 0

for x ∈ R2
0\C and t ≤ c−1dist(Cinc, {(c1, 0), (c2, 0)}).

This implies that242

ws(x, t) =


vs+(x, t), x ∈ R2

+,

vs−(x, t), x ∈ R2
−,

0, x ∈ R2
0\C,

t ≤ c−1dist(Cinc, {(c1, 0), (c2, 0)}),

is the unique solution to the wave equation problem (2.12) for t ≤ c−1dist(Cinc, {(c1, 0), (c2, 0)}). Hence,243

the condition244

{x ∈ R2 | ws(x, t) 6= 0} ⊆ Λs(t) for all t ≤ c−1dist(Cinc, {(c1, 0), (c2, 0)})

for the function ws follows from the corresponding properties, established above, for the functions vs±, and245

the proof of the lemma is complete.246

For ease of reference, in the following lemma we present the Huygens Condition 2.2 in the form that247

will be used in the proof of Theorem 2.8. In order to match the setting of the theorem, for an integer j we248

introduce the notation249

j′ = mod(j, 2) + 1 (j ∈ N), (2.17)

where, for integers a and b, mod(a, b) denotes the remainder of the division of a by b. In our context, where250

the index values j = 1, 2 refer to the corresponding arcs Γ1, Γ2, we have j′ = 1 (resp. j′ = 2) for j = 2251

(resp. j = 1).252

Lemma 2.5. Let j ∈ {1, 2}, p ∈ R, and T0 > 0, and assume that, for j ∈ {1, 2}, (a) gj ∈253

Hp
σ,T0

(R, H1/2(Γj)) satisfies254

gj(x, t) = 0 for (x, t) ∈ Γ12 × R; (2.18)

and, (b) Γj satisfies Condition 2.2. Then, recalling equation (2.3), letting t0 = δ12/c > 0, and calling255

wsj ∈ H
p−3
σ,T0

(R, H1(Ωj)) the unique solution of the wave equation problem (2.4), we have256

wsj (x, t) = 0 for (x, t) ∈ Γtr
j′ × (−∞, T0 + t0]. (2.19)

2.3.1 Numerical verification of the Huygens condition for elliptical arcs.257

As indicated above, we have conducted a number of numerical tests which clearly suggest that, as258

expected, Condition 2.2 and Lemma 2.5 are universally valid. For reference in this section we present the259

results of one such test. To introduce our example we let260

Γ1 = {x = (cos θ, 1.5 sin θ) : θ ∈ (0.5π, 1.5π)},
Γtr

2 = {x = (cos θ, 1.5 sin θ) : θ ∈ (−0.5π, 0.5π)},
Γ12 = {x = (cos θ, 1.5 sin θ) : θ ∈ (0.5π, 0.75π) ∪ (1.25π, 1.5π)},
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and we consider the wave equation problem (2.4) with j = 1 and261

g1(x, t) =


[1− cos 4(θ − 0.75π)] exp(−16(t− 3)2), (x, t) = (cos θ, 1.5 sin θ) ∈ Γtr

1 × (T0,∞),

0, (x, t) ∈ Γ12 × (T0,∞),

0, (x, t) ∈ Γ1 × (−∞, T0].

where T0 = 1.74. (This selection of T0 makes g1(x, t) “approximately continuous” at t = T0, since, as is262

easily checked, [1− cos 4(θ − 0.75π)] exp(−16(t− 3)2) < 10−11 for (x, t) ∈ Γtr
1 × (−∞, T0).) It can also be263

checked that t0 = δ12/c ≈ 0.83 for the geometry under consideration.264

Table 1 presents the maximum values of |ws1(x, t)| over several time intervals at four points on Γtr
2265

x1 = (0.031, 1.499), x2 = (0.5, 1.299), x3 = (0.866, 0.75), x4 = (1, 0);

note, in particular, that the point (0.031, 1.499) is very close to Γ1. The first column in this table shows266

that for all four points xj ∈ Γtr
2 , j = 1, · · · , 4, and for t < T0 + t0, the relation (2.19) is verified up to267

the numerical error, of order O(10−11), inherent in the numerical solution used. To further illustrate the268

validity of the Huygens condition for this test case, we let t` = c−1dist{x`,Γtr
1 }, ` = 2, 3, 4 which gives269

t2 ≈ 1.23, t3 ≈ 1.60 and t4 = 2.

The maximum values of |ws1(x`, t)| listed in the last three columns in Table 1, which correspond to the time270

intervals t ∈ (0, T0 + t0 + t`), ` = 2, 3, 4, illustrate, more generally, the Huygens-like domain-of-influence271

property272

ws1(x, t) = 0 for (x, t) ∈ Γtr
2 × (−∞, T0 + tx), tx = c−1dist{x,Γtr

1 }.

Table 1: Maximum values of |ws1(x, t)| over various time intervals at four points on Γtr
2 .

x max
t∈(0,T0+t0)

|ws1(x, t)| max
t∈(0,T0+t0+t2)

|ws1(x, t)| max
t∈(0,T0+t0+t3)

|ws1(x, t)| max
t∈(0,T0+t0+t4)

|ws1(x, t)|

x1 1.81× 10−12 2.32× 10−8 1.71× 10−4 1.70× 10−2

x2 4.59× 10−12 4.59× 10−12 1.29× 10−7 1.49× 10−3

x3 5.23× 10−12 5.23× 10−12 5.23× 10−12 7.93× 10−7

x4 6.98× 10−12 7.17× 10−12 7.39× 10−12 2.61× 10−11

2.4 Two-arc “ping-pong” multiple scattering construction273

Taking into account the finite propagation speed that characterizes the solutions of the wave equation,274

we propose to produce the time-domain solution of the original problem (2.1) in the interior domain Ω as275

the sum of “ping-pong” wave-equation solutions produced under multiple scattering by the arcs Γ1 and Γ2.276

To describe the ping-pong multiple-scattering scheme we introduce a few useful notations and conventions.277

We call278

j(m) = 2−mod(m, 2), m = 1, 2, 3, . . . (2.20)

(in other words, j(m) equals 1 or 2 depending on whetherm is odd or even, respectively), and, as detailed in279

Definition 2.6, we inductively define boundary-condition functions fm(x, t) (m ≥ 1) and associated wave-280

equation solutions vm(x, t) (m ≥ 1), all of which are causal—that is to say, they vanish identically for281

t ≤ 0.282
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Definition 2.6. For m ∈ N we inductively define vsm(x, t) as equal to the solution wsj(m)(x, t) of the open-arc283

problem (2.4) with boundary data284

vsm(x, t) = fm(x, t) for (x, t) ∈ Γj(m) × R, (m ∈ N), (2.21)

where fm(x, t) : Γj(m) × R→ C denotes the causal functions defined inductively via the relations285

f1(x, t) = −ui(x, t) on Γ1, f2(x, t) = −ui(x, t)− vs1(x, t) on Γ2, (2.22)

and,286

fm(x, t) = −vsm−1(x, t), on Γj(m), m ≥ 3. (2.23)

Remark 2.7. The proposed multiple-scattering strategy relies crucially on the relations287

fm(x, t) = 0 for (x, t) ∈ Γ12 × R, m ∈ N, m ≥ 2, (2.24)

which can easily be established inductively, as indicated in what follows. Considering first the case m = 2,288

in view of Definition 2.6, we have vs2(x, t) = f2(x, t) = −ui(x, t) − vs1(x, t) on Γ2, on one hand, and289

vs1(x, t) = −ui(x, t) on Γ1, on the other. We conclude that vs2(x, t) = 0 for (x, t) ∈ Γ12×R, as desired. The290

inductive step is equally simple: assuming, for ` ∈ N, ` ≥ 2, that f`(x, t) vanishes for (x, t) ∈ Γ12 × R, and291

in view of (2.21) and (2.23), we have f`+1(x, t) = −vs` (x, t) = −f`(x, t) = 0 for (x, t) ∈ Γ12×R, and (2.24)292

follows.293

The main theorem of this paper, which is presented in what follows, shows that the solution us = us(x, t)294

of equation (2.1) can be produced by means of the M -th order multiple-scattering sum295

usM (x, t) :=
M∑
m=1

vsm(x, t), (2.25)

which includes contributions from the “ping-pong” scattering iterates vsm(x, t) with m = 1, . . . ,M .296

Theorem 2.8. Let M ∈ N, M ≥ 2, p ∈ R, and let T = T (M) = (M − 1)δ12/c. Then, given297

ui ∈ Hp
σ,0(R, H1/2(Γ)), we have usM ∈ H

p−3/2
0 (T (M), H1(Ω)) and us(x, t) = usM (x, t) for all (x, t) ∈298

Ω× (−∞, T (M)].299

Proof. By construction, for all m ∈ N the function vsm(x, t) satisfies the homogeneous wave equation for300

(x, t) ∈ Ω × R as well as vanishing boundary conditions for t ≤ 0. Using Theorem 2.1(b) inductively, it301

follows that, for all m ∈ N, fm ∈ H
p−3(m−1)
σ,0 (R, H1/2(Γj)), and vsm ∈ Hp−3m

σ,0 (R, H1(Ω)). In particular,302

usM ∈ H
p−3M
σ,0 (R, H1(Ω)).303

To complete the proof of the theorem, it suffices to show that the function usM satisfies304

usM (x, t) + ui(x, t) = 0 for (x, t) ∈ Γ× (−∞, T (M)]. (2.26)

Indeed, from this relation it follows that us − usM satisfies trivial boundary condition up to time305

T (M). Then it follows from Theorem 2.1(a) that us − usM ∈ Hp−3M
σ,T (M)(R, H

1(Ω)), and, in particular,306

us − usM , vanishes throughout Ω for all t ≤ T (M). In other words, usM |(−∞,T (M)] = us|(−∞,T (M)] ∈307

Hp−3M
0 (T (M), H1(Ω)). But from Theorem 2.1(a) we also know that us ∈ Hp−3/2

σ,0 (R, H1(Ω)), and, thus,308

us|(−∞,T (M)] ∈ H
p−3/2
0 (T (M), H1(Ω)). It follows that, as claimed, usM is a solution of the wave equation309

that coincides with us up to time T (M) and satisfies usM |(−∞,T (M)] ∈ H
p−3/2
0 (T (M), H1(Ω)).310
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The validity of the relation (2.26), and thus, the proof of the theorem, are established in what follows311

by induction on the integer M . We first verify the relation (2.26) in the case M = 2. Since us2(x, t) =312

vs1(x, t) + vs2(x, t) for (x, t) ∈ Γ× R, to establish the M = 2 result it suffices to show that313

vs1(x, t) + vs2(x, t) + ui(x, t) = 0 for (x, t) ∈ Γ× (−∞, δ12/c], (2.27)

which, in view of (2.22), results from the conditions314

vs1(x, t) + vs2(x, t) + ui(x, t) = 0 for (x, t) ∈ Γ2 × R (2.28)

and315

vs2(x, t) = 0 for (x, t) ∈ Γtr
1 × (−∞, δ12/c]. (2.29)

Equation (2.28) follows immediately from Definition 2.6 since per (2.21) and (2.22) we have vs2(x, t) =316

f2(x, t) = −ui(x, t)−vs1(x, t) on Γ2 for all t ∈ R. To verify (2.29), we note from (2.24) that f2(x, t) vanishes317

for (x, t) ∈ Γ12 × R. Then in view of Lemma 2.5, equation (2.29) results and thus, the proof for the case318

M = 2 follows.319

Using the notation j′(m) = mod(j(m), 2) + 1 (equation (2.17)), to complete the inductive proof we320

assume that for any M ∈ N with 2 ≤M ≤ L,L ≥ 2, the following two relations hold:321

usM (x, t) + ui(x, t) = 0 for (x, t) ∈ Γj(M) × R, (2.30)

and322

vsM (x, t) = 0 for (x, t) ∈ Γtr
j′(M) × (−∞, (M − 1)δ12/c]. (2.31)

We then show that the same relations and, as a result, the relation (2.26), hold for M = L+ 1. To do this323

we note that equation (2.23) tells us that vsL+1(x, t) + vsL(x, t) = 0 for (x, t) ∈ Γj(L+1) × R. Therefore, the324

M = L− 1 condition (2.30) implies that325

usL+1(x, t) + ui(x, t) = vsL+1(x, t) + vsL(x, t) + usL−1(x, t) + ui(x, t) = 0 (2.32)

for (x, t) ∈ Γj(L+1) ×R. Noting that j′(L) = j(L+ 1) and using (2.24) and (2.31) with M = L we see that326

fL+1(x, t) = 0 for (x, t) ∈ Γj(L+1) × (−∞, (L− 1)δ12/c] ∪ Γ12 × R, and, thus, Lemma 2.5 tells us that327

vsL+1(x, t) = 0 for (x, t) ∈ Γtr
j′(L+1) × (−∞, Lδ12/c] (2.33)

—or, in other words, the relations (2.30) and (2.31) hold for M = L + 1. Combining the relation (2.31)328

and the condition (2.30) for M = L, it follows that329

usL+1(x, t) + ui(x, t) = vsL+1(x, t) + usL(x, t) + ui(x, t) = 0 (2.34)

for (x, t) ∈ Γtr
j′(L+1)× (−∞, Lδ12/c]. The relation (2.26) forM = L+1 results from (2.32) and (2.34), which330

completes the proof.331

Remark 2.9. As detailed in Section 3.2, a variant of the setting considered in Theorem 2.8, involving332

certain “extended” open arcs Γ̃j, is utilized in the actual numerical implementation we propose. The use of333

extended arcs eliminates numerical accuracy losses that arise from the solution singularities that exist at334

the open-arc endpoints. As indicated in that section, the theorem and proof remain essentially unchanged.335
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The proposed multiple scattering strategy for the solution of the wave equation problem (2.1) for336

(x, t) ∈ Ω × (−∞, T (M)] (M = 2, 3, . . . ), which is embodied in Theorem 2.8, the associated ping-pong337

solutions vsm, and the sum (2.25) (m = 1, · · · ,M), is summarized in Algorithm 1. Note that, in this338

algorithm, the necessary solutions vsm(x, t) are obtained by means of the hybrid frequency-time approach339

presented in Section 2.5.340

Algorithm 1 Multiple scattering algorithm
1: Do m = 1, 2, · · · ,M
2: Evaluate the boundary data fm via relations (2.22)-(2.23).
3: Compute vsm(x, t), (x, t) ∈ (Ω ∪ Γj′(m))× (−∞, T (M)] in Definition 2.6 using the open-arc hybrid

solver presented in Section 2.5.
4: End Do
5: Compute usM (x, t), (x, t) ∈ Ω× (−∞, T (M)] using equation (2.25).

2.5 Frequency-domain multiple scattering algorithm341

Call F (ω) the Fourier transform of a function f(t) ∈ L2(R),342

F (ω) = F(f)(ω) :=

∫ +∞

−∞
f(t)eiωt dt, (2.35)

and let the corresponding inverse Fourier transform of a frequency-domain function F ∈ L2(R) be denoted343

by344

f(t) = F−1(F )(ω) :=
1

2π

∫ +∞

−∞
F (ω)e−iωt dω. (2.36)

Then, calling κ = ω/c the spatial wave number, the Fourier transform V s
m(x, ω) of the solution vsm(x, t)345

of the wave equation is a solution of the Helmholtz equation ∆V s
m + κ2V s

m = 0 in Ωj(m) with Dirichlet346

boundary conditions V s
m = Fm on Γj(m) where Fm(x, ω) = F(fm)(x, ω). As is well known, the solution347

V s
m(x, ω) admits the representation348

V s
m(x, ω) = Sj(m)[ψm](x, ω) :=

∫
Γj(m)

Φω(x, y)ψm(y)dsy, x ∈ Ωj(m), (2.37)

where ψm is the solution of the integral equation349

Sj(m)[ψm] = Fm on Γj(m). (2.38)

Here, using the notations introduced in [54], Sj : H̃−1/2(Γj)→ H1/2(Γj) denotes the single-layer operator350

Sj [ψ](x, ω) :=

∫
Γj

Φω(x, y)ψ(y)dsy, x ∈ Γj , (2.39)

where, calling H(1)
0 the Hankel function of first kind and order zero, Φω(x, y) = i

4H
(1)
0 (κ|x−y|) denotes the351

fundamental solution associated with the Helmholtz equation ∆w+κ2w = 0 in R2. Our approach relies on352

the existence and uniqueness of solution of equation (2.38), which are guaranteed by the following theorem.353

Theorem 2.10. Given Fm ∈ H1/2(Γj(m)) the integral equation (2.38) admits a unique solution in354

H̃−1/2(Γj) for any frequency ω > 0.355

Proof. Provided in [54].356
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In view of Definition 2.6, the boundary function Fm is determined inductively by the relations357

F1(x, ω) = −F(ui)(x, ω) on Γ1, F2(x, ω) = −F(ui)(x, ω)− V s
1,m−1(x, ω) on Γ2, (2.40)

and,358

Fm(x, ω) = −V s
m−1(x, ω) on Γj(m), m ≥ 3. (2.41)

The frequency-domain component of the proposed frequency-time hybrid multiple scattering algorithm,359

which produces the solutions vsm for m = 1, · · · ,M , is obtained by re-expressing Algorithm 1 via an360

application of the Fourier transform. The result is Algorithm 2 below.361

Algorithm 2 Hybrid multiple scattering algorithm
1: Do m = 1, 2, · · · ,M
2: Evaluate the boundary data Fm via relations (2.40)-(2.41).
3: Solve the integral equation (2.38) with solution ψm.
4: Compute V s

m(x, ω), (x, ω) ∈ (Ω ∪ Γj′(m))× R via (2.37).
5: Compute vsm(x, t) = F−1(V s

m)(x, t), (x, t) ∈ (Ω ∪ Γj′(m))× [0, T (M)].
6: End Do

2.6 Windowing and time-recentering362

For a given signal fm(x, t), the time-domain open-arc solution described in Section 2.5 is obtained via363

the following sequence of operations:364

fm(x, t)
F−→ Fm(x, ω)

(2.37),(2.38)−−−−−−−→ V s
m(x, ω)

F−1

−−→ vsm(x, t). (2.42)

Clearly, the function fm(x, t) may represent a signal of arbitrarily long duration: this is merely a smooth365

compactly supported function for t ∈ [0, T ], with a potentially large value of T > 0. For such large values366

of T the Fourier transform Fm(x, ω) is generally a highly oscillatory function of ω, as a result of the fast367

oscillations in the Fourier transform integrand factor eiωt—see e.g. [6, Fig. 1]. Under such a scenario a very368

fine frequency-discretization, requiring O(T ) frequency points, and, thus, a number O(T ) of evaluations369

of the frequency-domain boundary integral equation solver, is required to obtain the time-domain solution370

vsm(x, t). This makes the overall algorithm unacceptably expensive for long-time simulations. To overcome371

these difficulties, a certain “windowing and time-recentering” procedure was proposed in [6, Sec. 3.1], that372

decomposes a scattering problem involving an incident time signal of long duration into a sequence of373

problems with smooth incident field of a limited duration, all of which can be solved in terms of a fixed set374

of solutions of the corresponding frequency-domain problems for arbitrarily large values of T .375

Figure 2: Windowing functions wk(t), k = 1, 2, 3 with H = 10.

For a given final time T , the windowing-and-recentering approach is based on use of a smooth partition376

of unity P = {χk(t) | k ∈ K},K = {1, · · · ,K}, where the functions χk satisfy
∑

k∈K χk(t) = 1 for t ∈ [0, T ]377
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and where, for a certain sequence sk (k ∈ K), each χk(t) is a non-negative, smooth windowing function of378

t, supported in the interval [sk −H, sk +H] of duration 2H. The partition-of-unity P can be generated on379

the basis of the smooth function η(t; t0, t1) given by380

η(t; t0, t1) =


1, |t| ≤ t0,

e
2e−1/s

s−1 , t0 < |t| < t1, s = |t|−t0
t1−t0 ,

0, |t| ≥ t1.

(2.43)

Without loss of generality, in this work we set381

H =
T

3K/2− 1
, sk =

3

2
(k − 1)H, (2.44)

and

χk(t) = χ(t− sk), χ(s) =


η(s/H; 1/2, 1), −H/2 ≤ s ≤ H,
1− η(s/H + 3/2; 1/2, 1), −H < s < −H/2,
0, |s| ≥ H,

—a prescription that clearly ensures that sK +H/2 = T and
∑K

k=1 χk(t) = 1 for all t ∈ [0, T ]. A depiction382

of such a partition of unity, with H = 10, is presented in Figure 2.383

Utilizing the partition-of-unity P, any smooth long-time signal f(t), t ∈ [0, T ], can be expressed in the384

form385

f(t) =
∑
k∈K

fk(t), fk(t) = f(t)χk(t), (2.45)

where fk is compactly supported in [sk−H, sk +H]. The corresponding Fourier transform is then given by386

F (ω) =
∑
k∈K

Fk(ω), Fk(ω) =

∫ T0

0
fk(t)e

iωtdt = eiωskFk,slow(ω), (2.46)

where, defining by387

Fk,slow(f)(ω) :=

∫ H

−H
f(t+ sk)χk(t)e

iωtdt,

the sk-centered slow Fourier-transform operator, we call Fk,slow(ω) = Fk,slow(f)(ω); note that, as suggested388

by the notation used, Fk,slow is a slowly-oscillatory function of ω.389

For k ∈ K, we now call Fm,k = Fk,slow(fm) the slow Fourier-transform of the m-th iterate fm, and we390

let391

V s
m,k(x, ω) = Sj(m)[ψm,k](x, ω), (2.47)

where ψm,k is the solution of the integral equation392

Sj(m)[ψm,k] = Fm,k on Γj(m). (2.48)

It follows that393

Fm(x, ω) =
∑
k∈K

eiωskFm,k(x, ω), (2.49)

and394

vsm(x, t) =
∑
k∈K

F−1(V s
m,k)(x, t− sk); (2.50)

note that F−1(V s
m,k)(x, t) = 0 for t < sk − H. Adopting the time-recentering strategy described in this395

section, Algorithm 2 leads to the more efficient Algorithm 3.396
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Algorithm 3 Hybrid multiple scattering algorithm with time-recentering
1: Do m = 1, 2, · · · ,M
2: Evaluate the boundary data fm(x, t), (x, t) ∈ Γj(m) × [0, sK +H] via relations (2.22)-(2.23).
3: Set vsm(x, t) = 0, (x, t) ∈ (Ω× [0, T ]) ∪ (Γj′(m) × [0, sK +H]).
4: Do k = 1, 2, · · · ,K
5: Evaluate the boundary data Fm,k(x, ω) = Fk,slow(fm)(x, ω), (x, ω) ∈ Γj(m) × R.
6: Solve the integral equation (2.48) with solution ψm,k.
7: Compute V s

m,k(x, ω), (x, ω) ∈ (Ω ∪ Γj′(m))× R through (2.47).
8: Compute vsm(x, t)+ = F−1(V s

m,k)(x, t− sk), (x, t) ∈ (Ω× [0, T ]) ∪ (Γj′(m) × [0, sK +H]).
9: End Do

10: End Do

3 Hybrid multiple scattering strategy: numerical implementation397

This section presents algorithms necessary for the numerical implementation of the hybrid multiple scat-398

tering strategy introduced in Algorithm 3, including algorithms for accurate evaluation of layer potentials,399

boundary integral operators, and inverse Fourier transforms of certain singular functions.400

3.1 Fourier transform algorithm401

Recalling the forward and inverse Fourier transform expressions (2.35) and (2.36), we note that, for402

smooth and compactly supported functions f , the corresponding Fourier transforms F decay superalge-403

braically fast (i.e., faster than any negative power of ω) as ω → ±∞. Thus, the errors in approximation404

f(t) ≈ 1

2π

∫ W

−W
F (ω)e−iωtdω (3.1)

decays super-algebraically fast as W →∞ in Hs([0, T ])-norm, for any s ≥ 0, as it follows easily by iterated405

integration by parts: the infinite-domain Fourier transform integral can be replaced by the corresponding406

integral over a finite interval with superalgebraically small errors. As is known [47, 57], however, the407

frequency-domain solutions of the Helmholtz equation in two dimensions vary as an integrable function408

of logω which vanishes at ω = 0, and, thus, the integration process requires some care to produce the409

needed integrals with high-order accuracy. To do this, in what follows we employ the recently developed410

Fourier-continuation (FC) based approach [6] for the numerical evaluation of such singular inverse Fourier411

transform integrals.412

Thus, utilizing a decomposition of the form413

f(t) =
1

2π

(∫ −wc
−W

+

∫ wc

−wc
+

∫ W

wc

)
F (ω)e−iωtdω, (3.2)

we only need to consider 1) Integrals of the form414

Iba[F ](t) =

∫ b

a
F (ω)e−iωtdω, (3.3)

where F is a smooth non-periodic function, and 2) The half-interval integrals415

Iwc0 [F ](t) =

∫ wc

0
F (ω)e−iωtdω and I0

−wc [F ](t) =

∫ 0

−wc
F (ω)e−iωtdω, (3.4)

where F (ω) contains a logarithmic singularity at ω = 0.416
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To treat the integral Iba[F ](t), we re-express it in the form417

Iba[F ](t) = e−iδt
∫ A

−A
F (ω + δ)e−iωtdω, δ =

a+ b

2
, A =

b− a
2

. (3.5)

Although F (ω+δ) is not a periodic function of ω in the integration interval [−A,A], it can be approximated,418

in this interval, by a Fourier-continuation trigonometric polynomial [23]419

F (ω + δ) =

L̃/2−1∑
m=−L̃/2

cme
i 2π
P
mω (3.6)

of a certain periodicity P , with high-order convergence as L̃ grows. Indeed, an accurate Fourier approxi-420

mation of a certain period P > 2A can be obtained on the basis of the FC(Gram) Fourier Continuation421

method [3, 23] from which the approximation errors decay as a user-prescribed negative power of L̃. Sub-422

stituting (3.6) into (3.5) and integrating term-wise gives the approximation423

Iba[F ](t) = e−iδt
L̃/2−1∑
m=−L̃/2

cm

∫ A

−A
e−i

2π
P

(αt−m)ωdω

= e−iδt
L̃/2−1∑
m=−L̃/2

cm
P

π(αt−m)
sin

(
2πA

P
(αt−m)

)
, (3.7)

with errors that are uniform in the time variable t. For a given user-prescribed equi-spaced time-evaluation424

grid {tn = n∆t}N2
n=N1

, the quantities Iba[F ](tn) can be obtained via an FFT-accelerated evaluation of scaled425

discrete convolutions, see Section 4.1.2 in [6] for more details. But here, for simplicity, we evaluate the426

quantities Iba[F ](tn) directly.427

In order to evaluate the integral Iwc0 [F ](t) at fixed cost for arbitrarily large times t, in turn, we utilize a428

certain modified “Filon-Clenshaw-Curtis” high-order quadrature approach developed in [6] which relies on429

a graded set430 {
µj = wc

(
j

Q

)q
, j = 1, · · · , Q

}
,

of points in the interval (0, wc) and associated integration subintervals (µj , µj+1), j = 1, · · · , Q. The integral431

Iwc0 [F ](t) is thus approximated in accordance with the expression432

Iwc0 [F ](t) =

Q−1∑
j=1

I
µj+1
µj [F ](t),

in which the integral Iµj+1
µj [F ](t) is obtained via the Clenshaw-Curtis quadrature rule. This algorithm433

results in high-order convergence in spite of the logarithmic singular character of the function F . In detail,434

letting nch denote the selected number of Clenshaw-Curtis mesh points and assuming that q > nch + 1, the435

errors resulting from this approximation strategy decay as O(Q−(nch+1)) as nch → +∞.436

Algorithm 3 also requires the evaluation of the Fourier transform437

Fk,slow(f)(ω) :=

∫ H

−H
f(t+ sk)χk(t)e

iωtdt
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for the smooth boundary-values function f . This computation proceeds in a manner analogous to that used438

for the evaluation of IWwc [F ](t), except that, instead of Fourier continuation approximation of the function439

F used in that case, here a regular Fourier expansion440

f(t+ sk)χk(t) =

L̂/2−1∑
m=−L̂/2

ĉkme
i π
H
mt, (3.8)

of periodicity interval [−H,H], is used—which results in high-order convergence on account of the smooth441

vanishing of the function χk(t) at the endpoints of the interval [−H,H]. The approximation of Fk,slow(f)(ω)442

is then obtained via an expression analogous to (3.7)—with uniform errors for all ω ∈ R, which are deter-443

mined solely by the error in the approximation (3.8).444

3.2 Layer-potentials and integral-operator evaluations445

The numerical implementation of the hybrid multiple scattering strategy additionally requires evaluation446

of the layer-potentials Sj , j = 1, 2 and the integral operators Sj , j = 1, 2 (equations (2.37)and (2.39),447

respectively), both of which can be expressed as integrals of the form448

H(x, ω) =

∫
Γj

Φω(x, y)ψ(y, ω)dsy, x ∈ Γj , x ∈ Ω or x ∈ Γ\Γj , (3.9)

for certain densities ψ(y, ω). Depending on the location of observation point x, the integral H(x, ω) may449

be weakly-singular, nearly-singular or non-singular. The numerical evaluation of H(x, ω) with high ac-450

curacy can be achieved by means of a suitably modified version of the two-dimensional Chebyshev-based451

rectangular-polar discretization method [25] (cf. [18]) which adequately accounts for the singular character452

of the unknown potential ψ at the endpoints of the open-arcs Γj . In detail [29], the density function ψ can453

be expressed in the forms ψ = α/w near the endpoints where α is a smooth function and w ∼ d1/2
j where dj454

denotes the distance to the endpoint of Γj . Then a special change of variables introduced in [24, Eq. (4.12)]455

(see also [4,21]), which eliminates the 1/w singularity, is utilized here to evaluate the integrals H(x, ω) with456

high-order accuracy.457

Figure 3: Extended arcs utilized in the numerical implementation.

In view of the aforementioned density singularity, it can be easily shown that the collected boundary data458

Fm (m ≥ 1) is also singular: it behaves like d1/2
j(m) near the endpoints of the arc Γj(m). Graded meshes near459

the endpoints could be employed to ensure high-order accuracy in the solution of the associated boundary460

integral equations. But a different approach is utilized in this paper, whereby the edge singularity in461

the boundary data may be entirely avoided by slightly and smoothly extending the boundary Γj in the462
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direction normal to Γj—as illustrated in Figure 3. More precisely, letting x = x(s) and ν = ν(s) denote463

a parametrization of Γ = Γ1 ∪ Γ2 and its normal vector, respectively, the curve Γj is prolonged beyond its464

endpoints into an extended open arc Γ̃j . Here the extension arc, denoted by Γej = Γ̃j\Γj , is given by465

y(s) = x(s) + a(s) · ν(s) (3.10)

for s in a neighborhood beyond each parameter value s = s0 corresponding to an endpoint of Γj . In order to466

ensure sufficient smoothness, leading to high-order accuracy, a certain number of derivatives of the function467

a are required to vanish at s = s0. The extended arcs Γ̃j used are such that their endpoints are far from the468

region where the corresponding fields must be evaluated. Since the problems for the extended open-arcs469

are handled with high accuracy (by means of the numerical method [18, 25]), and since the corresponding470

solutions are evaluated away from the extended-arc singular points, the difficulties arising from endpoint471

singularities are completely eliminated.472

Remark 3.1. The incident field ui can easily be extended to each one of the two curves Γ̃j, j = 1, 2; the473

corresponding extensions will be denoted in what follows by uij, j = 1, 2. The necessary extensions can be474

obtained either by simply evaluating on the extended curves an incident field function ui defined in all of R2,475

whenever, as is often the case, such a function is provided, or, alternatively, by using a Sobolev extension476

theorem such as [49, Theorem 3.10] on each curve Γ̃j.477

This extension procedure, which provides great flexibility, does not negatively affect any aspect of the478

proposed multiple scattering algorithm. Indeed, letting Ω̃j = R2\Γ̃j and considering the wave equation479

problem480 {
∂2w̃sj
∂t2

(x, t)− c2∆w̃sj (x, t) = 0, (x, t) ∈ Ω̃j × R,
w̃sj (x, t) = g̃j(x, t), (x, t) ∈ Γ̃j × R,

(3.11)

we have the following result analogous to Lemma 2.5.481

Lemma 3.2. Let j ∈ {1, 2}, p ∈ R, and T0 > 0, and assume that, for j ∈ {1, 2}, (a) g̃j ∈482

Hp
σ,T0

(R, H1/2(Γ̃j)) satisfies483

g̃j(x, t) = 0 for (x, t) ∈ (Γ12 ∪ Γej)× R; (3.12)

and, (b) Γ̃j satisfies Condition 2.2. Then, recalling equation (2.3), letting t0 = δ12/c > 0, and calling484

w̃sj ∈ H
p−3
σ,T0

(R, H1(Ω̃j)) the unique solution of the wave equation problem (3.11), we have485

w̃sj (x, t) = 0 for (x, t) ∈ Γtr
j′ × (−∞, T0 + t0]. (3.13)

Definition 2.6, in turn, needs to be adjusted as follows.486

Definition 3.3. For m ∈ N we inductively define ṽsm(x, t) as equal to the solution w̃sj(m)(x, t) of the open-arc487

problem (3.11) with boundary data488

ṽsm(x, t) = f̃m(x, t) for (x, t) ∈ Γ̃j(m) × R, (m ∈ N), (3.14)

where f̃m(x, t) : Γ̃j(m) × R→ C denotes the causal functions defined inductively via the relations489

f̃1(x, t) = −ui1(x, t) on Γ̃1, (3.15)
490

f̃2(x, t) =

{
−ui2(x, t)− ṽs1(x, t), x ∈ Γ2,

0, x ∈ Γe2,
(3.16)

and,491

f̃m(x, t) =

{
−ṽsm−1(x, t), x ∈ Γj(m),

0, x ∈ Γej(m),
m ≥ 3. (3.17)
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The new inductive relations give rise to the following slightly modified version of Theorem 2.8.492

Theorem 3.4. Let M ∈ N, M ≥ 2, p ∈ R, and let T = T (M) = (M − 1)δ12/c. Denote an M -th order493

multiple-scattering sum494

ũsM (x, t) :=
M∑
m=1

ṽsm(x, t), (3.18)

which includes contributions from all M “ping-pong” scattering iterates ṽsm(x, t) with m = 1, . . . ,M . Then,495

given ui ∈ Hp
σ,0(R, H1/2(Γ)) and uij ∈ Hp

σ,0(R, H1/2(Γ̃j)), j = 1, 2 as indicated in Remark 3.1, we have496

ũsM ∈ H
p−3/2
0 (T (M), H1(Ω)) and us(x, t) = ũsM (x, t) for all (x, t) ∈ Ω× (−∞, T (M)].497

The proof of this theorem is essentially identical to the proof of Theorem 2.8, and it is therefore omitted498

for brevity.499

Incorporating the Fourier transform and time-windowing and recentering strategies introduced in pre-500

vious sections, we are led to a new version of the hybrid multiple scattering algorithm which, except for501

straightforward modifications related to arc extensions, is entirely analogous to Algorithm 3, and whose502

slightly modified pseudocode is once again omitted. The overall algorithm for evaluation of the numerical503

solution us of equation (2.1), incorporating the extended arcs Γ̃j , is presented as Algorithm 4 in Section 3.3.504

Clearly, the weakly-singular integrals H(x, ω) need to be evaluated at a sufficiently large number of505

frequency discretization-points ω in the interval [−W,W ]. The computational cost required for such eval-506

uations can be reduced by utilizing the decomposition507

Φω(x, y) = Ψ0(x, y) + κ2Ψ1(x, y) +Hω(x, y), (3.19)

where508

Ψ0(x, y) = − 1

2π
log |x− y|, (3.20)

Ψ1(x, y) =
|x− y|2

8π
log |x− y|, (3.21)

and509

Hω(x, y) =


Φω(x, y)− Φ0(x, y)− κ2Φ1(x, y), x 6= y,

i
4 −

1
2π (ce + log(κ/2)), x = y,

(3.22)

(ce = 0.57721566 · · · is the Euler constant). The function Hω is more regular than the Green function510

Φω(x, y) itself, and its integration under a given error tolerance is therefore less onerous. The discretization511

matrices associated with the weakly-singular and nearly-singular integrals of the form512

H`(x, ω) =

∫
Γ̃j

Ψ`(x, y)ψ(y, ω)dsy, x ∈ Γ̃j , Ω or Γ\(Γ̃j), ` = 0, 1, (3.23)

in turn, are independent of frequency, and can thus be precomputed before the ping-pong iterative process513

is initiated.514

In this work, the two-dimensional Chebyshev-based rectangular-polar integral solver [18,25] is employed515

for the evaluation of all singular integrals. The remaining integrals involving the smoother kernels Hω can be516

integrated efficiently and accurately by means of Fejer’s quadrature rule, and they can be further accelerated517

e.g. by the methods presented in [14,22,44] and references therein, but such accelerations were not utilized518

in this work. In our numerical implementation, prior to the ping-pong iteration process we additionally use519
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the Lapack function ZGESV to pre-compute the inverses A−1
j (ω) of the coefficient matrixes Aj(ω) (j = 1, 2)520

resulting from the discretizations of the integral operators521

H1(x, ω) + κ2H2(x, ω) +

∫
Γ̃j

Hω(x, y)ψ(y, ω)dsy, x ∈ Γ̃j , j = 1, 2; (3.24)

these inverse matrices are then used repeatedly to obtain the numerical solution ψ̃m,k(x, ω) of the integral522

equation523 ∫
Γ̃j(m)

Φω(x, y)ψ̃m,k(y, ω)dsy = F̃m,k(x, ω) on Γ̃j(m) (3.25)

with F̃m,k = Fk,slow(f̃m) and j = j(m) for all k ∈ K and all m = 1, · · · ,M .524

3.3 Numerical implementation: overall outline525

The overall algorithm for evaluation of the numerical solution us of equation (2.1) relies on the concepts526

presented in Sections 3.1-3.2 and the following notations and conventions.527

With reference to Section 3.1, we denote by F = {ω1, · · · , ωJ} a set of frequencies used for the Fourier528

transformation process, which includes an equi-spaced grid in the frequency intervals [−W,−wc] and [wc,W ],529

as well as a combination of the Clenshaw-Curtis mesh points in the intervals (−µj+1,−µj) and (µj , µj+1),530

j = 1, · · · , Q − 1, for a total of J = 2L̃ + 2nch(Q − 1) frequency discretization points. For the necessary531

time-domain discretization, in turn, we use the mesh T = {tn = n∆t}NTn=1 of the time interval [0, sK +H],532

where ∆t = (sK + H)/NT , and we call T0 = T ∩ [0, T ]. With reference to Section 3.2, on the other hand,533

frequency-independent meshes Mj are used on the curves Γ̃j , j = 1, 2 for all frequencies considered. The534

set of discrete spatial observation points at which the scattered field is to be produced, finally, is denoted535

by R.536

Using these notations, a version of Algorithm 3, including certain details concerning our numerical537

implementation, is presented in Algorithm 4.538

4 Numerical examples539

This section presents a variety of numerical tests that illustrate the character of the proposed frequency-540

time hybrid ping-pong integral-equation solver embodied in Algorithm 4. The numerical errors presented in541

this section were calculated in accordance with the expression maxt∈[0,T ] |usnum−usref | where, with exception542

of the test cases considered in Example 3 and 6, for which the exact solutions are known, the reference543

solutions usref were obtained as numerical solutions produced by means of sufficiently fine discretizations.544

(Our use of absolute errors is justified since, as evident from the numerical solution plots in each case, we545

only consider solutions whose maximum values are quantities of order one.) All of the numerical tests were546

obtained on the basis of Fortran numerical implementations, parallelized using OpenMP, on an 10-core HP547

Desktop with an Intel Core processor i9-10900.548

Example 1. Our first test case concerns the accuracy of the numerical solver for the frequency domain549

integral equation (2.38) on the single open-arc Γ1 shown in Figure 1(c), with point-source boundary data550

F1 = −U i = − i
4
H

(1)
0 (κ|x|) on Γ1. (4.1)

Figure 4 displays errors in the solution evaluated by means of the single-layer potential (2.37), at the551

points (0.5, 0), (0, 2), (0, 1.01), (−0.99, 0), as functions the number N of Chebyshev points used in each552

one of the patches associated with the Chebyshev-based discretization methodology [25]. Clearly, uniform553
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Algorithm 4 Numerical hybrid multiple scattering algorithm with time-recentering
1: Pre-compute the matrices A−1

j (ω) for j = 1, 2, ω ∈ F .
2: Do m = 1, 2, · · · ,M
3: Evaluate the boundary data f̃m(x, t), (x, t) ∈Mj(m) × T via relations (3.15)-(3.17).
4: Initialize ṽsm(x, t) = 0, (x, t) ∈ (R× T0) ∪ (Mj(m) × T ).
5: Do k = 1, 2, · · · ,K
6: For ω ∈ F , evaluate the vectors Bm,k(ω) whose elements are

F̃m,k(x, ω) = Fk,slow(f̃m)(x, ω), x ∈Mj(m),

by the Fourier transform algorithm presented in Section 3.1.
7: Compute the approximation of the solution ψ̃m,k(x, ω), (x, ω) ∈Mj(m)×F of the integral equation

(3.25) given by A−1
j (ω)Bm,k(ω).

8: Evaluate Ṽ s
m,k(x, ω), (x, ω) ∈ (R∪Mj(m))×F through

Ṽ s
m,k(x, ω) =

∫
Γ̃j(m)

Φω(x, y)ψ̃m,k(y, ω)dsy

and rectangular-polar Chebyshev-based integration (Section 3.2).
9: Evaluate ṽsm(x, t) = ṽsm(x, t) + F−1(Ṽ s

m,k)(x, t− sk), (x, t) ∈ (R×T0)∪ (Mj(m)×T ) by the Fourier
transform algorithm presented in Section 3.1.

10: End Do
11: End Do
12: Evaluate the numerical solution

usnum(x, t) =
M∑
m=1

ṽsm(x, t), (x, t) ∈ R× T0. (3.26)

(a) κ = 10 (b) κ = 50

Figure 4: Numerical errors observed in the frequency-domain solutions considered in Example 1, at various
points x, as functions of the number N of discretization points used.
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fast convergence of the numerical solutions is obtained at all points, independently of the distance to554

the boundary. For this example a total of 5 patches (resp. 25 patches) where used for test cases with555

wavenumber κ = 10 (resp. κ = 50).556

Example 2. We now consider test cases that demonstrate the accuracy of the time-domain solver for557

the problem scattering by a single open-arc Γ1 depicted in Figure 1(c). We consider incident fields of two558

different kinds, namely, 1) A Gaussian-modulated point source ui1(x, t) equal to the Fourier transform of559

the function560

U i(x, ω) =
5i

2
H

(1)
0 (ω|x− z|)e−

(ω−ω0)
2

σ2 eiωt0 (4.2)

with respect to ω, with σ = 2, ω0 = 15, t0 = 4 and z = (0, 0); and 2) A plane-wave incident field561

ui2(x, t) = − sin(4g(x, t))e−1.6(g(x,t)−3)2 , g(x, t) = t− tlag − x · dinc (4.3)

along the incident direction dinc = (1, 0) with tlag = 2. Together with a sufficiently fine fixed spatial562

discretization, the fixed numerical frequency intervals ω ∈ [5, 25] and ω ∈ [−20, 20] were used for the563

incident fields ui1 and ui2, respectively. Figures 5 and 6 present the scattered field as a function of time t564

at the observation point x = (0.5, 0) and the corresponding numerical errors at that point, respectively, as565

functions of the number of frequencies used—demonstrating the fast convergence of the algorithms as the566

frequency-domain discretization is refined.567

(a) (b)

Figure 5: Scattered field and errors obtained for the problem considered in Example 2. (a) Real and
imaginary parts of scattered field at x = (0.5, 0) resulting from the incident field ui1. (b) Convergence of
the complex scattered field at x = (0.5, 0) as a function of the number of frequencies used.

Example 3. This example presents the solutions produced by the full hybrid ping-pong multiple568

scattering algorithm for the wave equation problem (2.1) in two different domains Ω, namely, the unit disc569

centered at the origin and the unit square Ω = [−1, 1]2, for t ∈ [0, 10], and for each one of the two time-570

domain sources considered in Example 2: the point source ui1(x, t) and the plane wave source ui2(x, t). For571

the plane-wave incidence case the exact solution is given by us(x, t) = −ui2(x, t) for x ∈ Ω. In this example,572

the extensions Γ̃j of Γj for j = 1, 2 are constructed by means of portions of tangent circular arcs of radii573

0.1. For the wave equation problem (2.1) in a unit disc domain, the numerical errors as a function of M574

are displayed in Figures 7 and 8: clearly, rapid convergence and high accuracy are observed. Figures 9 and575

10 display the total field within the rectangular domain Ω at various times, for two different point-source576

locations z, and two different values of ω0 in (4.2), and using a total of M = 10 ping-pong iterations; we577

have verified that, in this case, the numerical errors are less than 10−8 for all t ∈ [0, 10].578

Example 4. We now use Algorithm 4 to solve wave equation problems in a disc-shaped domain579

(Figure 1(c)) and a T-shaped domain (Figure 11(a)), up to final times T = 10, and using M = 7 ping-pong580

iterations. The incident wave is a pulse function given by581

ui(x, t) = f(t− |x− z0|/c), f(s) = sin(4s)e−1.6(s−3)2 , (4.4)
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(a) (b)

Figure 6: Scattered field and errors obtained for the problem considered in Example 2. (a) Real and
imaginary parts of scattered field at x = (0.5, 0) resulting from the incident field ui2. (b) Convergence of
the complex scattered field at x = (0.5, 0) as a function of the number of frequencies used.

(a) (b)

Figure 7: Scattered field and errors obtained for the problem considered in Example 3. (a) Real and
imaginary parts of scattered field at x = (0.5, 0) resulting from the incident field ui1. (b) Numerical errors
as functions of time t for various values of M .

(a) (b)

Figure 8: Scattered field and errors obtained for the problem considered in Example 3. (a) Real and
imaginary parts of scattered field at x = (0.5, 0) resulting from the incident field ui2. (b) Numerical errors
as functions of time t for various values of M .
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Figure 9: Real part of the total fields for the problem considered in Example 3 with point source located
at z = (0, 0). Upper row: ω0 = 15. Lower row: ω0 = 50. Fields at times t = 4, 6, 8 and 10 are displayed
from left to right in each row.

Figure 10: Real part of the total fields for the problem considered in Example 3 with point source located
at z = (−0.6,−0.5). Upper row: ω0 = 15. Lower row: ω0 = 50. Fields at times t = 4, 6, 8 and 10 are
displayed from left to right in each row.
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which is displayed in Figure 11(b). Figure 11(c) displays the corresponding Fourier transform, in view of582

which the fixed numerical bandwidth value W = 15 was used for this example. Figures 12-14 display the583

total field within Ω at various times and for different source point locations.584

(a) T-shaped domain. (b) ui(x, t) for |x− z0| = 1. (c) U i(x, ω).

Figure 11: Setup utilized for the test case considered in Example 4, including, (a) The T-shaped domain
used, as well as, (b) The time-domain incident wave ui(x, t), and, (c) Its Fourier transform U i(x, ω). The
Fourier transform displayed in (c) is smaller than 10−8 outside the ω-range considered in the figure.

Figure 12: Total fields in the disc-shaped domain considered in Example 4. Upper row: z0 = (0, 0). Lower
row: z0 = (−0.5, 0). Fields at times t = 4, 6, 8 and 10 are displayed from left to right in each row.

Example 5. This example concerns a long time propagation and scattering problem in a unit disc585

domain under the incident wave (4.4) with z0 = (0, 0). For this example we have used δ12 = 2 sin π
10 ≈ 0.618,586

M = 45, K = 4 (so that sK + H = 55), W = 20, J = 454, and ∆t = 0.11, and we have computed587

the necessary frequency domain solutions using open-arc discretizations Mj , j = 1, 2, each one of which588

contains 224 discretization points. Note that the exact solution values at the points x = (−
√

3/4, 1/4) and589

x = (0.5, 0) coincide (since |(−
√

3/4, 1/4)| = |(0.5, 0)| = 0.5). This simple symmetry relation provides a590

valuable verification of the numerical solution—which, as illustrated Figure 15, is closely satisfied by the591

numerical solution. Tables 2 and 3, finally, present the numerical solution errors maxt∈[0,T (M)] |usnum− usref |592

for the present problem at the point x = (0.5, 0), for various values of M and corresponding final times593

T (M), together with other statistics such as precomputation time and total computational times. Note in594

particular that the solution errors do not grow as the final times increase.595

Example 6. In our final example we briefly demonstrate the feasibility of a version of the proposed596

multiple scattering algorithm which utilizes more than two patches. This extended algorithm requires use597

of appropriately windowed boundary data for the open-surface wave equation problems associated with598

multiple patches. At each step, the multiple wave equation problems can be solved in parallel. Complete599

details concerning the algorithm and its implementation will be presented elsewhere [12]. In the example600
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(a) t = 3 (b) t = 5

(c) t = 7 (d) t = 9

Figure 13: Total fields in the T-shaped domain considered in Example 4, with point source located at
z0 = (−2, 0), at various times t.

(a) t = 3 (b) t = 5

(c) t = 7 (d) t = 9

Figure 14: Total fields in the T-shaped domain considered in Example 4, with point source located at
z0 = (0, 0), at various times t.

Figure 15: Time-domain solutions utotM (x, t), t ∈ [0, 50] considered in Example 5 at x = (−
√

3/4, 1/4)> and
x = (0.5, 0)> with M = 45. As illustrated in the figure, these two functions coincide, by symmetry.
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Table 2: Numerical errors, precomputation time and total computational times required by the problem
considered in Example 5 for various values of M . J = 254 frequencies were used in all cases.

M 15 25 35 45
T (M) 8.652 14.832 21.012 27.192
Error 6.57× 10−4 4.74× 10−5 1.87× 10−5 5.56× 10−6

Time (precomputation) 9.1 s
Time (M iterations) 30.0 s 52.2 s 73.1 s 94.4 s

Table 3: Numerical errors, precomputation time and total computational times required by the problem
considered in Example 5 for various values of M . J = 454 frequencies were used in all cases.

M 15 25 35 45
T (M) 8.652 14.832 21.012 27.192
Error 1.24× 10−7 2.59× 10−8 1.10× 10−8 4.36× 10−9

Time (precomputation) 16.8 s
Time (M iterations) 46.3 s 78.4 s 109.8 s 141.3 s

presented here a three-patch decomposition of the boundary Γ, as shown in Figure 16, is utilized to solve601

once again the wave equation problem (2.1) on the unit disc, under plane-wave incidence ui2(x, t), considered602

in Example 2, and the exact solution is given by us(x, t) = −ui2(x, t) for x ∈ Ω. The numerical solutions603

at x = (0.5, 0) as functions of time t for various values of M are displayed in Figure 17. The maximum604

numerical errors are of the same order as those displayed in Figure 8(b) for the two-patch case.605

Figure 16: Decomposition of a circular closed curve using three overlapping patches with extension.

5 Conclusions606

This paper proposed a frequency-time hybrid integral-equation method for the wave equation problem607

in an interior two-dimensional bounded spatial domain. The solver is based on a novel ping-pong multiple608

scattering strategy that reduces the original problem to a sequence of problems of scattering by open-arcs.609

Exploiting the Huygens principle, relying on a domain decomposition strategy based on use of overlapping610

patches, and utilizing boundary integral equation formulations for frequency-domain sub-problems and an611

efficient Fourier transform algorithm, the proposed method produces the interior time-domain solution612

efficiently and with high accuracy. An extension of the ping-pong algorithm that incorporates arbitrary613
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(a) M = 3 (b) M = 6 M = 9

Figure 17: Comparison of the numerical and exact solutions as functions of time t for various values of M .

numbers of overlapping subdomains should enable application of the method to complex 2D and 3D geome-614

tries. The method can also be extended to enable solution of elastic and electromagnetic wave problems,615

and including problems of scattering by impenetrable obstacles, problems of transmission for penetrable616

structures and problems in multi-layered media. Such extensions, which lie beyond the scope of this paper,617

are left for future work.618
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A Appendix624

This appendix obtains the explicit expression (2.16), used in the proof of Lemma 2.4, for the solution625

vs+(x, t) of problem (2.15), where g is a causal function (g(x, t) = 0 for t ≤ 0) defined on R2
0 × R, which626

satisfies the assumption (2.13) for a bounded subset Cinc ⊂ R2
0. The construction utilizes the associated627

frequency-domain Green’s function Gω(x, y), which, for each y ∈ R2
+, is defined as the solution of the628

problem629 {
∆xGω(x, y) + κ2Gω(x, y) = −δy(x), (x, ω) ∈ R2

+ × R, κ = ω/c,

Gω(x, y) = 0 (x, ω) ∈ R0 × R.

As is well known, the method of images yields630

Gω(x, y) =
i

4
H

(1)
0 (κ|x− y|)− i

4
H

(1)
0 (κ|x′ − y|), x 6= y, (A.1)

where x′ = (x1,−x2) denotes the image point of x = (x1, x2) ∈ R2
+ with respect to R2

0, and where H(1)
0631

denotes the Hankel function of first kind and order zero. Let now V s
+(x, ω) denote the Fourier transform of632

vs+(x, t) with respect to t for x ∈ R2
+; clearly V s

+ is a solution of the Helmholtz equation with wavenumber κ633

in R2
+, and with Dirichlet boundary conditions V s

+ = ĝ on R2
0—where ĝ(x, ω) denotes the Fourier transform634

of g(x, t) with respect to t. Clearly ĝ(x, ω) vanishes for x 6∈ Cinc since, in view of (2.13), so does g(x, t).635

Use of Green’s theorem together with the Green function Gω [30] yields636

V s
+(x, ω) =

∫
Cinc

∂νyGω(x, y)ĝ(y, ω)dsy, x ∈ R2
+, (A.2)
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where, denoting by νy = (0, 1)> the unit upward normal on R2
0,637

∂νyGω(x, y) =
iκ

2

x2

|x− y|
H

(1)
1 (κ|x− y|).

It follows that, for x ∈ R2
+, vs+(x, t) equals the inverse Fourier transform of (A.2). To proceed with the638

construction we introduce the following notations. We call R3
0 = R2

0 × R the plane in three dimensional639

space with cross-section R2
0, we let x̆ = (x>, 0)> /∈ R3

0, y̆ = (y>, z)> ∈ R3
0 and r̆ =

√
r2 + z2 with640

r = |x−y| =
√

(x1 − y1)2 + (x2 − y2)2. Using the unit normal νy = (0, 1)> of R2
0, finally, the corresponding641

unit normal on R3
0 is denoted by νy̆ = (0, 1, 0)>.642

In preparation for the main result of this appendix we establish the following Lemma.643

Lemma A.1. The following formulas hold:644

1

4π

∫ ∞
−∞

eiκr̆

r̆
dz =

i

4
H

(1)
0 (κr), (A.3)

1

4π

∫ ∞
−∞

∂yi

(
eiκr̆

r̆

)
dz =

i

4
∂yiH

(1)
0 (κr), i = 1, 2. (A.4)

Proof. The expression (A.3) is established in [27, Lemma 3.1]. Using the notations645

r̆0 = (x2
1 + (x2 − y2)2 + z2)1/2,

to establish the y1 component of (A.4) (the y2 component follows analogously), it suffices to show that646 ∫ y1

0
dy1

∫ ∞
1

∂y1

(
eiκr̆

r̆

)
dz =

∫ ∞
1

eiκr̆

r̆
dz −

∫ ∞
1

eiκr̆0

r̆0
dz; (A.5)

the result then follows by differentiation with respect to y1. To establish (A.5), we seek to utilize Fubini’s647

Theorem on the left hand integral, but, unfortunately, the integrand does not satisfy the hypothesis of648

Fubini’s theorem: it is not an integrable function of the variable (y1, z). To address this difficulty we649

integrate by parts the left-hand integral: using the relation650

eiκr̆ =
r̆

iκz
∂ze

iκr̆, (A.6)

we obtain651 ∫ ∞
1

∂y1

(
eiκr̆

r̆

)
dz =

∫ ∞
1

1

iκz
∂z∂y1e

iκr̆dz = − 1

iκ
∂y1e

iκr̆
∣∣∣
z=1

+

∫ ∞
1

1

iκz2
∂y1e

iκr̆dz.

Fubini’s Theorem can now be applied to the last integral, and we thus obtain652 ∫ y1

0
dy1

∫ ∞
1

∂y1

(
eiκr̆

r̆

)
dz = − 1

iκ
eiκr̆

∣∣∣
z=1

+
1

iκ
eiκr̆0

∣∣∣
z=1

+

∫ y1

0
dy1

∫ ∞
1

1

iκz2
∂y1e

iκr̆dz

= − 1

iκ
eiκr̆

∣∣∣
z=1

+
1

iκ
eiκr̆0

∣∣∣
z=1

+

∫ ∞
1

1

iκz2
(eiκr̆ − eiκr̆0)dz.

Now, replacing z−2 = −∂zz−1 and integrating by parts in the last integral, and then using (A.6) once again,653

equation (A.5) results, as desired. The proof is now complete.654

29



To establish (2.16) we proceed as follows. In view of Lemma A.1 and equation (A.1), and noting that655

for x ∈ R2
+, y ∈ R2

0 we have x2 − y2 6= 0, the normal derivative of the Green function on the boundary R2
0656

is given by657

∂νyGω(x, y) =
iκ

2

x2

r
H

(1)
1 (κr) =

i

2
∂y2H

(1)
0 (κr) =

1

2π

∫ ∞
−∞

∂y2

(
eiκr̆

r̆

)
dz = − 1

2π

∫ ∞
−∞

iκr̆ − 1

r̆3
x2e

iκr̆dz

and, therefore, equation (A.2) gives658

V s
+(x, ω) = − 1

2π

∫
Cinc×R

iκr̆ − 1

r̆3
x2e

iκr̆ ĝ(y, ω)dsy̆, x ∈ R2
+.

Taking the inverse Fourier transform we obtain659

vs+(x, t) =
1

2π

∫
Cinc×R

∫ t

0

[
1

r̆3
δ(t− τ − c−1r̆) +

1

cr̆2
δ′(t− τ − c−1r̆)

]
x2 g(y, τ)dτdsy̆

=
1

2π

∫
Cinc×R

[
1

r̆3
g(y, t− c−1r̆) +

1

cr̆2
g(1)(y, t− c−1r̆)

]
x2dsy̆.

where g(1)(x, t) = ∂g
∂t (x, t). Using the relations dsy̆ = dzdsy we thus obtain660

vs+(x, t) =
1

π

∫
Cinc

∫ +∞

0

[
(r2 + z2)−3/2g(y, t− c−1

√
r2 + z2)

+
1

c(r2 + z2)
g(1)(y, t− c−1

√
r2 + z2)

]
x2dzdsy.

Utilizing the change of variables τ = t − c−1
√
r2 + z2, or equivalently z = c

√
(t− τ)2 − c−2r2, and dz =661

−cz−1
√
r2 + z2dτ , we then obtain662

(r2 + z2)−3/2dz = − 1

c2(t− τ)2
√

(t− τ)2 − c−2r2
dτ

and663

1

c(r2 + z2)
dz = − 1

c2(t− τ)
√

(t− τ)2 − c−2r2
dτ.

It then follows that, for x ∈ R2
+,

vs+(x, t) =
1

πc2
(A.7)∫

Cinc

∫ t−c−1|x−y|

0

[
x2 g(y, τ)

(t− τ)2
√

(t− τ)2 − c−2|x− y|2
+

x2 g
(1)(y, τ)

(t− τ)
√

(t− τ)2 − c−2|x− y|2

]
dτdsy, (A.8)

as desired.664

Remark A.2. Although not used in this paper, it is worthwhile to note here that, for an arbitrary two-665

dimensional Lipschitz curve Γ, and letting Γ̆ = Γ × R, the changes of variables used in this appendix can666

easily be utilized to obtain an expression for the time-domain double-layer potential in two-dimensions,667

which had heretofore not been successfully derived. Utilizing once again the notations used above, from668

the Kirchhoff formula [55, Eq. (22), Sec. 8.1], we know that the classical three-dimensional time-domain669

double-layer potential is given by670

D3D(φ)(x̆, t) =
1

4π

∫
Γ̆

[
∂(r̆−1)

∂νy̆
φ(y̆, t− c−1r̆)− 1

cr̆

∂r̆

∂νy̆
φ(1)(y̆, t− c−1r̆)

]
dsy̆.
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The two-dimensional double-layer potential D2D can then be obtained by assuming that the causal signal φ671

is independent of z. Then using the change of variables τ = t− c−1
√
r2 + z2 we obtain672

D2D(φ)(x, t)

=
1

2πc2

∫
Γ

∫ t−c−1|x−y|

0

[
(x− y) · νyφ(y, τ)

(t− τ)2
√

(t− τ)2 − c−2|x− y|2
+

(x− y) · νyφ(1)(y, τ)

(t− τ)
√

(t− τ)2 − c−2|x− y|2

]
dτdsy.

which provides a correction to the expression presented in [51, Page 19]. The contributions [8, Sections 6.3-673

6.5], [38, Page 42] and references therein outline some of the difficulties previously encountered in regard674

to the 2D double-layer potential.675
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