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Abstract

Cavity quantum electrodynamics provides an ideal platform to engineer and control
light-matter interactions with polariton quasiparticles. In this work, we investigate col-
lective phenomena in a system of many particles in a harmonic trap coupled to a homo-
geneous cavity vacuum field. The system couples collectively to the cavity field, through
its center of mass, and collective polariton states emerge. The cavity field mediates pair-
wise long-range interactions and enhances the effective mass of the particles. This leads
to an enhancement of localization in the matter ground state density, which features
a maximum when light and matter are on resonance, and demonstrates a Dicke-like,
collective behavior with the particle number. The light-matter interaction also modifies
the photonic properties of the polariton system, as the ground state is populated with
bunched photons. In addition, it is shown that the diamagnetic A2 term is necessary
for the stability of the system, as otherwise the superradiant ground state instability oc-
curs. We demonstrate that coherent transfer of polaritonic population is possible with
an external magnetic field and by monitoring the Landau-Zener transition probability.
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1 Introduction

Cavity quantum electrodynamics (cQED) is a rapidly evolving field, combining several different
platforms for the manipulation and control of quantum matter with the aid of electromagnetic
fields [1–3]. Its range of applicability spans from quantum optics [4], to polaritonic chem-
istry [5–13], as well as to ultra-cold gases in cavities [14], and light-induced states of matter
using either classical [15, 16] or quantum cavity fields [17–20]. In addition, harmonically
trapped cold ions in optical cavities have been explored for quantum information process-
ing [21–23] as well as, for light-matter interactions at the single particle level [24–27].

In the last decade, there has been an intense interest on strong and ultrastrong light-
matter interactions [28, 29], where light and matter entangle forming hybrid quasiparticle
states known as polaritons [28, 30, 31]. Polaritons exhibit remarkable properties which have
been probed in condensed matter [2], chemistry [1,3, 32] and cold-atom [14] settings. They
can lead, for instance, to modifications of chemical reactions [5,7–12,33], and to the control
of excitons while also exciton-polariton condensation has been achieved [34–37]. Moreover,
it has been suggested that strong light-matter interactions can influence the electron-phonon
coupling and the critical temperature of superconductors [38–42]. Implications for coupling to
chiral electromagnetic fields are currently under investigation [17,43–46], and cavity-induced
ferroelectric phases have been proposed [47,48]. Landau levels in quantum Hall systems ex-
hibit ultrastrong coupling to the cavity field [49–55] and Landau polariton states have been
observed [49–51,56–58]. More recently, theoretical mechanisms on how to modify the integer
Hall effect via the cavity field were proposed [59, 60] and the breakdown of the topological
protection of the integer Hall effect due to the cavity was demonstrated experimentally [61].
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Figure 1: (a) Schematic representation of the interacting system confined in the har-
monic potential with frequency ⌦ (bare potential in cyan) inside the cavity. The
cavity field is considered homogeneous (depicted in light yellow), the area of the
cavity mirrors is A, the distance among the mirrors is L and the fundamental cavity
frequency ! = ⇡c/L. The impact of the cavity to the matter field can be effectively
understood as a modified (in frequency) harmonic trap and the induction of pair-
wise long-range interactions. (b) Effective mass ratio meff/m as a function of the
relative cavity frequency �2 = !/⌦ for different values of the light-matter coupling
�. Strikingly, the effective mass increases with respect to �2, it maximizes at reso-
nance �2 = 1 and for �2 > 1 it decreases reaching asymptotically its original value,
meff! m for �2!1.

All these exciting developments call for further investigations on the properties of many-
body systems strongly coupled to the quantized cavity field. In this context, first-principle
approaches have been put forward, such as the exact density-functional reformulation of QED
(QEDFT) [62–64], hybrid-orbital approaches [65], or generalized coupled cluster theory for
analyzing polaritonic phenomena arising in light-matter systems [66, 67]. Complementary,
analytical methods and exactly solvable models have played an important role in the devel-
opment of many-body physics [68], and are highly desirable in the framework of cQED for
understanding the origin of the microscopic mechanisms and induced phenomena of strongly
correlated light-matter systems.

Some of the key questions in this field, which have been raised in part due to experimental
observations, relate to the impact of polariton formation in the ground state of a many-particle
system [2,3,32,69]. For example: (i) Can the cavity modify the matter ground state? (ii) Are
there collective phenomena in the ground state? (iii) How the resonance between light and
matter manifests in the quasiparticle properties? (iv) What are the induced interactions in the
matter subsystem due to the light field and the matter-mediated correlations between photons?
(v) How can the polaritons be controlled with external probes?

To address the above questions and provide analytical insights into light-matter correlated
phenomena, we study a system of many particles where the formation and properties of the
polariton states is obtained analytically. As depicted in Fig. 1(a) our system consists of N in-
teracting particles in a harmonic trap embedded in a cavity, whose quantized field is treated in
the long-wavelength limit [4,70,71]. The particles are considered to be structureless render-
ing our model exact for electrons, but also applicable to trapped cold ions [72]. Importantly,
we show that due to the homogeneity of the cavity field in the long-wavelength limit, the
light-matter correlations are solely associated with the center of mass (CM) of the particles.

The ground state properties of the light-matter system are studied and we find that the
polariton ground state is populated with photons [73] which obey super-Poissonian statistics,
i.e., they bunch [74–76]. Further, we show that the cavity field enhances the localization of
the CM wave function which is a consequence of the increasing effective mass of the matter
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system. The enhancement of localization becomes maximal when the bare matter and cavity
excitations are on resonance as it can also be inferred from the effective mass in Fig. 1(b). This
finding highlights the importance of resonance in the ground state of the matter subsystem,
and could potentially provide insights into the resonance effect observed in polaritonic chem-
istry [5–7, 32, 77, 78]. The significance of the CM motion in polaritonic chemistry has also
been investigated for charged molecules coupled to a cavity [79]. The effect of the cavity on
the matter subsystem can be also understood in terms of an effective Hamiltonian, including
solely the matter degrees of freedom, where the particles interact through a cavity induced
potential [see Fig. 1(a)]. This description allows to perform many-body treatments avoiding
the complication of explicitly including the photon states. Using the effective Hamiltonian and
focusing, for simplicity, in the case of no matter interactions, we find that the photon-mediated
interactions imprint a weak enhancement of density localization in the matter subsystem [see
Fig. 5(a)]. The modification of the density depends on the number of particles N demonstrat-
ing a collective behavior. The peak of the density scales with N , depending on the light-matter
interaction. For weak coupling, it scales proportionally to N , while for strong coupling, the
behavior is ⇠

p
N [see Fig. 5(b)]. This generalizes Dicke collectivity from being an excited

state property of spontaneous emission (superradiance) [80] to a ground state phenomenon
as well.

Moreover, we demonstrate that including the diamagnetic A2 term prevents the system
from developing a superradiant instability. This refers to the situation where the ground state
becomes unstable and the photon occupation diverges [81, 82]. Proceeding one step further
we showcase that the collective polariton states can be controlled with the use of a weak
external magnetic field. In particular, there is an efficient inter-polariton exchange of energy
and control of the polariton gap which is minimized away from the resonant point. This
directly impacts the probability of the relevant Landau-Zener transition [83], which increases
when the light and matter excitations are out of resonance.

This work proceeds as follows. Sec. 2 introduces the many-particle model coupled to the
cavity and demonstrates the separation of the relative coordinates from the cavity field. In
Sec. 3 the exact solution for the collective polariton states is outlined. Sec. 4 elaborates on
the collective density modifications due to the cavity and the resonance dependence of the
effective mass. Sec. 5 discusses the photonic properties of the polariton ground state, while in
Sec. 6 we argue on the importance of the diamagnetic interactions regarding the stability of
the system. The impact of a weak external magnetic field on the polariton states is appreciated
in Sec. 7. In Sec. 8 we draw our conclusions and provide future perspectives.

2 Many Particles in a Cavity

We consider a system of N interacting particles, confined in a harmonic potential and coupled
to the quantized cavity field. Such a system in the non-relativistic limit is described by the
minimal-coupling Hamiltonian [1,4,84]

Ĥ =
1

2m

NX

i=1

�
i~hri + g0Â

�2 +
NX

i<l

W (|ri � rl |) +
NX

i=1

m⌦2

2
r2

i +
X

,⌫
~h!()

Å
â†
,⌫â,⌫ +

1
2

ã
, (1)

where g0 is the single-particle coupling parameter to the quantized field Â, which is given in
units of the elementary charge, e. Further, m is the mass of the particles and ⌦ is the frequency
of the harmonic trap. Such a model can be realized experimentally with the use of quadrupole
ion traps [85], and these systems coupled to optical cavities at the single particle level have
been studied experimentally [21–27]. The quantized electromagnetic vector potential Â in the
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long-wavelength limit (homogeneous approximation) reads [4,29,70,84]

Â=
X

,⌫

vt ~h
2✏0V!()

"⌫()
Ä
â,⌫ + â†

,⌫

ä
. (2)

Here,  = (x ,y ,z) are the wave vectors of the photon field, !() = c|| are the al-
lowed frequencies in the quantization volume V , ✏0 is the vacuum permittivity and ⌫ = 1, 2
denote the two transversal polarization directions [84, 86]. The polarization vectors satisfy
"⌫() ·  = 0 8, and can be taken to be mutually perpendicular "⌫() · "⌫0() = �⌫⌫0 . The
operators â,⌫ and â†

,⌫ are the annihilation and creation operators of the photon field obeying
[â,⌫, â†

0,⌫0] = �0�⌫⌫0 . The photon operators can also be defined in terms of the displace-
ment coordinates q,⌫ and their conjugate momenta @ /@ q,⌫ as â,⌫ =

1p
2

�
q,⌫ + @ /@ q,⌫

�

and â†
,⌫ defined by conjugation [84,87].

2.1 Kinematics of decoupling of center of mass and relative coordinates

Upon expanding the covariant kinetic energy term it can be seen that the homogeneous photon
field couples to the total momentum of the particles, Â ·

PN
i=1ri , implying that the particles

couple collectively to the cavity field through the CM. Consequently, it is beneficial to trans-
form the Hamiltonian into the CM frame and relative coordinates for describing properly the
matter-photon interaction and correlations. Here, for mathematical convenience, we utilize a
symmetric definition with respect to

p
N as in Ref. [88]

R=
1p
N

NX

i=1

ri and R j =
r1 � r jp

N
, for j > 1 . (3)

As expected, the respective relative and CM conjugate operators commute, demonstrating the
independence of position and momentum coordinates.1 In the new coordinates, the cavity
field couples only to the CM momentum, Â ·

PN
i=1ri =

p
N Â ·rR, while the scalar trapping

potential separates into two independent parts, one depending on the CM coordinate and
the other depending on the relative coordinates, without any crossing terms between them,PN

i=1 r2
i = R2 + N

PN
j=2 R2

j �
ÄPN

j=2 R j

ä2
. The two-body interaction W (|ri � rl |) depends only

on the relative distances and thereby does not affect the cavity-induced CM motion. The
Hamiltonian therefore has two parts: (i) the CM contribution via Ĥcm which couples to the
quantized field Â and (ii) the relative contribution Ĥrel being decoupled from both the cavity
field Â and the CM. As such, Ĥ = Ĥcm + Ĥrel, where

Ĥcm =
1

2m

�
i~hrR + g0

p
N Â
�2
+

m⌦2

2
R2 +

X

,⌫
~h!()

Å
â†
,⌫â,⌫ +

1
2

ã
. (4)

For the expression of Ĥrel see Appendix A. Therefore, in the presence of a homogeneous cavity
field consisting of an arbitrary amount of modes, and harmonically trapped charged particles,
the light-matter interaction takes place between the cavity field and the CM. The pairwise in-
teraction drops out because our treatment is for structureless particles and a homogeneous
cavity field. This is a generalization of Kohn’s theorem [90] which for a homogeneous elec-
tron gas in a homogeneous magnetic field, produces CM cyclotron transitions unaffected by
two-body interactions. We note however that an inhomogeneous photon field or anharmonic

1A model of electrons in cavity was recently considered in [89], where a separation of the relative coordinates
from the CM and the cavity field was formulated. However, as it was also stated in Ref. [89], the coordinates used
therein are linearly dependent and thus the separation of coordinates is not achieved.
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trapping potential couples the relative motion to the cavity. In addition, the decoupling of
the relative coordinates from the CM and the cavity field holds for an external homogeneous
time-dependent classical field Aext(t), Eext(t) = �@tAext(t).

3 Collective Polariton States

We consider now the case of a single-mode cavity, i.e., x = y = 0 while z 6= 0. Then, the
polarization vectors are "1 = ex and "2 = ey and the field simplifies to

Â=
X

⌫=x ,y

vt ~h
2✏0V!

e⌫
�
â⌫ + â†

⌫

�
. (5)

Since the polarization vectors of the photon field lie in the (x , y) plane, the z direction of the
system becomes trivial and can be neglected. The light-matter Hamiltonian then becomes a
system of interacting harmonic oscillators

Ĥcm = �
~h2

2m
r2

R +
ig0~h
m

p
N Â ·rR +

m⌦2

2
R2 +

N g2
0

2m
Â2 +

X

⌫=x ,y
~h!

Å
â†
⌫â⌫ +

1
2

ã

| {z }
Ĥp

. (6)

The Hamiltonian Ĥp includes also the photonic annihilation and creation operators, and it can
be brought to the diagonal form of a harmonic oscillator through the scaling transformation
u⌫ = q⌫

p
e!/! [recall that â⌫ = (q⌫ + @ /@ q⌫)/

p
2] and becomes Ĥp=

P
⌫
~h e!
2

�
�@ 2/@ u2

⌫ + u2
⌫

�
.

The frequency e! is the dressed cavity frequency

e! =
«
!2 +!2

d , with !d =

vut g2
0 N

m✏0V
=

vut g2
02n2D!

m✏0⇡c
. (7)

We note that !d is the diamagnetic frequency which originates from the Â2 term in the Hamil-
tonian [57, 70, 71, 91–93]. Further, in Eq. (7) we used the expression for the fundamental
cavity frequency ! = ⇡c/L and we introduced the 2D particle density n2D = N/A, where A
refers to the area of the cavity mirrors and L to the cavity length as shown in Fig. 1(a).

3.1 Derivation of the polariton states

After the scaling transformation the full CM Hamiltonian reads

Ĥcm =
X

⌫=x ,y


� ~h

2

2m
@ 2

@ R2
⌫

+
m⌦2R2

⌫

2
+ ig
p

2u⌫
@

@R⌫
+
~h e!
2

✓
� @

2

@ u2
⌫

+ u2
⌫

◆�
⌘
X

⌫=x ,y
Ĥ⌫ . (8)

The Hamiltonian consists of two copies, namely Ĥcm =
P
⌫ Ĥ⌫. Without loss of generality we

focus on a single copy, i.e. Ĥ⌫. To avoid any confusion we note that R = (Rx , Ry) = (X , Y )
and r = (@x ,@y). Further, the collective light-matter coupling g = !d

∆
~h3/2m e! depends

on the particle number N through the diamagnetic frequency !d and whose scaling g ⇠
p

N
is the same as in the few-level models of quantum optics [28, 80, 94, 95]. Here, this occurs
naturally due to the collective CM excitation that couples to the cavity. The coupling between
the two oscillators can be brought into a coordinate-coordinate form (facilitating its analyt-
ical treatment) through the Fourier transform, �(R⌫) =

R1
�1

dK⌫
2⇡ �̃(K⌫)e

iK⌫R⌫ , see details in
Ref. [96],

Ĥ⌫ = �
m⌦2

2
@ 2

@ K⌫
+
~h2

2m
K2
⌫ � g
p

2K⌫u⌫ +
~h e!
2


� @

2

@ u2
⌫

+ u2
⌫

�
. (9)
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We introduce the scaled coordinates V⌫+ = K⌫
∆
~h2/m⌦2 and V⌫� = �u⌫

p
~h/ e! in order to

bring the Hamiltonian into the form of two interacting harmonic oscillators with unit mass
Ĥ⌫ = �~h

2

2

P
l=±

@ 2

@ V 2
⌫l
+ 1

2

P
l, j=±Wl jV⌫l V⌫ j where the elements of W are W++ = ⌦2, W�� = e!2

and W+� = W�+ = !d⌦ and thus the matrix W is real and symmetric. As a consequence it
can be diagonalized by the orthogonal matrix O [71],

O =

Ç 1p
1+⇤2

⇤p
1+⇤2

� ⇤p
1+⇤2

1p
1+⇤2

å
, with ⇤ = ↵�

p
1+↵2 , (10)

and ↵ = (⌦2 � e!2)/2!d⌦. The parameter ⇤ quantifies how much the matrix O deviates
from being diagonal. The Hamiltonian after the orthogonal transformation takes the standard
canonical form,

Ĥ⌫ = �
~h2

2

X

l=±

@ 2

@ S2
⌫l

+
1
2

X

l=±
⌦2

l S2
⌫l , (11)

and we obtain the polariton modes, ⌦2
± =

1
2

Ä
e!2 +⌦2 ±

q
4!2

d⌦
2 + ( e!2 �⌦2)2

ä
. The new

coordinates S⌫l and conjugate momenta @S⌫l
are related to the old ones {V⌫l ,@V⌫l

} through
the orthogonal matrix O [71], S⌫l =

P
j Ojl V⌫ j and @ /@ S⌫l =

P
j Ojl@ /@ V⌫ j . ⇤ is the mixing

parameter between the matter and the photonic degrees of freedom. Due to the fact that the
matrix O is orthogonal the canonical commutation relations are satisfied which implies that
we have two independent harmonic oscillators [71]. Thus, the polariton eigenfunctions of the
system are Hermite functions � of coordinates S⌫+ and S⌫�

 n+,n�(S⌫+, S⌫�) = �n+(S⌫+)⌦�n�(S⌫�) , n± 2 N , (12)

with eigenspectrum En+,n� = ~h⌦+ (n+ + 1/2) + ~h⌦� (n� + 1/2). Moreover, it is use-
ful to express the diagonalized Hamiltonian Ĥcm in terms of polaritonic annihilation,

d̂⌫l = S⌫l

«
⌦l
2~h +

«
~h

2⌦l
@S⌫l

, and creation, d̂†
⌫l = S⌫l

«
⌦l
2~h �

«
~h

2⌦l
@S⌫l

, operators [87] as

Ĥ⌫ =
P

l=±~h⌦l
�
d̂†
⌫l d̂⌫l + 1/2

�
. We note that the polariton eigenstates  n+,n�(S⌫+, S⌫�) can

also be written as Fock states  n+,n�(S⌫+, S⌫�) ⌘ |n+i⌫|n�i⌫, which can be constructed by
applying the polariton creation operators d̂†

⌫+ and d̂†
⌫� on the polaritonic vacuum states

|0+i⌫|0�i⌫ [86,87].

3.2 Tunability of the polariton branches and limiting cases

Decoupling limit. The light-matter interaction in our system is controlled by the diamagnetic
frequency !d . As !d ! 0 the polariton modes become ⌦2

± =
1
2

�
!2 +⌦2 ±

p
(!2 �⌦2)2

�
.

When ⌦ > !, the upper polariton branch tends to ⌦+ ! ⌦, while the lower polariton ap-
proaches ⌦� ! !. For ! > ⌦, the situation is inverted, namely ⌦+ ! ! and ⌦� ! ⌦. Thus,
the correct decoupling limit is consistently recovered.

No-trap limit. In the case of a vanishing external trap, i.e. ⌦ ! 0, the upper (lower)
polariton branch approaches the dressed cavity frequency (zero), namely ⌦+! e! (⌦� ! 0).
This is consistent with the free particle solution in the cavity, where there is only one discrete
quantized mode in the system, e!, as it was demonstrated in Ref. [73] meaning that one part
of the spectrum becomes continuous [73]. For more details see Appendix B.
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Tuning parameters. The polaritonic branches [see Eq. (11) and below] are tunable
through: (i) the particle number (or particle density) appearing in the diamagnetic frequency
!d and (ii) the cavity frequency ! which can be varied by changing the distance L among the
cavity mirrors. The normalized polariton modes in terms of the trap frequency ⌦ read

⌦±
⌦
=

vut�2
1 + �

2
2 + 1±

«
4�2

1 +
�
�2

1 + �
2
2 � 1

�2

2
, (13)

where �1 =!d/⌦ and �2 =!/⌦ are dimensionless ratios. Notice also that the mixing param-
eter ⇤ = ↵ �

p
1+↵2, defined in Eq. (10), can be equivalently written solely in terms of �1

and �2 as ↵ = (��1
1 � �1 � �2

2�
�1
1 )/2. Notably, the dimensionless ratios are not independent

because the diamagnetic frequency!d is also a function of! [see Eq. (7)]. As a consequence,
the normalized diamagnetic frequency!d/⌦ can be written as �1 =!d/⌦ = �

p
�2. Thus, the

two independent dimensionless parameters in our setting are

� =

vut g2
0 N

Am✏0⇡c⌦
and �2 =

!

⌦
. (14)

It is evident that the dimensionless light-matter coupling � can be tuned by varying the particle
number N and the area of the cavity mirrors A. Thus, � can be flexibly adjusted taking a wide
range of values which correspond to different light-matter coupling regimes.

3.3 Light-matter coupling regimes and polariton behavior

Light-matter coupling regimes. The weak coupling regime is dictated by the Purcell ef-
fect [97], where there is no hybridization between light and matter. While in the strong
coupling regime, hybridization enforces the emergence of the Rabi splitting. Experimentally,
the two situations are understood by comparing the losses of the system to the light-matter
coupling strength [28]. In contrast, the ultrastrong coupling regime is defined by the dimen-
sionless ratio between the light-matter coupling strength and the bare excitations of the sys-
tem [28]. Thus, this regime determines whether particular approximations, like the rotating-
wave approximation, are applicable [28]. In this regime the Rabi splitting is comparable to the
bare system excitations and the counter-rotating and the diamagnetic A2 terms need to be in-
cluded [28] as it has been demonstrated also experimentally [51]. Furthermore, the so-called
deep strong coupling regime has also been achieved where the ratio between the light-matter
coupling and the bare excitations approaches unity [49] or even goes beyond it [52]. We will
now study the influence of � and �2 on the polariton modes.

Polariton behavior. Let us start by investigating the impact of the light-matter coupling,
� on the polariton branches. For simplicity, the cavity frequency! (or equivalently �2) is held
fixed. The resultant upper and lower polaritons as a function of � are presented in Fig. 2 for
two different values of the relative cavity frequency �2. The case of �2 = 1/2 corresponding to
the situation where the cavity frequency! is off-resonant with the trap frequency⌦ is depicted
in Fig. 2(a). The upper polariton branch, ⌦+, increases as a function of � while the lower one
decreases approaching zero asymptotically. As expected, in the decoupling limit, � ! 0, it
holds that ⌦+ ! ⌦ and ⌦� ! !. Moreover, we observe that the two polariton branches are
always separated and do not coincide even for �! 0 since the cavity and the trap frequencies
are off-resonance (! 6= ⌦). Considering a resonantly coupled cavity with the trap, �2 = 1,
[Fig. 2(b)] it is found that ⌦+ increases and ⌦� decreases as a function of � but with a faster
rate in comparison to the off-resonant situation. Due to the resonance condition the polariton
gap closes for the light-matter interaction approaching zero, �! 0. It is important to mention
that despite the fact that the lower polariton has a smaller value than the upper polariton, the
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Figure 2: Normalized polariton branches ⌦+/⌦ and ⌦�/⌦ (solid lines) as a func-
tion of the light-matter coupling �. In (a) the cavity and the harmonic trap are
off-resonance with �2 = !/⌦ = 1/2, while in (b) they are in resonance i.e.
�2 = !/⌦ = 1. The dashed lines indicate the bare excitation frequencies of the
trap and the cavity. In both cases the polariton gap increases for larger �.

Ω+/Ω (a) λ=0.05

Ω-/Ω

ω /Ω

Ω/Ω

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

γ2

N
or
m
al
iz
ed
P
ol
ar
ito
n
B
ra
nc
he
s

Ω+/Ω (b) λ=0.5

Ω-/Ω

ω /Ω

Ω/Ω

0 1 2 3 4 5
0

1

2

3

4

5

γ2

N
or
m
al
iz
ed
P
ol
ar
ito
n
B
ra
nc
he
s
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Figure 3: Normalized polariton branches ⌦+/⌦ and ⌦�/⌦ (solid lines) as a function
of �2 = !/⌦ and fixed values of the light-matter coupling � (see legends). Dashed
lines mark the bare excitation frequencies of the matter and the cavity fields. In (a)
� = 0.05 where an avoided crossing (Rabi splitting) appears at the resonance point
�2 = 1. In (b) � = 0.5 with the Rabi splitting becoming comparable to the one
of bare excitations implying ultrastrong coupling, while in (c) � = 1 we enter the
deep strong coupling regime in which the upper polariton is parallel to the photon
excitation without reaching it.

former is actually more important for the low energy physics of the system. This is especially
the case in the ultrastrong and the deep strong coupling regimes since then the energy gap
between the two polaritons will be filled with multiple of the excited states (n� > 0) of the
lower polariton.

Next, we study the behavior of the polaritons as a function of the relative cavity frequency
�2 = !/⌦ for different values of �. Fig. 3(a) illustrates the normalized polariton branches
⌦±/⌦ for � = 0.05 where it becomes evident that the light and the matter excitations hybridize
and an avoided crossing takes place at the resonance point �2 = 1. This signifies the strong
coupling between light and matter. Before and after �2 = 1 the polaritonic excitations lie
on top of the bare system excitations, i.e. ! and ⌦ respectively. Increasing the light-matter
coupling by an order of magnitude to � = 0.5 as shown in Fig. 3(b), leads to a considerably
larger Rabi splitting among the branches. The associated polariton gap is comparable to the
bare excitations of the system. This is a manifestation of the ultrastrong coupling regime [28],
where the polaritons deviate for a larger range of �2 from the bare excitations as compared to
smaller values of �2. Turning to the case at which � = 1 [Fig. 3(c)], i.e. bringing the system
to the deep strong coupling regime as defined in Ref [28], it becomes apparent that the Rabi
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splitting is arguably more pronounced. Also, the upper polariton deviates almost entirely from
the bare excitations of the system and it actually does not reach the bare photon excitation for
�2 > 1 but goes parallel to it. This phenomenon where the polaritons do not reach the bare
excitations when departing from the resonance point has also been reported experimentally
in Landau polariton systems [49]. Overall, Figs. 2 and 3 convey that the Rabi splitting can
be controlled by the number of particles N , which enters the definition of the interaction
parameter � [Eq. (14)], as a consequence of the collective coupling of the particles to the
cavity mode through the CM. Such a collective (or cooperative) behavior has been observed
experimentally for magnonic solid-state systems coupled to a photon mode and it was dubbed
“Dicke cooperativity” [98].

4 Ground State Collectivity and Resonance Effect

4.1 Effective mass increase and resonance effect

In what follows we focus on the impact of the light field on the matter subsystem, by examining
cavity-modified localization properties of matter and its effective mass. To this end, we first in-
spect the impact of the light-matter coupling on the ground state density profile of the CM. Uti-
lizing, the polariton coordinates S⌫+ = (V⌫+�⇤V⌫�)/

p
1+⇤2 and S⌫� = (V⌫�+⇤V⌫+)/

p
1+⇤2,

the form of V⌫+ = K⌫
∆
~h2/m⌦2 as well as V⌫� = �u⌫

p
~h/ e!, the ground state wave function

reads

 gs =
Y

⌫=x ,y
�0(S⌫+)⌦�(S⌫�) =

Y

⌫=x ,y
e
�⌦+

Å
K⌫
p
~h2/m⌦2+⇤u⌫

p
~h/ e!

ã2

2~h(1+⇤2) e
�⌦�

Å
⇤K⌫
p
~h2/m⌦2�u⌫

p
~h/ e!

ã2

2~h(1+⇤2) , (15)

where, for simplicity, we have omitted the normalization constant. For the density profile we
express the wave function in real space through a Fourier transform, and integrate out the
photonic coordinates u⌫. This leads to the CM density profile

ncm(R) =
| gs(R)|2
| gs(0)|2

= exp

✓
�meff⌦R2

~h

◆
, with meff = m

1+⇤2

⌦+/⌦+⇤2⌦�/⌦
. (16)

The density profile of the CM, ncm(R), has a Gaussian form which is modified by the effective
mass parameter meff that depends on the polariton modes ⌦+, ⌦� and the mixing parame-
ter ⇤. To appreciate this phenomenon we look at the full-width-at-half-maximum (FWHM),
FWHM= 2

p
2 ln 2�, which is proportional to the standard deviation � and thus quantifies the

spatial localization of the CM density profile. In particular, for ncm(R) under the influence of
the cavity field, � =

p
~h/2meff⌦, while in the case of no cavity it is �0 =

p
~h/2m⌦. Therefore,

FWHM/FWHM0 = �/�0 =
p

m/meff which means that the cavity-effect on the CM density
profile is reflected in the relative effective mass meff/m.

In Figure 4 we examine the response of meff/m for varying � and �2 =!/⌦ . It is observed
that independently of �2, meff/m increases for larger �. This behavior is a direct consequence
of the light induced dressing to the matter field. Especially, in the region 0 < � < 2 the
effective mass features a quadratic increase with respect to �, and beyond this region meff
grows in a linear fashion. The rate of increase of meff is determined by �2, see also Fig. 1(b).
Interestingly, at resonance �2 = 1 the effective mass experiences a relatively faster increase
as compared to other values of �2 and also its magnitude is maximized. This implies that
when the cavity is at resonance with the trap frequency the dressing of matter by the cavity
photons is maximized. In the decoupling limit (� ! 0) it holds that meff = m, as expected
due to vanishing dressing. Nevertheless, the impact of finite � on meff is arguably noticeable
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Figure 4: Effective mass ratio meff/m as a function of the light-matter coupling
� ⇠
p

N for fixed �2 = !/⌦ (see legend). The effective mass becomes larger with
increasing �, while it features its maximal enhancement at resonance, i.e. for �2 = 1.

especially for � > 1, a result that facilitates its experimental detection in contrast, for instance,
to a phononic dressing cloud [99,100]. To understand better the resonance effect we provide
in Fig. 1(b) meff/m in terms of �2 = !/⌦ for fixed values of �. We observe that for all � the
effective mass grows rapidly in the region 0  �2  1, it reaches a maximum at resonance
�2 = 1 and afterwards decreases approaching asymptotically its bare value, meff ! m. This
means that when ! � ⌦ the matter subsystem experiences a gradually lesser influence by
the cavity field. This resonance phenomenon imprinted as a maximization of the effective
mass could potentially provide insights with respect to the resonance effect that is observed
in polaritonic chemistry. In this context, alterations of the chemical reactions and properties,
depend crucially on the resonance between the vibronic excitations and the cavity mode [5–
7,32,77,78].

4.2 Cavity Induced Effective Matter Hamiltonian

The fact that the CM density gets modified by the cavity can be also understood in terms
of an effective potential that the CM experiences due to the presence of the cavity. This is
a common approach in quasiparticle physics [101–103]. Indeed, besides the external trap
V (R) = m⌦2R2/2, due to the cavity the CM feels the effective potential Veff(R) = meff⌦

2R2/2.
This scalar potential has precisely the same effect on the CM density profile as the effect de-
scribed by Eq. (16). Thus, the cavity-mediated potential Vcav(R) = Veff(R)�V (R) = �m⌦2R2/2
where �m= meff�m, introduces a modified harmonic trap and most importantly an additional
bilinear, long-range, interparticle interaction. Similar cavity mediated two-body interactions
have also been studied in [104]. This can be directly seen by expanding Vcav in terms of the
original single-particle coordinates {ri}

Vcav(ri , r j) =
�m⌦2

2N

2
4

NX

i=1

r2
i + 2

NX

i< j

ri · r j

3
5 . (17)

Thus, it is possible to construct an effective purely matter Hamiltonian for the description of
harmonically trapped many-body systems strongly coupled to a cavity which reads

Ĥeff =
NX

i=1


� ~h

2

2m
r2

i +
Å

m+
�m
N

ã ⌦2r2
i

2

�
+

NX

i<l


W (|ri � rl |) +

�m⌦2

N
ri · rl

�
. (18)
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The Hamiltonian Ĥeff allows to describe the ground state properties of the matter subsystem
under the influence of a cavity, because it captures the fundamental localization of the CM
wave function, without the need to account for the photonic states. Similar “photon-free”
approaches to light-matter interactions have also been put forward recently in QEDFT [105],
but also in effective theories for light-matter interactions [106]. It is important to mention
that Vcav(ri , r j) includes the resonant effect originating from the dependence of �m.

4.3 Collective Effect in the Ground State Density

Having obtained the cavity-induced interactions our aim now is to understand the impact of
Vcav(ri , r j) in the ground state of the trapped matter subsystem, with a particular emphasis
on the transition from small to large particle numbers. This will allow us to address whether
collectivity emerges due to the cavity-induced interactions. Since we are interested in the
effect of Vcav(ri , r j), we consider for simplicity harmonically trapped non-interacting bosons,
W (ri � r j) = 0, coupled to the cavity. In this limit, the two spatial dimensions (x and y)
in Ĥeff of Eq.(18) are exactly identical, and thus treating only the x direction is sufficient to
understand the underlying physical processes. This fact is also explained for the CM Hamilto-
nian Ĥcm given in Eq.(8). The ground state of the matter system obeys the effective Hamilto-
nian of Eq. (18), and we use the mean-field approximation with the split-step Crank-Nicolson
method [107]. The interplay of particle correlations will be discussed in a future work [108].

The deviations between the ground state density with and without cavity-induced reso-
nant interactions (�2 = 1) are shown in Fig. 5(a) for various particle numbers. It is evident
that the cavity enhances the density around the trap center while suppresses it at the edges
which clearly indicates an enhanced localization tendency. Therefore, the cavity-mediated
interactions modify the density of the matter subsystem in a similar way to the CM wave func-
tion. The enhancement in localization is weak, if compared to the bare density. However, this
phenomenon can become significant in a multimode cavity [109] which would facilitate its
experimental realization. Importantly, these modifications get amplified for larger number of
particles as it can be deduced by inspecting the maximal density deviations occurring at x = 0
with respect to N , see Fig. 5(b). This observation underlines that the enhanced localization
of the matter system is a collective, Dicke-type phenomenon in the ground state. This is an
important finding as it generalizes Dicke collectivity from being solely an excited state phe-
nomenon [80] to include also the ground state. To the best of our knowledge such a collective
ground state behavior has not previously been demonstrated.

We present in Fig. 5(b) the respective density differences at the trap center (x = 0) for
three distinct single-particle couplings. Notice that for all three values of �/

p
N (fixed and

independent of N), the underlying density deviations show qualitatively the same localization
behavior due to the cavity (not shown). However, a careful investigation of the peak of the
density difference at x = 0 and its corresponding scaling behavior reveals that from weak to
strong light-matter coupling, there is a power law behavior N� which goes from linear, � = 1,
to a square root behavior, � = 1/2. This demonstrates the impact of the single-particle cou-
pling on the collective behavior and can be traced back to the scaling of the effective mass,
see also Fig. 4. The most pronounced deviations are observed for the largest coupling where
the scaling is ⇠

p
N . It is an interesting prospect to understand whether these scaling behav-

iors are related to the different collective emission behaviors, superradiance and subradiance,
observed in the Dicke model.
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Figure 5: (a) Ground state density difference of the matter subsystem between the
coupled and the uncoupled cases for �/

p
N = 0.05 [�/

p
N is independent of N , see

Eq. (14)] with respect to the particle number N . The cavity mediated interactions
increase the density of the coupled system around the trap center signifying enhance-
ment of spatial localization. (b) Density difference at x = 0 for three different values
of the light-matter coupling as a function of N . The density difference demonstrates
different scalings revealing the impact of the light-matter coupling on the observed
collective behavior.

5 Photon Occupations & Photon Correlations

In this section we analyze the photonic properties of the polaritonic ground state, and in par-
ticular, the ground state photon occupation and the respective photon correlations. The above
will allow us to understand more thoroughly the nature of the polaritonic ground state.

5.1 Photon occupations & two-photon processes

First we calculate the photon occupation in the light-matter ground state. The photon opera-
tors {â⌫, â†

⌫} can be written as combinations of polariton operators {d̂⌫l , d̂†
⌫l} (see Appendix C

for details). The ground state of the electron-photon system is | gsi =
Q
⌫ |0+i⌫|0�i⌫ which

is annihilated by both polariton operators d̂⌫+ and d̂⌫�, i.e., d̂⌫±| gsi = 0. Thus, the photon
occupation in the ground state turns out to be

hâ†
⌫â⌫igs =

1
4+ 4⇤2

ï
⌦�/⌦
�2

+
�2

⌦�/⌦
� 2+⇤2

Å
⌦+/⌦

�2
+
�2

⌦+/⌦
� 2

ãò
, (19)

where the relative polariton modes ⌦�/⌦, ⌦+/⌦ and the relative cavity frequency �2 have
been introduced. The above result is important as it demonstrates that due to the light-matter
interaction there are photons occupying the polaritonic ground state. The amount of photons
in the ground state depends crucially on ⌦±/!. The behavior of the photon occupation in the
ground state is shown in Fig. 6(a) as a function of � for different �2 =!/⌦. We observe that in
the interval 0  �  2, the photon occupation increases approximately quadratically in terms
of � independently of �2. This fact can be understood from the fit that we perform on the
curve characterizing the photon population with �2 = 0.1 in Fig. 6(a). Since the light-matter
coupling is proportional to

p
N , the photon occupation is proportional to hâ†

⌫â⌫igs ⇠ N , in
the region 0  �  2. Despite this, the photon occupation does not overcome unity, because
the proportionality constant in the definition of � [see Eq. (14)] is a small number and the
photon occupation per particle is miniscule. This means that there is no macroscopic pho-
ton occupation (or superradiant ground state phase), as predicted for the Dicke model [81].
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Figure 6: (a) Ground state photon occupation hâ†
⌫â⌫igs and (b) two-point photon

function hâ⌫â⌫igs with respect to the light-matter coupling � ⇠
p

N for several values
of the relative cavity frequency �2 =!/⌦. The photon occupation increases for larger
�, while the enhanced magnitude of the two-point function indicates the amplified
participation of two photon processes. In both panels a quadratic fit (dashed line)
corresponding to the curves with �2 = 0.1 is provided.

This is a consequence of keeping in the Pauli-Fierz Hamiltonian [Eq. (1)], the diamagnetic A2

term. The importance of the diamagnetic term and its connection to the superradiant phase
transition will be discussed in more detail in Sec. 6.

For � > 2, the photon occupation deviates from the quadratic behavior exhibiting a linear
trend [Fig. 6(a)]. This implies that in the thermodynamic limit the hâ†

⌫â⌫igs ⇠
p

N and conse-
quently the photon occupation per particle, hâ†

⌫â⌫igs/N , vanishes. This behavior has also been
identified in the Sommerfeld model coupled to the cavity in Ref. [73]. Another interesting
feature is that for smaller values of �2 = !/⌦ the photon occupation is larger because one
matter excitation ⌦ results into several photonic excitations !, i.e., to create a photon costs
less energy when ! is small. Finally, notice that for � ! 0 the photon occupation is zero
as expected in the decoupling limit. It is important to mention, that as long as the system is
closed, the ground state photons cannot decay. However, in a lossy cavity the photons in the
polaritonic ground-state will eventually leak out of the cavity and will become measurable.

Moreover, it is interesting to examine the two-point photon function hâ⌫â⌫igs = hâ†
⌫â

†
⌫igs,

which conveys information on two-photon excitations/de-excitations in the polaritonic ground
state. We compute the two-photon processes and find

hâ⌫â⌫igs =
1

4+ 4⇤2

ï
�2

⌦�/⌦
� ⌦�/⌦
�2

+⇤2
Å
�2

⌦+/⌦
� ⌦+/⌦
�2

ãò
. (20)

The two-point function is illustrated in Fig. 6(b) with respect to � and for different values of
�2. It increases in magnitude for larger � meaning that more two-photon processes occur in
the polariton ground state for stronger light-matter coupling. As in the case of the photon
occupation [Fig. 6(a)] the trend of hâ⌫â⌫igs is initially (� < 2) quadratic (see also the fitted
quadratic curve in Fig. 6(b) for �2 = 0.1) and then becomes linear. Notably, however, the rate
of increase of the two-point function is larger than the one of the photon occupation and most
importantly it features a quadratic trend for a much more extensive � interval. For example,
for �2 = 0.1 the two-point function behaves quadratically in the region 0  �  6. These two
differences on the behavior of hâ†

⌫â⌫igs and hâ⌫â⌫igs will be proved crucial for the discussion
of the photon statistics in the next subsection. It is important to highlight that the photon
occupation hâ†

⌫â⌫igs or the two-point function hâ⌫â⌫igs on their own do not provide information
about the character, statistics or correlations of the photons. The quantity that gives insights

14

https://scipost.org
https://scipost.org/SciPostPhys.14.6.167


SciPost Phys. 14, 167 (2023)

γ2=0.1

γ2=0.5

γ2=1

γ2=2

0 1 2 3 4 5
0

5

10

15

20

λ

M
an
de
l
Q

ν

Figure 7: Mandel Q parameter in terms of � and fixed values of �2 =!/⌦. Q is pos-
itive meaning that the photons in the polariton ground state satisfy super-Poissonian
statistics, a behavior that becomes enhanced for larger �. Crossings of Q correspond-
ing to different �2 at specific � reveal the interplay between photon occupation and
the two-point function depicted in Fig. 6.

into the photon correlations and statistics is the Mandel Q parameter [74] which we analyze
below.

5.2 Photon bunching in the ground state

The Mandel Q parameter measures the deviation of the photon statistics from the Poisson
distribution [74]. If �1  Q < 0, the photons follow sub-Poissonian statistics and experience
an antibunching behavior, which is a feature of non-classical light. However, bunched photons
are characterized by Q > 0 and obey super-Poissonian statistics. For Q = 0, photons are
represented by a coherent state and obey Poisson statistics [74,76,110]. In our setting, for the
polaritonic ground state | gsi =

Q
⌫ |0+i⌫|0�i⌫, with hâ†âigs given in Eq. (19), and the four-

point function being hâ†
⌫â

†
⌫â⌫â⌫igs = 2hâ†

⌫â⌫i2gs + hâ⌫â⌫i2gs (see Appendix D for more details)
the Q parameter is found to be

Q⌫ =
hâ†
⌫â

†
⌫â⌫â⌫igs � hâ†

⌫â⌫i2gs

hâ†
⌫â⌫igs

=
hâ†
⌫â⌫i2gs + hâ⌫â⌫i2gs

hâ†
⌫â⌫igs

. (21)

In the polaritonic vacuum the Q parameter is strictly positive since both of its contributions
for � > 0 are finite, see Fig. 6. This implies that the ground state photons satisfy super-
Poissonian statistics and thus correspond to bunched photons [74,76]. Such bunched photons
due to ultrastrong light-matter coupling were also reported in Ref. [111]. Strikingly, the Q
parameter unlike the photon occupations and two-point function, where smaller �2 results
in larger values for all �, exhibits a more intricate behavior. Particularly, for different values
of �2 crossings appear between the different “trajectories” of the Q parameter in terms of �
where before the crossing, for example Q for �2 = 2 is larger than Q for �2 = 1, while after the
crossing the opposite holds. This phenomenon is a consequence of the competition between
the photon occupation hâ†

⌫â⌫igs and the two-point function hâ⌫â⌫igs which behave differently
as a function of �. This demonstrates that with strong and ultrastrong light-matter coupling
it is possible to tailor non-trivial photon statistics and correlations in the ground state. Note
that for �! 0 it holds Q! 0, which means that in the decoupling limit photons follow trivial
Poisson statistics, as expected [74, 76]. It is important to mention that the positivity of the Q
parameter in our system holds in the polariton ground state. However, under external driving,
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the excited states of the polaritons can be accessed and in this case the Mandel parameter can
become negative. This would signify the generation of non-classical light [76,112].

6 Superradiant Instability without the A2 Term

In what follows we are interested in the importance of the often neglected [113] diamagnetic
A2 term whose influence on light-matter related phenomena has been studied theoretically in
several publications see e.g. Refs. [73,113–116] and its impact has also been experimentally
measured in Landau polariton systems [51]. Importantly, it has been argued that eliminating
the A2 term leads to the well-known superradiant phase transition of the Dicke model [80].
This refers to the situation where the ground state of an ensemble of two-level systems coupled
to a single quantized mode of the photon field, in the thermodynamic limit, acquires a macro-
scopic (infinite) photon occupation [81]. The existence though of the superradiant phase was
questioned by a no-go theorem where it was shown that once the diamagnetic term is included
the superradiant phase transition does not take place [117]. More recently, the possibility of
a superradiant phase transition has been suggested [82, 118, 119] but again respective no-
go theorems [120–122] have been derived. Lastly, the occurrence of a superradiant phase
transition beyond the dipole approximation has also been suggested [123,124].

In our case, the CM Hamiltonian of the system coupled to the cavity in the absence of the

diamagnetic term is Ĥ 0cm = Ĥcm �
N g2

0
2m Â2. The CM Hamiltonian Ĥ 0cm without the A2 term can

be diagonalized following the procedure described in Sec. 3 with the only difference being
that in the absence of the Â2 term the bare cavity frequency! does not get renormalized by the
diamagnetic frequency !d . Then, we obtain the respective polariton modes [see also Eq. (11)
and below]

⌦0± =

vt1
2

⇣
!2 +⌦2 ±

«
4!2

d⌦
2 + (!2 �⌦2)2

⌘
. (22)

Without the Â2 contribution the lower polariton develops an instability for large values of the
light-matter interaction. To demonstrate this, let us consider the resonance scenario ! = ⌦.
In this case, the lower polariton mode simplifies to ⌦0� =

p
⌦(⌦�!d) which implies that for

!d = ⌦ (�1 = 1) the lower polariton becomes zero (or gapless) and for !d > ⌦ it becomes
imaginary signifying that the light-matter system is unstable. This instability is related to the
superradiant phase transition [81]. The connection to the superradiant phase can be under-
stood from the ground state photon occupation hâ†

⌫â⌫igs [see Eq. (19)] since for ⌦0� ! 0 the
photon occupation diverges, hâ†

⌫â⌫igs !1. This means that there is a macroscopic photon
occupation in the ground state, i.e., a photon condensate [81,122]. These two important con-
sequences of neglecting the diamagnetic term are visualized in Fig. 8. Taking into account the
diamagnetic term the system becomes again stable and the photon occupation is finite as it
was found in Sec. 5. The fact that the system becomes unstable without the Â2 term shows
clearly the importance of the diamagnetic interaction which has been largely assumed that it
can be neglected from the QED Hamiltonian [14,113]. Similar conclusions were also reached
for the free electron gas in a cavity [73], where it was also argued that as long as the dia-
magnetic Â2 term is kept the system is stable and no superradiant instability occurs [73]. Our
work generalizes this previous result to the case where the two-body interactions between the
particles is included and the particles are bound to a scalar harmonic potential. This no-go
demonstration is important because it is exact and does not rely on an asymptotic decoupling
between light and matter in the thermodynamic limit and on perturbation theory [122–124].
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Figure 8: (a) Normalized polariton branches ⌦0±/⌦ and (b) photon occupation with-
out the diamagnetic A2 term as a function of �1 =!d/⌦. The lower polariton devel-
ops an instability as it becomes zero at �1 = 1. Accordingly, the photon occupation
diverges at the instability point manifesting its superradiant character. The dashed
line in (a) corresponds to matter and light excitations which coincide.

7 Polariton-Control with a Weak Magnetic Field

Up to here we have examined the polariton properties of the system in the absence of any
external perturbation. A natural question that arises concerns the influence of an external
weak homogeneous magnetic field on the polariton modes. The Hamiltonian ĤB including

the magnetic field is ĤB = Ĥ +
PN

i=1
g0
m

�
i~hri + g0Â

�
· Aext(ri) +

g2
0

2mA2
ext(ri) where Ĥ denotes

the Hamiltonian without the magnetic field [Eq. (1)] for the single-mode case. The addi-
tional terms account for the vector potential Aext(r) = �ex B y which induces a homogeneous
magnetic field in the z direction. The polaritons in the original Hamiltonian Ĥ form in the CM
frame. For that purpose we transform the total Hamiltonian in the CM and relative coordinates
frames. Then, the Hamiltonian reads

ĤB = Ĥcm +
g0

m

�
i~hrR + g0

p
N Â
�
·Aext(R) +

g2
0

2m
A2

ext(R) + Ĥrel({R j ,Aext(R j)}) . (23)

For the polariton states the relative degrees of freedom, R j with j > 1, are irrelevant because
they are decoupled from the CM part. Thus, we can neglect Ĥrel. To find the effect of the mag-
netic field on the polariton states we express the x-component of the momentum operatorrR,
the quantized photon field Â and the magnetic field Aext in terms of the polaritonic operators
{d̂x+, d̂ y+, d̂x�, d̂y�}, see Appendix C. The strength of the external magnetic field is considered
to be weak as compared to the frequency of the trapping potential ⌦. This is quantified by the
ratio !B/⌦, where !B = g0B/m is the magnetic-field dependent frequency. Thus, the contri-
bution of the magnetic field can be treated perturbatively. To first order in perturbation theory
the bilinear term

�
i~hrR + g0

p
N Â
�
·Aext(R) does not contribute to the shift of the polaritonic

energy levels. This coupling term involves only scatterings between the polaritons in the dif-
ferent directions of the form⇠ d̂x d̂y whose expectation value vanishes in the polariton ground
state. Thus, only the diamagnetic term A2

ext modifies the polariton energy levels, which read

�En+,n� =
g2

0

2m yhn+|yhn�|A2
ext|n�iy |n+iy =

~h!2
B

2⌦2


⌦+

1+⇤2

Å
n+ +

1
2

ã
+
⇤2⌦�
1+⇤2

Å
n� +

1
2

ã�
, (24)
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Figure 9: (a) Polariton branches and (b) energy increase of each branch in the pres-
ence of an external magnetic field B with respect to �2 = !/⌦. Dashed lines in (a)
illustrate the polariton branches in the absence of B, while in (b) refer to different
values of � (see legend). The magnetic field shifts the point of the avoided crossing
(minimum energy difference) and the polariton gap decreases (panel (a)). In (b) the
polaritons exchange energy as a function of �2 and at �2 = 1 they possess exactly the
same energy increase.

with !B = g0B/m. The above result gives the correction to the polariton energy levels due to
the external magnetic field

�⌦+(B) =
⌦+!

2
B

2⌦2(1+⇤2)
and �⌦�(B) =

⌦�!
2
B⇤

2

2⌦2(1+⇤2)
. (25)

Therefore, the polariton modes under the external perturbation become⌦+(B) = ⌦++�⌦+(B)
and ⌦�(B) = ⌦�+�⌦�(B). The polariton branches for varying �2 are shown in Fig. 9(a). It is
evident that within �2 < 1, i.e. before the avoided crossing, the energy of the magnetic field is
absorbed by the upper polariton while the lower one remains unaffected, see the deviation of
each branch from its bare excitation energy. In the vicinity of the avoided crossing, �2 = 1, the
polariton branches exchange energy and for �2 > 1 the lower polariton acquires the energy
of the upper polariton which turns back to its original unperturbed value. Thus, the magnetic
field facilitates energy transfer between the two polariton states.

To further analyze this energy transfer process we track separately the corrections of the
normalized polariton branches �⌦+(B)/⌦ and �⌦�(B)/⌦ as a function of �2, see Fig. 9(b).
For �2 < 1 the energy of the magnetic field is absorbed by the upper polariton, while increasing
�2 towards the resonance point (�2 = 1) the upper polariton transfers its energy to the lower
one. At the resonance point the two branches �⌦±(B)/⌦ coincide, meaning that the upper
polariton has transferred half of its energy to the lower one. As such, the two polaritons
acquire exactly the same amount of energy from the magnetic field. Beyond �2 = 1 the energy
of the upper polariton continues to decrease and eventually all the energy is transferred to
the lower polariton. At resonance �⌦+(B) = �⌦�(B) independently of the value of the light-
matter coupling, as it can be seen from Fig. 9(b), while the rate of the energy exchange depends
on �. These findings pave the way for future investigations devoted to unravel the interplay
of interparticle correlations and the energy transfer among the polaritons, especially so by
devising specific dynamical protocols.

7.1 Behavior of the polariton gap

In addition to the inter-polariton energy exchange there are several other important phenom-
ena that exclusively take place due to the magnetic field. As it can be seen in Fig. 9(a), the
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Figure 10: Normalized polariton gap �B/⌦ for � = 0.1 in the presence of a weak
external magnetic field. (a) �B/⌦ with respect to �2 and (b) in terms of !B/⌦. In
both cases the polariton gap at resonance �2 = 1 is not affected by the magnetic field
while beyond the resonance point, and for particular values of the magnetic field,
becomes smaller than the gap at resonance.

polariton gap closes due to the magnetic field, compare with the gap among the bare excita-
tion energies depicted with the dashed lines. The key observation is that the point at which
the polaritons actually come to the closest proximity is no longer the resonance point �2 = 1.
This can be understood through the energy gap �B = ⌦+(B)�⌦�(B) between the polaritons
as a function of the magnetic field

�B

⌦
=
⌦+ �⌦�

⌦
+

!2
B

2⌦2(1+⇤2)

Å
⌦+
⌦
�⇤2⌦�

⌦

ã
. (26)

The first term refers to the gap � for zero magnetic field and only the second contribution
depends on the strength of the magnetic field B through!B. Particularly, Fig. 10(a) depicts the
normalized gap�B/⌦ as a function of �2 with fixed magnetic field (!B/⌦) and in Fig. 10(b) we
fix �2 showcasing the gap in terms of!B/⌦. In both cases the value of the gap at the resonance
point �2 = 1 is not affected by the magnetic field. This is true because at �2 = 1 the second
term in Eq. (26) vanishes. Moreover, we readily observe that beyond the resonance point,
i.e., for �2 > 1, the polariton gap in the presence of the magnetic field can become smaller
as compared to �2 = 1. This does not occur for all values of the magnetic field but only after
a particular critical value of !B/⌦ as shown in Fig. 10(b). This non-trivial dependence of
the polariton gap to the magnetic field strength is important for the associated Landau-Zener
transition probability [83] which we discuss below.

7.2 Landau-Zener transition

The width of the avoided crossing can be manipulated by the external magnetic field and thus
it also influences the probability of a diabatic transition in the vicinity of the avoided crossing
between the polariton branches. This probability is given by the well-known Landau-Zener
formula [83] PLZ = e�2⇡� with � = �2

~h|v| . Also, � is half of the energy difference between the
two levels at the avoided crossing, 2�B = ~h(⌦+(B)�⌦�(B)), and v is the Landau-Zener velocity
dictating the rate at which the crossing is traversed. We utilize the Landau-Zener formula
to infer the probability of a diabatic transition from the lower to the upper polariton, while
varying the cavity frequency by moving slowly the cavity mirrors. To illustrate the magnetic
field dependence of the transition probability, we introduce the relative polariton frequencies

⌦+(B)/⌦, ⌦�(B)/⌦ obtaining PLZ = e�
⇡~h⌦2
2|v|

Ä
�B
⌦

ä2

. The respective Landau-Zener probability as
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Figure 11: Landau-Zener probability as a function of!B/⌦ = g0B/m⌦ with � = 0.1,
~h⌦2/2|v| = 2 and for different values of �2. For �2 > 1, i.e. beyond the resonance
point, there is a critical value of the magnetic field at which the transition probability
becomes larger than the one at resonance �2 = 1.

a function of the dimensionless ratio !B/⌦, normalized by the Landau-Zener probability at
resonance PLZ[�2=1], is provided in Fig.11. The Landau-Zener probability at the resonance
point �2 = 1 is independent of !B/⌦, because the polariton gap �B is unaffected by the
magnetic field at �2 = 1 as shown in Fig. 10(b). Turning to �2 > 1 [Fig. 11], there is a critical
magnetic field strength above which the Landau-Zener probability becomes larger than the
one at resonance. This observation implies that an external magnetic field can be used to
control the point at which a Landau-Zener transition between the polaritons takes place. In
this sense, there is an interesting interplay between the polariton states due to the external
magnetic field, which can be utilized to tune some of their fundamental properties, as well as
generate an exchange of energy between them.

8 Summary and Outlook

We study the formation of collective polariton states emerging in the ground state of a harmon-
ically trapped many-particle interacting system, strongly coupled to a spatially homogeneous
cavity field. We demonstrate that the light field couples to the particle CM, while it decouples
from the interparticle interactions. As such, it is possible to analytically obtain the exact col-
lective polariton states and describe various light-induced phenomena, like the increase of the
effective mass of the particles, effective interactions mediated in the matter subsystem by the
cavity field and the behavior of photon correlations.

By inspecting the matter subsystem we exemplify that the cavity field enhances the spatial
localization of the CM density profile becoming more prominent in the ultrastrong coupling
regime. This localization phenomenon is related to the increase of the effective mass of the par-
ticles in the polaritonic ground state and it is further corroborated by deriving a corresponding
effective potential picture mediated by the cavity field into the matter subsystem. The latter
yields an enhanced external trap for the matter field but most importantly induces long-range
pairwise interparticle interactions. Utilizing the effective matter Hamiltonian we compute the
ground-state density of the matter subsystem showing that its density exhibits a similar en-
hancement of localization with the CM which increases with the number of particles coupled
to the cavity. Thus, we observe a collective, Dicke-type, phenomenon in the ground state of
the many-particle system. This is an important finding demonstrating that Dicke-collectivity
can exist also in the ground state of many-particle systems coupled to the photon field. This
elevates Dicke-collectivity from being an excited-state property in the spontaneous emission
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(Dicke superradiance) [80], to a ground state phenomenon as well.
Moreover, the cavity-enhanced localization of the ground state exhibits a maximum on

resonance. This could potentially provide insights on the resonantly-modified ground state
chemical properties observed in polaritonic chemistry [5–7,32,77,78]. The polaritonic ground
state, being a correlated state between photons and matter, contains a non-trivial photon pop-
ulation [73]. Particularly, due to the matter-mediated correlations, the photons obey super-
Poissonian statistics implying that they are bunched in the ground state [76,110,111,125].

Turning to the impact of the often neglected diamagnetic interactions we showcase that if
the A2 term is neglected the system develops an instability. The latter manifests by the fact that
the lower polariton at a critical value of the light-matter interaction goes to zero, and beyond
this critical point becomes imaginary signifying that the Hamiltonian is unstable. This is a
behavior similar to the one discussed in Ref. [82] for the Hopfield model [126]. At the critical
point the ground-state photon occupation diverges, which means that photon condensation
occurs [122,124], and thus the instability is of superradiant character [81]. However, as long
as the diamagnetic term is included, the light-matter system is stable and the superradiant
phase transition is prevented.

Upon considering an external perturbation, through a homogeneous magnetic field, we
reveal that it substantially affects the properties of the polariton branches. Indeed, it induces
a coherent energy transfer among the polaritons which acquire exactly the same amount of
energy at resonance. Accordingly, the polariton gap at resonance is insensitive to magnetic
field variations, but outside the resonance it is affected. Namely, below (above) resonance the
gap is larger (smaller) than at resonance. This phenomenon has direct implications on the
respective Landau-Zener transition probability [83] between the polaritons which is enhanced
via the magnetic field beyond the resonance point.

Our work provides analytical insights to strong and ultrastrong light-matter interactions
and paves the way for several future directions aiming to reveal polariton phenomena in many-
body cavity QED settings. An interesting possibility is to generalize our treatment, introduced
in Sec. 2.1, in order to study collective polariton states, in multi-mode cavities which are cur-
rently of intense theoretical and experimental interest [109,127]. Employing a homogeneous
time-dependent electric field it would be possible to probe the dynamical formation of polari-
ton states and in general monitor their non-equilibrium time-evolution. Certainly, a deeper
understanding of the cavity mediated interactions and their competition with direct two-body
interactions are worth to be pursued, aiming in particular to address whether collectivity still
survives. Additionally, the consideration of a two-component system inside the cavity will give
rise to several interesting phenomena. For instance, it is expected that the presence of two-
body inter-component coupling will facilitate the generation of mediated interactions between
the polariton quasiparticles of the different components [31]. These polariton-polariton inter-
actions [128,129] will introduce polariton non-linearities [130] which could potentially lead
to polariton condensation [131]. Finally, polariton-polariton interactions can also emerge,
even for a single component system, e.g. by considering an inhomogeneous cavity field.
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A Relative part of the Hamiltonian

In Sec. 2.1 we showed how the CM and the cavity degrees of freedom separate from the relative
coordinates, and we gave the expression for the CM part of the Hamiltonian. For completeness
here we provide also how the relative part of the Hamiltonian that depends on {R j}with j > 1.
Particularly, it takes the form

Ĥrel =
1

2m

NX

j=2

Å
i~hp
N
rR j

ã2
� ~h

2

2mN

NX

j,k=2

rR j
·rRk

+
m⌦2

2
N

NX

j=2

R2
j �

m⌦2

2

 
NX

j=2

R j

!2

+
NX

1<l

W (
p

N |Rl |) +
NX

2i<l

W (
p

N |Ri �Rl |) . (A.1)

B Exact Solution in Free Space

In this Appendix we focus on the case where the matter subsystem lies in free space without
an external trap, i.e., ⌦ = 0. As we already explained within the main text in Sec. 2, the
relative coordinate part of the Hamiltonian does not couple to the quantized light field. As a
consequence we only focus on the CM part of the Hamiltonian which in the single-mode case
considered throughout [see Eq. (6)] reads

Ĥcm = �
~h2

2m
r2

R + ig0~h
p

N Â ·rR +
N g2

0

2m
Â2 +

2X

⌫=x ,y
~h!

ï
â†
⌫â⌫ +

1
2

ò

| {z }
Ĥp

. (B.1)

In the above expression Ĥp solely depends on the photon annihilation and creation operators
i.e. {â⌫, â†

⌫}. As argued in Sec. 3 this Hamiltonian can be brought into a diagonal form by
defining the bosonic operators b̂⌫ =

1
2
p
! e!

⇥
â⌫ ( e!+!) + â†

⌫ ( e!�!)
⇤

(and its conjugate b̂†
⌫).

Note, that this transformation is equivalent to the scaling transformation we performed in
Sec. 3 on the photonic displacement coordinates. Accordingly, the Hamiltonian takes the form

Ĥcm = �
~h2

2m
r2

R + ig
X

⌫=x ,y
e⌫
�
b̂†
⌫ + b̂⌫

�
·rR +

2X

⌫=x ,y
~h e!

Å
b̂†
⌫ b̂⌫ +

1
2

ã
. (B.2)

Recall that g =!d

∆
~h3/2m e! is the collective light-matter coupling constant. The Hamiltonian

of Eq. (B.2) is invariant under translations in the matter configuration space, since it only
includes the momentum operator of the particles. This implies that Ĥcm commutes with the
momentum operator r, [Ĥcm,rR]=0, and the eigenfunctions of the CM are plane waves of
the form �K = eiK·R/

p
V . Applying the Hamiltonian Ĥcm on the eigenfunction �K we have

Ĥcm�K =

ñ 2X

⌫=x ,y

ï
~h e!

Å
b̂†
⌫ b̂⌫ +

1
2

ã
� g

�
b̂⌫ + b̂†

⌫

�
e⌫ ·K

ò
+
~h2K2

2m

ô
�K . (B.3)

Defining now another set of annihilation and creation operators {ĉ†
⌫, ĉ⌫}

ĉ⌫ = b̂⌫ �
ge⌫ ·K
~h e! and ĉ†

⌫ = b̂†
⌫ �

ge⌫ ·K
~h e! , (B.4)
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the operator Ĥcm�K given by Eq. (B.3) simplifies as follows

Ĥcm�K =
 2X

⌫=x ,y


~h e!

Å
ĉ†
⌫ ĉ⌫ +

1
2

ã
� g2

~h e! (e⌫ ·K)
2
�
+
~h2

2m
K2

�
�K .

The operators defined in Eq. (B.4) also satisfy bosonic commutation relations [ĉ⌫, ĉ†
⌫0] = �⌫⌫0

for ⌫,⌫0 = x , y . For the operator ĉ†
⌫ ĉ⌫ the full set of eigenstates is [87]

|n⌫,e⌫ ·Ki=
(ĉ†
⌫)

n⌫
p

n⌫!
|0⌫,e⌫ ·Ki , with n⌫ 2 Z , ⌫= x , y , (B.5)

where |0⌫,e⌫ ·Ki is the ground state which gets annihilated by ĉ⌫ [87], and the spectrum of the
bosonic operator ~h e!

�
ĉ†
⌫ ĉ⌫ + 1/2

�
is ~h e!(n⌫+1/2). Finally, applying Ĥcm�K on the eigenstatesQ

⌫ |n⌫,e⌫ ·Ki of the bosonic part of the Hamiltonian we obtain

Ĥcm

ñ
�K

2Y

⌫=x ,y
|n⌫,e⌫ ·Ki

ô
=

Ç 2X

⌫=x ,y


~h e!

Å
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1
2
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� g2 (e⌫ ·K)2

~h e!

�
+
~h2K2

2m

åñ
�K

2Y

⌫=x ,y
|n⌫,e⌫ ·Ki

ô
. (B.6)

From the above expression we can deduce the exact light-matter eigenfunctions of the many-
body system and the respective eigenspectrum. The solution exactly reproduces the solution
obtained in Ref. [73] for the free electron gas.

C Matter and Photon Operators in Terms of the Polaritonic Oper-
ators

In what follows we derive the expressions for the photon and matter operators in terms of the
polaritonic operators.

C.1 Photonic operators

The annihilation and creation operators {â⌫, â†
⌫} of the photon field in terms of the displace-

ment coordinate q⌫ and the conjugate momentum @q⌫ are

â⌫ =
1p
2

Å
q⌫ +

@

@ q⌫

ã
and â†

⌫ =
1p
2

Å
q⌫ �

@

@ q⌫

ã
. (C.1)

The coordinate q⌫ and its momentum are related to V⌫� and @V⌫� via the relations

q⌫ = �
s
!

~h V⌫� and
@

@ q⌫
= �

vt ~h
!

@

@ V⌫�
. (C.2)

Using the expressions S⌫l =
P

j Ojl V⌫ j and @ /@ S⌫l =
P

j Ojl@ /@ V⌫ j , we find V⌫� and @V⌫� in
terms of {S⌫l ,@S⌫l

}

V⌫� =
S⌫� �⇤S⌫+p

1+⇤2
and @V⌫� =

@S⌫� �⇤@S⌫+p
1+⇤2

.

Then, the photonic displacement coordinate q⌫ and its conjugate momentum with respect to
{S⌫l ,@S⌫l

} read

q⌫ = �
S⌫� �⇤S⌫+p

1+⇤2

s
!

~h and @q⌫ = �
@S⌫� �⇤@S⌫+p

1+⇤2

vt ~h
!

. (C.3)
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The polariton annihilation and creation operators with regard to the polariton coordinates and
momenta take the form

d̂⌫l = S⌫l

vt⌦l

2~h +
vt ~h

2⌦l
@S⌫l

and d̂†
⌫l = S⌫l

vt⌦l

2~h �
vt ~h

2⌦l
@S⌫l

. (C.4)

By inverting the above equation we express S⌫l and @S⌫l
with respect to {d̂⌫l , d̂†

⌫l}

S⌫l =

vt ~h
2⌦l

�
d̂†
⌫l + d̂⌫l

�
and @S⌫l

=

vt⌦l

2~h
�
d̂⌫l � d̂†

⌫l

�
. (C.5)

Then, combining Eqs. (C.3) and (C.5) we obtain the expressions for the photonic operators
{â⌫, â†

⌫} in terms of the polaritonic ones {d̂⌫l , d̂†
⌫l}, namely

â⌫ =
�1p

2+ 2⇤2


!+⌦�p

2⌦�!
d̂⌫� +

!�⌦�p
2⌦�!

d̂†
⌫� �⇤

✓
!+⌦+p

2!⌦+
d̂⌫+ +

!�⌦+p
2!⌦+

d̂†
⌫+

◆�
. (C.6)

Accordingly, the operator â†
⌫ is obtained by conjugation.

C.2 Matter operators

The purely matter contribution Ĥm of the CM Hamiltonian Ĥcm is a sum of two uncoupled har-
monic oscillators [Eq. (6)]. This can also be written in terms of the annihilation and creation
operators as follows

Ĥm =
X

⌫=x ,y
� ~h

2

2m
@ 2

@ R2
⌫

+
m⌦2

2
R2
⌫ =

X

⌫=x ,y
~h⌦
Å

m̂†
⌫m̂⌫ +

1
2

ã
, (C.7)

where the operator

m̂⌫ = R⌫

vtm⌦
2~h +

@

@ R⌫

vt ~h
2m⌦

, (C.8)

and m̂†
⌫ its conjugate. Recall that in order to diagonalize the light-matter Hamiltonian in Sec. 3

we performed a Fourier transform on the matter coordinates. After the Fourier transformation
the matter annihilation operator becomes

m̂⌫ = i
@

@ K⌫

vtm⌦
2~h + iK⌫

vt ~h
2m⌦

. (C.9)

Moreover, employing the relation between K⌫ = V⌫+
∆
~h2/m⌦2 and their conjugate momenta

via the chain rule we have

m̂⌫ = i
@

@ V⌫+

vt ~h
2⌦
+ iV⌫+

vt ⌦

2~h . (C.10)

Additionally, using S⌫l =
P

j Ojl V⌫ j and @ /@ S⌫l =
P

j Ojl@ /@ V⌫ j , we find the expressions for
V⌫+ and @V⌫+ in terms of {S⌫l ,@V⌫l

} i.e.

V⌫+ =
⇤S⌫� + S⌫+p

1+⇤2
and @V⌫+ =

⇤@S⌫� + @S⌫+p
1+⇤2

. (C.11)

Finally, with the use of Eq. (C.5) the expressions for the matter annihilation and creation
operators with respect to the polaritonic ones are obtained. In particular

m̂⌫ =
ip

2+ 2⇤2


⇤

✓
⌦� +⌦p

2⌦⌦�
d̂⌫� +

⌦�⌦�p
2⌦⌦�

d̂†
⌫�

◆
+
⌦+ +⌦p

2⌦+⌦
d̂⌫+ +

⌦�⌦+p
2⌦+⌦

d̂†
⌫+

�
, (C.12)

where m̂†
⌫ can be determined through conjugation. Notice that by combining Eqs. (C.12)

and (C.9) we can find the expression for the matter operators R⌫ and @R⌫ in terms of the
polaritonic ones.
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C.3 Photon Field, Magnetic Field and Momentum

Here, we provide the expressions for the quantized cavity field, the momentum operator of the
particles and the external magnetic field which we used for the computation of the corrections
to the polariton energies under the influence of the external magnetic field in Sec.7.

i~hrX = �
vt ~hm⌦

2+ 2⇤2


⇤

⌦p
⌦⌦�

�
d̂x� + d̂†

x�
�
+

⌦p
⌦⌦+

�
d̂x+ + d̂†

x+
��

,

Â=

vt ~h
2✏0V!

�1p
1+⇤2

X

⌫=x ,y
e⌫


!p
!⌦�

�
d̂⌫� + d̂†

⌫�
�
+

!p
!⌦+

�
d̂⌫+ + d̂†

⌫+
��

,

Aext(R) =
�ex iB

p
~hp

2m⌦(1+⇤2)

ñ
⇤

vt⌦�
⌦

�
d̂ y� + d̂†

y�
�
+

vt⌦+
⌦

�
d̂ y+ + d̂†

y+
�ô

. (C.13)

The above can be deduced from the matter and photon operators in terms of the polariton
operators provided previously.

D Computation of the Four-Point Photon Function

Here, we elaborate on the calculation of the four-point function hâ†
⌫â

†
⌫â⌫â⌫igs appearing in

the Mandel Q parameter. The photon operators in terms of the polaritonic ones are given by
Eq. (C.6). In the four-point operator â†â†ââ the terms that give non-zero contribution are:

d̂⌫�d̂⌫�d̂†
⌫�d̂†

⌫� , d̂⌫+d̂⌫+d̂†
⌫+d̂†

⌫+ , d̂⌫�d̂†
⌫�d̂⌫�d̂†

⌫� ,

d̂⌫+d̂†
⌫+d̂⌫+d̂†

⌫+ , d̂⌫�d̂†
⌫�d̂⌫+d̂†

⌫+ , d̂⌫�d̂⌫+d̂†
⌫�d̂†

⌫+ ,

d̂⌫+d̂⌫�d̂†
⌫�d̂†

⌫+ , d̂⌫+d̂⌫�d̂†
⌫+d̂†

⌫� , d̂⌫+d̂†
⌫+d̂⌫�d̂†

⌫� ,

d̂⌫�d̂⌫+d̂†
⌫+d̂†

⌫� .

(D.1)

With this information we can obtain all the non-zero contributions in the four-point function

hâ†
⌫â

†
⌫â⌫â⌫igs =

1
(4+ 4⇤2)2


(⌦� �!)4
!2⌦2

�
hd̂⌫�d̂⌫�d̂†

⌫�d̂†
⌫�igs

+
⇤4(⌦+ �!)4
!2⌦2

+
hd̂⌫+d̂⌫+d̂†

⌫+d̂†
⌫+igs +

⇤4(⌦+ �!)2(⌦+ +!)2
!2⌦2

+
hd̂⌫+d̂†

⌫+d̂⌫+d̂†
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+
⇤2(⌦2

� �!2)(⌦2
+ �!2)
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�
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+
⇤2(⌦+ �!)2(⌦� �!)2
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⌫+d̂†
⌫�igs +
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(D.2)
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Using the bosonic algebra of the polariton operators we find the following expression for the
four-point function

hâ†
⌫â

†
⌫â⌫â⌫igs =

1
(4+ 4⇤2)2


2(⌦� �!)4
!2⌦2

�
+
(⌦2
� �!2)2

!2⌦2
�

+
2⇤4(⌦+ �!)4
!2⌦2

+

+
⇤4(⌦2

+ �!2)2

!2⌦2
+

+
2⇤2(⌦2

� �!2)(⌦2
+ �!2)

!2⌦+⌦�
+

4⇤2(⌦+ �!)2(⌦� �!)2
!2⌦+⌦�

�
.

(D.3)

In the last step we also used that (⌦± �!)(⌦± +!) = ⌦2
± �!2.
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