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Why do we love music? In contrast to other pleasures 
in life, such as food and sex, music has no obvious 
adaptive value, yet an attraction to music is ubiquitous 
across cultures and across the life span. Indeed, both 
listening to and performing music ranks highly among 
life’s greatest pleasures (Dube & Le Bel, 2003) and reli-
ably engages the dopaminergic reward system (Ferreri 
et al., 2019; Salimpoor et al., 2011, 2013).

Classic work has long examined the hypothesis that 
the attractiveness of a stimulus is enhanced by expo-
sure: The mere-exposure effect posits that repeated 
exposure to a given perceptual stimulus is a sufficient 
condition to enhance one’s attitude toward it (Temme, 
1984; Zajonc, 1968). Supporting this idea, experiments 
in visual aesthetics have shown that manipulating the 
co-occurrence of different stimulus features and fre-
quencies of stimulus presentation (e.g., comparing 

homogeneous presentations vs. heterogeneous presen-
tations) can change the strength of the exposure effect 
on preference (Bornstein, 1989; Seamon et al., 1998). 
In the musical domain, repeated exposure to sound 
sequences can change preferences for those sequences 
(Loui et  al., 2010). This attitudinal change can occur 
regardless of the complexity of musical stimuli (Madi-
son & Scholde, 2017) and can give rise to habituation 
effects after many repeated exposures as well as famil-
iarity effects after fewer exposures, resulting in the clas-
sic inverted-U model of preference as a trade-off 
between familiarity and novelty (Berlyne, 1971; Chmiel 
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Abstract
Much of what we know and love about music hinges on our ability to make successful predictions, which appears 
to be an intrinsically rewarding process. Yet the exact process by which learned predictions become pleasurable is 
unclear. Here we created novel melodies in an alternative scale different from any established musical culture to show 
how musical preference is generated de novo. Across nine studies (n = 1,185), adult participants learned to like more 
frequently presented items that adhered to this rapidly learned structure, suggesting that exposure and prediction errors 
both affected self-report liking ratings. Learning trajectories varied by music-reward sensitivity but were similar for U.S. 
and Chinese participants. Furthermore, functional MRI activity in auditory areas reflected prediction errors, whereas 
functional connectivity between auditory and medial prefrontal regions reflected both exposure and prediction errors. 
Collectively, results support predictive coding as a cognitive mechanism by which new musical sounds become 
rewarding.
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& Schubert, 2017; Schultz, 2015). These lines of evi-
dence for the mere-exposure effect suggest that the 
main determinant of musical preferences is repeated 
exposure to co-occurring sequences of stimuli—or, in 
statistical terms, the n-gram frequency of exposure.

More recently, neuroscientific studies have inspired a 
predictive-coding model of music-evoked pleasure. 
Because predictions and reward signals are ubiquitous 
features of the central nervous system that underlie per-
ception, action, and emotion (Clark, 2013; Engel et al., 
2001; Friston, 2010; Schultz, 2000), so too may the 
rewarding effects of music listening come from making 
successful predictions and minimizing prediction errors 
(Gold, Pearce, et al., 2019; Vuust et al., 2022). In addition 
to sequence-specific knowledge, or veridical expecta-
tions, musical predictions are also informed by statisti-
cally learned patterns in music, or schematic expectations 
(Schubert & Pearce, 2016). Schematic expectations for 
music, according to the predictive-coding model, can 
unfold at multiple levels, whether they be stylistic (hip-
hop, jazz), structural (melody, tonality), temporal (rhythm, 
meter), and/or acoustic (pitch, timbre) factors (Guo & 
Koelsch, 2016; Huron, 2006; Justus & Bharucha, 2001; 
Margulis, 2014). The predictive-coding model can account 
for the mere-exposure effect by positing that repeated 
exposure increases the efficiency of predictions (Ivanchei 
& Asvarisch, 2018), resulting in increased liking of stimuli 
that carry predictive value (Braem & Trapp, 2019).

An important motivation of the predictive-coding 
model comes from work on statistical learning, classi-
cally applied to the study of language acquisition  
(Saffran et al., 1996). Studies in statistical learning have 
manipulated transitional probabilities (i.e., the likeli-
hood that one item occurs immediately after another 
in a sequence of various stimuli; Schapiro & Turk-
Browne, 2015) to test their effects on learning, memory, 
and perceptual segmentation. Applied to the domain 
of musical expectations, becoming familiar with these 
transitional probabilities can also be thought of as form-
ing schematic expectations, thus offering a mechanism 
by which novel music can be preferred. Furthermore, 
because the predictive-coding model draws on theories 
of dopaminergic function (Clark, 2013; Engel et  al., 
2001; Friston, 2010; Schultz, 2000), measuring activity 
in the reward system of the brain with functional MRI 
(fMRI) is a strong test of our ability to manipulate expo-
sure and prediction.

Although the precise relationships between exposure, 
prediction error, and reward may vary across cultures 
(Savage & Fujii, 2022) and/or with individual differences 
in reward sensitivity to music (Gold, Mas-Herrero, et al., 
2019), it is often challenging to understand how expo-
sure relates to learning and reward because when 

encountering most stimuli, even for the first time, we 
make use of overlearned predictions to which we may 
have been exposed throughout our lives. This is espe-
cially the case with musical structures, such as common 
sets of pitches or musical scales that we have implicitly 
acquired from lifelong exposure (Savage et al., 2015). 
As a concrete example of such knowledge, most listen-
ers within Western cultures show implicit knowledge 
of, and preference for, common-practice Western  
musical-scale structures based around the octave, which 
is a doubling of acoustic frequency (Gill & Purves, 
2009). We circumvent this challenge of overlearned pre-
dictions by incorporating a unique and unfamiliar musi-
cal system: the Bohlen-Pierce (B-P) scale, which is 
based on a tripling of acoustic frequency, thus differing 
acoustically and statistically from the world’s existing 
musical systems (Loui, 2022).

Here we extend and clarify the predictive-coding 
model by testing the effects of exposure and prediction 
error on musical learning and preference using natural-
istic music composed in grammatical structures defined 
in the B-P scale (Loui et al., 2010). In Studies 1 through 4, we  
investigated the degree to which self-reported familiarity 

Statement of Relevance

All known societies appear to enjoy listening to 
music, yet there is still scientific debate as to what 
makes music so pleasurable and what function it 
might serve. One prominent theory is that music 
co-opts our inclination to try to predict events in 
the future, and we find the ability to form success-
ful predictions to be rewarding. The relationship 
between learning to predict in music and reward 
has been difficult to prove, however, because we 
typically learn the patterns of most music we 
encounter early in life. Here, we overcome this 
limitation by evaluating how preferences develop 
over time to music composed in a completely 
unfamiliar musical system. Across nine studies, we 
show that listeners from two different cultures (the 
United States and China) can rapidly learn this 
novel musical system from repeated exposure and 
quickly come to prefer melodies for which they 
can successfully predict how they will end. We 
find that this learning is tied to the activity and 
functional connectivity of the auditory and reward 
systems of the brain and influenced by individual 
differences in reward sensitivity to music. Collec-
tively, the results offer a possible mechanism by 
which music can become rewarding.
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and liking ratings reflect exposure and prediction error. 
Exposure was manipulated by presenting novel natu-
ralistic musical melodies a variable number of times, 
and prediction error was manipulated through structural 
alterations to the endings of the exposed melodies, 
resulting in changes to the statistical properties (fre-
quencies and transitional probabilities) relative to the 
exposure set (as illustrated in Fig. 1). In Study 5, we 
tested these relationships in cases of congenital and 
acquired music anhedonia. In Study 6, we reversed the 
presentation of altered and original sets of melodies; 
this allowed us to tease apart the differential contribu-
tions of schematic expectations (based on transitional 
probability of chords) and veridical expectations (based 
on n-gram frequency of the whole melody) to familiarity 

and liking ratings. In Study 7, we ensured that the results 
from previous studies were not due to anchoring effects. 
In Study 8, we tested the effects of culture on predic-
tions and reward in a cross-cultural replication on a 
sample from China. Finally, in Study 9, we evaluated 
effects of this learning on reward-system activity and 
connectivity using fMRI. Together, the studies traced the 
trajectory of preference learning from exposure to 
melodic and statistical structures in a novel musical sys-
tem. The human ability to recognize and learn statistical 
properties of stimuli via mere exposure has been pos-
ited to underlie multiple cognitive tasks beyond music, 
including language acquisition (Han et al., 2011; Saffran 
et al., 1996) and decision-making (Haruno et al., 2004). 
Accordingly, our results provide a mechanistic account 

Fig. 1.  A melody in the Bohlen-Pierce scale and its predicted effects of exposure and prediction error on familiarity and liking. Pitch-time 
representations of an example original melody and its altered counterpart are shown in (a): pseudospectrogram representations of the original 
and altered melodies are shown in the two left panels, and the subtle difference between the two melodies can be seen by overlaying the 
two melodies as shown in the right panel. Grammatical structure of the Bohlen-Pierce scale (from Loui et al., 2010) is shown in (b): Each 
roman numeral denotes one chord with three chord tones. The fundamental frequency of each chord tone “n” is determined by the Bohlen-
Pierce scale formula on the right. Numerical representations of the example original and altered melodies from (a) are shown in (c). Because 
we opted for more naturalistic musical stimuli, each melody also contains nonchord tones (“passing tones”) in addition to chord tones that 
belong to the chord progression. In panel (c), chord tones within the original and altered melodies are shown in bold. Importantly, the 
altered ending, which is shown in red, does not contain any tones from the last chord as determined by (b). Example unigram, bigram, and 
n-gram frequencies given one, two, and three exposures to the original and altered melodies and the differences between them that give 
rise to the prediction error are shown in panel (d) left. In panel (d) right: transitional probability of the underlying chords are shown given 
different numbers of exposure to the original and altered melodies and the difference between them, that gives rise to the prediction error.
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not only for why people enjoy music but also the cir-
cumstances under which our ability to predict leads to 
reward, a concept that underlies much of motivated 
behavior. The stimuli, data, and code are available 
online at https://osf.io/n84d5, along with the preregis-
tration for these studies.

Method

Stimuli

The stimuli used in all studies were composed in the 
B-P scale. Although most musical systems around the 
world are based around the octave, which is a 2:1 ratio 
in frequency, the B-P scale is based on a 3:1 ratio 
(tritave rather than octave) that is divided into 13 loga-
rithmically even steps. This 13-tone scale can be used 
to generate musical intervals and chords that have low-
integer ratios and are perceived as psychoacoustically 
consonant (Mathews et al., 1988). Although music in 
the B-P scale is known to some composers, performers, 
conductors, and scholars, it is considered “nonstandard” 
(Hajdu, 2015) and has not been adopted into any main-
stream musical culture to date. Monophonic melodies 
were composed in the B-P scale by a musician and 
research assistant in the lab (E. Zhang) in the digital 
audio workstation Ableton Live on a Korg nanoPAD2 
USB MIDI and played on a MIDI clarinet instrument 
from the plugin library Xpand!2 by Air Music Tech. The 
clarinet was chosen because its timbre has higher 
energy at odd harmonics than at even harmonics; this 
spectral distribution is easier to learn because of its 
congruence with the B-P scale (Loui, 2022). In total, 
fourteen 20-s B-P melodies were composed that fol-
lowed the same artificially derived harmonic structure 
as past studies (Loui et al., 2010). Light compression 
and reverb were applied to all stimuli to bring them to 
the same volume and were subsequently exported as 
44.1kHz .mp3 files. An altered version of each melody 
was also created to be identical to the original piece 
except for the ending, which was changed to violate 
the grammatical structure of the B-P scale. Specifically, 
the violations preserved the rhythmic structure (i.e., 
timing and length of notes) of an earlier section of the 
melody as reflected by a “call-and-response” effect but 
deviated from the melodic structure (i.e., stepwise rela-
tionship between notes) by randomly shifting the pitch 
of the notes either up or down from chordal tones of 
the expected last chord (Loui et al., 2009, 2010, 2011). 
The call-and-response effect was implemented in all 
melodies to incite a sense of musical completeness and 
was mediated by both rhythmic and melodic aspects, 
so the effect was partially preserved by maintaining a 
mirrored rhythmic structure to control for the altered 

melodic structure. The original and altered melodies 
are available online at https://osf.io/n84d5, along with 
the preregistration as well as data and code for this 
study. In all studies except Study 6, the altered melodies 
were presented only once (during the postexposure 
phase). Finally, two of the melodies were used only as 
part of the perceptual cover task (during the exposure 
phase). A vibrato effect was added to a single note in 
these two melodies, and during the task participants 
were asked to press a key whenever they heard the 
vibrato note. To decrease expectations, we created six 
versions of each, in which the location of this vibrato 
note varied across each version.

Study 1

Participants.  An a priori power analysis using pilot 
data (n = 46) indicated that a sample size of 165 would 
achieve 0.80 power to detect a medium effect size 
(Cohen’s f = 0.27) for the effect of the number of presen-
tations on liking ratings at a significance level of 0.05. 
Participants were Prolific workers in the United States 
between the ages of 18 and 65 years. We recruited 234 
participants for Study 1, of which 66 participants were 
excluded for failing our perceptual cover task (see 
below), resulting in a final sample size of N = 169 (104 
females; mean age = 32.03 years).

To measure individual differences in music-reward 
sensitivity and identify musical anhedonics, participants 
completed the Barcelona Music Reward Questionnaire 
(BMRQ), a 20-item questionnaire based on five factors: 
musical seeking, emotion evocation, mood regulation, 
sensory-motor, and social reward. Participants also 
completed the Goldsmith Musical Sophistication Index 
(Gold-MSI), a self-report measure of musical skills and 
behaviors (Müllensiefen et al., 2014); the Revised Physi-
cal Anhedonia Scale (PAS), a self-report measure of 
general anhedonia (Chapman et  al., 1976); and the 
Ten-Item Personality Inventory (TIPI), a brief measure 
of the Big Five personality traits (Gosling et al., 2003). 
All scales were scored in accordance with the original 
publications.

Procedure.  For all studies in this report, participants 
first consented to participate according to Northeastern 
University Institutional Review Board-approved protocol. 
Participants were screened using an online headphone 
check (Woods et al., 2017) to ensure that they were using 
headphones and could hear our stimuli properly before 
undergoing the three phases of our study. In Phase 1 
(preexposure), participants listened to eight of the B-P 
melodies one at a time and provided liking and similarity 
ratings using a Likert scale (1 = strongly dislike to 6 = 
strongly like; 1 = not familiar at all to 6 = very familiar) 

https://osf.io/n84d5
https://osf.io/n84d5
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for each melody. Because the preexposure ratings were 
intended for a different analysis on the effects of novelty 
rather than reward learning, they will be presented in a 
separate report; here we focus on postexposure ratings.

In Phase 2 (exposure), the eight melodies heard in 
Phase 1 were played for participants a varying number 
of times (either two, four, eight, or 16), with two melo-
dies in each condition (not including the single presen-
tation used for the preexposure ratings in Phase 1). The 
specific melodies in each of the four exposure condi-
tions were counterbalanced across participants. Fur-
thermore, the presentation order was pseudorandomized 
so that no melody was heard consecutively. During this 
phase, participants were asked to complete a percep-
tual cover task in which they were instructed to listen 
for notes that contained a “warble” sound (vibrato) and 
to press the “v” key on their keyboard as soon as they 
heard it. Six of the trials (created from two different B-P 
melodies) heard in the exposure phase contained 
vibrato notes, with the vibrato occurring at different 
points of the melody. In total, participants heard sixty-
six 20-s melodies during Phase 2, resulting in an expo-
sure phase that lasted 22 min.

During Phase 3 (postexposure), participants heard 20 
total melodies: each of the eight melodies again (without 
vibrato—the same as Phase 1), along with two new 
melodies that they had not heard in Phase 1 or 2 (thus, 
the zero-exposure condition), as well as the altered ver-
sions (different endings) of these 10 melodies. Including 
the zero-exposure condition additionally allowed us to 
compare the effects of schematic and veridical expecta-
tions because any differences in the ratings for this con-
dition must be attributed to the learning of schematic 
expectations. Participants provided liking and familiarity 
ratings for each of these 20 trials using the same scale 
as in Phase 1. After completing Phase 3, participants 
were redirected to an online survey where they provided 
demographic information and completed individual-
difference measures, including the BMRQ and PAS.

Exclusion criteria.  Participants who did not accurately 
perform the perceptual cover task of identifying the war-
ble/vibrato notes during exposure were removed from all 
subsequent analyses. Specifically, for each participant, 
we calculated d′ from the total number of hits (number 
of vibrato melodies for which a “v” was pressed), misses 
(number of vibrato melodies for which a “v” was not 
pressed), false alarms (number of nonvibrato melodies 
for which a “v” was not pressed), and correct rejections 
(number of nonvibrato melodies for which a “v” was not 
pressed). The difference between z-transformed hit and 
false-alarm rates was used to calculate d′, with the adjust-
ment for which 0.5 errors were assumed for participants 

who made no errors (Wickens, 2001). The d′ measure 
therefore indicates how well participants could discrimi-
nate between a warble note and a nonwarble note and 
was used to remove participants who did not follow 
instructions for the perceptual cover task. Any participant 
who had a d′ < 1 was removed from subsequent analyses 
(Wickens, 2001), as was specified in our preregistration. 
However, in follow-up analyses we did explore whether 
keeping the participants who did not reach the d′ crite-
rion changed the results; these exploratory analyses are 
included in the Supplemental Material available online.

Study 2

Participants.  To maintain consistency, we used the 
same target sample size from our a priori power analysis 
for Study 1 for Studies 2 through 4. We recruited 221 
participants, 57 of whom were excluded for failing our 
perceptual cover task, resulting in a total sample size of 
164 (93 females; mean age = 32.67 years).

Procedure.  Participants underwent the same procedure 
as in Study 1, with the exception that 10 melodies were 
presented either two, four, six, 10, or 14 times during 
Phase 2 (the exposure phase), with two melodies in each 
condition. The rationale behind these different numbers 
of presentations was to chart a continuous trajectory of 
exposure and relate it to liking and familiarity, without 
fatiguing individual participants with an excessively long 
exposure phase.

Study 3

Participants.  We recruited 214 participants, 45 of 
whom were excluded for failing our perceptual cover 
task, resulting in a total sample size of 169 (89 females; 
mean age = 32.27 years).

Procedure.  Participants underwent the exact same pro-
cedure as in Study 1, with the exception that the order of 
melodies heard in the preexposure phase was completely 
randomized.

Study 4

Participants.  We recruited 222 participants, 57 of 
whom were excluded for failing our perceptual cover 
task, resulting in a total sample size of 165 (83 females; 
mean age: 31.78 years).

Procedure.  Participants underwent the exact same pro-
cedure as in Study 2, with the same 10 melodies during 
exposure phase, with the exception that the order of 
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melodies heard in the preexposure phase was random-
ized and counterbalanced across participants.

Study 5

Participants.  The congenital music-specific anhedonic 
(a 58-year-old male with the initials BW) had participated 
in a previous case study in our lab (Loui et al., 2017). The 
acquired music-specific anhedonic (a 53-year-old female 
with the initials NA) had reached out to the final author 
(P. Loui) after self-reporting a loss in pleasure derived 
from music listening after having received repetitive tran-
scranial magnetic stimulation treatment for depression 
after the death of a loved one. Because both of these 
cases were self-identified as musically anhedonic rather 
than recruited online using Prolific, they were treated as 
separate case studies rather than included in the same 
group for Studies 1 through 4. Both of these cases had 
low scores on the extended BMRQ (eBMRQ; eBMRQ: 
BW = 30; eBMRQ: NA = 43; Cardona et al., 2022) but nor-
mal PAS scores (PAS auditory: BW = 8; PAS auditory: NA = 
4; PAS nonauditory: BW = 14; PAS nonauditory: NA = 15).

Stimuli.  We used a subset of four nonaltered melodies 
that were rated, on average, the highest in postexposure 
liking ratings across Studies 1 through 4 for Study 6. 
These, along with their altered versions, resulted in eight 
unique melodies presented to the participants in this 
study. Participants also completed the eBMRQ, which 
includes an additional sixth factor consisting of four addi-
tional items that measures experiences of absorption in 
music listening (Cardona et al., 2022).

Procedure.  Participants underwent the same procedure 
as previous studies, with the exception that melodies 
were presented either zero, four, 10, or 14 times during 
the exposure phase and that there was only one melody 
assigned to each condition.

Study 6

Participants.  We recruited 279 participants, 116 of 
whom were excluded for failing our perceptual cover 
task, resulting in a total sample size of 163 (64 females; 
mean age: 35.46 years).

Procedure.  Participants completed the same procedure 
as in Study 1, with the exception that altered melodies 
were presented in the preexposure and exposure phase 
of the study. In this study, original melodies were pre-
sented only in the postexposure phase.

Stimuli.  The same stimuli used in Studies 1 and 3 were 
used in Study 5. Participants in Study 5 also completed 
the eBMRQ instead of the BMRQ.

Study 7

Participants.  We recruited 244 participants, 64 of 
whom were excluded for failing our perceptual cover 
task, resulting in a total sample size of 180 (78 females; 
mean age = 35.62 years).

Procedure.  Participants underwent the exact same pro-
cedure as in Study 1, with the exception that they were 
not asked to provide familiarity ratings.

Study 8

Participants.  Participants were recruited via WeChat, a 
Chinese instant messaging app. A poster containing a QR 
code was sent in several group messages of students of 
Beijing Normal University who subsequently shared this 
code via word of mouth and personal WeChat messages. 
We recruited 216 participants but excluded 56 for failing 
our perceptual cover task and four for completing the 
task twice, resulting in a total of 156 (106 females; mean 
age: 23.09 years).

Stimuli.  The same stimuli used in Studies 2 and 4 were 
used in Study 7. Participants in Study 7 also completed 
the eBMRQ instead of the BMRQ.

Procedure.  The QR code led to a questionnaire that 
recorded participants’ name and email address. An email 
was then sent to the address participants provided that 
contained a link to the experiment. This link redirected 
participants to our experiment, in which they subse-
quently underwent the same Procedure as Study 4.

Study 9

Participants.  Participants in this study were either 
undergraduates at Northeastern University who com-
pleted the study (both the online task and an in-person 
fMRI scan) for course credit or young adults recruited via 
word of mouth from the Boston area. A total of 21 par-
ticipants (15 females; mean age = 19.8 years) completed 
the fMRI version of our task.

Stimuli.  The same stimuli and materials that were used 
in Study 6 were used in Study 7, including the eBMRQ.

Procedure.  Participants underwent the same procedure 
as in Study 5 as well as an fMRI scan immediately after 
completing the online behavioral study. During the scan, 
participants listened to 24 clips of music once. Eight of 
the clips were B-P melodies that participants had heard 
previously during the task (at 0/4/10/14 presentations; 
both original and altered melodies). The remaining trials 
acquired were not in the B-P scale and were not used in 
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the analysis for the current study. Each trial consisted of 
20 s of passive listening followed by 2 s to rate the mel-
ody for liking (on a scale from 1 to 4) and 2 s to rate the 
melody for familiarity (also on a a scale from 1 to 4).

fMRI data acquisition.  Images were acquired using a 
Siemens Magnetom 3T MR scanner with a 64-channel 
head coil at Northeastern University Biomedical Imaging 
Center. fMRI data were acquired as echo-planar imaging 
functional volumes covering the whole brain in 48 axial 
slices—fast repetition time (TR) = 475 ms, echo time  
(TE) = 30 ms, flip angle = 60°, field of view (FOV) = 240 
mm, voxel size = 3 × 3 × 3 mm3, slice thickness = 3 mm, 
anterior to posterior, z volume = 14.4 mm—in a continuous- 
acquisition protocol of 1,440 volumes for a total acquisi-
tion time of 11.4 min. T1 images were also acquired using 
an MPRAGE sequence, with one T1 image acquired every 
2,400 ms for approximately 7 min. Sagittal slices (0.8 mm 
thick, anterior to posterior) were acquired covering the 
whole brain (TR = 2,400 ms, TE = 2.55 ms, flip angle = 8°, 
FOV= 256, voxel size = 0.8 × 0.8 × 0.8 mm3). As part of the 
existing protocol we also acquired resting-state and diffu-
sion tensor imaging sequences, but these were not used 
for this study.

fMRI data analysis.
Preprocessing.  fMRI data were preprocessed using 

Statistical Parametric Mapping Version 12 (SPM12; Penny 
et al., 2011) with the CONN toolbox (version CONN22.a; 
Whitfield-Gabrieli & Nieto-Castanon, 2012). Preprocess-
ing steps included functional realignment and unwarp-
ing, functional centering, slice-time correction, outlier 
detection using the artifact-detection tool, functional and 
structural segmentation and normalization to the Mon-
treal Neurological Institute (MNI) template, and func-
tional smoothing to an 8-mm gaussian kernel (Friston 
et  al., 1995). Denoising steps for fMRI data included 
white matter and cerebrospinal fluid confound correc-
tion (Behzadi et  al., 2007) and bandpass filtering to a 
frequency between 0.008 and 0.09 Hz.

First- and second-level analyses were completed in 
SPM12. For each participant, data were converted from 
4D to 3D images, resulting in 1,440 scans. The model 
was specified using the following criteria: interscan 
interval = 0.475 s, microtime resolution = 16, microtime 
onset = 8, and duration = 42. Only data from the time 
while the participant was listening to the musical excerpt 
were included in this model. Each of the eight trial types 
(0/4/10/14 presentations of both original and altered 
melodies) was modeled separately, and trials during 
which participants were listening to non-B-P melodies 
were included as a separate condition so as to be 
regressed out of the model’s intercept. The resulting 
first-level contrasts were then analyzed using a one-sample 

t test across all participants at the second level. Whole-
brain results were rendered to a standard MNI brain. 
Results from the second-level analyses were statistically 
corrected using a voxel threshold of p < 0.05 (false 
discovery rate-corrected) through the CONN toolbox. 
Beta weights for regions of interest (ROIs) in Heschl’s 
gyrus (HG) and the medial prefrontal cortex (mPFC) 
were extracted from participants’ first-level SPM.mat 
files using the CONN toolbox atlas and correlated sepa-
rately for each trial to test for the effects of alteration 
and number of presentations on the functional connec-
tivity between auditory and reward-sensitive regions.

Results

Analysis plan

For all studies, participants provided familiarity and 
liking ratings for melodies composed in a predefined 
grammatical structure (based on the B-P scale; Loui 
et al., 2010) that were either (a) presented a variable 
number of times in an exposure phase (effect of expo-
sure) or (b) altered to have a different ending from the 
original melodies that were presented during exposure 
(effect of prediction error). In each study, only one set 
of melodies was presented during the exposure phase 
(“original” melodies), whereas the other set of melodies 
contained previously unexposed endings and therefore 
generated a prediction error (“altered” melodies). Both 
groups of melodies were rated on both familiarity and 
liking in a postexposure rating phase.

To investigate the effects of exposure and prediction 
error on these postexposure familiarity and liking rat-
ings, we constructed linear mixed-effect models using 
the R package lme4 (Bates et al., 2014). We included 
prediction error—“original” (no prediction error elic-
ited) versus “altered” (prediction error elicited)—as an 
interaction term in these models, which was effect-
coded such that the main effect of exposure represents 
the average effect across both types of melodies. In all 
models, we investigated the main effect of exposure, 
the main effect of prediction error, and the difference 
in the effect of prediction error as a function of expo-
sure (the interaction term in the model). This interac-
tion term also allowed us to tease apart the effects of 
n-gram frequencies and transitional probabilities on 
statistical-learning mechanisms. As illustrated in Figure 
1, if preference is informed by n-gram frequencies, then 
the size of the prediction error would increase with 
exposure (i.e., there would be an interaction between 
exposure and prediction error). Conversely, if prefer-
ence is informed only by transitional probability, then 
there would be no interaction because the size of the 
prediction error does not increase with exposure. We 
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specified by-participant random slopes (including the 
interaction term) and intercepts and by-item (melody) 
random intercepts. Continuous predictor and depen-
dent variables were standardized before being entered 
into the model. The significance of fixed effects (expo-
sure and prediction error) was determined using the 
Satterthwaite method to approximate the degrees of 
freedom with the lmerTest package (Kuznetsova et al., 
2017).

Study 1

Participants listened to eight monophonic musical melo-
dies composed in the B-P scale during the exposure 
phase. The number of presentations varied for each mel-
ody (either two, four, eight, or 16 times with two melodies 
in each condition). After exposure, participants rated 
familiarity and liking for each melody along with two 
melodies not heard in the exposure phase (thus pre-
sented zero times during exposure), as well as altered 
versions of the 10 melodies that were identical except for 
an unexpected ending. For familiarity ratings, there was 
a significant interaction between exposure and prediction 
error, β = 0.01, t(1883) = 3.99, p < 0.001: The effect of 
prediction error—main effect: β = 0.16, t(1169) = 6.33,  
p < 0.001—increased as a function of exposure—main 
effect: β = 0.33, t(171) = 21.23, p < 0.001. For liking rat-
ings, there was also a significant interaction between 
exposure and prediction error, β = 0.05, t(1200) = 2.27, 
p = 0.02: The effect of prediction error on liking ratings—
main effect: β = 0.11, t(1793) = 4.94, p < 0.001—also 
increased as a function of exposure—main effect: β = 
0.03, t(1169) = 2.05, p = 0.04. Thus, both exposure and 
prediction errors informed both familiarity and liking rat-
ings because participants reported more preference and 
familiarity for melodies that were both exposed more 
often and that did not elicit a prediction error. These 
results are consistent with predictions of the predictive-
coding model, such that the effect of prediction error on 
liking ratings increased with the magnitude of the error.

Study 2

In Study 2, we extended the findings from Study 1 to 
determine the degree to which changing the specific 
numbers of presentations during the exposure phase 
affected liking ratings. In a new group of participants, 
we replicated Study 1 but with melodies that were 
presented either zero, two, four, six, 10, or 14 times. 
For familiarity ratings, there was again a significant 
interaction between exposure and prediction error,  
β = 0.06, t(3411) = 2.81, p = 0.005: Again, the effect of 
prediction error—main effect: β = 0.14, t(1545) = 5.87, 
p < 0.001—increased as a function of exposure—main 

effect: β = 0.3, t(163) = 15.71, p < 0.001. For liking rat-
ings, we again found a significant main effect of number 
of presentations, β = 0.02, t(163) = 2.1, p = 0.04, and 
prediction error, β = 0.02, t(171) = 6.35, p < 0.001. 
However, we did not detect an interaction between 
prediction error and exposure, β = 0.13, t(3179) = 1.06, 
p = 0.29. Because the sample size of these studies was 
chosen to detect the effect of exposure rather than an 
interaction (see the Materials and Methods section), the 
lack of interaction could simply be due to insufficient 
statistical power; thus, we went on to replicate and 
extend these studies and to test for an interaction with 
aggregated data across several studies.

Studies 3 and 4

Studies 3 and 4 were designed to replicate the findings 
from Studies 1 and 2 with a new sample. Study 3 used 
the same numbers of presentation as Study 1 (0, 2, 4, 
8, 16), and Study 4 used the same numbers of presenta-
tion as Study 2 (0, 2, 4, 6, 10, 14). For familiarity ratings 
in Study 3, there was a significant interaction between 
exposure and prediction error, β = 0.07, t(2305) = 2.79, 
p = 0.005: Again, the effect of prediction error, β = 0.14, 
t(1168) = 5.81, p < 0.001, increased as a function of the 
number of presentations—main effect: β = 0.33, t(168) = 
18.81, p < 0.001. For liking ratings, we also replicated 
the main effect of exposure, β = 0.06, t(169) = 3.66, p < 
0.001. Again, melodies that did not elicit a prediction 
error were preferred over melodies with prediction 
errors, β = 0.07, t(1507) = 3.15, p = 0.002. There was 
no interaction between the two, β = 0.01, t(1434) = 0.56, 
p = 0.57. For familiarity ratings in Study 4, we replicated 
the main effect of exposure, β = 0.34, t(163) = 19.62,  
p < 0.001, and prediction error, β = 0.17, t(1923) = 7.08, 
p < 0.001. We did not detect an interaction between 
prediction error and exposure, β = 0.04, t(2026) = 1.66, 
p = 0.1. For liking ratings in Study 4, we replicated the 
significant effect of exposure, β = 0.03, t(162) = 2.14,  
p = 0.03. Melodies that did not elicit a prediction error 
were once again rated as more liked than melodies that 
did, β = 0.09, t(3316) = 4.67, p < 0.001. There was no 
interaction between prediction error and exposure, β = 
0.02, t(1801) = 0.87, p = 0.38. Together, these four stud-
ies consistently show that the main effects of exposure 
and prediction error were robust for both familiarity 
and liking, but the interaction was much more variable, 
especially for liking. Because Studies 1 through 4 used 
different samples of participants but the same stimuli 
with different numbers of presentations, we proceeded 
to combine the data from these studies for a mini meta-
analysis to evaluate the effects of, and interaction 
between, prediction error and exposure on familiarity 
and liking across a larger sample.
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Mini meta-analyses of Studies 1 
through 4

Familiarity ratings show a logarithmic relation-
ship with exposure.  When considering the shape of 
the relationship between exposure and familiarity, we 
expected that familiarity ratings would show a logarith-
mic relationship with exposure (i.e., participants would 
learn the stimuli after a certain amount of presentations, 
after which subsequent presentations do not make them 
more familiar), as opposed to a more linear relationship 
(i.e., ratings continue to increase with the exposure). We 
compared the fit between logarithmic and linear models 
for combined data across Studies 1 through 4 (n = 667). 
These models had the same random-effects structure as 
previous models. Results from this mini meta-analysis 
showed both the main effects of the number of presenta-
tions and alterations, as well as significant interactions 
between alterations and the number of presentations, in 
both linear and logarithmic models. As suggested by 
Zuur et al. (2009), we estimated parameters using maxi-
mum likelihood to enable model comparison, and 
Akaike’s information criterion (AIC) was compared across 
these models to compare their fit. This revealed that a 
logarithmic model (AIC = 31575) was a better fit com-
pared with a linear model (AIC = 33986) to model the 
relationship between the number of presentations and 
familiarity ratings (see Table 1 and Fig. 2).

Liking ratings show a quadratic relationship with 
exposure.  We used the same approach to best describe 
the relationship between liking ratings and exposure. 
However, because the trajectory between exposure and 
liking typically shows an inverse-U relationship (for a 
review, see Chmiel & Schubert, 2017), we compared 
model fits of a linear and quadratic model using a  
likelihood-ratio test. Both linear and quadratic models 
showed significant main effects of the number of presen-
tations and alterations, as well as significant interactions 
between the two. The quadratic model was found to best 
describe the relationship between the number of presen-
tations and liking ratings, χ2(13) = 127.03, p < 0.001 (for 
model fits, see Table 1; for model predictions plotted 
with mean and 95% confidence intervals, see Fig. 2). 
Together, these results are consistent with the predictions 
of the predictive-coding model: The fact that the effect of 
prediction error increased as a function of exposure sug-
gests that the minimization of prediction errors best 
accounts for the generation of musical preferences in the 
context of this novel musical environment.

Music-reward sensitivity influences the learning 
trajectory.  Although results from Studies 1 through 4 
showed musical preferences were informed by both 
exposure and prediction error across an aggregated sam-
ple of 667 participants, past work has also shown consid-
erable individual differences in music-reward sensitivity, 

Table 1.  Standardized β Coefficients, Associated p Values, and R2 Values for Each Model Fit 
for Familiarity and Liking Ratings

Ratings

Model

Linear Logarithmic

β p β p

Familiarity
  Effect
    Exposure 0.33 < .001 0.41 < .001
    Exposure × Prediction Error (original > altered) 0.07 < .001 0.08 < .001
    Prediction error (original > altered) 0.15 < .001 0.15 < .001
  R² (conditional, marginal) .11, .49 .17, .58
Liking
  Effect
    Exposure 0.04 < .001 0.05 < .001
    Exposure² −0.01 .11
    Exposure × Prediction Error (original > altered) 0.03 .02 0.03 .01
    Exposure² × Prediction Error (original > altered) −0.01 .39
    Prediction error (original > altered) 0.1 < .001 0.11 < .001
  R² (conditional, marginal) .004, .61 .004, .62
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which affects the degree to which individuals enjoy 
music listening (Martinez-Molina et al., 2016). Thus, we 
tested the hypothesis that liking ratings of individuals 
with low music-reward sensitivity (i.e., musical anhe-
donics) would show decreased sensitivity to our manip-
ulations of both exposure and prediction error. Following 
past work (Martinez-Molina et  al., 2016), we split our 
aggregated sample into tertiles using the BMRQ, a mea-
sure of music-reward sensitivity (Mas-Herrero et  al., 
2013). These tertiles represent relatively high (hyperhe-
donic; BMRQ = 86–100), medium (hedonic; BMRQ = 
76–85), and low (anhedonic; BMRQ = 26–75) sensitivity 
to music reward in our sample. To test our hypothesis, 
we added an interaction term for music-reward sensitiv-
ity to our best-fitting models (logarithmic for familiarity 
ratings and quadratic for liking ratings). Because this 
measure indexes individual differences in music-reward 
sensitivity, we expected differences across these tertiles 
only on liking ratings. If musical anhedonics’ liking rat-
ings are less sensitive to exposure effects than their more 
hedonic counterparts, then they will show a different 
trajectory between liking ratings and exposure (i.e., an 
interaction between music-reward sensitivity and expo-
sure). If they are less sensitive to prediction errors, then 
they will show a decreased effect of prediction error 
(i.e., an interaction between music-reward sensitivity 
and prediction error). For these analyses, this variable 
was dummy-coded to treat the hedonic group as the 

reference level. We interpreted any interaction between 
the number of presentations and music-reward sensitiv-
ity as evidence that the relationship between familiarity 
and/or liking ratings and the number of presentations 
differed across groups.

For familiarity ratings, there were no differences in 
ratings across the three tertiles. Further, there were no 
significant two-way interactions between music-reward 
sensitivity and exposure or prediction error and no 
significant three-way interaction between music-reward 
sensitivity, exposure, and prediction error (for model 
fits, see Table 2; for model predictions plotted with 
mean and 95% confidence intervals, see Fig. 3). This 
suggests that musical anhedonics familiarize themselves 
similarly to music compared with their more hedonic 
counterparts in that their ratings were similarly sensitive 
to both exposure and prediction error.

For liking ratings, there was a significant difference 
across groups: The hedonic group rated melodies as 
more liked than the anhedonic group, β = 0.17, t(663) = 
2.36, p = 0.02. There were no significant linear interac-
tions between exposure and music-reward sensitivity, 
and there were no interactions between prediction error 
and music-reward sensitivity. There was no significant 
three-way interaction between music-reward sensitivity, 
exposure, and prediction error. We did, however, detect 
an interaction between the quadratic exposure term 
and music-reward sensitivity, β = 0.06, t(649) = 3.05,  
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p = 0.002. Whereas the anhedonic group showed a 
significant inverse-U relationship between exposure 
and liking ratings, β = −0.04, t(650) = −3.12 p = 0.002, 
the hedonic and hyperhedonic groups did not—
hedonic: β = 0.02, t(649) = 0.24; hyperhedonic: β = 
−0.01, t(675) = 0.95, p = 0.34 (for all results, see Table 
2 and Fig. 3). These results suggest that, although all 
groups responded similarly to prediction errors, con-
tinued exposure to these melodies led to increased 
liking in all but the anhedonic group.

Study 5

Although results from the tertile split above show that 
large online samples can capture a range of music-
reward sensitivity that predicts differences in learning 
to like new music, extreme cases of insensitivity to 
reward can be effective tests of the models derived from 
the studies above. In Study 5 we tested the models 
relating exposure and prediction error to familiarity and 
liking for the anhedonic, hedonic, and hyperhedonic 
subgroups on two case studies of music-specific 

anhedonia, a condition in which listeners derive no 
pleasure from listening to music (Mas-Herrero et  al., 
2014). BW and NA are individuals who presented with 
congenital and acquired music-specific anhedonia, 
respectively. Both participants underwent a streamlined 
version of our study paradigm, with melodies presented 
zero, four, 10, and 14 times, and only one melody per 
condition. We calculated the mean squared error (MSE) 
for liking and familiarity ratings of both the original 
and altered versions of these melodies using model 
predictions from the three-way (Exposure × Prediction 
Error × Music-Reward Sensitivity) interaction models at 
all three levels of music-reward sensitivity. Because 
results of the mini meta-analysis indicated that there 
was no difference in the relationship between exposure 
and familiarity ratings across the music-reward tertiles 
(i.e., no interaction between exposure and reward sen-
sitivity), we did not expect the model’s anhedonic pre-
dictions to have the lowest MSE for the familiarity 
ratings of our case studies. In contrast, because we did 
detect differences in the exposure-liking trajectory for 
musical anhedonics in our mini meta-analysis, we did 

Table 2.  Standardized β Coefficients and Associated p Values for the Three-Way (Music-Reward Sensitivity × 
Exposure × Prediction Error) Interaction Models Built on Familiarity and Liking Ratings

Ratings Tertile contrast β p

Familiarity  
  Effect
    Music-reward sensitivity Hyperhedonic > hedonic 0.06 .26

Hedonic > anhedonic 0.02 .66
    Music-Reward Sensitivity × Exposure Hyperhedonic > hedonic 0.01 .6

Hedonic > anhedonic −0.008 .75
    Music-Reward Sensitivity × Prediction Error (original > altered) Hyperhedonic > hedonic 0.008 .78

Hedonic > anhedonic −0.005 .86
    Music-Reward Sensitivity × Exposure × Prediction Error (original  
      > altered)

Hyperhedonic > hedonic 0.03 .34
Hedonic > anhedonic −0.005 .85

  R² (conditional, marginal) .17, .59  

Liking
  Effect  
    Music-reward sensitivity Hyperhedonic > hedonic 0.06 .4

Hedonic > anhedonic 0.17 .02
    Music-Reward Sensitivity × Exposure Hyperhedonic > hedonic 0.02 .47

Hedonic > anhedonic −0.02 .38
    Music-Reward Sensitivity × Exposure² Hyperhedonic > hedonic −0.03 .14

Hedonic > anhedonic 0.06 .002
    Music-Reward Sensitivity × Prediction Error (original > altered) Hyperhedonic > hedonic −0.01 .79

Hedonic > anhedonic 0.03 .37
    Music-Reward Sensitivity × Exposure × Prediction Error  
      (original > altered)

Hyperhedonic > hedonic 0.0006 .99
Hedonic > anhedonic 0.02 .5

    Music-Reward Sensitivity × Exposure² × Prediction Error  
      (original > altered)

Hyperhedonic > hedonic 0.007 .81
Hedonic > anhedonic −0.003 .91

  R² (conditional, marginal) .02, .62  

Note: Only music-reward sensitivity terms are shown.
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expect the model’s predictions for anhedonics’ liking 
ratings to have the lowest MSE for our case studies.

For familiarity ratings, the model prediction at the 
hyperhedonic level best matched music-specific anhe-
donics’ responses (i.e., the model showed the lowest 
MSE of 18.13 at the hyperhedonic level), followed by 
the hedonic (19.95) and anhedonic (20.18) levels. This 
relatively better fit of the hyperhedonic predictions 
stems from the fact that all but one familiarity rating 
of the melodies that these participants made were 
extreme values of 1 or 6, thus likely representing a 
binary between knowing or not knowing these stimuli. 
This resulted in the lowest MSE for the hyperhedonic 
predictions because the latter had the steepest 
(although not statistically significantly different) slope 
relating familiarity to exposure compared with the 
other tertiles. This suggests that both musical anhe-
donic cases were indistinguishable from hyperhedonics 
in their familiarity ratings, consistent with the finding 
that there were no significant interactions with music-
reward sensitivity from the meta-analysis of Studies 1 
through 4 above. In contrast, for liking ratings, the 
model had the lowest MSE (3.66) from the anhedonic 
level when predicting the music-specific anhedonics’ 
data compared with both the hedonic (4.97) and hyper-
hedonic (5.01) levels. This shows that the liking ratings 
of these cases were indeed more similar to the anhe-
donic group and different from that of the hedonic and 
hyperhedonics, consistent with the mini meta-analysis 
of Studies 1 through 4 above. Taking the familiarity 
and liking ratings together, these case studies provide 
further support for the idea that both cases of congeni-
tal and acquired musical anhedonia had less difficulty 

with learning these melodies than with deriving reward 
from them.

Study 6

Although the studies above generally support the  
predictive-coding model, both schematic and veridical 
expectations were manipulated simultaneously. Specifi-
cally, structural alterations introduced in the altered 
melodies violated schematic expectations because they 
contained statistically infrequent pitch patterns and 
veridical expectations because they violated partici-
pants’ specific predictions about that melody. The zero-
exposure condition circumvents this issue somewhat 
because the two melodies in that condition differ only 
in schematic expectations and not in veridical expecta-
tions, but Studies 1 through 5 were not designed and 
powered to statistically test for differences in the zero 
condition only. Thus, to further probe whether the 
effect of the prediction error in these studies can be 
attributed more to schematic or veridical expectation 
violation, we ran an additional follow-up study in 
which the melodies previously presented only in the 
postexposure rating phase were now presented in the 
exposure phase (at zero, two, four, eight, and 16 times), 
whereas those originally in the exposure phase were 
now presented only in the postexposure rating phase. 
Because the endings of the melodies in the exposure 
phase of this study are nongrammatical (meaning that 
there were less schematic expectations to be acquired 
for these endings), the prediction-error manipulation is 
relatively limited to violations of veridical expectations 
(Fig. 4). As a result, if subjective ratings are more 
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sensitive to schematic expectations, then there should 
be less of an effect of prediction error in this study 
compared with the previous studies because there are 
less schematic expectations to be learned in this study 
than in the previous ones. Conversely, if these ratings 
are more sensitive to veridical expectations, then there 
should be an effect of prediction error, such that those 
that do not elicit a prediction error (i.e., presented in 
the exposure phase) are more familiar/preferred com-
pared with those that do.

For familiarity ratings, we replicated the significant 
effect of exposure, β = 0.31, t(161) = 15.19, p < 0.001, 
but found no main effect of prediction error, β = 0.01, 
t(2129) = 0.48, p = 0.63, and no interaction between 
exposure and prediction error, β = −0.04, t(2786) = 
−1.77, p = 0.08 (Fig. 5a). For liking ratings, we found a 
significant effect of exposure, β = 0.03, t(159) = 2.36,  
p = 0.02, and prediction error, β = 0.05, t(2595) = 2.27, 
p = 0.02, such that melodies that did not elicit predic-
tion errors were preferred over those that did (Fig. 5b). 
We did not detect an interaction between exposure and 
prediction error, β = −0.007, t(2519) = −0.31, p = 0.75. 
These results provide preliminary evidence that, 
whereas familiarity ratings were more sensitive to sche-
matic expectations, liking ratings were more influenced 
by veridical expectations.

Mini meta-analyses of Studies 1 and 6

To further characterize the relationship between sche-
matic and veridical expectations on familiarity and liking 
ratings, we aggregated data across Studies 1 (exposed to 
fully grammatical melodies) and 6 (exposed to melodies 
with ungrammatical endings). We then modeled both 
familiarity and liking ratings as a function of a three-way 
interaction between study (Study 1 vs. Study 6), predic-
tion error, and exposure. This enabled a direct compari-
son across studies in which there was a relative difference 
in the degree to which prediction errors violated sche-
matic expectations (with there being more of a schematic 
expectation violation in the manipulation in Study 1). 
Thus, if ratings were more sensitive to schematic expecta-
tions, then there should be a significant interaction 
between study and prediction error, such that the effect 
of the prediction error is stronger for Study 1 compared 
with Study 6. Conversely, if ratings were more sensitive 
to veridical expectations, then the effect of alteration 
should be no different between these two studies.

Schematic expectations inform familiarity.  For famil
iarity ratings, there was a significant three-way interaction 
(Study × Prediction Error × Exposure) such that the 
interaction between the prediction error and number of 

Fig. 4.  Differentiating veridical and schematic expectations between Studies 1 and 6. The same example melody from Figure 1 but with the 
altered melody (which did not conform to the chord-based grammatical structure; a) is now presented in Study 6. Veridical expectations, 
as defined here by n-gram frequency for the whole melody, increase with exposure, whereas schematic expectations, as defined here by 
transitional probability between chords, remain stable with exposure to the original set of melodies (b). In contrast, with exposure to altered 
melodies (c), which do not resolve on the same chord, the transitional probability between the two last chords is lower in Study 6 than it is 
in Study 1. This results in a proportionally lower exposure to schematic expectations relative to the same amount of exposure to veridical 
expectations in Study 6, relative to Study 1.
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presentations differed across the two studies, β = −0.14, 
t(5915) = −4.07, p < 0.001. Whereas the effect of the pre-
diction error increased as a function of exposure in 
Study 1, β = 0.1, t(5914) = 3.99, p < 0.001, the effect of 
the prediction error remained the same across exposure 
in Study 6, β = −0.04, t(5915) = −1.79, p = 0.07. Impor-
tantly, there was also a significant two-way interaction 
(Study × Prediction Error) such that the effect of the 
prediction error was weaker in Study 6 than in Study 1, 
β = −0.15, t(5913) = −4.13, p < 0.001 (for means and 95% 
confidence intervals, see Fig. 5a). There was neither a 
main effect of study, β = 0.003, t(330) = 0.04, p = 0.97, 
nor an interaction between study and exposure, β = 
−0.02, t(327) = −0.96, p = 0.34. These results provide 
further evidence that familiarity is more sensitive to 
schematic expectations and suggest that the relative 
increase in schematic expectations evoked by the melo-
dies that did not elicit a prediction error in Study 1 was 
critical in increasing the effect of prediction error as a 
function of exposure.

Veridical expectations inform liking.  For liking rat-
ings, there was neither a significant three-way interaction 
between exposure, prediction error, and study, β = −0.06, 
t(4192) = −1.82, p = 0.07; a two-way interaction between 
exposure and study, β = 0.002, t(329) = 0.1, p = 0.92; nor 
a two-way interaction between prediction error and 
study, β = −0.06, t(5163) = −1.81, p = 0.07. There was a 
main effect of study on liking ratings, such that melodies 
were rated, overall, as more liked in Study 6 compared 
with Study 1, β = 0.2, t(330) = 2.48, p = 0.01 (for means 
and 95% confidence intervals, see Fig. 5b). Because we 

did not detect a difference in the effect of prediction 
error across studies, these results suggest that, unlike 
familiarity ratings, liking ratings seem to be more informed 
by veridical expectations.

Study 7

In the first six studies, participants were always asked 
to provide familiarity ratings before liking ratings. For 
this reason, one possible interpretation is that partici-
pants consistently rated the most familiar melodies from 
Studies 1 through 6 as most liked because of anchoring 
and/or demand effects. To rule out these possibilities, 
we ran an additional study in which participants com-
pleted the identical procedure as Studies 1 and 3 but 
did not rate any melodies on familiarity. There was still 
an effect of both exposure, β = 0.04, t(181) = 2.47, p = 
0.01, and prediction error, β = 0.1, t(2227) = 4.87, p < 
0.001, on liking ratings but no interaction between the 
two, β = 0.001, t(2461) = 0.06, p = 0.95.

To formally compare whether removing familiarity 
ratings impacted the effect of our manipulations on 
liking ratings, we collapsed data from Studies 1 and 7 
and modeled liking ratings as a three-way interaction 
between study (Study 1 vs. Study 7), prediction error, 
and exposure. This model did not detect any two-way 
interactions between study and exposure, β = 0.008, 
t(349) = 0.36, p = 0.72, or study and prediction error,  
β = −0.006, t(4310) = −0.21, p = 0.84, or a three-way 
interaction, β = −0.05, t(3785) = −1.6, p = 0.11. Together, 
these results suggest the results of Studies 1 through 6 
are not due to anchoring or demand effects.

3.75

3.50

3.00

3.25

3

4

5

Fa
m

ili
ar

ity
 R

at
in

g

Li
ki

ng
 R

at
in

g

a b

0 5 10 150 5 10 15
Exposure (number of presentations)

0 5 10 150 5 10 15
Exposure (number of presentations)

Study 1 Study 6 Study 1 Study 6

Exposed
Exposed

Not Exposed 

Not Exposed

Fig. 5.  Means and 95% confidence intervals of familiarity and liking ratings across Study 1 (exposed to fully grammatical melodies) and Study 
6 (exposed to melodies with ungrammatical endings). “Exposed” melodies did not elicit prediction errors, whereas “Not Exposed” melodies did.



48	 Kathios et al.

Study 8

Studies 1 through 7 together establish that the effects of 
exposure and prediction error on liking and familiarity 
are not explained by task demands and are blunted in 
groups with reduced reward sensitivity. Although the 
B-P scale is not used widely in any known culture, it is 
still possible that differences in the styles of music that 
we are exposed to from birth via our culture would 
impact how we learn and respond to these B-P melodies. 
To assess this possibility, we tested whether the trajec-
tories identified in Studies 1 through 7 are indeed similar 
across cultures. Study 8 extends the findings to investi-
gate possible cultural effects on the process of becoming 
familiar with and preferring new pieces of music. To this 
end, we recruited 156 participants from China to com-
plete the identical procedure as Study 4. For familiarity 
ratings, there was a significant interaction between expo-
sure and prediction error, β = 0.08, t(1758) = 3.13, p = 
0.002: The effect of prediction error—main effect: β = 
0.11, t(2437) = 4.49, p < 0.001—increased as a function 
of exposure—main effect: β = 0.3, t(154) = 14.9, p < 
0.001. For liking ratings, we replicated both the signifi-
cant main effect of exposure, β = 0.06, t(155) = 4, p = 
0.001, and prediction error, β = 0.12, t(189) = 5.29, p < 
0.001. There was no interaction between prediction error 
and exposure, β = 0.007, t(971) = 0.32, p = 0.75.

To further test whether familiarity- and liking-rating 
trajectories matched that of the U.S. sample, we again 

fit two classes of models (logarithmic and linear for 
familiarity ratings and linear and quadratic for liking 
ratings) to these data. This revealed that, again, a loga-
rithmic model best fit familiarity ratings (linear model 
AIC = 8958.3; logarithmic model AIC = 8376.9). A  
likelihood-ratio test also indicated that a quadratic 
model fit the liking-rating data better than a linear 
model, χ2(13) = 127.03, p < 0.00 (for model predictions 
plotted with means and 95% confidence intervals, see 
Fig. 6), similar to the aggregated U.S. sample.

Study 9

Although the behavioral studies above provide support 
for the cross-cultural applicability of the predictive-coding 
model, a key component of this model posits the involve-
ment of the reward network in the brain. In Study 9, we 
related exposure and prediction error to fMRI activity in 
the reward system. Twenty-one young adults participated 
in the same study design as in Study 7 outside of the 
scanner and then listened to the eight melodies from 
Study 8 during fMRI as part of a larger scale study in the 
lab looking at effects of music-based interventions in 
young adults and older adults (Quinci et al., 2022). Whole-
brain, univariate analyses showed greater activation for 
melodies that did not elicit prediction errors compared 
with those that did in the right HG (Fig. 7a), suggesting 
that the auditory cortex is sensitive to prediction errors.
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Given previous evidence showing that coactivation 
of the reward and auditory brain areas is associated 
with musical preferences and learning (Quinci et al., 
2022), we also assessed the degree to which functional 
connectivity between these regions is modulated by 
predictive coding. The functional connectivity between 
auditory and reward areas was quantified by correlating 
the time series of β values extracted from HG (a sphere 
around the central voxel from the whole-brain analysis 
from Fig. 7a) and reward-sensitive ROIs in the nucleus 
accumbens and mPFC (see the Materials and Methods 
section). A two-way within-subjects analysis of variance 
with the dependent variable of auditory-reward func-
tional connectivity, with the factors of prediction error 
and exposure, showed a significant main effect of pre-
diction error, F(1,20) = 5.24, p = .033, ηp² = .21, and a 
significant main effect of exposure, F(3,60) = 3.31, p = 
.026, ηp² = .14. Figure 7b shows a linear relationship 
for original melodies as well as the effect of alteration. 
The same pattern was not observed for functional con-
nectivity between HG and the nucleus accumbens—
prediction error: F(1,20) = 1.61, p = .22, ηp² = .074; 
exposure: F(3,60) = .30, p = .83, ηp² = .015.

Discussion

Across nine studies, we provide novel evidence to sup-
port a predictive-coding account for musical preference 
that encompasses the effects of mere exposure on sta-
tistically learned expectations. We show that listeners 
from two different cultures can rapidly learn from expo-
sure and prediction errors in novel music. This learning 
maps onto the brain’s reward system and is sensitive 
to individual differences in reward sensitivity to music.

In Studies 1 through 4, we established that changing 
the number of presentations (exposure) as well as alter-
ing the endings of melodies (prediction errors) affected 
self-reported liking ratings for music, which ultimately 
provided evidence in support of the predictive-coding 
model. Meta-analyses across Studies 1 through 4 and 
neuropsychological results from Study 5 confirmed that 
individuals with musical anhedonia acquired familiarity 
in the same way as controls but did not derive prefer-
ences from familiar sequences in the same way as their 
musically hedonic counterparts. Study 6 showed that 
familiarity ratings were more sensitive to schematic 
compared with veridical-expectation violations, whereas 
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liking ratings were more sensitive to veridical expecta-
tions. Study 7 tested for liking without testing for famil-
iarity and established the same pattern of results, 
confirming that the effects of exposure and prediction 
error on liking were not due to anchoring effects. Study 
8 established that both Chinese and American partici-
pants were affected by exposure and prediction errors 
in this musical system that was unfamiliar to both cul-
tures. Finally, Study 9 tied this relationship between 
exposure, prediction error, and reward to increasing 
functional connectivity between the auditory and reward 
systems. Rather than simply showing that familiarity 
leads to liking, results reconciled the exposure- and 
prediction-based accounts for music preference and 
extended the predictive-coding model in three key 
directions: toward unfamiliar statistically and probabi-
listically novel music, toward a more culturally indepen-
dent context via a cross-cultural comparison, and toward 
its specific disruption in cases of musical anhedonia.

The degree to which veridical versus schematic 
expectations influence musical reward has historically 
been difficult to assess because we are usually overex-
posed to particular musical genres that follow the same 
statistical patterns. The usage of the B-P scale allows 
us to evade the preexisting expectations that have accu-
mulated from music exposure throughout our lives and 
offers an experimental tool to tease apart the influences 
of veridical and schematic expectations on musical 
reward. Here we have operationally defined veridical 
expectations as predictions for n-grams and schematic 
expectations as predictions for transitional probabilities 
between chords. This, combined with the inclusion of 
a zero-exposure condition as well as Study 6 in which 
altered melodies were presented during exposure, 
allowed us to begin to tease apart the effects of veridi-
cal versus schematic expectations on musical reward.

Listeners in Study 6 preferred the less schematically 
expected but similarly exposed altered melodies over 
their complements (which had been presented in the 
exposure phases of Studies 1 through 5), resulting in 
effects of exposure and prediction error on liking. This 
result rules out the alternative explanation that the 
effect of prediction error in the earlier studies could 
have been due to specific features of these melodies 
leading them to be more preferred. Furthermore, par-
ticipants’ ratings of liking—but not familiarity—contin-
ued to be responsive to the elicited prediction error in 
Study 6, suggesting a relative greater importance of 
veridical over schematic expectations for musical pref-
erences because there were less schematic expectations 
to use for learning the melodies in Study 6 compared 
with Study 1. Thus, it is possible that the relatively 
greater veridical expectation learning in Study 6 (com-
pared with Study 1) additionally explains why there 

were higher liking ratings for melodies in Study 6 com-
pared with Study 1, as revealed in our second mini 
meta-analysis. This mini meta-analysis also revealed a 
significant three-way interaction (Study × Prediction 
Error × Exposure) on familiarity ratings, such that the 
effect of prediction error increased as a function of 
exposure in Study 1 but not Study 6. We argue that this 
effect is due to the fact that the melodies presented 
during exposure in Study 6 evoked a relative decrease 
in schematic expectations while keeping veridical 
expectations the same relative to Study 1. Rather than 
claiming that familiarity always leads to liking, or that 
we only like what is familiar, the fact that schematic 
and veridical expectations differentially contributed to 
familiarity and liking ratings suggests that multiple, 
independent levels of prediction come into play in 
forming musical reward. The result is in line with prior 
work (Loui et al., 2010) showing that repeated listening 
to a small number of B-P melodies (which increased 
veridical expectations without increasing schematic 
expectations) resulted in higher preference ratings for 
those melodies, but nonrepeated listening to a larger 
number of B-P melodies, although resulting in grammar 
learning (which is more akin to the learning of sche-
matic expectations in the current study), did not lead 
to preference change.

Chinese and American participants both showed 
effects of both types of manipulations on liking and 
familiarity ratings. The best-fitting model was similar 
across the two cultures, with a logarithmic model best 
fitting familiarity ratings and a quadratic model best 
fitting liking ratings. This adds to the discussion on the 
role of cultural background on the predictive-coding 
model by suggesting that the statistical-learning pro-
cesses that drive familiarity and liking are relatively free 
of the influence of culture when the musical materials 
are similarly unfamiliar to both cultures to begin with. 
In contrast, the role of culture is more observable for 
other tasks beyond liking and familiarity ratings, such 
as in tasks involving imagination and the generation of 
narratives (Loui et al., 2023). Future studies may further 
disentangle the influence of schematic and veridical 
expectations in learning across different cultures. That 
being said, in practice the two expectations generally 
co-occur. Thus, complete experimental dissociation of 
one from the other is likely not possible when using 
more dynamic, naturalistic musical stimuli.

Although the effects of cultural background on pre-
dictive coding are subtle, individual differences on 
reward sensitivity appeared to play a crucial role in 
linking predictive coding with musical reward. The con-
sistency of the familiarity-rating results (as well as the 
effect of prediction error on liking ratings) across ter-
tiles underscores that musical anhedonics still learned 



Psychological Science 35(1)	 51

the melodies and were forming preferences to some 
degree. However, the fact that there was a difference 
in the effect of exposure on liking ratings across tertiles 
suggests that aesthetic preferences vary by the degree 
of exposure required to reach maximal preference. Spe-
cifically, the finding that the anhedonic group showed 
the strongest quadratic relationship with exposure in 
liking ratings suggests that anhedonics require less 
exposure before they become overexposed for their 
own liking, which may explain their general lower pref-
erence for music overall.

Importantly, our study is the first to show that expo-
sure to music de novo is associated with changes in the 
reward circuitry of the brain. Electrocortical (EEG and 
ECoG) recordings have shown that the middle HG is 
sensitive to melodic expectations (Di Liberto et al., 2020), 
and fMRI studies have found that auditory and reward-
related areas of the brain (including the amygdala, hip-
pocampus, and ventral striatum) show increased 
activation during musical-prediction errors (Gold, Pearce, 
et al., 2019) as well as during unexpected and/or unpre-
dictable chord sequences (Cheung et al., 2019). How-
ever, because previous studies used familiar musical 
stimuli rooted in the Western musical tradition, it was 
not possible to determine when in the process of expo-
sure the auditory and reward systems become engaged. 
Here, we observed that sensitivity to prediction errors 
emerged specifically in the middle HG, thus extending 
previous EEG/ECoG results. Furthermore, increased 
functional connectivity between HG and the mPFC was 
observed when participants listened to pieces that were 
more exposed, suggesting that the influence of repeated 
exposure on liking is subserved by changes in commu-
nication between the auditory and reward networks.

Several outstanding questions stem from these stud-
ies that warrant future exploration. First, it remains to 
be seen whether preference ratings would continue 
to increase with more than 16 exposures. It is quite 
possible that the positive relationships found here 
between exposure and liking reflects the positive side 
of a quadratic function and that if we were to extend 
the number of repetitions in this paradigm we would 
see preference ratings begin to decrease at an inflec-
tion point. Given that we chose to optimize for longer, 
more dynamic pieces of music, it was not feasible to 
increase the number of exposures beyond 16 without 
altering other key aspects of the design, introducing 
fatigue or habituation, or otherwise increasing cogni-
tive demand in ways that would confound the study. 
Future studies with shorter stimuli may be able to 
assess the full extent of the relationship between lik-
ing and repetition in B-P stimuli and the degree to 
which relative frequencies (14 relative to 10 vs. 14 
relative to two) play a part.

Second, although the current fMRI study shows sen-
sitivity to prediction in the reward system, it is not suf-
ficiently powered to assess possible individual differences 
in neurobiology between musical anhedonics and 
hedonics. Previous neuroimaging studies that included 
participants with musical anhedonia have shown reduced 
structural and functional connectivity between auditory 
and reward-sensitive areas in musical anhedonics (Loui 
et al., 2017; Martinez-Molina et al., 2019) and that altera-
tions of frontostriatal pathways can lead to either 
increases or decreases in subjective liking ratings of 
music (Mas-Herrero et al., 2021). Future neuroimaging 
studies are needed in this special population, and also 
across cultures, to establish how the mechanisms of 
learning relate to auditory-reward connectivity.

In sum, we developed an innovative paradigm to 
assess the effects of exposure and prediction errors in 
novel music on musical preference across cultures and 
in special populations. Our results are the first to show 
the multiple levels by which exposure and prediction 
errors in music generate reward and provide strong evi-
dence for this learning process across two cultures. Indi-
viduals with musical anhedonia did not show the same 
patterns as a result of exposure, offering a testable mech-
anism by which the human brain learns to predict sounds 
from our environment and to map those predictions onto 
reward. Because the relationship between predictions 
and reward underlie much of motivated behavior (Clark, 
2013; Friston, 2010; Schultz, 2015), examining the emer-
gence of this relationship during the course of a study 
may provide a better understanding of how these foun-
dational neurocognitive systems may go awry in a variety 
of psychiatric and neurological disorders.
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