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Abstract

Much of what we know and love about music hinges on our ability to make successful predictions, which appears
to be an intrinsically rewarding process. Yet the exact process by which learned predictions become pleasurable is
unclear. Here we created novel melodies in an alternative scale different from any established musical culture to show
how musical preference is generated de novo. Across nine studies (2 = 1,185), adult participants learned to like more
frequently presented items that adhered to this rapidly learned structure, suggesting that exposure and prediction errors
both affected self-report liking ratings. Learning trajectories varied by music-reward sensitivity but were similar for U.S.
and Chinese participants. Furthermore, functional MRI activity in auditory areas reflected prediction errors, whereas
functional connectivity between auditory and medial prefrontal regions reflected both exposure and prediction errors.
Collectively, results support predictive coding as a cognitive mechanism by which new musical sounds become

rewarding.
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Why do we love music? In contrast to other pleasures
in life, such as food and sex, music has no obvious
adaptive value, yet an attraction to music is ubiquitous
across cultures and across the life span. Indeed, both
listening to and performing music ranks highly among
life’s greatest pleasures (Dube & Le Bel, 2003) and reli-
ably engages the dopaminergic reward system (Ferreri
et al., 2019; Salimpoor et al., 2011, 2013).

Classic work has long examined the hypothesis that
the attractiveness of a stimulus is enhanced by expo-
sure: The mere-exposure effect posits that repeated
exposure to a given perceptual stimulus is a sufficient
condition to enhance one’s attitude toward it (Temme,
1984; Zajonc, 1968). Supporting this idea, experiments
in visual aesthetics have shown that manipulating the
co-occurrence of different stimulus features and fre-
quencies of stimulus presentation (e.g., comparing

homogeneous presentations vs. heterogeneous presen-
tations) can change the strength of the exposure effect
on preference (Bornstein, 1989; Seamon et al., 1998).
In the musical domain, repeated exposure to sound
sequences can change preferences for those sequences
(Loui et al., 2010). This attitudinal change can occur
regardless of the complexity of musical stimuli (Madi-
son & Scholde, 2017) and can give rise to habituation
effects after many repeated exposures as well as famil-
iarity effects after fewer exposures, resulting in the clas-
sic inverted-U model of preference as a trade-off
between familiarity and novelty (Berlyne, 1971; Chmiel
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& Schubert, 2017; Schultz, 2015). These lines of evi-
dence for the mere-exposure effect suggest that the
main determinant of musical preferences is repeated
exposure to co-occurring sequences of stimuli—or, in
statistical terms, the n-gram frequency of exposure.

More recently, neuroscientific studies have inspired a
predictive-coding model of music-evoked pleasure.
Because predictions and reward signals are ubiquitous
features of the central nervous system that underlie per-
ception, action, and emotion (Clark, 2013; Engel et al.,
2001; Friston, 2010; Schultz, 2000), so too may the
rewarding effects of music listening come from making
successful predictions and minimizing prediction errors
(Gold, Pearce, et al., 2019; Vuust et al., 2022). In addition
to sequence-specific knowledge, or veridical expecta-
tions, musical predictions are also informed by statisti-
cally learned patterns in music, or schematic expectations
(Schubert & Pearce, 2016). Schematic expectations for
music, according to the predictive-coding model, can
unfold at multiple levels, whether they be stylistic (hip-
hop, jazz), structural (melody, tonality), temporal (rthythm,
meter), and/or acoustic (pitch, timbre) factors (Guo &
Koelsch, 2016; Huron, 2006; Justus & Bharucha, 2001;
Margulis, 2014). The predictive-coding model can account
for the mere-exposure effect by positing that repeated
exposure increases the efficiency of predictions (Ivanchei
& Asvarisch, 2018), resulting in increased liking of stimuli
that carry predictive value (Braem & Trapp, 2019).

An important motivation of the predictive-coding
model comes from work on statistical learning, classi-
cally applied to the study of language acquisition
(Saffran et al., 1996). Studies in statistical learning have
manipulated transitional probabilities (i.e., the likeli-
hood that one item occurs immediately after another
in a sequence of various stimuli; Schapiro & Turk-
Browne, 2015) to test their effects on learning, memory,
and perceptual segmentation. Applied to the domain
of musical expectations, becoming familiar with these
transitional probabilities can also be thought of as form-
ing schematic expectations, thus offering a mechanism
by which novel music can be preferred. Furthermore,
because the predictive-coding model draws on theories
of dopaminergic function (Clark, 2013; Engel et al.,
2001; Friston, 2010; Schultz, 2000), measuring activity
in the reward system of the brain with functional MRI
(fMRD) is a strong test of our ability to manipulate expo-
sure and prediction.

Although the precise relationships between exposure,
prediction error, and reward may vary across cultures
(Savage & Fuijii, 2022) and/or with individual differences
in reward sensitivity to music (Gold, Mas-Herrero, et al.,
2019), it is often challenging to understand how expo-
sure relates to learning and reward because when

Statement of Relevance

All known societies appear to enjoy listening to
music, yet there is still scientific debate as to what
makes music so pleasurable and what function it
might serve. One prominent theory is that music
co-opts our inclination to try to predict events in
the future, and we find the ability to form success-
ful predictions to be rewarding. The relationship
between learning to predict in music and reward
has been difficult to prove, however, because we
typically learn the patterns of most music we
encounter early in life. Here, we overcome this
limitation by evaluating how preferences develop
over time to music composed in a completely
unfamiliar musical system. Across nine studies, we
show that listeners from two different cultures (the
United States and China) can rapidly learn this
novel musical system from repeated exposure and
quickly come to prefer melodies for which they
can successfully predict how they will end. We
find that this learning is tied to the activity and
functional connectivity of the auditory and reward
systems of the brain and influenced by individual
differences in reward sensitivity to music. Collec-
tively, the results offer a possible mechanism by
which music can become rewarding.

encountering most stimuli, even for the first time, we
make use of overlearned predictions to which we may
have been exposed throughout our lives. This is espe-
cially the case with musical structures, such as common
sets of pitches or musical scales that we have implicitly
acquired from lifelong exposure (Savage et al., 2015).
As a concrete example of such knowledge, most listen-
ers within Western cultures show implicit knowledge
of, and preference for, common-practice Western
musical-scale structures based around the octave, which
is a doubling of acoustic frequency (Gill & Purves,
2009). We circumvent this challenge of overlearned pre-
dictions by incorporating a unique and unfamiliar musi-
cal system: the Bohlen-Pierce (B-P) scale, which is
based on a tripling of acoustic frequency, thus differing
acoustically and statistically from the world’s existing
musical systems (Loui, 2022).

Here we extend and clarify the predictive-coding
model by testing the effects of exposure and prediction
error on musical learning and preference using natural-
istic music composed in grammatical structures defined
in the B-P scale (Loui et al., 2010). In Studies 1 through 4, we
investigated the degree to which self-reported familiarity
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Unigram frequency: pitch '10' 1 Exposure 2 Exposures 3 Exposures

Original 2 4 6
Altered 1 2 3
Original — Altered: Prediction Error 1 2 3

Chord Transitional Probability: p(I | 1 VI l) 1 Exposure 2 Exposures 3 Exposures

Bigram frequency: interval '9 10' 1 Exposure 2 Exposures 3 Exposures Original 1 1 1
Original 1 2 3 Altered 0 0 0
Altered 0 0 o  Original — Altered: Prediction Error 1 1 1
Original — Altered: Prediction Error 1 2 3

N-gram frequency: whole melody 1 Exposure 2 Exposures 3 Exposures

Original 1 2 3
Altered 0 0 0
Original — Altered: Prediction Error 1 2 3

Fig. 1. A melody in the Bohlen-Pierce scale and its predicted effects of exposure and prediction error on familiarity and liking. Pitch-time
representations of an example original melody and its altered counterpart are shown in (a): pseudospectrogram representations of the original
and altered melodies are shown in the two left panels, and the subtle difference between the two melodies can be seen by overlaying the
two melodies as shown in the right panel. Grammatical structure of the Bohlen-Pierce scale (from Loui et al., 2010) is shown in (b): Each
roman numeral denotes one chord with three chord tones. The fundamental frequency of each chord tone “n” is determined by the Bohlen-
Pierce scale formula on the right. Numerical representations of the example original and altered melodies from (a) are shown in (¢). Because
we opted for more naturalistic musical stimuli, each melody also contains nonchord tones (“passing tones”) in addition to chord tones that
belong to the chord progression. In panel (¢), chord tones within the original and altered melodies are shown in bold. Importantly, the
altered ending, which is shown in red, does not contain any tones from the last chord as determined by (b). Example unigram, bigram, and
n-gram frequencies given one, two, and three exposures to the original and altered melodies and the differences between them that give
rise to the prediction error are shown in panel (d) left. In panel (d) right: transitional probability of the underlying chords are shown given
different numbers of exposure to the original and altered melodies and the difference between them, that gives rise to the prediction error.

and liking ratings reflect exposure and prediction error.
Exposure was manipulated by presenting novel natu-
ralistic musical melodies a variable number of times,
and prediction error was manipulated through structural
alterations to the endings of the exposed melodies,
resulting in changes to the statistical properties (fre-
quencies and transitional probabilities) relative to the
exposure set (as illustrated in Fig. 1). In Study 5, we
tested these relationships in cases of congenital and
acquired music anhedonia. In Study 6, we reversed the
presentation of altered and original sets of melodies;
this allowed us to tease apart the differential contribu-
tions of schematic expectations (based on transitional
probability of chords) and veridical expectations (based
on n-gram frequency of the whole melody) to familiarity

and liking ratings. In Study 7, we ensured that the results
from previous studies were not due to anchoring effects.
In Study 8, we tested the effects of culture on predic-
tions and reward in a cross-cultural replication on a
sample from China. Finally, in Study 9, we evaluated
effects of this learning on reward-system activity and
connectivity using fMRI. Together, the studies traced the
trajectory of preference learning from exposure to
melodic and statistical structures in a novel musical sys-
tem. The human ability to recognize and learn statistical
properties of stimuli via mere exposure has been pos-
ited to underlie multiple cognitive tasks beyond music,
including language acquisition (Han et al., 2011; Saffran
et al., 1996) and decision-making (Haruno et al., 2004).
Accordingly, our results provide a mechanistic account
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not only for why people enjoy music but also the cir-
cumstances under which our ability to predict leads to
reward, a concept that underlies much of motivated
behavior. The stimuli, data, and code are available
online at https://osf.io/n84d5, along with the preregis-
tration for these studies.

Method

Stimuli

The stimuli used in all studies were composed in the
B-P scale. Although most musical systems around the
world are based around the octave, which is a 2:1 ratio
in frequency, the B-P scale is based on a 3:1 ratio
(tritave rather than octave) that is divided into 13 loga-
rithmically even steps. This 13-tone scale can be used
to generate musical intervals and chords that have low-
integer ratios and are perceived as psychoacoustically
consonant (Mathews et al., 1988). Although music in
the B-P scale is known to some composers, performers,
conductors, and scholars, it is considered “nonstandard”
(Hajdu, 2015) and has not been adopted into any main-
stream musical culture to date. Monophonic melodies
were composed in the B-P scale by a musician and
research assistant in the lab (E. Zhang) in the digital
audio workstation Ableton Live on a Korg nanoPAD?2
USB MIDI and played on a MIDI clarinet instrument
from the plugin library Xpand!2 by Air Music Tech. The
clarinet was chosen because its timbre has higher
energy at odd harmonics than at even harmonics; this
spectral distribution is easier to learn because of its
congruence with the B-P scale (Loui, 2022). In total,
fourteen 20-s B-P melodies were composed that fol-
lowed the same artificially derived harmonic structure
as past studies (Loui et al., 2010). Light compression
and reverb were applied to all stimuli to bring them to
the same volume and were subsequently exported as
44.1kHz .mp3 files. An altered version of each melody
was also created to be identical to the original piece
except for the ending, which was changed to violate
the grammatical structure of the B-P scale. Specifically,
the violations preserved the rhythmic structure (i.e.,
timing and length of notes) of an earlier section of the
melody as reflected by a “call-and-response” effect but
deviated from the melodic structure (i.e., stepwise rela-
tionship between notes) by randomly shifting the pitch
of the notes either up or down from chordal tones of
the expected last chord (Loui et al., 2009, 2010, 2011).
The call-and-response effect was implemented in all
melodies to incite a sense of musical completeness and
was mediated by both rhythmic and melodic aspects,
so the effect was partially preserved by maintaining a
mirrored rhythmic structure to control for the altered

melodic structure. The original and altered melodies
are available online at https://osf.io/n84d5, along with
the preregistration as well as data and code for this
study. In all studies except Study 6, the altered melodies
were presented only once (during the postexposure
phase). Finally, two of the melodies were used only as
part of the perceptual cover task (during the exposure
phase). A vibrato effect was added to a single note in
these two melodies, and during the task participants
were asked to press a key whenever they heard the
vibrato note. To decrease expectations, we created six
versions of each, in which the location of this vibrato
note varied across each version.

Study 1

Participants. An a priori power analysis using pilot
data (n = 46) indicated that a sample size of 165 would
achieve 0.80 power to detect a medium effect size
(Cohen’s /= 0.27) for the effect of the number of presen-
tations on liking ratings at a significance level of 0.05.
Participants were Prolific workers in the United States
between the ages of 18 and 65 years. We recruited 234
participants for Study 1, of which 66 participants were
excluded for failing our perceptual cover task (see
below), resulting in a final sample size of N = 169 (104
females; mean age = 32.03 years).

To measure individual differences in music-reward
sensitivity and identify musical anhedonics, participants
completed the Barcelona Music Reward Questionnaire
(BMRQ), a 20-item questionnaire based on five factors:
musical seeking, emotion evocation, mood regulation,
sensory-motor, and social reward. Participants also
completed the Goldsmith Musical Sophistication Index
(Gold-MSD), a self-report measure of musical skills and
behaviors (Miillensiefen et al., 2014); the Revised Physi-
cal Anhedonia Scale (PAS), a self-report measure of
general anhedonia (Chapman et al., 1976); and the
Ten-Item Personality Inventory (TIPD), a brief measure
of the Big Five personality traits (Gosling et al., 2003).
All scales were scored in accordance with the original
publications.

Procedure. For all studies in this report, participants
first consented to participate according to Northeastern
University Institutional Review Board-approved protocol.
Participants were screened using an online headphone
check (Woods et al., 2017) to ensure that they were using
headphones and could hear our stimuli properly before
undergoing the three phases of our study. In Phase 1
(preexposure), participants listened to eight of the B-P
melodies one at a time and provided liking and similarity
ratings using a Likert scale (1 = strongly dislike to 6 =
strongly like; 1 = not familiar at all to 6 = very familiar)


https://osf.io/n84d5
https://osf.io/n84d5

38

Kathios et al.

for each melody. Because the preexposure ratings were
intended for a different analysis on the effects of novelty
rather than reward learning, they will be presented in a
separate report; here we focus on postexposure ratings.

In Phase 2 (exposure), the eight melodies heard in
Phase 1 were played for participants a varying number
of times (either two, four, eight, or 16), with two melo-
dies in each condition (not including the single presen-
tation used for the preexposure ratings in Phase 1). The
specific melodies in each of the four exposure condi-
tions were counterbalanced across participants. Fur-
thermore, the presentation order was pseudorandomized
so that no melody was heard consecutively. During this
phase, participants were asked to complete a percep-
tual cover task in which they were instructed to listen
for notes that contained a “warble” sound (vibrato) and
to press the “v” key on their keyboard as soon as they
heard it. Six of the trials (created from two different B-P
melodies) heard in the exposure phase contained
vibrato notes, with the vibrato occurring at different
points of the melody. In total, participants heard sixty-
six 20-s melodies during Phase 2, resulting in an expo-
sure phase that lasted 22 min.

During Phase 3 (postexposure), participants heard 20
total melodies: each of the eight melodies again (without
vibrato—the same as Phase 1), along with two new
melodies that they had not heard in Phase 1 or 2 (thus,
the zero-exposure condition), as well as the altered ver-
sions (different endings) of these 10 melodies. Including
the zero-exposure condition additionally allowed us to
compare the effects of schematic and veridical expecta-
tions because any differences in the ratings for this con-
dition must be attributed to the learning of schematic
expectations. Participants provided liking and familiarity
ratings for each of these 20 trials using the same scale
as in Phase 1. After completing Phase 3, participants
were redirected to an online survey where they provided
demographic information and completed individual-
difference measures, including the BMRQ and PAS.

Exclusion criteria. Participants who did not accurately
perform the perceptual cover task of identifying the war-
ble/vibrato notes during exposure were removed from all
subsequent analyses. Specifically, for each participant,
we calculated d' from the total number of hits (number
of vibrato melodies for which a “v” was pressed), misses
(number of vibrato melodies for which a “v” was not
pressed), false alarms (number of nonvibrato melodies
for which a “v” was not pressed), and correct rejections
(number of nonvibrato melodies for which a “v” was not
pressed). The difference between z-transformed hit and
false-alarm rates was used to calculate d', with the adjust-

ment for which 0.5 errors were assumed for participants

who made no errors (Wickens, 2001). The d' measure
therefore indicates how well participants could discrimi-
nate between a warble note and a nonwarble note and
was used to remove participants who did not follow
instructions for the perceptual cover task. Any participant
who had a d' < 1 was removed from subsequent analyses
(Wickens, 2001), as was specified in our preregistration.
However, in follow-up analyses we did explore whether
keeping the participants who did not reach the d' crite-
rion changed the results; these exploratory analyses are
included in the Supplemental Material available online.

Study 2

Participants. To maintain consistency, we used the
same target sample size from our a priori power analysis
for Study 1 for Studies 2 through 4. We recruited 221
participants, 57 of whom were excluded for failing our
perceptual cover task, resulting in a total sample size of
164 (93 females; mean age = 32.67 years).

Procedure. Participants underwent the same procedure
as in Study 1, with the exception that 10 melodies were
presented either two, four, six, 10, or 14 times during
Phase 2 (the exposure phase), with two melodies in each
condition. The rationale behind these different numbers
of presentations was to chart a continuous trajectory of
exposure and relate it to liking and familiarity, without
fatiguing individual participants with an excessively long
exposure phase.

Study 3

Participants. We recruited 214 participants, 45 of
whom were excluded for failing our perceptual cover
task, resulting in a total sample size of 169 (89 females;
mean age = 32.27 years).

Procedure. Participants underwent the exact same pro-
cedure as in Study 1, with the exception that the order of
melodies heard in the preexposure phase was completely
randomized.

Study 4

Participants. We recruited 222 participants, 57 of
whom were excluded for failing our perceptual cover
task, resulting in a total sample size of 165 (83 females;
mean age: 31.78 years).

Procedure. Participants underwent the exact same pro-
cedure as in Study 2, with the same 10 melodies during
exposure phase, with the exception that the order of
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melodies heard in the preexposure phase was random-
ized and counterbalanced across participants.

Study 5

Participants. The congenital music-specific anhedonic
(a 58-year-old male with the initials BW) had participated
in a previous case study in our lab (Loui et al., 2017). The
acquired music-specific anhedonic (a 53-year-old female
with the initials NA) had reached out to the final author
(P. Loui) after self-reporting a loss in pleasure derived
from music listening after having received repetitive tran-
scranial magnetic stimulation treatment for depression
after the death of a loved one. Because both of these
cases were self-identified as musically anhedonic rather
than recruited online using Prolific, they were treated as
separate case studies rather than included in the same
group for Studies 1 through 4. Both of these cases had
low scores on the extended BMRQ (eBMRQ; eBMRQ:
BW = 30; eBMRQ: NA = 43; Cardona et al., 2022) but nor-
mal PAS scores (PAS auditory: BW = 8; PAS auditory: NA =
4; PAS nonauditory: BW = 14; PAS nonauditory: NA = 15).

Stimuli. We used a subset of four nonaltered melodies
that were rated, on average, the highest in postexposure
liking ratings across Studies 1 through 4 for Study 6.
These, along with their altered versions, resulted in eight
unique melodies presented to the participants in this
study. Participants also completed the eBMRQ, which
includes an additional sixth factor consisting of four addi-
tional items that measures experiences of absorption in
music listening (Cardona et al., 2022).

Procedure. Participants underwent the same procedure
as previous studies, with the exception that melodies
were presented either zero, four, 10, or 14 times during
the exposure phase and that there was only one melody
assigned to each condition.

Study 6

Participants. We recruited 279 participants, 116 of
whom were excluded for failing our perceptual cover
task, resulting in a total sample size of 163 (64 females;
mean age: 35.46 years).

Procedure. Participants completed the same procedure
as in Study 1, with the exception that altered melodies
were presented in the preexposure and exposure phase
of the study. In this study, original melodies were pre-
sented only in the postexposure phase.

Stimuli. The same stimuli used in Studies 1 and 3 were
used in Study 5. Participants in Study 5 also completed
the eBMRQ instead of the BMRQ.

Study 7

Participants. We recruited 244 participants, 64 of
whom were excluded for failing our perceptual cover
task, resulting in a total sample size of 180 (78 females;
mean age = 35.62 years).

Procedure. Participants underwent the exact same pro-
cedure as in Study 1, with the exception that they were
not asked to provide familiarity ratings.

Study 8

Participants. Participants were recruited via WeChat, a
Chinese instant messaging app. A poster containing a QR
code was sent in several group messages of students of
Beijing Normal University who subsequently shared this
code via word of mouth and personal WeChat messages.
We recruited 216 participants but excluded 56 for failing
our perceptual cover task and four for completing the
task twice, resulting in a total of 156 (106 females; mean
age: 23.09 years).

Stimuli. The same stimuli used in Studies 2 and 4 were
used in Study 7. Participants in Study 7 also completed
the eBMRQ instead of the BMRQ.

Procedure. The QR code led to a questionnaire that
recorded participants’ name and email address. An email
was then sent to the address participants provided that
contained a link to the experiment. This link redirected
participants to our experiment, in which they subse-
quently underwent the same Procedure as Study 4.

Study 9

Participants. Participants in this study were either
undergraduates at Northeastern University who com-
pleted the study (both the online task and an in-person
fMRI scan) for course credit or young adults recruited via
word of mouth from the Boston area. A total of 21 par-
ticipants (15 females; mean age = 19.8 years) completed
the fMRI version of our task.

Stimuli. The same stimuli and materials that were used
in Study 6 were used in Study 7, including the eBMRQ.

Procedure. Participants underwent the same procedure
as in Study 5 as well as an fMRI scan immediately after
completing the online behavioral study. During the scan,
participants listened to 24 clips of music once. Eight of
the clips were B-P melodies that participants had heard
previously during the task (at 0/4/10/14 presentations;
both original and altered melodies). The remaining trials
acquired were not in the B-P scale and were not used in
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the analysis for the current study. Each trial consisted of
20 s of passive listening followed by 2 s to rate the mel-
ody for liking (on a scale from 1 to 4) and 2 s to rate the
melody for familiarity (also on a a scale from 1 to 4).

JMRI data acquisition. Images were acquired using a
Siemens Magnetom 3T MR scanner with a 64-channel
head coil at Northeastern University Biomedical Tmaging
Center. fMRI data were acquired as echo-planar imaging
functional volumes covering the whole brain in 48 axial
slices—fast repetition time (TR) = 475 ms, echo time
(TE) = 30 ms, flip angle = 60°, field of view (FOV) = 240
mm, voxel size = 3 x 3 x 3 mm?, slice thickness = 3 mm,
anterior to posterior, z volume = 14.4 mm—in a continuous-
acquisition protocol of 1,440 volumes for a total acquisi-
tion time of 11.4 min. T1 images were also acquired using
an MPRAGE sequence, with one T1 image acquired every
2,400 ms for approximately 7 min. Sagittal slices (0.8 mm
thick, anterior to posterior) were acquired covering the
whole brain (TR = 2,400 ms, TE = 2.55 ms, flip angle = 8°,
FOV= 256, voxel size = 0.8 x 0.8 x 0.8 mm?). As part of the
existing protocol we also acquired resting-state and diffu-
sion tensor imaging sequences, but these were not used
for this study.

JMRI data analysis.

Preprocessing. fMRI data were preprocessed using
Statistical Parametric Mapping Version 12 (SPM12; Penny
et al., 2011) with the CONN toolbox (version CONN22.a;
Whitfield-Gabrieli & Nieto-Castanon, 2012). Preprocess-
ing steps included functional realignment and unwarp-
ing, functional centering, slice-time correction, outlier
detection using the artifact-detection tool, functional and
structural segmentation and normalization to the Mon-
treal Neurological Institute (MND template, and func-
tional smoothing to an 8-mm gaussian kernel (Friston
et al., 1995). Denoising steps for fMRI data included
white matter and cerebrospinal fluid confound correc-
tion (Behzadi et al., 2007) and bandpass filtering to a
frequency between 0.008 and 0.09 Hz.

First- and second-level analyses were completed in
SPM12. For each participant, data were converted from
4D to 3D images, resulting in 1,440 scans. The model
was specified using the following criteria: interscan
interval = 0.475 s, microtime resolution = 16, microtime
onset = 8, and duration = 42. Only data from the time
while the participant was listening to the musical excerpt
were included in this model. Each of the eight trial types
(0/4/10/14 presentations of both original and altered
melodies) was modeled separately, and trials during
which participants were listening to non-B-P melodies
were included as a separate condition so as to be
regressed out of the model’s intercept. The resulting
first-level contrasts were then analyzed using a one-sample

¢ test across all participants at the second level. Whole-
brain results were rendered to a standard MNI brain.
Results from the second-level analyses were statistically
corrected using a voxel threshold of p < 0.05 (false
discovery rate-corrected) through the CONN toolbox.
Beta weights for regions of interest (ROIs) in Heschl’s
gyrus (HG) and the medial prefrontal cortex (mPFC)
were extracted from participants’ first-level SPM.mat
files using the CONN toolbox atlas and correlated sepa-
rately for each trial to test for the effects of alteration
and number of presentations on the functional connec-
tivity between auditory and reward-sensitive regions.

Results
Analysis plan

For all studies, participants provided familiarity and
liking ratings for melodies composed in a predefined
grammatical structure (based on the B-P scale; Loui
et al., 2010) that were either (a) presented a variable
number of times in an exposure phase (effect of expo-
sure) or (b) altered to have a different ending from the
original melodies that were presented during exposure
(effect of prediction error). In each study, only one set
of melodies was presented during the exposure phase
(“original” melodies), whereas the other set of melodies
contained previously unexposed endings and therefore
generated a prediction error (“altered” melodies). Both
groups of melodies were rated on both familiarity and
liking in a postexposure rating phase.

To investigate the effects of exposure and prediction
error on these postexposure familiarity and liking rat-
ings, we constructed linear mixed-effect models using
the R package lme4 (Bates et al., 2014). We included
prediction error—*“original” (no prediction error elic-
ited) versus “altered” (prediction error elicited)—as an
interaction term in these models, which was effect-
coded such that the main effect of exposure represents
the average effect across both types of melodies. In all
models, we investigated the main effect of exposure,
the main effect of prediction error, and the difference
in the effect of prediction error as a function of expo-
sure (the interaction term in the model). This interac-
tion term also allowed us to tease apart the effects of
n-gram frequencies and transitional probabilities on
statistical-learning mechanisms. As illustrated in Figure
1, if preference is informed by 7n-gram frequencies, then
the size of the prediction error would increase with
exposure (i.e., there would be an interaction between
exposure and prediction error). Conversely, if prefer-
ence is informed only by transitional probability, then
there would be no interaction because the size of the
prediction error does not increase with exposure. We
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specified by-participant random slopes (including the
interaction term) and intercepts and by-item (melody)
random intercepts. Continuous predictor and depen-
dent variables were standardized before being entered
into the model. The significance of fixed effects (expo-
sure and prediction error) was determined using the
Satterthwaite method to approximate the degrees of
freedom with the ImerTest package (Kuznetsova et al.,
2017).

Study 1

Participants listened to eight monophonic musical melo-
dies composed in the B-P scale during the exposure
phase. The number of presentations varied for each mel-
ody (either two, four, eight, or 16 times with two melodies
in each condition). After exposure, participants rated
familiarity and liking for each melody along with two
melodies not heard in the exposure phase (thus pre-
sented zero times during exposure), as well as altered
versions of the 10 melodies that were identical except for
an unexpected ending. For familiarity ratings, there was
a significant interaction between exposure and prediction
error, B = 0.01, #1883) = 3.99, p < 0.001: The effect of
prediction error—main effect: f = 0.16, #(1169) = 6.33,
p < 0.001—increased as a function of exposure—main
effect: B = 0.33, «(171) = 21.23, p < 0.001. For liking rat-
ings, there was also a significant interaction between
exposure and prediction error, B = 0.05, #(1200) = 2.27,
p=0.02: The effect of prediction error on liking ratings—
main effect: B = 0.11, ©1793) = 4.94, p < 0.001—also
increased as a function of exposure—main effect: § =
0.03, #(1169) = 2.05, p = 0.04. Thus, both exposure and
prediction errors informed both familiarity and liking rat-
ings because participants reported more preference and
familiarity for melodies that were both exposed more
often and that did not elicit a prediction error. These
results are consistent with predictions of the predictive-
coding model, such that the effect of prediction error on
liking ratings increased with the magnitude of the error.

Study 2

In Study 2, we extended the findings from Study 1 to
determine the degree to which changing the specific
numbers of presentations during the exposure phase
affected liking ratings. In a new group of participants,
we replicated Study 1 but with melodies that were
presented either zero, two, four, six, 10, or 14 times.
For familiarity ratings, there was again a significant
interaction between exposure and prediction error,
B =0.00, #(3411) = 2.81, p = 0.005: Again, the effect of
prediction error—main effect: = 0.14, #(1545) = 5.87,
p < 0.001—increased as a function of exposure—main

effect: B = 0.3, #(163) = 15.71, p < 0.001. For liking rat-
ings, we again found a significant main effect of number
of presentations, B = 0.02, #(163) = 2.1, p = 0.04, and
prediction error, f = 0.02, #(171) = 6.35, p < 0.001.
However, we did not detect an interaction between
prediction error and exposure, B = 0.13, #(3179) = 1.00,
p =0.29. Because the sample size of these studies was
chosen to detect the effect of exposure rather than an
interaction (see the Materials and Methods section), the
lack of interaction could simply be due to insufficient
statistical power; thus, we went on to replicate and
extend these studies and to test for an interaction with
aggregated data across several studies.

Studies 3 and 4

Studies 3 and 4 were designed to replicate the findings
from Studies 1 and 2 with a new sample. Study 3 used
the same numbers of presentation as Study 1 (0, 2, 4,
8, 16), and Study 4 used the same numbers of presenta-
tion as Study 2 (0, 2, 4, 6, 10, 14). For familiarity ratings
in Study 3, there was a significant interaction between
exposure and prediction error, 3 = 0.07, €(2305) = 2.79,
p=0.005: Again, the effect of prediction error, = 0.14,
1(1168) = 5.81, p < 0.001, increased as a function of the
number of presentations—main effect: B = 0.33, (168) =
18.81, p < 0.001. For liking ratings, we also replicated
the main effect of exposure, = 0.06, 1(169) = 3.60, p <
0.001. Again, melodies that did not elicit a prediction
error were preferred over melodies with prediction
errors, B = 0.07, #(1507) = 3.15, p = 0.002. There was
no interaction between the two, f = 0.01, #(1434) = 0.50,
p=0.57. For familiarity ratings in Study 4, we replicated
the main effect of exposure, B = 0.34, #(163) = 19.62,
p <0.001, and prediction error, f = 0.17, #(1923) = 7.08,
p < 0.001. We did not detect an interaction between
prediction error and exposure, B = 0.04, #(2026) = 1.60,
p =0.1. For liking ratings in Study 4, we replicated the
significant effect of exposure, B = 0.03, /(162) = 2.14,
p =0.03. Melodies that did not elicit a prediction error
were once again rated as more liked than melodies that
did, B = 0.09, #(3316) = 4.67, p < 0.001. There was no
interaction between prediction error and exposure, 3 =
0.02, 1(1801) = 0.87, p = 0.38. Together, these four stud-
ies consistently show that the main effects of exposure
and prediction error were robust for both familiarity
and liking, but the interaction was much more variable,
especially for liking. Because Studies 1 through 4 used
different samples of participants but the same stimuli
with different numbers of presentations, we proceeded
to combine the data from these studies for a mini meta-
analysis to evaluate the effects of, and interaction
between, prediction error and exposure on familiarity
and liking across a larger sample.
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Table 1. Standardized B Coefficients, Associated p Values, and R* Values for Each Model Fit

for Familiarity and Liking Ratings

Model
Linear Logarithmic
Ratings § b § D
Familiarity
Effect
Exposure 0.33 < .001 0.41 <.001
Exposure x Prediction Error (original > altered) 0.07 <.001 0.08 <.001
Prediction error (original > altered) 0.15 <.001 0.15 <.001
R2 (conditional, marginal) 11, .49 17, .58
Liking
Effect
Exposure 0.04 <.001 0.05 <.001
Exposure? -0.01 11
Exposure x Prediction Error (original > altered) 0.03 .02 0.03 .01
Exposure? x Prediction Error (original > altered) -0.01 .39
Prediction error (original > altered) 0.1 <.001 0.11 <.001
R2 (conditional, marginal) .004, .61 .004, .62

Mini meta-analyses of Studies 1
through 4

Familiarity ratings show a logarithmic relation-
ship with exposure. When considering the shape of
the relationship between exposure and familiarity, we
expected that familiarity ratings would show a logarith-
mic relationship with exposure (i.e., participants would
learn the stimuli after a certain amount of presentations,
after which subsequent presentations do not make them
more familiar), as opposed to a more linear relationship
(i.e., ratings continue to increase with the exposure). We
compared the fit between logarithmic and linear models
for combined data across Studies 1 through 4 (n = 667).
These models had the same random-effects structure as
previous models. Results from this mini meta-analysis
showed both the main effects of the number of presenta-
tions and alterations, as well as significant interactions
between alterations and the number of presentations, in
both linear and logarithmic models. As suggested by
Zuur et al. (2009), we estimated parameters using maxi-
mum likelihood to enable model comparison, and
Akaike’s information criterion (AIC) was compared across
these models to compare their fit. This revealed that a
logarithmic model (AIC = 31575) was a better fit com-
pared with a linear model (AIC = 33986) to model the
relationship between the number of presentations and
familiarity ratings (see Table 1 and Fig. 2).

Liking ratings show a quadratic relationship with
exposure. We used the same approach to best describe
the relationship between liking ratings and exposure.
However, because the trajectory between exposure and
liking typically shows an inverse-U relationship (for a
review, see Chmiel & Schubert, 2017), we compared
model fits of a linear and quadratic model using a
likelihood-ratio test. Both linear and quadratic models
showed significant main effects of the number of presen-
tations and alterations, as well as significant interactions
between the two. The quadratic model was found to best
describe the relationship between the number of presen-
tations and liking ratings, ¥*(13) = 127.03, p < 0.001 (for
model fits, see Table 1; for model predictions plotted
with mean and 95% confidence intervals, see Fig. 2).
Together, these results are consistent with the predictions
of the predictive-coding model: The fact that the effect of
prediction error increased as a function of exposure sug-
gests that the minimization of prediction errors best
accounts for the generation of musical preferences in the
context of this novel musical environment.

Music-reward sensitivity influences the learning
trajectory. Although results from Studies 1 through 4
showed musical preferences were informed by both
exposure and prediction error across an aggregated sam-
ple of 667 participants, past work has also shown consid-
erable individual differences in music-reward sensitivity,
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Fig. 2. Best-fit model predictions of familiarity and liking ratings as a function of exposure and prediction error (*original” melodies did not
elicit a prediction error, whereas “altered” melodies did) across Studies 1 through 4. Points and associated error bars indicate mean ratings

and 95% confidence intervals.

which affects the degree to which individuals enjoy
music listening (Martinez-Molina et al., 2016). Thus, we
tested the hypothesis that liking ratings of individuals
with low music-reward sensitivity (i.e., musical anhe-
donics) would show decreased sensitivity to our manip-
ulations of both exposure and prediction error. Following
past work (Martinez-Molina et al., 2016), we split our
aggregated sample into tertiles using the BMRQ, a mea-
sure of music-reward sensitivity (Mas-Herrero et al.,
2013). These tertiles represent relatively high (hyperhe-
donic; BMRQ = 86-100), medium (hedonic; BMRQ =
76-85), and low (anhedonic; BMRQ = 26-75) sensitivity
to music reward in our sample. To test our hypothesis,
we added an interaction term for music-reward sensitiv-
ity to our best-fitting models (logarithmic for familiarity
ratings and quadratic for liking ratings). Because this
measure indexes individual differences in music-reward
sensitivity, we expected differences across these tertiles
only on liking ratings. If musical anhedonics’ liking rat-
ings are less sensitive to exposure effects than their more
hedonic counterparts, then they will show a different
trajectory between liking ratings and exposure (i.e., an
interaction between music-reward sensitivity and expo-
sure). If they are less sensitive to prediction errors, then
they will show a decreased effect of prediction error
(i.e., an interaction between music-reward sensitivity
and prediction error). For these analyses, this variable
was dummy-coded to treat the hedonic group as the

reference level. We interpreted any interaction between
the number of presentations and music-reward sensitiv-
ity as evidence that the relationship between familiarity
and/or liking ratings and the number of presentations
differed across groups.

For familiarity ratings, there were no differences in
ratings across the three tertiles. Further, there were no
significant two-way interactions between music-reward
sensitivity and exposure or prediction error and no
significant three-way interaction between music-reward
sensitivity, exposure, and prediction error (for model
fits, see Table 2; for model predictions plotted with
mean and 95% confidence intervals, see Fig. 3). This
suggests that musical anhedonics familiarize themselves
similarly to music compared with their more hedonic
counterparts in that their ratings were similarly sensitive
to both exposure and prediction error.

For liking ratings, there was a significant difference
across groups: The hedonic group rated melodies as
more liked than the anhedonic group, = 0.17, #(663) =
2.36, p = 0.02. There were no significant linear interac-
tions between exposure and music-reward sensitivity,
and there were no interactions between prediction error
and music-reward sensitivity. There was no significant
three-way interaction between music-reward sensitivity,
exposure, and prediction error. We did, however, detect
an interaction between the quadratic exposure term
and music-reward sensitivity, B = 0.06, #649) = 3.05,
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Table 2. Standardized B Coefficients and Associated p Values for the Three-Way (Music-Reward Sensitivity x
Exposure x Prediction Error) Interaction Models Built on Familiarity and Liking Ratings

Ratings Tertile contrast B p
Familiarity
Effect
Music-reward sensitivity Hyperhedonic > hedonic 0.06 .26
Hedonic > anhedonic 0.02 .66
Music-Reward Sensitivity x Exposure Hyperhedonic > hedonic 0.01 6
Hedonic > anhedonic —-0.008 75
Music-Reward Sensitivity x Prediction Error (original > altered) Hyperhedonic > hedonic 0.008 .78
Hedonic > anhedonic —-0.005 .86
Music-Reward Sensitivity x Exposure x Prediction Error (original Hyperhedonic > hedonic 0.03 34
> altered) Hedonic > anhedonic —0.005 .85
R? (conditional, marginal) .17, .59
Liking
Effect
Music-reward sensitivity Hyperhedonic > hedonic 0.06 4
Hedonic > anhedonic 0.17 .02
Music-Reward Sensitivity x Exposure Hyperhedonic > hedonic 0.02 47
Hedonic > anhedonic —-0.02 .38
Music-Reward Sensitivity x Exposure? Hyperhedonic > hedonic -0.03 14
Hedonic > anhedonic 0.06 .002
Music-Reward Sensitivity x Prediction Error (original > altered) Hyperhedonic > hedonic -0.01 .79
Hedonic > anhedonic 0.03 .37
Music-Reward Sensitivity x Exposure x Prediction Error Hyperhedonic > hedonic 0.0006 .99
(original > altered) Hedonic > anhedonic 0.02 5
Music-Reward Sensitivity x Exposure? x Prediction Error Hyperhedonic > hedonic 0.007 81
(original > altered) Hedonic > anhedonic —-0.003 91

R2 (conditional, marginal)

02, .62

Note: Only music-reward sensitivity terms are shown.

p = 0.002. Whereas the anhedonic group showed a
significant inverse-U relationship between exposure
and liking ratings, B = —0.04, #(650) = —=3.12 p = 0.002,
the hedonic and hyperhedonic groups did not—
hedonic: B = 0.02, #(649) = 0.24; hyperhedonic: B =
—-0.01, #(675) = 0.95, p = 0.34 (for all results, see Table
2 and Fig. 3). These results suggest that, although all
groups responded similarly to prediction errors, con-
tinued exposure to these melodies led to increased
liking in all but the anhedonic group.

Study 5

Although results from the tertile split above show that
large online samples can capture a range of music-
reward sensitivity that predicts differences in learning
to like new music, extreme cases of insensitivity to
reward can be effective tests of the models derived from
the studies above. In Study 5 we tested the models
relating exposure and prediction error to familiarity and
liking for the anhedonic, hedonic, and hyperhedonic
subgroups on two case studies of music-specific

anhedonia, a condition in which listeners derive no
pleasure from listening to music (Mas-Herrero et al.,
2014). BW and NA are individuals who presented with
congenital and acquired music-specific anhedonia,
respectively. Both participants underwent a streamlined
version of our study paradigm, with melodies presented
zero, four, 10, and 14 times, and only one melody per
condition. We calculated the mean squared error (MSE)
for liking and familiarity ratings of both the original
and altered versions of these melodies using model
predictions from the three-way (Exposure x Prediction
Error x Music-Reward Sensitivity) interaction models at
all three levels of music-reward sensitivity. Because
results of the mini meta-analysis indicated that there
was no difference in the relationship between exposure
and familiarity ratings across the music-reward tertiles
(i.e., no interaction between exposure and reward sen-
sitivity), we did not expect the model’s anhedonic pre-
dictions to have the lowest MSE for the familiarity
ratings of our case studies. In contrast, because we did
detect differences in the exposure-liking trajectory for
musical anhedonics in our mini meta-analysis, we did
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Fig. 3. Model-predicted familiarity and liking ratings as a function of exposure, prediction error, and music reward sensitivity (tertile split
on Barcelona Music Reward Questionnaire: anhedonic, hedonic, and hyperhedonic groups). Points and associated error bars represent 95%

confidence intervals.

expect the model’s predictions for anhedonics’ liking
ratings to have the lowest MSE for our case studies.
For familiarity ratings, the model prediction at the
hyperhedonic level best matched music-specific anhe-
donics’ responses (i.e., the model showed the lowest
MSE of 18.13 at the hyperhedonic levelD), followed by
the hedonic (19.95) and anhedonic (20.18) levels. This
relatively better fit of the hyperhedonic predictions
stems from the fact that all but one familiarity rating
of the melodies that these participants made were
extreme values of 1 or 6, thus likely representing a
binary between knowing or not knowing these stimuli.
This resulted in the lowest MSE for the hyperhedonic
predictions because the latter had the steepest
(although not statistically significantly different) slope
relating familiarity to exposure compared with the
other tertiles. This suggests that both musical anhe-
donic cases were indistinguishable from hyperhedonics
in their familiarity ratings, consistent with the finding
that there were no significant interactions with music-
reward sensitivity from the meta-analysis of Studies 1
through 4 above. In contrast, for liking ratings, the
model had the lowest MSE (3.66) from the anhedonic
level when predicting the music-specific anhedonics’
data compared with both the hedonic (4.97) and hyper-
hedonic (5.01) levels. This shows that the liking ratings
of these cases were indeed more similar to the anhe-
donic group and different from that of the hedonic and
hyperhedonics, consistent with the mini meta-analysis
of Studies 1 through 4 above. Taking the familiarity
and liking ratings together, these case studies provide
further support for the idea that both cases of congeni-
tal and acquired musical anhedonia had less difficulty

with learning these melodies than with deriving reward
from them.

Study 6

Although the studies above generally support the
predictive-coding model, both schematic and veridical
expectations were manipulated simultaneously. Specifi-
cally, structural alterations introduced in the altered
melodies violated schematic expectations because they
contained statistically infrequent pitch patterns and
veridical expectations because they violated partici-
pants’ specific predictions about that melody. The zero-
exposure condition circumvents this issue somewhat
because the two melodies in that condition differ only
in schematic expectations and not in veridical expecta-
tions, but Studies 1 through 5 were not designed and
powered to statistically test for differences in the zero
condition only. Thus, to further probe whether the
effect of the prediction error in these studies can be
attributed more to schematic or veridical expectation
violation, we ran an additional follow-up study in
which the melodies previously presented only in the
postexposure rating phase were now presented in the
exposure phase (at zero, two, four, eight, and 16 times),
whereas those originally in the exposure phase were
now presented only in the postexposure rating phase.
Because the endings of the melodies in the exposure
phase of this study are nongrammatical (meaning that
there were less schematic expectations to be acquired
for these endings), the prediction-error manipulation is
relatively limited to violations of veridical expectations
(Fig. 4). As a result, if subjective ratings are more
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Fig. 4. Differentiating veridical and schematic expectations between Studies 1 and 6. The same example melody from Figure 1 but with the
altered melody (which did not conform to the chord-based grammatical structure; a) is now presented in Study 6. Veridical expectations,
as defined here by n-gram frequency for the whole melody, increase with exposure, whereas schematic expectations, as defined here by
transitional probability between chords, remain stable with exposure to the original set of melodies (b). In contrast, with exposure to altered
melodies (¢), which do not resolve on the same chord, the transitional probability between the two last chords is lower in Study 6 than it is
in Study 1. This results in a proportionally lower exposure to schematic expectations relative to the same amount of exposure to veridical

expectations in Study 0, relative to Study 1.

sensitive to schematic expectations, then there should
be less of an effect of prediction error in this study
compared with the previous studies because there are
less schematic expectations to be learned in this study
than in the previous ones. Conversely, if these ratings
are more sensitive to veridical expectations, then there
should be an effect of prediction error, such that those
that do not elicit a prediction error (i.e., presented in
the exposure phase) are more familiar/preferred com-
pared with those that do.

For familiarity ratings, we replicated the significant
effect of exposure, p = 0.31, #(161) = 15.19, p < 0.001,
but found no main effect of prediction error, § = 0.01,
#(2129) = 0.48, p = 0.63, and no interaction between
exposure and prediction error, B = —0.04, #(2786) =
—-1.77, p = 0.08 (Fig. 5a). For liking ratings, we found a
significant effect of exposure, p = 0.03, #(159) = 2.30,
p =0.02, and prediction error, = 0.05, #(2595) = 2.27,
p = 0.02, such that melodies that did not elicit predic-
tion errors were preferred over those that did (Fig. 5b).
We did not detect an interaction between exposure and
prediction error, f = —0.007, €(2519) = -0.31, p = 0.75.
These results provide preliminary evidence that,
whereas familiarity ratings were more sensitive to sche-
matic expectations, liking ratings were more influenced
by veridical expectations.

Mini meta-analyses of Studies 1 and 6

To further characterize the relationship between sche-
matic and veridical expectations on familiarity and liking
ratings, we aggregated data across Studies 1 (exposed to
fully grammatical melodies) and 6 (exposed to melodies
with ungrammatical endings). We then modeled both
familiarity and liking ratings as a function of a three-way
interaction between study (Study 1 vs. Study 6), predic-
tion error, and exposure. This enabled a direct compari-
son across studies in which there was a relative difference
in the degree to which prediction errors violated sche-
matic expectations (with there being more of a schematic
expectation violation in the manipulation in Study D).
Thus, if ratings were more sensitive to schematic expecta-
tions, then there should be a significant interaction
between study and prediction error, such that the effect
of the prediction error is stronger for Study 1 compared
with Study 6. Conversely, if ratings were more sensitive
to veridical expectations, then the effect of alteration
should be no different between these two studies.

Schematic expectations inform familiarity. For famil-
iarity ratings, there was a significant three-way interaction
(Study x Prediction Error x Exposure) such that the
interaction between the prediction error and number of
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Fig. 5. Means and 95% confidence intervals of familiarity and liking ratings across Study 1 (exposed to fully grammatical melodies) and Study
6 (exposed to melodies with ungrammatical endings). “Exposed” melodies did not elicit prediction errors, whereas “Not Exposed” melodies did.

presentations differed across the two studies, = —0.14,
1(5915) = —4.07, p < 0.001. Whereas the effect of the pre-
diction error increased as a function of exposure in
Study 1, B = 0.1, €5914) = 3.99, p < 0.001, the effect of
the prediction error remained the same across exposure
in Study 6, B = —0.04, #(5915) = -1.79, p = 0.07. Impor-
tantly, there was also a significant two-way interaction
(Study x Prediction Error) such that the effect of the
prediction error was weaker in Study 6 than in Study 1,
B =-0.15, t1(5913) = —4.13, p < 0.001 (for means and 95%
confidence intervals, see Fig. 5a). There was neither a
main effect of study, B = 0.003, #330) = 0.04, p = 0.97,
nor an interaction between study and exposure, B =
-0.02, 1(327) = —0.96, p = 0.34. These results provide
further evidence that familiarity is more sensitive to
schematic expectations and suggest that the relative
increase in schematic expectations evoked by the melo-
dies that did not elicit a prediction error in Study 1 was
critical in increasing the effect of prediction error as a
function of exposure.

Veridical expectations inform liking. For liking rat-
ings, there was neither a significant three-way interaction
between exposure, prediction error, and study, B = —0.06,
#(4192) = —-1.82, p = 0.07; a two-way interaction between
exposure and study, p = 0.002, #(329) = 0.1, p = 0.92; nor
a two-way interaction between prediction error and
study, B = —0.06, #(5163) = —1.81, p = 0.07. There was a
main effect of study on liking ratings, such that melodies
were rated, overall, as more liked in Study 6 compared
with Study 1, B = 0.2, #330) = 2.48, p = 0.01 (for means
and 95% confidence intervals, see Fig. 5b). Because we

did not detect a difference in the effect of prediction
error across studies, these results suggest that, unlike
familiarity ratings, liking ratings seem to be more informed
by veridical expectations.

Study 7

In the first six studies, participants were always asked
to provide familiarity ratings before liking ratings. For
this reason, one possible interpretation is that partici-
pants consistently rated the most familiar melodies from
Studies 1 through 6 as most liked because of anchoring
and/or demand effects. To rule out these possibilities,
we ran an additional study in which participants com-
pleted the identical procedure as Studies 1 and 3 but
did not rate any melodies on familiarity. There was still
an effect of both exposure, B = 0.04, ((181) = 2.47, p =
0.01, and prediction error, B = 0.1, #(2227) = 4.87, p <
0.001, on liking ratings but no interaction between the
two, B = 0.001, #(2461) = 0.06, p = 0.95.

To formally compare whether removing familiarity
ratings impacted the effect of our manipulations on
liking ratings, we collapsed data from Studies 1 and 7
and modeled liking ratings as a three-way interaction
between study (Study 1 vs. Study 7), prediction error,
and exposure. This model did not detect any two-way
interactions between study and exposure, B = 0.008,
1(349) = 0.36, p = 0.72, or study and prediction error,
B = -0.0006, #(4310) = —=0.21, p = 0.84, or a three-way
interaction, B = —0.05, #(3785) = -1.6, p = 0.11. Together,
these results suggest the results of Studies 1 through 6
are not due to anchoring or demand effects.
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Fig. 6. Cross-cultural replication of the effects of alterations and number of presentations on familiarity and liking ratings. The best-fitting
model predictions with mean ratings and 95% confidence intervals are shown.

Study 8

Studies 1 through 7 together establish that the effects of
exposure and prediction error on liking and familiarity
are not explained by task demands and are blunted in
groups with reduced reward sensitivity. Although the
B-P scale is not used widely in any known culture, it is
still possible that differences in the styles of music that
we are exposed to from birth via our culture would
impact how we learn and respond to these B-P melodies.
To assess this possibility, we tested whether the trajec-
tories identified in Studies 1 through 7 are indeed similar
across cultures. Study 8 extends the findings to investi-
gate possible cultural effects on the process of becoming
familiar with and preferring new pieces of music. To this
end, we recruited 156 participants from China to com-
plete the identical procedure as Study 4. For familiarity
ratings, there was a significant interaction between expo-
sure and prediction error, § = 0.08, (1758) = 3.13, p =
0.002: The effect of prediction error—main effect: f =
0.11, #(2437) = 4.49, p < 0.001—increased as a function
of exposure—main effect: § = 0.3, #(154) = 14.9, p <
0.001. For liking ratings, we replicated both the signifi-
cant main effect of exposure, B = 0.06, #(155) = 4, p =
0.001, and prediction error, B = 0.12, #(189) = 5.29, p <
0.001. There was no interaction between prediction error
and exposure, f = 0.007, #(971) = 0.32, p = 0.75.

To further test whether familiarity- and liking-rating
trajectories matched that of the U.S. sample, we again

fit two classes of models (logarithmic and linear for
familiarity ratings and linear and quadratic for liking
ratings) to these data. This revealed that, again, a loga-
rithmic model best fit familiarity ratings (linear model
AIC = 8958.3; logarithmic model AIC = 8376.9). A
likelihood-ratio test also indicated that a quadratic
model fit the liking-rating data better than a linear
model, x*(13) = 127.03, p < 0.00 (for model predictions
plotted with means and 95% confidence intervals, see
Fig. 6), similar to the aggregated U.S. sample.

Study 9

Although the behavioral studies above provide support
for the cross-cultural applicability of the predictive-coding
model, a key component of this model posits the involve-
ment of the reward network in the brain. In Study 9, we
related exposure and prediction error to fMRI activity in
the reward system. Twenty-one young adults participated
in the same study design as in Study 7 outside of the
scanner and then listened to the eight melodies from
Study 8 during fMRI as part of a larger scale study in the
lab looking at effects of music-based interventions in
young adults and older adults (Quinci et al., 2022). Whole-
brain, univariate analyses showed greater activation for
melodies that did not elicit prediction errors compared
with those that did in the right HG (Fig. 7a), suggesting
that the auditory cortex is sensitive to prediction errors.
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(b), increases with exposure (as quantified by number of presentations) for original but not for altered melodies. fMRI = functional
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Given previous evidence showing that coactivation
of the reward and auditory brain areas is associated
with musical preferences and learning (Quinci et al.,
2022), we also assessed the degree to which functional
connectivity between these regions is modulated by
predictive coding. The functional connectivity between
auditory and reward areas was quantified by correlating
the time series of B values extracted from HG (a sphere
around the central voxel from the whole-brain analysis
from Fig. 7a) and reward-sensitive ROIs in the nucleus
accumbens and mPFC (see the Materials and Methods
section). A two-way within-subjects analysis of variance
with the dependent variable of auditory-reward func-
tional connectivity, with the factors of prediction error
and exposure, showed a significant main effect of pre-
diction error, F(1,20) = 5.24, p = .033, n,’ = .21, and a
significant main effect of exposure, F(3,60) = 3.31, p =
.0206, n,? = .14. Figure 7b shows a linear relationship
for original melodies as well as the effect of alteration.
The same pattern was not observed for functional con-
nectivity between HG and the nucleus accumbens—
prediction error: F(1,20) = 1.61, p = .22, n,? = .074;
exposure: F(3,60) = .30, p = .83, n,2 = .015.

Discussion

Across nine studies, we provide novel evidence to sup-
port a predictive-coding account for musical preference
that encompasses the effects of mere exposure on sta-
tistically learned expectations. We show that listeners
from two different cultures can rapidly learn from expo-
sure and prediction errors in novel music. This learning
maps onto the brain’s reward system and is sensitive
to individual differences in reward sensitivity to music.

In Studies 1 through 4, we established that changing
the number of presentations (exposure) as well as alter-
ing the endings of melodies (prediction errors) affected
self-reported liking ratings for music, which ultimately
provided evidence in support of the predictive-coding
model. Meta-analyses across Studies 1 through 4 and
neuropsychological results from Study 5 confirmed that
individuals with musical anhedonia acquired familiarity
in the same way as controls but did not derive prefer-
ences from familiar sequences in the same way as their
musically hedonic counterparts. Study 6 showed that
familiarity ratings were more sensitive to schematic
compared with veridical-expectation violations, whereas
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liking ratings were more sensitive to veridical expecta-
tions. Study 7 tested for liking without testing for famil-
iarity and established the same pattern of results,
confirming that the effects of exposure and prediction
error on liking were not due to anchoring effects. Study
8 established that both Chinese and American partici-
pants were affected by exposure and prediction errors
in this musical system that was unfamiliar to both cul-
tures. Finally, Study 9 tied this relationship between
exposure, prediction error, and reward to increasing
functional connectivity between the auditory and reward
systems. Rather than simply showing that familiarity
leads to liking, results reconciled the exposure- and
prediction-based accounts for music preference and
extended the predictive-coding model in three key
directions: toward unfamiliar statistically and probabi-
listically novel music, toward a more culturally indepen-
dent context via a cross-cultural comparison, and toward
its specific disruption in cases of musical anhedonia.
The degree to which veridical versus schematic
expectations influence musical reward has historically
been difficult to assess because we are usually overex-
posed to particular musical genres that follow the same
statistical patterns. The usage of the B-P scale allows
us to evade the preexisting expectations that have accu-
mulated from music exposure throughout our lives and
offers an experimental tool to tease apart the influences
of veridical and schematic expectations on musical
reward. Here we have operationally defined veridical
expectations as predictions for z-grams and schematic
expectations as predictions for transitional probabilities
between chords. This, combined with the inclusion of
a zero-exposure condition as well as Study 6 in which
altered melodies were presented during exposure,
allowed us to begin to tease apart the effects of veridi-
cal versus schematic expectations on musical reward.
Listeners in Study 6 preferred the less schematically
expected but similarly exposed altered melodies over
their complements (which had been presented in the
exposure phases of Studies 1 through 5), resulting in
effects of exposure and prediction error on liking. This
result rules out the alternative explanation that the
effect of prediction error in the earlier studies could
have been due to specific features of these melodies
leading them to be more preferred. Furthermore, par-
ticipants’ ratings of liking—but not familiarity—contin-
ued to be responsive to the elicited prediction error in
Study 6, suggesting a relative greater importance of
veridical over schematic expectations for musical pref-
erences because there were less schematic expectations
to use for learning the melodies in Study 6 compared
with Study 1. Thus, it is possible that the relatively
greater veridical expectation learning in Study 6 (com-
pared with Study 1) additionally explains why there

were higher liking ratings for melodies in Study 6 com-
pared with Study 1, as revealed in our second mini
meta-analysis. This mini meta-analysis also revealed a
significant three-way interaction (Study x Prediction
Error x Exposure) on familiarity ratings, such that the
effect of prediction error increased as a function of
exposure in Study 1 but not Study 6. We argue that this
effect is due to the fact that the melodies presented
during exposure in Study 6 evoked a relative decrease
in schematic expectations while keeping veridical
expectations the same relative to Study 1. Rather than
claiming that familiarity always leads to liking, or that
we only like what is familiar, the fact that schematic
and veridical expectations differentially contributed to
familiarity and liking ratings suggests that multiple,
independent levels of prediction come into play in
forming musical reward. The result is in line with prior
work (Loui et al., 2010) showing that repeated listening
to a small number of B-P melodies (which increased
veridical expectations without increasing schematic
expectations) resulted in higher preference ratings for
those melodies, but nonrepeated listening to a larger
number of B-P melodies, although resulting in grammar
learning (which is more akin to the learning of sche-
matic expectations in the current study), did not lead
to preference change.

Chinese and American participants both showed
effects of both types of manipulations on liking and
familiarity ratings. The best-fitting model was similar
across the two cultures, with a logarithmic model best
fitting familiarity ratings and a quadratic model best
fitting liking ratings. This adds to the discussion on the
role of cultural background on the predictive-coding
model by suggesting that the statistical-learning pro-
cesses that drive familiarity and liking are relatively free
of the influence of culture when the musical materials
are similarly unfamiliar to both cultures to begin with.
In contrast, the role of culture is more observable for
other tasks beyond liking and familiarity ratings, such
as in tasks involving imagination and the generation of
narratives (Loui et al., 2023). Future studies may further
disentangle the influence of schematic and veridical
expectations in learning across different cultures. That
being said, in practice the two expectations generally
co-occur. Thus, complete experimental dissociation of
one from the other is likely not possible when using
more dynamic, naturalistic musical stimuli.

Although the effects of cultural background on pre-
dictive coding are subtle, individual differences on
reward sensitivity appeared to play a crucial role in
linking predictive coding with musical reward. The con-
sistency of the familiarity-rating results (as well as the
effect of prediction error on liking ratings) across ter-
tiles underscores that musical anhedonics still learned
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the melodies and were forming preferences to some
degree. However, the fact that there was a difference
in the effect of exposure on liking ratings across tertiles
suggests that aesthetic preferences vary by the degree
of exposure required to reach maximal preference. Spe-
cifically, the finding that the anhedonic group showed
the strongest quadratic relationship with exposure in
liking ratings suggests that anhedonics require less
exposure before they become overexposed for their
own liking, which may explain their general lower pref-
erence for music overall.

Importantly, our study is the first to show that expo-
sure to music de novo is associated with changes in the
reward circuitry of the brain. Electrocortical (EEG and
ECoG) recordings have shown that the middle HG is
sensitive to melodic expectations (Di Liberto et al., 2020),
and fMRI studies have found that auditory and reward-
related areas of the brain (including the amygdala, hip-
pocampus, and ventral striatum) show increased
activation during musical-prediction errors (Gold, Pearce,
et al., 2019) as well as during unexpected and/or unpre-
dictable chord sequences (Cheung et al., 2019). How-
ever, because previous studies used familiar musical
stimuli rooted in the Western musical tradition, it was
not possible to determine when in the process of expo-
sure the auditory and reward systems become engaged.
Here, we observed that sensitivity to prediction errors
emerged specifically in the middle HG, thus extending
previous EEG/ECoG results. Furthermore, increased
functional connectivity between HG and the mPFC was
observed when participants listened to pieces that were
more exposed, suggesting that the influence of repeated
exposure on liking is subserved by changes in commu-
nication between the auditory and reward networks.

Several outstanding questions stem from these stud-
ies that warrant future exploration. First, it remains to
be seen whether preference ratings would continue
to increase with more than 16 exposures. It is quite
possible that the positive relationships found here
between exposure and liking reflects the positive side
of a quadratic function and that if we were to extend
the number of repetitions in this paradigm we would
see preference ratings begin to decrease at an inflec-
tion point. Given that we chose to optimize for longer,
more dynamic pieces of music, it was not feasible to
increase the number of exposures beyond 16 without
altering other key aspects of the design, introducing
fatigue or habituation, or otherwise increasing cogni-
tive demand in ways that would confound the study.
Future studies with shorter stimuli may be able to
assess the full extent of the relationship between lik-
ing and repetition in B-P stimuli and the degree to
which relative frequencies (14 relative to 10 vs. 14
relative to two) play a part.

Second, although the current fMRI study shows sen-
sitivity to prediction in the reward system, it is not suf-
ficiently powered to assess possible individual differences
in neurobiology between musical anhedonics and
hedonics. Previous neuroimaging studies that included
participants with musical anhedonia have shown reduced
structural and functional connectivity between auditory
and reward-sensitive areas in musical anhedonics (Loui
et al., 2017; Martinez-Molina et al., 2019) and that altera-
tions of frontostriatal pathways can lead to either
increases or decreases in subjective liking ratings of
music (Mas-Herrero et al., 2021). Future neuroimaging
studies are needed in this special population, and also
across cultures, to establish how the mechanisms of
learning relate to auditory-reward connectivity.

In sum, we developed an innovative paradigm to
assess the effects of exposure and prediction errors in
novel music on musical preference across cultures and
in special populations. Our results are the first to show
the multiple levels by which exposure and prediction
errors in music generate reward and provide strong evi-
dence for this learning process across two cultures. Indi-
viduals with musical anhedonia did not show the same
patterns as a result of exposure, offering a testable mech-
anism by which the human brain learns to predict sounds
from our environment and to map those predictions onto
reward. Because the relationship between predictions
and reward underlie much of motivated behavior (Clark,
2013; Friston, 2010; Schultz, 2015), examining the emer-
gence of this relationship during the course of a study
may provide a better understanding of how these foun-
dational neurocognitive systems may go awry in a variety
of psychiatric and neurological disorders.
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