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1 Introduction

One new question with a birational geometric feature, arising from algebraic K-stability theory, is to

ask what kind of quasi-monomial valuation v over a polarized projective varieties (X,L) satisfies that

Grv
⊕

m∈N
H0(X,mL) is finitely generated. For now the only main case we have some knowledge is in

the Fano setting, i.e., the following question.

Question 1.1 (Global version). Let (X,Δ) be a klt log Fano pair, and v be an lc place of a Q-

complement. Let r satisfy that r(KX +Δ) is Cartier. Then what condition implies that⊕
m∈r·N

GrvH
0(X,−m(KX +Δ))

is finitely generated?

There is a local version which implies the global version by taking the cone.

Question 1.2 (Local version). Let (X = Spec(R),Δ) be a klt singularity, and v ∈ ValX,x be an lc

place of a Q-complement. Then what condition implies that GrvR is finitely generated?

When v is a divisorial valuation, i.e., v = ordE , then it follows from [2] and our assumption that E

is an lc place of a Q-complement that GrER is finitely generated. However, for v with rational rank

rankQ(v) � 2, the question is quite unclear. Built on [16], in [21], a smaller class is sorted out.
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Definition 1.3. Let x ∈ (X,Δ) be a klt singularity. We say v ∈ ValX,x is a Kollár valuation if there

exists a birational model μ : Y → X with Ex(μ) =
∑p

i=1 Ei and D � 0 on Y such that

(1) (Y,E +D) is q-dlt with �E +D� = E and v ∈ QM(Y,E);

(2) KY + E +D � μ∗(KX +Δ) and −KY − E −D is ample over X.

We say that (Y,E +D) is a Kollár model over X, extracting E1, . . . , Ep.

We have the following theorem.

Theorem 1.4 (See [21]). If v is a Kollár valuation, then GrvR is finitely generated.

In fact, it is proved that v is a Kollár valuation if and only if the degeneration of (X,Δ) to X0 =

Spec(GrvR) yields a klt pair. Fix a Q-complement D such that x is the only lc center. It is known that

the set of lc places

LCP(X,Δ+D) = {nontrivial valuations v such that AX,Δ(v) = v(D)}

is a cone over the dual complex D(X,Δ + D), which is a collapsible pseudo-manifold with boundary

(see [6, 10]). Based on the discussion above, it is also worth looking at the set of all Kollár valuations

KV(X,Δ+D) ⊆ LCP(X,Δ+D), which is a cone over a space, denoted by DKV(X,Δ+D). In our note,

we will identify a valuation with its non-zero rescaling, and in this sense we talk about a valuation in the

dual complex.

Question 1.5. Let x ∈ (X,Δ) be a klt singularity, and D be a Q-complement such that x is the only

lc center, i.e., D is an effective Q-divisor such that (X,Δ+D) is klt outside x, and lc but not klt at x.

How does DKV(X,Δ+D) ⊆ D(X,Δ+D) look like?

In general, we know little about DKV(X,Δ+D). The following summarizes what has been proved.

Theorem 1.6. We know

(1) (See [17]) DKV(X,Δ+D) �= ∅.
(2) (See [14]) We fix a log resolution of (X,Δ+D), which yields a triangulation of D(X,Δ+D). If a

point x ∈ DKV(X,Δ+D), then there exists a neighborhood U of x in the smallest affine linear subspace

V defined over Q containing x, such that U ⊆ DKV(X,Δ+D).

One easily sees the conclusion in (2) does not depend on the choice of the log resolution.

Our first main result proves the path connectedness of the locus of Kollár valuations.

Theorem 1.7. Let x ∈ (X,Δ) be a klt singularity, and let D be a Q-complement such that {x} is the

only lc center of (X,Δ+D). Then DKV(X,Δ+D) is path connected.

We make the following conjectures.

Conjecture 1.8. We conjecture DKV(X,Δ+D) satisfies the following:

(1) (Local closedness, weak version) There is a rational triangulation of D(X,Δ + D) such that for

each open simplex C◦, DKV(X,Δ+D) ∩ C◦ is open in its closure DKV(X,Δ+D) ∩ C◦ ⊂ C◦.
(1′) (Local closedness, strong version) There is a rational triangulation of D(X,Δ+D) such that for

each open simplex C◦, DKV(X,Δ+D) ∩ C◦ ⊂ C◦ is open.

(2) (Finiteness, weak version) If D(X,Δ+D) = DKV(X,Δ+D), i.e., D(X,Δ+D) consists of Kollár

valuations, then there is a finite triangulation of D(X,Δ+D), such that each simplex can be realized on

a Kollár model.

(2′) (Finiteness, strong version) If C ⊆ DKV(X,Δ + D) is a closed cell of D(X,Δ + D) after a

triangulation given by a log resolution, then there is a finite triangulation of C =
⋃N

i=1 Ci, such that each

Ci is realized in a Kollár model.

See Example 3.4 for sharpness of our formulation.

In Section 3, we study this conjecture when the dual complex is one-dimensional, and completely

address the question in this case.

Theorem 1.9. Assume D(X,Δ + D) is homeomorphic to [0, 1]. We denote by vt the valuation

corresponding to t ∈ [0, 1]. The set of Kollár valuations DKV(X,Δ+D) is

(1) either precisely one of E0 or E1;



Liu Y C et al. Sci China Math 3

(2) or vt for all t ∈ [0, 1].

Notation and conventions: We follow the notation and conventions in [11, 12, 19]. By a singularity

x ∈ X, we mean X = Spec(R) for a local ring R which is essentially of finite type, x is the closed point.

If v is a valuation on K(X), whose center on X is x, then we denote by GrvR the associated graded ring,

i.e., GrvR =
⊕

λ∈R
a�λ/a>λ, where

a�λ (resp. a>λ) = {f ∈ R | v(f) � (resp. >) λ}.

When v = ordE for some divisor E over X, we also write GrER for GrordE
R. Let (Y,E) be a log

smooth model or more generally a toroidal model such that components of E are Q-Cartier, we denote

by QM(Y,E) the set of quasi-monomial valuations (see, e.g., [21, Definition 2.8]). A q-dlt pair is defined

as [6, Definition 35].

2 Connectedness

In this section, we aim to prove Theorem 1.7.

Lemma 2.1. Fix a klt singularity x ∈ (X,Δ) and a Q-complement D such that (X,Δ + D) is klt

outside x. There exists a positive ε depending only on dim(X), Coeff(Δ) and Coeff(D), such that any lc

place E of a lc pair (X,Δ+ (1− ε)D +G) for an effective Q-divisor G belongs to D(X,Δ+D).

Proof. This follows directly from [23, Lemma 5.5] by applying ACC of log canonical thresholds [9] (see

also [13, Proof of Proposition 6.9]).

Proof of Theorem 1.7. Replacing x ∈ (X,Δ) and D by x ∈ (X,Δ+ (1− ε)D) and εD respectively as

in Lemma 2.1, we may assume that lc places of any Q-complement of (X,Δ) are contained in D(X,Δ+

D). Using Theorem 1.6, we can replace two Kollár valuations by nearby Kollár components. Thus

we may assume two valuations are Kollár components E0 and E1. Let μi : Yi → X (i = 0, 1) be the

model extracting the Kollár component Ei, and Hi the pushforward of a general effective Q-divisor in

| − KYi − Ei − μ−1
i∗ Δ|Q. So Hi is a Q-complement such that Ei are the only lc places of (X,Δ + Hi).

Applying Lemma 2.1 to Ei, there exists εi such that Ei are the only lc places of any Q-complement of

(X,Δ+ (1− εi)Hi). In particular, Ei is the minimizer of v̂olX,Δ+(1−εi)Hi
.

For a real number t ∈ [0, 1], define Ht := (1 − t)(1 − ε0)H0 + t(1 − ε1)H1. Thus x ∈ (X,Δ +

Ht) is a klt singularity with R-boundary divisors. Let vt be a minimizer of v̂olX,Δ+Ht
(·) such that

AX,Δ(vt) = 1, whose existence and uniqueness follows from [3,18,20] and their generalization to R-divisors

[8, Theorems 3.3 and 3.4]. Moreover, by [21] and its generalization to R-divisors [22, Theorem 2.19], we

know that vt is a Kollár valuation over x ∈ (X,Δ+Ht) (hence over x ∈ (X,Δ)). By [8, Theorem 2.20]

(see also [15, Theorem 1.3]), there exists a sequence of Kollár components (St,j)j∈N over x ∈ (X,Δ+Ht)

such that vt = limj→∞
ordSt,j

AX,Δ(St,j)
. Hence St,j is a Kollár component over x ∈ (X,Δ) which implies that

it is an lc place of a Q-complement of (X,Δ). By Lemma 2.1 we know that St,j ∈ D(X,Δ+D), which

implies that their rescaled limit vt ∈ D(X,Δ+D). Moreover, since (v, t) �→ v̂olX,Δ+Ht
(v) is a continuous

function on D(X,Δ+D)× [0, 1], the function

[0, 1] → D(X,Δ+D), t �→ vt

is continuous by Lemma 2.2.

Lemma 2.2. Let f : W × [0, 1] → R be a continuous function where W is a compact topological space.

Assume that for every t ∈ [0, 1], there is a unique minimizer vt ∈ W of the function ft which is the

restriction of f on W × t. Then t �→ vt is a continuous function from [0, 1] to W .

Proof. Consider the subset U ⊂ W × [0, 1] defined by

U := {(x, t) ∈ W × [0, 1] | there exists y ∈ W such that f(x, t) > f(y, t)}.
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We claim that U is open in W × [0, 1]. Let (x, t) ∈ U be an arbitrary point. Then there exists y ∈ W such

that f(x, t) > f(y, t). Since f is continuous, for ε = f(x,t)−f(y,t)
2 > 0 there exists open neighborhoods

x ∈ Ux ⊂ W , y ∈ Uy ⊂ W , and t ∈ Ut ⊂ [0, 1], such that f(x′, t′) > f(x, t)− ε and f(y′, t′) < f(y, t) + ε

for any x′ ∈ Ux, y
′ ∈ Uy and t′ ∈ Ut. In particular,

f(x′, t′)− f(y′, t′) > f(x, t)− f(y, t)− 2ε = 0.

Thus (x′, t′) ∈ U for any (x′, t′) ∈ Ux × Ut, which implies that U is open.

Finally, by assumption we know that (W×[0, 1])\U is precisely the graph of the function σ : [0, 1] → W

where σ(t) = vt. Since U is open, the graph of σ is closed. Thus σ is continuous by the closed graph

theorem as W is compact.

3 One-dimensional dual complex

Let x ∈ (X,Δ) be a klt singularity, and D a Q-complement such that (X,Δ+D) is klt outside x. For any

collection of lc places Et1 , . . . , Eti corresponding to points t1, . . . , ti ∈ D(X,Δ+D), by [2, Corollary 1.4.3],

there exists a model

μt1t2···ti : Yt1t2···ti → X

which precisely extracts Et1 , . . . , Eti . Moreover, by running a (μ−1
t1t2···ti∗D)-MMP over X, we may assume

−KYt1t2···ti − μt1t2···ti∗(Δ)−∑i
j=1 Etj is nef, as the MMP sequence only has flips.

Such Yt1t2···ti is not unique, but any two models Yt1t2···ti and Y ′
t1t2···ti are crepant birationally equivalent.

In particular, the notion of bigness of the restriction of −KYt1t2···ti − μt1t2···ti∗(Δ)−∑i
j=1 Etj on Etj is

well defined for any 1 � j � i.

Therefore, for any t ∈ D(X,Δ+D), Et is a Kollár component if (Yt, μt∗(Δ)+Et) is plt; and Et1 , . . . , Eti

admits a Kollár model, if there exists Yt1t2···ti such that the pair (Yt1t2···ti , μt1t2···ti∗(Δ) +
∑i

j=1 Etj ) is

q-dlt and −KYt1t2···ti − μt1t2···ti∗(Δ)−∑i
j=1 Etj is ample.

We will study the case where D(X,Δ+D) is homeomorphic to a one-dimensional interval [0, 1]. For

any t ∈ [0, 1], up to rescaling, it corresponds to a valuation vt, and for t ∈ Q, it corresponds to a divisorial

valuation Et.

Lemma 3.1. At least one of the endpoints corresponds to a Kollár component.

Proof. Assume one ending point, say E1, is not a Kollár component. Then we know that we

can construct a model μ1 : Y1 → X which precisely extracts E1. From our assumption, μ−1
∗ (D)

does not contain the log canonical center of (Y1, E1 + μ−1
1∗ (Δ)) properly contained in E1. Therefore,

AY1,E1+μ−1
1∗ (Δ)(E0) = 0, so we can get a model μ10 : Y10 → Y1 → X extracting E0, such that

−(KY10 + E0 + E1 + μ−1
10∗(Δ)) is nef, as it is the pull-back of −(KY1 + E1 + μ−1

1∗ (Δ)).

Similarly, if E0 is not a Kollár component, we can get μ01 : Y01 → X and −(KY01 +E0+E1+μ−1
01∗(Δ))

is nef. In particular, (Y10, E0 + E1 + μ−1
10∗(Δ)) and (Y01, E0 + E1 + μ−1

01∗(Δ)) are crepant birationally

equivalent.

However, the restriction of −(KY10 +E0 +E1 + μ−1
10∗(Δ)) on E1 is big and on E0 is not big, while the

restriction of −(KY01 + E0 + E1 + μ−1
01∗(Δ)) on E0 is big and on E1 is not big. A contradiction.

By Lemma 3.1, we can always assume E0 is a Kollár component. Lemma 3.1 also follows from the

standard tie breaking argument, but the above proof sheds more light on our approach.

Proposition 3.2. Assume D(X,Δ+D) is homeomorphic to [0, 1], and E0, E1 are Kollár components.

Then there exists a Kollár model which precisely extracts E0 and E1.

Proof. Let μ01 : Y01 → X be a Q-factorial model which extracts E0 and E1 such that −KY01 − E0 −
E1 − μ−1

01∗Δ is nef. In particular, (Y01, E0 + E1 + μ−1
01∗Δ) is q-dlt (see [6, Proposition 34]). We claim

(−KY01 −E0−E1−μ−1
01∗Δ)|Ei is big for i = 0, 1. If not, say for i = 0 this is not true, then let f : Y01 → Y ′

1

be the ample model of −KY01 −E0 −E1 −μ−1
01∗Δ over X which contracts E0. Then (Y ′

1 , f∗(E1 +μ−1
01∗Δ))

is not plt as it is crepant birationally equivalent to (Y01, E0 + E1 + μ−1
01∗Δ). On the other hand, Y ′

1 is
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isomorphic to Y1 in codimension one. Thus by the negativity lemma, (Y ′
1 , f∗(E1 + μ−1

01∗Δ)) is crepant

birationally equivalent to (Y1, E1 + μ−1
1∗ (Δ)), which contradicts to the assumption that E1 is a Kollár

component.

So if we take the anti-canonical model h : Z → X of Y01 over X for −KY01 − E0 − E1 − μ−1
01∗Δ, it

contains the birational transform Fi of Ei for i = 0, 1.

We claim a component W of F0 ∩ F1 is of codimension two in Z. In fact, for sufficiently divisible m,

the effective divisor F = m(AX,Δ(F0)F0 + AX,Δ(F1)F1) is Cartier and supported on F0 ∪ F1, hence OF

is Cohen-Macaulay by [11, Corollary 5.25]. If we localize at the generic point η of W , as SpecOF,η \ {η}
is disconnected, dim(SpecOF,η) = 1 by [7, Proposition 2.1]. By the classification of surface log canonical

singularities ([12, Subsection 3.3]), the pair (Z,F1 + F2 + h−1
∗ Δ) is toriodal in a neighborhood U of the

generic point η(W ) of W , and Y → Z is isomorphic over η(W ), from the generic point of E0 ∩E1. Then

for any divisor E exceptional over Z whose center contained Z \ U , we have

AZ,F1+F2+h−1
∗ Δ(E) = AY01,E0+E1+μ−1

01∗Δ
(E) > 0.

Thus (Z,F1 + F2 + h−1
∗ Δ) is q-dlt. In particular, it is a Kollár model.

Proof of Theorem 1.9. By Lemma 3.1, we may assume one of E0 or E1, say E0, is a Kollár component.

By Proposition 3.2, if E1 is a Kollár component, then Case (2) happens. So it remains to prove if E1 is

not a Kollár component, then for any s ∈ (0, 1] ∩Q, Es is not a Kollár component.

Let μ1 : Y1 → X be the model extracting E1. From our assumption, μ−1
1∗ D does not pass through the

lc center of (Y1, E1 +μ−1
1∗ Δ) properly contained in E1. As a result, E0 and therefore any Es are lc places

of (Y1, E1 + μ−1
1∗ Δ). So we can extract Es over Y1 to get a Q-factorial model μ1s : Y1s → Y1 → X. Since

D(X,Δ+D) 
 D(Y1, E1 + μ−1
1∗ (Δ +D))


 D(Y1, E1 + μ−1
1∗ Δ) 
 D(Y1s, E1 + Es + μ−1

1s∗Δ) 
 [0, 1],

W1 := E1 ∩Es is the only lc center properly contained in E1 with dim(W1) = dim(X)− 2. In particular,

E1 and W1 are normal and W1 does not properly contain any lc center of (Y1s, E1 + Es + μ−1
1s∗Δ). If we

denote by ν : En
s → Es the normalization, and write

(KY1s + E1 + Es + μ−1
1s∗Δ)|En

s
= KEn

s
+ΔEn

s
,

then D(En
s ,ΔEn

s
) are two points corresponding to two disjoint lc centers W ′

1 and W ′
0. Since (Y1s, E1+Es)

is toroidal at the generic point η(W1) by the classification of surface log canonical singularities (see [12,

Section 3.3]), ν : W ′
1 → W1 is birational and W1 �= ν(W ′

0). Moreover, W0 := ν(W ′
0) does not meet W1 as

W1 does not properly contain any lc center of (Y1s, E1 +Es +μ−1
1s∗Δ). So (Y1s, E1 +Es +μ−1

1s∗Δ) has two

disjoint lc centers W0 and W1 properly contained in Es.

We can run an E1-minimal model program of Y1s over X, obtaining a birational model Y1s ��� Y ′
s ,

which terminates by contracting E1. This minimal model program is isomorphic outside E1. Therefore,

if we denote μ′
s : Y

′
s → X, then the divisorial part of Ex(μ′

s) is the birational transform E′
s of Es, and

(Y ′
s , E

′
s + μ′

s
−1
∗ Δ) has an lc center (isomorphic to W0) properly contained in E′

s.

So if we extract Es to get a model μs : Ys → X, such that −(KYs +Es + μ−1
s∗ Δ) is ample, then by the

negativity lemma, (Ys, Es + μ−1
s∗ Δ) is not plt, i.e., Es is not a Kollár component.

The following result also illuminates the situation when Es is a Kollár component for s ∈ (0, 1) by

taking affine cone over a klt log Fano pair with complement containing only two lc places.

Theorem 3.3. Let (X,Δ) be a klt log Fano pair. Let D be a Q-complement of (X,Δ) such that

D(X,Δ + D) contains only two isolated points E1 and E2. Then Aut0(X,Δ + D) ∼= Gm, and both E1

and E2 induce product test configurations of (X,Δ + D) that are opposite to each other up to positive

scaling.

Proof. Let Y → X be the extraction of E1 and E2 such that each Ei is anti-ample over X. Let

(X ,ΔX + DX ) → A1
s be the weakly special test configuration induced by E1 in the sense of boundary
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polarized CY pairs as in [1, 4]. Thus X → A1 is of Fano type. Let Ei (i = 1, 2) be the divisor over

X corresponding to Ei × A1
s. Let Y → X be the extraction of E1 and E2 such that each Ei is anti-

ample over X . We claim that (Y ,ΔY + DY + Y0 + E1 + E2) is dlt. Clearly it is log canonical as it

is crepant to (X ,ΔX + DX + X0) which is log canonical. In addition, it is plt away from Y0 as it

is isomorphic to (Y,ΔY + DY + E1 + E2) × (A1 \ {0}). Denote by Ei,0 := Ei|Y0 . Then each Ei,0 is

connected as the general fiber of Ei → A1 is connected. Since (Y0,ΔY0 + DY0 + E1,0 + E2,0) is crepant

birational to (X0,ΔX0 + DX0), we know that Ei,0 is reduced whose irreducible components are lc places

of (X0,ΔX0 +DX0). By [1, Proposition 8.7], we know that D(X0,ΔX0 +DX0) has dimension 0. Thus E1,0
and E2,0 are disjoint prime divisors. By [12, Proposition 4.37] we know that E1,0 and E2,0 are the only lc

places of (X0,ΔX0
+DX0

). By inversion of adjunction, we know that E1,0 and E2,0 are the only minimal

lc centers of (Y,ΔY + DY + Y0 + E1 + E2). Since Y0 is regular at the generic point ηi,0 of Ei,0, we have

that Y is regular at ηi,0 as Y0 is Cartier in Y. As a result, (Y,ΔY + DY + Y0 + E1 + E2) is dlt at ηi,0
which implies that it is dlt everywhere.

Next, we show that (X0,ΔX0) is klt. From the above arguments we know that E1,0 and E2,0 are the

only lc places of the slc pair (X0,ΔX0 + DX0). Moreover, since ordEi(D) > 0, we have ordEi(DX ) > 0

which implies that ordEi,0(DX0) > 0. Thus (X0,ΔX0) is klt.

So far, we have shown that E1 is a special divisor over (X,Δ). By symmetry, so is E2. Moreover,

since (X0,ΔX0 +D0) admits a Gm-action, we know that each Ei,0 induces a product test configuration of

(X0,ΔX0 + D0) by [5] (see also [1, Theorem 4.8]). In particular, E2,0 is a special divisor over (X0,ΔX0).

Thus E2 provides a family of special divisors over (X ,ΔX ). By the proof of [21, Proposition 4.5] (also

see [19, Theorem 5.7]), there exists a family of special test configurations (X,ΔX) → A2
s,t of X induced

by E2 where

(X,ΔX)×A2 (A2 \ (t = 0)) ∼= (X ,ΔX )× (A1
t \ {0}).

In particular, (X(0,0),ΔX(0,0)
) is a klt log Fano pair. Denote by DX the closure of D × (A1

t \ {0}) in

X. Then by [1, Theorem 6.3] we know that (X,ΔX + DX) → A2 is a family of boundary polarized

CY pairs. Since E2 is Gm-equivariant for the natural Gm-action on X , we know that X → A2
s,t is G2

m-

equivariant with the standard G2
m-action on A2. Moreover, the above arguments implies that the central

fiber (X(0,0),ΔX(0,0)
+ DX(0,0)

) has only two lc places E1,(0,0) and E2,(0,0) which induce 1-PS’s of G2
m of

weights (1, 0) and (0, 1) respectively. On the other hand, by [1, Proof of Proposition 8.11] we know that

Aut0(X(0,0),ΔX(0,0)
+DX(0,0)

) ∼= Gm.

As a result, we know that there exists a non-trivial 1-PS σ : Gm → G2
m of weight (a, b) such that σ acts

trivially on X(0,0). Since the 1-PS’s of weights (1, 0) and (0, 1) are induced by valuations with different

centers, we know that a and b have the same sign, and we may assume a > 0 and b > 0. Thus by pulling

back X → A2 under σ we obtain a test configuration of (X,Δ+D) whose Gm-action on the central fiber

(X(0,0),ΔX(0,0)
+DX(0,0)

) is trivial. Therefore, we must have

(X,Δ+D) ∼= (X(0,0),ΔX(0,0)
+DX(0,0)

),

which implies that Aut0(X,Δ+D) ∼= Gm, and the proof is finished by [5].

Example 3.4. Let V = P2 = P(x, y, z) and DV be the nodal cubic DV = (zx2 + zy2 + y3 = 0). The

lc places of (V,DV ) is a cone over a circle. Let ut (0 < t < +∞) be the quasi-monomial valuations with

weight (1, t) over the two branches of DV at [0 : 0 : 1]. Then [16, Section 6] shows that ut is a special

valuation, i.e., Proj (Grutk[x, y, z]) is a klt Fano variety if and only if

t ∈
(
7− 3

√
5

2
,
7 + 3

√
5

2

)
.

Now we consider the affine cone (A3, D) of (V,DV ) with polarization OV (1), so o ∈ A3 is the origin, and

D is the divisor which is the cone overDV whose affine equation is given byD = (zx2+zy2+y3 = 0) ⊂ A3.

Then the dense open subcomplex D(A3, D)◦ ⊂ D(A3, D) consisting of valuations centered at o is of the
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form vs,t = (ordo, s ·u t
s
), where s, t ∈ [0,+∞) with vs,0 and v0,s glued (corresponding to (ordo, s · ordD)).

By writing v = (ordo, u) for u ∈ ValV we mean that for g =
∑

m�0 gm ∈ OA3,o with gm the homogeneous

component of degree m of g, we have

v(g) := min{m+ u(gm) | gm �= 0}.

From this expression, we know that vs,t is a quasi-monomial valuations with weights (1, s, t) in the blow-

up of A3 at o with respect to the exceptional divisor and the two branches of the strict transform of D.

Let m be the maximal ideal corresponding to o. So for a = (f,m�) with f = zx2 + zy2 + y3 and � ∈ N,

we have

vs,t(a) =

{
vs,t(f) = 3 + s+ t if 3 + s+ t � �,

� if 3 + s+ t � �,

and the log discrepancy AA3(vs,t) = 3 + s+ t. For any fixed � > 3, we choose a set of general generators

h1, h2, . . . , hm ∈ a, and let D′ := 1
m (H1 +H2 + · · ·+Hm) with Hi := (hi = 0). Then the dual complex

D(A3, D′) = {vs,t ∈ D(A3, D)◦ | s, t � 0 and s+ t � �− 3}.

Moreover, the set of Kollár valuations DKV(A3, D′) consist of ordo = v0,0 and vs,t with

s, t > 0,
t

s
∈
(
7− 3

√
5

2
,
7 + 3

√
5

2

)
and s+ t � �− 3.

As a result, we see that DKV(A3, D′) is neither open in D(A3, D′), nor a finite union of open simplicies

in any rational triangulation of D(A3, D′). On the other hand, it is not hard to see that Conjecture 1.8

holds in this example.
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