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1 Introduction

One new question with a birational geometric feature, arising from algebraic K-stability theory, is to
ask what kind of quasi-monomial valuation v over a polarized projective varieties (X, L) satisfies that
Gr, @,,en H 9(X,mL) is finitely generated. For now the only main case we have some knowledge is in
the Fano setting, i.e., the following question.

Question 1.1 (Global version). Let (X,A) be a kit log Fano pair, and v be an lc place of a Q-
complement. Let r satisfy that r(Kx + A) is Cartier. Then what condition implies that

P Gr.HOX, —m(Ex + A))
mer-N
is finitely generated?
There is a local version which implies the global version by taking the cone.

Question 1.2 (Local version). Let (X = Spec(R),A) be a klt singularity, and v € Valx , be an lc
place of a Q-complement. Then what condition implies that Gr, R is finitely generated?

When v is a divisorial valuation, i.e., v = ordg, then it follows from [2] and our assumption that E
is an lc place of a Q-complement that GrgR is finitely generated. However, for v with rational rank
rankg(v) > 2, the question is quite unclear. Built on [16], in [21], a smaller class is sorted out.
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Definition 1.3. Let x € (X, A) be a kit singularity. We say v € Valx , is a Kolldr valuation if there
exists a birational model p: Y — X with Ex(u) = >% | E; and D > 0 on Y such that
(1) (Y,E+ D) is g-dlt with |E+ D] = E and v € QM(Y, E);
(2) Ky + E4+ D > pu*(Kx +A) and —Ky — E — D is ample over X.
We say that (Y, E + D) is a Kolldr model over X, extracting E1, ..., E,.
We have the following theorem.
Theorem 1.4 (See [21]). Ifv is a Kolldr valuation, then Gr,R is finitely generated.

In fact, it is proved that v is a Kollar valuation if and only if the degeneration of (X,A) to Xy =
Spec(Gr, R) yields a klt pair. Fix a Q-complement D such that z is the only lc center. It is known that
the set of Ic places

LCP(X, A + D) = {nontrivial valuations v such that Ax A(v) =v(D)}

is a cone over the dual complex D(X,A + D), which is a collapsible pseudo-manifold with boundary
(see [6,10]). Based on the discussion above, it is also worth looking at the set of all Kolldr valuations
KV(X,A+ D) C LCP(X, A+ D), which is a cone over a space, denoted by DXV (X, A+ D). In our note,
we will identify a valuation with its non-zero rescaling, and in this sense we talk about a valuation in the
dual complex.

Question 1.5. Let 2 € (X, A) be a klt singularity, and D be a Q-complement such that x is the only
lc center, i.e., D is an effective Q-divisor such that (X, A + D) is klt outside x, and lc but not klt at .
How does DXV (X, A + D) C D(X, A + D) look like?

In general, we know little about DXV (X, A 4+ D). The following summarizes what has been proved.

Theorem 1.6. We know

(1) (See [17]) DXV(X,A + D) # 0.

(2) (See [14]) We fix a log resolution of (X, A+ D), which yields a triangulation of D(X,A+ D). If a
point & € DXV(X, A + D), then there exists a neighborhood U of x in the smallest affine linear subspace
V defined over Q containing x, such that U C DXV(X, A + D).

One easily sees the conclusion in (2) does not depend on the choice of the log resolution.
Our first main result proves the path connectedness of the locus of Kollar valuations.

Theorem 1.7. Let z € (X,A) be a kit singularity, and let D be a Q-complement such that {x} is the
only lc center of (X, A+ D). Then DXV (X, A+ D) is path connected.

We make the following conjectures.

Conjecture 1.8. We conjecture DXV (X, A + D) satisfies the following:

(1) (Local closedness, weak version) There is a rational triangulation of D(X, A 4+ D) such that for
each open simplex C°, DXV (X, A + D) N C® is open in its closure DXV (X, A + D)NC° C C°.

(1') (Local closedness, strong version) There is a rational triangulation of D(X, A + D) such that for
each open simplex C°, DXV(X, A + D) N C° C C° is open.

(2) (Finiteness, weak version) If D(X, A + D) = DXV(X, A + D), i.e., D(X, A + D) consists of Kollar
valuations, then there is a finite triangulation of D(X, A 4+ D), such that each simplex can be realized on
a Kollar model.

(2") (Finiteness, strong version) If C C DXV(X,A + D) is a closed cell of D(X,A + D) after a
triangulation given by a log resolution, then there is a finite triangulation of C' = Uf\[:l C;, such that each
C; is realized in a Kollar model.

See Example 3.4 for sharpness of our formulation.
In Section 3, we study this conjecture when the dual complex is one-dimensional, and completely
address the question in this case.

Theorem 1.9. Assume D(X,A + D) is homeomorphic to [0,1]. We denote by v; the valuation
corresponding to t € [0,1]. The set of Kolldr valuations DXV (X, A + D) is
(1) either precisely one of Ey or Ex;
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(2) or vy for all t € [0,1].

Notation and conventions: We follow the notation and conventions in [11,12,19]. By a singularity
x € X, we mean X = Spec(R) for a local ring R which is essentially of finite type, « is the closed point.
If v is a valuation on K (X ), whose center on X is x, then we denote by Gr, R the associated graded ring,
ie., GryR = @, g axx/asx, where

asy (resp. asy) ={f € R|v(f) = (resp. >) A}.

When v = ordg for some divisor E over X, we also write GrgR for Groga,R. Let (Y, E) be a log
smooth model or more generally a toroidal model such that components of E are Q-Cartier, we denote
by QM(Y, E) the set of quasi-monomial valuations (see, e.g., [21, Definition 2.8]). A g-dlt pair is defined
as [6, Definition 35].

2 Connectedness

In this section, we aim to prove Theorem 1.7.

Lemma 2.1. Fiz a kit singularity x € (X,A) and a Q-complement D such that (X,A + D) is kit
outside x. There exists a positive € depending only on dim(X), Coeff(A) and Coeff (D), such that any lc
place E of a lc pair (X,A+ (1 —¢)D + Q) for an effective Q-divisor G belongs to D(X, A + D).

Proof.  This follows directly from [23, Lemma 5.5] by applying ACC of log canonical thresholds [9] (see
also [13, Proof of Proposition 6.9]). O

Proof of Theorem 1.7.  Replacing z € (X, A) and D by z € (X, A+ (1 —¢)D) and €D respectively as
in Lemma 2.1, we may assume that lc places of any Q-complement of (X, A) are contained in D(X, A +
D). Using Theorem 1.6, we can replace two Kolldr valuations by nearby Kolldr components. Thus
we may assume two valuations are Kollar components Ey and E;. Let p;: Y; — X (i = 0,1) be the
model extracting the Kollar component F;, and H; the pushforward of a general effective Q-divisor in
| - Ky, — E; — u;lA|@. So H,; is a Q-complement such that F; are the only lc places of (X, A + H;).
Applying Lemma 2.1 to FE;, there exists ¢; such that F; are the only lc places of any Q-complement of
(X,A+ (1 —¢;)H;). In particular, E; is the minimizer of \7(;1X7A+(1_Ei)Hi.

For a real number ¢t € [0,1], define H; = (1 — #)(1 — g9)Hp + t(1 — e1)H;. Thus = € (X,A +
H,;) is a klt singularity with R-boundary divisors. Let v; be a minimizer of \7(;1)(’ A+, (1) such that
Ax a(vy) =1, whose existence and uniqueness follows from [3,18,20] and their generalization to R-divisors
[8, Theorems 3.3 and 3.4]. Moreover, by [21] and its generalization to R-divisors [22, Theorem 2.19], we
know that v; is a Kollar valuation over z € (X, A + H;) (hence over = € (X,A)). By [8, Theorem 2.20]
(see also [15, Theorem 1.3]), there exists a sequence of Kollar components (S; ;) jen over z € (X, A+ Hy)

. ordg, .
such that vy = lim; o 5 £

P TINCAE Hence S, ; is a Kolldr component over z € (X, A) which implies that
it is an lc place of a Q-complement of (X, A). By Lemma 2.1 we know that S; ; € D(X, A + D), which
implies that their rescaled limit v; € D(X, A+ D). Moreover, since (v,t) = voly A, 7, (v) is a continuous

function on D(X, A 4+ D) x [0, 1], the function
[0,1] = D(X,A+ D), tr—

is continuous by Lemma 2.2. O

Lemma 2.2.  Let f : W x [0,1] = R be a continuous function where W is a compact topological space.
Assume that for every t € [0,1], there is a unique minimizer vy € W of the function f; which is the
restriction of f on W x t. Then t — vy is a continuous function from [0,1] to W.

Proof.  Consider the subset U C W x [0, 1] defined by

U :={(z,t) € W x [0,1] | there exists y € W such that f(x,t) > f(y,t)}.
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We claim that i/ is open in W x [0,1]. Let (z,t) € U be an arbitrary point. Then there exists y € W such
that f(z,t) > f(y,t). Since f is continuous, for £ = M > 0 there exists open neighborhoods
zrelU, CW,yeU, CW,and t € Uy C [0,1], such that f(a',t') > f(x,t) —e and f(y',t') < f(y,t) + €
for any «’ € Uy, y € U, and ¢’ € U,. In particular,

f(x/’t/) - f(y/7t/) > f(]),t) - f(yvt) —2=0.

Thus (2/,t") € U for any (2,¢') € U, x Uy, which implies that I is open.

Finally, by assumption we know that (W x [0, 1])\U is precisely the graph of the function o : [0,1] — W
where o(t) = v;. Since U is open, the graph of o is closed. Thus ¢ is continuous by the closed graph
theorem as W is compact. O

3 One-dimensional dual complex

Let x € (X, A) be a kit singularity, and D a Q-complement such that (X, A+ D) is kit outside x. For any
collection of lc places E},, ..., E;, corresponding to points t1, ..., t; € D(X, A+ D), by [2, Corollary 1.4.3],
there exists a model

Htrto-tyt Yeytgt; — X

which precisely extracts Ey,, ..., E;,. Moreover, by running a (u;%z,_ti*D)-MMP over X, we may assume
~KY, 0y 0, — Hitgtaotix (D) = 2051 Ey; s nef, as the MMP sequence only has flips.

Such Yy, 1,4, is not unique, but any two models Y3, ¢,...1, and Y}, ..,, are crepant birationally equivalent.
In particular, the notion of bigness of the restriction of —Ky, , ., — Pty tort; (D) — Z;Zl Ey; on By, is
well defined for any 1 < j <.

Therefore, for any t € D(X, A+ D), E, is a Kolldar component if (Y, p (A)+Ey) is plt; and Ey, , ..., By,
admits a Kolldr model, if there exists Yirtyty such that the pair (Vi e, ftyty-tix (D) + 20 Byj) is
q-dlt and —Ky, ,, ., = Hiytyt,(A) = 251 By, is ample.

We will study the case where D(X, A + D) is homeomorphic to a one-dimensional interval [0,1]. For
any t € [0,1], up to rescaling, it corresponds to a valuation v, and for ¢t € Q, it corresponds to a divisorial
valuation Fj.

Lemma 3.1. At least one of the endpoints corresponds to a Kolldr component.

Proof.  Assume one ending point, say Fi, is not a Kolldir component. Then we know that we
can construct a model pp:Y; — X which precisely extracts E;. From our assumption, p;!(D)
does not contain the log canonical center of (Yi, Ey + up(A)) properly contained in E;. Therefore,
AYl,ElJrufj(A)(EO) = 0, so we can get a model uip: Y19 — Y3 — X extracting Ep, such that
—(Ky,y + Eo + E1 + g, (A)) is nef, as it is the pull-back of —(Ky, + Ey + up, (A)).

Similarly, if Fy is not a Kolldr component, we can get po1: Yp1 — X and —(Ky,, + Eo+ FE1 + Mall*(A))
is nef. In particular, (Yig, By + F1 + py0.(A)) and (Yo, Eg + Ey + pig),(A)) are crepant birationally
equivalent.

However, the restriction of —(Ky,, + Eo + F1 + py5.(A)) on Ej is big and on Ejy is not big, while the
restriction of —(Ky,, + Eo + F1 + gL (A)) on Ey is big and on Ej is not big. A contradiction. O

By Lemma 3.1, we can always assume FEj is a Kollar component. Lemma 3.1 also follows from the
standard tie breaking argument, but the above proof sheds more light on our approach.

Proposition 3.2.  Assume D(X, A+ D) is homeomorphic to [0, 1], and Ey, Ey are Kolldr components.
Then there exists a Kolldr model which precisely extracts Ey and E.

Proof.  Let po1: You — X be a Q-factorial model which extracts Ey and Fy such that —Ky,, — Eg —
E; — pigt A is nef. In particular, (Yo1, Eg + Ey + pghA) is g-dlt (see [6, Proposition 34]). We claim
(—Ky,, — Eo— E1 — 15, A)| g, is big for i = 0, 1. If not, say for i = 0 this is not true, then let f: Y51 — Y7
be the ample model of —Ky,, — Fy — Ey — piy,A over X which contracts Ey. Then (Y7, f.(E1 + g2 A))
is not plt as it is crepant birationally equivalent to (Yo1, Eg + Ey + pg,hA). On the other hand, Y{ is
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isomorphic to Y; in codimension one. Thus by the negativity lemma, (Y{, f.(E1 + pgiiA)) is crepant
birationally equivalent to (Y3, By + puy, (A)), which contradicts to the assumption that E; is a Kollar
component.

So if we take the anti-canonical model h: Z — X of Yy, over X for —Ky,, — Ey — E; — ugll*A, it
contains the birational transform F; of E; for i = 0, 1.

We claim a component W of Fy N F} is of codimension two in Z. In fact, for sufficiently divisible m,
the effective divisor F' = m(Ax a(Fo)Fo + Ax A (F1)F1) is Cartier and supported on Fy U Fi, hence Op
is Cohen-Macaulay by [11, Corollary 5.25]. If we localize at the generic point n of W, as Spec Op,, \ {n}
is disconnected, dim(Spec Op,) = 1 by [7, Proposition 2.1]. By the classification of surface log canonical
singularities ([12, Subsection 3.3]), the pair (Z, Fy + Fy + h;'A) is toriodal in a neighborhood U of the
generic point n(W) of W, and Y — Z is isomorphic over n(W), from the generic point of Ey N Ey. Then
for any divisor E exceptional over Z whose center contained Z \ U, we have

AZ7F1+F2+}L:1A(E) = AY017E0+E1+M511*A(E) > 0.

Thus (Z, Fy + Fy + h;'A) is g-dlt. In particular, it is a Kollar model. O

Proof of Theorem 1.9. By Lemma 3.1, we may assume one of Ey or F1, say Ey, is a Kollar component.
By Proposition 3.2, if F is a Kolldr component, then Case (2) happens. So it remains to prove if Fj is
not a Kolldr component, then for any s € (0,1] N Q, Es is not a Kolldr component.

Let pq: Y7 — X be the model extracting F;. From our assumption, ,ul_*lD does not pass through the
lc center of (Y71, Eq + u;*l A) properly contained in E;. As a result, Fy and therefore any F, are lc places
of (Y1,E, + uf*lA). So we can extract Ey over Y7 to get a Q-factorial model uis: Y15 — Y7 — X. Since

D(X,A+ D) = D(Y1, E1 + 3, (A + D))
~ D(Y1, By + putA) =~ D(Yig, By + Eg + pi L A) ~[0,1],
W1 := E1 N Ey is the only lc center properly contained in E; with dim(W;) = dim(X) — 2. In particular,

E; and W; are normal and W7 does not properly contain any lc center of (Yis, By + Es + /Lfsl*A). If we
denote by v: EI' — E; the normalization, and write

(Ky,, + By + Eq + pi,.A)

En = KE;‘ —+ AE;‘,

then D(E}, Agn) are two points corresponding to two disjoint lc centers Wi and Wy. Since (Y1, Ey + E;)
is toroidal at the generic point n(WW7) by the classification of surface log canonical singularities (see [12,
Section 3.3]), v: W{ — W is birational and Wy # v(W{). Moreover, Wy := v(W{) does not meet W as
W1 does not properly contain any lc center of (Y14, E1 + Es + Hfsl* ). So (Yis, E1+ Es+ ul_sl*A) has two
disjoint lc centers Wy and W properly contained in Ej.

We can run an Ej-minimal model program of Yi5 over X, obtaining a birational model Y5 --» Y/,
which terminates by contracting F7. This minimal model program is isomorphic outside E;. Therefore,
if we denote pl: Y/ — X, then the divisorial part of Ex(u) is the birational transform E! of Ej, and
(Y., E! + 1, 7' A) has an lc center (isomorphic to W) properly contained in E,.

So if we extract E to get a model ps: Yy — X, such that —(Ky, + Es + p;tA) is ample, then by the
negativity lemma, (Y, Es + p;,lA) is not plt, i.e., B, is not a Kollar component. O

The following result also illuminates the situation when E, is a Kolldr component for s € (0,1) by
taking affine cone over a klt log Fano pair with complement containing only two lc places.

Theorem 3.3. Let (X,A) be a kit log Fano pair. Let D be a Q-complement of (X,A) such that
D(X,A + D) contains only two isolated points Ey and Ey. Then Aut’(X,A + D) = G,,, and both E;
and Es induce product test configurations of (X, A + D) that are opposite to each other up to positive
scaling.

Proof. Let Y — X be the extraction of F; and FEs such that each FE; is anti-ample over X. Let
(X,Ax +Dx) — Al be the weakly special test configuration induced by Ej in the sense of boundary
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polarized CY pairs as in [1,4]. Thus X — A! is of Fano type. Let & (i = 1,2) be the divisor over
X corresponding to E; x Al. Let ) — X be the extraction of & and & such that each &; is anti-
ample over X. We claim that (V,Ay + Dy + Vo + & + &) is dlt. Clearly it is log canonical as it
is crepant to (X,Ax + Dy + Xy) which is log canonical. In addition, it is plt away from )y as it
is isomorphic to (Y, Ay + Dy + E; + Es) x (A'\ {0}). Denote by & = &y, Then each & is
connected as the general fiber of & — A is connected. Since (Yo, Ay, + Dy, + E1,0 + E2,0) is crepant
birational to (Xp, Ax, + Dy, ), we know that &; ¢ is reduced whose irreducible components are lc places
of (Xy, Ax, +Dyx,). By [1, Proposition 8.7], we know that D(Xy, Ay, + Dx,) has dimension 0. Thus &
and & o are disjoint prime divisors. By [12, Proposition 4.37] we know that & ¢ and &y are the only lc
places of (Xy, Ay, + Dx,). By inversion of adjunction, we know that & ¢ and & are the only minimal
lc centers of (¥, Ay + Dy + Vo + &1 + &2). Since ) is regular at the generic point 7; ¢ of & o, we have
that Y is regular at ;o as Yo is Cartier in Y. As a result, (V,Ay + Dy + Yo+ &1 + &) is dlt at 0
which implies that it is dlt everywhere.

Next, we show that (Xp, Ay,) is klt. From the above arguments we know that & o and & o are the
only lc places of the slc pair (Xp, Ax, + Dx,). Moreover, since ordg, (D) > 0, we have ordg,(Dx) > 0
which implies that ordg, ,(Dx,) > 0. Thus (Xp, Ax,) is klt.

So far, we have shown that F; is a special divisor over (X, A). By symmetry, so is Es. Moreover,
since (Xy, Ax, + Do) admits a G,,-action, we know that each &; o induces a product test configuration of
(Xo, Ax, + Do) by [5] (see also [1, Theorem 4.8]). In particular, £ ¢ is a special divisor over (X, Ay, ).
Thus & provides a family of special divisors over (X, Ay). By the proof of [21, Proposition 4.5] (also
see [19, Theorem 5.7]), there exists a family of special test configurations (X, Ax) — A2, of X induced
by & where

(%, Ax) x4z (A2\ (= 0)) = (X, Ax) x (A1 {0}).

In particular, (X(,0), Az, ) is a klt log Fano pair. Denote by Dx the closure of D x (Af \ {0}) in
X. Then by [1, Theorem 6.3] we know that (X,Ax + Dx) — A? is a family of boundary polarized
CY pairs. Since & is G,-equivariant for the natural Gp,-action on X, we know that X — A2, is G2 -
equivariant with the standard G2, -action on A%. Moreover, the above arguments implies that the central
fiber (X(0,0), Ax g0y T Dx(o,,) has only two lc places &; (o) and &; (90) which induce 1-PS’s of G2, of
weights (1,0) and (0, 1) respectively. On the other hand, by [1, Proof of Proposition 8.11] we know that

Aut’(X(0,0) Ax 0.0, + D2 0.0)) = G-

As a result, we know that there exists a non-trivial 1-PS o : G,,, — G2, of weight (a,b) such that o acts
trivially on X(g,0). Since the 1-PS’s of weights (1,0) and (0,1) are induced by valuations with different
centers, we know that a and b have the same sign, and we may assume a > 0 and b > 0. Thus by pulling
back X — A? under o we obtain a test configuration of (X, A + D) whose G,,-action on the central fiber
(X(0,0 Ax o + 9:{(010)) is trivial. Therefore, we must have

(X, A+ D) = (X0,00, Ax00) T D200y )

which implies that Aut®(X, A + D) 2 G,,, and the proof is finished by [3]. O

Example 3.4. Let V =P? = P(z,y, 2) and Dy be the nodal cubic Dy = (222 + 2y* +3® = 0). The
lc places of (V, Dy ) is a cone over a circle. Let u; (0 <t < 4+00) be the quasi-monomial valuations with
weight (1,t) over the two branches of Dy at [0 : 0 : 1]. Then [16, Section 6] shows that u; is a special
valuation, i.e., Proj (Gry, k[z,y, 2]) is a klt Fano variety if and only if

(73\/5 7+3\/5)
te g .

Now we consider the affine cone (A3, D) of (V, Dy ) with polarization Oy (1), so o € A3 is the origin, and
D is the divisor which is the cone over Dy whose affine equation is given by D = (222 +zy?+5°> = 0) C A3.
Then the dense open subcomplex D(A3, D)° C D(A3, D) consisting of valuations centered at o is of the
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form v, = (ordy, s-uz+ ), where s,¢ € [0, +00) with v, ¢ and vg s glued (corresponding to (ord,, s-ordp)).
By writing v = (ord,, u) for u € Valy we mean that for g = Zm>o gm € Ops , with g, the homogeneous
component of degree m of g, we have

v(g) := min{m + u(gm) | gm # 0}.

From this expression, we know that v, ; is a quasi-monomial valuations with weights (1, s,t) in the blow-
up of A3 at o with respect to the exceptional divisor and the two branches of the strict transform of D.
Let m be the maximal ideal corresponding to o. So for a = (f,m*) with f = z2? + 2y> + 9> and £ € N,
we have

ver(f) =3+s+t if 3+s+t

</
vs (@) = .
Y4 if 34+s+t>/4

)

9

and the log discrepancy Aps(vs ) =3 + s+ ¢. For any fixed ¢ > 3, we choose a set of general generators
hi,ha,...,hy, € a, and let D' := %(Hl + Hy+ -+ H,,) with H; := (h; =0). Then the dual complex

D(A% D) = {vss € D(A®, D)° | s,t > 0 and s+t < ¢ — 3}.
Moreover, the set of Kolldr valuations DXV (A3, D’) consist of ord, = vg o and v, with

t (7—3%5 7+3v5

>0, “e
y 3 2 2

) and s+t< /-3

As a result, we see that DXV (A3, D’) is neither open in D(A%, D’), nor a finite union of open simplicies
in any rational triangulation of D(A3, D’). On the other hand, it is not hard to see that Conjecture 1.8
holds in this example.
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