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Abstract

Mpox is an emerging, infectious disease that has caused outbreaks in at least 91 countries from
May to August 2022. We assessed the link between international air travel patterns and Mpox
transmission risk on the one hand, and the relationship between the translocation of Mpox and
human mobility dynamics on the other after travel restrictions due to the COVID-19 pandemic
had been lifted. Our three novel observations were that: (i) more people travelled internationally
after the removal of travel restrictions in the summer of 2022 compared to pre-pandemic levels;
(i1) countries with a high concentration of the global air travel have most of recorded Mpox
cases; and (iii)) Mpox transmission include a number of previously non-endemic regions These
results suggest that international airports should be the primary location for monitoring of the
risk of emerging communicable diseases, and they underscore the need for global collaboration
with regard to proactive measures emphasizing real-time surveillance.
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Introduction

Mpox (previously known as monkeypox) is an infectious disease caused by the monkeypox
virus, a member of the Poxviridae family (Damaso, 2023). The infection gives generally only
mild symptoms and typically self-resolves except in at-risk patient groups with limited cellular
immune response, children under 8-years of age, pregnant women and immunocompromised
individuals (Guarner et al., 2022). In the latter group, Mpox severity is significant and includes
conjunctivitis, encephalitis, pneumonia, death and also foetal mortality (Burki, 2022; Guarner et
al., 2022). Fatality rates are greater in patients infected by the human immunodeficiency virus
(HIV) (Simpson et al., 2020).

Mpox is transmitted through body fluids or skin lesions as shown by Falendysz et al. (2017)
during close physical contact with infected persons or animals, such as African rodents, mice,
prairie dogs or non-human primates (Li et al., 2023). In non-endemic areas, such as Europe and
North America, preliminary genomic sequencing studies have identified the West African variant
as the main virus lineage that has a case fatality rate of 1% (Burki, 2022). The Congo Basin
variant of the monkeypox virus (which is not currently found outside Africa) has a fatality rate of
up to 10% (Simpson et al., 2020; Burki, 2022). The differences in virulence among monkeypox
virus lineages highlight the outbreak risk of Mpox and its global health relevance.

Prior to 2018, Mpox infections rarely occurred outside West Africa, where the disease endemic
(Vaughan et al., 2020; Burki, 2022). Endemic countries, such as Nigeria and Ghana, have served
as source of Mpox for international outbreaks through travel of infected people or live animal
exports (Vaughan et al., 2020; Guarner ef al., 2022). A significant turning point came in 2018
when the first confirmed case of human-to-human transmission outside Africa was reported in
the United Kingdom. The transmission involved a healthcare worker who cared for a patient who
had travelled from Nigeria (ECDC, 2018). In May 2022, the first Mpox outbreak was reported in
the United Kingdom, originating from a British resident recently returning from a trip to Nigeria
(Kraemer et al.,, 2022). This coincided with the international relaxation of COVID-19
restrictions, which limited the number of flights and individuals travelling between countries
(post-COVID-19 pandemic). The reduction of travel restrictions increased international air
passenger flow via airline transportation, immediately returning to 68% of pre-COVID-19
pandemic levels (Kazda et al., 2022; Kinoshita et al., 2023). Understanding the dynamics of
Mpox transmission, especially in the context of international travel, is crucial for effective
outbreak control and prevention. Global changes facilitate the appearance of emerging diseases
(Jones et. al., 2008) and the constant increase in connectivity (Baker ef al., 2022) amplifies the
risk of future international epidemics and pandemics.

This project examined the spread of Mpox during the 2022 outbreak period, with a focus on
temporal incidence, patterns of international travel, and global hotspots of transmission risk. It
aimed to enhance our understanding of how the translocation of emerging diseases are influenced
by international human mobility patterns. We hypothesized that international air passenger flow
positively correlates with the translocation of Mpox infections. To test this hypothesis, we
assessed the geographical and temporal patterns of airline networks and Mpox spread. We expect
that our findings on global Mpox spread can help inform the formulation of public health
measures within the airline networks.
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Materials and methods

Data sources

Mpox data were downloaded from the GLOBAL.HEALTH monkeypox data repository
(https://www.monkeypox.global.health/) for May and August for 2019 (pre-COVID-19) and
2022 (post-COVID-19) (Kraemer ef al., 2022). This repository indicates the emergence and rapid
spread of the Mpox outbreaks and provides aggregated information for cases reported by the
World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC) in
the United States (U.S.) and the European Centre for Disease Control and Prevention (ECDC)
(websites accessed on Aug 22, 2023).

We collected international flight travel information from the OpenSky Network project
(https://opensky-network.org/) on numbers of flights including origin and destination data
(Schafer et al., 2014). This network is a product of the Automatic Dependent Surveillance-
Broadcast, which contains information directly transmitted by an aircraft, such as arrival and
departure records, identification, coordinates, altitude and ground speed (Chevallier et al., 2023).
Analysing Mpox incidence data during the May-August 2022 period allowed us to capture major
epidemiological signals of the outbreak, including its geographical patterns, early detection of
cases, and the impact of international air travel during the summer months of the northern
hemisphere with special reference to changes in COVID-19 travel restrictions.

Data analysis

We performed a descriptive analysis of Mpox cases to depict the cumulative and monthly case
reports from each country and month as well as the travel history involved (origin and
destination) using R statistic software version 4.1.2 (R Core Team, 2021). The Mpox incidence
was calculated by dividing the cumulative confirmed cases by the population size of each
country downloaded from the World Population Prospects 2022 (UNDESA, 2022), and we used
log-transformation to ensure a standardized measure of Mpox cases per million (M) inhabitants.
We used the ‘st” package of R (Pebesma, 2018) to conduct analyses of the number of cases
imported via flights between countries. The ‘raster’ package (Hijmans & Van Etten, 2021) was
applied to visualize the spatial distribution of overlap with confirmed Mpox cases reported and
detect hotspot areas with a high frequency of Mpox transmission around the world. Finally, we
compared the international air travel patterns to investigate air travel pre- and post-COVID-19
pandemic in each country. Air travel was then related to Mpox cases using generalized linear
models to examine the relationship between the number of incoming flights with the number of
confirmed Mpox cases.

Results

During the May-August 2022 period, Mpox outbreaks were reported in 91 countries,
encompassing all continents except Antarctica. There was a total of 41,304 confirmed Mpox
cases reported, and 89% of affected countries had not historically reported Mpox outbreaks. High
Mpox case counts were observed in the U.S., Spain Brazil, and Germany (Figure 1). When
controlling Mpox incidence by a country’s population size, Spain had the highest incidence
perlM inhabitants (0.12 cases) followed by the Netherlands (0.06 cases) and the United
Kingdom (0.05 cases) (Figure 2).
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Figure 1. Log-transformed, cumulative cases (y-axis) in 91 countries during May-August
2022 (x-axis) Mpox cases by August 24, 2022, denoting the countries with a particular high
number of cases: the U.S. (14,052 cases), Spain (5,792 cases), Brazil (3,658 cases), Germany
(3,266 cases), the United Kingdom (3,193 cases), France (2,737), Canada (1,109 cases), the
Netherlands (1,087 cases), Peru (889 cases) and Portugal (770 cases). Gray lines denote cases in
all other affected countries.
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Figure 2. Log-transformed number of confirmed Mpox cases per million inhabitants (y-
axis) in 91 countries since the first case detected (x-axis). Mpox case numbers/1M inhabitants
in countries with high infection rates, including Spain (0.12), the Netherlands (0.06), the United
Kingdom (0.05), France (0.05), Germany (0.05), the U.S. (0.05), Canada (0.04), Brazil (0.02).
Gray lines denote cases in all other affected countries.

According to international air travel data in the summer of 2022 after the COVID-19 mobility
restrictions had been lifted, the passenger flow surpassed pre-pandemic levels of air travel
reported in 2019. Mpox patient flight histories revealed a biased origin of outbreak originating
from patients returning from Europe and spreading to the rest of the world. (Figure 3). Indeed,
air travel not only resumed in most countries (~79%) but the numbers often exceeded pre-
pandemic travel (Figure 4). However, a decrease in air travel was detected in Russia, Thailand
and Canada, which reported less than 100 Mpox cases, while Sweden, Italy, and the Czech
Republic had air travel close to pre-pandemic levels and reported more than 100 Mpox cases.
Importantly, the great majority of countries with increased travel reported more than 100 Mpox
cases during the international Mpox outbreak.

International airports in Spain, the U.S. and Portugal became Mpox transmission hubs for the
export of cases to the rest of Europe, the Americas, Australia, and Africa, while Germany played
a key role in facilitating the spread to Asia. The amount of air travel was a strong predictor of



152 Mpox cases in non-endemic countries, with higher passenger flow linked to larger Mpox
153  outbreaks (Figures 4 and 5). The levels of air passenger flow identified hotspot areas of likely
154  Mpox outbreaks around the world, as shown in darker shades in Figure 5 A. As can be observed
155  in the figure, most Mpox cases during the global outbreak were concentrated in the U.S., Spain,
156  Brazil, the United Kingdom, Germany, and France, with secondary clusters of cases in Canada,
157  the Netherlands, Peru, and Portugal (Figure 5A). The later heavier international connectivity by
158 air travel led to significant global hotspots of Mpox emergence and spread, while countries
159  exceeding pre-pandemic levels of air-passenger flow also reported the highest Mpox incidence
160  (Figure 5B). The number of incoming flights was a strong, significant predictor of Mpox cases
161  (i.e., R>=0.63, Figure 5B).

162

163
164  Figure 3. Mpox transmission hotspots. The number of cases imported via flights between

165  countries is shown in different colours: one case (yellow), two cases (green), three cases (blue)
166  and four cases (purple).
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Figure 4. Change in international air travel patterns before (2019) and after (2022) the
COVID-19 pandemic and Mpox cases in 2022. Red points denote countries reporting more
than 100 Mpox cases. Blue points those reporting less than 100 Mpox cases. Red bars those with
increased air travel. Blue bars those with a decreased air travel. Vertical line (0.0) denotes no
change in air passenger flow.
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Figure 5. Mpox transmission hotspots predicted based on international air passenger flow.
A) Levels of passenger flow; B) Relationship between air travel and Mpox cases. Blue points
indicate countries having not returned to pre-pandemic levels of passenger flow (not recovered).
Red points indicate countries having exceeded pre-pandemic levels of passenger flow
(recovered). Point size denote amount of Mpox cases.
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transmission during the period May-August in 2022.

The Mpox incidence varied temporally and geographically (Figure 6). In May 2022, the highest
number of confirmed cases was reported in Europe, including the United Kingdom (n=183),
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Spain (n=122), Portugal (n=94), Germany (n=38) and the Netherlands (n = 26). In June 2022,
Germany reported a substantial increase of confirmed cases (n=888) and the number of cases
increased more than 300% in the United Kingdom (n=745), Spain (n=678), France (n=497) and
Portugal (n=308). In July 2022, a high number of cases was reported in the U.S. (n=4,369) and
Brazil (n=1,239). In August 2022, the U.S. accumulated the highest number of confirmed cases
(n=14,140), followed by Brazil (n=3,780), Spain (n=2,245), France (n=1,593) and the United
Kingdom (n=1,395).

In May 2022, 38.9% of the Mpox confirmed cases had a history of travel from Spain and only
5.6% from Nigeria, which was the only incidence reported from Africa (Figure 7). In June 2022,
36.8% of the Mpox confirmed cases had a history of travel departing from Spain, with 15.9% of
all cases linked to departures from the U.S., Australia, Singapore, and Mexico (Figure 8). At least
25% of Mpox imported cases in South America originated in Spain and France (Figure 9). In
August 2022, 17.6% of confirmed cases had a history of travel from the U.S. Late in the
outbreak, Europe played a limited role in exporting Mpox cases, with six cases linked to a
European origin in August 2022, the lowest compared with previous months (Figure 10).
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Figure 7. Air travel and Mpox spread globally May 2022. Left: Percentage of air travel
between countries and their connectivity to other countries (color lines). Right: Mpox incidence
in May 2022.
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Figure 9. Air travel and Mpox spread globally July 2022. Left: Percentage of air travel
between countries and their connectivity to other countries (colour lines). Right: Mpox
incidence in July 2022. DO=Dominican Republic; UAE=United Arab Emirates.
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Figure 10. Air travel and Mpox spread globally August 2022. Left: Percentage of air travel
between countries and their connectivity to other countries (colour lines). Right: Mpox
incidence in August 2022. UAE=United Arab Emirates.

Discussion

Our findings regarding the Mpox outbreak of 2022 with European countries, especially Spain,
playing a key role in its international spread, indicate that the number and direction of flights
were associated with the fast spread in non-endemic localities (Betancort-Plata et al., 2022;
Gonzélez-Val & Marcén, 2022). The relaxation of COVID-19 restrictions for international air
travel in 2022 resulted in air travel exceeding pre-pandemic levels, which correlated with higher
Mpox spread to non-endemic countries. There is therefore a need for effective global health
strategies to prevent and control the international spread of infectious diseases informed by
international air travel data.

This global outbreak demonstrated a concerning trend of the emergence of wildlife diseases of
pandemic potential (WHO, 2022). The first case confirmed on May 6, 2022, in the United
Kingdom was linked to recent travel history from Nigeria, an endemic country for Mpox
(Kraemer et al., 2022). The human Mpox cases confirmed by six laboratories in the United
Kingdom between May 13 and 15 in 2022 lacked travel links to endemic countries, suggesting
human-to-human community transmission in non-endemic localities (Burki, 2022; Guarner et
al., 2022; WHO, 2022). Community transmission was further supported by the fact that over
5,000 Mpox confirmed cases in non-endemic countries were reported, denoting the fast spread of
the outbreak (Kozlov, 2022; Kraemer ef al., 2022). The Mpox outbreak revealed an exponential
growth of community transmission globally (Kozlov, 2022), which was not immediately obvious
due to delayed identification, tracing and isolation of patients.
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Effective distance of contagion

The recent availability of air-travel data has facilitated epidemiologic applications of air travel
models to predict disease arrival times and sites of origin. For instance, Brockmann & Helbing
(2013) proposed the “effective distance” concept to denote air travel connections as a more
effective distance to anticipate disease spread compared to geographic distance. This pioneer
approach was employed to successfully anticipate the sites of origin and international spread of
the HINI1 influenza, the 2003 severe acute respiratory syndrome (SARS), and the 2016
Chikungunya epidemic (Brockmann & Helbing 2013, Escobar et al., 2016). We employed a
network modelling approach to identify nodes with the highest likelihood of spreading cases to
new regions. We used this information to map airport-level hotspots of transmission risk, which
can inform future Mpox containment in view of the risk of future Mpox emergence (Figure 5).

The emergence of the 2022 Mpox outbreak and the introduction and spreading of Mpox to new
countries, including specific super-spreading hotspots across Europe, the Americas, and South
Asia, is in line with previous suggestions of the likely contribution of the relaxation of COVID-
19 prevention measures to disease spread (Thornhill ez al., 2022). Previous studies have centred
on local-level air travel data to estimate Mpox spread risk (e.g., Kinoshita et al., 2022). Our
global-level studies combining air travel data with Mpox importation data generated a data-
driven, empirical estimate of Mpox spread (Figure 5). As shown in our Figures 1 & 2, our results
overcame other assessments that identified the U.S. as a source of cases driven mainly by the
volume of passengers from this country. That is, by controlling for air travel and Mpox incidence
per capita, we found other countries having key contribution to the global spread of Mpox
(Escobar et al., 2016; Del Valle et al., 2018).

We detected specific countries, cities, and airports with the highest likelihood of Mpox spread
risk (Figure 5), which could help inform future travel restrictions to reduce epidemic spread.
Grépin et al. (2021) found that implementing travel restrictions that reduce international travel
by 40%—-90% could likely have a positive impact in reducing the risk of infectious disease
importation through airline networks. Nevertheless, Kinoshita et al. (2023) argue that the
potential efficacy of travel restrictions to reduce the importation risk of Mpox through airline
networks may have different magnitudes of effect among countries. We found that Brazil and
Peru had higher Mpox incidence than expected, which could be explained by public health
systems with limited capacity to block transmission. For instance, Brazil’s public health system
dramatically worsened during the COVID-19 pandemic, leading to slow recovery when the
Mpox outbreak occurred (Sott ef al., 2022). Consequently, despite passenger flow in this country
not returning to pre-pandemic levels, Mpox effectively spread through community transmission,
particularly among domestic travellers participating in mass gathering events (Luques et al,
2023). Practical implementation of air travel interventions across airline networks may not be
feasible in most areas after the detection of an emerging pathogen of pandemic potential due to
the strong economic and social impact of travel restrictions (Meier et al., 2022; Kinoshita et al.,
2023). Therefore, focused efforts to reduce air travel in high-risk airports would be more
effective (Shi et al., 2020), especially if combined with enhanced capacities and infrastructure
for early disease detection, rigorous contact tracing, and effective isolation of first cases.

Caveats
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An important challenge during the international outbreak was a likely delayed case identification
and the lack of resources designated for early pathogen detection in some countries (Cui et al.,
2023), Delayed detection potentially resulted in an underestimation of the burden of Mpox. The
rapid infection rate of Mpox requires large-scale screening and real-time monitoring for an
accurate reconstruction of the numbers and spread of cases (Pliakos et al., 2018; Cui et al.,
2023). Rapid, affordable and accessible diagnostic methods could significantly improve outbreak
response and containment, reducing the potential public health impacts of Mpox in endemic and
non-endemic countries (Bhatia ef al., 2021; Chang et al., 2021). Furthermore, the primary lesson
derived from the Mpox outbreak was the evident need for proactive global health collaboration
(Kading et al., 2018). Global collaboration should start by sharing, incorporating, analysing, and
publishing economic and social data fundamental for decision-making during outbreak responses
(Meier et al., 2022; Kinoshita et al., 2023). Global data sharing is needed considering that active
infectious disease surveillance requires international cooperation among researchers,
policymakers and public health officers (Bhatia et al., 2021). Given the challenges of the Mpox
outbreak, the global health community should push for active data sharing, enhanced public
health infrastructure, global health diplomacy and the generation of novel tools in digital
epidemiology for more effective and timely outbreak response.

Future directions

The rise of Mpox in ten African countries over the last five decades, totalling 1,347 confirmed
cases and an additional ~28,800 suspected ones from the Democratic Republic of Congo, is
likely tied to increased human-wildlife interaction with subsequent monkeypox virus spill-over
to humans (Han ef al., 2020; Bunge ef al., 2022; Burki, 2022). Unlike smallpox, the monkeypox
virus may exhibit both animal-to-human (spill-over), human-to-human (community) and human-
to-animal (spill-back) transmissions (Henderson, 1999; Simpson ef al., 2020; Seang et al., 2022).
Current hypotheses suggest that spill-over leading to Mpox occurred in response to climate
change, rainforest exploitation and highly mobile human populations (Simpson et al., 2020).
Nevertheless, the mechanisms behind wildlife-human spill-over of monkeypox virus and
posterior community spread are poorly understood (Glidden et al., 2021).

The limited knowledge of the patterns of Mpox transmission increases the risk of this virus
becoming endemic where it currently circulates in wildlife. Our results suggest that international
air travel modulates the likelihood of international disease spread. As such, international airports
could play a crucial role by serving as places for monitoring the risk of emerging diseases. Future
research should explore the effects of domestic flights on the spread of emerging diseases and the
role of terrestrial and maritime human movement on the spread of infectious pathogens. Finally,
the low transmissibility of the monkeypox virus, as compared with air-borne infections, allowed
for a reliable recovery of case numbers in this international outbreak, which contributed to
providing the epidemic signals that could help inform future models of emerging diseases.

Conclusion

Our project delved into the global spread of Mpox, emphasizing temporal incidence,
international travel patterns and transmission risk hotspots. The summer of 2022 indicated a
rapid global spread of Mpox, particularly affecting non-endemic countries, with increased air
travel identified as a contributing factor. The recent Mpox international outbreak has clear
geographical patterns, which were used to delineate hotspots of importation risk, aiming to
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inform its prevention, control, and epidemiological surveillance. Air passenger flow is a
predictor of hotspot areas of Mpox spread, which suggests a potential role of international
airports as the first front to monitor the risk of disease emergence. This study underscores the
need for proactive public health measures, emphasizing real-time epidemiological monitoring
and global collaboration at the airport level.
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