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Abstract 14 

1. Pathogen spillover corresponds to the transmission of a pathogen or parasite from an 15 

original host species to a novel host species, preluding disease emergence. Understanding 16 

the interacting factors that lead to pathogen transmission in a zoonotic cycle could help 17 

identify novel hosts of pathogens and the patterns that lead to disease emergence.  18 

2. We hypothesize that ecological and biogeographic factors drive host encounters, infection 19 

susceptibility, and cross-species spillover transmission. Using a rodent-ectoparasite system 20 

in the Neotropics, with shared ectoparasite associations as a proxy for ecological 21 

interaction between rodent species, we assessed relationships between rodents using 22 



geographic range, phylogenetic relatedness, and ectoparasite associations to determine the 23 

roles of generalist and specialist hosts in the transmission cycle of hantavirus.  24 

3. A total of 50 rodent species were ranked on their centrality in a network model based on 25 

ectoparasites sharing (i.e., 91 fleas, 18 mites, 17 lice, and 5 tick species). Geographic 26 

proximity and phylogenetic relatedness were predictors for rodents to share ectoparasite 27 

species and were associated with shorter network path distance between rodents through 28 

shared ectoparasites. 29 

4. The rodent-ectoparasite network model successfully predicted independent data of seven 30 

known hantavirus hosts. The model predicted five novel rodent species as potential, 31 

unrecognized hantavirus hosts in South America. Findings suggest that ectoparasite data, 32 

geographic range, and phylogenetic relatedness of wildlife species could help predict novel 33 

hosts susceptible to infection and possible transmission of zoonotic pathogens.  34 

5. Synthesis and Applications: Hantavirus is a high-consequence zoonotic pathogen with 35 

documented animal-to-animal, animal-to-human, and human-to-human transmission. 36 

Predictions of new rodent hosts can guide active epidemiological surveillance in specific 37 

areas and wildlife species to mitigate hantavirus spillover transmission risk from rodents 38 

to humans. This study supports the idea that ectoparasite relationships among rodents are 39 

a proxy of host species interactions and can inform transmission cycles of diverse 40 

pathogens circulating in wildlife disease systems, including wildlife viruses with epidemic 41 

potential, such as hantavirus. 42 

  43 
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Introduction 45 



Zoonotic diseases originate in animals and infect humans, posing significant threats to public 46 

health worldwide (Cutler et al., 2010; Holmes, 2022). Cross-species spillover transmission, where 47 

a pathogen or parasite is transmitted from its reservoir host species (i.e., original or donor host) to 48 

a novel species (i.e., recipient host), is a critical precursor to zoonotic disease emergence (Kreuder 49 

Johnson et al., 2015; Olival et al., 2017). The possibility of a pathogen spilling over into novel 50 

species depends on many factors, some of which are directly associated with the reservoir host,  51 

including host distribution, density, and interactions with other potential hosts (Plowright et al., 52 

2017).  Understanding the underlying factors and mechanisms that drive pathogen transmission 53 

cycles in wildlife is crucial for identifying novel hosts and uncovering the ecological patterns that 54 

contribute to the emergence of diseases in humans (Alexander et al., 2018; Sánchez et al., 2021). 55 

 One group of zoonotic pathogens with global concern is hantaviruses. Hantaviruses are 56 

members of the family Hantaviridae and are primarily transmitted to humans through contact with 57 

infected rodents or their excreta (Laenen et al., 2019; Vial et al., 2023). Human infections can 58 

result in severe illnesses, including hemorrhagic fever with renal syndrome (HFRS) and hantavirus 59 

pulmonary syndrome (HCPS), which can be fatal (Jiang et al., 2017; Vial et al., 2023). 60 

Hantaviruses have a worldwide distribution and are prevalent in Asia, Europe, and the Americas, 61 

causing approximately 20,000-100,000 cases annually (Avšič-Županc et al., 2019; Jiang et al., 62 

2017; Zhang et al., 2010). In the Americas, hantaviruses cause approximately 300 cases of HCPS 63 

annually (Vial et al., 2023). Although the seroprevalence and case rates of hantaviruses in the 64 

Americas are lower than in other regions, the case mortality and disease severity are higher (Vial 65 

et al., 2023). Andes orthohantavirus (ANDV), present in Argentina and Chile, is the only 66 

hantavirus with documented human-to-human transmission and has comparatively high case 67 

mortality rates (Hjelle & Torres-Pérez, 2010; Vial et al., 2023). In Chile, there is one known 68 



reservoir rodent species for ANDV, Oligoryzomys longicaudatus, and six other known rodent 69 

hosts (Abrothrix olivaceus, Phyllotis darwini, Abrothrix longipilis, Rattus rattus, Loxodontomys 70 

micropus, and Rattus norvegicus) that have shown evidence of infection or exposure (Llanos-Soto 71 

& González-Acuña, 2019). Cross-species transmission of hantavirus from the primary reservoir 72 

host to secondary hosts has been documented in various hantaviruses (Delfraro et al., 2008; 73 

Medina et al., 2009; Vapalahti et al., 1999; Weidmann et al., 2005) and may play a role in human 74 

disease emergence (Kreuder Johnson et al., 2015; Olival et al., 2017). 75 

 For hantaviruses to spread from one rodent species to another, there must be ecological 76 

interaction between individuals of different rodent species, which can constitute aggressions, 77 

sharing of resources, or co-habitation (Palma et al., 2012). In Chile, the primary transmission mode 78 

for ANDV between rodent species is through saliva, but it could also include urine and feces, 79 

which are shared while rodents interact (Padula et al., 2004). In the case of ANDV, uncovering the 80 

ecological factors underlying cross-species viral transmission could be particularly informative 81 

because the mode by which hantaviruses have diversified in South America is still unclear (Kuhn 82 

& Schmaljohn, 2023; Rivera et al., 2015). The limited understanding of hantavirus evolution in 83 

South America restricts our capacities to anticipate zoonotic and cross-species spillover 84 

transmission. 85 

 Understanding the factors driving pathogen transmission and identifying potential hosts in 86 

the hantavirus transmission cycle in wildlife is essential for mitigating the risk of zoonotic spillover 87 

(Cleaveland et al., 2007; Hjelle & Torres-Pérez, 2010). Network analysis has emerged as a 88 

valuable tool in ecology, offering insights into the complex species interactions within ecosystems 89 

(Poulin, 2010; Proulx et al., 2005). Network analysis provides a framework for studying ecological 90 

systems by representing the relationships among different components and can be a valuable tool 91 



for studying wildlife disease ecology and pathogen transmission (Craft & Caillaud, 2011; Silk et 92 

al., 2017). Ecological networks depict communities by representing parts of the community as 93 

nodes (individuals or groups) that are connected by edges (an interaction or shared characteristic 94 

linking nodes) (Craft & Caillaud, 2011). Factors contributing to pathogen transmission and 95 

spillover can be explored by reconstructing host networks (Bordes et al., 2017; Craft & Caillaud, 96 

2011).  97 

 One challenge in constructing ecological networks is determining how nodes, in this case, 98 

potential hosts, should be connected to best represent species or individual interactions (Craft & 99 

Caillaud, 2011). Sharing of ectoparasites can serve as an informative link between two hosts in a 100 

network (Poulin, 2010) because it serves as a proxy for ecological interaction between hosts 101 

(Nieberding & Olivieri, 2007). Ectoparasites can be generalists (i.e., parasitizing many host 102 

species) or specialists (i.e., parasitizing one or very few host species) (Poulin, 2007). Host biology 103 

is an essential factor in whether an ectoparasite can successfully parasitize the host (Poulin, 2007). 104 

When hosts have an ectoparasite association in common, it indicates interaction or similarity 105 

between hosts (Poulin et al., 2011). Phylogenetic relatedness, habitat or range overlap, 106 

morphology, and phenology are some similarities that hosts may share when they share 107 

ectoparasites (MacDonald & Brisson, 2022; Poulin et al., 2011; Runghen et al., 2021; Sun et al., 108 

2023). Ectoparasite sharing between hosts differs based on the parasite species. However, it can 109 

be broadly categorized into species that require direct contact to be shared, such as lice, nidicolous 110 

ticks, and some mites, and species that can be shared indirectly through shared environments, such 111 

as non-nidicolous ticks, some mites, and fleas (Di Giovanni et al., 2021). Regardless of how 112 

ectoparasites are transmitted between host species, the sharing or trait of being parasitized by two 113 

of the same ectoparasite species can indicate ecological similarity between hosts. 114 



Based on ecological, biogeographic, or evolutionary similarities, estimating ectoparasite 115 

sharing between potential host species in a pathogen transmission network could be a powerful 116 

tool to infer host interaction. In the case of ANDV cross-species spillover transmission, 117 

ectoparasite sharing may be particularly relevant because ANDV transmission between rodents 118 

requires direct host contact or sharing of resources which can be well represented by sharing 119 

ectoparasite species. Beyond ANDV, this approach can help translate data from one study system  120 

into another. This is specifically useful for pathogen transmission systems, especially those that 121 

depend on ectoparasites, because there may be little data on how potential hosts interact due to the 122 

difficulty of collecting this type of data. At the same time there can be an abundance of other data 123 

(ie. ectoparasite associations for those hosts) that can help bridge the gap for understanding host 124 

interactions. Using host-parasite interactions to create a network structure and study interactions 125 

is not novel (Bordes et al., 2017; Dattilo et al., 2020; Runghen et al., 2021). However, previous 126 

approaches tend to include ectoparasites in the network in the same way that hosts are included 127 

(i.e. both are included as nodes; Dattilo et al., 2020, Runghen et al., 2021). Here, we demonstrate 128 

how known ectoparasite associations can be utilized to infer host interactions, as connections 129 

between nodes, to understand pathogen transmission. This provides a framework for viewing 130 

ectoparasite sharing as a host trait independent of which specific species are being shared. In this 131 

framework, we lose knowledge of which ectoparasite species are contributing to interactions, but 132 

we gain the ability to more clearly visualize how hosts interact, how a species ensemble is 133 

structured, and the strength of interactions between hosts.  134 

 In this study, we investigated the evolutionary and ecological factors that predict known 135 

and potential novel hantavirus hosts using network analysis on a dataset of rodent-ectoparasite 136 

records in Chile. To uncover interactions and possible transmission dynamics between hosts, we 137 



hypothesize that shared ectoparasites are a proxy for the ecological interactions among host species 138 

which can be used to build a host interaction network. By examining the connections and centrality 139 

of rodent species within the ectoparasite network, we aim to uncover the ecological, phylogenetic, 140 

and biogeographic drivers of host centrality and cross-species transmission events. Ultimately, this 141 

research adds to a growing body of work showing the applications of network analysis in disease 142 

ecology which can inform targeted surveillance efforts to specific rodent species and regions and 143 

contribute to the mitigation of hantavirus emergence. 144 

 145 

Materials and Methods 146 

Host-Parasite Association Dataset 147 

We constructed a dataset of published rodent-ectoparasite associations in Chile by updating the 148 

review by Landaeta-Aqueveque et al. (2021). We conducted a search of rodent-ectoparasite 149 

reports in Chile published from January 2015 to March 2023 in PubMed and Web of Science. 150 

We conducted our search on March 10, 2023. We used the same search terms as the original 151 

review: (("Acari" OR "Ixodida*" OR "Phthiraptera*" OR "Siphonaptera*" OR "tick*" OR "mite*" OR 152 

"lice" OR "louse") AND (Chile)) AND (Rodent* OR Rodentia). Our inclusion criteria required 153 

reports to be original (i.e. not a review), conducted in Chile, and include collection of rodents 154 

and ectoparasites. We used Covidence software (www.covidence.org) to streamline the filtering, 155 

eligibility, and data extraction process. Findings were used to update the Landaeta-Aqueveque et 156 

al. (2021) review of rodent-ectoparasite associations in Chile. We corrected rodent names 157 

according to the taxonomic standing in the Integrated Taxonomic Information System (ITIS; 158 

www.itis.gov) and removed any genus-level ectoparasite or rodent record.  159 

 160 



Host Geographical Range 161 

We obtained geographic range data of rodents of Chile using the International Union for 162 

Conservation of Nature (IUCN 2023) database with the search criteria to include results with 163 

taxonomy set to ‘Rodentia’ and land area to ‘Chile’. We used the administrative boundary for 164 

Chile from DIVA-GIS (http://www.diva-gis.org/gdata) to restrict the IUCN ranges to Chile. For 165 

the seven rodent species with documented ectoparasite associations that did not have range data 166 

available in IUCN, we searched GBIF (GBIF.org, 2024) for occurrence data to build an 167 

approximate range.  168 

 We directly downloaded range data from IUCN for species available. For those from GBIF 169 

(datasets: Oyander et al., 2023; GBIF.ES, 2023), we used the R package gbif.range (Chauvier et 170 

al., 2022.) to generate approximate ranges. Occurrence data from GBIF was downloaded on March 171 

6, 2024. Using spatial analysis packages sf (Pebesma E., 2023) and raster (Hijmans, 2023) in R 172 

version 2022.12.0 (R Core, 2023), we constructed species richness maps for the 67 rodent species 173 

recorded in Chile and the subset of 45 rodent species with ectoparasite associations. We then 174 

calculated the geographic overlap for rodent species using Jaccard’s similarity index (Real & 175 

Vargas, 1996) with the sf package in R where we used the function, ‘st intersection’, to obtain the 176 

area of overlap between the two species. Following the equation for Jaccard’s similarity, we 177 

divided the intersection by the total of both ranges minus the intersection. We also used the sf 178 

package in R to calculate geographic distance using range centroids between rodent species. 179 

 180 

Host Phylogenetic Relatedness 181 

To calculate pairwise phylogenetic distance for the rodent species in our network, we accessed the 182 

mammalian phylogeny from Upham et al. 2019 through the VertLife project (https://vertlife.org/). 183 

https://vertlife.org/


We used the subsetting tool to request 1,000 trees for only the rodent species in our rodent-184 

ectoparasite network (50 rodents in the network, 48 available through VertLife). Using the ape 185 

package in R, we built the most probable tree based on the 1,000 trees from for the species available 186 

in VertLife. Using ape, we also calculated the pairwise phylogenetic distance (with the cophenetic 187 

function) for the rodents in our network for downstream analysis.  188 

 189 

Ectoparasite Sharing 190 

We assessed how geographic and phylogenetic factors influence rodent connections using two 191 

methods: (1) probability as a function of geographic and genetic relatedness to share ectoparasites 192 

using logistic regressions and (2) correlation of phylogenetic and geographic distances with 193 

network path distances using Mantel tests (see Network Analysis). We used R software version 194 

2022.12.0 (R Core, 2023) for all statistical analyses and considered results with p< 0.05 to be 195 

significant. First, we calculated the probability of rodent species to share an ectoparasite based on 196 

pairwise phylogenetic distance, geographic overlap, and geographic distance between rodent 197 

species using the geotax package in R version 2022.12.0 (Robles, 2023; Robles-Fernández & Lira-198 

Noriega, 2017). We excluded ectoparasites associated with less than three rodent species from the 199 

probability analysis to mitigate uncertainty related to low sample size, similar to Dáttilo et al., 200 

2020 which excluded those with less than one association.  Then, we constructed pairwise 201 

interaction matrices representing the phylogenetic distance, geographic overlap, and geographic 202 

distance between rodent species. We then constructed binary interaction matrices between 203 

ectoparasites and rodent species with “1” representing a documented association between a rodent 204 

and an ectoparasite and “0” representing no interaction. Using these interaction matrices, we 205 

calculated logistic regression coefficients drawn from a distribution of 1000 permutations with 206 



phylogenetic distance, geographic overlap, or geographic distance as the predictor variable for the 207 

sharing of ectoparasites between two rodent species. We calculated logistic regression coefficients 208 

for each ectoparasite species and for the overall species pooled for each predictor. With the logistic 209 

regression coefficients, we calculated the probability of rodent species to share ectoparasites based 210 

on each predictor. We used the geotax package in R version 2022.12.0 (Robles, 2023; Robles-211 

Fernández & Lira-Noriega, 2017) to create the binary interaction matrices and to calculate logistic 212 

regression coefficients and probability vectors. 213 

 214 

Network Analysis 215 

We built a network estimating how rodents were connected through the ectoparasites they share 216 

using Gephi software with (Bastian M., 2009). We first built a weighted interaction matrix to show 217 

the number of ectoparasites shared by each pair of rodents. With this, we built a weighted network 218 

in Gephi using Fruchterman Reingold followed by Force Atlas 2 visualization algorithms with 219 

rodents as nodes and shared ectoparasites as edges (Bastian M., 2009). The bipartite network 220 

structure we chose to use displays the species of rodents as nodes and the connection between them 221 

the ectoparasites they share. With this network structure we lose the information of which 222 

ectoparasite species are being shared and all species are treated equally in their contribution to the 223 

relationship between two rodents. We chose this structure because we are primarily focused on the 224 

rodent hosts, using the ectoparasites as a tool by which to connect them.  225 

From the rodent-ectoparasite network model, we extracted the closeness centrality of each 226 

rodent species in Gephi. The closeness centrality measures the average distance from one node to 227 

all other nodes in the network and provides a concept for how central or key a species is in the 228 

community (Brandes, 2001). Closeness centrality is an appropriate metric in this context because 229 



we are using a diverse set of ectoparasite species as connections, meaning that connection may not 230 

have to be direct for rodents to share ectoparasites, but could happen through the environment or 231 

shared habitat. Additionally, our pathogen of interest, the Andes virus, may be transmitted between 232 

rodent species through habitat or resource sharing and not necessarily through direct contact. This 233 

justified the use of closeness centrality in both cases because closeness centrality goes beyond 234 

traditional network metrics and considers spread through a network in a mode that is not entirely 235 

reliant immediate interactions (Bloch et al., 2023).  236 

We also generated a path distance matrix for the network using the package igraph in R 237 

which calculates the shortest path between each pair of nodes (Nepusz, 2006). The path distance 238 

matrix is a pairwise matrix with rodents as column and row headers and the interaction between 239 

each representing the path distance (i.e. number of rodents through ectoparasites) between each 240 

pair. Using the pairwise path matrix, we tested for correlation between path length with both 241 

phylogenetic and geographic distance. We tested for correlation using a Mantel test in the R 242 

package vegan (Oksanen J et al., 2022) using pairwise matrices of path length vs phylogenetic 243 

distance, path length vs. geographic distance, and finally geographic and phylogenetic distance. 244 

 245 

Spillover Potential 246 

We tested how closeness centrality of our network model predicted hantavirus hosts using a 247 

phylogenetic logistic regression for binary dependent variables with closeness centrality as a 248 

continuous predictor and hantavirus-host status as the binary dependent variable (Ives & Garland, 249 

2010). This model accounts for the non-independence of the host species and evaluates how a 250 

binary trait, in this case being a hantavirus host, evolves  and is correlated according to both the 251 

phylogeny and the continuous variable, closeness centrality. We implemented this model using the 252 



package ‘phylolm’ in R with the algorithm from Ho & Ané, 2014.  To explain the model summary, 253 

we follow the interpretation of  𝛼 from the example in Ives & Garland, 2010 as well as that 254 

suggested by Cooper et al., 2016 using the phylogenetic half-life. We also applied a quantile 255 

threshold to closeness centrality which split rodents into four groups based on how central they 256 

are in the network model. Based on these groups, we predicted that the most central quantile group 257 

would represent likely hantavirus hosts and tested this using cumulative binomial probability. For 258 

the cumulative binomial probability test (Loader, 2000), the number of species in the highest 259 

quantile was considered the number of trials, the rodent species known to be hantavirus host were 260 

the successes, and the proportion of species in the highest quantile from the entire number of 261 

species studied was considered the probability of success.  262 

 263 

Hantavirus in the Network 264 

We examined the relationship between rodent hantavirus sharing with geographic overlap and 265 

distance, and phylogenetic distance using the same methodology as described for ectoparasite 266 

sharing. For this, we added the hantavirus associations between each rodent host to the rodent-267 

ectoparasite dataset. From this, we obtained logistic regression coefficients and probability vectors 268 

for the relationships between hantavirus host status with phylogenetic relatedness, geographic 269 

distance, and geographic overlap. We compared how hantavirus sharing and ectoparasite sharing 270 

are related to the geographic overlap and distance and phylogenetic relatedness of their rodent 271 

hosts. 272 

 273 

Results 274 



Our search resulted in six new reports of ectoparasites on rodents in Chile, with a total of 33 papers 275 

between the original review (Landaeta-Aqueveque et al., 2021) and our update (Table S1). This 276 

created a dataset with 50 rodent species parasitized by 131 ectoparasites and 376 unique 277 

interactions between them (Table S1). From the review we updated seven species names according 278 

to valid ITIS names (Table S2). Of the 50 rodent species documented with ectoparasites, data were 279 

available to construct a species richness map for 45 rodents (43 from IUCN and two from GBIF; 280 

Figure 1A) and a phylogenetic tree for 48 rodents (Figure 1B). We found that the highest rodent 281 

species richness in Chile covered latitudes of 30°S to 55°S (Figure 1A, Figure S1). Our 282 

phylogenetic tree included 26 genera representing 48 species of rodents. 283 

 284 

Ectoparasite Sharing 285 

We found that phylogenetic distance, geographic overlap, and geographic distance were predictors 286 

for rodents to share ectoparasite species (Table 1). More closely related rodent species were overall 287 

more likely to share ectoparasite species and each individual ectoparasite also followed this trend 288 

with negative slopes for each regression (Table 1: overall models, All ectoparasites: Table S4). 289 

Sharing of ectoparasites was also strongly predicted by geographic overlap and geographic 290 

distance between rodent species (Table S4). The overall trends followed for each individual 291 

ectoparasite with positive slopes for geographic overlap and negative slopes for geographic and 292 

phylogenetic distance (Figure 2). For the phylogenetic regression, 37 species of ectoparasites and 293 

48 species of rodents were included and for the geographic regressions 37 species of ectoparasites 294 

and 45 species of rodents were included based on available data and our limiting the analysis to 295 

ectoparasites with 3 or more rodent host associations. Based on the slopes of the regression model, 296 

phylogenetic distance was the strongest predictor for sharing ectoparasites, followed by 297 



geographic overlap and geographic distance. Individual ectoparasites followed the trends to 298 

different degrees, indicating strong or weak relationships with geographic and genetic factors.  299 

 300 

Rodent-ectoparasite Network  301 

We included all 50 rodent and 131 ectoparasite species, with 376 unique interactions between 302 

rodents through ectoparasites, in our network model (Figure 3). In the rodent-ectoparasite network, 303 

we found that individual rodent species were parasitized by up to 46 ectoparasite species with a 304 

maximum of 186 unique relationships to other rodents through ectoparasites. The strongest 305 

connection in our model was between A. olivaceus and A. longipilis which shared 24 ectoparasite 306 

species (Figure 4). The overall dataset indicated a median ectoparasite to relationship ratio of 4.3, 307 

meaning that on average, each ectoparasite species connects its host to about four other hosts 308 

(Figure 5). Quantiles of network closeness centrality (CC) varied from CC=0 (Ctenomys osgoodi, 309 

one ectoparasite, no relationships) to CC= 0.78 (A. olivaceus, 46 ectoparasites, 184 relationships). 310 

Similarly, for matrix correlations, we found that path length in the rodent-ectoparasite network 311 

was correlated with both geographic distance (Mantel test, n= 44 rodent species, p=0.001 r=0.363) 312 

and phylogenetic distance (Mantel test, n= 47 rodent species, p=0.025 r= 0.115). We found no 313 

association between geographic and phylogenetic distance (Mantel test, n= 44 rodent species 314 

p=0.945 r=-0.071). Although we had geographic data for 45 species and phylogenetic for 48 315 

species, we did not include Ctenomys osgoodi in the mantel tests because it had no relationships 316 

to other rodent species, making the total species included one less than that which we had available 317 

data.  318 

 319 

Spillover Prediction 320 



Closeness centrality was a significant predictor for rodents to be hantavirus hosts and there was 321 

very little phylogenetic signal for this trait (Closeness centrality: p=0.00166, Phylogenetic signal: 322 

𝛼=0.00046, 𝒶=-3.34, 𝑡1
2

 =1498, mean tip height= 40.367). Closeness centrality quantiles identified 323 

rodents prone to cross-species hantavirus transmission, including twelve highly connected rodents 324 

(Figure 6; A. olivaceus, P. darwini, A. longipilis, O. longicaudatus, R. rattus, L. micropus, 325 

Reithrodon auritus, Aconaemys porteri, Phyllotis xanthopygus, Octodon degus, Chelemys 326 

macronyx, and R. norvegicus). Independent host data revealed that known hantavirus hosts were 327 

successfully predicted better than by chance (p(x=7)=0.009). Mapping the predicted hantavirus 328 

hosts revealed hotspots of spillover transmission risk found between latitudes 45°S and 55°S in 329 

Chile (Figure S1A).  330 

 Considering known hantavirus-rodent relationships revealed that hantavirus infection 331 

among rodents follows the same trends as ectoparasite infestations. That is, the probability for a 332 

pair of rodent species to share hantavirus increased with geographic overlap and decreased with 333 

geographic and phylogenetic distance. Hantavirus sharing had stronger relationships to all three 334 

predictor variables than overall ectoparasite sharing (Table S4). 335 

 336 

Discussion 337 

Host networks have been used in wildlife disease ecology to understand pathogen transmission, 338 

but often rely on social interactions between hosts, which can be difficult to define or collect in 339 

many systems. We posit that ectoparasites can act as a proxy for ecological interaction between 340 

hosts, which has been proposed previously (Nieberding & Olivieri, 2007) and is based on literature 341 

that ectoparasites are indicative of host phenology (MacDonald & Brisson, 2022), host 342 

phylogenetics and geographic distribution (Poulin et al., 2011), morphology (Sun et al., 2023), and 343 



other traits (Poulin et al., 2007; Runghen et al., 2021). We built a host network using this concept 344 

of ecological interaction through ectoparasites to understand how other parasites or pathogens may 345 

move through a host species assemblage. Using a well-understood rodent system in the Neotropics, 346 

we identified underlying predictors for rodents to share ectoparasites, built a weighted interaction 347 

network, and used network centrality to predict hantavirus hosts. We successfully predicted all 348 

known hosts of hantavirus and identified five rodent species as potential hantavirus reservoirs. 349 

Proximity in geographic range and phylogenetic relatedness are strong predictors for rodents to 350 

share ectoparasites and to be more connected in the network. Our findings revealed hotspot areas 351 

to inform surveillance of hantavirus in rodents in Chile. 352 

 A pair of rodent species were more likely to be parasitized by the same ectoparasite if they 353 

were closely phylogenetically related, overlapped more in range, and had a shorter distance 354 

between the center of their ranges. The trends between geographic and genetic factors with parasite 355 

sharing in the rodent-ectoparasite system are similar to trends in other systems, including viruses 356 

in bats (Wang et al., 2023), helminth and microparasites in rodents (Bordes et al., 2017), Bartonella 357 

in bats (McKee et al., 2019), avian malaria in bird communities (Clark & Clegg, 2017), plants and 358 

beetle species (Robles-Fernández & Lira-Noriega, 2017), and small mammals and ectoparasites 359 

(Dáttilo et al., 2020). We expand on the understanding of how evolutionary and ecological factors 360 

influence host interactions by exploring their role in a network of hosts versus in individual host 361 

relationships. Based on our regression analysis, we found that ectoparasite sharing between 362 

individual rodents had a stronger relationship with geographic distance and overlap than with 363 

phylogenetic distance. In agreement, shorter network path distance between rodents was more 364 

correlated with geographic distance than with phylogenetic distance. This contributes to both 365 



general frameworks for understating ectoparasite-host communities and parasite sharing, and to 366 

the hantavirus system in Chile specifically.  367 

 From the rodent-ectoparasite network, we found that closeness centrality can infer 368 

hantavirus host status. We demonstrated that closeness centrality showed significant correlation 369 

with hantavirus host status when there was very little phylogenetic signal, implying that using the 370 

ectoparasite-network model is a significantly better tool than phylogenetic relationships alone for 371 

predicting hantavirus host status. We found that the twelve highly connected rodents included all 372 

seven known hantavirus hosts and five potential hosts. It has been suggested previously that highly 373 

connected rodents in a network may play a role in zoonotic disease spillover (Bordes et al., 2017). 374 

We support high network centrality as a driver of spillover in the rodent-hantavirus system. Using 375 

the twelve most central rodents, we identified the south-central region of Chile as having the 376 

greatest richness of known and potential hantavirus host and reservoir species. This area has 377 

previously been defined as a mammalian biodiversity hotspot (Hernández-Mazariegos et al., 378 

2022), which could place it at a higher risk for emerging zoonotic diseases (Allen et al., 2017). 379 

The rodent species and areas identified can be used to inform surveillance programs aiming to 380 

identify novel hosts and regions where the virus could emerge. Identifying novel hosts and high-381 

risk areas for hantavirus spillover in Chile is critical as the hantavirus, ANDV, associated 382 

circulating in this region has revealed a risk of human-to-human transmission (Martinez-383 

Valdebenito et al., 2014) and is also associated with the second highest case mortality rate for all 384 

hantaviruses worldwide (Vial et al., 2023). Anticipating and assessing for cross-species 385 

transmission events of hantavirus in Chile can allow assessment of ANDV evolution in 386 

transmissivity and virulence, which is fundamental for early detection of enhanced pathogenicity 387 

and pandemic risk.  388 



 Pathogens and parasites can be specialists, exploiting one or few hosts, or generalists, 389 

exploiting many hosts. Phylogenetic relatedness and geographic distance can influence the ability 390 

of a pathogen or parasite to exploit multiple hosts (Poulin et al., 2011). Within the generalist-391 

specialist framework, some pathogens and parasites act as generalists  regarding one factor while 392 

they are specialists with regard to another. This means that a parasite or pathogen can be a 393 

generalist in terms of host range but a specialist in terms of geographic range, which makes 394 

classifying a parasite or pathogen into only one role reductive of its multiple interactions (Poulin 395 

et al., 2011). For emerging diseases and vectors, this is relevant because the context of the parasite 396 

or pathogen specificity is essential in identifying where or in what species a disease or vector has 397 

the potential to expand. For example, in our rodent-ectoparasite network, the flea Plocopsylla 398 

crypta, had a strong relationship with geographic proximity of hosts, but a weak relationship with 399 

phylogenetic relatedness. This indicates that P. crypta is more of specialist in terms of parasitizing 400 

hosts in a restricted geographic area, but within that area it can act as a generalist, parasitizing 401 

distantly related host species. Although the majority of ectoparasites in our analysis were fleas, the 402 

next largest group, mites, notably had stronger relationships with phylogenetic relatedness and 403 

geographic proximity than fleas in general did. This may be because it is more beneficial for 404 

directly transmitted parasites, like fleas, to parasitize many different host species while it can be 405 

detrimental for indirectly transmitted parasites to do the same (Poulin et al, 2007). Using this 406 

framework can help expand the definition of generalist and specialist parasites because it considers 407 

multiple factors that influence the ability of parasites to exploit hosts.  408 

 Our findings may also be informative in deciphering how hantaviruses have diversified in 409 

South America. There are over 28 hantaviruses that can cause human disease and others of 410 

unknown zoonotic risk found in a wide range of wildlife species, including rodents, bats, moles, 411 



shrews, reptiles, and fish (Avšič-Županc et al., 2019; Vial et al., 2023). Hantaviruses were 412 

previously thought to have co-evolved with their hosts. However, recent discoveries on new hosts, 413 

new viral strains, and the evolution rate of hantaviruses do not entirely support this idea (Kuhn & 414 

Schmaljohn, 2023). The possibility of preferential host-switching has been proposed but is not 415 

supported in hantaviruses in South America, for which geographic proximity is a potential 416 

explanation of hantavirus diversification (Rivera et al., 2015). Using the known hantavirus hosts 417 

in Chile, we found that geographic proximity, phylogenetic relatedness, and centrality in the 418 

rodent-ectoparasite network were predictors for rodents being known hantavirus hosts. 419 

Hantavirus-host status was more dependent on geographic proximity and phylogenetic relatedness 420 

than the average for ectoparasites, indicating that it is more of a specialist than most ectoparasite 421 

species. We found that hantavirus had a stronger relationship with geographic overlap and 422 

geographic distance between rodents than with phylogenetic distance. Relationships between 423 

geography and phylogeny to explain infection provide support for exploring the hypothesis that 424 

the geographic proximity of hosts has influenced the diversification of hantaviruses in South 425 

America. Host sympatry may suggest a host interaction leading to cross-species spillover and 426 

diversification. Of the five species predicted to be unknown ANDV hosts, two are non-Myomorph 427 

species (O. degus and A. porteri). Both species are in close geographic proximity and share 428 

considerable numbers of ectoparasites with known ANDV hosts, suggesting the potential for direct 429 

interaction necessary for ANDV transmission between rodents. If found infected with ANDV, 430 

these two rodent species would represent spillover into phylogenetically distinct hosts and could 431 

provide significant context to how hantaviruses have diversified.  432 

 The interpretation of our results must be considered in the context of data availability and 433 

geographic extent. Rodent-ectoparasite associations were based on documented associations and 434 



may be biased toward rodent species of known health concern and not fully represent all 435 

ectoparasite associations in Chile. Geographic range and genetic data did not fully represent the 436 

50-rodent dataset, with five species missing geographic data and two species missing genetic data. 437 

Notably, IUCN failed to include R. rattus or R. norvegicus distributions in Chile. However, both 438 

species have documented hantavirus infections in Chile (Lobos et al., 2005). The rodent species 439 

names and taxonomic standing that we included are according to the ITIS and may not represent 440 

recent advances in Chilean rodent taxonomy (D'Elía, 2020). A comprehensive dataset geographic 441 

ranges would improve our understanding of hantavirus transmission dynamics.  Additionally, we 442 

limited our study area to the geographic extent of Chile. We chose this limited extent to facilitate 443 

clear boundaries for our literature review and to account for differences in sampling efforts 444 

country-country in South America. Also, although many administrative country boundaries may 445 

not be ecologically relevant and the boundaries of Chile correspond to biogeographic regions due 446 

to the Andean cordillera (Morrone, 2018). Hantaviruses, however, are distributed globally and our 447 

approach may not scale to a global extent or in every system where hantavirus is present.  448 

 We demonstrated that ecological networks based on shared ectoparasites can elucidate how 449 

wildlife host species interact in the transmission of parasites and pathogens. Host interactions can 450 

be challenging to estimate due to labor, financial, or biologically imposed constraints. Our findings 451 

reveal that cross-species transmission dynamics are influenced by host phylogeny and geographic 452 

range, which together culminate in ectoparasite sharing. To validate the predictive power of our 453 

approach we suggest expanding the species tested for hantavirus in Chile, and even targeting 454 

capture and sampling of potential hosts identified in our study. Although shared ectoparasites are 455 

not a direct measure of interaction, they offer a less laborious method for connecting hosts while 456 

still being ecologically relevant. Further studies focused on multiple pathogens or parasites could 457 



use similar methods and include network communities to understand how more specialized 458 

pathogens or parasites cluster within specific hosts. Ectoparasite associations are indicative of host 459 

biology and using known interactions can help disease ecologists understand how hosts interact in 460 

ways that may otherwise be overlooked. 461 
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Tables 712 

  
Geographic 

Overlap 
Geographic 

distance 
Phylogenetic 

Distance 

  -2.82881254 -0.6467294 -0.769268852 

Std. Error 0.11842025 0.10890083 0.133686998 

z value -23.8897436 -5.9419812 -5.75342839 

Pr(>|z|) 1.66E-124 7.21E-07 3.41E-06 

2.50% -3.06091196 -0.8601711 -1.031290552 

97.50% -2.59671312 -0.4332877 -0.507247152 

  3.07615777 -0.1541742 -0.021322972 

Std. Error 0.20441326 0.01446215 0.002463259 

z value 15.0478327 -10.63058 -8.637090339 

Pr(>|z|) 8.95E-44 3.77E-18 1.06E-10 

2.50% 2.67551514 -0.1825195 -0.026150871 

97.50% 3.47680041 -0.1258289 -0.016495074 

Table 1. Logistic regression coefficients and summary for ectoparasite sharing. The overall 713 

logistic regression model coefficients for each of the predictor variables (phylogenetic relatedness, 714 

geographic distance, and geographic overlap) are reported with their summary statistics.  715 
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Figures 717 
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 718 

Figure 1. Rodent species diversity in Chile. Left. Rodent species richness for species with 719 

documented ectoparasite associations. Right. Rodent phylogeny for species with documented 720 

ectoparasite associations with maximum likelihood bootstrap percentages.  721 



722 
Figure 2. Association between sharing of ectoparasites and potential transmission drivers. 723 

Each panel shows the logistic regression curves for each ectoparasite (gray) and the overall 724 

model (red). We considered ectoparasites with three or more associations, using 725 

phylogenetic distance, geographic distance, or geographic overlap as the predictor variable. 726 

A. Ectoparasites sharing based on phylogenetic distance between rodents. B. Ectoparasites 727 

sharing based on geographic distance between the centroid of two rodent species. C. 728 

Ectoparasites sharing based on geographic overlap of rodent distributions.  729 
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 731 
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 733 
 734 

 735 

Figure 3. Interaction network model. The network model depicts the 376 unique interactions 736 

(edges) between 50 rodent hosts (nodes) through shared ectoparasites where interactions are 737 

weighted on the number of shared ectoparasites between rodents. Node size: Closeness centrality 738 

of each rodent Edge size: Number of shared ectoparasites between two rodent species. Yellow-739 

Green-Blue-Dark Blue: Decreasing closeness centrality quantiles based on levels of rodent-740 

parasite sharing. 741 

                    

                 

                   

                

                 

                     

               

                     

                

             

               

                          

                 
                     

                 

             

                  

                 

                 

                

                 

                 

               

                      

                  

                 

                  

                     

                 

                  

                       

                 

                

               

               

                 

            

                      

              

                    

                 

                   

               

                 

               

                     

                 

             

                  

                



 742 
Figure 4. Interaction matrix among rodent species. The number of shared ectoparasites 743 

between each pair of rodents in Chile are ordered from those sharing the most ectoparasites to 744 

those sharing the least. Color denotes the number of shared ectoparasites between each pair of 745 

rodents with gray indicating no sharing.  746 

  747 



 748 
Figure 5. Rodent-ectoparasite association. Left axis: rodent species Bottom axis: Total 749 

number of parasite associations represented by the gray points for each rodent Top axis: Total 750 

number of connections to other rodents through ectoparasites. The gray point shows the number 751 

of ectoparasite associations each rodent has individually (bottom) and the colored point 752 

represents the total number of relationships to other rodents through shared ectoparasites (top). 753 

Blue points indicate that the rodent is connected to more than average (~4 connections per 754 

ectoparasite), red indicated less than average, and black is average.  755 

  756 



 757 
Figure 6. Spillover transmission risk categories based on the centrality of hosts in the 758 

rodent-ectoparasite network. Rodent host species are ranked based on their closeness centrality 759 

in the ectoparasite network, and this is used to predict cross-species transmission of hantavirus. 760 

Brown dots: Known hantavirus hosts. Question: Predicted potential hantavirus hosts. 761 
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