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Introduction: Forecasting range shifts in response to climate change requires
accurate species distribution models (SDMs), particularly at the margins of
species' ranges. However, most studies producing SDMs rely on sparse species
occurrence datasets from herbarium records and public databases, along with
random pseudoabsences. While environmental covariates used to fit SDMS are
increasingly precise due to satellite data, the availability of species occurrence
records is still a large source of bias in model predictions. We developed
distribution models for hybridizing sister species of western and eastern
Joshua trees (Yucca brevifolia and Y. jaegeriana, respectively), iconic Mojave
Desert species that are threatened by climate change and habitat loss.

Methods: We conducted an intensive visual grid search of online satellite
imagery for 672,043 0.25 km2 grid cells to identify the two species' presences
and absences on the landscape with exceptional resolution, and field validated
29,050 cells in 15,001 km of driving. We used the resulting presence/absence
data to train SDMs for each Joshua tree species, revealing the contemporary
environmental gradients (during the past 40 years) with greatest influence on the
current distribution of adult trees.

Results:While the environments occupied by Y. brevifolia and Y. jaegerianawere
similar in total aridity, they differed with respect to seasonal precipitation and
temperature ranges, suggesting the two species may have differing responses to
climate change. Moreover, the species showed differing potential to occupy
each other's geographic ranges: modeled potential habitat for Y. jaegeriana
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extends throughout the range of Y. brevifolia, while potential habitat for Y.
brevifolia is not well represented within the range of Y. jaegeriana.

Discussion: By reproducing the current range of the Joshua trees with high
fidelity, our dataset can serve as a baseline for future research, monitoring, and
management of this species, including an increased understanding of dynamics
at the trailing and leading margins of the species' ranges and potential for
climate refugia.

KEYWORDS

Joshua tree, Yucca brevifolia, Yucca jaegeriana, species distribution modeling, habitat
map, remote sensing, climate variability, Mojave Desert

1 Introduction

Accurate geographic distribution information for sensitive
species is fundamental to evaluating habitat changes in response
to disturbances and environmental variation (Pitelka and Plant
Migration Workshop Group, 1997), and for conservation science
and resource management planning (Guisan and Thuiller, 2005;
Neilson et al., 2005; Elith and Leathwick, 2009). Short of mapping
the location of every individual in a species, geographic
distributions are frequently studied using species distribution
modeling (SDM), a collection of statistical methods to correlate
species presence and absence records with spatially explicit
environmental factors, and to predict probabilities of species’
presences in locations where direct observation is not available
(Franklin, 1995; Guisan and Thuiller, 2005). Practitioners often use
SDMs to close the gap between incomplete records of a species’
presence on the landscape and its full geographic range. However,
SDMs are limited by the power of the modeling methods used, the
selection of relevant environmental variables used as predictors,
and, perhaps most critically, the quality of input observation data
(e.g., Phillips et al., 2009; Lobo and Tognelli, 2011; Bean et al., 2012).

Range-wide distribution modeling can be hindered by the lack
of robust presence and absence data across broad areas occupied by
the focal species (Brown and Griscom, 2022). Acquiring presence
and/or absence data may be challenging because of species crypsis,
difficulties accessing remote habitats, or the sheer size of many
widespread species’ distributions. Moreover, while presence data
may often be incomplete, true absence data for many species are
simply unobtainable (Lobo et al., 2010), because many animals
easily travel into areas that would seem unlikely as habitat. This is
especially true for volant species such as birds and bats, or large
mammals with increased capacity for movement across landscapes.
Many models are instead estimated using “pseudoabsence” data
drawn at random from locations within a known or estimated
dispersal range from presence locations (Lobo and Tognelli, 2011;
Barbet-Massin et al., 2012). Because most SDM methods hinge on
the contrast between environmental conditions at presence and
absence locations, the method of pseudoabsence selection
influences a model’s power to identify the environmental factors

that meaningfully contribute to habitat suitability (e.g.,
VanDerWall et al., 2009).

One recent alternative is afforded by remote-sensing datasets,
which are increasingly accessible and offer the potential to develop
high-resolution distribution data encompassing both presence and
true absence information. For a species that can be reliably
identified in satellite imagery or LiDAR (Light Detection And
Ranging) scans, it should be possible to collect presence and
absence records in regions that may be inaccessible to direct
survey, at a spatial resolution and geographic scope limited only
by the remote-sensing method (Esque et al., 2020a; Hu et al., 2021).
High quality remotely sensed satellite data are available near human
population centers, but quality declines in remote areas, and regions
where national security concerns preempt public availability of
high-resolution imagery (e.g., near Department of Energy and
Department of Defense installations; http://apps.nationalmap.gov/
lidar-explorer/).

Joshua trees (Yucca brevifolia Engelm. and Y. jaegeriana
McKelvey ex Lenz; Figure 1) offer a unique demonstration of the
possibilities created by high-resolution remote sensing. The two
species are sister taxa of large tree-like yuccas broadly inhabiting
four states and an area upwards of 25,000 km2 at low to middle
elevations across the Mojave Desert ecoregion (McKelvey, 1938;
Rowlands, 1978; Lenz, 2007). In most of the plant communities
where they occur, Joshua trees are the largest plants on the
landscape (reproductive individuals grow >2 m tall), which has
facilitated the collection of unusually comprehensive presence
records to inform species distribution models (Godsoe et al.,
2009; Cole et al., 2011; Smith et al., 2011). The trees’ association
with the Mojave Desert more broadly has made them a focal species
for the use of SDMs to predict plant community shifts in response
to projected climate change (Cole et al., 2011; Barrows andMurphy-
Mariscal, 2012; Sweet et al., 2019; Smith et al., 2023) as well as
historical distribution changes since the last glacial maximum
(Smith et al., 2011). However, even in the case of these well-
studied, conspicuous species, SDMs published to date have
significant limitations. The largest observation datasets for Joshua
trees contain only validated presence records and rely on
pseudoabsences for SDM estimation (Godsoe et al., 2009).
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Observation records in these datasets are also distributed unevenly
across the Mojave Desert, limited by the accessibility of remote
habitats in which the trees occur and substantial regions where
access is restricted for national security concerns.

The division of the two species presents a further complication:
the possibility that they are adapted to different climate regimes in
the eastern and western Mojave. The two species of Joshua tree were
formally recognized following the discovery that they are each
exclusively pollinated by separate, sister species of yucca moths
with obligate seed-feeding larvae (Pellmyr and Segraves, 2003; Lenz,
2007; Godsoe et al., 2008). Yucca jaegeriana and Y. brevifolia
hybridize in a narrow conterminous zone, where the moths’
(Tegeticula. antithetica, and T. synthetica; respectively) host
specificity is thought to be the primary barrier to gene flow
(Smith et al., 2008; Starr et al., 2013). Genome-wide patterns of
differentiation between the two Joshua tree species, however,
indicate that the moths are not solely responsible for maintaining
reproductive isolation, and other environmental factors, such as
climate differences between the eastern and western Mojave, may
also contribute (Starr et al., 2013; Royer et al., 2016; Royer et al.,
2020). The most comprehensive range-wide SDM studies of Joshua
trees have attempted to compare the range of climates in which the

two species grow and find that they occupy overlapping climate
regimes (Godsoe et al., 2009), but studies done at the highest spatial
resolution have only been conducted within the range of Y.
brevifolia, in Joshua Tree National Park and its vicinity (Barrows
et al., 2019).

Understanding Joshua trees’ climate requirements has become
more urgently necessary to plan for their conservation in the face of
a suite of interlocking threats to the natural communities of the
Mojave Desert (Smith et al., 2023). Recruitment of Joshua trees
requires that seedlings survive a gauntlet of life history challenges
(Reynolds et al., 2012). Furthermore, increasingly frequent wildfires
fueled by invasive introduced grasses (Loik et al., 2000; DeFalco
et al., 2010; Reynolds et al., 2012; St. Clair et al., 2022), land use
changes (Esque et al., 2020b; Esque et al., 2020c; Smith et al., 2023;
State of California, 2023) and climate change (Dole et al., 2003; Cole
et al., 2011; Barrows and Murphy-Mariscal, 2012; Sweet et al., 2019)
all complicate conservation and management. Slow growing and
long-lived plant species with wide distributions are frequently left
out of conservation planning (Kwit et al., 2004), but widespread
concern for Joshua tree populations has prompted petitions to the
California Fish and Game Commission and the US Fish and
Wildlife Service to protect them (WildEarth Guardians, 2015;

FIGURE 1

Study area, placenames, and area of obscured imagery. Photograph on left is an example of the western Joshua tree (Yucca brevifolia), which is
unbranched for the first 2 m of its stem; photograph on right is the eastern Joshua tree (Y. jaegeriana), which has many branches from as low as
1 m. Photo credit – Christopher I. Smith.
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California Fish and Game Commission, 2019; State of California,
2023). Listing under the Endangered Species Act was determined to
be not warranted (USFWS, 2023), and the Western Joshua Tree
Conservation Act (State of California, 2023) was passed. However,
high-resolution distribution mapping and demographic
information remain major unknowns in understanding the
population status of Y. jaegeriana and Y. brevifolia across
their ranges.

Identifying presence and absence of adult Joshua trees can be
easier than for many other species because of their conspicuous
height and unique branching patterns (reproductive plants >2 m
tall), occurring among sparse desert shrubs with shorter canopies.
Pre-reproductive Joshua trees (usually <2 m tall) are mostly
undetectable because they cast a small shadow and primarily exist
within the canopy of nurse plants (Esque et al., 2021). Adults can be
reliably identified using commercial satellite data (i.e., Google Maps,
satellite view) or Light Detection and Radar Data (LiDAR; Esque
et al., 2020a). Image-based empirical maps of the trees’ distribution
can be used with SDMs to enhance representative rangewide habitat
suitability maps and explore occupied and potential habitat with
great accuracy (Brown and Griscom, 2022).

Here, we paired remotely sensed satellite data with species
distribution modeling of Joshua trees across the Mojave and
portions of the Sonoran Deserts (132,441 km2), evaluated those
data using extensive field validation with other spatially explicit data
sources, and provide high-resolution distribution maps for Y.
brevifolia and Y. jaegeriana. We found we could reliably identify
adult Joshua trees at a resolution of 0.25 km2 and validated the trees’
presence and absence across 672,043 grid cells to develop a nearly
comprehensive distribution dataset to inform SDM-based range
mapping for this iconic species. We use these data to understand the
underlying environmental variables related to Joshua tree
distributions and to compare habitat, modeled habitat, and
potential habitat between these two closely related species. We
distinguish habitat as currently occupied areas derived directly from
empirical presence/absence data, modeled habitat as the regions
identified by SDMs as having a high probability of species presence,
and potential habitat as modeled habitat that is outside of the
empirical habitat area (e.g., where occupancy was not detected in
imagery or field surveys). Our distribution maps represent the first
rangewide, survey-based models for both species and can inform
decision-makers and the public about the status of Joshua trees,
describe the environmental factors that shape their current
distributions, help establish an informed network for
demographic monitoring, and provide the foundation for high-
resolution predictions of future and paleoclimate distributions.

2 Methods

2.1 Study area

The study area encompasses 132,441 km2, including the Level
III Mojave Desert ecoregion and some adjacent ecoregions
(Omernik and Griffith, 2014) in Utah, Arizona, Nevada, and
California, USA (Figure 1). The study area perimeter was

determined using the probability threshold of 0.3 or higher from
a previous species distribution model for Joshua trees (Godsoe et al.,
2009) and based on field observation. Baseline survey elevations
were from 400 m to 2,200 m to encompass the range of Joshua trees
but exclude extraneous search areas because of the size of the study
area. The elevational range across the study region was −86 m in
Death Valley, California, to 3,632 m at the summit of Charleston
Peak, Clark County, Nevada.

2.2 Initial surveys using satellite imagery

Publicly available Google Earth satellite imagery was used to
identify presence or absence of adult Joshua trees of both species
(Esque et al., 2020a). We created a structured data set for both
species with a repeatable protocol (Isaac et al., 2020). Rather than a
stratified sampling design, we aimed to sample 100% of the study
area at 500 m resolution. Using the Fishnet toolbox in ArcMap 10.5
we created a grid of 811,900 500 m × 500 m cells in the USA
Contiguous Albers Equal Area Conic USGS coordinate system (SR-
ORG:7301). Observers inspected 672,043 of the survey cells during
our initial mapping phase, encompassing 82.7% of the gridded
study area. The remainder of the gridded study area, or 139,857
cells, occurred in south-central Nevada near US Department of
Energy and Defense facilities (i.e., National Nuclear Testing Facility
and Nellis Air Force Base) where we found obscured imagery
presumably due to national security concerns. Thus, presence/
absence determinations were precluded in this area (Figure 2). As
an alternative, we modeled Joshua tree habitat in this region using
SDM algorithms based on the true presence and absences for the
rest of both species’ ranges (see below).

Visual scans of adult Joshua tree presence and absence were
conducted at a standardized eye elevation of ~250 m (i.e., the
altitude above the land surface) with a target search time of roughly
45 s per cell. Observers either placed waypoints within each cell at
the location of a prominent Joshua tree or designated absence.
Surveys of satellite imagery were mostly limited to adult Joshua
trees (usually branched trees >2 m height) because initial field
surveys indicated that smaller trees are usually not distinguishable,
and those <1 m tall are undetectable (Esque et al., 2021).

2.3 Refinement of habitat map

The quality of Google Earth imagery was variable, but usable,
across the gridded study area except for the region of obscured
imagery described above (see Completing coverage for Joshua tree
distributions in obscured area using SDMs). The most recent
imagery (2021) was evaluated first, but if presence/absence was
not readily assigned because of image quality, the eye altitude or
time frame within the historical satellite imagery (2003 to 2021) was
varied to try and detect Joshua trees. Remaining questionable cells
were re-evaluated using secondary satellite surveys (see below).

We further refined the habitat map by correcting errors using
field validation, secondary satellite searches, empirical point data
from co-authors’ unpublished datasets, points provided by staff at
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Nellis Air Force Base, filtered research grade iNaturalist
observations (GBIF, 2023), and some SEInet observations (Esque
et al., 2020a; SEINet, 2023). Field validation included 15,001 km of
driving along both paved and dirt roads during twenty site visits
throughout the grid system (29,050 cells; Figure 2). Where site visits
were not possible, the most experienced observers re-evaluated cells
using secondary satellite searches (from any year available, with the
best imagery) in the following three scenarios: 1) cells determined to
be without Joshua trees but adjacent to cells having Joshua trees
present; 2) cells having Joshua trees present but surrounded by cells
without Joshua trees; and 3) cells in areas known to cause confusion
because of other issues (e.g., plants, rocky outcrops, fire scars, the
urban/wildland interface). Data from iNaturalist and SEInet that
were inconsistent with our database were also field validated.

2.4 Environmental variables

We derived 18 environmental variables to serve as covariates in
the species distribution models (SDMs), which together characterize
climate, topography, vegetation (e.g., NDVI variables), and soil

surface properties for the study region (Table 1). Precipitation and
temperature layers were created using ClimateNA v. 7.3 (Wang et al.,
2016), which downscales PRISM data (Daly et al., 2008) and corrects
for elevational variation. Our contemporary climate analyses
included data from the 30-year period between 1980–2010. Satellite
metrics incorporating plant canopy and soil surface data from the
moderate-resolution imaging spectroradiometer (MODIS) satellite
were averaged across 17 y (2003–2020) to represent a norm for the
study region (NDVI amplitude and maximum – USGS eMODIS
Remote Sensing Phenology, https://doi.org//10.5066/F7PC30G1). A
layer representing soil surface texture was downloaded and
mosaicked from the SoilGrids 2.0 web portal (Poggio et al., 2021).
All topographic metrics were calculated by aggregating a 30 m digital
elevation model to the 500 m × 500 m resolution used for modeling
(National Elevation Dataset, http://ned.usgs.gov/).

Climatographs were generated for Y. brevifolia and Y.
jaegeriana from the final corrected presence grid cells using
gaussian kernel density estimates from cell values for each
environmental variable. The climatographs were used to compare
the climate between adult Joshua tree species’ occupied habitat and
can be compared with partial response curves resulting from SDMs.

FIGURE 2

Geographical distribution for Y. brevifolia and Y. jaegeriana illustrating true presences and absences and the areas of obscured imagery where field
and satellite surveys were missing. Inset is an example of field validation and secondary satellite surveys across the distributions for both species.
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2.5 Species distribution modeling

We used an ensemble modeling approach to create SDMs for Y.
brevifolia, Y. jaegeriana, and a rangewide model with both species’
datasets (hereafter, rangewide model). Presence and absence points
were assigned to each species’ range based on Rowlands (1978); Lenz
(2007), and author’s unpublished genetic data (CIS). The species are
non-overlapping except in the hybrid zone which was obscured by
poor imagery; in that area the data for both species were used in
combination for modeling (i.e., species specific points were not
designated). Next, we fit SDMs to the individual species
occurrences separately, along with a rangewide SDM featuring all
points (i.e., from both species). We used a custom script in R version
4.1.3 (R Core Team, 2022) to implement model cross-validation,
model averaging, parallel processing, and partial response curves for
model terms. Our ensemble modeling approach included two
algorithms: generalized additive models (GAM; R package “mgcv”
version 1.8-22; Wood, 2017) and random forests (RF; R package
“ranger” version 0.12.1; Wright and Ziegler, 2017). Both algorithms
have been consistently strong performers among SDM algorithms
(Franklin, 2010). However, due to consistently better cross-validation
performance, we only fit RF models for the rangewide dataset,
whereas both GAM and RF were compared for the individual
species models. All GAM models were fit with restricted maximum
likelihood (REML) and an extra penalty allowing smooth terms to be
penalized to zero (“gam” option select=TRUE in “mgcv” package) to
aid model selection. Random forest models were fit with 1,500
random trees and “ranger” package defaults for the regression
model (Wright and Ziegler, 2017).

For each algorithm and dataset, we considered eight candidate
models that included 10 uncorrelated terms and another 8 terms
used such that we avoided multicollinearity as environmental
predictors (Table S1). All models included the same 10
uncorrelated terms (NDVI amplitude – AMPn, NDVI maximum
– MAXn, HCL, precipitation seasonality – PCV, precipitation ratio
– Pratio, Sand, Slope, topographic position – TPI, temperature
seasonality – TSD, and temperature range – Trange; Table 1), but
varied with respect to eight additional terms to avoid
multicollinearity (Climate moisture deficit – CMD, Annual heat/
moisture index – AHM, mean annual precipitation – MAP, mean
annual temperature – MAT, summer precipitation – SP, summer
maximum temperature – STMX, winter precipitation – WP, and

TABLE 1 Environmental covariates (climate, satellite, and topography)
used to fit species distribution models (SDMs) for eastern and western
Joshua tree species.

Covariate Code Description

Climate

Annual heat/
moisture
index

AHM
Mean annual temperature in Celsius divided by
mean annual precipitation in mm (MAT+10)/
(MAP/1,000).

Mean
annual
precipitation

MAP Average annual precipitation during the climatic
normal period 1980–2010.

Mean
annual
temperature

MAT Average of the monthly temperature averages for
the climatic normal period 1980–2010.

Precipitation
ratio

Pratio
Ratio of summer to winter precipitation.

Precipitation
seasonality

PCV
Coefficient of variation in monthly precipitation
totals for the normal period 1980–2010.

Summer
maximum
temperature

STMX Average maximum temperature from Jun–Aug,
based on the climatic normal period 1980–2010.

Summer
Precipitation

SP
Average total precipitation received from May–
Oct, based on the climatic normal period
1980–2010.

Temperature
range

Trange
Difference between winter minimum temperature
and summer maximum temperature.

Temperature
seasonality

TSD
Standard deviation of the monthly
mean temperatures.

Winter
minimum
temperature

WTMN Average minimum temperature from Dec–Feb,
based on the climatic normal period 1980–2010.

Winter
precipitation

WP
Average total precipitation received from Nov–
April, based on the climatic normal period
1980–2010.

Satellite

Climatic
moisture
deficit

CMD

A modified Thornthwaite-Mather climatic water-
balance model was used to calculate annual
estimates of Annual Evapotranspiration (AET) and
deficit between 1916 and 2005 at the 30 arc second
resolution (Dobrowski et al., 2013).

NDVI
amplitude

AMPn
Maximum increase in canopy photosynthetic
activity above the baseline. Derived from MODIS
satellite bands.

NDVI
maximum

MAXn
NDVI at the maximum level of photosynthetic
activity in the canopy. Derived from MODIS
satellite bands.

Sandy soils Sand
Fraction of soil surface texture of sand particle size
(0–5 cm).

Topography

Heat
load index

HLI

Aspect/slope transformation index from McCune
and Keon (2002), representing the range in heat
load from coolest (northeast slope) to warmest
(southwest slope).

(Continued)

TABLE 1 Continued

Covariate Code Description

Slope Slope
Derived from a 30 m DEM (USGS National
Elevation Dataset) and upscaled to
500 m resolution.

Topographic
position

TPI

Steady state wetness index expressed as a function
of slope and upstream contributing area (Moore
et al., 1993). Derived from a 30 m DEM (USGS
National Elevation Dataset) and upscaled to
500 m resolution.
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winter temperature minimum – WTMN). This set of models
allowed us to contrast seasonal and annual climate variables
which, though correlated, may relate to different critical life stages
or phenological processes for the different Joshua tree species.

To account for potential bias due to spatial aggregation (Veloz,
2009), and for computational efficiency, we rasterized presence and
absence points to the modeling resolution (500 m × 500 m) and
applied a spatial thinning procedure in which a maximum of 50
points could be randomly sampled from any 5 km2 area (Fourcade
et al., 2014). This procedure reduced data density without changing
the spatial arrangement of points. Following this procedure, the
models included 128,438 points for Y. brevifolia (including
presences and absences), 114,705 points for Y. jaegeriana, and
198,305 points for the rangewide model (note: rangewide points
are not additive because of potential species overlap in a large area).
This procedure was repeated five times for each species and for the
rangewide dataset. Next, for each set of thinned points, we applied a
5-fold cross-validation procedure to split the data into training folds
(used for model fitting) and testing folds (used for model
evaluation). Overall, this process resulted in 25 total cross-
validation runs used to evaluate models (5 sets of randomly
thinned points × 5-fold cross-validation). It has been shown that
conventional random cross-validation may underestimate model
error and/or transferability, particularly when applied to spatially
structured data (Bahn and McGill, 2012; Wenger and Olden, 2012).
For this reason, we used a spatial cross-validation approach
developed by Valavi et al. (2019) and implemented in the R
package “blockCV” v2.1.4. Using the packages’ “spatial blocking
feature”, we split data into random training and testing blocks that
were both geographically separated and optimized to contain
relatively equal numbers of presences and absences. With this
procedure, we intended to reduce overfitting to the training data
while identifying models that were generalizable and performed
well across the study extent.

To measure model performance of the cross-validated models,
we considered several metrics of model prediction accuracy
including AUC (i.e., the area under the receiver operating
characteristic; Fielding and Bell, 1997), the Boyce Index (Hirzel
et al., 2006), and the True Skill Statistic (TSS; Allouche et al., 2006).
For GAM, we also calculated each model’s average AIC (with each
model being fit to the same subsets of data during cross validation)
to help identify well-performing, parsimonious models. These
metrics were averaged across cross-validation runs for each model
to obtain an overall estimate of performance. Moreover, for each
cross-validation run, we also generated model predictions as raster
grids for the study extent constituting the predicted habitat
suitability probabilities. We then created a final prediction raster
for each model as the weighted average of the 25 individual cross-
validation predictions based on the TSS scores (such that better
performing model predictions from the cross-validation runs
featured more heavily in the final raster prediction surface for
each model). Similarly, we created overall algorithm ensemble
predictions as the weighted average of raster predictions from
individual models, again based on TSS scores. For each ensemble

model, we also calculated model calibration curves by binning the
predicted habitat probalities into 5 probability classes of width 0.2
(e.g., 0–0.2, 0.2–0.4, etc.) and comparing the midpoints of each bin
with the observed frequency of presences within that subset of data.
Calibration curves are useful in illustrating how well habitat
probabi l i t i es correspond to the actua l f requency of
presence observations.

To aid model interpretation, we derived relative importance
values for each predictor present in the candidate models for each
algorithm. Relative importance for predictors in random forest
models were based on the mean decrease in accuracy from
permutations leaving out each term, while for GAM, relative
performance was based on the parameter’s chi-square statistics.
We also derived partial variable response curves for each of the top
nine predictors present in the candidate models for each species, as
well as the rangewide dataset. These curves indicate the shape and
direction of relationships between predictors and habitat
probability values. For GAM, response curve functions for
predictors were also averaged across all the models in which each
predictor occurred to create a model-averaged response curve for
each predictor, which we overlay on the individual curves from
candidate models. For random forest models, we calculated partial
dependence curves using the R package “pdp” (Greenwell, 2017).

2.6 Modeled and potential habitat

We define the modeled habitat for Joshua trees as areas where
SDM-predicted habitat probability values were above the threshold
that maximized the sum of model sensitivities (true positive rate)
and specificities (true negative rate; Liu et al., 2005). SDM ensemble
habitat layers were thresholded separately for each species and for
the combined dataset. Potential habitat for Joshua trees includes
locations with modeled habitat where empirical Joshua tree
presences were not detected (e.g., where there were no presence
points from surveys). We quantified the area of habitat resulting
from empirical distribution data versus the modeled and potential
habitat generated by SDMs.

2.7 Comparison of habitat overlap

To compare the modeled habitats of Y. brevifolia and Y.
jaegeriana, we calculated Schoener’s D statistic and the I statistic
defined in Warren et al. (2009), both measures of environmental
overlap which range from 0 (no overlap in covariates) to 1
(complete overlap). As a second measure, we calculated AUC
values for two scenarios: (1) Y. brevifolia’s habitat probabilities
(from surveyed presences) within the SDM predicted for Y.
jaegeriana and projected across the full range of both species; and
(2) Y. jaegeriana’s habitat probabilities (from surveyed presences)
within the SDM predicted for Y. brevifolia and projected across the
full range. These calculations illustrate how well each species’
individual SDMs predict occupied habitat for the other species, as
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well as whether any such relationships are spatially symmetric.
Finally, to contrast the environmental tolerances of each species, we
overlaid the response curves for environmental predictors that were
among the top nine predictors in the individual SDMs for either
species (overlaid separately for GAM and random forest). These
response curve overlays contrast the relationships between each
species’ modeled habitat by each environmental covariate.

3 Results

3.1 Refinement of habitat map

Field validation of 29,050 grid cells resulted in status changes for
3,703 of them (12.8%) (i.e., changes from absence to presence, or
vice versa; Table S2). Experienced observers re-evaluated 76,578
cells using secondary satellite searches, changed the status of 36,857
cells (48.1% of re-surveyed cells, or 5.5% of all cells surveyed). The
majority of these cells were changed from absence to presence
(72.4% of changed cells; Table S2).

3.2 Joshua tree habitat

Based on the gridded image surveys and final corrections, Yucca
jaegeriana currently occupies more than 16,683 km2 of habitat
(excluding the area of obscured imagery) in the eastern Mojave
Basin and Range ecoregion, and conterminous ecotones of Sonoran
Basin and Range, Arizona/New Mexico Mountains, and Southern

Basin and Range ecoregions (Figure 2; Omernik and Griffith, 2014).
Nevada has the greatest amount of occupied Y. jaegeriana habitat
(7,137 km2), followed by Arizona, California, and Utah (Table 2).
Yucca jaegeriana generally occurs in 11 large and homogeneous
populations, along with a few smaller peripheral populations.
Unoccupied cells within these populations are rare (Figure 2).
Occupied cells outside the well-defined populations are infrequent
and mostly within 0.4 to 2.0 km of population edges, with only two
individual cells isolated by >3 km. While uncommon, such isolates
occur throughout the range of Y. jaegeriana (77 out of 102,274,
0.25 km2 grid cells, Figure 2). The elevational limits of Y. jaegeriana
are 392 m near Alamo State Park, AZ and 2,319 m in the Sheep Range,
NV. The latitudinal limits are near Aguila, AZ in the south and Dry
Lake Valley, near Caliente, NV in the north. Longitudinal limits are
near Hawkins, AZ in the east, and the Avawats Mountains on Ft. Irwin
Military Base, CA in the west.

Yucca brevifolia occupies 15,955 km2 of habitat (excluding the area
of obscured imagery) in the western Mojave Basin and Range
ecoregion and adjacent Sierra Nevada and Southern California
Mountain ecoregions (Omernik and Griffith, 2014; Figure 2).
California has the most occupied habitat for Y. brevifolia followed by
Nevada. Native populations do not occur in Utah or Arizona (Table 2).
Yucca brevifolia has an extensive population on the southwestern edge
of its range with many narrow pinch points throughout. Besides
another large stand in the northwest periphery of its range that is
contiguous with the region of obscured imagery, there are several
smaller isolated populations of Y. brevifolia southward and eastward
throughout California (Figure 2). Occupied cells that are isolated
outside of large Joshua tree stands are infrequent with 170 cells
isolated by <3 km and only 2 occupied cells isolated by >3 km from
larger populations. In the southwestern range of Y. brevifolia,
unoccupied clusters of cells are more frequently interspersed within
occupied populations, creating a more diffuse pattern of occupancy in
comparison with Y. jaegeriana (Figure 2). The elevational limit of Y.
brevifolia is 600 m near Cantil, CA and the upper is 2,605 m on
Maturango Peak, CA on the Naval Air Weapons Station – China Lake.
The latitudinal limits are from near Indio, CA in the south and just
south of Tonopah, NV in the north, and longitudinal limits are near
Twentynine Palms in the east and the western limit is currently at the
junction of Orwin Way Road and the Quail Canyon Motocross Road
in Los Angeles, Co, CA.

3.3 Environmental variables within
species habitats

Climatographs were used to display the frequency distributions of
environmental variables within occupied Joshua tree habitat (Figure 3).
While annual heat/moisture index (AHM) and winter precipitation
(WP) had similar distributions between Y. brevifolia and Y. jaegeriana
habitats, other variables – particularly summer precipitation (SP),
precipitation ratio (Pratio), temperature standard deviation (TSD),
and precipitation coefficient of variation (PCV) – showed marked
discrepancies (Figure 3). Yucca jaegeriana experiences a greater range
of temperature variation (higher TSD) than Y. brevifolia throughout
the year, but a more even precipitation distribution (i.e., lower PCV).

TABLE 2 Area of geographic distribution (i.e., occupied habitat in square
km) for Yucca juaegeriana and Yucca brevifolia by Class III Ecoregions
and States.

Ecoregion III Y.
jaegeriana (km2)

Y.
brevifolia (km2)

Mojave Basin and Range 13,596 11,162

Central Basin and Range 932 3,276

Sonoran Basin and Range 1,957 0

Arizona–New
Mexico Plateau

126 0

Arizona–New
Mexico Mountains

72 0

Sierra Nevada 0 1,109

Southern
California Mountains

0 408

State Y.
jaegeriana (km2)

Y.
brevifolia (km2)

California 3,485 12,889

Nevada 7,138 3,066

Arizona 5,601 0

Utah 459 0

Total geographical
area (km2)

16,683 15,955
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Interestingly, due to differences in the precipitation regime, Y.
jaegeriana and Y. brevifolia share a similar profile of annual aridity
(AHM), despite Y. jaegeriana experiencing higher mean annual
temperatures (MAT). For Y. brevifolia, annual precipitation is largely
restricted to the winter months due to its western position in the
Mojave precipitation gradient. However, Y. jaegeriana receives more
bi-modal precipitation benefitting from tropical monsoonal storms in
its easterly position (Hereford et al., 2006; Figure 3), and consequently
higher annual precipitation. However, the climatic moisture deficit
model (based onDobrowski et al., 2013), which incorporates additional
variables beyond MAP and MAT (e.g., downward shortwave radiation
and wind velocity), suggested that Y. jaegeriana has a greater overall
moisture deficit than Y. brevifolia in portions of its range.

3.4 Species distribution models

SDMs predicted the Joshua tree habitats with high model
performance (Tables 3, S3). Most AUC values from spatial cross-

validation were greater than 0.8, and scores for the algorithm
ensemble models were higher for RF than for GAM (Table 3).
The RF model for the rangewide map performed similarly
compared to the separate species models, with an AUC = 0.868
and R2 = 0.809 (Table 3, Figure 4). Given that spatial cross-
validation is a more stringent approach for model evaluation
than traditional random cross-validation (i.e., models are scored
based on their ability to predict into distinct geographic areas),
these metrics suggest that the SDMs are generalizable rather than
overfit and accurate in their predictions across the full
distribution. Inter-model standard deviations were generally
low (<0.2 in habitat probabilities) but more pronounced in
areas with fewer data points, such as the northern part of the
range where empirical coverage is low. Standard deviations for
the individual species models were also higher where we
extrapolated predictions into the range of the other species to
facilitate habitat comparisons (Figures 5, 6), but these areas were
typically of lower predicted habitat suitability, and the rangewide
ensemble SDM is not affected by this issue. Model calibration

FIGURE 3

Climatographs showing relationships between locations where Yucca brevifolia (YUBR) and Y. jaegeriana (YUJA) occur and the environmental
variables associated with these locations on a 0.25 km2 grid across the ranges of both species. Graphs are derived from gaussian kernel density
estimates for each variable.
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curves for the ensemble models indicated that, collectively, the
models tended to predict somewhat higher probabilities than
observed presences at the low end of values (<0.4), and
somewhat lower probabilities than expected at the higher end

(Figure S1). However, the estimates were close enough to the
observed values that they would not result in mispredictions
when the model threshold is applied to determine a
suitability cutoff.

FIGURE 4

Rangewide species distribution model using presence and absence data for both Y. jaegeriana and Y. brevifolia – based on ensemble modeling of
eight candidate standard deviations (SDs) in predicted probabilities across candidate models.

TABLE 3 Average model spatial cross-validation performance.

Metric

Y. brevifolia Y. jaegeriana Rangewide

GAM RF GAM RF RF

AUC 0.849 0.876 0.794 0.857 0.868

TSS 0.553 0.593 0.458 0.562 0.576

R2 0.437 0.813 0.374 0.838 0.809

Cor1 0.54 0.603 0.464 0.583 0.596

1Point-biserial correlation.
Eight individual models were evaluated across 25 cross-validation runs (5 repetitions of spatially thinned presences × 5 repetitions of k-fold cross-validation with k=5) with geographic separation
between training and testing folds. Values in the table reflect the average score across all models for each dataset and algorithm. For the complete set of performance metrics across all models and
algorithms, see Supplementary Table S3.
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3.5 Model selection

Climate variables were typically more important predictors in the
SDMs than the vegetation or topography variables for each species.
For Y. jaegeriana, the GAM model with the best (lowest) AIC was
model 3, while for Y. brevifolia, the GAM with the lowest AIC was
model 7 (Supplementary Table S3), and models 3 and 7 were the top
twomodels for both Joshua tree species on this metric (Table S3). The
environmental variables for these models only differed by including
the climate moisture deficit (CMD for model 3), and summer
maximum temperature (STMX for model 7). Despite the large
differences in AIC, GAM models were largely consistent in
predictive performance based on other metrics, with AUC ranging
from 0.796 to 0.798 for Y. jaegeriana, and from 0.852 to 0.859 for Y.
brevifolia (Table S3) among the eight models. No single GAM model
scored highest across all performance metrics.

Among RF models, we observed less variation in predictive
performance across models than for GAM (Table S3). For Y.

jaegeriana, models 2 and 1 had the highest AUC scores, while
models 2 and 5 had the highest TSS scores (Table S3). Both models
1 and 2 contained a measure of annual aridity (AHM); similarly,
model 5 reflected annual precipitation and temperature variables
(MAP, MAT) but not their seasonal components. However, the
models varied in AUC by only 0.004 (0.859 versus 0.855). For Y.
brevifolia, models 4 and 3 had the highest AUC and TSS scores
respectively (Table S3). These models only differed by including
either seasonal precipitation (SP, WP, Model 3) or annual
precipitation (MAP, Model 4). However, as with Y. jaegeriana,
AUC differed by only 0.004 between the highest and lowest
performing RF models for this species (0.878 versus 0.874),
suggesting similar predictive performance. The rangewide, multi-
species RF models also showed consistently high predictive
performance, with Models 7 and 8 showing the highest AUC
scores (Table S3). These models both contained seasonal
precipitation variables but varied in representing seasonal (Model
7) vs. annual (Model 8) temperature averages.

FIGURE 5

Species distribution models for Y. jaegeriana based on Random Forests and Generalized Additive Models. SDMs for each algorithm are derived as the
weighted average of predictions from eight individual candidate models based on the True Skill Statistic. Lower panels show the standard deviation
of predictions among the candidate models for each algorithm.
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3.6 Environmental variables predicting
modeled habitats in SDMs

For Y. jaegeriana, AHM and MAP were the strongest predictors
of Joshua tree habitat averaged across algorithms, followed by SP,
MAT, Pratio, PCV, and TSD (Table 4). For Y. brevifolia, MAT was
the strongest predictor averaged across GAM and RF followed by
TSD, PCV, SP, AHM, WTMN, and Pratio (Table 4). The best eight
environmental predictors averaged between RF and GAM differed
in rank but were largely shared between the two species, differing
only with respect to STMX (for Y. jaegeriana) and MAP (for Y.
brevifolia). For the rangewide RF model, AHM was the strongest
predictor, followed by MAP, MAT, SP, WP, STMX, Pratio, PCV,
TSD, and WTMN (Table 4).

We used partial response curves to illustrate relationships
between Joshua tree modeled habitat and individual
environmental variables across gradients in the landscape. Both Y.

brevifolia and Y. jaegeriana have similar peaks in probability of
occurrence for the annual heat/moisture index (AHM), climatic
moisture deficit (CMD), and mean annual precipitation (MAP) for
the GAM and RF models (Figure 7). In contrast, Y. jaegeriana are
predicted to occur at somewhat higher temperatures than Y.
brevifolia for both RF and GAM algorithms (Figure 7). Summer
precipitation (SP) increased habitat probabilities at higher values for
Y. jaegeriana in the GAM and RF models, and this relationship was
also reflected in higher probability values with increasing ratio of
summer to winter precipitation (Pratio). Both the RF and GAM
response curves indicated that habitat probabilities for Y. brevifolia
may also increase in response to a higher ratio of summer
precipitation, which occurs in Y. brevifolia habitat in the vicinity
of the hybrid zone and in the most northerly parts of the species
range in NV. Similarly, while Y. jaegeriana typically occurs in areas
with more bimodal precipitation and hence lower precipitation
seasonality (PCV), response curves suggested that higher PCV

FIGURE 6

Species distribution models for Y. brevifolia based on Random Forests and Generalized Additive Models. SDMs for each algorithm are derived as the
weighted average of predictions from eight individual candidate models based on the True Skill Statistic. Lower panels show the standard deviation
of predictions among the candidate models for each algorithm.
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values (i.e., more winter-dominated precipitation) increased habitat
probability in the GAMmodel for Y. jaegeriana, likely reflecting the
large amount of potential habitat occurring in the western Mojave
that is often congruent with Y. brevifolia habitat (Figure 5). This is
also illustrated in the Fort Irwin area, where the GAM model
predicted higher habitat suitability values than the RF model (see
Figure 5). Higher levels of temperature variability were more
influential in the SDMs for Y. jaegeriana for both RF and GAM
(Figure 7). Full partial response curves from GAM and RF models
for each species are available in Supplementary Figures S2–S6.

3.7 Comparisons of modeled and
potential habitat

Niche similarity statistics used on SDMs suggested considerable
overlap between the two species, with D = 0.629 and I = 0.882 for
the multi-algorithm ensemble predictions. However, AUC
comparisons suggested that the niche similarity was asymmetric:
while the Y. jaegeriana ensemble SDM predicted Y. brevifolia
presences with an AUC = 0.764, the Y. brevifolia ensemble SDM
predicted Y. jaegeriana presences with an AUC = 0.667. We note
that SDMs extrapolated beyond the known range of a species are
prone to uncertainty: we projected each species SDM into the range
of the other species to illustrate where the habitat may be similar,

but this does not imply occupancy of both species in these areas,
and these observations are corroborated by the habitat mapping
reported here.

Spatial comparisons of the ensemble SDMs for each species further
illustrate that potential habitat (modeled habitat where presences were
not detected in surveys) for Y. jaegeriana extends farther into the
habitat of Y. brevifolia than vice versa (Figure 8). In fact, potential
habitat for Y. jaegeriana extends throughout the entire range of Y.
brevifolia, while potential habitat of Y. brevifolia only occurs in small
patches beyond its extant range (Figures 8B, C), in addition to the area
of obscured imagery where both species share potential habitat.
Overall, potential habitat derived from the ensemble SDM for Y.
brevifolia covers approximately 16,400 km2 and is of similar size to
the area of occupied habitat (Figure 8B). However, potential habitat
had a median probability value of 0.624, lower than the median of
0.726 for grid cells in occupied habitat (e.g., those overlapping with
surveyed presences). Potential habitat for Y. brevifolia also overlaps
with approximately 1,834 km2 of occupied Y. jaegariana habitat.
Potential habitat for Y. jaegeriana covers approximately 27,638 km2

and is substantially larger than the occupied habitat for this species
(Figure 8C). As observed for Y. brevifolia, potential habitat for Y.
jaegeriana may be of lower current suitability, with a median habitat
probability of 0.61 versus a median of 0.73 for occupied habitat.
Approximately 5,410 km2 of Y. jaegeriana’s potential habitat is
currently occupied by Y. brevifolia, mirroring the asymmetric niche

TABLE 4 Relative importance of environmental covariates in species distribution models for each algorithm and species.

Term
Y. brevifolia Y. jaegeriana Rangewide

RF GAM Average RF GAM Average RF

MAT 8.736 11.531 10.134 9.146 7.589 8.368 8.383

TSD 7.519 9.139 8.329 5.395 5.424 5.41 5.78

PCV 6.891 9.368 8.13 5.409 6.167 5.788 6.593

SP 4.894 10.248 7.571 7.725 9.102 8.414 7.039

AHM 8.605 6.502 7.554 9.447 18.6 14.024 9.592

MAP 8.209 4.53 6.37 9.016 16.471 12.744 9.048

WTMN 6.158 8.784 7.471 5.851 4.754 5.303 5.601

Pratio 6.905 6.513 6.709 5.849 6.92 6.385 6.749

MAXn 4.668 7.447 6.058 4.164 3.766 3.965 4.446

AMPn 2.96 2.078 2.519 2.932 1.333 2.133 3.109

STMX 7.148 5.173 6.161 6.792 3.277 5.035 6.844

CMD 6.189 4.735 5.462 6.031 4.599 5.315 5.536

HLI 1.437 0.891 1.164 1.283 0.185 0.734 1.288

Sand pct 2.65 1.819 2.235 5.005 4.496 4.751 3.718

Slope 2.32 1.371 1.846 2.286 1.293 1.79 2.408

TPI 2.404 3.606 3.005 2.751 1.999 2.375 2.562

Trange 4.849 3.982 4.416 3.837 2.107 2.972 4.299

WP 7.456 2.282 4.869 7.081 1.919 4.5 7.005

For random forest, relative importance of terms was derived through permutation. For GAM, relative importance values were derived based on the likelihood ratio tests for model coefficients.
Bold values represent highest averaged importance values between the RF and GAM algorithms.
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similarity measures noted above. Overall, the two species share
approximately 9,669 km2 of potential habitat that is not currently
occupied by either species. Much of this area of shared potential habitat
falls within the area of obscured imagery (Figure 8); hence, a caveat to
the calculations presented here is that the amount of occupied habitat
in the obscured imagery area is unknown.

Potential habitat predicted for both species tended to occur at
higher elevations than currently occupied habitat, suggesting that

SDMs did not typically extrapolate into warmer areas. For example,
potential habitat for Y. brevifoliawas at significantly higher elevation
than occupied habitat (mean of 1459 m versus 1325 m, respectively;
t = 71.07, P < 0.0001), received more annual precipitation (MAP of
206 mm versus 189 mm; t = 57.52, P < 0,0001), and had lower
annual temperatures (MAT of 13.7°C versus 14.4°C; t = 61.62; P <
0.001). Similarly, potential habitat for Y. jaegeriana was higher in
elevation (average of 1408 m versus 1078 m; t = 230.99, P < 0.0001)

B

A

FIGURE 7

Partial dependence plots from (A) Random Forest and (B) GAM species distribution models for Y. brevifolia (blue curves) and Y. jaegeriana (orange
curves). Curves show the marginal influence of each term on the predicted probability of habitat. 95% confidence intervals (colored bands) are
derived from cross-validation.
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and cooler (MAT of 14.1°C versus 17.2°C; t = −295, P < 0.0001) than
occupied habitat. However, precipitation was lower in Y.
jaegeriana’s potential habitat (MAP of 190 mm versus 210 mm in
occupied habitat; t = −86.52, P < 0.0001), reflecting a westward shift
into areas receiving less summer precipitation that are more typical
of Y. brevifolia habitat.

While higher elevation and lower temperatures in potential
habitat suggest these areas could serve as refugia as the climate
warms, accessibility to current populations could be a major
constraint. For Y. jaegeriana, potential habitat that is contiguous
with actual habitat is rarely more than a few kilometers deep around
Y. jaegeriana stands (Figure 8). Outlying patches and diffuse cells of
potential habitat are likely inaccessible for colonization under
present climatic conditions because the unoccupied intervening
areas do not support Joshua trees and Joshua trees seem to be
dispersal limited (Vander Wall et al., 2006). While the pattern is
similar for most of Y. brevifolia’s range, there are some large

potential habitat patches in the southwest of the range that are
largely contiguous with occupied habitat.

4 Discussion

4.1 Yucca spp. distributions

Our species distribution models are based on the most
comprehensive presence and absence data yet available for Joshua
trees, enabling us to evaluate the environmental variables
underlying each species’ distribution. Thus, we present the first
highly accurate and nearly complete empirically derived range maps
for Yucca brevifolia and Y. jaegeriana. By coupling Google Earth
imagery to detect adult Joshua trees with extensive field validation,
we identified presences on 0.25 km2 grids across the ranges of both
species. While presence data were lacking for one area of obscured

FIGURE 8

(A–C) Overlap in modeled habitat predicted by overlaying separate SDMs for both Joshua tree species (Y. brevifolia and Y. jaegeriana). (A) Modeled
habitat overlap (blue) was determined by applying a threshold to the individual species SDMs, and then overlaying these raster layers to determine
where the modeled habitat for each species overlaps. While these maps reflect areas of similar habitat characteristics, they do not imply occupancy
of both Joshua tree species in areas of joint modeled habitat. (B, C) Comparison of occupied versus potential habitat for each species. Here, habitat
indicates cells with an observed presence from satellite and/or ground surveys, whereas potential habitat indicates cells with modeled habitat that
were not underlain by a surveyed presence.
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imagery where national defense is a priority for the Department of
Energy and the Department of Defense, we used our high-
resolution presence and absence data to fit SDMs across the full
range, resulting in completed rangewide distribution maps.

Identifying large, multi-stem Joshua trees using remotely sensed
Google Earth data is relatively straightforward, especially in the absence
of other large non-target succulent species that are similar in
physiognomy. However, Joshua trees can be challenging to
distinguish remotely from other large species including Mojave yucca
(Y. schidigera Roezl ex Ortgies), soaptree yucca (Y. elata Engelm.),
banana yucca (Y. baccata Torr.), giant saguaro cactus (Carnegiea
gigantea (Engelm.) Britton & Rose), desert almond (Prunus
fasciculata (Torr.) A. Gray); sugar sumac (Rhus ovata S. Watson),
creosote bush (Larrea tridentata Coville), or trees such as pinyon pines
(e.g., Pinus monophyla Torr. & Frém.) and junipers (e.g., Juniperus
osteosperma (Torr.) Little). Clonal Joshua tree forms can also be
difficult to observe remotely where they are prevalent, e.g., on the
western margin of Y. brevifolia distributions. Areas scarred by wildfires
can have exceptionally low densities of Joshua trees, which also makes
them difficult to detect. Joshua trees that were within natural
distributions, but recognizably in cultivation (i.e., planted specimens
within fences, urban settings) were not included as presences. Despite
these difficulties, extensive field validations of imagery-based presence
and absence classifications indicated the method to be highly effective,
with 87% of over 29,000 field surveyed grid cells requiring no change
(Table S2). Secondary imagery-based validations of over 76,000 grid
cells by experienced observers further refined our presence and absence
data, resulting in reclassifications of 5.5% of grid cells and likely
increased accuracy in the most challenging areas of imagery (Table S2).

Yucca jaegeriana habitat occurs in discrete well-defined and
homogeneously occupied populations of the eastern Mojave Desert
and neighboring ecoregions, while Y. brevifolia populations have a
sprawling distribution of considerably less homogeneous patches
along the western boundary of the Mojave Desert. Furthermore,
empirical demographic measurements at the leading edges of
Joshua tree distributions indicate that small founder trees
occurring there extend less than a kilometer from the edges of
established Joshua tree stands. This is consistent with observations
during demographic transect surveys, in which young Joshua trees
are well represented within some Joshua tree stands and taper off
within a few 100 m near the stand edges (Smith, et al., unpublished
data). These distributional patterns are generally consistent with
previous Joshua tree range maps (Rowlands, 1978; Godsoe et al.,
2009; Cole et al., 2011; Smith et al., 2011; Wilkening et al., 2020);
however, the habitat we defined has 23.8% less areal coverage than
the distribution identified in the most recently published
distribution map (see Supplementary Table S4; Wilkening et al.,
2020). Within populations we found absences of Y. jaegeriana only
in small, widely scattered locations; in contrast, Y. brevifolia
populations were more diffuse owing to a greater number of
absences dispersed throughout the populations, especially in the
southwest of the range. Based on satellite imagery some of those
absences within Y. brevifolia populations appear to be the result
from urban development, fire, and other cumulative disturbances.

The upper and lower elevational, latitudinal, and longitudinal
limits were revised for both species where appropriate (see
Figure 2). Differences we noted from previous work mostly
represent the higher resolution of imagery now available and the
benefits of widespread ground searches, rather than recent changes
in species range limits. The northern limit for Y. jaegeriana range
was increased by a few kilometers but the eastern limit that we
interpreted from Rowlands (1978) was reduced by a few kilometers
(P. Rowlands – pers. comm.), while the southern and western limits
remain unchanged (Rowlands, 1978). The northern limit of Y.
brevifolia was increased by 35 km, and the western limit was not
previously well-defined, and misrepresented by a herbarium record
with an erroneous locality, but is currently at the junction of Orwin
Way road and the Quail Canyon Motocross road in Los Angeles,
Co., CA. The eastern limit remains in Tikaboo Valley, NV (verified
genetically near the hybrid zone – Starr et al., 2013) and the
southern limit also remains the same as identified by
Rowlands (1978).

4.2 Environmental variables and Yucca spp.

Applying SDMs to our Joshua tree presence and absence data
facilitates understanding the ecological correlates of Joshua tree
distributions. Clarifying the roles of abiotic and biotic ecological
factors are key to understanding species distributions (Lexer and
Fay, 2005), and how Joshua trees may interact with future
disturbances such as climate change. In this study, climate
variables were the most important environmental correlates of
Joshua tree distributions compared with remotely sensed or
topographic variables; however, we did not include some
important biotic variables in our analyses such as pollinator
biology or intraspecific genomic variation also important to
Joshua tree distributional patterns (Godsoe et al., 2008; Smith
et al., 2008; Royer et al., 2016; Royer et al., 2020).

Several variables highlight differences between Y. jaegeriana and Y.
brevifolia in the climatographs generated from survey-based presence
data, and functional response curves generated from SDMs. Variables
with the greatest contrast between species were the precipitation
coefficient of variation, the precipitation ratio, and temperature
standard deviation (Figure 3). Climatographs showed that the overall
frequency distributions of both species were similar for mean annual
precipitation and winter precipitation (Figure 3), however, only Y.
jaegeriana occupies regions receiving regular summer precipitation.
This influence is also correlated with the distribution of the species in
relation to the precipitation coefficient of variation. Yucca jaegeriana
also experiences more variable temperature patterns than Y. brevifolia
(Figure 3). For example, mean annual temperature had a similar
amplitude between species but was clearly skewed toward higher
temperatures for Y. jaegeriana and lower temperatures for Y.
brevifolia which is similar to functional response curves for SDMs
(Figure 7). The standard deviation for monthly mean temperatures
(TSD) was also higher for Y. jaegeriana, indicating the species
experiences both warmer and more variable temperatures.
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Higher temperatures experienced by Y. jaegeriana are
ameliorated by greater summer precipitation (SP), such that the
overall aridity profile (e.g., AHM, Figure 3) is similar between
species. Patterns in seasonality and amount of precipitation
experienced by Y. jaegeriana contrast with those of Y. brevifolia,
particularly for the most easterly populations. This contrast is the
result of a regional precipitation pattern of greater winter
precipitation in the west, a more even precipitation pattern
central to the range and near the hybrid zone, and bi-modal
precipitation in the east (Hereford et al., 2006). Central and
northern populations of Y. jaegeriana share a more similar
climate with Y. brevifolia populations, and SDMs suggest that Y.
jaegeriana species could extend further into the western Mojave
absent limits on pollination, dispersal and other unaccounted
factors. However, the Mojave Desert and surrounding regions are
predicted to experience rapidly changing climate over the next
several decades (Dai, 2013), and local adaptation within the range of
each species could lead to differences in the population’s response to
future changes in climate, particularly if climate change alters the
seasonality of precipitation. Recruitment of Joshua tree populations
follows narrow seasonal precipitation and temperature cues
(Reynolds et al., 2012). Like other large and long-lived desert
plants (Steenbergh and Lowe, 1969; Steenbergh and Lowe, 1977;
Jordan and Nobel, 1979), seedling and juvenile Joshua trees are
more vulnerable to drought-related mortality than adults (Esque
et al., 2015). Rapid shifts in the climate regime could limit a
population’s ability to recruit while adult Joshua trees continue to
survive in undisturbed habitat, leading to lag effects (Svenning and
Sandel, 2013) that may not be detected using the methods presented
here. Lags in population change for long-lived plants are already
observed among the large tree-like quiver tree (Aloidendron
dichotomum) of South Africa and Namibia (Foden et al., 2007;
Brodie et al., 2021).

4.3 Comparison of habitat, modeled
habitat, and potential habitat
between species

Although the sister species of Joshua tree currently exist in
allopatry, except for the narrow hybrid zone (Godsoe et al., 2009) –
a pattern not uncommon to many sister species (Barton and Hewitt,
1985) – our SDM projections of potential habitat suggest this
pattern may reflect ecological relationships other than habitat
suitability, as previously hypothesized (Godsoe et al., 2009).
Potential habitat for Y. brevifolia is closely associated with
occupied habitat and does not extend far into the range of Y.
jaegeriana east of the hybrid zone with a few scattered exceptions
(Figure 8). Conversely, for Y. jaegeriana west of the hybrid zone
(where this species does not currently exist), extensive potential
habitat is predicted and closely mimics the habitat of Y. brevifolia
with few exceptions. Considering this pattern, as well as the
tendency for introgression of Y. jaegeriana genetic material
westward into Y. brevifolia populations (Starr et al., 2013; Royer

et al., 2020), one wonders why Y. jaegeriana is not the dominant
species in a front moving westward across the Mojave Desert. We
suggest this may be largely dependent on biological factors that we
did not account for in this analysis. Such factors include but are not
limited to pollination interference by mis-matched pollinators, lack
of vigor in hybrids for a variety of reasons, low capability of
pollinator dispersal, reproductive isolation, and low seed dispersal
distances (Vander Wall et al., 2006; Smith et al., 2008; Godsoe et al.,
2009; Waitman et al., 2012; Royer et al., 2016; Royer et al., 2020). As
Godsoe et al. (2009) previously suggested, the natural experiment
between Joshua tree species in the hybrid zone is not sufficient to
understand all the dynamics driving the patterns observed there.
Further experimentation using known matrilines in combination
with growth chambers and common gardens to tease out differences
in species performance by genetics, physiology, and phenology
would be a good start toward unraveling these patterns.

5 Conclusions and future directions

One of the most compelling questions toward the conservation
of Y. brevifolia and Y. jaegeriana, i.e., how they will respond to
current and future climate change, is the topic of a second
manuscript. This question is related to a host of ecological
questions about species distributions and climate change, and the
work presented here lends itself directly to answering such
questions. Joshua trees may be more challenging than most in
regard to climate change, because of the symbiotic relationship with
their obligate pollinators (Smith et al., 2008; Starr et al., 2013). Thus,
we may well understand the relationships with climate variability
for the adult Joshua trees, but their responses to climate change may
be influenced by how yucca moths (genus Tegeticula) will respond
and interact with Joshua trees and changing climate

While the overall presence and absence data sets for Joshua
trees were very robust, the area of obscured imagery in the north-
central portion of the study area introduces unwanted variability
and increased error for that location (Figures 5, 6). Acquiring this
information would aid our understanding of the distributions of
each species for management. Such an endeavor would be greatly
enhanced by the acquisition of genetic samples in the same area,
which is partially adjacent to the hybrid zone between the species.

A caveat to our approach of mapping Joshua tree habitats is that
recent recruits to Joshua tree populations (perhaps the past 30 years
– Esque et al., 2015) are mostly not visible with remote sensing
because these small Joshua trees are closely tied to nurse plants
which benefit the juvenile Joshua trees through crypsis from
herbivores (Esque et al., 2015). Juvenile Joshua trees are typically
hidden by the canopy of associated nurse plants, and rarely survive
in the absence of these larger hosts (Brittingham and Walker, 2000;
Esque et al., 2015). Not being able to detect recruitment for decades
from remotely sensed data is a drawback of this method, because
the lack of recruitment detections confounds our understanding of
recent Joshua tree recruitment which is essential for understanding
their population status. It will be necessary to establish demographic
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plots that are searched on-the-ground for juvenile Joshua trees if we
are to fully understand population recruitment in coming decades.
Furthermore, conditions for recruitment of Joshua trees are very
specific and were not accounted for in these models (Reynolds et al.,
2012). Future modelling work will undoubtedly include recruitment
conditions (Diamond, 2018). However, Artificial Intellligence
technicques advance rapidly; perhaps with higher resolution
imagery and other technological advances mapping juvenile
Joshua trees will be possible. Such advances would allow greater
ability to forecast how populations will respond to variable climates
in terms of distributional shifts and recruitment.
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Hereford, R., Webb, R. H., and Longpré, C. I. (2006). Precipitation history and
ecosystem response to multidecadal precipitation variability in the Mojave Desert
region 1893–2001. J. Arid Environments 67, 13–34. doi: 10.1016/j.jaridenv.2006.09.019

Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., and Guisan, A. (2006). Evaluating the
ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–
152. doi: 10.1016/j.ecolmodel.2006.05.017

Hu, T., Sun, X., Su, Y., Guan, H., Sun, Q., Kelly, M., et al. (2021). Development and
performance evaluation of a very low-cost UAV-lidar system for forestry applications.
Remote Sens. 13, 77. doi: 10.3390/rs13010077

Isaac, N. J. B., Jarzyna, M. A., Keil, P., Dambly, L. I., Boersch-Supan, P. H., Browning,
E., et al. (2020). Data integration for large-scale models of species distributions. Trends
Ecol. Evol. 35, 56–67. doi: 10.1016/j.tree.2019.08.006

Jordan, P. W., and Nobel, P. S. (1979). Infrequent establishment of seedlings of Agave
deserti (Agavaceae) in the northwestern Sonoran Desert. Am. J. Bot. 66, 1079–1084.
doi: 10.1002/j.1537-2197.1979.tb06325.x

Kwit, C., Horvitz, C. C., and Platt, W. J. (2004). Conserving slow-growing, long-lived
tree species: Input from the demography of a rare understory conifer, Taxus floridana.
Conserv. Biol. 18, 432–443. doi: 10.1111/j.1523-1739.2004.00567.x

Lenz, L. W. (2007). Reassessment of Yucca brevifolia and irecognition of Y.
jaegeriana as a distinct species. Aliso 24, 97–104. doi: 10.5642/aliso.20072401.07

Lexer, C., and Fay, M. F. (2005). Adaptation to environmental stress: a rare or
frequent driver of speciation? J. Evolutionary Biol. 18, 893–900. doi: 10.1111/
j.1420-9101.2005.00901.x

Liu, C., Berry, P. M., Dawson, T. P., and Pearson, R. G. (2005). Selecting thresholds of
occurrence in the prediction of species distributions. Ecography 28 (3), 385–393.
doi: 10.1111/j.0906-7590.2005.03957.x
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