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Demonstrating quantum advantage requires experimental implementation of a computational task that
is hard to achieve using state-of-the-art classical systems. One approach is to perform sampling from a
probability distribution associated with a certain class of highly entangled many-body wave functions. It
has been suggested that such a quantum advantage can be certified with the linear cross-entropy bench-
mark (XEB). We critically examine this notion. First, we consider a “benign” setting, where an honest
implementation of a noisy quantum circuit is assumed, and characterize the conditions under which the
XEB approximates the fidelity of quantum dynamics. Second, we assume an “adversarial” setting, where
all possible classical algorithms are considered for comparisons, and show that achieving relatively high
XEB values does not imply faithful simulation of quantum dynamics. Specifically, we present an efficient
classical algorithm that achieves high XEB values, namely 5—12% of those obtained in the state-of-the-art
experiments, within just a few seconds using a single GPU machine. This is made possible by identifying
and exploiting several vulnerabilities of the XEB, which allows us to achieve high XEB values without
simulating a full quantum circuit. Remarkably, our algorithm features better scaling with the system size
than a noisy quantum device for commonly studied random circuit ensembles in various architecture. We
quantitatively explain the success of our algorithm and the limitations of the XEB by using a theoretical
framework, in which the dynamics of the average XEB and fidelity are mapped to classical statistical
mechanics models. Using this framework, we illustrate the relation between the XEB and the fidelity
for quantum circuits in various architectures, with different choices of gate sets, and in the presence of
noise. Taken together, our results demonstrate that XEB’s utility as a proxy for fidelity hinges on several
conditions, which should be independently checked in the benign setting, but cannot be assumed in the
general adversarial setting. Therefore, the XEB on its own has a limited utility as a benchmark for quantum

advantage. We briefly discuss potential ways to overcome these limitations.
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I. INTRODUCTION

Quantum advantage refers to the experimental demon-
stration of the computational power of a quantum device
far beyond that of any existing classical devices. Such
demonstration is important because it not only constitutes
a milestone of quantum technology, but also challenges
the so-called extended Church-Turing thesis [1,2], which
has been central to computational complexity theory. A
straightforward way to demonstrate quantum advantage
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would be to explicitly run a quantum algorithm, such as
Shor’s integer factoring [3], for problems whose size is too
large (e.g., 2048-bit integers) to be solved by any known
algorithm running on classical computers. However, this
would require a quantum device with a large number of
near-perfect qubits, which is well beyond the capabili-
ties of the existing technology. State-of-the-art quantum
devices consist of several dozens of imperfect qubits [4—
9]. Even the exploration of a potential scaling advan-
tage requires larger systems, consisting of at least several
hundred coherent qubits.

Instead of implementing such quantum algorithms, most
of the current efforts towards demonstrating quantum
advantage have focused on sampling problems [10—12],
which are well suited for near-term quantum devices [5—
7,13,14]. In these problems, one is asked to produce
a sequence of random bitstrings drawn from a certain
probability distribution. A natural choice of a distribution
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that would be challenging for a classical computer to repro-
duce is one based on a highly entangled many-body wave
function. Indeed, it has been shown [2,15-22] that, for a
wide class of quantum states, exact sampling by classi-
cal computers is intractable under plausible assumptions
[2,15,16,22-27].

To demonstrate quantum advantage using an actual sam-
pling experiment, one needs to introduce a benchmark that
measures how close the sampled distribution g(x) of a
quantum device is to the (ideal) target distribution p (x).
The idea is that on one hand, one shows that the samples
from the quantum device achieve high values (indicating
good correlation with the ideal distribution), while on the
other hand, one presents evidence that there does not exist
an efficient classical algorithm that can produce samples
achieving comparable values. If the difference between
the classical and quantum resources needed to achieve a
certain value of the benchmark scales exponentially with
the system size, this demonstrates that quantum devices
have an exponential computational advantage even in the
regime where the gates are too noisy to allow for quantum
error correction. A prominent example of such a bench-
mark is the linear cross-entropy benchmark (XEB) [5]
defined as

X@=2" 3" prgk) —1. (1)

xe{0,1}V

Intuitively, x,(gq) > 0 if g places more mass on the ele-
ments x whose probability is higher than the median in
p- A nonvanishing value of x,(q) is taken to mean that
the sampled distribution is correlated with the ideal one. A
crucial difference compared to fidelity,

F=Wlply),

is that the XEB is defined using only measurements in the
computational basis, namely p (x) = | (x|v) |> and g(x) =
(x| p |x), where p is the quantum state produced by a
physical noisy quantum device and |y) is the ideal state
expected from the quantum circuit without any noise or
errTors.

The XEB measure has been used in recent experi-
ments [5,6], where sampling from random unitary circuits
was performed. Specifically, Google [5] achieved an XEB
value of x, ~ 0.002 on a two-dimensional, 53-qubit quan-
tum device (Sycamore) implementing circuits up to depth
20 and estimating XEB under reasonable assumptions
[28]. Recently, the USTC group [6,7] extended the num-
ber of qubits and claimed the XEB value of 6.62 x 10~
and 3.66 x 107, for system sizes up to 56 qubits and
60 qubits, respectively. In both cases, it has been conjec-
tured that such values are challenging to achieve using
state-of-the-art classical computing devices on a realistic
time scale.

The motivation for using the XEB as a benchmark is
twofold. First, compared to fidelity, the XEB is relatively
easy to estimate in an experiment using a small number
of samples due to the fact that the variance of XEB is
of order unity (see the Supplemental Material of Refs.
[5] and [29] for detailed discussions); in contrast, fidelity
is intrinsically a many-body quantum quantity such that
any classical measurement would lose a certain amount
of information and hence in principle one has to esti-
mate as many amplitudes of the quantum state as possible.
Other more quantum measurements like the SWAP test
[30,31] and the classical shadow [32] are more efficient
in terms of the number of samples in principle. However,
these measurements require global and/or even coherent
quantum operations, which also suffer from noises. Thus
it is infeasible to get a reasonable estimation of fidelity
for noisy states with intermediate sizes (say more than
50 qubits) in the current experiments. Second, the XEB
is believed to be correlated with the fidelity [33]. There-
fore, one may expect that achieving a high XEB value
implies the demonstration of quantum advantage. How-
ever, we emphasize that the nature of quantum advantage
experiments must be inherently adversarial: it is not suffi-
cient to show that an experiment achieves a good value on
a benchmark—one needs to argue that every possible clas-
sical algorithm cannot achieve the same value. Otherwise,
certain adversarial classical algorithms may take “short-
cuts” and achieve good values on the benchmark, despite
not really simulating the target quantum circuit.

To be more specific, the XEB has been used in Refs.
[5—7] to simultaneously serve two distinct purposes:

(1) Proxy for fidelity: the XEB is considered as a
good approximation to the many-body fidelity F' =
(W] p|y) for chaotic quantum systems [5,18,34—
36], where |) is the ideal target state and p is the
state prepared by a noisy device.

(2) Certification of quantum advantage: it has been
suggested that obtaining bitstring samples with a
significant XEB value on a classical device is com-
putationally difficult [37], which would allow XEB
to certify quantum advantage.

In this work, we critically assess these roles of XEB
and present two major results. First, we characterize the
relation between XEB and fidelity in the “benign” set-
ting of comparing a noisy quantum device to an idealized
noiseless circuit, showing how this correlation depends
on the architecture and the choice of gate sets. Based
on these considerations, we identify the conditions under
which the XEB can be used as a proxy for the fidelity.
Second, we show that the XEB is not a good measure
of quantum advantage in the “adversarial” setting, by
presenting a classical “spoofing” algorithm that achieves
XEB values within around one order magnitude to those
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demonstrated in the experiments, using only desktop-scale
computational resources within a few seconds. This is pos-
sible because our classical algorithm explicitly violates the
aforementioned conditions, where the XEB approximates
the fidelity.

Prior works challenging quantum advantage [3843]
obtained comparable or higher XEB values using heavy
computational resources. While these classical methods
are tailored to challenge Google’s current setup (53 qubits,
depth 20), up to now it was unclear if and how they
could be extended to larger systems. In fact, it has been
argued that by simply increasing the system size to about
60—70 qubits, one could defeat such classical spoofing
algorithms [44]. Indeed, in more recent experiments [7]
(60 qubits, depth 24), it has been suggested that the new
device bypasses the challenge of these algorithms. In what
follows we show that the XEB has a fundamental limi-
tation as a proof of quantum advantage beyond a simple
competition arising from the scaling of system sizes.

In particular, we show that XEB values produced by our
algorithm feature more favorable scaling with the system
size than a realistic, noisy quantum device. As a result, our
algorithm is expected to outperform such experiments on
average if their architecture is extended to involve more
qubits, without a corresponding improvement in average
gate fidelities.

Before proceeding, we emphasize that XEB is an effi-
ciently measurable benchmark in which polynomially
many samples are sufficient to estimate its value with high
precision (although it is computationally inefficient to cal-
culate this estimation). Such efficiently measurable bench-
marks are essential for certifying quantum advantage.
While fidelity could have been used directly to character-
ize the performance of quantum circuits, it is inherently
a many-body quantum quantity and hence is, in princi-
ple, classically intractable. As such, it can not be used to
characterize a computational task, i.e., the fidelity cannot
be defined for classical algorithms. At the same time, the
use of classical probability distance measures (e.g., Bhat-
tacharyya or Hellinger distances, KL divergence, or total
variation distance) is challenging since it is difficult to
obtain empirical estimates for these quantities from exper-
iments. This is because the domain of these distributions is
exponentially large; all of these distances require not just
an exponential computation time but also an exponential
number of samples to estimate (cf., [45, Chap. 5]), which
is impractical.

A. Vulnerabilities of the XEB

In this work, we exploit three distinct properties of the
XEB that make it vulnerable against adversarial attacks.
First, the XEB and fidelity may diverge from one another

in the presence of errors highly correlated in their space-
time locations. Second, the XEB and fidelity exhibit dis-
tinct scaling behavior with increasing system size: when
multiple systems are brought together to form a larger
one, the XEB generally increases with the number of sub-
systems, while the fidelity decays exponentially. Finally,
the XEB is designed to quantify the amount of correla-
tion between an ideal probability distribution p(x) and
an experimentally obtained one ¢(x), but this correlation
can be dramatically amplified if one has direct access to
the full description of g(x) (in contrast to only having
samples drawn from it). Combining these three proper-
ties, one can devise an efficient, adversarial algorithm that
achieves high XEB values for state-of-the-art quantum
circuit sizes, using computational resources as minimal
as a single desktop-scale GPU device. In this work, we
demonstrate this approach by introducing a simple clas-
sical algorithm. Before presenting our main results, we
elaborate on the first two properties of XEB using a heuris-
tic and intuitive analysis; the third—the amplification of
correlations—is explained in Sec. III B and a similar idea
has been already exploited in the prior work [39,40,42,46].

1. Discrepancy of XEB and fidelity

The fact that the XEB approximates fidelity can be intu-
itively understood using the following simplified analysis
[5]. For a noisy circuit in the presence of independent,
homogeneously distributed random errors at rate €, the
system executes the entire circuit without any error with
probability Pp e = (1 — €)83° where #gates denotes the
number of gates. If we assume that the presence of a sin-
gle or more errors leads to vanishing contributions to the
XEB or fidelity, both XEB and fidelity equal Py, r. While
this argument can be made rigorous in appropriate lim-
iting cases, the exact relation between the XEB, fidelity
and Py, err involves nonzero correction terms for finite-size
systems with finite error rates. See the Supplemental Mate-
rial [47] for a more detailed discussion and a qualitative
derivation; here we provide only the outline of our argu-
ment. For example, let us consider the effect of a single
bit-flip error X, occurring at depth ¢ in a one-dimensional
(1D) random circuit evolution, on the value of XEB and
fidelity. This effect can be understood in the Heisenberg
picture by inspecting the error operator X (7), propagated
backwards in time, at z = 0, acting on a simple initial
state such as |0)" [see Fig. 1(a)]. In the case of chaotic
dynamics, X () becomes a random linear combination of
45! Pauli string operators, where the support size of the
operator |s| &~ 2¢t grows linearly in time with an effec-
tive “scrambling” velocity ¢. Among these Pauli strings,
approximately 215 operators are products of only identity /
or Z operators, for which the initial state is an eigenstate,
leading to no change in XEB or fidelity. Consequently,
even if a single error occurs, it contributes to the XEB
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FIG. 1. Effects of a single or double error at various locations

on the XEB and fidelity. (a) In the presence of a single error,
the XEB and fidelity is reduced to an exponentially small but
nonzero value that depends on the location of the error. The scal-
ing of the XEB or fidelity can be understood in terms of the size
|s| of the error operator propagated to boundaries in the Heisen-
berg picture (inset). (b) In the presence of two errors, the XEB
and fidelity significantly depend on their relative location: the
effect of one error can be masked (marked 3) or even canceled
(marked 4) by that of another error.

and fidelity by a small correction O(2~2"). For the case of
XEB, a similar argument can be made by propagating the
error operator forward to the measurement time because
the combination of / and Z operators do not affect mea-
surements in the computational basis, leading to a sharply
distinct behavior from fidelity when an error occurs near
the measurement time.

Naively, these corrections may seem small and unlikely
to result in any substantial deviations of XEB and fidelity
from Py error- However, compounding the problem is that
exponentially many different events give rise to the same
amount of corrections when we consider events with mul-
tiple errors. For instance, if a second error is added to the
system, such that its support is contained within that of
the first error [Fig. 1], their net contribution to the correc-
tion remains the same because the combined propagated
error operator is still a random linear combination of Pauli
operators. In fact, one can add any number of errors within

the lightcone of the first one without decreasing the net
correction term. Therefore, a substantial, nonperturbative
correction may arise from a family of error events, where
multiple errors are clustered at early (late) times for both
XEB and fidelity (for XEB). Even when errors occur deep
inside the circuit, the effects of two consecutive errors may
cancel each other with probability approximately 1/10
[Fig. 1(b)], leading to a contribution of order unity to the
fidelity and the XEB. We provide more details on this
high-level picture in Secs. II A, II B, and II C within the
Supplemental Material [47].

Based on this analysis, one can provide an approximate
lower bound on total correction by summing over a few
classes of error configurations [47]. Assuming that errors
are independent and homogeneously distributed over the
whole system (benign setting), we find that it is necessary
and sufficient conditions for XEB, fidelity, and Py error t0
agree one another Nef (¢) <« 1, where f (c) is a decreas-
ing function of order unity that depends on the microscopic
details and the architecture of a quantum circuit [47].
Recent experiments [5—7] approximately satisfy this con-
dition, and we expect that XEB values would overestimate
fidelities only by a few percents [48]. We emphasize that
this conclusion requires the independence of errors over
space and time that needs to be explicitly checked. In the
presence of correlated errors (corresponding to adversarial
setting), the corrections to XEB and fidelity may domi-
nate their entire values, even if the total error rate remains
small. This can be seen from the example in Fig. 1(b): if the
errors are correlated such that their position is distributed
over a relatively small region, the effects of overlapping
lightcones and error cancelation could be strong, leading
to potentially large (compared to Ppgeror) COrTections to
the XEB and fidelity. In particular, if the errors occur in a
region near the output boundary, the fidelity is suppressed
due to a large lightcone (red in Fig. 1) while the XEB is
affected only by much smaller overlapping lightcones (blue
in Fig. 1), leading to the discrepancy between the XEB
and the fidelity. Contrarily, if the errors are uncorrelated,
the lightcones contributing to the XEB do not overlap, and
collectively suppress the XEB value such that it is simi-
lar to the fidelity. Based on these observations, we design
an algorithm that allows for efficient classical simulation,
while the discrepancy between the XEB and the fidelity is
significantly amplified compared to the benign setting.

2. Scaling of XEB and fidelity

XEB and fidelity exhibit different scaling behaviors
when a system size is increased with a fixed error rate,
implying that two quantities cannot agree in a certain scal-
ing limit. While a rigorous analysis can be made using
the framework presented in Sec. IV, here we consider
a toy model illustrating the origin of the different scal-
ing behaviors. Let us consider & disjoint N-qubit systems,
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each undergoing noisy circuit evolution with correspond-
ing XEB values x; =2V > pi(x)qi(x) — 1 and fidelities
F; withi=1,2,...,k Here p;(x) and ¢;(x) are bitstring
probabilities for ith quantum system obtained from an ideal
circuit and from noisy dynamics (or any other classical
algorithms), respectively. If we consider the & disjoint sys-
tems as a single composite system of kN qubits, one can
explicitly check that the fidelity scales multiplicatively,
i.e., For = [ [; 7, while the XEB additively:

Xtotal = 25V Z npi(xi)%(xi) -1 (2)

{xi} i

= l_[ (2N ZPi(xi)q:'(xi)) -1
=[Joa+D-1~> x A3)

where the second equality is due to the product structure
across the subsystems and we assumed that x; < 1 in the
last line, relevant for the regime of our interest. While this
example may seem contrived as each subsystem is per-
fectly isolated, one can also devise an example, where all
subsystems are strongly coupled by unitary gates and result
in fully globally scrambled quantum states.

This discrepancy in scaling stems fundamentally from
the structure of the XEB formula in Eq. (1): as two distri-
butions p (x) and ¢g(x) become uncorrelated [49] from one
another, the first term in Eq. (1) tends to a finite value,

1, rather than approaching zero. This offset is explicitly
subtracted in order to obtain a value within an interval
[0, 1], but it also leads to distinct scaling behavior for large
composite systems.

B. Main results

Our key results can be summarized as follows. More
details about the assumptions and scope of the results will
be provided in the relevant section and see Sec. I within
the Supplemental Material for a summary [47]. First, we
present a simple and efficient classical algorithm to spoof
the XEB measure. In particular, we show that as the num-
ber of qubits increases, the performance of our algorithm
scales better on average than that of a noisy quantum simu-
lation in a number of practical settings (see Fig. 2). Hence,
the XEB does not constitute a scalable measure to certify
quantum advantage. Second, we develop a new theoretical
framework to analyze and predict the XEB under various
choices of quantum circuit architectures and gate ensem-
bles. This framework allows us to understand the relation
between the XEB and the fidelity (see Fig. 3).

1. Classical algorithm spoofing XEB

Our algorithm is inspired by the observation that entan-
glement growth in a noisy quantum circuit is reduced by
errors spread over the entire circuit in both space and time
[Fig. 2(a)]. These effectively truncate entanglement and
correlations among different subsystems. In our algorithm,
we introduce a similar amount of effective errors, but they

(a) (b)
) . 1D circuit 2D circuit Extended Sycamore
0) 10 e=1% —@— our algorithm e=2% €=4% —@— our algorithm Google
0) —— our algorithm (PP)
0)
0)
v E L‘%
§ 3 107" 1072 A 1078
Our algorithm § L+1
= o-O-0-000
i HEE N ‘_\—'/o/‘
= =]
) ..=- 3 102 104 10-5
3> 15 20 30 2 5 45 60

25
Number of qubits N

3 4 50 55
Linear size L Number of qubits N

FIG. 2. Classical algorithms spoofing XEB for quantum circuits in various architectures. (a) Schematic diagrams illustrating the key
idea of our algorithm. In noisy quantum circuits, errors (red crosses) randomly occur at arate € > 0, spread over the entire circuit. In our
algorithm, we introduce effective, highly localized errors by omitting or modifying a few entangling quantum gates (red dotted boxes)
such that the circuit splits into smaller segments and becomes easier to simulate classically. (b)~«d) Performance of our algorithm. We
obtain high XEB values (blue circles and stars) compared to noisy circuits (yellow crosses and diamonds) for 1D, 2D, and the extended
Sycamore circuit architectures [see Fig. 5]. (b) 1D circuits of depth d = 16 in the brick-work layout, with the Haar random two-qubit
gate ensemble. (c) 2D circuits of depth d = 16 in a L x (L + 1) square lattice, with the Haar random two-qubit gate ensemble. Our
algorithm outperforms noisy quantum circuits (here with error rates ¢ = 0.02, 0.04) for sufficiently large system sizes. Insets in (b),(c)
show the circuit architecture and the position of omitted gates (red lines). (d) Comparison of the mean XEB value obtained by our
improved algorithm (light blue circles) to Google’s Sycamore in which case we extrapolated experimental results using the ansatz
XEB ~ exp(—c;N — ¢, Nd). We extended the Sycamore architecture horizontally up to 60 qubits; see Fig. 5 for more details. For this
simulation, we assumed a quantum circuit ensemble with random single-qubit gates similar to (but slightly modified) those used in
Ref. [5-7] [see Sec. III C].
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occur only at specific locations such that the quantum cir-
cuit becomes easier to simulate. As an example, Fig. 2(a)
shows how omitting a few specific gates at certain loca-
tions (which amounts to particular types of error, i.e., gate
defects) can split a circuit into multiple disconnected sub-
circuits. Alternatively, one can apply a completely depo-
larizing channel before and after an entangling gate. These
approaches explicitly remove correlations between subsys-
tems. Intuitively, when the amount of “effective noise” in
a noisy quantum simulation is comparable to the “effec-
tive error” in our algorithm (proportional to the number of
omitted gates), the XEB of the latter is larger due to the
stronger correlation among errors [see Fig. 1(b)].

Since the size of each subcircuit is much smaller than
that of the original circuit, the algorithm can be signif-
icantly faster than a direct simulation of the global cir-
cuit. In particular, when ran on 53-qubit circuits, such as
Google’s, it takes a few seconds using a single GPU (32GB
NVIDIA Tesla V100). The existence of our classical
algorithm has three types of implications:

(1) Complexity-theoretic implications: a linear-time
classical algorithm that outperforms any noisy 1D
quantum circuit. For one-dimensional quantum cir-
cuits consisting of Haar random unitary gates, we
present a linear-time classical algorithm, which
achieves higher XEB values than noisy quantum
devices. Concretely, for every uncorrelated error
rate € > 0 per gate, our algorithm can spoof the
XEB measure when the number of qubits is suf-
ficiently large. Here, uncorrelated error refers to
errors from different locations being uncorrelated,
i.e., the error channel is a tensor product of error
channels of each location.

(2) Experimental implications: a highly efficient clas-
sical algorithm (1 GPU around ls), whose perfor-
mance is within around one order of magnitude with
current experimental devices. We consider a random
circuit ensemble modeled after the one used in Ref.
[5—7] (see Sec. 11 C and Ref. [47] for detailed infor-
mation). Our algorithm achieves a mean XEB value
that is about 8% of Google’s experiment (53 qubits,
depth 20), and 12% and 2% of USTC’s experi-
ments (56 qubits, depth 20 and 60 qubits, depth 24),
respectively, with the running time approximately
equal to 1 s using 1 GPU. We can get higher XEB
value by taking more running time. For example,
12.3% of Google’s experiment with 50 s and 5% of
USTC’s second experiment with 4 s.

(3) Scaling implications: remarkably, the XEB value
of our algorithm generally improves for larger quan-
tum circuits, whereas that of noisy quantum devices
quickly deteriorates. Such scaling continues to hold
when the number of qubits is increased while the
depth of the circuit and the error-per-gate are fixed,

as explicitly confirmed from numerical simulations
for 1D and two-dimensional (2D) square and the
extended Sycamore architecture in Figs. 2(b)-2(d).

Crucially, we show that a classical algorithm can obtain
high XEB values even when the corresponding fidelity
is very low. This implies that high values of XEB can-
not certify quantum advantage. Even if one estimates the
fidelity of each individual gate separately and observes
good agreement between XEB and the anticipated circuit
fidelity, as is the case in Ref. [5—7], this does not neces-
sarily imply high many-body fidelity without additional
assumptions such as the independence and the homogene-
ity of errors. In other words, XEB cannot be used as a
“black-box” measure for certification.

2. Understanding XEB and circuit fidelity via mapping
to a statistical mechanics model

We present a way to analyze quantum circuit dynamics
using classical statistical physics. Specifically, for a wide
class of random circuit ensembles involving single-qubit
Haar random gates, we show that the dynamics of both
noisy quantum circuits and our classical algorithm can be
understood in terms of an effective diffusion-reaction pro-
cess, which was originally used to study the scrambling of
circuits [50]. In this effective description, the application
of each layer of a quantum circuit translates to particles
undergoing a random walk (diffusion) for a single time
step on a graph representing the circuit architecture. Fur-
thermore, each particle can duplicate itself, and a pair of
particles may recombine into a single particle at a certain
rate (reaction). The rates of particle diffusion and reac-
tion are determined by the properties of two-qubit quantum
gates, such as the average amount of entanglement they
generate. The XEB and the fidelity of ideal circuits are
given by different aspects of particle distribution at the last
circuit layer, as we elaborate in Sec. IV C.

The XEB value in a noisy circuit and our algorithm
will decrease from the ideal value when a particle hits
a defective (omitted or noisy) gate. In the case of noisy
quantum circuits, every gate is noisy, so the decrease in
the XEB value is proportional to the total number of par-
ticles in the diffusion-reaction process. Intuitively, when
the system size grows, there are more particles hitting
noisy gates and thus the XEB value becomes smaller. In
our algorithm, the XEB decreases whenever a particle hits
an omitted gate at the boundaries of disconnected subre-
gions. Intuitively, when the system size grows, there is
more space for particles to diffuse away from the bound-
ary and thus, in general, the XEB value can become larger.
This qualitatively explains the asymptotic scaling of XEB
in Fig. 2.

The mapping to diffusion-reaction models can also help
explain the XEB’s role as a proxy for the fidelity. As we
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FIG. 3. The ratio between XEB and fidelity evaluated for

quantum circuits of depth 20 in Sycamore architecture for var-
ious system sizes [according to the qubit ordering in Ref. [5];
see also Fig. 10(a)]. (a) The ratios for our algorithm (blue) are
much larger than those for noisy circuits (yellow), shown with
two different error rates, despite the fidelity being lower in the
former case. The local gate ensemble is 2-qubit Haar. (b) The
ratios for noisy circuits with various types of gate ensembles.
Out of the three standard gates (CZ, Haar, fSim with Haar ran-
dom single-qubit gate), the discrepancy between the XEB and
fidelity is minimized in circuits with the fSim ensemble. Follow-
ing on the insights from our theoretical analysis, we propose a
new gate: fSim*, which corresponds to the fSimy 4 from Eq. (5)
at (6,¢) = (90°,0°), and produces the smallest possible discrep-
ancy between the XEB and the fidelity (see Sec. IV B). (Inset)
Comparison between the usual fSim gate and the new fSim* gate.

elaborate in Sec. IV C, the XEB and the fidelity agree with
each other if and only if the particle distribution at the last
circuit layer reaches a certain homogeneous, steady-state
profile. Both in noisy circuits and in our algorithm, the
final distribution is modified by particles hitting defective
gates, leading to the discrepancy between the XEB and the
fidelity.

In our algorithm, the deviation from the target distribu-
tion is induced by the presence of omitted gates located
along boundaries of disconnected subsystems, which leads
to a strong violation of the homogeneity of the particle dis-
tribution. Therefore, XEB and fidelity are very different in
this case. On the other hand, in noisy circuits, the parti-
cles hit defective gates uniformly across the system, and
thus the homogeneity is retained. This results in a small
discrepancy between XEB and fidelity, especially in the
weak-noise regime [see Fig. 3(a)].

For noisy chaotic systems, it is believed that faster
scrambling leads to a better agreement between XEB and

fidelity [4,5,35,36]. In the diffusion-reaction model, the
reaction rate and the diffusion rate are related to the scram-
bling speed and the above-mentioned intuition is reflected
in a faster approach to the steady state for rapid mixing.
Compared to several other commonly studied two-qubit
gates, like the control-Z and Haar-random gates, the fSim
gate used in Google’s experiment has a similar reaction
rate but a faster diffusion rate. Therefore, it produces the
smallest discrepancy between XEB and fidelity among
these gates. However, the fSim gate is still not the optimal
choice. By increasing the reaction rate further, we find the
optimal gate, which we call fSim* due to its similar struc-
ture; see the inset of Fig. 3(b) for the comparison between
fSim and fSim*.

The choice of the single-qubit ensemble can also affect
the diffusion-reaction processes of particles. In particular,
we find empirically that Google’s choice of single-qubit
gates, which maps both computational basis states, e.g., |0)
and |1), to their equal superposition with opposite phases,
leads to significantly faster diffusion-reaction processes
and makes our algorithm relatively less effective.

In the case of one-dimensional circuits with Haar ran-
dom gates, a more detailed scaling analysis is possible
by mapping a quantum circuit to a two-dimensional clas-
sical Ising model [51-57], which can be regarded as a
special case of the diffusion-reaction model. In the case
of ideal circuits, the classical model exhibits the Z, Ising
symmetry. However, when noisy processes or gate defects
are introduced, they appear as effective external magnetic
fields, which break the Ising symmetry. In this picture,
the deviation of the XEB from unity characterizes the
degree of symmetry violation [56]. Crucially, the noise
and omitted gates have distinct effects, appearing as bulk
and boundary fields, respectively. In the limit of large cir-
cuits, the bulk field has a stronger effect than the boundary
field, even when the strength of the bulk field is vanish-
ingly small. Closely related to spontaneous magnetization
in the ferromagnetic phase, this phenomenon provides an
intuitive explanation for the superior XEB scaling of our
classical algorithm, compared to that of noisy quantum
circuits.

C. Organization of the paper

The rest of our paper is organized as follows. The next
two sections include a summary of the necessary back-
ground and a detailed presentation of our results. We
review the definition, properties, and applications of the
XEB in Sec. II. In Sec. III, we describe our algorithm
and random quantum circuit ensembles in more detail,
and summarize our results and their implications. We dis-
cuss related works on the XEB spoofing in Sec. III D.
Then, we introduce the technical aspects of mappings to
statistical physics models: the diffusion-reaction model in
Sec. IV B, with the detailed discussion of the relationship
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between the XEB and the fidelity in Sec. IV C, and the
Ising model for 1D circuits with the Haar gate ensemble
in Sec. IV D. Finally, we conclude in Sec. V, where we
discuss several potential ways to overcome the vulnera-
bilities of the XEB and present a few interesting future
directions. We defer the discussion of the technical details
of the heuristic analysis and the diffusion-reaction model,
as well as the description of our improved algorithm, to the
Supplemental Material [47].

I1. LINEAR CROSS-ENTROPY BENCHMARK

We first review the definition of the XEB and its prop-
erties, formally introduce the XEB test, and establish our
notations.

A. Linear cross-entropy

The XEB corresponds to the linearized version of
the cross-entropy (i.e., the quantity — ) g, logp,, also
known as the log likelihood), which is commonly used
to characterize the closeness between the data and target
distributions [58]. The motivation to adopt the linearized
version is to minimize statistical fluctuation [5,29] when
estimating the XEB empirically. Both versions can be used
to estimate the fidelity under common error models [5] for
sufficiently chaotic circuits, or (equivalently) sufficiently
deep random circuits [59]. It is generally believed that
simulating complex quantum systems with high fidelity is
classically intractable, and so obtaining high XEB values
is (naively) expected to be hard as well.

Let U be an N-qubit unitary, and let p;; be the proba-
bility distribution induced by measuring U |ON ) Ifgisa
probability distribution over {0, 1}" then the XEB value of
q with respect to U is

xu(@) = xpu (@) =2" Z gxX)pux) —1.

xe{0,1}V

If ¢ is uncorrelated with py, xu(g) = 0[5,18]. On the other
hand, xy(g) ~ 1 if ¢ is similar to py for random-enough
deep circuits, where we expect py to be characterized by
the Porter-Thomas distribution. Therefore, x/(g) serves as
a proxy to estimate how p and g are correlated with one
another.

We will often consider the unitary U to be a random
variable sampled from a distribution over N-qubit unitary
transformations that correspond to choosing a circuit with
random gates from a prescribed architecture. In this case,
the quantity xy(q) is a random variable, and we denote its
expectation value over different U by (xu(9)) -

1. Empirical versus expected XEB value

The XEB value for a given circuit U can be empiri-
cally estimated with a relatively small number of samples,

compared to its nonlinear counterpart, using an unbi-
ased estimator X,,(q) =2V/m Y 1, pu(x;) — 1, where
X1,X2,...X, are m independent samples obtained from
q(x), which can be sampled in practice. In particular, the
error | X,, — Xpy| scales as approximately 1/./m. As it is
known from previous works [5,29] that the STD of XEB
is O(1), the required number of samples scales as 1/ )Zl%,
which is independent of the system size. Since U is sam-
pled from an ensemble, xy(q) is effectively also random,
when m tends to infinity. Therefore, in practice, it is com-
mon to take another empirical average (xy(q))y over K
independent circuits Uy, . . ., Ux. For example, in Google’s
experiment [5], they choose m ~ 7 x 10° and K = 10;
in USTC’s two experiments [6], they choose m ~ 1.9 x
107, K =10, and m ~ 7 x 107, K = 12, respectively. To
get a high confidence in the estimation of (xy(g))y, the
number of repetitions K should be chosen proportionally
to the square of the inverse of the standard deviation (STD)

of xu(q).

2. Standard deviation

In the body of this work, we focus on the average value
of the XEB, while the statistical fluctuation of empirical
estimation is ignored. However, because we are dealing
with random circuit ensembles, it is important to control
the STD of the classical algorithm’s output. More discus-
sion of the STD in various settings is presented within the
Supplemental Material [47].

3. Classical and noisy quantum simulations

Let C be a classical randomized algorithm that takes as
an input a classical description of an N-qubit unitary U
and allows us to sample an N-bit string x € {0, 1}" as out-
puts with probability distribution g¢ (). We define the XEB
value of C with respect to U as xy(C) := xu(qcw)). We
will use N, to be a noise operator such that N (U) cor-
responds to applying an e-noisy simulation of U. We will
model the noise as independent single-qubit noise, which
can be depolarizing or amplitude-damping, see Sec. IV B.
We denote by xy(N.) the XEB value of the distribution of
the noisy circuit \V, (U), applied to |ON ), with respect to the
ideal distribution induced by measuring U ‘ON >

4. Quantum advantage via XEB

The demonstration of quantum advantage consists of
designing a task that can be performed on a physical quan-
tum device, while being intractable for all polynomial-time
classical algorithms. One such task, which has been pro-
posed recently, is to achieve a high XEB value [5,37].
In this scenario, in order to demonstrate quantum advan-
tage using an e€-noisy quantum simulator, we need to come
up with a probability distribution U over quantum cir-
cuits such that for every efficient classical algorithm C,

010334-8



LIMITATIONS OF LINEAR CROSS-ENTROPY...

PRX QUANTUM 5, 010334 (2024)

xu(NL) > xy(C) with high probability over the random-
ness of U. To make the comparison between xy(N,) and
xv(C) rigorous, we need to specify the parameters of the
quantum device, such as the number of qubits N and the
noise strength €. In the theoretical and asymptotic setting,
we pick an arbitrarily small constant € > 0 and consider
the relation between xy(N.) and xy(C) when N tends
to infinity and C ranges over all polynomial-time classi-
cal algorithms. In practice, we use values N and € that
are experimentally achievable. As an example, Google’s
quantum simulator [5] uses N = 53 and the value of € is
empirically estimated to be less than 0.5% [60].

5. Computational hardness of achieving high XEB
values

As mentioned previously, when the circuit architecture
and gate ensemble are chaotic enough without any noise
or error, xy(U) = xu(No(U)) ~ 1 for almost all U. In
the presence of noise (¢ > 0), the distribution N (U) is
expected to approach the uniform distribution exponen-
tially in the depth of the circuit; thus, xy(N.) goes to 0
exponentially in the depth of the circuit as well. Neverthe-
less, when the quantum circuit size is finite and the strength
of noise is sufficiently small, a noisy quantum simulation
could achieve nonvanishing XEB value that implies statis-
tical correlation between sampled and ideal distributions.
For example, an XEB value of 2.24 x 10~ in 53-qubit
and depth-20 2D circuits was achieved in Ref. [5]. In Ref.
[6,7], XEB values of 6.62 x 10™* and 3.66 x 10~* were
achieved in 56-qubit circuits of depth-20 and 60-qubit
circuits of depth 24, respectively.

There are two types of arguments for the difficulty of
achieving an XEB value x/(C), using a classical algorithm
C, that is bounded away from zero. The first argument, put
forward in Ref. [5], was based on the conjecture that brute-
force simulation is the optimal classical approach. This
conjecture was recently refuted [38—43]. The other, more
subtle argument, relies on conjectures in computational
complexity.

Aaronson and Gunn [37] reduced the classical hardness
of spoofing the XEB measure to the linear cross-entropy
quantum threshold assumption (XQUATH), which is a
stronger version of the quantum threshold assumption
(QUATH) [23]. Our results refute XQUATH assuming the
single-qubit gates are Haar random. See more details in
Sec. III D and the Supplemental Material [47].

I11. SPOOFING ALGORITHMS

We now describe an efficient classical algorithm C that,
in a wide range of physically relevant situations, produces
a probability distribution with XEB values larger or com-
parable to that of an e-noisy circuit, at least on average.
In such situations, the existence of our algorithm suggests

XEB on its own is not a good benchmark for certifying
quantum advantage.

We first describe our algorithm at a high level, defer-
ring its detailed analysis and discussion to Sec. IIIC.
The intuition behind our algorithm borrows ideas from
the following observation on noisy simulation of quantum
circuits. In a quantum simulation, the presence of noise
can remove entanglement and other correlations (either
quantum or classical) within the system. Namely, different
parts of the system are approximately decoupled. In our
algorithm, we compete with an €-noisy quantum simula-
tion by trying to “rearrange” the same amount of total noise
in the most favorable way to reduce the computational
complexity. This will also allow us to obtain relatively high
XEB values owing to its vulnerabilities explained in Sec.
I A. Specifically, we do so by dividing the quantum circuit
into isolated subsystems that can be each simulated inde-
pendently at much lower cost; see Fig. 4 for an example

Two-qubit gate:

CZ, fSim,
two-qubit Haar

"igagagn
}f ﬁ .

FIG. 4. [Tllustration of our algorithms. (a) The target (ideal)
circuit to simulate. The light blue gates correspond to the ones
omitted in (c). (b) Each random two-qubit gate in our circuit con-
sists of any (potentially fixed) two-qubit gate surrounded by four
single-qubit Haar random gates. When compared to experimen-
tal data, the single-qubit random gates are chosen to be a slight
modification of those used in Ref. [5—7]. (c) Our algorithm: one
can approximately simulate the ideal circuit by simply omitting a
certain subset of gates (in light blue color with red dashed boxes)
in the ideal circuit (a). Then, the circuit separates into isolated
subsystems. We denote the maximal size of a subsystem as /. (d)
Noisy circuit: we model the dynamics of noisy quantum circuits
by applying probabilistic single-qubit noise (e.g., depolarizing or
amplitude damping) channels to all qubits, after each layer of
unitary evolution.
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original
Sycamore

FIG. 5. Sycamore circuit architecture from Ref. [5] and its hor-
izontal extension. The gates marked with red lines are omitted in
our algorithm. The Zuchongzhi architecture is very similar; see
Refs. [6,7] for more detail.

of a 1D circuit, and Fig. 5 for a 2D circuit). Intuitively,
using a similar amount of noise “budget” guarantees that
our algorithm achieves a better XEB value comparable to
the noisy quantum simulation, while (classically) simulat-
ing the smaller isolated subsystems will be exponentially
faster than simulating the original circuit. The above expla-
nation is very qualitative and glosses over some important
aspects. In Sec. IV C, we give a more quantitative analy-
sis to motivate our algorithm based on the mapping to the
diffusion-reaction model.

A. Basic algorithm

We now describe our classical algorithm. For concrete-
ness, we illustrate our algorithm using 1D quantum circuits
although it is straightforward to generalize it to other cir-
cuit architectures. Let N be the total number of qubits, d be
the depth, and / be the maximum size of subsystems [see
Fig. 4(a) for an example with N = 12, d =7, and / = 4].
We start by partitioning the N qubits into subsystems of
size at most / by omitting any gates acting across two dif-
ferent subsystems [see Fig. 4(c)]. We then simulate each
subsystem separately. Using brute-force methods, simulat-
ing a subsystem of / qubits takes at most 2°'d time. There
are [N /[] subsystems and hence the total running time of
our algorithm is at most 2°¥ /(I)Nd. In particular, if / is
fixed and does not scale with the total system size N or
depth d, the time complexity is linear in the circuit size
Nd. We claim that the bitstring distribution induced by the
factorizable wave function obtained from our algorithm
achieves relatively high XEB values.

B. Improving the algorithm

While our basic algorithm is simple and relatively
straightforward to implement, it already has significant
consequences for the computational hardness of obtaining

high XEB values. Moreover, its practical performance can
be further improved via the following modifications.

1. Top-k postprocessing method

Given the output distribution g¢(U) produced by our
algorithm C, which is correlated with the ideal distribu-
tion py(x), it is possible to amplify such correlations by
using the so-called top-k postprocessing heuristic. In this
method, one modifies the bitstring distribution g¢(x) by
ordering the bitstrings x; € {x} from largest gc(x;) to the
smallest, selecting first k£ of them (or equivalently setting
the probability of the others to 0),

0 ifi<k

1k ifi>k’ @

qgc(xi) — qc(x;) =

Since we can efficiently compute the probability distribu-
tion g¢(x) produced by the original algorithm, we can also
efficiently compute the amplified probability distribution.
As an example, we illustrate this algorithm (with slight
modification for simplicity) in the case of / = 2 and assume
it is efficient to get the entire distributions ¢; and ¢, of
the two subsystems, respectively. Thus gc = ¢1¢>. Then
we sort q; and ¢; in a decreasing order and enumerate the
bitstrings corresponding to k-largest probability value p;
and p,, respectively. Through this procedure, we get k?
bitstrings from our classical algorithm.

The intuition behind this heuristic can be understood as
follows. The XEB is equivalent to evaluating the average
of py(x) weighted by ¢g(x) up to an unimportant scaling
factor 2V, and a constant —1. If ¢(x) is modified such that
q(x) is increased (decreased) for bitstrings x with relatively
large (small) values of py(x), then the weighted average
will increase. Given that g(x) and py(x) are already pos-
itively correlated, such behavior is naturally expected for
our top-k postprocessing heuristic, at least on average.

In fact, we can prove that the top-k method increases
the XEB if its value is positive and the STD over cir-
cuit realizations is not too large. The second requirement
is necessary to avoid the situation where some occasional
x with small p, but large ¢, will be amplified (in another
words, “overfitting”). Unfortunately, this second criterion
is not satisfied by our basic algorithm where we simply
omit gates. This issue, however, can be straightforwardly
addressed using the following method.

2. Self-averaging algorithm

In order to decrease the STD, we make a small modi-
fication to our basic algorithm: instead of omitting gates,
we insert maximal depolarizing noise or equivalently take
average over different realizations of our basic algorithm
with random single-qubit unitary at the position of omis-
sion. This self-averaging algorithm guarantees the positiv-
ity and small STD conditions. However, the computational
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resources required are larger since we need to simulate
mixed state evolution. Interestingly, for a certain class of
entangling gates (including the one used in recent experi-
ments [5—7]) that exhibit the “maximal scrambling speed”
and that hinders the application of our basic algorithm,
one can substantially reduce the computational resources
needed for such mixed-state simulation. This is possible
because for that class of entangling gates the effect of
depolarizing noise can be propagated efficiently [see the
Supplemental Material [47] for more detail].

3. Combining algorithmic improvements

In Fig. 7, we present the increase of the XEB for the
modified version of Google’s gate set ensemble by sev-
eral orders of magnitude after the application of the top-k
method on the self-averaging algorithm. While the discus-
sion above is mostly focused on the mean value of the
XEB, it is important to show that our result also holds
for typical, individual instances of quantum circuits with
a high probability. In the Supplemental Material [47], we
show that the self-averaging algorithm offers a much better
control over the STD, and guarantees the benefit of using
the top-k method. Additionally, we show evidence that the
STD of the top-k method decreases as 1/v/k.

C. Performance and implications

Now, we present a comprehensive analysis of the perfor-
mance of our algorithms and its implications. We consider
algorithms both with and without the top-k postprocessing
heuristic introduced in the previous section. For practical
relevance, we focus on 1D and 2D circuit architectures.
For 1D circuits, we theoretically and numerically show that
our basic algorithm can achieve, in linear time, a higher
average XEB value than noisy quantum systems. More
specifically, we show that setting subsystem size to be con-
stant [/ = O(1)] is sufficient for our algorithm to obtain a
higher XEB value than that of e-noisy quantum simula-
tions, for every constant € > 0, for sufficiently large N.
This is due to the distinct scaling behavior of the XEB
value for noisy circuits and our algorithm; we discuss in
detail the origin of this difference in the scaling behavior
in Sec. IV D.

For 2D circuits, we consider Google’s Sycamore archi-
tecture, which has N = 53 qubits [5], and we choose
I~ [N/2]1 =27 (Fig. 5). We also consider USTC’s
Zuchongzhi architectures, which have 56 qubits and 60
qubits, respectively, and we choose [ & 28 for both cases
(with some qubits being omitted). A subsystem of this size
can be simulated by one NVIDIA Tesla V100 GPU with
32GB memory in about 1 s [61,62]. We analyze the per-
formance of our algorithms on circuits constructed from
the following different quantum gate ensembles:

CZ ensemble: each random two-qubit gate is com-
posed of the control-Z gate surrounded by four indepen-
dent single-qubit Haar random gates [see Fig. 4(b)].

Haar ensemble: each random two-qubit gate is a two-
qubit Haar random gate.

fSim ensemble: similar to CZ ensemble, but replacing
the control-Z gate by the fSim gate, which is defined as

! 0 0 0
. _ |0 cos(@) —isin(@) O
fSimos =10 _isin®) cos@® 0o [@ ©
0 0 0 e

with parameters 0 = 90°,¢ = 60° [5] (denoted as fSim);
we also define a new gate fSim*, which has 8 = 90°,¢ =
0°.

fSim with discrete one-qubit ensemble: similar to
fSim ensemble, but replacing the one-qubit Haar ran-
dom gate by Z(0,)VZ(6,) where V is chosen randomly
from {\/)_(, ﬁ,\/V_V} =X+ Y)/\/E) but the two Vs
between two successive layers on the same qubit should
be different; and Z(6;) is chosen randomly from [0, 27).

The last ensemble is closely modeled after quantum
circuits used in recent experiments [5—7]. The only mod-
ification is that, in experiments, the single-qubit rotation
angles 6;” are not actively controlled, but rather determined
by the specific ordering of quantum gates and the qubit
specification at hardware level. We expect that this differ-
ence does not influence the performance of our algorithm
significantly, because we also consider the case where 6; is
chosen randomly from either 0 or & (which corresponds
to [/ or Z operator, respectively). The numerical result
shows that the average XEB values for the top-1 method
in the two cases are similar: 0.00018 (6; € [0,27)) and
0.0004 (6; € {0, r}), respectively, for the Sycamore archi-
tecture (53 qubits, 20 depth). Therefore, we argue that the
z-rotation part does not influence the XEB value too much.

1. Implications for 1D quantum circuits

We start by discussing the performance of our algorithm
on 1D circuits with gates drawn from the Haar ensem-
ble. For the purpose of this section, C denotes either the
algorithm introduced in Sec. III A or its self-averaging ver-
sion described in detail in the Supplemental Material [47].
The self-averaging version has the same average XEB but
a smaller STD, at the cost of requiring more computa-
tional power. However, we consider constant subsystem
size | = O(1); thus, even the self-averaging algorithm runs
in the time linear in Nd.

Result 1. (1D circuits with Haar ensemble) For 1D ran-
dom quantum circuits with gates drawn from the Haar
ensemble and depth at least d > c - log N for some con-
stant ¢ > 0,
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(a) for any constant € > 0 and large enough N (roughly
Ne > 1), we have

Xv( Oy = (XU(M))U (6)

for both the basic and the self-averaging algorithms.
(b) we conjecture that

Var(xu(O) v =~ (xuNo)y @)

for the self-averaging algorithm (see the Sup-
plemental Material [47]), which is suggested by
numerical simulations. Namely, the standard devia-
tion of xy(C) is comparable to its expectation value

(xv(O)y-

Combined, this yields a linear-time classical algorithm
that spoofs XEB for any noisy quantum simulation of 1D
circuits with the Haar gate ensemble, when the number of
qubits is large enough.

Equation (6) states that the average XEB of our
algorithm is at least as large as that of any noisy circuit
with a constant noise level € > 0. As mentioned previ-
ously, in practice, we would like the conclusion of Eq.
(6) to generalize to typical circuits U (not only on aver-
age)—this can be guaranteed by showing that the variance
of the XEB value is small. This notion is expressed in
Eq. (7), which says that the variance is comparable to
the expectation value, and hence our algorithm works
for typical instances with large probability. Notice that,
in the large depth limit, we expect this to hold only for
the self-averaging algorithm. When discussing 1D cir-
cuits, where the purpose is to provide complexity-theoretic
implications, the analysis of the STD concerns only the
self-averaging algorithm. See the Supplemental Material
[47] for more detailed discussion.

From a technical point of view, our results are derived by
showing that the following quantities decay exponentially
with the depth of the circuit:

(xv(O)y = O(e™™1%),
(XUND) U le—0 while Ne>1 = O(e™23%).

Additionally, numerical simulations support the scaling of
the STD as

OO, = (@ = 0te

for some constants A, A; > 0 that depend on the sub-
system size / and A3 > 0 that depends on the noise level
€.

We emphasize that this scaling is unexpected: the decay
rate of the expected XEB value achieved by our algorithm
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FIG. 6. Exponential decay rates in 1D circuits with the Haar
gate ensemble. The mean value (blue) and the standard deviation
(green) of the XEB obtained by our algorithm. The horizontal
(dashed orange) line is the mean XEB value of the noisy circuit
in the weak-noise limit. Intuitively, a smaller A corresponds to
a larger XEB value. The STD is estimated by an approximate
method [47], since the direct calculation is not practical. In the
Supplemental Material [47], we give a strong numerical evidence
that this approximation is in fact a conservative estimation, i.e.,
the true STD should be even smaller (A, should be larger).

does not depend on the system size but only depends on the
depth of the circuit. We derive A1, A3 as constants in Secs.
II D and VII B within the Supplemental Material [47].
Numerically, we show in Fig. 6 an estimate on Aj, A,
and Aj; (of 1D circuits with the Haar gate ensemble) with
€ — 0 while keeping the system size large enough; in
other words, Ne > 1. For the Haar ensemble, our numer-
ical results show A; < Aj, where a larger A implies a
smaller corresponding quantity in the deep-circuit limit.
The numerical calculations suggest that A; &~ A;: around
[ = 14, the gap between the two is very small and A,
(green curve) seems to increase continuously. The green
curve is expected to be only a conservative estimation, as
explained in the Supplemental Material [47].

2. Implications for quantum circuits in 2D
experimentally relevant architectures

Next, we consider 2D quantum circuits in the Sycamore
and Zuchongzhi architectures in two different settings.
First, we focus on the role of the two-qubit gate, and we
analyze the performance of our algorithm for three dif-
ferent two-qubit gate ensembles: Haar, CZ, and fSim. For
the single-qubit gate we choose either independent Haar-
random gates, which allows for efficient analysis using
the diffusion-reaction model or the more experimentally-
relevant discrete gate set. Second, we compare our
algorithm against the experimental results of Refs. [5—
7]. There, we focus on the fSim gate, and we assume
the experimentally relevant discrete single-qubit gate set.
These analyses lead to two main results, summarized in
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FIG. 7. Mean XEB obtained by our algorithm for different

two-qubit gate ensembles, on Google’s circuit geometry. Circles
denote the Haar single-qubit gate set, while the green crosses
(stars) correspond to the more experimentally relevant discrete
set (with amplification using the fop-k method).

Fig. 7 and Table 1. For numerical calculations, we used a
single GPU machine (32GB NVIDIA Tesla V100).

Result 2. (Different gate ensembles) In the Sycamore
architecture with N = 53, d =20 with Haar-random
single-qubit gates, our algorithm (using the partition in
Fig. 5) has the following properties:

(a) the algorithm achieves significant average XEB
value for all depths shown in Fig. 7. As a refer-
ence, the expected XEB value of a noisy quantum
device with depth 20 and error rate € ~ 0.5% is
approximately equal to 0.002;

(b) the choice of the two-qubit gate affects the value
of XEB, which can be understood in terms of the
diffusion-reaction model, Sec. IV;

(c) the discrete single-qubit ensemble results in much
lower XEB values (green crosses in Fig. 7), which
is caused by the faster scrambling time;

(d) the running time (computing the vector of output
probadbilities) is only 4-8 s.

Result 3. (Comparison with experimental results) For the
experimentally relevant gate set (fSim + discrete single-
qubit gates) the performance of our algorithm can be
summarized (see also Table 1) as follows:

(a) using the top-k postprocessing method, the algorithm
achieves average XEB values within around
one order of magnitude (approximately equal to
2%—12%) to recent experiments up to depth 20 and
24, respectively,

(b) the running times (computing the vector of output
probabilities and choosing the top-k bitstrings) are
on the order of one second;

(c) the STD is conjectured to be comparable to the
mean value for large enough k but without decreas-
ing XEB too much; this is supported numerically
for Google’s Sycamore architecture (see the Supple-
mental Material [47]).

In summary, our numerical simulations show that our
algorithm achieves XEB values within around one order of
magnitude to Google’s and USTC’s circuits in the quan-
tum advantage regime with the experimentally relevant
gate set. While our basic algorithm is simple and efficient,
there are ways to achieve higher XEB values by adding
more sophisticated algorithmic ingredients. For example,
we show that after adding a simple postprocessing step
(the top-k method), our algorithm can achieve much higher
XEB values; for example, compare green crosses and stars
in Fig. 7. In fact, we considered only here the most straight-
forward way to determine the locations of omitted gates (or
maximal depolarization noise), which may not be optimal.
As we see from Table I, different partitions with roughly
the same number of qubits in each part has different XEB
values and running time. By generalizing our method, e.g.,
making the locations of omitted gates (maximal depolar-
ization noise) time and depth dependent, we expect an
improved version of our algorithm may produce higher
XEB without substantially increasing the computational
resources. In this work, we mainly focus on using 1 GPU,
which limits the possibilities of partitions. It is interesting
to explore using multiple GPUs with better XEB values.
In addition, it is an interesting future direction to explore
further algorithmic improvements (e.g., adding a modest
amount of entanglement).

D. Comparison to prior work

Now, we make a few remarks and compare our
algorithm to several previously introduced algorithms that
challenged the XEB-based quantum advantage, which
utilizes noisy-circuit experiments. First, Ref. [64] pro-
posed an MPS-based approach, which introduces effective
“noise” by greedily truncating the entanglement in the
system. In that work, the authors consider the CZ gate
ensemble and achieve the average XEB value of 0.02,
while our approach achieves similar XEB of 0.024 by
simply removing the entanglement between two prop-
erly chosen subsystems. To achieve the 0.02 XEB value,
the algorithm of Ref. [64] requires a runtime of several
hours, while our algorithm completes in only 5 min under
the same computational resources (1 CPU with 4.5 GB
memory). Moreover, Ref. [64] discusses only the effective
fidelity and shows that the XEB generally overestimates
the fidelity by roughly 10 times. In the present work, we
provide a deeper understanding of the connection between
the XEB and the fidelity.
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TABLE I. The comparison of XEB values (using the top-k postprocessing) and running times in the quantum advantage regime. We
find that the average XEB values from our algorithm is largely independent of the choice & < 10* (corresponding to more than &% ~ 108
distinct bitstrings for two subsystems), above which they slowly decrease. See the Supplemental Material [47] for the £ dependence as
well as the estimated STD of XEB values. (a) The running time is measured on a device using 1 GPU (NVIDIA Tesla V100). (b) The
performance of our algorithm (XEB value and running time) listed here are measured for the partitions in the Supplemental Material
[47], which are not optimized and are chosen for 1-GPU simulation with bounded memory (32GB for our device). In this Supplemental
Material [47], we also discuss some other ways to make the simulation more efficient. The tensor network algorithm is based on Ref.
[63] and implemented by a Julia package OMEinsum.jl [62].

Google [5] USTC-1 [6] USTC-2 [7]
System size 53 qubits, 20 depth 56 qubits, 20 depth 60 qubits, 24 depth
Claimed running time on supercomputer [7] 15.9d 8.2yr 4.8 x 10*yr
Running time on quantum processor 600 s 1.2h 42h
Experimental XEB 224 x 1073 6.62 x 107 3.66 x 1074
Running time of our algorithm (1 GPU“?) 0.6s 0.6s 1.5s
XEB of our algorithm® 1.85 x 1074 8.18 x 1073 7.75 x 1076
Ratio of ours to experimental XEB 8.26% 12.4% 2.12%
Running time of our algorithm (a different partition) 50s 4s
XEB of our algorithm (a different partition) 2.7 x 1074 2.05 x 1073
Ratio of ours to experimental XEB (a different partition) 12.3% 5.6%

Another approach is based on tensor network
contraction [38,63], which explicitly computes p,, repre-
sented by a tensor network, for as many bitstrings x as
possible, and then picks out those x with large values
of p,. Mixing these specially chosen bitstrings with ran-
domly chosen bitstrings forms a set of millions of bitstrings
that can spoof the XEB test. Several very recent advances
[39—43] are based on a similar idea. In their approach,
the computational resources required for simulating only
Google’s Sycamore chip (53 qubits, depth 20) are either
based on supercomputer and massive computer clusters or
dozens of GPUs with dozens of hours or days. Because
tensor contraction algorithms are inherently exponential in
the system size, and hence do not scale to larger systems,
spoofing USTC’s second experiment (60 qubits, depth 24)
is already beyond the scope of the above approach. In con-
trast, although the XEB values we obtain are not strictly
larger than those from experiments, our algorithm only
requires 1 GPU with few seconds, and scales better than
experiment when increasing system size.

Next, our result for 1D circuits refutes the linear cross-
entropy quantum threshold assumption (XQUATH) [37],
at least for one of its reasonable modifications, which is a
conjecture about the hardness of an approximate counting
problem and the hardness of the corresponding XEB-based
sampling problem can be reduced to it. In the Supplemen-
tal Material [47], we extend the refutation of XQUATH
even for 2D circuits. Concretely, XQUATH states that
there is no polynomial time classical algorithm to get an
estimation gy (0V) of py(0V) (the probability of getting 0V
from the ideal circuit given a circuit U) up to a precision
approximately 2~V (see the Supplemental Material [47] for
more detail), which is slightly better than randomly guess-
ing. In the Supplemental Material [47], we prove that this
precision is exactly the average XEB, (xy(C)),. Thus if

the precision 27V can be modified to e~*¢ for some con-
stant A (where A ~ A for 1D circuit), then our algorithm,
which runs in linear time, could achieve this approxima-
tion. We argue that the modification is reasonable because
in order to get a chaotic circuit, d ~ N for 1D and d ~
VN « N for 2D [18,65]. The original motivation of this
conjecture was to establish a connection between the hard-
ness of the sampling problem and the hardness of a direct
simulation of quantum circuit. Since our algorithm is far
from direct simulating a quantum circuit, our result implies
that the precision required in XQUATH, is not accurate
enough in order to capture the hardness of direct sim-
ulation; however, our result for 1D noisy circuit shows
that, more accurate precision is even not reasonable to a
quantum device without fault tolerance. In the Supplemen-
tal Material [47], we also show that a similar (although
slightly weaker) refuting statement also holds for 2D or
even more general circuit architectures.

Finally, we remark that, our algorithm is not trying to
simulate noisy circuits like the one in Ref. [66]. Instead,
the only objective of our algorithm is to get high XEB
value, but the associated fidelity might be very low (even
much lower than what a noisy circuit could have). Concep-
tually, our algorithm is a generalization of the one in Ref.
[67] beyond shallow circuits. The present results constitute
substantial improvements and extensions of this algorithm,
with a thorough theoretical analysis and detailed numerical
simulations.

IV. UNDERSTANDING XEB AND FIDELITY VIA
CLASSICAL STATISTICAL MECHANICS

In this section, we assume the single-qubit gate is Haar
random and present an analytic framework to understand
the relation between the XEB and the fidelity under various
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conditions, including different quantum circuit architec-
tures and the presence of noise or omitted gates. We
will find that, in these settings, both the XEB and the
fidelity, averaged over an ensemble of unitary circuits, can
be efficiently estimated by mapping the quantum dynam-
ics to classical statistical mechanics models, such as the
diffusion-reaction model. This mapping to the diffusion-
reaction model was previously developed in Ref. [50] for
the purpose of studying quantum information scrambling
under random circuit dynamics. Here we use a similar
method to study behavior of the XEB and fidelity in ran-
dom circuits with various entangling gates. In the special
case of 1D circuits, the effective model can be further
simplified to a ferromagnetic Ising spin model in two
dimensions, allowing us to obtain the scaling behavior
analytically.

A. Overall methodology

We first outline how quantum dynamics can be mapped
to a classical statistical mechanics model. The XEB and
the fidelity can be written as

xu+1=Y &l UpU" Ix) (x| M [po] 1) 2", (8)

X

Fy=Y_ (x| UpoU" [¥) (| Mool Ix),  (9)

xx

where pg = |0V) (0] is the initial state of the system, and

./\/l({,l) []1s a quantum channel associated with the ideal uni-
tary evolution (a = ideal), noisy quantum dynamics (¢ =
noisy), or our classical algorithm with omitted gates (a =
algo). For a different choice of a = {ideal, noisy, algo},
Egs. (8) and (9) become the XEB and the fidelity of
the corresponding case, respectively. The sum over x,x’
represents the summation over all possible N-qubit con-
figurations (bitstrings).

The key idea is to realize that both the XEB and the
fidelity can be expressed as the expectation values of
observables in an extended Hilbert space. More explic-
itly, we envision having two identical copies of the Hilbert
space: one representing the ideal circuit dynamics, and the
other representing the dynamics in either the ideal circuit,
noisy circuit, or our algorithm [see Fig. 8(a)]. Then, we
have

xu+ 1 =TiBxey (UnoU'@M[0]),  (10)

Fy = TtBr (U,ooUT®/\/l§j’) [,00]>, (11)

where Bxgp =2V Y _|x) (x| ® |x) (x| and Br = Y ¥
(x'| ® |x') (x| are Hermitian observables defined in the

enlarged space. In the following, we simply use B, with
b € {XEB, F}.

A convenient way to study the type of operators in Egs.
(10) and (11) is to represent them as tensor networks whose
contraction results in xy + 1 or Fy, as shown in Figs. 8(a),
8(b). In general, the contraction of these tensor network
diagrams for any given U would be computationally dif-
ficult, as it is equivalent to evaluating the corresponding
quantum circuit. However, we are mostly interested in the
average-case behavior of a class of random quantum cir-
cuits with gates drawn from specific gate ensembles. In
this case, we can perform the averaging over the gate
ensemble before contracting the network. Crucially, we
find that the averaging process allows us to re-express the
tensor network as a summation over exponentially many
simple diagrams enumerated by different configurations of
classical variables s [see Fig. 8(b)].

This emergent mathematical structure—namely the
summation over all possible configurations of classical
variables—is similar to the path-integral formulation of a
classical Markov process, or a partition function in statis-
tical mechanics models [68]. Indeed, we will show that
xu+ 1 and Fy, averaged over an ensemble of unitary
gates, are exactly described by a diffusion-reaction model
or a classical Ising spin model.

B. The emergent diffusion-reaction model

We now describe the exact mapping from random uni-
tary circuits to the diffusion-reaction model. To derive this
mapping, we will first consider the bulk of the tensor net-
work in the absence of any noise or omitted gates, i.e.,
Midl p0] = UpoU'. We will follow with the analysis of
the boundaries at = 0 (initial state) and at t = d (con-
traction with the observable I3;). Finally, we will consider
how the presence of noise or omitted gates influences the
system.

1. Bulk of the ideal circuit

The central ingredient of the mapping to statistical
mechanics models is the averaging over an ensemble of
unitary gates [69]. In our case, we consider a single-qubit
unitary u € SU(2) averaged over the Haar ensemble (or
any other ensemble that forms a unitary 2-design). As
depicted in Fig. 8(b), every random unitary u appears
exactly 4 times: a pair of u and u' for the ideal dynam-
ics and another pair for the quantum channel ./\/lgl). Since
these sets of four random gates are independent, we can
average them locally within the circuit using the 2-design
property [69],

1
EJu®u* ®@u®u] = |1){(]+ Fini&l 12

where |/)) and |2)) are mutually orthogonal operators in
the duplicated Hilbert space defined as
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(a) Tensor-network representation (b)
in doubled Hilbert space

Averaging over unitary gates in
the tensor network diagram

(c) Diffusion-reaction model

. 0O 0 0,0-0.0,0-0
~ Noisy circuit / Noisy 7 our algorithm oo oNe—e-e—e
§ our algorithm Yy 9 ) s 0 0 O ;/,'
(@] g) \H:j.
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FIG. 8. Mapping quantum circuits to statistical mechanics models. (a) Both XEB and fidelity can be written as observables B}, with
b = XEB, F in a duplicated Hilbert space by using tensor-network representations. The duplicated Hilbert space consists of the tensor
product of copy 1, representing an ideal circuit evolution, and copy 2, representing the dynamics of either noisy circuit or our algorithm
with omitted gates. (b) For the tensor-network diagrams representing XEB or fidelity, each random unitary gate (blue boxes) and its
complex conjugate (blue boxes with asterisks) appear twice: in copy 1 and in copy 2. One can perform averaging over an ensemble
of unitary gates without explicitly evaluating the tensor-network diagram, which gives rise to a simpler tensor network diagram with
new classical variables, s, associated with each averaged single-qubit unitary gate (bottom left). Entangling unitary gates G dictate the
dynamics of variables s, which is encapsulated in the transfer matrices of the classical statistical mechanics model (bottom right). (c)
Schematic diagram for the diffusion-reaction model. Each site can be occupied by a particle (filled) or remain unoccupied (empty). In
every discrete time step, each particle may either stay on the same site, move to a neighboring site (diffusion), or duplicate itself to
a neighboring site (reaction). Finally, a pair of particles located on neighboring sites may recombine into a single particle (reaction).
Each of these processes has a specific probability that depends on the underlying gate ensemble. (d) Quantum circuits in 1D can be
mapped to the classical Ising spin model in 2D.

the assignment of / or 2 values to s variables within that
time slice. Then, the tensor network describes how the par-
ticle configuration is advanced in every time step, which is
captured by the transfer matrix 7.

The transfer matrix between two time steps is
determined by the product of local transfer matrices 7 =
[1s 79 In turn, a local transfer matrix 7<) is given by
the combination of the prefactor 1/3, originating from Eq.
(12), and a nontrivial contribution TéG) associated with a

1
((as b’ C,d|1)) = §8ab8c’ds

1 "o (13)
(ab,e,dIR) = > Y o0l

U=Xy,Z

with Pauli matrices o*, and a,b,c,d € {0,1}. We note
that by using this notation, we are implicitly utiliz-
ing the channel-state duality (also known as the Choi-

Jamiotkowski isomorphism [70]), where operators such
as density matrices are vectorized: p = Zl] pi i) I —
|p)) = Zl] pij 1i) ). Intuitively, ((/| and ((2| represent
the normalization and the total polarization correlation
between the two copies, respectively; see the Supple-
mental Material [47] for the detailed derivation of these
properties.

Notice that Eq. (12) is a sum of two projectors, up to
normalization factors. Therefore, by applying Eq. (12) to
every quadruple of single-qubit unitary gates, the tensor-
network diagram factorizes into smaller parts, which are
enumerated by different assignments of classical variables
s € {1, Q2} associated with every independent single-qubit
unitary gate. We interpret the classical variable s at a cer-
tain site in space time as if that site is in a vacuum state
(s = I) or occupied by a particle (s = €2). In this picture,
the particle configuration at a specific time step is given by

single two-qubit gate G, as shown in Fig. 8(b). We evaluate
T(()G) explicitly by contracting (four copies of) a two-qubit
gate G with four vectors |s)), where s = I, €2, arising from
four single-qubit random gates before and after G [see
Fig. 4(b)]:

79 = ((s1]{{21G ® G* ® G ® G*|s3))lsa)).

0551525354

(14)

Explicit calculations lead to the general form of the T
matrix

10 0 0
0 1-D D—R  R/n

G) _

=10 p-& 1-b R |0 1
0 R R 1-2R/y
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TABLE II. Values of the diffusion rate D and the reaction rate
R for a few different entangling gates.

Ccz Haar fSim fSim*
Diffusion rate D 2/3 4/5 1 1

Reaction rate R 2/3 3/5 1/34+/3/6 2/3

written in the basis {//,/2, 2/, Q2Q}. This formula has
been derived in Ref. [50] for studying quantum scram-
bling. In this work, we apply it to study vulnerabilities
of the XEB. Here, D > 0 and R > 0 are parameters that
depend on the specific choice of the entangling unitary gate
G (the gate ensemble), while n = 3 for any two-qubit gate.
We call D, R, and 7, the diffusion rate, reaction rate, and
reaction ratio, respectively, and summarize their values for
a few common entangling gates in Table II.

We note that each column of 7 is normalized to unity,
implying that the matrix indeed describes a transfer matrix
for a stochastic process. For example, the entry in the sec-
ond column and the fourth row specifies the probability of
the two sites going from /2 to 2Q—this is an example of
the “reaction” process. Other transitions are given in the
following, with probabilities written on top of the arrows,

vacuum: [/ —l> i

128 1. 28 qr

stay:
move: [ ﬂ QI
or 28 10, oo 221 o
duplication: I, QI 5> QQ
recombination: Q8 R—/r’> 1Q2,Q1.

The third process (move) is the “diffusion” (i.e., random
walk), while the last two (duplication and recombination)
are reaction processes, i.e., particle creation and annihi-
lation. Notice that a particle cannot be created from the
vacuum or annihilated into the vacuum without interacting
with another particle.

2. Boundary conditions at the initial state and at the
final time

Next, we turn to the boundaries of our tensor network
diagram. First, we contract the input state py ® po, denoted
as |0®4))®N | with tensors associated with all 2" possible
particle configurations. This leads to the vector u®V, where

o\ (172
u= <<<sz|0®4>>> = (1/2)’ (16)

which follows directly from Eq. (13). This vector describes
the initial distribution of particles: every site is occupied by
a particle or remains empty with probabilities 1/2.

Similarly, at the final layer, we contract the B, observ-
ables with tensors associated with all 2"V possible particle
configurations, leading to dual vectors vy and vV for
the XEB and the fidelity, respectively, where

Vxes = (71 Bxes))  HEEXERL) = (2 2/3),

(17)
vi = (1)) L) = (1 1),
and
Bxes)) =2 Y i) li) 1) 13) , (18)
i€{0,1}
1BeY) = D 1y |i)[7)1i), (19)

ii'e(0,1}

are the single-site versions of By, i.e., By = ,Bf’N . We find
that vxgg is distinguished from vy by unequal weights
between [ and Q (by a factor of 1/3) aside from the
global normalization factor 2. This allows an intuitive
explanation: as previously mentioned, ({2 represents total
polarization correlation between two copies of quantum
states, but XEB depends only on correlations measured
in the computational basis constituting 1/3 of the total on
average.

Combining the results from bulk transfer matrices, and
initial and final boundary conditions, we obtain the expres-
sion for the ensemble-averaged XEB and fidelity:

d
oot 1=Elxol+ 1=vigy ([ |7 ] o®" 0)
j=l1
d
Fo =B Pl =vi" [ T]TT |w®. @D
j=1

where 7; is the transfer matrix for N particles at time
stepJ .

3. XEB and fidelity as statistics of a particle distribution

Our results in Egs. (20) and (21) allow for an intuitive
understanding of the XEB and the fidelity in terms of par-
ticle distributions in the diffusion-reaction model. We note
that these two quantities differ only by the boundary condi-
tion at the final time ¢ = d, as defined in Eqs. (18) and (19).
Hence, both the XEB and the fidelity are fully determined
by the probability distribution of particle configurations, p,
obtained by evolving the initial uniform distribution u®"
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for d time steps:

p="7 - LT (22)

From this distribution, the XEB and the fidelity can be
evaluated by simply contracting either vy or vi®V,
which corresponds to computing certain statistics of the
particle distribution. For instance, all entries in v.®" are
unities, implying that v;®N p is equal to the summation
over all probabilities:

Foy =vp®p = Ep[1], (23)
where Ep[-] denotes the averaging over the distribution p.
In the absence of any noise or omitted gates, the transfer
matrix in Eq. (15) preserves the total probability, leading
to Fyy = Ep[1] = 1. This result is trivially expected in the
quantum circuit picture—in the absence of any noise or
omitted gates, the fidelity must always be unity. We will
soon see how this picture is modified when we introduce
noise or omit gates.

Similarly, the average XEB is

1
— yI®N, _ 5N
Xav+1—VXEBp_2EP|:m]’

where #$2 denotes the total number of particles.

4. Effects of noise or omitted gates

When unitary dynamics is interspersed by noise chan-
nels (M) or when some of the gates are omitted in

our classical algorithms (MS1g°>), only the bulk part of
the tensor network changes, leading to a modified transfer
matrix. For a noisy circuit, the new transfer matrix is

. 1 0
79 =1 ®1) T withl, = (0 1 — ce)’ (24)

where ¢ is a constant depending on the type of noise.
For example, ¢ = 4/3 for the depolarizing noise N, (p) =
(1—e)p+e€/3 Zu otpot, and ¢ =2/3 for the ampli-
tude damping noise.

Unlike the transfer matrix in the ideal case, the noisy-
circuit transfer matrix in Eq. (24) no longer describes a
stochastic process. That is, the sum of each column in
T is less than unity, implying that the probability is
not conserved. Thus, the effect of noise gives rise to the
“loss of probability” in our diffusion-reaction model. In
general, this leads to an unnormalized final distribution p
and reduced average fidelity F,, < 1. Crucially, the loss of
probability occurs only when a particle (€2) is present at
a given space-time point. The diagonal entries in /. imply
that the probability associated with a given particle con-
figuration will be damped by a factor (1 — ce)*? at every

time step. Therefore, we expect an interesting interplay
between the diffusion-reaction dynamics of particles and
the probability loss.

For our classical algorithm, it is the omission of gates
that modifies the transfer matrix. In this case, only local
transfer matrices associated with an omitted gate are
affected

79 > (P,P) T9 =P, QP withP1=<(1) g).

(25)

Similarly to the noisy circuit case, the omission of gates
also causes the loss of probabilities; thus, the fidelity
becomes smaller than 1. More specifically, Eq. (25) implies
that, at any given time, the probability weights associ-
ated with particle configurations containing at least one
particle at the site of omitted gates must vanish; such
configurations do not contribute to the average XEB or
fidelity. Thus, the only nonvanishing contributions arise
from diffusion-reaction processes in which not a single
particle ever appears at the sites of omitted gates through-
out the entire dynamics. The average fidelity will then
be the total probability of such diffusion-reaction pro-
cesses, and the average XEB is determined by the resultant
unnormalized distribution p.

We remark that the deterministic loss of probability at
the positions of omitted gates leads to the factorization of
the transfer matrix in Eq. (25) (as a product of two pro-
jectors). Due to this factorization, p for the whole system
also factorizes into independent probability vectors for two
isolated subsystems. This feature allows the numerical cal-
culation of the average XEB for system sizes up to the
quantum advantage regime (60 qubits, depth 24).

C. Dynamics of the XEB and fidelity

Having introduced the mapping of random unitary
circuits to the diffusion-reaction model in the previous
section, we now leverage this formalism to understand
the quantitative behavior of the XEB and the fidelity
under various conditions. In particular, we explain the key
concepts used to obtain results presented in Sec. III.

1. Ideal circuit

In the absence of noise and omitted gates, the fidelity
remains equal to unity trivially, due to the conservation of
the total probability. It is nontrivial, however, to see how
the average XEB approaches unity in the limit of deep
quantum circuits [5], which we now explain in terms of
diffusion-reaction dynamics. Both the XEB and the fidelity,
at late times (large depths), are determined by the output
vector p. For the transfer matrix in Eq. (15), this distribu-
tion converges to a fixed point in the large-depth limit. In
the current case, there are two fixed points for local trans-
fer matrices, u; = (1/4,3/4) and u; = (1,0). The former
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represents a nontrivial steady-state solution in which the
total normalization, and three different types of correlations
(along x, y, and z directions) are equally distributed, while
the latter represents a trivial solution where two copies are
both in completely mixed states; hence, no correlation is
generated during dynamics. It can be shown that the global
stationary distribution is given as a mixture of u?N and

u?N , whose ratio is determined by the initial condition

u®V:
Jim p=(1- 27NN +27Vu$N +0@d™).  (26)

The dominant contribution originates from the nontriv-
ial equilibrium configuration u;, whereas the u, term
constitutes a small correction.

The nontrivial term describes the homogeneous distribu-
tion of particles with the density 3/4, as shown in Fig. 9(a),
contributing to the XEB

Vigm =2 (S x4 %) =
XEBTL T\ 4 473) "~
The trivial term gives vypgus = 2 per site. Combined
together with appropriate coefficients, we obtain the aver-
age XEB xa, = (1 —27V) &~ 1 as expected. We note that
the net contribution from the trivial solution (u, term) is
always +1, which exactly cancels the constant term —1 in
the definition of the XEB.

2. Noisy circuit

If noise is introduced to the system, the total probability
is no longer conserved, and u?N does not form a station-
ary solution. However, we can still predict the behavior
of the average XEB and fidelity using our model. We dis-
tinguish two regimes: (a) the weak-noise limit where the
total probability loss rate Ne is much smaller than the
inverse equilibration time rejll of the particle distribution,

Ne K refll, and (b) strong-noise limit Ne > rejll. In terms
of quantum circuit dynamics, these conditions correspond
to the comparison of the total error rate to the scrambling
time.

In the limit of weak noise, the steady-state configuration
must stay close to that of the equilibrium solution, because
the system relaxes quickly before any substantial proba-
bility loss occurs. Thus, the output probability vector at
the final time is not severely affected by the probability
loss during preceding times, other than a global rescaling
factor. This leads to the (un-normalized) equilibrium state
p =1, where

i (J4). @)

Here « is the rescaling factor that accounts for the proba-
bility loss (per site) during the diffusion-reaction dynamics,
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FIG. 9. Sketch of the particle population distribution at the last
layer. The vertical axis is the density of particles (£2) at the final
layer normalized by the total probability, and the horizontal axis
is the position of sites. (a) Ideal circuits. (b) Noisy circuits. The
density is decreased relatively to the ideal case. The discrepancy
becomes larger for larger noise rates. (c) Our algorithm. Close
to the position of an omitted gate, or a “sink” (purple cross), the
density of particles is suppressed.

and it generally decreases exponentially with depth. The
parameter 8 quantifies the deviation of u; from its equilib-
rium shape, and generally 8 & 1 in the weak-noise limit.
The precise value of 8 depends on the strength of noise
and the equilibration time. As long as 8 ~ 1, p is a simple
rescaling of the ideal-circuit distribution, and XEB approx-
imates the fidelity well; both quantities are suppressed by
the factor of oV

In the limit of relatively strong noise (slow equilibra-
tion), the particle configuration cannot relax to its equilib-
rium before it is significantly affected by the probability
loss. In this limit, the deviation of u; from the equilibrium
becomes significant, and 8 < 1 decreases with the increas-
ing strength of noise. This is because, generically, the
probability loss associated with €2 particles during dynam-
ics results in a reduced density of particles at the last layer
[see Fig. 9(b)]. The reduced density of particles implies
that the XEB is larger than the fidelity because the bound-
ary vector vxgg has a higher weight for the vacuum than
for the particle state, whereas vy has the same weight for
both states. Hence, the larger the noise rate, the greater the
deviation of the XEB from the fidelity. Equation (27) no
longer holds for greater noise strengths [71].
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3. Spoofing algorithm

Our algorithm is designed to leverage the discrepancy
between the XEB and the fidelity. In contrast to homoge-
neous errors spread over the bulk of the circuit, the errors
in our algorithm are highly inhomogeneous and local-
ized—they appear only at specific positions where we omit
gates. This inhomogeneity leads to a particle distribution
that is far from its equilibrium counterpart. More specifi-
cally, the position of an omitted gate behaves like a “sink”
of probabilities—any configurations containing particles at
sink sites, at any time, will acquire vanishing contribution
to p. Therefore, in any nonvanishing contribution to p, the
relative density of particles with respect to the density of
vacuum states is substantially lowered near the sink [see
Fig. 9(c)]. This large imbalance (relative to the equilib-
rium) leads to the large XEB-to-fidelity ratio. Thus, given
the same value of fidelity, which is controlled by the total
number of omitted gates, one can achieve high XEB val-
ues because vacuum state / has a larger weight in the XEB
than in the fidelity.

The nonequilibrium, spatially inhomogeneous dynam-
ics of particles also leads to a distinct scaling behavior. In
our algorithm, the average XEB value increases with the
system size NV, when the number of omitted gates is fixed.
This can be intuitively explained: the more space for par-
ticles to diffuse to, the less likely it is for them to hit sink
sites, leading to an effectively smaller particle loss rate and
reduced imbalance in the particle density, relative to the
equilibrium.

Here, we make two remarks. First, while our analysis
remained qualitative and focused on two extreme cases
of error models, i.e., one with completely homogeneous
noise and another fully localized errors, we emphasize
that our intuitive understanding can be straightforwardly
generalized to arbitrary circuit geometry with arbitrary
inhomogeneous error models in both space and time. In
such cases, one can directly estimate the distribution p by
using conventional approaches, such as Monte Carlo meth-
ods. Second, we comment that, intuitively, larger diffusion
and reaction rates imply a shorter time required to reach
the equilibrium distribution. In other words, given a circuit
architecture, the XEB will be on average a better proxy
for the fidelity in circuits consisting of faster scrambling
(entangling) gates, with larger R and D.

4. Numerical demonstration

To corroborate our predictions based on the diffusion-
reaction model, we present the results of our numerical
simulations. First, we confirm that the XEB overestimates
the fidelity, and that the discrepancy is larger for higher
noise rates, as shown in Fig. 10. We find that the fSim
ensemble has the smallest XEB-to-fidelity ratio. The rea-
son for this is clear from the diffusion-reaction model:
among the three gates we considered, their reaction rates

(b) CZ gate
Haar gate
S~ << Sim gate
2 Sao = = fidelity
T RN
ke SO
9 ~
510! SN2
c Seo
© ~<
3
~
B3 DRI
\\
~
; o NG
( ) weak noise e =0.6% ~..
10! CZ gate
Haar gate
fSim gate
2 — = fidelity
3
= R
-3 ~<2
T10 e
© | Te=a
m | TTeal
w ~~_
D
10-54 strong noise e=2%
16 18 26 28

20 22 24
Number of qubits N

FIG. 10. XEB versus fidelity in noisy circuits. The XEB
always overestimates the fidelity, but the deviation depends on
the gate ensemble and the strength of noise. (a) For this cal-
culation, we use the original qubit ordering from Fig. S25 in
Ref. [5] (see also Fig. 5). (b) Weak-noise regime (¢ = 0.6%).
The XEB approximates the fidelity well, and the fidelity val-
ues for all gate ensembles are almost the same. (¢) Strong-noise
regime (¢ = 2%). The quality of the XEB-to-fidelity approxima-
tion strongly depends on the choice of the gate ensemble. Among
the three ensembles considered here, the fSim ensemble gives the
best result.

R are similar (between 0.6 and 0.67), but the fSim gate
has the largest possible diffusion rate D = 1, as shown in
Table I1.

We use this intuition to devise an even better gate, which
we call the fSim*. By fixing D = 1, we find that the fSim*
gate has a larger R = 2/3. Moreover, these values of R and
D are now optimal, which we prove in the Supplemental
Material [47]. Thus, fSim* has the smallest possible dis-
crepancy between the XEB and the fidelity. We compare it
to the fSim gate in the inset of Fig. 3(b).

Next, we verify that the average XEB value of our
algorithm for a specific circuit architecture (the Sycamore
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FIG. 11. Mean XEB value obtained by our algorithm as a

function of the system size N, using the ordering in Fig. 10(a)
and the d = 14 circuit architecture from Ref. [5]. The average
XEB values are calculated using the diffusion-reaction model
for three different gate ensembles: Haar (blue), CZ (purple), and
fSim (green). When compared with the results of the direct sim-
ulation of quantum circuits (crosses), both methods agree very
well.

chip) can be very accurately predicted by our diffusion-
reaction model. These results are shown in Fig. 11. We find
that our diffusion-reaction model can predict even the fine
details of the scaling with the system size N. For example,
in Fig. 11, the rise and fall in the value of XEB is caused
by the lattice structure [see Fig. 10(a)] and its effect on the
diffusion process.

D. Ising model for 1D Haar ensembles

The diffusion-reaction model is useful for analyzing
our system qualitatively and numerically, for general cir-
cuit architectures and two-qubit gate sets. However, for
a certain class of systems, such as 1D circuits with Haar
two-qubit gates, one can further simplify the classical sta-
tistical physics model to the 2D Ising model. This can
be understood as a special case of the diffusion-reaction
model, related to it mathematically through a basis trans-
formation. This mapping has been studied previously in
Refs. [51-57,72]. The Ising model allows us to obtain
more quantitative results. We find that the behavior of
the XEB is related to symmetry, symmetry breaking, and
magnetization.

The basis change from the diffusion-reaction model to
the Ising model is

such that

((a,b,c,d| 1)) = davbea
((a,b,c,d| |)) = 8aadpe,

where the second equation indicates that | | )) corresponds
to a swap between indices a and ¢ (or b and d). This new
basis reflects the symmetry in ¥ ® u* @ u @ u* between
the two copies: the state is invariant if we exchange the
positions of the two us or u*s (labeled by a,c and b,d,
respectively).

We regard 1 and | as the up and down spins, and the
path integral of the diffusion-reaction dynamics is mapped
to the partition function of the spin model [see Fig. 8(d)]. In
the absence of noise or omitted gates, the partition function
has a global Z, Ising symmetry, such that | 1)) < | |))
applied to all spins does not change the partition function.

After the basis change, XEB + 1 corresponds to the par-
tition function of the Z,-symmetric Ising spin model with
identical boundary conditions at both the initial and final
times. In the special case of Haar entangling gates, this
model is the ordinary Ising model with two-body interac-
tions, which are detailed in the Supplemental Material [47]
and Refs. [51-57,72].

This mapping allows us to write the XEB for the ideal
circuit in the following form:

Yideal + 1= Z = (W 5.2 19)), (28)

where |v/)) and ((y/| are the boundary conditions, and Tysine
is the transfer matrix of the Ising model along the horizon-
tal direction in Fig. 8(d); it is semidefinite positive and can
be computed from 7§ **” and Eq. (12). We defer the details
of'this calculation to the Supplemental Material [47]. Here,
we only need to know that this Ising model is in the ferro-
magnetic phase. Thus, the largest eigenvalue of 7y, is
doubly degenerate, which gives Z = 2 and so XEB = 1 in
the large-d limit.

Once noise or gate defects are introduced, the Ising
symmetry is violated. In the case of noisy circuits, the
symmetry is violated everywhere, with each local interac-
tion modified by the presence of effective magnetic fields
with strength €. Then, there will be a spectral gap Ay =
A1 — A, in the modified Zysing, which we evaluate exactly.
Figure 12(a) shows the gap as a function of the system size
for various error rates. We show that in this case

Xnoisy = 0 (e_AN’ed) . (29)

If the violation is small enough (Ne < 1), the spectral gap
is Ay < Ne because the total magnetic field is only a
small perturbation from the ideal (symmetric) case. How-
ever, if we consider the asymptotic behavior of noisy
circuits, € is assumed constant, but N could be very large.
In this limit, the gap will saturate to a fixed value Ay,
as shown in Fig. 12(a). This corresponds to the thermody-
namic limit in terms of statistical physics (taking N — oo
first then € — 0). In this case, even if € tends to 0, as long
as Ne is still large, there is a finite gap in Zigine. This cor-
responds to the phenomena of spontaneous magnetization:
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FIG. 12. Effective gaps of 1D noisy circuits. (a) For any noise
strength €, the gap Ay . saturates, for sufficiently large N, at the
limiting-gap value A .. (b) The limiting gap as a function of
the noise strength. Polynomial extrapolation indicates the € — 0
limit of the gap to be approximately equal to 0.03. We define this
limiting value as Az := lim._,o A ; in Fig. 6, it is represented
by the orange, dotted horizontal line. The subsystem considered
here has only one boundary with omitted gates as the total system
has open boundary condition.

even if the magnetic field fades away, most of the spins still
point in the same direction leading to a nonvanishing decay
rate, which is the indicator of the symmetry breaking. We
numerically extrapolate the limiting gap to the vanishing
noise rate € and get

A; = hm Asxe =lim lim Ay = 0.3, (30)

€e—>0N—+o0

as shown in Fig. 12(b). This corresponds to the orange
dashed line in Fig. 6.

For our algorithm, the omitted gates are mapped to a
tensor product of projectors, as shown in Eq. (25), so the
partition function will also be separated into the product of
partition functions of isolated subsystems

[N/
m@=2—1=I]#> 31)
[N/ ®
~ [ A4y (32)

i=1

where A;i) is the gap of the ith subsystem, and A; is
the typical gap among these subsystems, assuming they
have similar sizes. Equation (33) shows that the XEB
increases with the system size if the subsystem size / is
fixed. The decay rate is mainly determined by the subsys-
tem with A; = min; A;i). For each subsystem, the omitted
gates correspond to strong magnetic fields at the bottom
(or top) boundary, which have been previously identified
as “sinks” in our diffusion-reaction model. These fields
violate the Z, symmetry, which causes the gap to open.
The gap decreases if the subsystem size / increases; see
the discussion in the previous subsection and the Supple-
mental Material [47]. We numerically compute the gap
for different circuit parameters and present the results in
Fig. 13. We find that when / > 15, A approaches to a
constant A; ~ 0.25. Crucially, we see that A; < Aj; this
means that our algorithm generates a higher XEB value,
in the large-depth limit, than noisy 1D circuits—even with
arbitrarily weak noise.

1. A remark

In the above discussion, we ignored the factor in front
of the exponential decay with depth. In the case of our
algorithm, it is a constant (which could depend on the
subsystem size /) for each subsystem because the sub-
system can not distinguish how large of the total system
it belongs to. Thus the factor in the total XEB grows
linearly with the system size N. In the case of noisy cir-
cuit, the factor is possible to grow at most poly(N) because
d = O(log N) is enough to guarantee the XEB of noisy cir-
cuit is less than 1. This is due to that the XEB of noisy
circuit should be smaller than ideal circuit, XEB of ideal
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circuit is exactly the anticoncentration constant and anti-
concentration depth is the order of log N [67,72]. If the
factor grows faster than any polynomial, d = O(logN)
would not be enough to converge to 1. Since the decay
rate of XEB in our algorithm is smaller than that of noisy
circuit, d = Q(log N) makes former XEB larger.

We note that many of the qualitative behaviors discussed
in this section also hold in general architectures and two-
qubit gate set. For example, Eq. (33) shows that the XEB
obtained by our algorithm behaves more like an additive
quantity, i.e., the total XEB approximately equals the sum
of XEB values for each subsystems, if they are decoupled
(in our algorithm) or only weakly coupled (in noisy cir-
cuits). In contrast, fidelity exhibits multiplicative behavior,
i.e., every error contributes to reducing the fidelity of the
total system exponentially.

V. CONCLUSION AND OUTLOOK

In this work, we introduced a novel framework to ana-
lyze the behavior of XEB and fidelity under random quan-
tum circuit dynamics in arbitrary architectures. We showed
that the XEB generally overestimates the fidelity, and pre-
sented an intuitive explanation for this phenomenon and
more quantitative analysis using a mapping of quantum
dynamics to a classical diffusion-reaction model. Fur-
thermore, leveraging our new framework, we designed a
simple and efficient classical algorithm, which achieves
XEB values comparable to, or even higher than, noisy cir-
cuit dynamics under various conditions. We numerically
demonstrated the excellent performance of our algorithm
using a relatively small amount of computational resources
(time and memory), and showed that it achieves XEB
values within around one order of magnitude to those
obtained in experiments and by the state-of-the-art algo-
rithms running on devices with much more computational
power [39—43]. Our results demonstrate the shortcomings
of the XEB for estimating the circuit fidelity and certi-
fying quantum advantage, unless further assumptions are
made. For example, our qualitative analysis in Sec. [ A
and quantitative results in Sec. IV indicate that, for the
XEB to approximate the fidelity well, the assumption of
spatially homogeneous and temporally independent weak
noise is crucial. The violation of any of these conditions
(as in the case of our algorithm) may lead to a substantial
discrepancy between the XEB and the fidelity.

A. Overcoming the vulnerabilities of linear XEB

Our results can be used as a guideline for design-
ing the next generation of experiments with more robust
ways to certify quantum computational advantage. Here
we describe a few simple methods to circumvent the
shortcomings of the XEB arising from its vulnerabilities
described in Sec. [ A. First, we point out that the system-
size scaling of the linear XEB in our algorithm, associated

with the additive nature in Eq. (3), can be easily resolved
by using a different, nonlinear benchmark such as the loga-
rithm version of the XEB [5]. This change, however, does
not address the remaining two vulnerabilities, namely (i)
the deviation of the XEB from the fidelity or from the
probability of having no error in the circuit, and (ii) the
amplification of correlations via postprocessing in classical
algorithms.

In order to address (i), one can implement quantum
circuits that are scrambling faster by choosing more opti-
mized gate sets such as the fSim* entangling gates and
Google’s discrete single-qubit gate set. Additionally, one
could design a better circuit architecture with larger depth
and more connectivity, in addition to improving the fidelity
of individual gate operation. Such quantum circuits make
our spoofing algorithm less effective, as partitioning the
circuit into subsystems with a small number of omitted
gates becomes difficult.

The amplification vulnerability arises because the previ-
ously used benchmarks are designed to quantify the corre-
lation between bitstring probability distributions, and they
are sensitive to bitstrings occurring with high probabilities.
This aspect can be alleviated by using a different figure
of merit. In quantum information theory, the total varia-
tion distance (TVD) is used frequently [2,11,12,16] and it
seems immune to straightforward amplification methods.
Unfortunately, TVD is practically intractable to estimate
and hence cannot directly serve as a new benchmark [45]
(see also Ref. [73] for more systematic discussion). One
can argue that TVD can be instead lower bounded by
the fidelity, which one can estimate using the XEB under
suitable conditions. However, this approach may not be
practical either because a meaningful lower bound for the
TVD is obtained only for a very high value of fidelity (with
the order of an inverse polynomial in the system size),
which is difficult to achieve in near-term quantum devices
without quantum error correction.

B. Outlook

Our work opens up a number of other new future direc-
tions. Besides the above discussion on the vulnerabilities
in the adversarial settings, it is also interesting to study
whether XEB can be used to certify a broader class of
near-term quantum devices in real-world experiments in
benign settings [35]. Assuming random circuit dynam-
ics with homogeneous and independent error models, our
analysis presents a systematic way to identify the regime
where the XEB, fidelity, and the probability of no error all
agree with one another. More specifically, we showed in
Sec. II C within the Supplemental Material [47] that the
XEB approximates the fidelity well when Nef (c) < 1,
where € is the local error rate and f (c) is a constant of order
unity that measures a particular type of “scrambling” time
for a given entangling gate. Strongly entangling gates, such
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as the fSim (or the more optimal fSim*) with the discrete
gate set introduced by Google [5], are an ideal choice for
minimizing f (c). In the experiments performed in Refs.
[5-7], N = 50 ~ 60. Assuming f (¢) & 1 ~ 5, a noise rate
of € ~ 0.4% — 2% is sufficiently weak for the Nef (c) <
1 condition to be met. The error rates in the experiments
[5-7] belong to this regime. The mapping from quantum
dynamics to the diffusion-reaction model [50], combined
with numerical algorithms such as Monte Carlo and ten-
sor networks [7,38-40,42,43,63], provides a quantitative
method to estimate the precise value of € required. Even
though these error rates are weak enough, the indepen-
dence and the homogeneity of noise (either in space or in
time) have not been unconditionally demonstrated in the
aforementioned experiments. The latter appears to be nec-
essary in order to ensure a good agreement between the
XEB and the fidelity. Alternatively, it would be interesting
to explore if one could either relax the requisite conditions,
or develop a more generalized relation between the XEB
and the fidelity, e.g., in the presence of correlated and/or
strong noise.

The mapping from quantum dynamics to classical statis-
tical models [50] can be regarded as a de-quantization pro-
cedure of quantum circuits by randomization and averag-
ing over an ensemble, which is similar in spirit to random-
ized benchmarking [74—81]. The resulting statistical model
is much easier to analyze analytically and numerically.
In particular, it benefits from the intuitive understand-
ing associated with classical models, larger number of
available computational tools, and connections to
well-studied  machine-learning models, such as
probabilistic graphical models [82,83]. Moreover, this
emergent classical model can be generalized to describe
other XEB-like quantities, which are potentially useful for
studying various aspects of quantum circuits. For example,
by replacing ideal circuits with different quantum chan-
nels (as mentioned in the Supplemental Material [47]), the
XEB can potentially detect dominant types of noise. These
ideas could be explored further to design new protocols for
learning and quantifying complex quantum systems. This
mapping has also the potential to study other properties of
random circuits, e.g., proofs of anticoncentration [67,72],
convergence to the uniform distribution under Pauli noise
per gate [84], and designing better simulation algorithms
[66].

Our work provides strong motivation for designing
new figures of merit to certify quantum advantage, which
remains as an important open problem. It would be inter-
esting to explore other efficiently measurable benchmarks
that could certify the correctness of random circuit sam-
pling. More broadly, the study of the sample complex-
ity of certifying random circuit sampling is warranted
[85]. We also notice alternative approaches to demonstrat-
ing quantum advantage. In particular, several interactive
protocols have been designed recently [86—89], where

quantum features can be certified based on cryptographic
and computational complexity assumptions.
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APPENDIX A: SUMMARY OF OUR RESULTS

In this section, we list down the results of this paper for
reader’s reference.

Rigorous result 1: the average XEB is additive and the
average fidelity is multiplicative between our algorithm
and distribution from ideal circuit. The assumption is that
the average is over unitary 1-design random gates.

See Sec. I A of the main text for the first place where the
result is mentioned. See also Sec. I D within the Supple-
mental Material [47] for the proof. The concept of #-design
is discussed in more detail in Sec. II A in the Supplemental
Material [47].

Rigorous result 2: our algorithm achieves XEB value
279@ in linear time of system size and hence refutes
the theoretical guarantee of XEB-based quantum compu-
tational advantage, i.e., XQUATH, in sublinear depth. The
assumption is that the single-qubit gate ensemble is uni-
tary 2-design. No assumption on two-qubit gate and circuit
architecture.

See Sec. III D of the main text for the first place where
the result is mentioned. See also Sec. VI in the Supplemen-
tal Material [47] for the proof.

Claim: for 1D circuits with Haar random two-qubit
gate, the XEB of our algorithm is greater than noisy circuit
with arbitrarily small constant noise when d = 2 (logn).
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This claim is made by combination of numerical result
and analytical formula, and further supported from statis-
tical physics argument. See discussions in Secs. I B, 111 C,
IV D, Result 1, and Fig. 6 of the main text and Sec. III
within the Supplemental Material [47].

Numerical result 1: our algorithm outperforms the
experiments of Google and USTC for conventional ran-
dom unitary circuits, that is, the single-qubit gate is Haar
random.

See Secs. IB, IIIC, Result 2, Fig. 7, and Table I of
the main text. See also Sec. V within the Supplemental
Material [47] for more detail of our algorithm.

Numerical result 2: our algorithms achieve XEB value
within around one order of magnitude of the experiments
of Google and USTC for a slight modification of their
gatesets.

See Secs. 1B, IIIC, Result 3, Fig. 7, and Table I of
the main text. See also Sec. V within the Supplemental
Material [47] for more detail of our algorithm.

Numerical result 3: our algorithm exhibits favorable
scaling behavior in increasing system sizes (while fixing
the strength of noise and circuit depth) for both conven-
tional gatesets and Google’s gatesets.

See Secs. I B, IV C, and Fig. 2 of the main text and also
Sec. II F within the Supplemental Material [47].

[1] S. Arora and B. Barak, Computational Complexity:
a Modern Approach (Cambridge University Press,
Cambridge, United Kingdom, 2009).

[2] S. Aaronson and A. Arkhipov, in Proceedings of the
Sforty-third annual ACM symposium on Theory of com-
puting (Association for Computing Machinery, New York
NY USA, 2011), p. 333.

[3] P. W. Shor, in Proceedings 35th annual symposium on
foundations of computer science (leee, Santa Fe, NM,
USA, 1994), p. 124.

[4] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P.
Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C.
Monroe, Observation of a many-body dynamical phase
transition with a 53-qubit quantum simulator, Nature 551,
601 (2017).

[5] F. Arute et al., Quantum supremacy using a programmable
superconducting processor, Nature 574, 505 (2019).

[6] Y. Wu et al.,, Strong quantum computational advan-
tage using a superconducting quantum processor. arXiv
preprint arXiv:2106.14734 (2021).

[71 Q. Zhu et al., Quantum computational advantage via 60-
qubit 24-cycle random circuit sampling. arXiv preprint
arXiv:2109.03494 (2021).

[8] S. Ebadi et al., Quantum phases of matter on a 256-
atom programmable quantum simulator. arXiv preprint
arXiv:2012.12281 (2020).

[9] P. Scholl, Michael Schuler, Hannah J. Williams, Alexan-
der A. Eberharter, Daniel Barredo, Kai-Niklas Schymik,
Vincent Lienhard, Louis-Paul Henry, Thomas C. Lang,
Thierry Lahaye, Andreas M. Liuchli, and Antoine

Browaeys, Quantum simulation of 2D antiferromagnets
with hundreds of Rydberg atoms, Nature 595, 233 (2021),
2012.12268

[10] J. Preskill, Quantum computing and the entanglement
frontier. arXiv preprint arXiv:1203.5813 (2012).

[11] A. W. Harrow and A. Montanaro, Quantum computational
supremacy, Nature 549, 203 (2017).

[12] A.P.Lund, M. J. Bremner, and T. C. Ralph, Quantum sam-
pling problems, bosonsampling and quantum supremacy,
Npj Quantum Inf. 3, 1 (2017).

[13] H.-S. Zhong et al., Quantum computational advantage
using photons, Science 370, 1460 (2020).

[14] H.-S. Zhong et al., Phase-programmable Gaussian boson
sampling using stimulated squeezed light, Phys. Rev. Lett.
127, 180502 (2021).

[15] M. J. Bremner, R. Jozsa, and D. J. Shepherd, Classical
simulation of commuting quantum computations implies
collapse of the polynomial hierarchy, Proc. R. Soc. A:
Mathematical, Physical and Engineering Sciences 467,
459 (2011).

[16] M. J. Bremner, A. Montanaro, and D. J. Shepherd,
Average-case complexity versus approximate simulation
of commuting quantum computations, Phys. Rev. Lett.
117, 080501 (2016).

[17] E. Farhi and A. W. Harrow, Quantum supremacy through
the quantum approximate optimization algorithm. arXiv
preprint arXiv:1602.07674 (2016).

[18] S. Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan
Babbush, Nan Ding, Zhang Jiang, Michael J. Bremner,
John M. Martinis, and Hartmut Neven, Characterizing
quantum supremacy in near-term devices, Nat. Phys. 14,
595 (2018).

[19] M. J. Bremner, A. Montanaro, and D. J. Shepherd, Achiev-
ing quantum supremacy with sparse and noisy commuting
quantum computations, Quantum 1, 8 (2017).

[20] X. Gao, S.-T. Wang, and L.-M. Duan, Quantum
supremacy for simulating a translation-invariant Ising spin
model, Phys. Rev. Lett. 118, 040502 (2017).

[21] J. Bermejo-Vega, D. Hangleiter, M. Schwarz, R.
Raussendorf, and J. Eisert, Architectures for quantum
simulation showing quantum supremacy. arXiv preprint
arXiv:1703.00466 (2017).

[22] B. M. Terhal and D. P. DiVincenzo, Adaptive quantum
computation, constant depth quantum circuits and arthur-
merlin games. arXiv preprint arXiv:quant-ph/0205133
(2002).

[23] S. Aaronson and L. Chen, Complexity-theoretic founda-
tions of quantum supremacy experiments. arXiv preprint
arXiv:1612.05903 (2016).

[24] A.Bouland, B. Fefferman, C. Nirkhe, and U. Vazirani, On
the complexity and verification of quantum random circuit
sampling, Nat. Phys. 15, 159 (2019).

[25] R. Movassagh, Efficient unitary paths and quantum
computational supremacy: A proof of average-case
hardness of random circuit sampling. arXiv preprint
arXiv:1810.04681 (2018).

[26] A. Bouland, B. Fefferman, Z. Landau, and Y. Liu, Noise
and the frontier of quantum supremacy. arXiv preprint
arXiv:2102.01738 (2021).

[27] Y. Kondo, R. Mori, and R. Movassagh, Fine-grained
analysis and improved robustness of quantum supremacy

010334-25


https://doi.org/10.1145/1993636.1993682
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/s41586-019-1666-5
https://arxiv.org/abs/2106.14734
https://arxiv.org/abs/2109.03494
https://arxiv.org/abs/2012.12281
https://doi.org/10.1038/s41586-021-03585-1
https://arxiv.org/abs/1203.5813
https://doi.org/10.1038/nature23458
https://doi.org/10.1038/s41534-017-0018-2
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1103/PhysRevLett.127.180502
https://doi.org/10.1098/rspa.2010.0301
https://doi.org/10.1103/PhysRevLett.117.080501
https://arxiv.org/abs/1602.07674
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.22331/q-2017-04-25-8
https://doi.org/10.1103/PhysRevLett.118.040502
https://arxiv.org/abs/1703.00466
https://arxiv.org/abs/quant-ph/0205133
https://arxiv.org/abs/1612.05903
https://doi.org/10.1038/s41567-018-0318-2
https://arxiv.org/abs/1810.04681
https://arxiv.org/abs/2102.01738

XUN GAO et al.

PRX QUANTUM 5, 010334 (2024)

for random circuit
arXiv:2102.01960 (2021).

[28] Since directly calculating the XEB value of 53-qubit
Sycamore at depth 20 is computationally intractable,
Google extrapolated their smaller-system results to esti-
mate the final XEB value.

[29] Y. Rinott, T. Shoham, and G. Kalai, Statistical aspects
of the quantum supremacy demonstration. arXiv preprint
arXiv:2008.05177 (2020).

[30] A. Barenco, André Berthiaume, David Deutsch, Artur
Ekert, Richard Jozsa, and Chiara Macchiavello, Stabiliza-
tion of quantum computations by symmetrization, STAM
J. Comput. 26, 1541 (1997).

[31] H. Buhrman, Richard Cleve, John Watrous, and Ronald
de Wolf, Quantum fingerprinting, Phys. Rev. Lett. 87,
167902 (2001).

[32] H. Huang, Richard Kueng, and John Preskill, Predict-
ing many properties of a quantum system from very few
measurements, Nat. Phys. 16, 1050 (2020).

[33] The fidelity is closely related to the Bhattacharyya coeffi-
cient of two classical probability distributions.

[34] C. Neill et al., A blueprint for demonstrating quantum
supremacy with superconducting qubits, Science 360, 195
(2018).

[35] J. Choi et al., Emergent randomness and benchmark-
ing from many-body quantum chaos. arXiv preprint
arXiv:2103.03535 (2021).

[36] Y. Liu, M. Otten, R. Bassirianjahromi, L. Jiang, and
B. Fefferman, Benchmarking near-term quantum com-
puters via random circuit sampling. arXiv preprint
arXiv:2105.05232 (2021).

[37] S. Aaronson and S. Gunn, On the classical hardness
of spoofing linear cross-entropy benchmarking. arXiv
preprint arXiv:1910.12085 (2019).

[38] J. Gray and S. Kourtis, Hyper-optimized tensor network
contraction. arXiv preprint arXiv:2002.01935 (2020).

[39] C. Huang et al., Classical simulation of quantum
supremacy circuits. arXiv preprint arXiv:2005.06787
(2020).

[40] F. Pan and P. Zhang, Simulating the sycamore quan-
tum supremacy circuits. arXiv preprint arXiv:2103.03074
(2021).

[41] H. Fu et al., Closing the “quantum supremacy” gap:
Achieving real-time simulation of a random quantum cir-
cuit using a new Sunway supercomputer. arXiv preprint
arXiv:2110.14502 (2021).

[42] X. Liu et al., Redefining the quantum supremacy base-
line with a new generation Sunway supercomputer.
arXiv:2111.01066 (2021).

[43] F. Pan, K. Chen, and P. Zhang, Solving the sampling
problem of the Sycamore quantum supremacy circuits.
arXiv:2111.03011 (2021).

[44] The blog of Scott Aaronson. https://www.scottaaronson.
com/blog/?p=5371 (2021).

[45] C. L. Canonne, A Survey on Distribution Testing:
Your Data is Big. But is it Blue? No. 9 in Grad-
uate Surveys (Theory of Computing Library, 2020).
http://www.theoryofcomputing.org/library.html.

[46] 1. L. Markov, A. Fatima, S. V. Isakov, and S. Boixo, Quan-
tum supremacy is both closer and farther than it appears.
arXiv preprint arXiv:1807.10749 (2018).

sampling. arXiv  preprint

[47] See Supplemental Material at http://link.aps.org/supple
mental/10.1103/PRXQuantum.5.010334, which also
includes Refs. [5,37,53,64,65,70,72,90—103].

[48] The correction is roughly 1 4+ Nef (c) (see the Suppleme-
ntal Material [47]). By assuming /' (¢) = 1, Ne = 0.25%.

[49] Mathematically, we say p(x) and g(x) are uncorrelated if
P2V = (p(0)/2V)(Eq()/2Y).

[50] X. Mi ef al., Information scrambling in quantum circuits,
Science 374, 1479 (2021).

[51] P. Hayden, Sepehr Nezami, Xiao-Liang Qi, Nathaniel
Thomas, Michael Walter, and Zhao Yang, Holographic
duality from random tensor networks, J. High Energy
Phys. 2016, 9 (2016).

[52] Y.-Z.You, Z. Yang, and X.-L. Qi, Machine learning spatial
geometry from entanglement features, Phys. Rev. B 97,
045153 (2018).

[53] N. Hunter-Jones, Unitary designs from statistical mechan-
ics in random quantum circuits. arXiv preprint arXiv:1905.
12053 (2019).

[54] T. Zhou and A. Nahum, Emergent statistical mechanics of
entanglement in random unitary circuits, Phys. Rev. B 99,
174205 (2019).

[55] C.-M. Jian, Y.-Z. You, R. Vasseur, and A. W. Ludwig,
Measurement-induced criticality in random quantum cir-
cuits, Phys. Rev. B 101, 104302 (2020).

[56] Y. Bao, S. Choi, and E. Altman, Theory of the phase tran-
sition in random unitary circuits with measurements, Phys.
Rev. B 101, 104301 (2020).

[571 J. Napp, R. L. La Placa, A. M. Dalzell, F. G. Bran-
dao, and A. W. Harrow, Efficient classical simulation
of random shallow 2D quantum circuits. arXiv preprint
arXiv:2001.00021 (2019).

[58] It is known that maximizing the (standard, nonlinear)
cross-entropy is equivalent to minimizing the Kullback-
Leibler divergence, which is a commonly used quantity
for a statistical test of the closeness between the data and
target distributions.

[59] A. W. Harrow and R. A. Low, Random quantum circuits
are approximate 2-designs, Commun. Math. Phys. 291,
257 (2009).

[60] Inrealistic settings, one needs to distinguish the error rates
associated with quantum gates and readout processes.

[61] In order to implement the basic algorithm, we use a
Julia package for quantum circuit simulation, cuyao:
https://yaoquantum.org.

[62] In order to implement the self-averaging algorithm, we
use another julia package for tensor network contraction,
omeinsum https://under-peter.github.io/OMEinsum.jl/dev/.

[63] G. Kalachev, P. Panteleev, and M.-H. Yung, Recursive
multi-tensor contraction for XEB verification of quantum
circuits. arXiv preprint arXiv:2108.05665 (2021).

[64] Y. Zhou, E. M. Stoudenmire, and X. Waintal, What limits
the simulation of quantum computers?, Phys. Rev. X 10,
041038 (2020).

[65] A. Harrow and S. Mehraban, Approximate unitary
t-designs by short random quantum circuits using
nearest-neighbor and long-range gates. arXiv preprint
arXiv:1809.06957 (2018).

[66] X.Gao and L. Duan, Efficient classical simulation of noisy
quantum computation. arXiv preprint arXiv:1810.03176
(2018).

010334-26


https://arxiv.org/abs/2102.01960
https://arxiv.org/abs/2008.05177
https://doi.org/10.1137/S0097539796302452
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1126/science.aao4309
https://arxiv.org/abs/2103.03535
https://arxiv.org/abs/2105.05232
https://arxiv.org/abs/1910.12085
https://arxiv.org/abs/2002.01935
https://arxiv.org/abs/2005.06787
https://arxiv.org/abs/2103.03074
https://arxiv.org/abs/2110.14502
https://arxiv.org/abs/2111.01066
https://arxiv.org/abs/2111.03011
https://www.scottaaronson.com/blog/?p=5371
http://www.theoryofcomputing.org/library.html
https://arxiv.org/abs/1807.10749
http://link.aps.org/supplemental/10.1103/PRXQuantum.5.010334
https://doi.org/10.1126/science.abg5029
https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1103/PhysRevB.97.045153
https://arxiv.org/abs/1905.12053
https://doi.org/10.1103/PhysRevB.99.174205
https://doi.org/10.1103/PhysRevB.101.104302
https://doi.org/10.1103/PhysRevB.101.104301
https://arxiv.org/abs/2001.00021
https://doi.org/10.1007/s00220-009-0873-6
https://yaoquantum.org
https://under-peter.github.io/OMEinsum.jl/dev/
https://arxiv.org/abs/2108.05665
https://doi.org/10.1103/PhysRevX.10.041038
https://arxiv.org/abs/1809.06957
https://arxiv.org/abs/1810.03176

LIMITATIONS OF LINEAR CROSS-ENTROPY...

PRX QUANTUM 5, 010334 (2024)

[67] B. Barak, C.-N. Chou, and X. Gao, in 12th Innovations in
Theoretical Computer Science Conference (ITCS 2021),
(2021), p. 30:1, 2005.02421.

[68] K. Huang, Statistical Mechanics (John Wiley & Sons.,
New York, 10 1963).

[69] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Exact
and approximate unitary 2-designs and their application
to fidelity estimation, Phys. Rev. A 80, 012304 (2009).

[70] M.-D. Choi, Completely positive linear maps on complex
matrices, Linear Algebra Appl. 10, 285 (1975).

[71] In this work, we focus on the experimentally relevant
regime, where the strength of noise and the depth of the
circuit are not too large, such that the fidelity remains suffi-
ciently greater than 2V, When the fidelity is close to 27V,
the discussion in this paragraph no longer holds, as the
contribution from subdominant terms in Eq. (26) becomes
significant.

[72] A. M. Dalzell, N. Hunter-Jones, and F. G. Brandao, Ran-
dom quantum circuits anti-concentrate in log depth. arXiv
preprint arXiv:2011.12277 (2020).

[73] D. Hangleiter, M. Kliesch, J. Eisert, and C. Gogolin, Sam-
ple complexity of device-independently certified “quan-
tum supremacy”, Phys. Rev. Lett. 122, 210502 (2019).

[74] J. Emerson, R. Alicki, and K. Zyczkowski, Scalable noise
estimation with random unitary operators, J. Opt. B:
Quantum Semiclassical Opt. 7, S347 (2005).

[75] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B.
Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and
D. J. Wineland, Randomized benchmarking of quantum
gates, Phys. Rev. A 77, 012307 (2008).

[76] T.J. Proctor, Arnaud Carignan-Dugas, Kenneth Rudinger,
Erik Nielsen, Robin Blume-Kohout, and Kevin Young,
Direct randomized benchmarking for multiqubit devices,
Phys. Rev. Lett. 123, 030503 (2019).

[77] S.Kimmel, M. P. da Silva, C. A. Ryan, B. R. Johnson, and
T. Ohki, Robust extraction of tomographic information
via randomized benchmarking, Phys. Rev. X 4, 011050
(2014).

[78] J. Wallman, C. Granade, R. Harper, and S. T. Flam-
mia, Estimating the coherence of noise, New J. Phys. 17,
113020 (2015).

[79] J. Helsen, X. Xue, L. M. Vandersypen, and S. Wehner,
A new class of efficient randomized benchmarking proto-
cols, Npj Quantum Inf. 5, 1 (2019).

[80] A. Erhard, Joel J. Wallman, Lukas Postler, Michael
Meth, Roman Stricker, Esteban A. Martinez, Philipp
Schindler, Thomas Monz, Joseph Emerson, and Rainer
Blatt, Characterizing large-scale quantum computers via
cycle benchmarking, Nat. Commun. 10, 1 (2019).

[81] R. Harper, S. T. Flammia, and J. J. Wallman, Efficient
learning of quantum noise, Nat. Phys. 16, 1184 (2020).

[82] D. Koller and N. Friedman, Probabilistic Graphical Mod-
els: Principles and Techniques (MIT press, Cambridge,
MA, USA, 2009).

[83] D. Niedermayer, in Innovations in Bayesian networks:
Theory and applications (Springer, Berlin, Heidelberg,
2008), p. 117.

[84] A. Deshpande et al., Tight bounds on the convergence
of noisy random circuits to uniform. arXiv preprint
arXiv:2112.00716 (2021).

[85] J. Eisert, Dominik Hangleiter, Nathan Walk, Ingo Roth,
Damian Markham, Rhea Parekh, Ulysse Chabaud, and
Elham Kashefi, Quantum certification and benchmarking,
Nat. Rev. Phys. 2, 382 (2020).

[86] G.D.Kahanamoku-Meyer, S. Choi, U. V. Vazirani, and N.
Y. Yao, Classically-verifiable quantum advantage from a
computational Bell test. arXiv preprint arXiv:2104.00687
(2021).

[87] Z.Brakerski, V. Koppula, U. Vazirani, and T. Vidick, Sim-
pler proofs of quantumness. arXiv preprint arXiv:2005.
04826 (2020).

[88] Z. Liu and A. Gheorghiu, Depth-efficient proofs of quan-
tumness. arXiv preprint arXiv:2107.02163 (2021).

[89] S. Hirahara and F. L. Gall, Test of quantumness
with small-depth quantum circuits. arXiv preprint
arXiv:2105.05500 (2021).

[90] Jacob C. Bridgeman and Christopher T. Chubb, Hand-
waving and interpretive dance: An introductory course
on tensor networks, J. Phys. A: Math. Theor. 50, 223001
(2017).

[91] John Watrous, The Theory of Quantum Information (Cam-
bridge University Press, Cambridge, United Kingdom,
2018).

[92] Don Weingarten, Asymptotic behavior of group integrals
in the limit of infinite rank, J. Math. Phys. 19, 999 (1978).

[93] Paolo Zanardi, Christof Zalka, and Lara Faoro, Entangling
power of quantum evolutions, Phys. Rev. A 62, 030301
(2000).

[94] Farrokh Vatan and Colin Williams, Optimal quantum
circuits for general two-qubit gates, Phys. Rev. A
(2004).

[95] Steven R. White, Density matrix formulation for quantum
renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).

[96] Guifré Vidal, Efficient classical simulation of slightly
entangled quantum computations, Phys. Rev. Lett. 91,
142902 (2003).

[97] Frank Verstraete, Valentin Murg, and J. Ignacio Cirac,
Matrix product states, projected entangled pair states, and
variational renormalization group methods for quantum
spin systems, Adv. Phys. 57, 143 (2008).

[98] Sebastian Paeckel, Thomas Kohler, Andreas Swoboda,
Salvatore R. Manmana, Ulrich Schollwock, and Claudius
Hubig, Time-evolution methods for matrix-product states,
Ann. Phys. 411, 167998 (2019).

[99] Daniel Greenbaum, Introduction to quantum gate set
tomography. arXiv preprint arXiv:1509.02921 (2015).

[100] Benoit Collins, Moments and cumulants of polynomial
random variables on unitarygroups, the Itzykson-Zuber
integral, and free probability, Int. Math. Res. Not. 2003,
953 (2003).

[101] Benoit Collins and Piotr Sniady, Integration with respect
to the Haar measure on unitary, orthogonal and symplectic
group, Commun. Math. Phys. 264, 773 (2006).

[102] Rodney J. Baxter, Exactly Solved Models in Sta-
tistical Mechanics (Elsevier, Amsterdam, Netherlands,
2016).

[103] Fernando GSL Brandao, Aram W. Harrow, and Michat
Horodecki, Local random quantum circuits are approxi-
mate polynomial-designs, Commun. Math. Phys. 346,397
(2016).

010334-27


https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1016/0024-3795(75)90075-0
https://arxiv.org/abs/2011.12277
https://doi.org/10.1103/PhysRevLett.122.210502
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1103/PhysRevA.77.012307
https://doi.org/10.1103/PhysRevLett.123.030503
https://doi.org/10.1103/PhysRevX.4.011050
https://doi.org/10.1088/1367-2630/17/11/113020
https://doi.org/10.1038/s41534-019-0182-7
https://doi.org/10.1038/s41467-019-13068-7
https://doi.org/10.1038/s41567-020-0992-8
https://arxiv.org/abs/2112.00716
https://doi.org/10.1038/s42254-020-0186-4
https://arxiv.org/abs/2104.00687
https://arxiv.org/abs/2005.04826
https://arxiv.org/abs/2107.02163
https://arxiv.org/abs/2105.05500
https://doi.org/10.1088/1751-8121/aa6dc3
https://doi.org/10.1063/1.523807
https://doi.org/10.1103/PhysRevA.62.030301
https://doi.org/10.1103/PhysRevA.69.032315
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1080/14789940801912366
https://arxiv.org/abs/1509.02921
https://doi.org/10.1007/s00220-006-1554-3
https://doi.org/10.1007/s00220-016-2706-8

	I.. INTRODUCTION
	A.. Vulnerabilities of the XEB
	1.. Discrepancy of XEB and fidelity
	2.. Scaling of XEB and fidelity

	B.. Main results
	1.. Classical algorithm spoofing XEB
	2.. Understanding XEB and circuit fidelity via mapping to a statistical mechanics model

	C.. Organization of the paper

	II.. LINEAR CROSS-ENTROPY BENCHMARK
	A.. Linear cross-entropy
	1.. Empirical versus expected XEB value
	2.. Standard deviation
	3.. Classical and noisy quantum simulations
	4.. Quantum advantage via XEB
	5.. Computational hardness of achieving high XEB values


	III.. SPOOFING ALGORITHMS
	A.. Basic algorithm
	B.. Improving the algorithm
	1.. Top-k postprocessing method
	2.. Self-averaging algorithm
	3.. Combining algorithmic improvements

	C.. Performance and implications
	1.. Implications for 1D quantum circuits
	2.. Implications for quantum circuits in 2D experimentally relevant architectures

	D.. Comparison to prior work

	IV.. UNDERSTANDING XEB AND FIDELITY VIA CLASSICAL STATISTICAL MECHANICS
	A.. Overall methodology
	B.. The emergent diffusion-reaction model
	1.. Bulk of the ideal circuit
	2.. Boundary conditions at the initial state and at the final time
	3.. XEB and fidelity as statistics of a particle distribution
	4.. Effects of noise or omitted gates

	C.. Dynamics of the XEB and fidelity
	1.. Ideal circuit
	2.. Noisy circuit
	3.. Spoofing algorithm
	4.. Numerical demonstration

	D.. Ising model for 1D Haar ensembles
	1.. A remark


	V.. CONCLUSION AND OUTLOOK
	A.. Overcoming the vulnerabilities of linear XEB
	B.. Outlook

	. ACKNOWLEDGMENTS
	. APPENDIX A: SUMMARY OF OUR RESULTS
	. REFERENCES

