

Energy retrofits for smart and connected communities: Scopes and technologies

Lei Shu ^a, Yunjeong Mo ^b, Dong Zhao ^{c,*}

^a School of Planning, Design, and Construction, Michigan State University, 552 W Circle Dr, East Lansing, MI, 48824, USA

^b Department of Civil, Construction, and Environmental Engineering, Iowa State University, 813 Bissell Rd, Ames, IA, 50011, USA

^c School of Planning, Design, and Construction, and Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA

ARTICLE INFO

Keywords:

Building retrofit
Smart and connected communities
AI
Smart building
Sustainable development

ABSTRACT

The trajectory of sustainable urban development evolves with the integration of intelligent technologies, extending beyond individual buildings to encompass entire communities interwoven with smart systems. Energy retrofits at smart and connected communities are crucial for sustainable urban renewal, yet they present distinct challenges from individual home retrofitting. However, a comprehensive understanding of the emerging research scopes and technologies in large-scale energy retrofits is lacking. To address this problem, this research systematically reviews journal publications in this field from 2000 to 2023. Results disclose four research scopes: building construction, mechanical systems and equipment, electrical systems and computing, and human-centered design and connectivity, suggesting a new landscape for energy retrofit research, which largely extends beyond the traditional field of the built environment (e.g., heating, cooling, lighting, and structure) to advanced computing, renewable energy, and human-centered connectivity. Results also delineate a new paradigm of retrofit technologies with three focused areas: within-building optimizations (heating and air conditioning, envelope, engineering design, and smart technology), between-building connections (power grid, district energy, and integrated energy system), and whole-community integrations. They represent the nodes, ties, and interplay within community networks. Eight retrofit focuses and their specific technologies and computational techniques are summarized and examined. Notably, the approach of simulation and computational modeling is prevalent, with evolutionary algorithms featured in computational techniques. The review suggests five gaps and proposes a roadmap to advance future research in energy retrofits, specifically emphasizing the integration of intelligent technologies and multidisciplinary collaborations.

1. Introduction

Large-scale building energy retrofits play a crucial role in promoting sustainable urban renewal. The retrofit implementations yield substantial energy savings to existing buildings where people spend 90 % of their lifetime. Given the fact that buildings consume 40 % of the global energy [1], large-scale building energy retrofits demonstrate the potential to reduce 60–80 % of the consumption and 30 % of CO₂ emissions [2]. This is important for developed regions, for example, North America where over 44 % of existing buildings would be renovated or replaced [3]. With the projected global urban population reaching 6.7 billion by 2050, the associated escalation in energy demand, estimated between 45 and 59 quintillion joules in the coming decades, underscores the urgency of large-scale energy retrofits. Notably, residential building retrofits

demonstrate greater potential for energy savings [4]. The implementation of these retrofits at the community level is imperative to curbing energy consumption and enhancing the quality of life for billions of urban residents [5].

Large-scale building energy retrofits also generate societal impacts through two avenues. First, the adoption of green building technologies noteworthy reduces energy expenditure and makes housing more affordable, especially for the low-income. For example, 138 million US households allocate 8–14 % of income on energy costs [6]. Second, the economic ramifications of large-scale retrofits are evident in cities grappling with economic decline and widespread abandonment of residential, commercial, and industrial structures. For example, the city of Detroit exemplifies this issue with thousands of abandoned houses, causing social degradation and posing threats to public health and community well-being.

* Corresponding author. School of Planning, Design, and Construction, Michigan State University, 552 W Circle Dr, East Lansing, MI, 48824, USA.
E-mail address: dz@msu.edu (D. Zhao).

Abbreviations

ABM	Agent-based modeling
ANN	Artificial neural network
EA	Evolutionary algorithm
EV	Electric vehicle
GA	Genetic algorithm
GIS	Geographic information system
HVAC	Heating, ventilation, and air conditioning
IOT	Internet of things
MPC	Model predictive control
NSGA-II	Non-dominated sorting genetic algorithm II
PCM	Phase change material
PSO	Particle swarm optimization
PV	Photovoltaics
RL	Reinforcement learning
S&CC	Smart and connected communities

The shift of cities towards a high-energy-efficiency and low-carbon scenario, as exemplified in the green building movement [7], holds the potential to advance large-scale building energy retrofits. However, challenges persist in the domain of scopes and technologies for energy retrofits in interconnected communities. These challenges encompass the intricate interplay between the effects of building technologies and occupant behaviors [8], the identification of factors for optimal building retrofit solutions [9], and the interactions among buildings [10]. Nevertheless, the emergence of intelligent technologies offers a technical solution to address this complexity, providing the possibility to realize the optimal energy retrofits in the future communities – the smart and connected communities (S&CC). An S&CC is delineated as a community seamlessly integrating intelligent technologies with natural and built environments. The expansion of S&CC is apparent and its importance is emphasized as more US communities enter a transformative era marked by the integration of residents and their surroundings through dynamic intelligent technologies.

Overall, emerging S&CC demonstrate significant promise for extensive energy retrofits and increased energy savings in the future. However, compared to retrofitting individual buildings, the community-level retrofitting presents more challenges and uncertainties that remain unexplored in the current literature. Krarti [11] reviewed the building codes and evaluated the economic and environmental benefits on the retrofitted buildings after adopting the codes. Pérez-Lombard et al. [12] reviewed the information of building systems that required to improve energy retrofit. Shu and Zhao [13] reviewed decision making approaches to optimal retrofits for single buildings. Li and Wen [14] reviewed the technologies of mechanical systems for building control and operations. Yet, these reviews only concentrate on specific aspects of retrofit technologies, mostly at the individual building level, overlooking connections between buildings and neglecting the rise of intelligent applications in buildings. This research distinguishes itself from prior reviews by aiming to delineate the future landscape of energy retrofits in S&CC, particularly outlining new research scopes and retrofit technologies. Unlike reviews addressing only fragments of the puzzle, this study provides a comprehensive overview essential for architects, engineers, and builders to comprehend the broader picture of future community energy retrofits. By doing so, it sets the stage for researchers in the domain of buildings (e.g., architecture/civil engineering), anticipating the integration of more smart applications and advanced computing into this traditional field, spanning from single buildings to the broader context of smart and connected communities.

2. Methods

Fig. 1 illustrates the methodological workflow for this research [15]. The procedure started with clusters of synonyms for keywords to identify topics of smart energy retrofit technologies at the community level. Three clusters of synonymous keywords and one additional single word were used in the search: (1) keywords of “retrofit”, “renovate”, “refurbish”, “transition”, “shift”, and “optimize” were used as alternatives to address the energy retrofit endeavor; (2) keywords of “community”, “neighborhood”, “district”, “urban”, “regional”, and “city” were used to define the scope of energy retrofit efforts at a large scale; (3) keywords of “smart”, “AI”, “intelligent”, and “artificial intelligence” were used to target the most advanced intelligent solutions; and (4) the word “energy” was used to focus energy performance of the technologies. Then, a systematic search was performed on major literature databases such as Web of Science and Scopus, with a focus on peer-reviewed journal articles published between 2000 and 2023. A total of 1149 articles were identified in the Web of Science database and 1081 articles yielded in Scopus. The research removed 668 duplicates, 892 noneligible articles, three irretrievable articles, 75 nontechnical reports, 131 macro-policy analyses, and 260 infrastructure studies. Overall, the comprehensive review includes 201 peer-reviewed journal articles distributed from 81 journals.

The analysis approach includes bibliometric reviews and descriptive statistical analyses on journal outlets, publication date, author affiliation, geographical distribution, expertise area, and key technological terms. Detailed technological specifications and applications evaluations are summarized. Technological and methodological gaps are discussed, and future research roadmaps are suggested.

3. Bibliometric results

Fig. 2 shows the number of per-year publications from January 2011 to October 2023. Although the start year in this literature search is 2000, publications emerge in year 2011. The number of articles published per year continuously increases after 2014, suggesting more studies involved in the concerted efforts as inspired by impending global initiatives such as the Paris Climate Agreement in 2015 and the UN's Sustainable Development Goals (SDGs) in 2016. Additionally, the drop of 2023 in the chart does not indicate a decrease of publications but reflects on the data collection of this study ended in October 2023.

Fig. 3 displays the affiliation distribution of the authors who are from 53 countries or regions. Especially, the largest portions include China (11.4 %), Italy (10.8 %), and the US (9.2 %), followed by India (4.9 %), the UK (4.6 %), Pakistan and Spain (equally 3.3 %), and Canada (2.9 %). The eight countries totally own half of the contributors around the world. These countries often have a large number of historical buildings or large populations, which demands a greater focus on large-scale energy retrofit. Geographically, most of the studies come from Europe (22 countries, 43.8 %) and Asia (16 countries, 31.7 %), followed by America (6 countries, 16.0 %), Africa (7 countries, 5.6 %), and Oceania (2 countries, 2.6 %).

Fig. 4 shows six expertise areas among the authors, indicating a multidisciplinary nature of research in large-scale energy retrofits. The top expertise areas, listed in a descending order of their representation, are as follows: electrical engineering and computer science (26.8 %), energy and environmental engineering (22.6 %), architecture, construction, and civil engineering (17.6 %), industry and industrial engineering (13.1 %), mechanical engineering (10.5 %), and sociology and economics (9.4 %). It is noteworthy that the collective expertise of architectural, civil, mechanical, and construction engineering accounts for only 28.1 % of the overall expertise area, even though these areas represent the traditional disciplines pertinent to building energy retrofit.

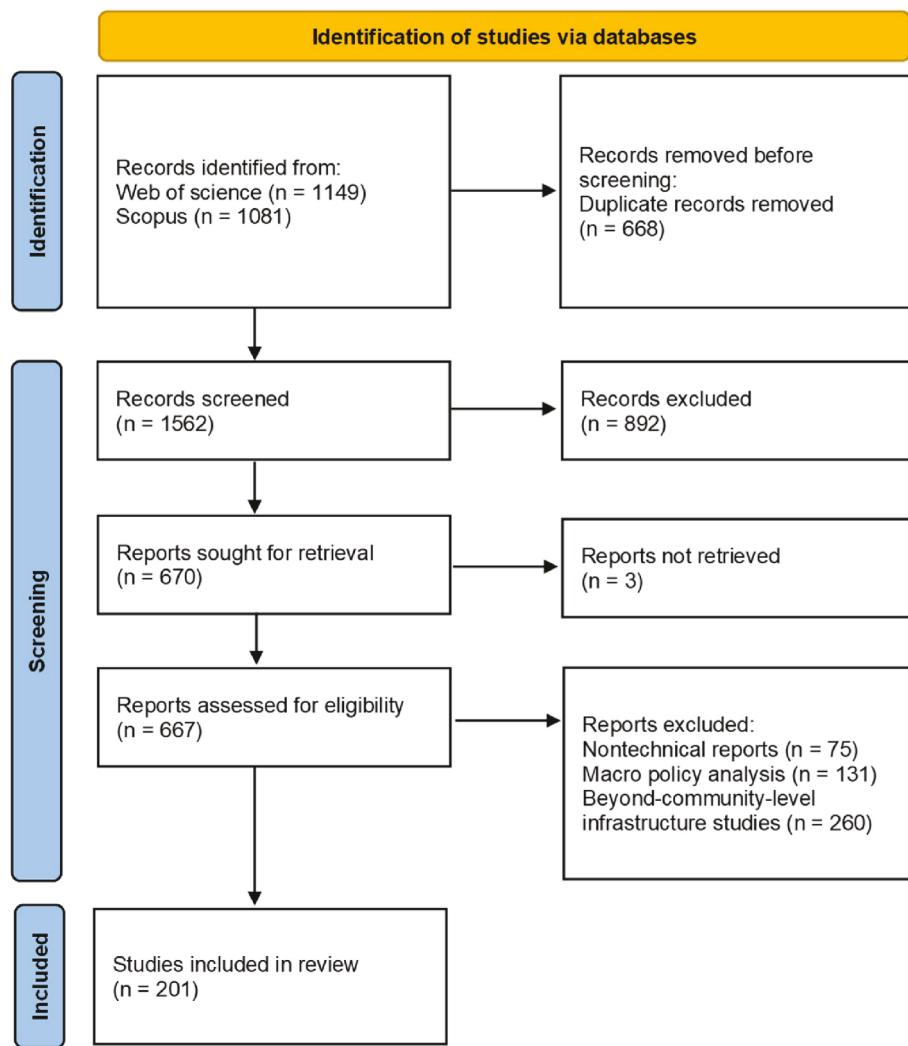


Fig. 1. Flow diagram of literature screening process.

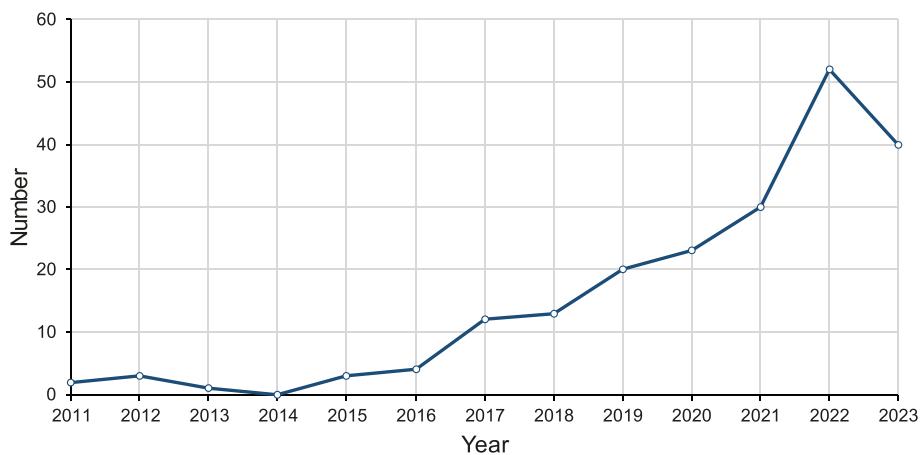


Fig. 2. Number of publications by year.

4. Results: A landscape of research scopes

Fig. 5 visually exhibits four research scopes and their interactions through terms mining network analysis, unveiling an extended landscape beyond the traditional built environments. In the network diagram, the size of circles represents the occurrence frequency of each

term; the distance between circles represents the co-occurrence probability; the thickness of lines represents the connection strength between terms; and the color denotes term clusters that share a relevant topic. Overall, the results confirm an existing scope (i.e., building construction) and identify three new scopes (i.e., “electrical systems and computing,” “mechanical systems and equipment,” and “human-

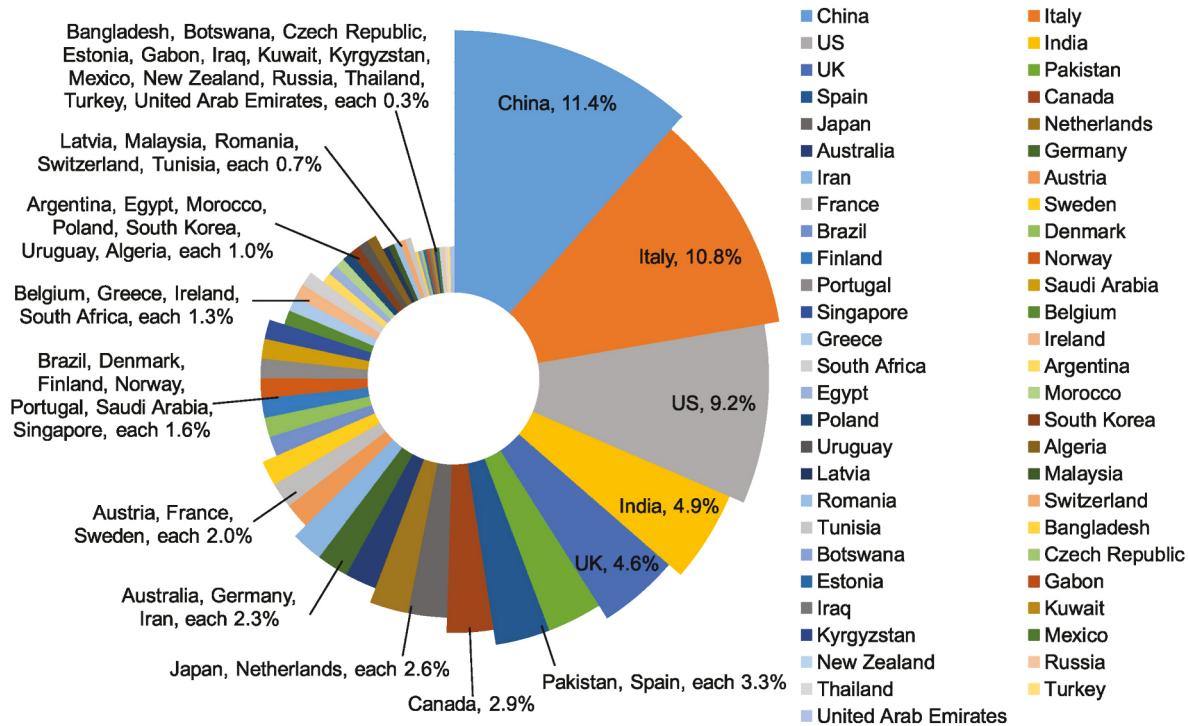


Fig. 3. Distribution of research by the country of affiliation (Round-off error may occur).

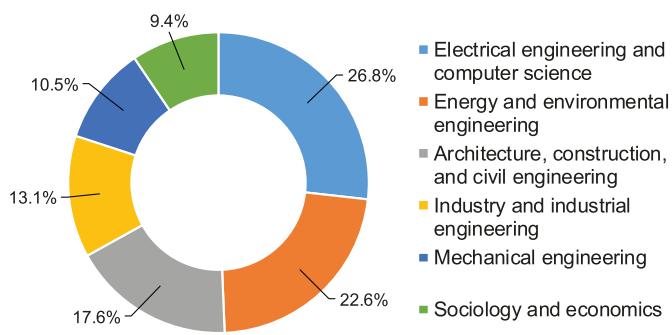


Fig. 4. Distribution of research by author expertise area.

centered design and connectivity").

The first research scope delineates the traditional domain of building construction for energy retrofit research (green). At the core of this scope lies the term “building”, suggesting the enduring significance of buildings in energy retrofit research. Other key terms in this cluster include “energy efficiency”, “energy saving”, “heating”, “control strategy”, “energy storage”, “temperature”, “parameter”, “window”, “climate”, “occupant”, “thermal comfort”, “MPC” (model predictive control), and “PCM” (phase change material). These terms emphasize several critical research subareas closely linked to the field of building construction. They include: the exploration of energy storage solutions (e.g., leveraging PCM for building thermal storage, and employing battery technologies to harness surplus solar energy), the optimization of building energy control strategy (e.g., MPC) to heighten energy efficiency, the optimization of building parameters and heating temperature control to enhance energy savings and occupant comfort, and the evaluation of the smart building components (e.g., window) in different climates. Noteworthily, strong ties in this research scope include “building-comfort” and “building-energy efficiency”, indicating that the concentration of this research scope remains primarily focused on enhancing energy efficiency while ensuring the comfort of the occupants. New ties are identified, for example, “building-energy storage,”

and they imply new research subareas in the future.

The second research scope represents the domain of electrical systems and computing (red). The pivotal terms in this scope are “algorithm”, “grid”, and “community”. Rather than traditional electrical components in buildings (e.g., lighting), these terms highlight a significant emphasis on intelligent optimization and computational techniques of power grids on a community scale. The terms comprising “peer”, “prosumer”, “customer”, “user”, “energy community” and “DER (distributed energy resource)” collectively reflect an increasing interest in distributed energy sources for sustainable community development. The terms encompassing “uncertainty”, “architecture”, “electricity bill”, “electricity cost”, “electricity consumption”, “peak hour”, and “peak load”, signify that the primary objectives of power grid optimization revolve around these factors. Other terms include “electric vehicle” (EV), “appliance”, “energy management”, “demand response”, “demand side management”, “smart grid”, and “smart home.” They emphasize new research subareas closely linked to the field of smart grids such as vehicle-to-home framework, demand side management of smart home, demand response, peer-to-peer energy sharing and trading. Notably, the strong tie within this scope is “community-algorithm”, underscoring the growing and critical role of advanced computing in community-scale energy.

The third research scope represents the domain of mechanical systems and equipment (blue). At the heart of this scope is the fundamental term “network”, signaling a longstanding focus on energy system network. The terms encompassing “RES” (renewable energy system), “REC” (renewable energy certificate), “renewable energy source”, “supply”, “flexibility”, and “transition” underscore the significance of renewable energy integration on the sustainable transition and the flexibility of energy supply. The terms including “vehicle”, “heat pump”, “controller”, “heat”, “district heating”, and “microgrid” collectively reflect growing attention towards utilizing vehicles, heat pumps, and controllers to optimize district heating and microgrid operations. Other terms like “neighborhood”, “district”, “cluster”, “country”, and “planning” show large and diverse scales of research on energy systems.

The fourth research scope delineates an emerging domain of human-centered design and connectivity (yellow). Key terms in this scope

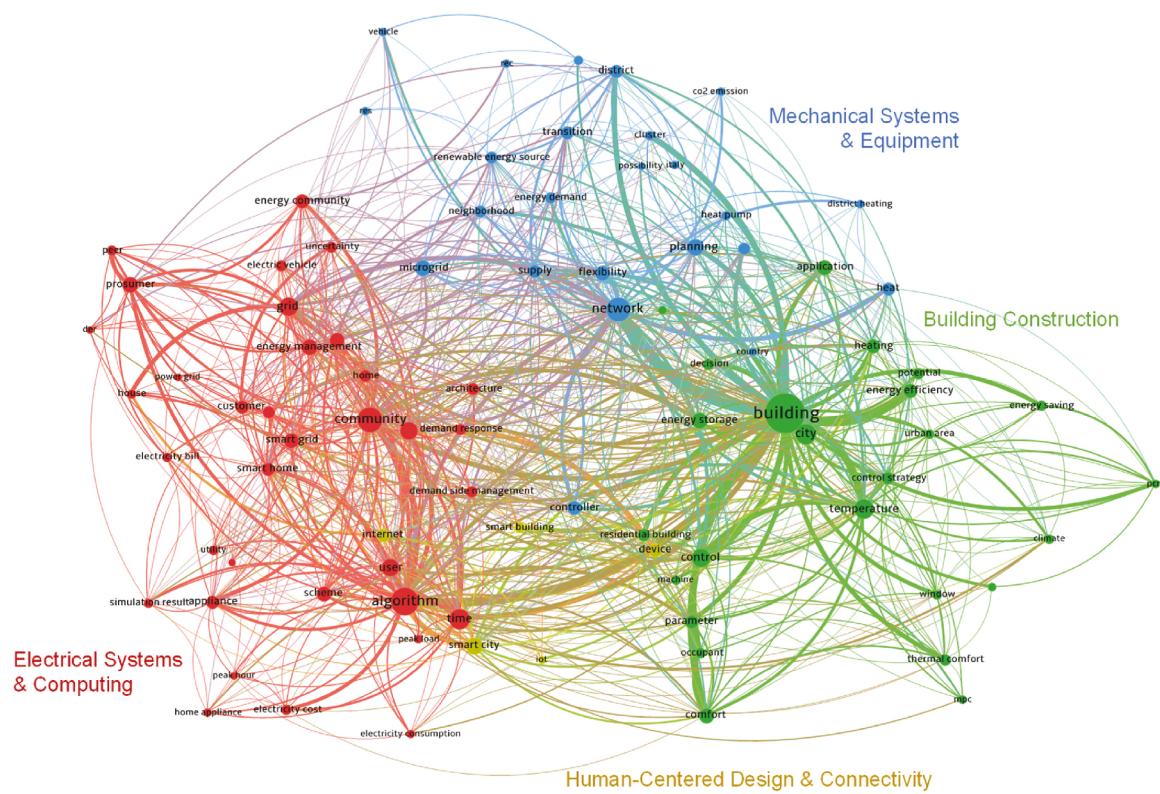


Fig. 5. Network diagram of research scopes.

include “internet”, “IoT (internet of things)”, “smart city”, “smart building”, and “device”. These terms signify the primary focus on the integration of advanced digital technologies and interconnected devices

to amplify human needs and enhance urban energy efficiency.

In summary, the four research scopes demonstrate a new landscape for energy retrofit research, which largely extends from the built

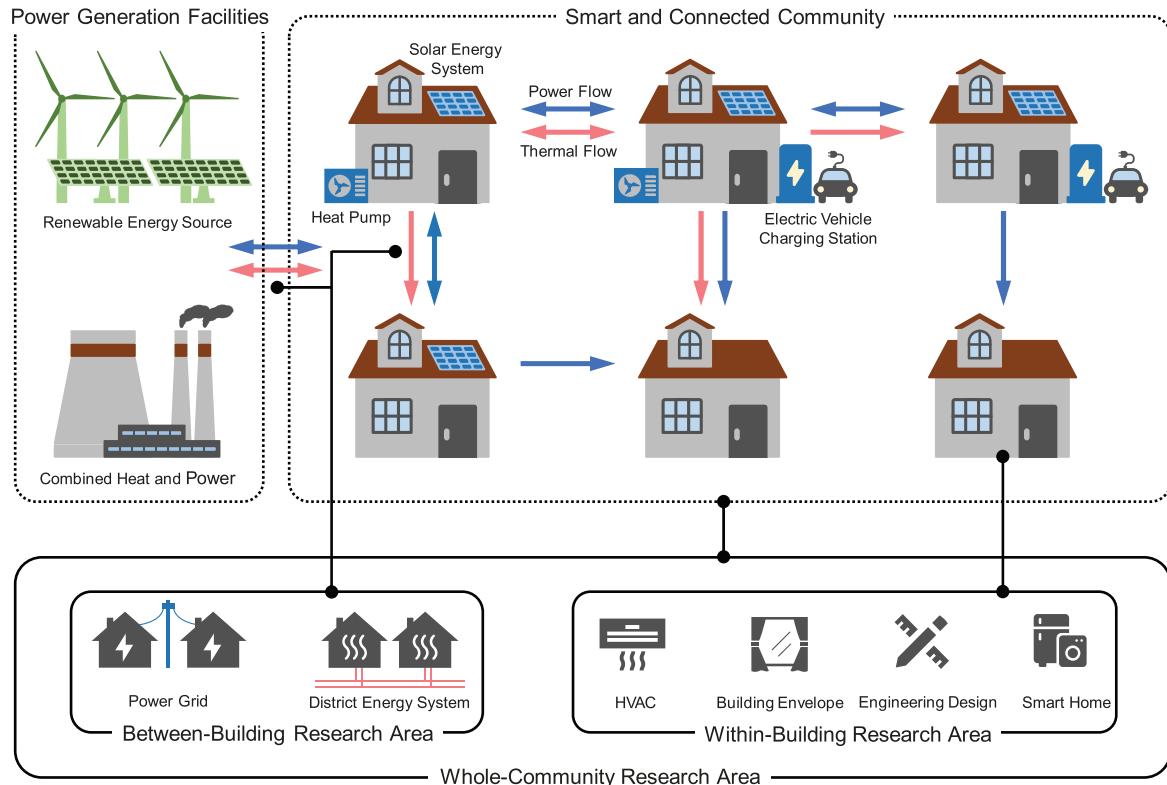


Fig. 6. The paradigm of energy retrofit technologies at the community level.

environment (heating, ventilation, and air conditioning (HVAC), lighting, structure, etc.) to advanced computing, renewable energy, and human-centered connectivity. Nonetheless, notable strong ties bridge different research scopes such as “building-network” and “building-algorithm”. The cross-scope ties suggest a considerable portion of research in the application of intelligent optimization algorithms, and the expansion of individual building research to encompass larger scales by analyzing networks of building. Overall, these interconnected scopes emphasize a multidisciplinary nature of research in this area and enhance the necessity of collaboration drawing on a synergy of expertise to address the complex challenges associated with large-scale energy retrofit.

Table 1
Summary of energy retrofit technologies of reviewed publications.

Area	Focus	Technology	Description	Computational Technique	Reference
Within-Building Optimization: The nodes of S&CC networks.	HVAC	MPC	An advanced control strategy that uses a predictive model to estimate and control future system behaviors. It optimizes HVAC control actions over a time frame and adheres to system constraints.	Energy simulation, tree-based methods, EA	[17,18]
		Energy performance assessment	Comprehensive data analysis and energy simulation approaches to assess HVAC systems and then recommend solutions for improvement.	Energy simulation	[19,20]
	Building envelope	Renewable energy integration	Installation of solar panels on building envelope spanning a range of applications from small-scale façade modules to large-scale structures.	Energy simulation, tree-based methods, neural network model, EA	[24,26,30–32]
		Advanced materials	Innovative materials applied in building envelopes, e.g., PCM and thermochromic materials.	Energy simulation	[36,42]
	Engineering design	Production design optimization	Architectural design options or occupant-involved simulations to model and optimize energy performance.	Energy simulation, ABM, tree-based methods, EA	[44,45,51]
		Multi-solution decision-making	Decision-making models, approaches, and solutions to enable optimal building energy retrofits.	Energy simulation, neural network model, EA, GIS, PSO	[52,55,58,63,65,68]
	Smart home	Smart operations & management	The energy management of connected appliances and building systems to enable remote control or autonomous operations through user scheduling or sensing.	Energy simulation, neural network model, EA, IoT, VPP	[70–72,74,75,77,82,84,85,87,89,91]
		Distributed energy management	Hardware and software to enable connections and control of smaller energy generation and storage units on the consumer's side, e.g., solar panels, batteries, and other edge devices.	Energy simulation, IoT, neural network model, RL	[62,94,99]
	Power grid	Demand response	Building energy consumption response strategies to adjust electricity demands in response to grid conditions, e.g., peak demand period.	Energy simulation, neural network model, EA, IoT, PSO	[106,108,109,115,116]
		Energy sharing and trading	Technics and strategies for sharing and trading electricity supply to distribute or exchange energy among buildings.	Energy simulation, block-chain, GIS, IoT, multi-agent system, EA, RL, VPP	[31,121,122,126,128,129,131]
		Microgrid energy management	Optimization techniques in the context of managing building energy consumption demand and supply in community settings.	Energy simulation, neural network model, IoT, EA, PSO	[141,143,144,148,149,153]
Between-Building Connections: The ties of S&CC networks.	District energy system	Demand response	Strategies for adjusting building energy consumption in response to district heating and cooling conditions, such as peak demand periods, to manage district energy system load.	Energy simulation, neural network model, EA	[158,162]
		Energy sharing and trading	Technics and strategies for the sharing and trading thermal energy to distribute or exchange energy among buildings.	Energy simulation, EA	[163]
	Integrated energy system	Energy performance assessment	Assessment of the effectiveness of different district energy system operation strategies	Energy simulation, digital twin	[165,166]
		System optimization	Strategies and optimization techniques to improve the energy efficiency of integrated energy systems.	Energy simulation, block-chain	[170,173,178,182,183]
		Energy interaction analysis	Analysis of the interplay between various energy systems, especially electricity and thermal energy.	Energy simulation	[184,186,191]
Whole-Community Integrations: Nodes and ties of S&CC networks.	Large-scale building and energy system modeling	Investigations of both building retrofitting and optimizing energy systems connected to building stocks	Energy simulation	[194,195]	

Notes: HVAC=Heating, Ventilation, and Air Conditioning, MPC= Model Predictive Control, PCM=Phase Change Materials, EA = Evolutionary Algorithm, GIS= Geographic Information System, ABM = Agent-based Model, PSO= Particle Swarm Optimization, IoT = Internet of Things, RL = Reinforcement Learning, VPP=Virtual Power Plant.

distribution between energy stations and the community, as well as the optimized distribution of energy among various buildings within a community. (3) The third area refers to the energy retrofit technologies in an integrated community of both buildings and their connections of electric and thermal energy. Interestingly, from a network perspective, the first area denotes the nodes of a S&CC network, the second area delineates the ties of a S&CC network, and the third area covers a whole S&CC network including both nodes and ties.

This study is interested in the research methodologies applied in studies focusing on the design, development, or evaluation of energy retrofit technologies. The classification of these studies reveal the following distribution of methodologies: 83 % employ simulation and computational modeling, such as using software like EnergyPlus or TRNSYS for energy performance prediction; 7 % estimate the expected impacts of actual retrofit projects through various evaluation tools and data analysis techniques, such as cost-benefit analysis and lifecycle assessment; 7 % learn from retrospective reviews of projects to gather insights and experiences; and the remaining 3 % utilize experimental approaches, such as physical tests on building materials.

Notably, computational techniques showcase distinct prominence in current research approach. Evolutionary algorithms (EAs), encompassing methods like genetic algorithms (GAs) and non-dominated sorting genetic algorithm II (NSGA-II), dominate with a 13.4 % share in 201 publications. Linear and Nonlinear Programming methods, exemplified by mixed-integer linear programming (MILP) and mixed-integer nonlinear programming, represent 9.0 % of the techniques. Swarm intelligence techniques, which include particle swarm optimization (PSO) and ant colony optimization, make up 8.0 %. Neural network models, such as artificial neural networks (ANNs) and recurrent neural networks (RNNs), comprise 7.5 %. Game-theoretic optimization, emphasizing strategic decision-making exemplified by Nash equilibria, holds a 3.5 % stake. Tree-based methods, spotlighting algorithms like decision trees and random forests, contribute 2.5 %. Reinforcement learning (RL), an approach where agents learn by interacting with their environment, as illustrated by Q-learning and deep Q networks, also accounts for 2.5 % of the techniques.

Table 1 summarizes the research focus, technology, and computational techniques for each of the three focused areas of retrofit technologies identified by the paradigm. The detailed retrofit technologies are explained, compared, and analyzed in the following sections.

5.2. Focused Area#1: within-building optimizations – the nodes

5.2.1. High efficiency HVAC

HVAC systems continue to play a crucial role in maintaining thermal comfort and indoor air quality during building energy retrofits. This research identifies two specific technologies from recent advancements in HVAC renovations.

The first is MPC, an advanced technology of process control. MPC employs a dynamic model to predict the future status of HVAC systems based on current control actions and measured outputs, such as temperature, humidity, and air quality. It utilizes these predictions to optimize future control actions to minimize energy costs and maintain acceptable indoor environment. Also, MPC leverages weather and occupancy predictions and holds the potential to enhance energy conservation, for example, by fine-tuning temperature settings and operation schedules. MPC outperforms the proportional-integral-derivative control in managing thermal comfort and efficiency, due to its rapid response, stability, minimal overshoot, and adaptability [17]. In addition, MPC plays a crucial role in load-shifting implementation and peak demand reduction, especially through combining precooling and thermal energy storage [18].

The second is system assessment and optimization, a process to refine existing HVAC system designs. This technology analyzes performance data, simulates energy consumption, and uses optimization techniques to reduce energy costs. For example, the data-driven approach of data

envelopment analysis (DEA) can assess and pinpoint the optimal strategies for HVAC system enhancement [19]. Other simulation-based approaches are used to assess the potential of HVAC demand flexibility and renewable source integration [20], evaluate HVAC refurbishment scenarios [21], or design HVAC controls for chillers, compressors, and fresh air systems [22]. Notably, intelligent approaches such ANN-assisted optimizer and grey wolf algorithms are able to optimize the operations of HVAC systems [23].

5.2.2. Building envelope

Building envelopes are a fundamental component in determining energy consumption, serving as an interface between indoor and outdoor environments for heat and light transfers. This research identifies two specific technologies from recent advancements in envelopes.

The first refers to renewable energy integration with buildings. Solar facade modules [24] and building integrated photovoltaics (PV) [25] were developed to reduce heating and cooling loads and achieve net-zero energy use. Research in PV panel design maximizes annual solar radiation [26] and minimizes associated costs [27]. The PV design can scale up to urban environments to maximize solar energy harvesting, considering real-time electricity demand, architectural landscape preservation, and spatial constraints [28]. Other research in large-scale solar energy generation use methods and tools, including fast-evaluation with minimal computational resources [29], dynamic simulation-based evaluation [30], energy stress mitigation framework [31], comprehensive mapping with a quantitative visual impact assessment [32], and the home-developed TEAC software [33]. Outcomes of the research can produce PV solutions for a historic city [34]. Also notably, intelligent approaches such artificial bee colony algorithm are used to optimize PV systems, e.g., in estimating the life cycle cost [35].

The second refers to the advanced materials of various building components to improve energy efficiency. PCM in exterior facades can absorb and release thermal energy during their phase transformation [36]; PCM on interior surfaces can keep indoor thermal comfort without energy consumption [37]. Thermochromic materials – changing color based on ambient temperature – help reflect heat and mitigate overheating in summer, and absorb heat and enhance passive heating in winter [38]. Another innovation is shape-memory alloys that "remember" their initial shape and can return under certain conditions. The alloys enable self-reactive façade systems and modify building appearance adapting to environmental changes without external energy input [39]. Smart water-filled glasses, of which the internal water layer can absorb, store, and release heat, are used for smart windows to improve building thermal comfort [40]. Specific studies pertain to the smart windows examine vanadium dioxide (VO₂) coatings [41] and controllable absorbing layers [42].

5.2.3. Engineering design

The engineering design of buildings encompasses architectural design and building operation design. This research identifies two specific technologies from engineering design innovations.

The first refers to production design optimization. Architectural design process is optimized by surrogate modeling, an application of supervised machine learning that emulates the behavior of complex systems and facilitates a more streamlined, rapid, and efficient analytical process. The implications of surrogate modeling enable rapid and accurate predictions to optimize complex architectural parameters, such as daylighting performance of high-rise buildings [43], or thermal designs of building envelopes under budget constraints [44]. Another important approach is agent-based modeling (ABM), a computational method to simulate the actions and interactions of agents to assess their effects on building systems. ABM optimizes the complex interplay between energy consumption, indoor environment, and occupant behavior. Outcomes achieve sustainable building operations, e.g., a green campus with low energy use and high thermal comfort [45], or optimal energy performance against desired lighting, temperature, and

air quality levels [46]. Notably, intelligent approaches are used in to improve thermal comfort, visual comfort, and energy consumption, for example, a tri-optimization for building shape and envelope properties [47], a NSGA-II-based multi-objective optimization for venetian blinds in office buildings [48], a simulation-based optimization for architectural design [49], hybrid machine learning algorithms to optimize heating and cooling loads in various climates [50], or the Bayesian multilevel additive modeling to optimize parameters in building typologies [51].

The second refers to multi-solution decision-making to determine the most effective building retrofit strategies. Energy simulation-based decision-making enables comparative analyses of energy use, CO₂ emissions, and cost decomposition to obtain optimal retrofit strategies [52, 53]. The energy simulator can be self-developed built on energy calculation standards [54]. Optimization modeling is another widely used decision making approach to energy efficiency retrofits [55]. This approach relies on mathematical models, for example, GA, computational fluid dynamics (CFD) [56], or the Taguchi method [57] to select the best solution from various retrofit scenarios in campus design [58], residential buildings [59], and urban environment [60]. Assessment-based decision making can yield user-centric energy retrofit solutions in a digital ecosystem [61], and address the problem of uncertainty through the use of fuzzy logic and Bayesian networks [62]. System-integration supports the decision making, for example, a GIS-embedded multicriteria spatial decision support system [63], or a web-based decision support system for the multi-energy planning of renewable energy in buildings and neighborhoods [64]. Additionally, the empirical approach (e.g., case studies and onsite observations) provides real project experience to improve the decision making in automatic controls and renewable energy, for example, in office buildings [65], library [66], residential buildings [67], or hotels [68].

5.2.4. Smart home

Smart home upgrading relies on advanced information technologies such as AI, IoT, renewable energy solutions, and energy storage. This research identifies two specific technologies.

The first refers to smart operations and management, which automatically and intelligently supervises energy loads and controls through AI and IoT devices. Smart operations enable demand response based on real time pricing, which adjusts electricity consumption in response to supply conditions [69], and coordinates appliances, power generation, grid support, and user comfort [70]. Home energy management optimizes controls to maximize energy use reduction [71]. IoT sensing can detect occupancy and based on which control electrical load [72]. The involvement of AI in energy management improves energy efficiency, prediction accuracy, and device operations [73]. Cognitive architecture uses IoT sensors and legacy systems learns from user behaviors to optimize building energy use during renovations [74]. A simplified method for automatically detecting anomalies in building energy consumption uses statistical pattern recognition and ANN to provide energy use feedback to occupants and guide them to adopt energy saving actions [75]. Home energy management can also apply to natural resource usage, and notify users of waste, and aggregate similar activities [76]. Overall, the technology of smart operations and management leverages occupant behavior to enable human-centered retrofit design and automation. Notably, a large amount of intelligent algorithms are developed in this technology, for example, the cloud-based appliance scheduling using ANN and GA [77], AI-based energy wastage and cost reductions using GA [78]. The multi-objective EA [79], fuzzy adaptive dynamic multi-objective algorithm [80], and greedy heuristic algorithm [81] are used to optimize deferrable appliances' schedule in households for energy saving and users satisfaction. The neural network Q-learning algorithm [82], bacterial foraging ant colony optimization algorithm [83], and NSGA-II [84] are used to reduce peak demand. The limited memory algorithm for bound constrained problems [85], binary orientation search algorithm [86], and game theory [87] are used to mitigate

large-scale appliances energy demand. The extreme gradient boosting algorithm and long short-term memory (LSTM) algorithm are used to forecast hot water demand and optimize the electric water heater operation [88]. Large-scale virtual power plants (VPPs) enable load shifting [89] and novel controls lower district energy flow through charging of domestic hot water tanks [90]. In addition, evaluation approaches to smart energy management are developed to optimize investments [91] or compare working conditions in office buildings [92].

The second refers to distributed energy management, which facilitates localized energy production, storage, and distribution. Leveraging renewable resources like solar panels and energy storage systems, it fosters independent and efficient energy systems that cater to local demands while reducing dependency on conventional electric grids. An automatic power control and management system was proposed, which supplied power to home appliances based on the power demand [93]. Distributed energy management systems were presented to optimize renewable energy distribution and storage [94]. An optimization model was developed to determine optimal operation of home energy storage for energy saving and peak demand reduction [95]. A strategy minimizing total fuel consumption and extending batteries lifetime for off-line smart homes was proposed [96]. One model was developed to optimize PV, batteries, and EV charging for minimizing household electricity costs [97]. A novel method to optimize energy utilization in smart buildings was proposed considering equipment costs, power supply costs, and occupants' comfort [98]. A Time Delay Neural Network with stochastic MPC was developed to enhance energy management efficiency in renewable energy communities [62]. Deep reinforcement learning was used to optimize building energy systems in smart elderly care communities [99].

5.2.5. Research gap 1 - A lack of human-centered design for within-building optimizations

The research of human-centered design is an emerging area and demonstrates a great potential for energy savings. Particularly, occupant behavior, namely human activities that influence building energy use, can influence 50 % of energy use [100]. Scholars have shed light on the influence of energy use behavior on urban energy consumption and have advocated for the enhancement of user energy conservation behavior, for example, hundreds of relevant factors [101]. Retrofit technologies such as smart home control systems are closely related to occupant behavior and they are studied to reduce energy consumption considering occupants' preference, such as thermal comfort, indoor air quality, and appliance usage habit. However, most of the current approaches stay in the operations stage and they are not efficient to incorporate occupant behaviors into the design of building retrofitting technologies, for example, energy simulations [102]. The synergy between smart home, HVAC systems, and building envelopes remains an underexplored domain. Current engineering designs primarily focus on optimizing HVAC and building envelopes in isolation, neglecting the integrated benefits that smart home technologies can provide. A distinct need exists for holistic approaches that simultaneously consider smart home control systems, HVAC systems, and building envelopes to formulate more cost-effective and efficient retrofit solutions. Overall, addressing this gap is inherently challenging, particularly for residents with flexible home behaviors, making accurate predictions of energy use exceedingly difficult to achieve [103]. This gap, in turn, leads to imprecise and often unnecessary retrofit decisions. For example, installing a highly energy-efficiency range may not yield substantial energy savings in cases where occupants infrequently engage in cooking activities at home.

5.3. Focused Area#2: between-building connections – the ties

5.3.1. Power grid

The power grid, as the backbone of modern energy infrastructure, represents between-building connections through electricity networks.

This research identifies three specific technologies to reduce power peak loads and integrate renewable energy sources.

The first refers to demand response, a technology to adjust energy consumption in response to energy network conditions. Dynamic pricing models are the core of this technology [104], which can connect with demand and renewable fluctuations to match supply and demand [105]. A real-time dynamic pricing model for EV charging and discharging and building energy management effectively reduces peak loads [106]. Game theory is used to adaptively adjust the electricity tariff following the changes in electricity consumption [107]. When combining load forecasting models, dynamic pricing schemes enable household load shifting [108]. Notably, the usage of IoT leverages the demand response and optimizes multi-layer grid operations. The IoT approach can incorporate dynamic pricing with energy storage [109], stochastic operation management [110], or HVAC thermal dynamics [111]. Other intelligent approaches include digital twins, min-conflict algorithms, and grey wolf optimization algorithm [112]. A multi-layer interactive optimization model considers individual sensitivity for demand response [113]; and a bi-level scheduling model coordinates demand response with renewable energy [114]. Other demand response strategies connect MPC of HVAC control [115], renewable energy generation [116], and PV scenarios in distribution networks [117]. Recent advancements in demand response have led to practical applications; thus, studies are associated with implementation, such as the evaluation using quantitative key performance indicators [118], social feedback developed in a smartphone app [119], and the profitability of energy service providers [120].

The second refers to energy sharing and trading, the energy redistribution and transactions among individual homes where consumers actively participate in the energy market, potentially lowering costs and promoting the use of renewable energy sources. Energy sharing strategies stand at the core of this technology, for example, simulation-based techno-economic analysis [121], cooperative game theory-based models [122], stochastic linear models [123], and mixed-integer programming models [124]. Notably, intelligent computing plays a very important role to optimize energy sharing and trading decisions, such as RL [125], GA [126], game theory [127], multi-agent systems [128], blockchain [129], VPPs in microgrids [130], IoT sensing [131], and GIS [31]. Associated evaluation studies emerge to explore the impacts of energy sharing on economic, technical, and environmental performance [132], diverse building types, energy market scenarios [133], and stakeholder participation [134]. In addition, research in energy sharing expands to building-vehicle energy interactions, using the augmented ϵ -constraint approach [135] and Pareto archive NSGA-II [136], and outputs insights into vehicle-to-grid (V2G) [137] and vehicle-to-home (V2H) modes [138].

The third refers to microgrid energy management, which explores optimization and controls of sustainable community microgrids. Microgrid management, especially when connecting distributed energy generators, can achieve energy positive or neutral communities [139], optimize energy trading through innovative negotiation [140], and incorporate IoT schemes in smart grid [141]. The trust-less approach [142], GA [143], PSO [144,145], RL aided Monte Carlo tree search algorithm [146], and the alternating direction method of multipliers were used to optimize energy scheduling for communities [147]. Quantum controlled-NOT gate induced feed-forward neural network [148] was used to accurately forecast energy load and efficiently manage power supply and demand in the smart grid. One work optimized integration of PV, biomass, and storage for a standalone hybrid hospital microgrid [149]. One study designed and analyzed an optimal microgrid configuration with renewable energy and storage technologies [150]. One study assessed the sustainable community shift using distributed energy resources and a community-based market, noting voltage challenges in winter [151]. An energy management concept was introduced that co-ordinated home energy storage and adjustable appliance usage within a local energy community [152]. Monte Carlo simulation was used to

evaluate community shared solar PV under uncertainty [153], while another study optimized renewable sizing in a community microgrid [154,155]. MILP and mixed integer piecewise linear optimization model [155] were used to optimize sizing and operation of distributed energy storage in smart microgrid. Decentralized architectures were investigated for optimizing renewable energy utilization and demand-side management in residential communities [156]. Frameworks were developed for simultaneous optimization of building and distribution grid operations through integrated building-to-grid (B2G) management [157].

5.3.2. District energy system

The district energy system distributes steam, hot water, or chilled water from centralized plants through pipes to buildings. The system represents between-building connections through thermal networks. This research identifies three specific technologies.

The first refers to demand response. Different from the electricity demand in power grid, the demand response here relies on heat generation and heat demand to improve energy efficiency [158]. MPC is important for district energy system due to the high relevance to HVAC networks and building thermal capacity [159]. The integration of MPC can effectively reduce peak loads through controlling return and supply temperatures [160]; and the involvement of demand side management systems can further coordinate supply and demand in an interconnected district energy system network [161]. An intelligent building controller for a district energy system was developed, focusing on demand response strategies to improve thermal comfort and reduce peak energy demands [162].

The second refers to energy sharing and trading, particularly thermal energy trading rather than electricity. Although a few research solely investigated energy sharing and trading strategies in district energy systems, an intelligent network model adopting the concept of heat trading in a district energy system emphasizes the optimization of thermal comfort and energy costs [163], which allows for exchange of excess heat between buildings and overall energy use reduction.

The third refers to energy performance assessment, for example, on the energy saving potential of different strategies for district energy system operation. The impact of various demand side management strategies of district energy system systems on energy saving was analyzed and found limited performance [164]. The potential of high temperature district cooling was examined by data analysis, and it was found to significantly enhance energy saving [165]. A workflow was developed to extract and consolidate housing data from various sources like permits and smart thermostats to support energy mapping and retrofit planning [166]. One study compared centralized district energy systems with multiple sources to decentralized electricity-driven energy systems at the district level, finding that the centralized architecture offers greater robustness [167].

5.3.3. Integrated energy system

The integrated energy system refers to a network where various forms of energy are integrated and interact to ensure a steady and efficient supply of energy to a community. The system represents between-building connections through multiple networks such as electricity, heat, and natural gas. This research identifies two specific technologies to achieve the maximization of overall energy utilization, improve energy efficiency, and reduce energy waste.

The first refers to system optimization, which optimizes the overall capacity and efficiency of multi-energy systems. A new approach for generating various concepts for local energy systems that maximize the use of local renewable resources was proposed [168]. Simulation-based decision support methodologies by means of scenario analysis to facilitate the planning process to realize energy neutral neighborhoods was developed [169]. Overall methodology for transition from traditional historic urban blocks to positive energy block was developed [170]. PSO [171], RL [172] and MILP [173–175] algorithms were used to optimize

the operation of polygeneration systems. Some research studied integration of distributed heat pumps [176], thermal energy storage [177, 178], EV charging station [179], and solar energy [178] aiming to optimize the design of polygeneration systems. A novel optimal scheduling model was presented to improve operational flexibility of the integrated energy system by leveraging thermal inertia of buildings and different kinds of auxiliary equipment [180]. A data-driven two-stage distributionally robust optimization model was developed for community integrated energy systems to efficiently coordinate demand response and renewable energy generation uncertainties [181]. A double auction-based peer-to-peer multi-energy sharing and trading mechanism, to conduct the electricity sharing and heat sharing simultaneously, was proposed [182]. A blockchain-based network was presented to improve coordination of both electrical demand management and thermal comfort [183].

The second refers to energy interaction analysis, which optimizes the interactions between different energy networks. One study found district energy systems could increase power system flexibility by reducing peak electric loads and enabling additional hydropower exports [184]. A multi-agent simulation was used to study the interplay between gas and electric systems during building retrofits [185]. A sequential coupling approach was used to assess operations between district energy system and power distribution grids [186]. One study investigated renewable energy communities, showcasing how factors like electrification of heating and transportation can impact energy performance [187]. One study utilized data-driven energy modeling to determine the optimal heat storage capacity for supporting heating electrification, effectively reducing peak power demand and carbon emissions through demand response [188]. Frameworks and key performance indicators (KPIs) were proposed to guide urban energy system planning [189]. In addition, one study used a linear-optimization approach to study the cost difference between shared energy infrastructure and individually planned buildings [190]. One study utilized an improved optimization algorithm to analyze the impacts of different decision maker types on joint electrical and thermal energy scheduling in a community [191].

5.3.4. Research gap 2 - A short expansion of smart home technology into between-building connections

The potential of smart home technology in energy retrofits has predominantly been explored within individual buildings, with a focus on aspects like smart appliance management. However, there is limited attention given to its connectivity between buildings. For instance, the impact of a distributed energy management system on the functionalities of the smart grid, particularly in the context of demand response strategies, remains an often-overlooked gap. This gap signifies a need to understand the interplay between within-building optimizations and between-building connections. Consequently, implementing energy-saving measures solely based on overall energy demand, without considering the specific energy consumption in a multi-building context, may not yield the desired outcomes. For instance, two homes with identical peak electricity loads may differ in load types: the first, equipped with deferrable loads, can leverage demand response to reduce peaks, while the second, with non-deferrable loads, may not derive the same benefits despite displaying similar load patterns. Overall, addressing this gap is crucial for developing effective energy retrofit strategies that extend the scope of smart home technologies across interconnected buildings.

5.3.5. Research gap 3 - A lack of interactive dynamics in the research of between-building connections

Research in the field predominantly emphasizes power grid retrofits, often neglecting district energy systems and their intricate interactions with power grids. This oversight highlights a significant gap in the literature and underscores the need for more integrated studies focusing on their joint retrofitting, considering their inherent interdependence. A comprehensive understanding of the mutual influences of retrofitting

both energy networks is imperative for developing stable, optimized solutions and unlocking the full potential of community-wide energy savings. Moreover, recognizing this gap underscores the significance of integrating Combined Heat and Power (CHP) technology into retrofit strategies. This integration holds the promise of elevating overall system efficiency, mitigating emissions, and fostering more resilient and sustainable energy networks. By seamlessly incorporating CHP into the broader discourse on power grid and district energy system retrofits, researchers can pioneer innovative pathways to attain comprehensive and synergistic solutions. This approach aims to maximize energy efficiency and cultivate community-wide benefits. Such an expanded vision accentuates the critical importance of holistic approaches that encompass diverse energy technologies, meeting the evolving demands of community energy systems.

5.3.6. Research gap 4 - A latent between-building connection by social and behavioral networks

Research frequently overlooks the between-building impacts of individual retrofit projects, a gap that becomes increasingly pertinent with the rising trend of energy sharing and trading, amplifying the inter-connectivity between buildings. The effects of a retrofit in one building can significantly influence neighboring buildings through these intensified energy links, as well as through social networks. Smart and connected technologies invisibly establish a latent social tie among residents in a community. For example, a smart thermostat will benchmark the temperature settings of other surrounding homes. Therefore, intelligent technologies establish an invisible network of human activities and facilitate the exchange of behavioral knowledge in, such as thermostat setting [8], lighting and appliance use [192], and window opening [193]. All the above behavior knowledge is important for energy retrofit decisions. Understanding these dynamic interactions is crucial for effectively expanding a single building retrofit strategy to encompass the entire community. Overall, we have observed the third important between-building connection – behavioral connectivity – despite the electrical grid and thermal energy grid. Unfortunately, there exists an often-overlooked gap in understanding occupant behavior across multiple buildings.

5.4. Focused Area#3: whole-community integrations – the network

5.4.1. Technology overview

Some studies explored both the retrofitting of buildings and the optimization of energy systems connected to building stocks. One study developed a net-zero building cluster emulator that could simulate energy behaviors of a cluster of buildings and distributed energy systems [194]. Another study evaluated different retrofit interventions for the building stocks as well as the energy sharing between buildings [195]. One study used agent-based fuzzy logic to define and evaluate urban transition scenarios [196]. Overall, whole-community integration is an emerging area, and an increasing number of studies are expected, enabled by recent, advanced computations.

5.4.2. Research gap 5 - few retrofit technologies for whole-community integrations

Current research predominantly focuses on individual facets of energy retrofits, honing in on isolated within-building optimizations (i.e., nodes) and/or between-building energy systems (i.e., ties). This segmented approach overlooks the potential advantages that a holistic perspective can bring. A noticeable gap emerges in the literature when it comes to collectively retrofitting entire communities, involving the integration of power grids, district energy systems, and individual buildings. By amalgamating these elements, researchers can unlock synergistic effects that transcend the sum of individual optimizations. Addressing this research gap is not only essential but also pivotal for fostering effective and comprehensive energy retrofit strategies in the context of smart and connected communities. Embracing a holistic

approach ensures that the intricate interactions among power grids, district energy systems, and buildings are thoroughly understood and strategically leveraged to maximize energy efficiency and sustainability at the community level. The knowledge tailored for single building retrofits proves inadequate for large-scale retrofits. Buildings in large-scale retrofits constitute a multi-dimensional complex system – a community connected by technologies and occupants [197]. For instance, buildings constructed at a similar time often employ similar technologies, such as vinyl siding. Large-scale retrofits seek to upgrade the shared technologies across a whole community, introducing standardized elements like prefabricated roof panels that may not cater to each building's customized needs. Consequently, methods used to select retrofit technologies for a single building are unsuitable for a community [198]. Emerging connections and conflicts within the community are not yet well understood [199]. This gap results in knowledge-action bias, value-action bias, and intention-action bias [200]. Bridging this divide is imperative to align knowledge and action, values, and intentions within the intricate dynamics of large-scale retrofits for smarter and more connected communities to maximize energy efficiency and sustainability at the community level.

6. Future research directions

Fig. 7 depicts a roadmap for future energy retrofit research. Milestone one, focused on within-building optimization, has seen significant progress. The ongoing research emphasis is now on milestone two, expanding considerations from individual buildings to interconnections between buildings. Milestone three is the overarching objective, involving the comprehensive integration of whole communities for large-scale energy modeling and simulation.

To attain milestone two, the findings suggest a wide-ranging buildings' retrofit strategy that considers the influence of individual retrofits on neighboring buildings. This entails the understanding of between-building connections for effective energy retrofits. Three key technologies are highlighted to have crucial roles. First, energy simulation tools are essential for modeling the effects of retrofit measures like energy sharing on neighboring buildings, allowing for the assessment of community-wide energy dynamics. Second, network approaches offer insights into how retrofit practices spread within communities, possibly identifying patterns and key influencers in the adoption of retrofit measures. Third, intelligent optimization algorithms can effectively

combine network analysis data and energy simulation results to develop optimal retrofit strategies for large-scale buildings. This approach enables a comprehensive understanding of both social influences and energy dynamics, leading to efficient and effective community-wide retrofit solutions.

To accomplish milestone two, the findings highlight the needs for three technological advances. The first need is the analysis of interactive dynamics in energy systems, such as microgrids and district energy systems. This includes an emphasis on optimizing the interplay between different energy systems for energy retrofits. For example, employing co-simulation tools and sensitivity analysis to understand and optimize the interactions between various energy systems, identifying robust, resilient, and effective retrofit strategies under diverse scenarios. The second need is an intelligent optimization framework that can simultaneously consider smart home upgrades, energy-efficient HVAC systems, and building envelope improvements. The framework aims to comprehensively analyze various energy retrofit options, evaluating financial and energy-saving aspects using intelligent optimization algorithms to identify the most cost-effective combination of technologies. The third need is smart home systems for energy efficiency, which not only learn and adapt to individual user habits but also actively guide and influence users toward energy-saving behaviors. This entails leveraging advanced data analytics and machine learning for behavioral analysis in energy consumption. The integration of smart metering and IoT devices is deemed crucial for providing real-time monitoring and feedback on energy use, allowing users to understand and manage their consumption effectively. Additionally, incorporating interactive interfaces and gamification elements can engage residents and motivate energy-efficient practices.

To achieve and excel in milestone three, the findings anticipate growth trends in two research domains. The first domain emphasizes the "whole-community" approach, integrating urban building retrofits with urban energy system optimization by viewing S&CC networks as intricate ecosystems. Optimization strategies in S&CC involve the improvement of physical infrastructure, such as building and energy systems, and the integration of social dynamics to enhance overall network performance. Future focuses could be on employing advanced analytics and simulation tools to understand and optimize the interdependencies in S&CC networks, and/or exploring how technological upgrades in buildings and energy systems are aligned with and supported by social connections within a community, leading to more sustainable, efficient,

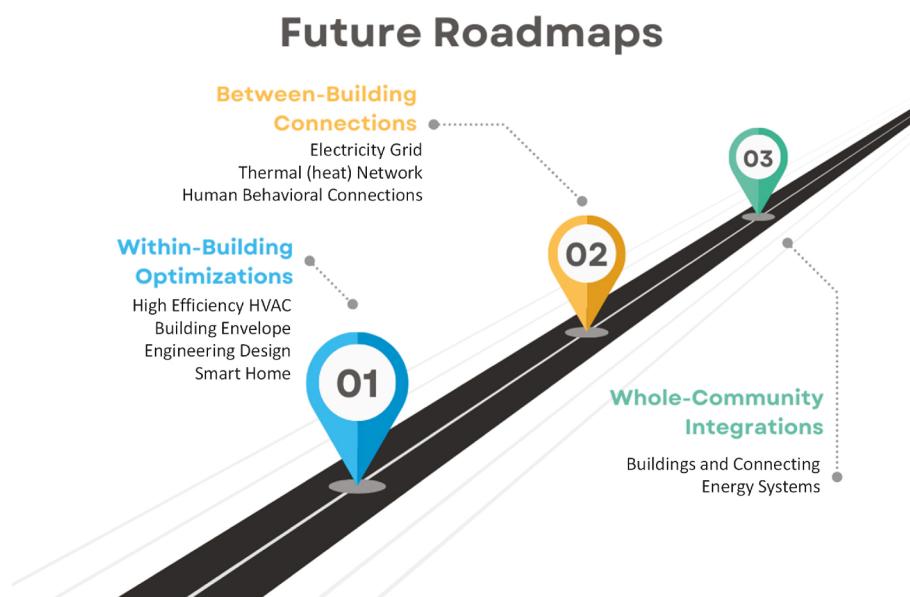


Fig. 7. Future research with three milestones.

and socially cohesive energy solutions. The second domain focuses on integrated research involving PV panels, heat pumps, and EVs to drive urban sustainability transformations. PV panels are commonly used energy saving measures enabling urban sustainable development; however, their intermittent and weather-dependent property restricts energy saving potential. Alongside PV battery storage solutions, load shifting further alleviates PV application limitations. Heat pumps convert electricity into heat, and buildings have thermal storage capacities, so heat pumps can convert immediate electricity into delayed heat. This facilitates building electrification while also enabling electric load shifting. EV can transfer electricity of buildings via charging/discharging facilities, enhancing demand response flexibility and multi-building energy sharing potential. Leveraging heat pumps and EVs promotes electricity flexibility, which can improve solar utilization efficiency.

7. Conclusions

Emerging intelligent technologies enable optimal energy retrofits in future Smart and Connected Communities, showing significant promise for extensive energy savings. S&CC seamlessly integrates intelligent technologies into natural and built environments, gaining importance as US communities enter a transformative era. This research outlines the future landscape of energy retrofits in S&CC, delineating new research scopes and technologies comprehensively. Unlike fragmented reviews, it offers architects, engineers, and builders a crucial, holistic overview essential for navigating the evolving landscape of smart and connected urban development.

A primary finding in this review identifies four research scopes (building construction, mechanical systems, electrical systems and computing, and human-centered design and connectivity), unveiling a novel landscape for energy retrofit research that extends from the built environment to advanced computing, renewable energy, and human-centered connectivity. These interconnected scopes underscore the multidisciplinary nature of research in this area, emphasizing the necessity for collaborative efforts drawing on a synergy of expertise to address the complex challenges associated with large-scale energy retrofit.

Another significant finding unveils a new paradigm of retrofit technologies with three focused areas: Within-building optimizations (e.g., high-efficiency HVAC, building envelope, engineering design, and smart home), Between-building connections (e.g., power grid, district energy, and integrated energy system), and Whole-community integrations. These areas represent the nodes, ties, and interplay within S&CC networks. Notably, advanced computational techniques including AI and IoT hold distinct prominence in the current research approach.

Research gaps have surfaced, collectively shaping the trajectory of urban development. The lack of human-centered design in within-building optimizations calls for a more empathetic approach to improve living experiences. The expansion of smart home technology should embrace between-building connections to foster robust community-level interactive dynamics. The untapped potential of human and behavioral networks in inter-building connections presents an opportunity for deepening community engagement. Moreover, the scarcity of retrofit technologies for comprehensive community integration points to an essential area for innovation in upgrading existing urban infrastructures.

The trend towards S&CC reflects a forward-looking approach, recognizing the potential for interconnected urban ecosystems to enhance overall quality of life, economic opportunities, and sustainability. Researchers are navigating innovative paths amid the evolving urban housing landscape, envisioning a holistic and interconnected experience where technology and social dynamics converge for smarter, more efficient communities. To enable this vision, understanding between-building connections for effective energy retrofits is crucial, requiring advancements in simulation tools, network modeling, and

optimization algorithms. Proactive smart home systems guiding energy savings and integrated "whole-community" approaches are growth areas, as is research on transformative technologies like PV panels, heat pumps, and EVs. Exploring these areas and leveraging opportunities brings us closer to realizing the vision of S&CC.

This research is limited due to the focus specifically on technological advancements in building energy retrofits within the context of S&CC. It does not encompass the broader scope of S&CC, including transportation, waste management, water systems, street lighting, and network infrastructure. The exclusion of these sectors from our study is a limitation, as they are integral to the overall energy efficiency of S&CC. Subsequent research endeavors should address these critical sectors to provide a more comprehensive understanding of energy efficiency within the broader framework of S&CC.

CRediT authorship contribution statement

Lei Shu: Data curation, Methodology, Writing – original draft, Visualization. **Yunjeong Mo:** Validation, Writing – review & editing. **Dong Zhao:** Conceptualization, Writing – review & editing, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data are shared/included in the paper.

Acknowledgements

This study was supported by the National Science Foundation (NSF) of the United States through Grant #2046374. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the researchers and do not necessarily reflect the views of NSF.

References

- [1] Deakin M, Campbell F, Reid A. The mass-retrofitting of an energy efficient-low carbon zone: Baseline the urban regeneration strategy, vision, masterplan and redevelopment scheme. *Energy Pol* 2012/06/01/2012;45:187–200. <https://doi.org/10.1016/j.enpol.2012.02.019>.
- [2] Luddeni G, Krarti M, Pernigotto G, Gasparella A. An analysis methodology for large-scale deep energy retrofits of existing building stocks: case study of the Italian office building. *Sustain Cities Soc* 2018/08/01/2018;41:296–311. <https://doi.org/10.1016/j.scs.2018.05.038>.
- [3] Güneralp B, et al. Global scenarios of urban density and its impacts on building energy use through 2050. *Proc Natl Acad Sci USA* 2017;114(34):8945–50. <https://doi.org/10.1073/pnas.1606035114>.
- [4] Gulbinas R, Jain RK, Taylor JE, Peschiera G, Golparvar-Fard M. Network Ecoinformatics: development of a social Ecofeedback system to drive energy efficiency in residential buildings. *J Comput Civ Eng* 2014;28(1):89–98. [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000319](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000319).
- [5] Nessa W. Regeneration for sustainable communities? Barriers to implementing sustainable housing in urban areas. *Sustain Dev* 2010;18(6):319–30. <https://doi.org/10.1002/sd.399>.
- [6] Zhao D, McCoy A, Du J. An empirical study on the energy consumption in residential buildings after adopting green building standards. *Procedia Eng* 2016; 145:766–73. <https://doi.org/10.1016/j.proeng.2016.04.100>.
- [7] Zhao D, Miotto AB, Syal M, Chen J. Framework for Benchmarking green building movement: a case of Brazil. *Sustain Cities Soc* 2019/07/01/2019;48:101545. <https://doi.org/10.1016/j.scs.2019.101545>.
- [8] Zhao D, McCoy AP, Du J, Agee P, Lu Y. Interaction effects of building technology and resident behavior on energy consumption in residential buildings. *Energy Build* 2017/01/01/2017;134:223–33. <https://doi.org/10.1016/j.enbuild.2016.10.049>.
- [9] Mo Y, Zhao D. Effective factors for residential building energy modeling using feature engineering. *J Build Eng* 2021/12/01/2021;44:102891. <https://doi.org/10.1016/j.jobe.2021.102891>.

[10] Luo X, Hong T, Tang Y-H. Modeling thermal interactions between buildings in an urban context. *Energies* 2020;13(9):2382.

[11] Krarti M. Evaluation of large scale building energy efficiency retrofit program in Kuwait. *Renew Sustain Energy Rev* 2015/10/01/2015;50:1069–80. <https://doi.org/10.1016/j.rser.2015.05.063>.

[12] Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. *Energy Build* 2008;40(3):394–8.

[13] Shu L, Zhao D. Decision-making approach to urban energy retrofit—a comprehensive review. *Buildings* 2023;13(6):1425.

[14] Li X, Wen J. Review of building energy modeling for control and operation. *Renew Sustain Energy Rev* 2014;37:517–37.

[15] Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021;372:n71. <https://doi.org/10.1136/bmj.n71>.

[16] Zhao D, Duva M, Mollaoglu S, Frank K, Garcia A, Taft J. Integrated collaboration in fragmented project organizations: a network perspective. *J Constr Eng Manag* 2021;37(5):04021056. [https://doi.org/10.1061/\(ASCE\)ME.1943-5479.0000951](https://doi.org/10.1061/(ASCE)ME.1943-5479.0000951).

[17] Du Y, Zhou Z, Zhao J. Multi-regional building energy efficiency intelligent regulation strategy based on multi-objective optimization and model predictive control. *J Clean Prod* 2022;349:131264.

[18] Nelson J, Johnson NG, Chinimilli PT, Zhang W. Residential cooling using separated and coupled precooling and thermal energy storage strategies. *Appl Energy* 2019;252:113414.

[19] de Alencar Bezerra S, Jackson dos Santos F, Rogerio Pinheiro P, Rocha Barbosa F. Dynamic evaluation of the energy efficiency of environments in Brazilian university classrooms using DEA. *Sustainability* 2017;9(12):2373.

[20] Lee ZE, Zhang KM. Unintended consequences of smart thermostats in the transition to electrified heating. *Appl Energy* 2022;322:119384.

[21] Tommasi LD, Ridouane H, Giannakis G, Katsigarakis K, Lilis GN, Rovas D. Model-based comparative evaluation of building and district control-oriented energy retrofit scenarios. *Buildings* 2018;8(7):91.

[22] Wang S, Gang W. Design and control optimization of energy systems of smart buildings today and in the near future. *Frontiers of Engineering Management* 2017;4(1):58–66.

[23] Behzadi A, Gram A, Thorin E, Sadrizadeh S. A hybrid machine learning-assisted optimization and rule-based energy monitoring of a green concept based on low-temperature heating and high-temperature cooling system. *J Clean Prod* Jan 2023;384:15. <https://doi.org/10.1016/j.jclepro.2022.135535>. Art no. 135535.

[24] Vanaga R, Blumberga A, Freimanis R, Mols T, Blumberga D. Solar facade module for nearly zero energy building. *Energy* 2018;157:1025–34.

[25] Nasab SSR, Nasrabadai AT, Asadi S, Taghia SAHS. Investigating the probability of designing net-zero energy buildings with consideration of electric vehicles and renewable energy. *Eng Construct Architect Manag* 2021;29(10):4061–87. <https://doi.org/10.1108/ECAM-05-2021-0440>. no. ahead-of-print.

[26] Veisi O, Shakibamanesh A, Rahbar M. Using intelligent multi-objective optimization and artificial neural networking to achieve maximum solar radiation with minimum volume in the archetype urban block. *Sustain Cities Soc* 2022;86:104101.

[27] Mazuroski W, Berger J, Delinchant B, Wurtz F, Mendes N. A technique to improve the design of near-zero energy buildings. *J Braz Soc Mech Sci Eng* 2022;44(6):228.

[28] Zhu R, et al. Optimization of photovoltaic provision in a three-dimensional city using real-time electricity demand. *Appl Energy* Jun 2022;316:12. <https://doi.org/10.1016/j.apenergy.2022.119042>. Art no. 119042.

[29] Pinna A, Massidda L. A procedure for complete census estimation of rooftop photovoltaic potential in urban areas. *Smart Cities* 2020;3(3):873–93.

[30] Fong K, Lee CK. Towards net zero energy design for low-rise residential buildings in subtropical Hong Kong. *Appl Energy* 2012;93:686–94.

[31] Bardhan R, Debnath R, Gama J, Vijay U. REST framework: a modelling approach towards cooling energy stress mitigation plans for future cities in warming Global South. *Sustain Cities Soc* 2020;61:102315.

[32] Sun H, Heng CK, Tay SER, Chen T, Reindl T. Comprehensive feasibility assessment of building integrated photovoltaics (BIPV) on building surfaces in high-density urban environments. *Sol Energy* 2021;225:734–46.

[33] Zygmont M, Gawin D. Application of the renewable energy sources at district scale—a case study of the Suburban area. *Energy* 2022;15(2):473.

[34] Tsoumanis G, Formiga J, Bilo N, Tsarchopoulos P, Ioannidis D, Tzovaras D. The smart evolution of historical cities: integrated innovative solutions supporting the energy transition while Respecting Cultural Heritage. *Sustainability* 2021;13(16):9358.

[35] Beniwal R, Kalra S, SinghBeniwal N, Gupta HO. Smart photovoltaic system for Indian smart cities: a cost analysis. *Environ Sci Pollut Control Ser* Mar 2023;30(15):45445–54. <https://doi.org/10.1007/s11356-023-25600-w>.

[36] Saxena R, Rakshit D, Kaushik S. Phase change material (PCM) incorporated bricks for energy conservation in composite climate: a sustainable building solution. *Sol Energy* 2019;183:276–84.

[37] Prabhakar M, Saffari M, de Gracia A, Cabeza LF. Improving the energy efficiency of passive PCM system using controlled natural ventilation. *Energy Build* 2020;228:110483.

[38] Imghoure O, Belouaggadie N, Ezzine M, Lbabb R, Younsi Z. Evaluation of phase change material and thermochromic layers in a smart wall in different climates for improving thermal comfort in a building. *J Build Eng* Sep 2022;56:24. <https://doi.org/10.1016/j.jobe.2022.104755>. Art no. 104755.

[39] Koukelli C, Prieto A, Asut S. Kinetic solar envelope: performance assessment of a shape memory alloy-based autoreactive façade system for urban Heat Island mitigation in Athens, Greece. *Appl Sci* 2021;12(1):82.

[40] Gutai M, Kheybari AG. Energy consumption of hybrid smart water-filled glass (SWFG) building envelope. *Energy Build* 2021;230:110508.

[41] Yang J, Xu Z, Ye H, Xu X, Wu X, Wang J. Performance analyses of building energy on phase transition processes of VO₂ windows with an improved model. *Appl Energy* 2015;159:502–8.

[42] Dussault J-M, Gosselin L, Galstian T. Integration of smart windows into building design for reduction of yearly overall energy consumption and peak loads. *Sol Energy* 2012;86(11):3405–16.

[43] Elkici B, Kazanasmaz ZT, Turrin M, Taşgetiren MF, Sariyildiz IS. Multi-zone optimisation of high-rise buildings using artificial intelligence for sustainable metropolises. Part 2: optimisation problems, algorithms, results, and method validation. *Sol Energy* 2021;224:309–26.

[44] Yigit S. A machine-learning-based method for thermal design optimization of residential buildings in highly urbanized areas of Turkey. *J Build Eng* 2021/06/01/2021;38:102225. <https://doi.org/10.1016/j.jobe.2021.102225>.

[45] Azar E, Nikolopoulou C, Papadopoulos S. Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling. *Appl Energy* 2016;183:926–37.

[46] Verma A, Prakash S, Kumar A, Aghamohammadi N. A novel design approach for indoor environmental quality based on a multiagent system for intelligent buildings in a smart city: toward occupant's comfort. *Environ Prog Sustain Energy* 2022;41(6):e13895.

[47] Lin Y, Yang W. Tri-optimization of building shape and envelope properties using Taguchi and constraint limit method. *Eng Construct Architect Manag* 2022;29(3):1284–306.

[48] Baghoolizadeh M, Rostamzadeh-Renani M, Rostamzadeh-Renani R, Toghraie D. Multi-objective optimization of Venetian blinds in office buildings to reduce electricity consumption and improve visual and thermal comfort by NSGA-II. *Energy Build* Jan 2023;278:22. <https://doi.org/10.1016/j.enbuild.2022.112639>. Art no. 112639.

[49] Waqas H, et al. Enhancement of the energy performance of an existing building using a Parametric approach. *J Energy Eng Feb* 2023;149(1):15. <https://doi.org/10.1061/jleed9.yeng-4546>. Art no. 04022057.

[50] Abdou N, El Mghouchi Y, Jraida K, Hamdaoui S, Hajou A, Mouqallid M. Prediction and optimization of heating and cooling loads for low energy buildings in Morocco: an application of hybrid machine learning methods. *J Build Eng* 2022;61. <https://doi.org/10.1016/j.jobe.2022.105332>. Art no. 105332.

[51] Chang S, Yoshida T, Castro-Lacouture D, Yamagata Y. Block-level building transformation strategies for energy efficiency, thermal comfort, and visibility using Bayesian multilevel modeling. *J Architect Eng* 2021;27(3):05021008. [https://doi.org/10.1061/\(ASCE\)AE.1943-5568.0000491](https://doi.org/10.1061/(ASCE)AE.1943-5568.0000491).

[52] Ascione F, Bianco N, Mauro GM, Napolitano DF, Vanoli GP. A multi-criteria approach to achieve constrained cost-optimal energy retrofits of buildings by mitigating climate change and urban overheating. *Climate* 2018;6(2):37.

[53] Zhao D, Mo Y. Construction cost decomposition of residential building energy retrofit. *Buildings* 2023;13(6):1363.

[54] He Q, Hossain MU, Ng ST, Augenbroe G. Sustainable building retrofit model for high-rise, high-density city: a case in Hong Kong. In: Proceedings of the Institution of civil engineers-engineering sustainability, vol. 174. Thomas Telford Ltd; 2020. p. 69–82. no. 2.

[55] He Y, Liao N, Bi J, Guo L. Investment decision-making optimization of energy efficiency retrofit measures in multiple buildings under financing budgetary restraint. *J Clean Prod* 2019/04/01/2019;215:1078–94. <https://doi.org/10.1016/j.jclepro.2019.01.119>.

[56] Qi JD, Ding L, Lim S. Application of a decision-making framework for multi-objective optimisation of urban heat mitigation strategies. *Urban Clim* Jan 2023;47:16. <https://doi.org/10.1016/j.uclim.2022.101372>. Art no. 101372.

[57] Mousavi S, Gheibi M, Behzadian K, Waclawek S. A novel smart framework for optimal design of green roofs in buildings conforming with energy conservation and thermal comfort. *Energy Build* Jul 2023;291:16. <https://doi.org/10.1016/j.enbuild.2023.113111>. Art no. 113111.

[58] Guerrieri M, La Gennusa M, Peri G, Rizzo G, Scaccianoce G. University campuses as small-scale models of cities: quantitative assessment of a low carbon transition path. *Renew Sustain Energy Rev* 2019;113:109263.

[59] Apostolopoulos V, Giourka P, Martinopoulos G, Angelakoglou K, Kourtzanidis K, Nikolopoulos N. Smart readiness indicator evaluation and cost estimation of smart retrofitting scenarios-A comparative case-study in European residential buildings. *Sustain Cities Soc* 2022;82:103921.

[60] Dell'Anna F, Pederiva G, Vergerio G, Beccio C, Bottero M. Supporting sustainability projects at neighbourhood scale: green visions for the San Salvario district in Turin guided by a combined assessment framework. *J Clean Prod* 2023;384. <https://doi.org/10.1016/j.jclepro.2022.135460>. Art no. 135460.

[61] Liu B, Penaka SR, Lu W, Feng K, Rebbling A, Olofsson T. Data-driven quantitative analysis of an integrated open digital ecosystems platform for user-centric energy retrofits: a case study in northern Sweden. *Technol Soc* 2023;75. <https://doi.org/10.1016/j.techsoc.2023.102347>. Art no. 102347.

[62] Conte F, D'Antoni F, Natrella G, Merone M. A new hybrid AI optimal management method for renewable energy communities. *Energy AI Nov* 2022;10:12. <https://doi.org/10.1016/j.egyai.2022.100197>. Art no. 100197.

[63] Moghadam ST, Lombardi P. An interactive multi-criteria spatial decision support system for energy retrofitting of building stocks using CommunitiyVIZ to support urban energy planning. *Build Environ* 2019;163:106233.

[64] Eckhoff S, Hart MCG, Brauner T, Kraschewski T, Heumann M, Breitner MH. Open access decision support for sustainable buildings and neighborhoods: the nano energy system simulator NESSI. *Build Environ* 2023;237. <https://doi.org/10.1016/j.buildenv.2023.110296>. Art no. 110296.

[65] Hainoun A, et al. Smarter Together: monitoring and evaluation of integrated building solutions for low-energy districts of Lighthouse cities Lyon, Munich, and Vienna. *Energies* 2022;15(19):6907.

[66] Galvão JR, Moreira L, Gaspar G, Vinedorin S, Leitão S. Energy system retrofit in a public services building. *Manag Environ Qual Int J* 2017;28(3):302–14.

[67] Gong H, Rooney T, Akeyo OM, Branecky BT, Ionel DM. Equivalent electric and heat-pump water heater models for aggregated community-level demand response virtual power plant controls. *IEEE Access* 2021;9:141233–44.

[68] Beccali M, Finocchiaro P, Ippolito M, Leone G, Panno D, Zizzo G. Analysis of some renewable energy uses and demand side measures for hotels on small Mediterranean islands: a case study. *Energy* 2018;157:106–14.

[69] Reina R, Souza R, Silva A. LabVIEW development for an intelligent management system of the electrical energy free market. *Adv Sci Technol Eng Syst J* 2019;4. <https://doi.org/10.25046/aj040211>.

[70] ur Rehman U, Yaqoob K, Khan MA. Optimal power management framework for smart homes using electric vehicles and energy storage. *Int J Electr Power Energy Syst* 2022;134:107358.

[71] Shah AS, Nasir H, Fayaz M, Lajis A, Ullah I, Shah A. Dynamic user preference parameters selection and energy consumption optimization for smart homes using deep extreme learning machine and bat algorithm. *IEEE Access* 2020;8:204744–62.

[72] Sembroiz D, Careglio D, Ricciardi S, Fiore U. Planning and operational energy optimization solutions for smart buildings. *Inf Sci* 2019;476:439–52.

[73] Selvaraj R, Kuthadi VM, Baskar S. Smart building energy management and monitoring system based on artificial intelligence in smart city. *Sustain Energy Technol Assessments* 2023;56. <https://doi.org/10.1016/j.seta.2023.103090>. Art no. 103090.

[74] Rinaldi S, et al. A Cognitive-driven building renovation for improving energy efficiency: the Experience of the ELISR Project. *Electronics* 2020;9(4):666.

[75] Capozzoli A, Lauro F, Khan I. Fault detection analysis using data mining techniques for a cluster of smart office buildings. *Expert Syst Appl* 2015;42(9):4324–38.

[76] Saba D, Cheikhrouhou O, Alhakami W, Sahli Y, Hadidi A, Hamam H. Intelligent Reasoning Rules for home energy management (IRRHEM): Algeria case study. *Appl Sci* Feb 2022;12(4):24. <https://doi.org/10.3390/app12041861>. Art no. 1861.

[77] Azimi Nasab M, Zand M, Eskandari M, Sanjeevikumar P, Siano P. Optimal planning of electrical appliance of residential units in a smart home network using cloud services. *Smart Cities* 2021;4(3):1173–95.

[78] Ibrahim RO, Tambo E, Tsuanyo D, Nguedia-Nguedoung A. Modelling an artificial intelligence-based energy management for household in Nigeria. *Eng Lett* 2022;30(1).

[79] Nesmachnow S, Rossit DG, Toutouh J, Luna F. An explicit evolutionary approach for multiobjective energy consumption planning considering user preferences in smart homes. *Int J Ind Eng Comput* 2021;12:365–80.

[80] Maurya VK, Nanda SJ. Time-varying multi-objective smart home appliances scheduling using fuzzy adaptive dynamic SPEA2 algorithm. *Eng Appl Artif Intell* May 2023;121:32. <https://doi.org/10.1016/j.engappai.2023.105944>. Art no. 105944.

[81] Rossit DG, Nesmachnow S, Toutouh J, Luna F. Scheduling deferrable electric appliances in smart homes: a bi-objective stochastic optimization approach. *Math Biosci Eng* 2021.

[82] Mahapatra C, Moharana AK, Leung VC. Energy management in smart cities based on internet of things: peak demand reduction and energy savings. *Sensors* 2017;17(12):2812.

[83] Khan FA, Ullah K, ur Rahman A, Anwar S. Energy optimization in smart urban buildings using bio-inspired ant colony optimization. *Soft Comput* 2023;27(2):973–89. <https://doi.org/10.1007/s00500-022-07537-3>.

[84] Chen Z, Chen Y, He R, Liu J, Gao M, Zhang L. Multi-objective residential load scheduling approach for demand response in smart grid. *Sustain Cities Soc* 2022;76:103530.

[85] Martinez-Pabon M, Eveleigh T, Tanju B. Optimizing residential energy management using an autonomous scheduler system. *Expert Syst Appl* 2018;96:373–87.

[86] Jasim AM, Jasim BH, Neagu BC, Alhasnawi BN. Efficient optimization algorithm-based demand-side management program for smart grid residential load. *Axioms* Jan 2023;12(1):25. <https://doi.org/10.3390/axioms12010033>. Art no. 33.

[87] Liu L, Liu Y, Wang L, Zomaya A, Hu S. Economical and balanced energy usage in the smart home infrastructure: a tutorial and new results. *IEEE Transactions on Emerging Topics in Computing* 2015;3(4):556–70.

[88] Gough M, Rakhsia K, Bandeira T, Amaro H, Castro R, Catalão JPS. Design and implementation of a data-driven intelligent water heating system for an island community: a case study. *Energy Convers Manag* 2023;285. <https://doi.org/10.1016/j.enconman.2023.117007>. Art no. 117007.

[89] Alden RE, Gong HJ, Rooney T, Branecky B, Ionel DM. Electric water heater modeling for large-scale distribution power systems studies with energy storage CTA-2045 based VPP and CVR. *Energies* 2023;16(12):22. <https://doi.org/10.3390/en16124747>. Art no. 4747.

[90] Tahiri A, Smith KM, Thorlsen JE, Hviid CA, Svendsen S. Staged control of domestic hot water storage tanks to support district heating efficiency. *Energy* Jan 2023;263:12. <https://doi.org/10.1016/j.energy.2022.125493>. Art no. 125493.

[91] de Souza Dutra MD, da Conceição Júnior G, de Paula Ferreira W, Chaves MRC. A customized transition towards smart homes: a fast framework for economic analyses. *Appl Energy* 2020;262:114549.

[92] Soni P, Subhashini J. Development of an efficient energy management strategy to reduce energy consumption of office building equipment. *Wireless Pers Commun* 2022;124(1):237–59.

[93] Javaid S, Kato T. Adaptive control of energy storage systems for real-time power Mediation based on energy on demand system. *Design* 2022;6(5):97.

[94] Nie Z, Wu J, Liu X, Huang L, Nielsen PS. Understanding energy demand behaviors through spatio-temporal smart meter data analysis. *Energy* 2021;226:120493.

[95] Kimata S, Shiina T, Sato T, Tokoro K-I. Operation planning for heat pump in a residential building. *Journal of Advanced Mechanical Design, Systems, and Manufacturing* 2020;14(5). JAMDSM0076–JAMDSM0076.

[96] Elazab R, Saif O, Metwally AMA, Daoud M. Mixed integer smart off-grid home energy management system. *Energy Rep* 2021;7:79094–107.

[97] Chatterji E, Bazilian MD. Smart meter data to optimize combined roof-top solar and battery systems using a stochastic mixed integer programming model. *IEEE Access* 2020;8:133843–53.

[98] Cui J, et al. Improved normal-boundary intersection algorithm: a method for energy optimization strategy in smart buildings. *Build Environ* 2022;212:108846.

[99] Liu CM, Xue Z. Adaptive optimization design of building energy system for smart elderly care community based on deep Deterministic policy gradient. *Processes* Jul 2023;11(7):18. <https://doi.org/10.3390/pr11072155>. Art no. 2155.

[100] Janda KB. Buildings don't use energy: people do. *Architect Sci Rev* 2011/02/01 2011;54(1):15–22. <https://doi.org/10.3763/asre.2009.0050>.

[101] Hong T, Chen Y, Belafi Z, D'Oca S. Occupant behavior models: a critical review of implementation and representation approaches in building performance simulation programs. *Build Simulat* 2018;11(1):1–14. <https://doi.org/10.1007/s12273-017-0396-6>.

[102] Azar E, Menassa CC. Evaluating the impact of extreme energy use behavior on occupancy interventions in commercial buildings. *Energy Build* 2015;97:205–18.

[103] Bros-Williamson J, Garnier C, Currie JI. A longitudinal building fabric and energy performance analysis of two homes built to different energy principles. *Energy Build* 2016;130:578–91. <https://doi.org/10.1016/j.enbuild.2016.08.052>.

[104] Alsokhiry F, Siano P, Annuk A, Mohamed MA. A novel time-of-use pricing based energy management system for smart home appliances: cost-effective method. *Sustainability* 2022;14(21):14556.

[105] Cai Q, Xu Q, Qing J, Shi G, Liang Q-M. Promoting wind and photovoltaics renewable energy integration through demand response: dynamic pricing mechanism design and economic analysis for smart residential communities. *Energy* 2022;261:125293.

[106] Chekired DA, Khoukhi L, Mouttaft HT. Decentralized cloud-SDN architecture in smart grid: a dynamic pricing model. *IEEE Trans Ind Inf* 2017;14(3):1220–31.

[107] Oprea SV, Băra A. A signaling game-optimization algorithm for residential energy communities implemented at the edge-computing side. *Comput Ind Eng* Jul 2022;169:13. <https://doi.org/10.1016/j.cie.2022.108272>. Art no. 108272.

[108] Zhao X, Gao W, Qian F, Ge J. Electricity cost comparison of dynamic pricing model based on load forecasting in home energy management system. *Energy* 2021;229:120538.

[109] Golpîra H, Bahramara S. Internet-of-things-based optimal smart city energy management considering shiftable loads and energy storage. *J Clean Prod* 2020;264:121620.

[110] Wang B, et al. An IoT-enabled stochastic operation management framework for smart grids. *IEEE Trans Intell Transport Syst* 2022;24(1):1025–34.

[111] Su S, Li ZN, Jin XL, Yamashita K, Xia MC, Chen QF. Bi-level energy management and pricing for community energy retailer incorporating smart buildings based on chance-constrained programming. *Int J Electr Power Energy Syst* Jun 2022;138:14. <https://doi.org/10.1016/j.ijepes.2021.107894>. Art no. 107894.

[112] Yang HW, Zhang SG, Zeng JS, Tang XC, Xiong SB. Future of sustainable renewable-based energy systems in smart city industry: Interruptible load scheduling perspective. *Sol Energy* Oct 2023;263:8. <https://doi.org/10.1016/j.solener.2023.111866>. Art no. 111866.

[113] Chen YZ, Han B, Li ZH, Zhao B, Zheng RA, Li GJ. A multi-layer interactive peak-shaving model considering demand response sensitivity. *Int J Electr Power Energy Syst* Oct 2023;152:10. <https://doi.org/10.1016/j.ijepes.2023.109206>. Art no. 109206.

[114] Li Y, Li K, Yang Z, Yu Y, Xu R, Yang M. Stochastic optimal scheduling of demand response-enabled microgrids with renewable generations: an analytical-heuristic approach. *J Clean Prod* 2022;330:129840.

[115] El Geneidy R, Howard B. Contracted energy flexibility characteristics of communities: analysis of a control strategy for demand response. *Appl Energy* 2020;263:114600.

[116] Wen L, Zhou K, Yang S, Lu X. Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting. *Energy* 2019;171:1053–65.

[117] Shamshiri M, Gan CK, Omar R. Assessment of distribution networks performance considering residential photovoltaic systems with demand response applications. *J Renew Sustain Energy* 2017;9(4).

[118] Andreadou N, Thomas D, De Paola A, Kotsakis E, Fulli G. Holistic evaluation of demand response Events in real Pilot Sites: from Baseline calculation to evaluation of key performance indicators. *Energies* Aug 2023;16(16):28. <https://doi.org/10.3390/en16166048>. Art no. 6048.

[119] Mäkivierikko A, Siepelmeyer H, Shahrokn H, Enarsson D, Kordas O. Reducing electricity peak loads through 'pause hours': a community-based behavioural demand response approach. *J Clean Prod* Jul 2023;408:18. <https://doi.org/10.1016/j.jclepro.2023.137064>. Art no. 137064.

[120] Wen L, Zhou K, Feng W, Yang S. Demand side management in smart grid: a dynamic-price-based demand response model. *IEEE Trans Eng Manag* 2022.

[121] Zheng S, Huang G, Lai AC. Techno-economic performance analysis of synergistic energy sharing strategies for grid-connected prosumers with distributed battery storages. *Renew Energy* 2021;178:1261–78.

[122] Malik S, Duffy M, Thakur S, Hayes B, Breslin J. A priority-based approach for peer-to-peer energy trading using cooperative game theory in local energy community. *Int J Electr Power Energy Syst* 2022;137:107865.

[123] Roccotelli M, Mangini AM, Fanti MP. Smart district energy management with cooperative microgrids. *IEEE Access* 2022;10:36311–26.

[124] Lin C-C, Wu Y-F, Liu W-Y. Optimal sharing energy of a complex of houses through energy trading in the Internet of energy. *Energy* 2021;220:119613.

[125] Alsolami M, Alferadi A, Lami B, Ben Slama S. Peer-to-peer trading in smart grid with demand response and grid outage using deep reinforcement learning. *Ain Shams Eng J* 2023. <https://doi.org/10.1016/j.asej.2023.102466>. Art no. 102466.

[126] Li Y, Wang Y, Fukuda H, Gao W, Qian F. Analysis of energy sharing impacts in a commercial community: a case of battery energy storage system deployment for load leveling. *Front Energy Res* 2022;10:929693.

[127] Hupet M, Toubeau JF, Atzeni I, De Grève Z, Vallée F. Pricing electricity in residential communities using game-Theoretical Billings. *IEEE Trans Smart Grid* Mar 2023;14(2):1621–31. <https://doi.org/10.1109/tsg.2022.3206912>.

[128] Hanumantha Rao B, Arun SL, Selvan MP. An electric power trading framework for smart residential community in smart cities. *IET Smart Cities* 2019;1(2):40–51.

[129] Afzal M, Huang Q, Amin W, Umer K, Raza A, Naeem M. Blockchain enabled distributed demand side management in community energy system with smart homes. *IEEE Access* 2020;8:37428–39.

[130] Zahid H, Altamimi A, Kazmi SAA, Khan ZA. Multi-phase techno-economic framework for energy wheeling via generation capacity design of microgrids and virtual power plants. *Energy Rep* Nov 2022;8:5412–29. <https://doi.org/10.1016/j.egyr.2022.04.013>.

[131] Giordano A, Mastrianni C, Scarcello L. Optimization model for iot-aware energy exchange in energy communities for residential users. *Electronics* 2020;9(6):1003.

[132] Madler J, Harding S, Weibelzahl M. A multi-agent model of urban microgrids: Assessing the effects of energy-market shocks using real-world data. *Appl Energy* Aug 2023;343(16). <https://doi.org/10.1016/j.apenergy.2023.121180>. Art no. 121180.

[133] Yu D, Zhou XH, Qian FY, Dewancker B, Gao WJ, Zhang LT. Research on energy sharing ability and adaptability of building Complex: a case study with smart community in Japan. *Energy Explor Exploit* May 2023;41(3):1117–40. <https://doi.org/10.1177/01445987221117181>.

[134] Zhou YK. Incentivising multi-stakeholders' proactivity and market vitality for spatiotemporal microgrids in Guangzhou-Shenzhen-Hong Kong Bay Area. *Appl Energy* Dec 2022;328:29. <https://doi.org/10.1016/j.apenergy.2022.120196>. Art no. 120196.

[135] Serafini L, Principi E, Spinsante S, Squartini S. Multi-household energy management in a smart neighborhood in the presence of uncertainties and electric vehicles. *Electronics* 2021;10(24):3186.

[136] Zhou Y, Cao S, Kosonen R, Hamdy M. Multi-objective optimisation of an interactive buildings-vehicles energy sharing network with high energy flexibility using the Pareto archive NSGA-II algorithm. *Energy Convers Manag* 2020;218:113017.

[137] Zhang L, Cheng L, Alsokhry F, Mohamed MA. A novel stochastic blockchain-based energy management in smart cities using V2S and V2G. *IEEE Trans Intell Transport Syst* 2022;24(1):915–22.

[138] Al-Sorour A, Fazeli M, Monfared M, Fahmy AA. Investigation of electric vehicles Contributions in an optimized peer-to-peer energy trading system. *IEEE Access* 2023;11:12489–503. <https://doi.org/10.1109/access.2023.3242052>.

[139] Gholinejad HR, Adabi J, Marzband M. An energy management system structure for Neighborhood Networks. *J Build Eng* 2021;41:102376.

[140] Mohamed MA. A relaxed consensus plus innovation based effective negotiation approach for energy cooperation between smart grid and microgrid. *Energy* 2022;252:123996.

[141] Samanta H, Bhattacharjee A, Pramanik M, Das A, Bhattacharya KD, Saha H. Internet of things based smart energy management in a vanadium redox flow battery storage integrated bio-solar microgrid. *J Energy Storage* 2020;32:101967.

[142] Knirsch F, Langthaler O, Engel D. Trust-less electricity consumption optimization in local energy communities. *Energy Informatics* 2019;2:1–12.

[143] Ahmed W, et al. Stochastic adaptive-service level agreement-based energy management model for smart grid and prosumers. *PLoS One* Dec 2022;17(12):28. <https://doi.org/10.1371/journal.pone.0278324>. Art no. e0278324.

[144] Aziz MA, Qureshi IM, Cheema TA, Malik AN. Time based device clustering for domestic power scheduling. *International Journal of Advanced and Applied Sciences* 2016;4(1):1–9.

[145] Ben Arab M, Rekik M, Krichen L. A priority-based seven-layer strategy for energy management cooperation in a smart city integrated green technology. *Appl Energy* Apr 2023;335:16. <https://doi.org/10.1016/j.apenergy.2023.120767>. Art no. 120767.

[146] Tomin N, et al. A multi-criteria approach to designing and managing a renewable energy community. *Renew Energy* Nov 2022;199:1153–75. <https://doi.org/10.1016/j.renene.2022.08.151>.

[147] Li Y, Wang R, Yang Z. Optimal scheduling of isolated microgrids using automated reinforcement learning-based multi-period forecasting. *IEEE Trans Sustain Energy* 2021;13(1):159–69.

[148] Kumar J, Saxena D, Singh AK, Vasilakos AV. A Quantum controlled-NOT neural network-based load forecast and management model for smart grid. *IEEE Syst J* 2023;12. <https://doi.org/10.1109/jsyst.2023.3309324>. Article; Early Access.

[149] Aloitaibi DM, Akrami M, Dibaj M, Javadi AA. Smart energy solution for an optimised sustainable hospital in the green city of NEOM. *Sustain Energy Technol Assessments* 2019;35:32–40.

[150] Asaduz-Zaman M, Ongsakul W, Hossain MJ. Microgrid energy management for smart city planning on Saint Martin's island in Bangladesh. *Energies* May 2023;16(10):39. <https://doi.org/10.3390/en16104088>. Art no. 4088.

[151] Saif A, Khadem SK, Conlon MF, Norton B. Impact of distributed energy resources in smart homes and community-based electricity market. *IEEE Trans Ind Appl* Jan 2023;59(1):59–69. <https://doi.org/10.1109/tia.2022.3202756>.

[152] Veichtlbauer A, Praschl C, Gaisberger L, Steinmauerer G, Strasser TI. Toward an effective community energy management by using a cluster storage. *IEEE Access* 2022;10:112286–306.

[153] Awad H, Güll M. Optimisation of community shared solar application in energy efficient communities. *Sustain Cities Soc* 2018;43:221–37.

[154] Hong Y-Y, Chang W-C, Chang Y-R, Lee Y-D, Ouyang D-C. Optimal sizing of renewable energy generations in a community microgrid using Markov model. *Energy* 2017;135:68–74.

[155] Essayah C, Morstyn T. Optimal sizing for microgrids integrating distributed flexibility with the Perth West smart city as a case study. *Appl Energy* Apr 2023;336:10. <https://doi.org/10.1016/j.apenergy.2023.120846>. Art no. 120846.

[156] Croce D, Giuliano F, Bonomolo M, Leone G, Musca R, Tinnirello I. A decentralized load control architecture for smart energy consumption in small islands. *Sustain Cities Soc* 2020;53:101902.

[157] Dong B, Li Z, Taha A, Gatsis N. Occupancy-based buildings-to-grid integration framework for smart and connected communities. *Appl Energy* 2018;219:123–37.

[158] Reynolds J, Ahmad MW, Rezgui Y, Hippolyte J-L. Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm. *Appl Energy* 2019;235:699–713.

[159] Saletti C, Zimmerman N, Morini M, Kyrianiadis K, Gambarotta A. Enabling smart control by optimally managing the State of Charge of district heating networks. *Appl Energy* 2021;283:116286.

[160] Van Oevelen T, Neven T, Brès A, Schmidt RR, Vanhoudt D. Testing and evaluation of a smart controller for reducing peak loads and return temperatures in district heating networks. *Smart Energy* May 2023;10:15. <https://doi.org/10.1016/j.segy.2023.100105>. Art no. 100105.

[161] Kaisermayer V, et al. Smart control of interconnected district heating networks on the example of "100% Renewable District Heating Leibnitz. *Smart Energy* May 2022;6:10. <https://doi.org/10.1016/j.segy.2022.100069>. Art no. 100069.

[162] Ahn J, Cho S. Development of an intelligent building controller to mitigate indoor thermal dissatisfaction and peak energy demands in a district heating system. *Build Environ* 2017;124:57–68.

[163] Ahn J, Chung DH, Cho S. Energy cost analysis of an intelligent building network adopting heat trading concept in a district heating model. *Energy* 2018;151:11–25.

[164] Kontu K, Vimpari J, Penttinen P, Junnila S. City scale demand side management in three different-sized district heating systems. *Energies* 2018;11(12):3370.

[165] Jangsten M, Filipsson P, Lindholm T, Dalenbäck J-O. High temperature district cooling: challenges and possibilities based on an existing district cooling system and its connected buildings. *Energy* 2020;199:117407.

[166] Hosseinihaghghi S, Panchabuket S, Dabirian S, Webster J, Ouf M, Eicker U. Discovering, processing and consolidating housing stock and smart thermostat data in support of energy end-use mapping and housing retrofit program planning. *Sustain Cities Soc* Mar 2022;78:17. <https://doi.org/10.1016/j.scs.2021.103640>. Art no. 103640.

[167] Fitó J, Vallée M, Ruby A, Cuisinier E. Robustness of district heating versus electricity-driven energy system at district level: a multi-objective optimization study. *Smart Energy* May 2022;6:14. <https://doi.org/10.1016/j.segy.2022.100073>. Art no. 100073.

[168] Jansen S, Mohammadi S, Bokel R. Developing a locally balanced energy system for an existing neighbourhood, using the 'Smart Urban Isle' approach. *Sustain Cities Soc* 2021;64:102496.

[169] Battaglia V, Massarotti N, Vanoli L. Urban regeneration plans: Bridging the gap between planning and design energy districts. *Energy* 2022;254:124239.

[170] Blumberga A, et al. Transition from traditional historic urban block to positive energy block. *Energy* 2020;202:117485.

[171] Shi K, Li D, Gong T, Dong M, Gong F, Sun Y. Smart community energy cost optimization taking user comfort level and renewable energy consumption rate into consideration. *Processes* 2019;7(2):63.

[172] Li Y, Bu F, Li Y, Long C. Optimal scheduling of island integrated energy systems considering multi-uncertainties and hydrothermal simultaneous transmission: a deep reinforcement learning approach. *Appl Energy* 2023;333:120540.

[173] Di Somma M, et al. Stochastic operation optimization of the smart Savona campus as an integrated local energy community considering energy costs and carbon emissions. *Energies* 2022;15(22):8418.

[174] Tomar A, Shafullah D, Nguyen P, Eijgelaar M. An integrated flexibility optimizer for economic gains of local energy communities—a case study for a University campus. *Sustainable Energy, Grids and Networks* 2021;27:100518.

[175] Dal Cin E, Carraro G, Volpatto G, Lazzaretto A, Danieli P. A multi-criteria approach to optimize the design-operation of Energy Communities considering economic-environmental objectives and demand side management. *Energy Convers Manag* Jul 2022;263:18. <https://doi.org/10.1016/j.enconman.2022.115677>. Art no. 115677.

[176] Testi D, Conti P, Schito E, Urbanucci L, D'Etorre F. Synthesis and optimal operation of smart microgrids serving a cluster of buildings on a campus with centralized and distributed hybrid renewable energy units. *Energies* 2019;12(4):745.

[177] Memme S, Boccalatte A, Brignone M, Delfino F, Fossa M. Simulation and design of a large thermal storage system: real data analysis of a smart polygeneration micro grid system. *Appl Therm Eng* 2022;201:117789.

[178] Ondek AD, Edgar TF, Baldea M. Impact of rooftop photovoltaics and centralized energy storage on the design and operation of a residential CHP system. *Appl Energy* 2018;222:280–99.

[179] Li Y, Han M, Yang Z, Li G. Coordinating flexible demand response and renewable uncertainties for scheduling of community integrated energy systems with an electric vehicle charging station: a bi-level approach. *IEEE Trans Sustain Energy* 2021;12(4):2321–31.

[180] Li Y, Wang C, Li G, Wang J, Zhao D, Chen C. Improving operational flexibility of integrated energy system with uncertain renewable generations considering thermal inertia of buildings. *Energy Convers Manag* 2020;207:112526.

[181] Li Y, Han M, Shahidehpour M, Li J, Long C. Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response. *Appl Energy* 2023;335:120749.

[182] Li L, Zhang S. Peer-to-peer multi-energy sharing for home microgrids: an integration of data-driven and model-driven approaches. *Int J Electr Power Energy Syst* 2021;133:107243.

[183] Kolahan A, Maadi SR, Teymouriz Z, Schenone C. Blockchain-based solution for energy demand-side management of residential buildings. *Sustain Cities Soc* 2021;75:103316.

[184] Askeland K, Bozhkova KN, Sorknæs P. Balancing Europe: can district heating affect the flexibility potential of Norwegian hydropower resources? *Renew Energy* 2019;141:646–56.

[185] Then D, Hein P, Kneiske TM, Braun M. Analysis of Dependencies between gas and electricity distribution grid planning and building energy retrofit decisions. *Sustainability* 2020;12(13):5315.

[186] Leitner B, Widl E, Gawlik W, Hofmann R. A method for technical assessment of power-to-heat use cases to couple local district heating and electrical distribution grids. *Energy* 2019;182:729–38.

[187] Felice A, Rakocevic L, Peeters L, Messagie M, Coosemans T, Camargo LR. Renewable energy communities: do they have a business case in Flanders? *Appl Energy* Sep 2022;322:12. <https://doi.org/10.1016/j.apenergy.2022.119419>. Art no. 119419.

[188] Lizana J, et al. A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification. *Energy* Jan 2023;262:18. <https://doi.org/10.1016/j.energy.2022.125298>. Art no. 125298.

[189] Couraud B, Andoni M, Robu V, Norbu S, Chen S, Flynn D. Responsive FLEXibility: a smart local energy system. *Renew Sustain Energy Rev* Aug 2023;182:30. <https://doi.org/10.1016/j.rser.2023.113343>. Art no. 113343.

[190] Bahret C, Eltrop L. Cost-optimized heat and power supply for residential buildings: the cost-reducing effect of forming smart energy neighborhoods. *Energies* 2021;14(16):5093.

[191] Gao J, Gao F, Ma Z, Huang N, Yang Y. Multi-objective optimization of smart community integrated energy considering the utility of decision makers based on the Lévy flight improved chicken swarm algorithm. *Sustain Cities Soc* 2021;72:103075.

[192] O'Doherty J, Lyons S, Tol RSJ. Energy-using appliances and energy-saving features: Determinants of ownership in Ireland. *Appl Energy* 2008/07/01/2008; 85(7):650–62. <https://doi.org/10.1016/j.apenergy.2008.01.001>.

[193] Wang L, Greenberg S. Window operation and impacts on building energy consumption. *Energy Build* 2015;92:313–21.

[194] Li X, Wen J. Net-zero energy building clusters emulator for energy planning and operation evaluation. *Comput Environ Urban Syst* 2017;62:168–81.

[195] Mutani G, Usta Y. Design and modeling renewable energy communities: a case study in Cagliari. *Int J Sustain Dev Plann* 2022;17(4).

[196] Castillo-Calzadilla T, Garay-Martinez R, Andonegui CM. Holistic fuzzy logic methodology to assess positive energy district. *Sustain Cities Soc* Feb 2023;89:14. <https://doi.org/10.1016/j.scs.2022.104375>. Art no. 104375.

[197] Heo Y, Augenbroe G, Graziano D, Muehleisen RT, Guzowski L. Scalable methodology for large scale building energy improvement: relevance of calibration in model-based retrofit analysis. *Build Environ* 2015/05/01/2015;87:342–50. <https://doi.org/10.1016/j.buildenv.2014.12.016>.

[198] Wu Z, Wang B, Xia X. Large-scale building energy efficiency retrofit: concept, model and control. *Energy* 2016/08/15/2016;109:456–65. <https://doi.org/10.1016/j.energy.2016.04.124>.

[199] Zhao D, McCoy AP, Agee P, Mo Y, Reichard G, Paige F. Time effects of green buildings on energy use for low-income households: a longitudinal study in the United States. *Sustain Cities Soc* 2018/07/01/2018;40:559–68. <https://doi.org/10.1016/j.scs.2018.05.011>.

[200] Shogren JF, Taylor LO. On behavioral-environmental economics. *Rev Environ Econ Pol* 2008;2(1):26–44.