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The trajectory of sustainable urban development evolves with the integration of intelligent technologies,
extending beyond individual buildings to encompass entire communities interwoven with smart systems. Energy
retrofits at smart and connected communities are crucial for sustainable urban renewal, yet they present distinct
challenges from individual home retrofitting. However, a comprehensive understanding of the emerging research
scopes and technologies in large-scale energy retrofits is lacking. To address this problem, this research sys-
tematically reviews journal publications in this field from 2000 to 2023. Results disclose four research scopes:
building construction, mechanical systems and equipment, electrical systems and computing, and human-
centered design and connectivity, suggesting a new landscape for energy retrofit research, which largely ex-
tends beyond the traditional field of the built environment (e.g., heating, cooling, lighting, and structure) to
advanced computing, renewable energy, and human-centered connectivity. Results also delineate a new para-
digm of retrofit technologies with three focused areas: within-building optimizations (heating and air condi-
tioning, envelope, engineering design, and smart technology), between-building connections (power grid, district
energy, and integrated energy system), and whole-community integrations. They represent the nodes, ties, and
interplay within community networks. Eight retrofit focuses and their specific technologies and computational
techniques are summarized and examined. Notably, the approach of simulation and computational modeling is
prevalent, with evolutionary algorithms featured in computational techniques. The review suggests five gaps and
proposes a roadmap to advance future research in energy retrofits, specifically emphasizing the integration of
intelligent technologies and multidisciplinary collaborations.

demonstrate greater potential for energy savings [4]. The implementa-
tion of these retrofits at the community level is imperative to curbing
energy consumption and enhancing the quality of life for billions of
urban residents [5].

Large-scale building energy retrofits also generate societal impacts

1. Introduction

Large-scale building energy retrofits play a crucial role in promoting

sustainable urban renewal. The retrofit implementations yield substan-
tial energy savings to existing buildings where people spend 90 % of
their lifetime. Given the fact that buildings consume 40 % of the global
energy [1], large-scale building energy retrofits demonstrate the po-
tential to reduce 60-80 % of the consumption and 30 % of CO5 emissions
[2]. This is important for developed regions, for example, North America
where over 44 % of existing buildings would be renovated or replaced
[3]. With the projected global urban population reaching 6.7 billion by
2050, the associated escalation in energy demand, estimated between 45
and 59 quintillion joules in the coming decades, underscores the urgency
of large-scale energy retrofits. Notably, residential building retrofits

through two avenues. First, the adoption of green building technologies
noteworthily reduces energy expenditure and makes housing more
affordable, especially for the low-income. For example, 138 million US
households allocate 8-14 % of income on energy costs [6]. Second, the
economic ramifications of large-scale retrofits are evident in cities
grappling with economic decline and widespread abandonment of res-
idential, commercial, and industrial structures. For example, the city of
Detroit exemplifies this issue with thousands of abandoned houses,
causing social degradation and posing threats to public health and
community well-being.
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Abbreviations

ABM Agent-based modeling
ANN Artificial neural network

EA Evolutionary algorithm

EV Electric vehicle

GA Genetic algorithm

GIS Geographic information system

HVAC  Heating, ventilation, and air conditioning
10T Internet of things

MPC Model predictive control
NSGA-II Non-dominated sorting genetic algorithm II
PCM Phase change material

PSO Particle swarm optimization

PV Photovoltaics

RL Reinforcement learning

S&CC Smart and connected communities

The shift of cities towards a high-energy-efficiency and low-carbon
scenario, as exemplified in the green building movement [7], holds
the potential to advance large-scale building energy retrofits. However,
challenges persist in the domain of scopes and technologies for energy
retrofits in interconnected communities. These challenges encompass
the intricate interplay between the effects of building technologies and
occupant behaviors [8], the identification of factors for optimal building
retrofit solutions [9], and the interactions among buildings [10].
Nevertheless, the emergence of intelligent technologies offers a tech-
nical solution to address this complexity, providing the possibility to
realize the optimal energy retrofits in the future communities — the smart
and connected communities (S&CC). An S&CC is delineated as a com-
munity seamlessly integrating intelligent technologies with natural and
built environments. The expansion of S&CC is apparent and its impor-
tance is emphasized as more US communities enter a transformative era
marked by the integration of residents and their surroundings through
dynamic intelligent technologies.

Overall, emerging S&CC demonstrate significant promise for exten-
sive energy retrofits and increased energy savings in the future. How-
ever, compared to retrofitting individual buildings, the community-level
retrofitting presents more challenges and uncertainties that remain un-
explored in the current literature. Krarti [11] reviewed the building
codes and evaluated the economic and environmental benefits on the
retrofitted buildings after adopting the codes. Pérez-Lombard et al. [12]
reviewed the information of building systems that required to improve
energy retrofit. Shu and Zhao [13] reviewed decision making ap-
proaches to optimal retrofits for single buildings. Li and Wen [14]
reviewed the technologies of mechanical systems for building control
and operations. Yet, these reviews only concentrate on specifical aspects
of retrofit technologies, mostly at the individual building level, over-
looking connections between buildings and neglecting the rise of intel-
ligent applications in buildings. This research distinguishes itself from
prior reviews by aiming to delineate the future landscape of energy
retrofits in S&CC, particularly outlining new research scopes and retrofit
technologies. Unlike reviews addressing only fragments of the puzzle,
this study provides a comprehensive overview essential for architects,
engineers, and builders to comprehend the broader picture of future
community energy retrofits. By doing so, it sets the stage for researchers
in the domain of buildings (e.g., architecture/civil engineering), antic-
ipating the integration of more smart applications and advanced
computing into this traditional field, spanning from single buildings to
the broader context of smart and connected communities.
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2. Methods

Fig. 1 illustrates the methodological workflow for this research [15].
The procedure started with clusters of synonyms for keywords to iden-
tify topics of smart energy retrofit technologies at the community level.
Three clusters of synonymous keywords and one additional single word
were used in the search: (1) keywords of “retrofit”, “renovate”, “refur-
bish”, “transition”, “shift”, and “optimize” were used as alternatives to
address the energy retrofit endeavor; (2) keywords of “community”,
“neighborhood”, “district”, “urban”, “regional”, and “city” were used to
define the scope of energy retrofit efforts at a large scale; (3) keywords of
“smart”, “Al”, “intelligent”, and “artificial intelligence” were used to
target the most advanced intelligent solutions; and (4) the word “en-
ergy” was used to focus energy performance of the technologies. Then, a
systematic search was performed on major literature databases such as
Web of Science and Scopus, with a focus on peer-reviewed journal ar-
ticles published between 2000 and 2023. A total of 1149 articles were
identified in the Web of Science database and 1081 articles yielded in
Scopus. The research removed 668 duplicates, 892 noneligible articles,
three irretrievable articles, 75 nontechnical reports, 131 macro-policy
analyses, and 260 infrastructure studies. Overall, the comprehensive
review includes 201 peer-reviewed journal articles distributed from 81
journals.

The analysis approach includes bibliometric reviews and descriptive
statistical analyses on journal outlets, publication date, author affilia-
tion, geographical distribution, expertise area, and key technological
terms. Detailed technological specifications and applications evalua-
tions are summarized. Technological and methodological gaps are dis-
cussed, and future research roadmaps are suggested.

3. Bibliometric results

Fig. 2 shows the number of per-year publications from January 2011
to October 2023. Although the start year in this literature search is 2000,
publications emerge in year 2011. The number of articles published per
year continuously increases after 2014, suggesting more studies
involved in the concerted efforts as inspired by impending global ini-
tiatives such as the Paris Climate Agreement in 2015 and the UN’s
Sustainable Development Goals (SDGs) in 2016. Additionally, the drop
of 2023 in the chart does not indicate a decrease of publications but
reflects on the data collection of this study ended in October 2023.

Fig. 3 displays the affiliation distribution of the authors who are from
53 countries or regions. Especially, the largest portions include China
(11.4 %), Italy (10.8 %), and the US (9.2 %), followed by India (4.9 %),
the UK (4.6 %), Pakistan and Spain (equally 3.3 %), and Canada (2.9 %).
The eight countries totally own half of the contributors around the
world. These countries often have a large number of historical buildings
or large populations, which demands a greater focus on large-scale en-
ergy retrofit. Geographically, most of the studies come from Europe (22
countries, 43.8 %) and Asia (16 countries, 31.7 %), followed by America
(6 countries, 16.0 %), Africa (7 countries, 5.6 %), and Oceania (2
countries, 2.6 %).

Fig. 4 shows six expertise areas among the authors, indicating a
multidisciplinary nature of research in large-scale energy retrofits. The
top expertise areas, listed in a descending order of their representation,
are as follows: electrical engineering and computer science (26.8 %),
energy and environmental engineering (22.6 %), architecture, con-
struction, and civil engineering (17.6 %), industry and industrial engi-
neering (13.1 %), mechanical engineering (10.5 %), and sociology and
economics (9.4 %). It is noteworthy that the collective expertise of
architectural, civil, mechanical, and construction engineering accounts
for only 28.1 % of the overall expertise area, even though these areas
represent the traditional disciplines pertinent to building energy retrofit.
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4. Results: A landscape of research scopes term; the distance between circles represents the co-occurrence proba-
bility; the thickness of lines represents the connection strength between

Fig. 5 visually exhibits four research scopes and their interactions terms; and the color denotes term clusters that share a relevant topic.
through terms mining network analysis, unveiling an extended land- Overall, the results confirm an existing scope (i.e., building construc-
scape beyond the traditional built environments. In the network dia- tion) and identify three new scopes (i.e., “electrical systems and
gram, the size of circles represents the occurrence frequency of each computing,” “mechanical systems and equipment,” and “human-
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Bangladesh, Botswana, Czech Republic,
Estonia, Gabon, Iraq, Kuwait, Kyrgyzstan,
Mexico, New Zealand, Russia, Thailand,
Turkey, United Arab Emirates, each 0.3%

Latvia, Malaysia, Romania,

Switzerland, Tunisia, each 0.7%
Argentina, Egypt, Morocco,
Poland, South Korea,

Uruguay, Algeria, each 1.0%

Belgium, Greece, Ireland, ___
South Africa, each 1.3%

Brazil, Denmark,
Finland, Norway,
Portugal, Saudi Arabia,
Singapore, each 1.6%

Austria, France, /
Sweden, each 2.0%

Australia, Germany,
Iran, each 2.3%

Japan, Netherlands, each 2.6%
Canada, 2.9%
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centered design and connectivity™).

The first research scope delineates the traditional domain of building
construction for energy retrofit research (green). At the core of this
scope lies the term “building”, suggesting the enduring significance of
buildings in energy retrofit research. Other key terms in this cluster
include “energy efficiency”, “energy saving”, “heating”, “control strat-
egy”, “energy storage”, “temperature”, ‘“parameter”, “window”,
“climate”, “occupant”, “thermal comfort”, “MPC” (model predictive
control), and “PCM” (phase change material). These terms emphasize
several critical research subareas closely linked to the field of building
construction. They include: the exploration of energy storage solutions
(e.g., leveraging PCM for building thermal storage, and employing
battery technologies to harness surplus solar energy), the optimization
of building energy control strategy (e.g., MPC) to heighten energy effi-
ciency, the optimization of building parameters and heating tempera-
ture control to enhance energy savings and occupant comfort, and the
evaluation of the smart building components (e.g., window) in different
climates. Noteworthily, strong ties in this research scope include
“building-comfort” and “building-energy efficiency”, indicating that the
concentration of this research scope remains primarily focused on
enhancing energy efficiency while ensuring the comfort of the occu-
pants. New ties are identified, for example, “building-energy storage,”

and they imply new research subareas in the future.

The second research scope represents the domain of electrical sys-
tems and computing (red). The pivotal terms in this scope are “algo-
rithm”, “grid”, and “community”. Rather than traditional electrical
components in buildings (e.g., lighting), these terms highlight a signif-
icant emphasis on intelligent optimization and computational tech-
niques of power grids on a community scale. The terms comprising
“peer”, “prosumer”, “customer”, “user” “energy community” and “DER
(distributed energy resource)” collectively reflect an increasing interest
in distributed energy sources for sustainable community development.
The terms encompassing “uncertainty”, “architecture”, “electricity bill”,
“electricity cost”, “electricity consumption”, “peak hour”, and “peak
load”, signify that the primary objectives of power grid optimization
revolve around these factors. Other terms include “electric vehicle”

o

(EV), “appliance”, “energy management”, “demand response”, “demand
side management”, “smart grid”, and “smart home.” They emphasize
new research subareas closely linked to the field of smart grids such as
vehicle-to-home framework, demand side management of smart home,
demand response, peer-to-peer energy sharing and trading. Notably, the
strong tie within this scope is “community-algorithm”, underscoring the
growing and critical role of advanced computing in community-scale
energy retrofit.

The third research scope represents the domain of mechanical sys-
tems and equipment (blue). At the heart of this scope is the fundamental
term “network”, signaling a longstanding focus on energy system
network. The terms encompassing “RES” (renewable energy system),
“REC” (renewable energy certificate), “renewable energy source”,
“supply”, “flexibility”, and “transition” underscore the significance of
renewable energy integration on the sustainable transition and the
flexibility of energy supply. The terms including “vehicle”, “heat pump”,
“controller”, “heat”, “district heating”, and “microgrid” collectively
reflect growing attention towards utilizing vehicles, heat pumps, and
controllers to optimize district heating and microgrid operations. Other
terms like “neighborhood”, “district”, “cluster”, “country”, and “plan-
ning” show large and diverse scales of research on energy systems.

The fourth research scope delineates an emerging domain of human-

centered design and connectivity (yellow). Key terms in this scope

2 <
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include “internet”, “IoT (internet of things)”, “smart city”, “smart to amplify human needs and enhance urban energy efficiency.
building”, and “device”. These terms signify the primary focus on the In summary, the four research scopes demonstrate a new landscape
integration of advanced digital technologies and interconnected devices for energy retrofit research, which largely extends from the built
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Fig. 6. The paradigm of energy retrofit technologies at the community level.
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environment (heating, ventilation, and air conditioning (HVAC), light-
ing, structure, etc.) to advanced computing, renewable energy, and
human-centered connectivity. Nonetheless, notable strong ties bridge
different research scopes such as “building-network” and “building-al-
gorithm”. The cross-scope ties suggest a considerable portion of research
in the application of intelligent optimization algorithms, and the
expansion of individual building research to encompass larger scales by
analyzing networks of building. Overall, these interconnected scopes
emphasize a multidisciplinary nature of research in this area and
enhance the necessity of collaboration drawing on a synergy of expertise
to address the complex challenges associated with large-scale energy
retrofit.
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5. Results: A paradigm of retrofit technologies
5.1. Overview

Fig. 6 displays the paradigm of retrofit technologies in S&CC net-
works made of nodes and ties. Based on the network theory, each
building denotes a node, and each connection denotes a tie [16]. For
example, house A and house B are connected by the same utility com-
pany - house A and B are two nodes and the electricity grid is the tie. Of
course, the two houses (two nodes) can be connected by other ties such
as heat pipes. The paradigm includes three focused areas of energy
retrofit technologies. (1) The first area refers to the energy retrofit
technologies within buildings, including HVAC, building envelope, en-
gineering design, and smart home systems. (2) The second area refers to
the energy retrofit technologies between buildings, typically power grid
and district energy system, including the optimization of energy

Table 1
Summary of energy retrofit technologies of reviewed publications.
Area Focus Technology Description Computational Technique Reference
Within-Building HVAC MPC An advanced control strategy that uses a predictive Energy simulation, tree- [17,18]
Optimization: The model to estimate and control future system based methods, EA
nodes of S&CC behaviors. It optimizes HVAC control actions over a
networks. time frame and adheres to system constraints.
Energy performance Comprehensive data analysis and energy simulation Energy simulation [19,20]
assessment approaches to assess HVAC systems and then
recommend solutions for improvement.
Building Renewable energy Installation of solar panels on building envelope Energy simulation, tree- [24,26,30-32]
envelope integration spanning a range of applications from small-scale based methods, neural
facade modules to large-scale structures. network model, EA
Advanced materials Innovative materials applied in building envelopes, e.  Energy simulation [36,42]
g., PCM and thermochromic materials.
Engineering Production design Architectural design options or occupant-involved Energy simulation, ABM, [44,45,51]
design optimization simulations to model and optimize energy tree-based methods, EA

Between-Building
Connections: The ties of
S&CC networks.

Whole-Community
Integrations: Nodes and
ties of S&CC networks.

Smart home

Power grid

District energy
system

Integrated
energy system

Multi-solution
decision-making

Smart operations &
management

Distributed energy
management

Demand response

Energy sharing and
trading

Microgrid energy
management

Demand response

Energy sharing and
trading

Energy performance
assessment
System optimization

Energy interaction
analysis

Large-scale building
and energy system
modeling

performance.
Decision-making models, approaches, and solutions
to enable optimal building energy retrofits.

The energy management of connected appliances and
building systems to enable remote control or
autonomous operations through user scheduling or
sensing.

Hardware and software to enable connections and
control of smaller energy generation and storage units
on the consumer’s side, e.g., solar panels, batteries,
and other edge devices.

Building energy consumption response strategies to
adjust electricity demands in response to grid
conditions, e.g., peak demand period.

Technics and strategies for sharing and trading
electricity supply to distribute or exchange energy
among buildings.

Optimization techniques in the context of managing
building energy consumption demand and supply in
community settings.

Strategies for adjusting building energy consumption
in response to district heating and cooling conditions,
such as peak demand periods, to manage district
energy system load.

Technics and strategies for the sharing and trading
thermal energy to distribute or exchange energy
among buildings.

Assessment of the effectiveness of different district
energy system operation strategies

Strategies and optimization techniques to improve
the energy efficiency of integrated energy systems.
Analysis of the interplay between various energy
systems, especially electricity and thermal energy.
Investigations of both building retrofitting and
optimizing energy systems connected to building
stocks

Energy simulation, neural
network model, EA, GIS,
PSO

Energy simulation, neural
network model, EA, IoT, VPP

Energy simulation, IoT,
neural network model, RL

Energy simulation, neural
network model, EA, IoT, PSO

Energy simulation, block-
chain, GIS, IoT, multi-agent
system, EA, RL, VPP

Energy simulation, neural
network model, IoT, EA, PSO

Energy simulation, neural
network model, EA

Energy simulation, EA

Energy simulation, digital
twin

Energy simulation, block-
chain

Energy simulation

Energy simulation

[52,55,58,63,
65,681

[70-72,74,75,
77,82,84,85,
87,89,91]

[62,94,99]

[106,108,109,
115,116]

[31,121,122,
126,128,129,
131]
[141,143,144,
148,149,153]

[158,162]

[163]

[165,166]
[170,173,178,
182,183]
[184,186,191]

[194,195]

Notes: HVAC=Heating, Ventilation, and Air Conditioning, MPC= Model Predictive Control, PCM=Phase Change Materials, EA = Evolutionary Algorithm, GIS=
Geographic Information System, ABM = Agent-based Model, PSO= Particle Swarm Optimization, IoT = Internet of Things, RL = Reinforcement Learning, VPP=Virtual

Power Plant.
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distribution between energy stations and the community, as well as the
optimized distribution of energy among various buildings within a
community. (3) The third area refers to the energy retrofit technologies
in an integrated community of both buildings and their connections of
electric and thermal energy. Interestingly, from a network perspective,
the first area denotes the nodes of a S&CC network, the second area
delineates the ties of a S&CC network, and the third area covers a whole
S&CC network including both nodes and ties.

This study is interested in the research methodologies applied in
studies focusing on the design, development, or evaluation of energy
retrofit technologies. The classification of these studies reveal the
following distribution of methodologies: 83 % employ simulation and
computational modeling, such as using software like EnergyPlus or
TRNSYS for energy performance prediction; 7 % estimate the expected
impacts of actual retrofit projects through various evaluation tools and
data analysis techniques, such as cost-benefit analysis and lifecycle
assessment; 7 % learn from retrospective reviews of projects to gather
insights and experiences; and the remaining 3 % utilize experimental
approaches, such as physical tests on building materials.

Notably, computational techniques showcase distinct prominence in
current research approach. Evolutionary algorithms (EAs), encompass-
ing methods like genetic algorithms (GAs) and non-dominated sorting
genetic algorithm II (NSGA-II), dominate with a 13.4 % share in 201
publications. Linear and Nonlinear Programming methods, exemplified
by mixed-integer linear programming (MILP) and mixed-integer non-
linear programming, represent 9.0 % of the techniques. Swarm intelli-
gence techniques, which include particle swarm optimization (PSO) and
ant colony optimization, make up 8.0 %. Neural network models, such as
artificial neural networks (ANNs) and recurrent neural networks
(RNNs), comprise 7.5 %. Game-theoretic optimization, emphasizing
strategic decision-making exemplified by Nash equilibriums, holds a 3.5
% stake. Tree-based methods, spotlighting algorithms like decision trees
and random forests, contribute 2.5 %. Reinforcement learning (RL), an
approach where agents learn by interacting with their environment, as
illustrated by Q-learning and deep Q networks, also accounts for 2.5 %
of the techniques.

Table 1 summarizes the research focus, technology, and computa-
tional techniques for each of the three focused areas of retrofit tech-
nologies identified by the paradigm. The detailed retrofit technologies
are explained, compared, and analyzed in the following sections.

5.2. Focused Area#1: within-building optimizations — the nodes

5.2.1. High efficiency HVAC

HVAC systems continue to play a crucial role in maintaining thermal
comfort and indoor air quality during building energy retrofits. This
research identifies two specific technologies from recent advancements
in HVAC renovations.

The first is MPC, an advanced technology of process control. MPC
employs a dynamic model to predict the future status of HVAC systems
based on current control actions and measured outputs, such as tem-
perature, humidity, and air quality. It utilizes these predictions to
optimize future control actions to minimize energy costs and maintain
acceptable indoor environment. Also, MPC leverages weather and oc-
cupancy predictions and holds the potential to enhance energy conser-
vation, for example, by fine-tuning temperature settings and operation
schedules. MPC outperforms the proportional-integral-derivative con-
trol in managing thermal comfort and efficiency, due to its rapid
response, stability, minimal overshoot, and adaptability [17]. In addi-
tion, MPC plays a crucial role in load-shifting implementation and peak
demand reduction, especially through combining precooling and ther-
mal energy storage [18].

The second is system assessment and optimization, a process to refine
existing HVAC system designs. This technology analyzes performance
data, simulates energy consumption, and uses optimization techniques
to reduce energy costs. For example, the data-driven approach of data
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envelopment analysis (DEA) can assess and pinpoint the optimal stra-
tegies for HVAC system enhancement [19]. Other simulation-based
approaches are used to assess the potential of HVAC demand flexi-
bility and renewable source integration [20], evaluate HVAC refur-
bishment scenarios [21], or design HVAC controls for chillers,
compressors, and fresh air systems [22]. Notably, intelligent approaches
such ANN-assisted optimizer and grey wolf algorithms are able to
optimize the operations of HVAC systems [23].

5.2.2. Building envelope

Building envelopes are a fundamental component in determining
energy consumption, serving as an interface between indoor and out-
door environments for heat and light transfers. This research identifies
two specific technologies from recent advancements in envelopes.

The first refers to renewable energy integration with buildings. Solar
facade modules [24] and building integrated photovoltaics (PV) [25]
were developed to reduce heating and cooling loads and achieve
net-zero energy use. Research in PV panel design maximizes annual
solar radiation [26] and minimizes associated costs [27]. The PV design
can scale up to urban environments to maximize solar energy harvest-
ing, considering real-time electricity demand, architectural landscape
preservation, and spatial constraints [28]. Other research in large-scale
solar energy generation use methods and tools, including fast-evaluation
with minimal computational resources [29], dynamic simulation-based
evaluation [30], energy stress mitigation framework [31], comprehen-
sive mapping with a quantitative visual impact assessment [32], and the
home-developed TEAC software [33]. Outcomes of the research can
produce PV solutions for a historic city [34]. Also notably, intelligent
approaches such artificial bee colony algorithm are used to optimize PV
systems, e.g., in estimating the life cycle cost [35].

The second refers to the advanced materials of various building
components to improve energy efficiency. PCM in exterior facades can
absorb and release thermal energy during their phase transformation
[36]; PCM on interior surfaces can keep indoor thermal comfort without
energy consumption [37]. Thermochromic materials — changing color
based on ambient temperature — help reflect heat and mitigate over-
heating in summer, and absorb heat and enhance passive heating in
winter [38]. Another innovation is shape-memory alloys that
"remember" their initial shape and can return under certain conditions.
The alloys enable self-reactive facade systems and modify building
appearance adapting to environmental changes without external energy
input [39]. Smart water-filled glasses, of which the internal water layer
can absorb, store, and release heat, are used for smart windows to
improve building thermal comfort [40]. Specific studies pertain to the
smart windows examine vanadium dioxide (VO;) coatings [41] and
controllable absorbing layers [42].

5.2.3. Engineering design

The engineering design of buildings encompasses architectural
design and building operation design. This research identifies two spe-
cific technologies from engineering design innovations.

The first refers to production design optimization. Architectural
design process is optimized by surrogate modeling, an application of
supervised machine learning that emulates the behavior of complex
systems and facilitates a more streamlined, rapid, and efficient analyt-
ical process. The implications of surrogate modeling enable rapid and
accurate predictions to optimize complex architectural parameters, such
as daylighting performance of high-rise buildings [43], or thermal de-
signs of building envelopes under budget constraints [44]. Another
important approach is agent-based modeling (ABM), a computational
method to simulate the actions and interactions of agents to assess their
effects on building systems. ABM optimizes the complex interplay be-
tween energy consumption, indoor environment, and occupant
behavior. Outcomes achieve sustainable building operations, e.g., a
green campus with low energy use and high thermal comfort [45], or
optimal energy performance against desired lighting, temperature, and
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air quality levels [46]. Notably, intelligent approaches are used in to
improve thermal comfort, visual comfort, and energy consumption, for
example, a tri-optimization for building shape and envelope properties
[47], a NSGA-II-based multi-objective optimization for venetian blinds
in office buildings [48], a simulation-based optimization for architec-
tural design [49], hybrid machine learning algorithms to optimize
heating and cooling loads in various climates [50], or the Bayesian
multilevel additive modeling to optimize parameters in building typol-
ogies [51].

The second refers to multi-solution decision-making to determine the
most effective building retrofit strategies. Energy simulation-based de-
cision-making enables comparative analyses of energy use, COy emis-
sions, and cost decomposition to obtain optimal retrofit strategies [52,
53]. The energy simulator can be self-developed built on energy calcu-
lation standards [54]. Optimization modeling is another widely used
decision making approach to energy efficiency retrofits [55]. This
approach relies on mathematical models, for example, GA, computa-
tional fluid dynamics (CFD) [56], or the Taguchi method [57] to select
the best solution from various retrofit scenarios in campus design [58],
residential ~ buildings [59], and urban environment [60].
Assessment-based decision making can yield user-centric energy retrofit
solutions in a digital ecosystem [61], and address the problem of un-
certainty through the use of fuzzy logic and Bayesian networks [62].
System-integration supports the decision making, for example, a
GIS-embedded multicriteria spatial decision support system [63], or a
web-based decision support system for the multi-energy planning of
renewable energy in buildings and neighborhoods [64]. Additionally,
the empirical approach (e.g., case studies and onsite observations)
provides real project experience to improve the decision making in
automatic controls and renewable energy, for example, in office build-
ings [65], library [66], residential buildings [67], or hotels [68].

5.2.4. Smart home

Smart home upgrading relies on advanced information technologies
such as Al, IoT, renewable energy solutions, and energy storage. This
research identifies two specific technologies.

The first refers to smart operations and management, which auto-
matically and intelligently supervises energy loads and controls through
Al and IoT devices. Smart operations enable demand response based on
real time pricing, which adjusts electricity consumption in response to
supply conditions [69], and coordinates appliances, power generation,
grid support, and user comfort [70]. Home energy management opti-
mizes controls to maximize energy use reduction [71]. IoT sensing can
detect occupancy and based on which control electrical load [72]. The
involvement of Al in energy management improves energy efficiency,
prediction accuracy, and device operations [73]. Cognitive architecture
uses I[oT sensors and legacy systems learns from user behaviors to
optimize building energy use during renovations [74]. A simplified
method for automatically detecting anomalies in building energy con-
sumption uses statistical pattern recognition and ANN to provide energy
use feedback to occupants and guide them to adopt energy saving ac-
tions [75]. Home energy management can also apply to natural resource
usage, and notify users of waste, and aggregate similar activities [76].
Overall, the technology of smart operations and management leverages
occupant behavior to enable human-centered retrofit design and auto-
mation. Notably, a large amount of intelligent algorithms are developed
in this technology, for example, the cloud-based appliance scheduling
using ANN and GA [77], Al-based energy wastage and cost reductions
using GA [78]. The multi-objective EA [79], fuzzy adaptive dynamic
multi-objective algorithm [80], and greedy heuristic algorithm [81] are
used to optimize deferrable appliances’ schedule in households for en-
ergy saving and users satisfaction. The neural network Q-learning al-
gorithm [82], bacterial foraging ant colony optimization algorithm
[83], and NSGA-II [84] are used to reduce peak demand. The limited
memory algorithm for bound constrained problems [85], binary orien-
tation search algorithm [86], and game theory [87] are used to mitigate
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large-scale appliances energy demand. The extreme gradient boosting
algorithm and long short-term memory (LSTM) algorithm are used to
forecast hot water demand and optimize the electric water heater
operation [88]. Large-scale virtual power plants (VPPs) enable load
shifting [89] and novel controls lower district energy flow through
charging of domestic hot water tanks [90]. In addition, evaluation ap-
proaches to smart energy management are developed to optimize in-
vestments [91] or compare working conditions in office buildings [92].

The second refers to distributed energy management, which facili-
tates localized energy production, storage, and distribution. Leveraging
renewable resources like solar panels and energy storage systems, it
fosters independent and efficient energy systems that cater to local de-
mands while reducing dependency on conventional electric grids. An
automatic power control and management system was proposed, which
supplied power to home appliances based on the power demand [93].
Distributed energy management systems were presented to optimize
renewable energy distribution and storage [94]. An optimization model
was developed to determine optimal operation of home energy storage
for energy saving and peak demand reduction [95]. A strategy mini-
mizing total fuel consumption and extending batteries lifetime for off-
line smart homes was proposed [96]. One model was developed to
optimize PV, batteries, and EV charging for minimizing household
electricity costs [97]. A novel method to optimize energy utilization in
smart buildings was proposed considering equipment costs, power
supply costs, and occupants’ comfort [98]. A Time Delay Neural
Network with stochastic MPC was developed to enhance energy man-
agement efficiency in renewable energy communities [62]. Deep rein-
forcement learning was used to optimize building energy systems in
smart elderly care communities [99].

5.2.5. Research gap 1 - A lack of human-centered design for within-building
optimizations

The research of human-centered design is an emerging area and
demonstrates a great potential for energy savings. Particularly, occupant
behavior, namely human activities that influence building energy use,
can influence 50 % of energy use [100]. Scholars have shed light on the
influence of energy use behavior on urban energy consumption and have
advocated for the enhancement of user energy conservation behavior,
for example, hundreds of relevant factors [101]. Retrofit technologies
such as smart home control systems are closely related to occupant
behavior and they are studied to reduce energy consumption consid-
ering occupants’ preference, such as thermal comfort, indoor air quality,
and appliance usage habit. However, most of the current approaches
stay in the operations stage and they are not efficient to incorporate
occupant behaviors into the design of building retrofitting technologies,
for example, energy simulations [102]. The synergy between smart
home, HVAC systems, and building envelopes remains an underexplored
domain. Current engineering designs primarily focus on optimizing
HVAC and building envelopes in isolation, neglecting the integrated
benefits that smart home technologies can provide. A distinct need exists
for holistic approaches that simultaneously consider smart home control
systems, HVAC systems, and building envelopes to formulate more
cost-effective and efficient retrofit solutions. Overall, addressing this gap
is inherently challenging, particularly for residents with flexible home
behaviors, making accurate predictions of energy use exceedingly
difficult to achieve [103]. This gap, in turn, leads to imprecise and often
unnecessary retrofit decisions. For example, installing a highly
energy-efficiency range may not yield substantial energy savings in
cases where occupants infrequently engage in cooking activities at
home.

5.3. Focused Area#2: between-building connections — the ties
5.3.1. Power grid

The power grid, as the backbone of modern energy infrastructure,
represents between-building connections through electricity networks.
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This research identifies three specific technologies to reduce power peak
loads and integrate renewable energy sources.

The first refers to demand response, a technology to adjust energy
consumption in response to energy network conditions. Dynamic pricing
models are the core of this technology [104], which can connect with
demand and renewable fluctuations to match supply and demand [105].
A real-time dynamic pricing model for EV charging and discharging and
building energy management effectively reduces peak loads [106].
Game theory is used to adaptively adjust the electricity tariff following
the changes in electricity consumption [107]. When combining load
forecasting models, dynamic pricing schemes enable household load
shifting [108]. Notably, the usage of IoT leverages the demand response
and optimizes multi-layer grid operations. The IoT approach can
incorporate dynamic pricing with energy storage [109], stochastic
operation management [110], or HVAC thermal dynamics [111]. Other
intelligent approaches include digital twins, min-conflict algorithms,
and grey wolf optimization algorithm [112]. A multi-layer interactive
optimization model considers individual sensitivity for demand
response [113]; and a bi-level scheduling model coordinates demand
response with renewable energy [114]. Other demand response strate-
gies connect MPC of HVAC control [115], renewable energy generation
[116], and PV scenarios in distribution networks [117]. Recent ad-
vancements in demand response have led to practical applications; thus,
studies are associated with implementation, such as the evaluation using
quantitative key performance indicators [118], social feedback devel-
oped in a smartphone app [119], and the profitability of energy service
providers [120].

The second refers to energy sharing and trading, the energy redis-
tribution and transactions among individual homes where consumers
actively participate in the energy market, potentially lowering costs and
promoting the use of renewable energy sources. Energy sharing strate-
gies stand at the core of this technology, for example, simulation-based
techno-economic analysis [121], cooperative game theory-based models
[122], stochastic linear models [123], and mixed-integer programming
models [124]. Notably, intelligent computing plays a very important
role to optimize energy sharing and trading decisions, such as RL [125],
GA [126], game theory [127], multi-agent systems [128], blockchain
[129], VPPs in microgrids [130], IoT sensing [131], and GIS [31].
Associated evaluation studies emerge to explore the impacts of energy
sharing on economic, technical, and environmental performance [132],
diverse building types, energy market scenarios [133], and stakeholder
participation [134]. In addition, research in energy sharing expands to
building-vehicle energy interactions, using the augmented e-constraint
approach [135] and Pareto archive NSGA-II [136], and outputs insights
into vehicle-to-grid (V2G) [137] and vehicle-to-home (V2H) modes
[138].

The third refers to microgrid energy management, which explores
optimization and controls of sustainable community microgrids.
Microgrid management, especially when connecting distributed energy
generators, can achieve energy positive or neutral communities [139],
optimize energy trading through innovative negotiation [140], and
incorporate IoT schemes in smart grid [141]. The trust-less approach
[142], GA [143], PSO [144,145], RL aided Monte Carlo tree search al-
gorithm [146], and the alternating direction method of multipliers were
used to optimize energy scheduling for communities [147]. Quantum
controlled-NOT gate induced feed-forward neural network [148] was
used to accurately forecast energy load and efficiently manage power
supply and demand in the smart grid. One work optimized integration of
PV, biomass, and storage for a standalone hybrid hospital microgrid
[149]. One study designed and analyzed an optimal microgrid config-
uration with renewable energy and storage technologies [150]. One
study assessed the sustainable community shift using distributed energy
resources and a community-based market, noting voltage challenges in
winter [151]. An energy management concept was introduced that co-
ordinated home energy storage and adjustable appliance usage within a
local energy community [152]. Monte Carlo simulation was used to

Renewable and Sustainable Energy Reviews 199 (2024) 114510

evaluate community shared solar PV under uncertainty [153], while
another study optimized renewable sizing in a community microgrid
[154,155]. MILP and mixed integer piecewise linear optimization model
[155] were used to optimize sizing and operation of distributed energy
storage in smart microgrid. Decentralized architectures were investi-
gated for optimizing renewable energy utilization and demand-side
management in residential communities [156]. Frameworks were
developed for simultaneous optimization of building and distribution
grid operations through integrated building-to-grid (B2G) management
[157].

5.3.2. District energy system

The district energy system distributes steam, hot water, or chilled
water from centralized plants through pipes to buildings. The system
represents between-building connections through thermal networks.
This research identifies three specific technologies.

The first refers to demand response. Different from the electricity
demand in power grid, the demand response here relies on heat gener-
ation and heat demand to improve energy efficiency [158]. MPC is
important for district energy system due to the high relevance to HVAC
networks and building thermal capacity [159]. The integration of MPC
can effectively reduce peak loads through controlling return and supply
temperatures [160]; and the involvement of demand side management
systems can further coordinate supply and demand in an interconnected
district energy system network [161]. An intelligent building controller
for a district energy system was developed, focusing on demand
response strategies to improve thermal comfort and reduce peak energy
demands [162].

The second refers to energy sharing and trading, particularly thermal
energy trading rather than electricity. Although a few research solely
investigated energy sharing and trading strategies in district energy
systems, an intelligent network model adopting the concept of heat
trading in a district energy system emphasizes the optimization of
thermal comfort and energy costs [163], which allows for exchange of
excess heat between buildings and overall energy use reduction.

The third refers to energy performance assessment, for example, on
the energy saving potential of different strategies for district energy
system operation. The impact of various demand side management
strategies of district energy system systems on energy saving was
analyzed and found limited performance [164]. The potential of high
temperature district cooling was examined by data analysis, and it was
found to significantly enhance energy saving [165]. A workflow was
developed to extract and consolidate housing data from various sources
like permits and smart thermostats to support energy mapping and
retrofit planning [166]. One study compared centralized district energy
systems with multiple sources to decentralized electricity-driven energy
systems at the district level, finding that the centralized architecture
offers greater robustness [167].

5.3.3. Integrated energy system

The integrated energy system refers to a network where various
forms of energy are integrated and interact to ensure a steady and effi-
cient supply of energy to a community. The system represents between-
building connections through multiple networks such as electricity,
heat, and natural gas. This research identifies two specific technologies
to achieve the maximization of overall energy utilization, improve en-
ergy efficiency, and reduce energy waste.

The first refers to system optimization, which optimizes the overall
capacity and efficiency of multi-energy systems. A new approach for
generating various concepts for local energy systems that maximize the
use of local renewable resources was proposed [168]. Simulation-based
decision support methodologies by means of scenario analysis to facil-
itate the planning process to realize energy neutral neighborhoods was
developed [169]. Overall methodology for transition from traditional
historic urban blocks to positive energy block was developed [170]. PSO
[1711, RL [172] and MILP [173-175] algorithms were used to optimize
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the operation of polygeneration systems. Some research studied inte-
gration of distributed heat pumps [176], thermal energy storage [177,
178], EV charging station [179], and solar energy [178] aiming to
optimize the design of polygeneration systems. A novel optimal sched-
uling model was presented to improve operational flexibility of the in-
tegrated energy system by leveraging thermal inertia of buildings and
different kinds of auxiliary equipment [180]. A data-driven two-stage
distributionally robust optimization model was developed for commu-
nity integrated energy systems to efficiently coordinate demand
response and renewable energy generation uncertainties [181]. A dou-
ble auction-based peer-to-peer multi-energy sharing and trading mech-
anism, to conduct the electricity sharing and heat sharing
simultaneously, was proposed [182]. A blockchain-based network was
presented to improve coordination of both electrical demand manage-
ment and thermal comfort [183].

The second refers to energy interaction analysis, which optimizes the
interactions between different energy networks. One study found dis-
trict energy systems could increase power system flexibility by reducing
peak electric loads and enabling additional hydropower exports [184]. A
multi-agent simulation was used to study the interplay between gas and
electric systems during building retrofits [185]. A sequential coupling
approach was used to assess operations between district energy system
and power distribution grids [186]. One study investigated renewable
energy communities, showcasing how factors like electrification of
heating and transportation can impact energy performance [187]. One
study utilized data-driven energy modeling to determine the optimal
heat storage capacity for supporting heating electrification, effectively
reducing peak power demand and carbon emissions through demand
response [188]. Frameworks and key performance indicators (KPIs)
were proposed to guide urban energy system planning [189]. In addi-
tion, one study used a linear-optimization approach to study the cost
difference between shared energy infrastructure and individually plan-
ned buildings [190]. One study utilized an improved optimization al-
gorithm to analyze the impacts of different decision maker types on joint
electrical and thermal energy scheduling in a community [191].

5.3.4. Research gap 2 - A short expansion of smart home technology into
between-building connections

The potential of smart home technology in energy retrofits has pre-
dominantly been explored within individual buildings, with a focus on
aspects like smart appliance management. However, there is limited
attention given to its connectivity between buildings. For instance, the
impact of a distributed energy management system on the functional-
ities of the smart grid, particularly in the context of demand response
strategies, remains an often-overlooked gap. This gap signifies a need to
understand the interplay between within-building optimizations and
between-building connections. Consequently, implementing energy-
saving measures solely based on overall energy demand, without
considering the specific energy consumption in a multi-building context,
may not yield the desired outcomes. For instance, two homes with
identical peak electricity loads may differ in load types: the first,
equipped with deferrable loads, can leverage demand response to reduce
peaks, while the second, with non-deferrable loads, may not derive the
same benefits despite displaying similar load patterns. Overall,
addressing this gap is crucial for developing effective energy retrofit
strategies that extend the scope of smart home technologies across
interconnected buildings.

5.3.5. Research gap 3 - A lack of interactive dynamics in the research of
between-building connections

Research in the field predominantly emphasizes power grid retrofits,
often neglecting district energy systems and their intricate interactions
with power grids. This oversight highlights a significant gap in the
literature and underscores the need for more integrated studies focusing
on their joint retrofitting, considering their inherent interdependence. A
comprehensive understanding of the mutual influences of retrofitting
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both energy networks is imperative for developing stable, optimized
solutions and unlocking the full potential of community-wide energy
savings. Moreover, recognizing this gap underscores the significance of
integrating Combined Heat and Power (CHP) technology into retrofit
strategies. This integration holds the promise of elevating overall system
efficiency, mitigating emissions, and fostering more resilient and sus-
tainable energy networks. By seamlessly incorporating CHP into the
broader discourse on power grid and district energy system retrofits,
researchers can pioneer innovative pathways to attain comprehensive
and synergistic solutions. This approach aims to maximize energy effi-
ciency and cultivate community-wide benefits. Such an expanded vision
accentuates the critical importance of holistic approaches that encom-
pass diverse energy technologies, meeting the evolving demands of
community energy systems.

5.3.6. Research gap 4 - A latent between-building connection by social and
behavioral networks

Research frequently overlooks the between-building impacts of in-
dividual retrofit projects, a gap that becomes increasingly pertinent with
the rising trend of energy sharing and trading, amplifying the inter-
connectivity between buildings. The effects of a retrofit in one building
can significantly influence neighboring buildings through these inten-
sified energy links, as well as through social networks. Smart and con-
nected technologies invisibly establish a latent social tie among
residents in a community. For example, a smart thermostat will
benchmark the temperature settings of other surrounding homes.
Therefore, intelligent technologies establish an invisible network of
human activities and facilitate the exchange of behavioral knowledge in,
such as thermostat setting [8], lighting and appliance use [192], and
window opening [193]. All the above behavior knowledge is important
for energy retrofit decisions. Understanding these dynamic interactions
is crucial for effectively expanding a single building retrofit strategy to
encompass the entire community. Overall, we have observed the third
important between-building connection — behavioral connectivity —
despite the electrical grid and thermal energy grid. Unfortunately, there
exists an often-overlooked gap in understanding occupant behavior
across multiple buildings.

5.4. Focused Area#3: whole-community integrations — the network

5.4.1. Technology overview

Some studies explored both the retrofitting of buildings and the
optimization of energy systems connected to building stocks. One study
developed a net-zero building cluster emulator that could simulate en-
ergy behaviors of a cluster of buildings and distributed energy systems
[194]. Another study evaluated different retrofit interventions for the
building stocks as well as the energy sharing between buildings [195].
One study used agent-based fuzzy logic to define and evaluate urban
transition scenarios [196]. Overall, whole-community integration is an
emerging area, and an increasing number of studies are expected,
enabled by recent, advanced computations.

5.4.2. Research gap 5 - few retrofit technologies for whole-community
integrations

Current research predominantly focuses on individual facets of en-
ergy retrofits, honing in on isolated within-building optimizations (i.e.,
nodes) and/or between-building energy systems (i.e., ties). This
segmented approach overlooks the potential advantages that a holistic
perspective can bring. A noticeable gap emerges in the literature when it
comes to collectively retrofitting entire communities, involving the
integration of power grids, district energy systems, and individual
buildings. By amalgamating these elements, researchers can unlock
synergistic effects that transcend the sum of individual optimizations.
Addressing this research gap is not only essential but also pivotal for
fostering effective and comprehensive energy retrofit strategies in the
context of smart and connected communities. Embracing a holistic
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approach ensures that the intricate interactions among power grids,
district energy systems, and buildings are thoroughly understood and
strategically leveraged to maximize energy efficiency and sustainability
at the community level. The knowledge tailored for single building
retrofits proves inadequate for large-scale retrofits. Buildings in large-
scale retrofits constitute a multi-dimensional complex system — a com-
munity connected by technologies and occupants [197]. For instance,
buildings constructed at a similar time often employ similar technolo-
gies, such as vinyl siding. Large-scale retrofits seek to upgrade the shared
technologies across a whole community, introducing standardized ele-
ments like prefabricated roof panels that may not cater to each build-
ing’s customized needs. Consequently, methods used to select retrofit
technologies for a single building are unsuitable for a community [198].
Emerging connections and conflicts within the community are not yet
well understood [199]. This gap results in knowledge-action bias,
value-action bias, and intention-action bias [200]. Bridging this divide is
imperative to align knowledge and action, values, and intentions within
the intricate dynamics of large-scale retrofits for smarter and more
connected communities to maximize energy efficiency and sustainabil-
ity at the community level.

6. Future research directions

Fig. 7 depicts a roadmap for future energy retrofit research. Mile-
stone one, focused on within-building optimization, has seen significant
progress. The ongoing research emphasis is now on milestone two,
expanding considerations from individual buildings to interconnections
between buildings. Milestone three is the overarching objective,
involving the comprehensive integration of whole communities for
large-scale energy modeling and simulation.

To attain milestone two, the findings suggest a wide-ranging build-
ings’ retrofit strategy that considers the influence of individual retrofits
on neighboring buildings. This entails the understanding of between-
building connections for effective energy retrofits. Three key technolo-
gies are highlighted to have crucial roles. First, energy simulation tools
are essential for modeling the effects of retrofit measures like energy
sharing on neighboring buildings, allowing for the assessment of
community-wide energy dynamics. Second, network approaches offer
insights into how retrofit practices spread within communities, possibly
identifying patterns and key influencers in the adoption of retrofit
measures. Third, intelligent optimization algorithms can effectively
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combine network analysis data and energy simulation results to develop
optimal retrofit strategies for large-scale buildings. This approach en-
ables a comprehensive understanding of both social influences and en-
ergy dynamics, leading to efficient and effective community-wide
retrofit solutions.

To accomplish milestone two, the findings highlight the needs for
three technological advances. The first need is the analysis of interactive
dynamics in energy systems, such as microgrids and district energy
systems. This includes an emphasis on optimizing the interplay between
different energy systems for energy retrofits. For example, employing
co-simulation tools and sensitivity analysis to understand and optimize
the interactions between various energy systems, identifying robust,
resilient, and effective retrofit strategies under diverse scenarios. The
second need is an intelligent optimization framework that can simulta-
neously consider smart home upgrades, energy-efficient HVAC systems,
and building envelope improvements. The framework aims to compre-
hensively analyze various energy retrofit options, evaluating financial
and energy-saving aspects using intelligent optimization algorithms to
identify the most cost-effective combination of technologies. The third
need is smart home systems for energy efficiency, which not only learn
and adapt to individual user habits but also actively guide and influence
users toward energy-saving behaviors. This entails leveraging advanced
data analytics and machine learning for behavioral analysis in energy
consumption. The integration of smart metering and IoT devices is
deemed crucial for providing real-time monitoring and feedback on
energy use, allowing users to understand and manage their consumption
effectively. Additionally, incorporating interactive interfaces and
gamification elements can engage residents and motivate energy-
efficient practices.

To achieve and excel in milestone three, the findings anticipate
growth trends in two research domains. The first domain emphasizes the
"whole-community" approach, integrating urban building retrofits with
urban energy system optimization by viewing S&CC networks as intri-
cate ecosystems. Optimization strategies in S& CC involve the improve-
ment of physical infrastructure, such as building and energy systems,
and the integration of social dynamics to enhance overall network
performance. Future focuses could be on employing advanced analytics
and simulation tools to understand and optimize the interdependencies
in S&CC networks, and/or exploring how technological upgrades in
buildings and energy systems are aligned with and supported by social
connections within a community, leading to more sustainable, efficient,
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Fig. 7. Future research with three milestones.
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and socially cohesive energy solutions. The second domain focuses on
integrated research involving PV panels, heat pumps, and EVs to drive
urban sustainability transformations. PV panels are commonly used
energy saving measures enabling urban sustainable development;
however, their intermittent and weather-dependent property restricts
energy saving potential. Alongside PV battery storage solutions, load
shifting further alleviates PV application limitations. Heat pumps
convert electricity into heat, and buildings have thermal storage ca-
pacities, so heat pumps can convert immediate electricity into delayed
heat. This facilitates building electrification while also enabling electric
load shifting. EV can transfer electricity of buildings via charging/dis-
charging facilities, enhancing demand response flexibility and multi-
building energy sharing potential. Leveraging heat pumps and EVs
promotes electricity flexibility, which can improve solar utilization
efficiency.

7. Conclusions

Emerging intelligent technologies enable optimal energy retrofits in
future Smart and Connected Communities, showing significant promise
for extensive energy savings. S&CC seamlessly integrates intelligent
technologies into natural and built environments, gaining importance as
US communities enter a transformative era. This research outlines the
future landscape of energy retrofits in S&CC, delineating new research
scopes and technologies comprehensively. Unlike fragmented reviews, it
offers architects, engineers, and builders a crucial, holistic overview
essential for navigating the evolving landscape of smart and connected
urban development.

A primary finding in this review identifies four research scopes
(building construction, mechanical systems, electrical systems and
computing, and human-centered design and connectivity), unveiling a
novel landscape for energy retrofit research that extends from the built
environment to advanced computing, renewable energy, and human-
centered connectivity. These interconnected scopes underscore the
multidisciplinary nature of research in this area, emphasizing the ne-
cessity for collaborative efforts drawing on a synergy of expertise to
address the complex challenges associated with large-scale energy
retrofit.

Another significant finding unveils a new paradigm of retrofit tech-
nologies with three focused areas: Within-building optimizations (e.g.,
high-efficiency HVAC, building envelope, engineering design, and smart
home), Between-building connections (e.g., power grid, district energy,
and integrated energy system), and Whole-community integrations.
These areas represent the nodes, ties, and interplay within S&CC net-
works. Notably, advanced computational techniques including Al and
IoT hold distinct prominence in the current research approach.

Research gaps have surfaced, collectively shaping the trajectory of
urban development. The lack of human-centered design in within-
building optimizations calls for a more empathetic approach to
improve living experiences. The expansion of smart home technology
should embrace between-building connections to foster robust
community-level interactive dynamics. The untapped potential of
human and behavioral networks in inter-building connections presents
an opportunity for deepening community engagement. Moreover, the
scarcity of retrofit technologies for comprehensive community integra-
tion points to an essential area for innovation in upgrading existing
urban infrastructures.

The trend towards S&CC reflects a forward-looking approach,
recognizing the potential for interconnected urban ecosystems to
enhance overall quality of life, economic opportunities, and sustain-
ability. Researchers are navigating innovative paths amid the evolving
urban housing landscape, envisioning a holistic and interconnected
experience where technology and social dynamics converge for smarter,
more efficient communities. To enable this vision, understanding
between-building connections for effective energy retrofits is crucial,
requiring advancements in simulation tools, network modeling, and
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optimization algorithms. Proactive smart home systems guiding energy
savings and integrated "whole-community" approaches are growth
areas, as is research on transformative technologies like PV panels, heat
pumps, and EVs. Exploring these areas and leveraging opportunities
brings us closer to realizing the vision of S&CC.

This research is limited due to the focus specifically on technological
advancements in building energy retrofits within the context of S&CC. It
does not encompass the broader scope of S&CC, including trans-
portation, waste management, water systems, street lighting, and
network infrastructure. The exclusion of these sectors from our study is a
limitation, as they are integral to the overall energy efficiency of S&CC.
Subsequent research endeavors should address these critical sectors to
provide a more comprehensive understanding of energy efficiency
within the broader framework of S&CC.
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