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The shift of cities towards a high-energy-efficiency and low-carbon 
scenario, as exemplified in the green building movement [7], holds 
the potential to advance large-scale building energy retrofits. However, 
challenges persist in the domain of scopes and technologies for energy 
retrofits in interconnected communities. These challenges encompass 
the intricate interplay between the effects of building technologies and 
occupant behaviors [8], the identification of factors for optimal building 
retrofit solutions [9], and the interactions among buildings [10]. 
Nevertheless, the emergence of intelligent technologies offers a tech
nical solution to address this complexity, providing the possibility to 
realize the optimal energy retrofits in the future communities – the smart 
and connected communities (S&CC). An S&CC is delineated as a com
munity seamlessly integrating intelligent technologies with natural and 
built environments. The expansion of S&CC is apparent and its impor
tance is emphasized as more US communities enter a transformative era 
marked by the integration of residents and their surroundings through 
dynamic intelligent technologies. 

Overall, emerging S&CC demonstrate significant promise for exten
sive energy retrofits and increased energy savings in the future. How
ever, compared to retrofitting individual buildings, the community-level 
retrofitting presents more challenges and uncertainties that remain un
explored in the current literature. Krarti [11] reviewed the building 
codes and evaluated the economic and environmental benefits on the 
retrofitted buildings after adopting the codes. Pérez-Lombard et al. [12] 
reviewed the information of building systems that required to improve 
energy retrofit. Shu and Zhao [13] reviewed decision making ap
proaches to optimal retrofits for single buildings. Li and Wen [14] 
reviewed the technologies of mechanical systems for building control 
and operations. Yet, these reviews only concentrate on specifical aspects 
of retrofit technologies, mostly at the individual building level, over
looking connections between buildings and neglecting the rise of intel
ligent applications in buildings. This research distinguishes itself from 
prior reviews by aiming to delineate the future landscape of energy 
retrofits in S&CC, particularly outlining new research scopes and retrofit 
technologies. Unlike reviews addressing only fragments of the puzzle, 
this study provides a comprehensive overview essential for architects, 
engineers, and builders to comprehend the broader picture of future 
community energy retrofits. By doing so, it sets the stage for researchers 
in the domain of buildings (e.g., architecture/civil engineering), antic
ipating the integration of more smart applications and advanced 
computing into this traditional field, spanning from single buildings to 
the broader context of smart and connected communities. 

2. Methods 

Fig. 1 illustrates the methodological workflow for this research [15]. 
The procedure started with clusters of synonyms for keywords to iden
tify topics of smart energy retrofit technologies at the community level. 
Three clusters of synonymous keywords and one additional single word 
were used in the search: (1) keywords of “retrofit”, “renovate”, “refur
bish”, “transition”, “shift”, and “optimize” were used as alternatives to 
address the energy retrofit endeavor; (2) keywords of “community”, 
“neighborhood”, “district”, “urban”, “regional”, and “city” were used to 
define the scope of energy retrofit efforts at a large scale; (3) keywords of 
“smart”, “AI”, “intelligent”, and “artificial intelligence” were used to 
target the most advanced intelligent solutions; and (4) the word “en
ergy” was used to focus energy performance of the technologies. Then, a 
systematic search was performed on major literature databases such as 
Web of Science and Scopus, with a focus on peer-reviewed journal ar
ticles published between 2000 and 2023. A total of 1149 articles were 
identified in the Web of Science database and 1081 articles yielded in 
Scopus. The research removed 668 duplicates, 892 noneligible articles, 
three irretrievable articles, 75 nontechnical reports, 131 macro-policy 
analyses, and 260 infrastructure studies. Overall, the comprehensive 
review includes 201 peer-reviewed journal articles distributed from 81 
journals. 

The analysis approach includes bibliometric reviews and descriptive 
statistical analyses on journal outlets, publication date, author affilia
tion, geographical distribution, expertise area, and key technological 
terms. Detailed technological specifications and applications evalua
tions are summarized. Technological and methodological gaps are dis
cussed, and future research roadmaps are suggested. 

3. Bibliometric results 

Fig. 2 shows the number of per-year publications from January 2011 
to October 2023. Although the start year in this literature search is 2000, 
publications emerge in year 2011. The number of articles published per 
year continuously increases after 2014, suggesting more studies 
involved in the concerted efforts as inspired by impending global ini
tiatives such as the Paris Climate Agreement in 2015 and the UN’s 
Sustainable Development Goals (SDGs) in 2016. Additionally, the drop 
of 2023 in the chart does not indicate a decrease of publications but 
reflects on the data collection of this study ended in October 2023. 

Fig. 3 displays the affiliation distribution of the authors who are from 
53 countries or regions. Especially, the largest portions include China 
(11.4 %), Italy (10.8 %), and the US (9.2 %), followed by India (4.9 %), 
the UK (4.6 %), Pakistan and Spain (equally 3.3 %), and Canada (2.9 %). 
The eight countries totally own half of the contributors around the 
world. These countries often have a large number of historical buildings 
or large populations, which demands a greater focus on large-scale en
ergy retrofit. Geographically, most of the studies come from Europe (22 
countries, 43.8 %) and Asia (16 countries, 31.7 %), followed by America 
(6 countries, 16.0 %), Africa (7 countries, 5.6 %), and Oceania (2 
countries, 2.6 %). 

Fig. 4 shows six expertise areas among the authors, indicating a 
multidisciplinary nature of research in large-scale energy retrofits. The 
top expertise areas, listed in a descending order of their representation, 
are as follows: electrical engineering and computer science (26.8 %), 
energy and environmental engineering (22.6 %), architecture, con
struction, and civil engineering (17.6 %), industry and industrial engi
neering (13.1 %), mechanical engineering (10.5 %), and sociology and 
economics (9.4 %). It is noteworthy that the collective expertise of 
architectural, civil, mechanical, and construction engineering accounts 
for only 28.1 % of the overall expertise area, even though these areas 
represent the traditional disciplines pertinent to building energy retrofit. 

Abbreviations 

ABM Agent-based modeling 
ANN Artificial neural network 
EA Evolutionary algorithm 
EV Electric vehicle 
GA Genetic algorithm 
GIS Geographic information system 
HVAC Heating, ventilation, and air conditioning 
IOT Internet of things 
MPC Model predictive control 
NSGA-II Non-dominated sorting genetic algorithm II 
PCM Phase change material 
PSO Particle swarm optimization 
PV Photovoltaics 
RL Reinforcement learning 
S&CC Smart and connected communities  
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environment (heating, ventilation, and air conditioning (HVAC), light
ing, structure, etc.) to advanced computing, renewable energy, and 
human-centered connectivity. Nonetheless, notable strong ties bridge 
different research scopes such as “building-network” and “building-al
gorithm”. The cross-scope ties suggest a considerable portion of research 
in the application of intelligent optimization algorithms, and the 
expansion of individual building research to encompass larger scales by 
analyzing networks of building. Overall, these interconnected scopes 
emphasize a multidisciplinary nature of research in this area and 
enhance the necessity of collaboration drawing on a synergy of expertise 
to address the complex challenges associated with large-scale energy 
retrofit. 

5. Results: A paradigm of retrofit technologies 

5.1. Overview 

Fig. 6 displays the paradigm of retrofit technologies in S&CC net
works made of nodes and ties. Based on the network theory, each 
building denotes a node, and each connection denotes a tie [16]. For 
example, house A and house B are connected by the same utility com
pany – house A and B are two nodes and the electricity grid is the tie. Of 
course, the two houses (two nodes) can be connected by other ties such 
as heat pipes. The paradigm includes three focused areas of energy 
retrofit technologies. (1) The first area refers to the energy retrofit 
technologies within buildings, including HVAC, building envelope, en
gineering design, and smart home systems. (2) The second area refers to 
the energy retrofit technologies between buildings, typically power grid 
and district energy system, including the optimization of energy 

Table 1 
Summary of energy retrofit technologies of reviewed publications.  

Area Focus Technology Description Computational Technique Reference 

Within-Building 
Optimization: The 
nodes of S&CC 
networks. 

HVAC MPC An advanced control strategy that uses a predictive 
model to estimate and control future system 
behaviors. It optimizes HVAC control actions over a 
time frame and adheres to system constraints. 

Energy simulation, tree- 
based methods, EA 

[17,18] 

Energy performance 
assessment 

Comprehensive data analysis and energy simulation 
approaches to assess HVAC systems and then 
recommend solutions for improvement. 

Energy simulation [19,20] 

Building 
envelope 

Renewable energy 
integration 

Installation of solar panels on building envelope 
spanning a range of applications from small-scale 
façade modules to large-scale structures. 

Energy simulation, tree- 
based methods, neural 
network model, EA 

[24,26,30–32] 

Advanced materials Innovative materials applied in building envelopes, e. 
g., PCM and thermochromic materials. 

Energy simulation [36,42] 

Engineering 
design 

Production design 
optimization 

Architectural design options or occupant-involved 
simulations to model and optimize energy 
performance. 

Energy simulation, ABM, 
tree-based methods, EA 

[44,45,51] 

Multi-solution 
decision-making 

Decision-making models, approaches, and solutions 
to enable optimal building energy retrofits. 

Energy simulation, neural 
network model, EA, GIS, 
PSO 

[52,55,58,63, 
65,68] 

Smart home Smart operations & 
management 

The energy management of connected appliances and 
building systems to enable remote control or 
autonomous operations through user scheduling or 
sensing. 

Energy simulation, neural 
network model, EA, IoT, VPP 

[70–72,74,75, 
77,82,84,85, 
87,89,91] 

Distributed energy 
management 

Hardware and software to enable connections and 
control of smaller energy generation and storage units 
on the consumer’s side, e.g., solar panels, batteries, 
and other edge devices. 

Energy simulation, IoT, 
neural network model, RL 

[62,94,99] 

Between-Building 
Connections: The ties of 
S&CC networks. 

Power grid Demand response Building energy consumption response strategies to 
adjust electricity demands in response to grid 
conditions, e.g., peak demand period. 

Energy simulation, neural 
network model, EA, IoT, PSO 

[106,108,109, 
115,116] 

Energy sharing and 
trading 

Technics and strategies for sharing and trading 
electricity supply to distribute or exchange energy 
among buildings. 

Energy simulation, block- 
chain, GIS, IoT, multi-agent 
system, EA, RL, VPP 

[31,121,122, 
126,128,129, 
131] 

Microgrid energy 
management 

Optimization techniques in the context of managing 
building energy consumption demand and supply in 
community settings. 

Energy simulation, neural 
network model, IoT, EA, PSO 

[141,143,144, 
148,149,153] 

District energy 
system 

Demand response Strategies for adjusting building energy consumption 
in response to district heating and cooling conditions, 
such as peak demand periods, to manage district 
energy system load. 

Energy simulation, neural 
network model, EA 

[158,162] 

Energy sharing and 
trading 

Technics and strategies for the sharing and trading 
thermal energy to distribute or exchange energy 
among buildings. 

Energy simulation, EA [163] 

Energy performance 
assessment 

Assessment of the effectiveness of different district 
energy system operation strategies 

Energy simulation, digital 
twin 

[165,166] 

Integrated 
energy system 

System optimization Strategies and optimization techniques to improve 
the energy efficiency of integrated energy systems. 

Energy simulation, block- 
chain 

[170,173,178, 
182,183] 

Energy interaction 
analysis 

Analysis of the interplay between various energy 
systems, especially electricity and thermal energy. 

Energy simulation [184,186,191] 

Whole-Community 
Integrations: Nodes and 
ties of S&CC networks.  

Large-scale building 
and energy system 
modeling 

Investigations of both building retrofitting and 
optimizing energy systems connected to building 
stocks 

Energy simulation [194,195] 

Notes: HVAC=Heating, Ventilation, and Air Conditioning, MPC= Model Predictive Control, PCM=Phase Change Materials, EA = Evolutionary Algorithm, GIS=
Geographic Information System, ABM = Agent-based Model, PSO= Particle Swarm Optimization, IoT = Internet of Things, RL = Reinforcement Learning, VPP=Virtual 
Power Plant. 
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distribution between energy stations and the community, as well as the 
optimized distribution of energy among various buildings within a 
community. (3) The third area refers to the energy retrofit technologies 
in an integrated community of both buildings and their connections of 
electric and thermal energy. Interestingly, from a network perspective, 
the first area denotes the nodes of a S&CC network, the second area 
delineates the ties of a S&CC network, and the third area covers a whole 
S&CC network including both nodes and ties. 

This study is interested in the research methodologies applied in 
studies focusing on the design, development, or evaluation of energy 
retrofit technologies. The classification of these studies reveal the 
following distribution of methodologies: 83 % employ simulation and 
computational modeling, such as using software like EnergyPlus or 
TRNSYS for energy performance prediction; 7 % estimate the expected 
impacts of actual retrofit projects through various evaluation tools and 
data analysis techniques, such as cost-benefit analysis and lifecycle 
assessment; 7 % learn from retrospective reviews of projects to gather 
insights and experiences; and the remaining 3 % utilize experimental 
approaches, such as physical tests on building materials. 

Notably, computational techniques showcase distinct prominence in 
current research approach. Evolutionary algorithms (EAs), encompass
ing methods like genetic algorithms (GAs) and non-dominated sorting 
genetic algorithm II (NSGA-II), dominate with a 13.4 % share in 201 
publications. Linear and Nonlinear Programming methods, exemplified 
by mixed-integer linear programming (MILP) and mixed-integer non- 
linear programming, represent 9.0 % of the techniques. Swarm intelli
gence techniques, which include particle swarm optimization (PSO) and 
ant colony optimization, make up 8.0 %. Neural network models, such as 
artificial neural networks (ANNs) and recurrent neural networks 
(RNNs), comprise 7.5 %. Game-theoretic optimization, emphasizing 
strategic decision-making exemplified by Nash equilibriums, holds a 3.5 
% stake. Tree-based methods, spotlighting algorithms like decision trees 
and random forests, contribute 2.5 %. Reinforcement learning (RL), an 
approach where agents learn by interacting with their environment, as 
illustrated by Q-learning and deep Q networks, also accounts for 2.5 % 
of the techniques. 

Table 1 summarizes the research focus, technology, and computa
tional techniques for each of the three focused areas of retrofit tech
nologies identified by the paradigm. The detailed retrofit technologies 
are explained, compared, and analyzed in the following sections. 

5.2. Focused Area#1: within-building optimizations – the nodes 

5.2.1. High efficiency HVAC 
HVAC systems continue to play a crucial role in maintaining thermal 

comfort and indoor air quality during building energy retrofits. This 
research identifies two specific technologies from recent advancements 
in HVAC renovations. 

The first is MPC, an advanced technology of process control. MPC 
employs a dynamic model to predict the future status of HVAC systems 
based on current control actions and measured outputs, such as tem
perature, humidity, and air quality. It utilizes these predictions to 
optimize future control actions to minimize energy costs and maintain 
acceptable indoor environment. Also, MPC leverages weather and oc
cupancy predictions and holds the potential to enhance energy conser
vation, for example, by fine-tuning temperature settings and operation 
schedules. MPC outperforms the proportional-integral-derivative con
trol in managing thermal comfort and efficiency, due to its rapid 
response, stability, minimal overshoot, and adaptability [17]. In addi
tion, MPC plays a crucial role in load-shifting implementation and peak 
demand reduction, especially through combining precooling and ther
mal energy storage [18]. 

The second is system assessment and optimization, a process to refine 
existing HVAC system designs. This technology analyzes performance 
data, simulates energy consumption, and uses optimization techniques 
to reduce energy costs. For example, the data-driven approach of data 

envelopment analysis (DEA) can assess and pinpoint the optimal stra
tegies for HVAC system enhancement [19]. Other simulation-based 
approaches are used to assess the potential of HVAC demand flexi
bility and renewable source integration [20], evaluate HVAC refur
bishment scenarios [21], or design HVAC controls for chillers, 
compressors, and fresh air systems [22]. Notably, intelligent approaches 
such ANN-assisted optimizer and grey wolf algorithms are able to 
optimize the operations of HVAC systems [23]. 

5.2.2. Building envelope 
Building envelopes are a fundamental component in determining 

energy consumption, serving as an interface between indoor and out
door environments for heat and light transfers. This research identifies 
two specific technologies from recent advancements in envelopes. 

The first refers to renewable energy integration with buildings. Solar 
facade modules [24] and building integrated photovoltaics (PV) [25] 
were developed to reduce heating and cooling loads and achieve 
net-zero energy use. Research in PV panel design maximizes annual 
solar radiation [26] and minimizes associated costs [27]. The PV design 
can scale up to urban environments to maximize solar energy harvest
ing, considering real-time electricity demand, architectural landscape 
preservation, and spatial constraints [28]. Other research in large-scale 
solar energy generation use methods and tools, including fast-evaluation 
with minimal computational resources [29], dynamic simulation-based 
evaluation [30], energy stress mitigation framework [31], comprehen
sive mapping with a quantitative visual impact assessment [32], and the 
home-developed TEAC software [33]. Outcomes of the research can 
produce PV solutions for a historic city [34]. Also notably, intelligent 
approaches such artificial bee colony algorithm are used to optimize PV 
systems, e.g., in estimating the life cycle cost [35]. 

The second refers to the advanced materials of various building 
components to improve energy efficiency. PCM in exterior facades can 
absorb and release thermal energy during their phase transformation 
[36]; PCM on interior surfaces can keep indoor thermal comfort without 
energy consumption [37]. Thermochromic materials – changing color 
based on ambient temperature – help reflect heat and mitigate over
heating in summer, and absorb heat and enhance passive heating in 
winter [38]. Another innovation is shape-memory alloys that 
"remember" their initial shape and can return under certain conditions. 
The alloys enable self-reactive façade systems and modify building 
appearance adapting to environmental changes without external energy 
input [39]. Smart water-filled glasses, of which the internal water layer 
can absorb, store, and release heat, are used for smart windows to 
improve building thermal comfort [40]. Specific studies pertain to the 
smart windows examine vanadium dioxide (VO2) coatings [41] and 
controllable absorbing layers [42]. 

5.2.3. Engineering design 
The engineering design of buildings encompasses architectural 

design and building operation design. This research identifies two spe
cific technologies from engineering design innovations. 

The first refers to production design optimization. Architectural 
design process is optimized by surrogate modeling, an application of 
supervised machine learning that emulates the behavior of complex 
systems and facilitates a more streamlined, rapid, and efficient analyt
ical process. The implications of surrogate modeling enable rapid and 
accurate predictions to optimize complex architectural parameters, such 
as daylighting performance of high-rise buildings [43], or thermal de
signs of building envelopes under budget constraints [44]. Another 
important approach is agent-based modeling (ABM), a computational 
method to simulate the actions and interactions of agents to assess their 
effects on building systems. ABM optimizes the complex interplay be
tween energy consumption, indoor environment, and occupant 
behavior. Outcomes achieve sustainable building operations, e.g., a 
green campus with low energy use and high thermal comfort [45], or 
optimal energy performance against desired lighting, temperature, and 

L. Shu et al.                                                                                                                                                                                                                                      



Renewable and Sustainable Energy Reviews 199 (2024) 114510

8

air quality levels [46]. Notably, intelligent approaches are used in to 
improve thermal comfort, visual comfort, and energy consumption, for 
example, a tri-optimization for building shape and envelope properties 
[47], a NSGA–II–based multi-objective optimization for venetian blinds 
in office buildings [48], a simulation-based optimization for architec
tural design [49], hybrid machine learning algorithms to optimize 
heating and cooling loads in various climates [50], or the Bayesian 
multilevel additive modeling to optimize parameters in building typol
ogies [51]. 

The second refers to multi-solution decision-making to determine the 
most effective building retrofit strategies. Energy simulation-based de
cision-making enables comparative analyses of energy use, CO2 emis
sions, and cost decomposition to obtain optimal retrofit strategies [52, 
53]. The energy simulator can be self-developed built on energy calcu
lation standards [54]. Optimization modeling is another widely used 
decision making approach to energy efficiency retrofits [55]. This 
approach relies on mathematical models, for example, GA, computa
tional fluid dynamics (CFD) [56], or the Taguchi method [57] to select 
the best solution from various retrofit scenarios in campus design [58], 
residential buildings [59], and urban environment [60]. 
Assessment-based decision making can yield user-centric energy retrofit 
solutions in a digital ecosystem [61], and address the problem of un
certainty through the use of fuzzy logic and Bayesian networks [62]. 
System-integration supports the decision making, for example, a 
GIS-embedded multicriteria spatial decision support system [63], or a 
web-based decision support system for the multi-energy planning of 
renewable energy in buildings and neighborhoods [64]. Additionally, 
the empirical approach (e.g., case studies and onsite observations) 
provides real project experience to improve the decision making in 
automatic controls and renewable energy, for example, in office build
ings [65], library [66], residential buildings [67], or hotels [68]. 

5.2.4. Smart home 
Smart home upgrading relies on advanced information technologies 

such as AI, IoT, renewable energy solutions, and energy storage. This 
research identifies two specific technologies. 

The first refers to smart operations and management, which auto
matically and intelligently supervises energy loads and controls through 
AI and IoT devices. Smart operations enable demand response based on 
real time pricing, which adjusts electricity consumption in response to 
supply conditions [69], and coordinates appliances, power generation, 
grid support, and user comfort [70]. Home energy management opti
mizes controls to maximize energy use reduction [71]. IoT sensing can 
detect occupancy and based on which control electrical load [72]. The 
involvement of AI in energy management improves energy efficiency, 
prediction accuracy, and device operations [73]. Cognitive architecture 
uses IoT sensors and legacy systems learns from user behaviors to 
optimize building energy use during renovations [74]. A simplified 
method for automatically detecting anomalies in building energy con
sumption uses statistical pattern recognition and ANN to provide energy 
use feedback to occupants and guide them to adopt energy saving ac
tions [75]. Home energy management can also apply to natural resource 
usage, and notify users of waste, and aggregate similar activities [76]. 
Overall, the technology of smart operations and management leverages 
occupant behavior to enable human-centered retrofit design and auto
mation. Notably, a large amount of intelligent algorithms are developed 
in this technology, for example, the cloud-based appliance scheduling 
using ANN and GA [77], AI-based energy wastage and cost reductions 
using GA [78]. The multi-objective EA [79], fuzzy adaptive dynamic 
multi-objective algorithm [80], and greedy heuristic algorithm [81] are 
used to optimize deferrable appliances’ schedule in households for en
ergy saving and users satisfaction. The neural network Q-learning al
gorithm [82], bacterial foraging ant colony optimization algorithm 
[83], and NSGA-II [84] are used to reduce peak demand. The limited 
memory algorithm for bound constrained problems [85], binary orien
tation search algorithm [86], and game theory [87] are used to mitigate 

large-scale appliances energy demand. The extreme gradient boosting 
algorithm and long short-term memory (LSTM) algorithm are used to 
forecast hot water demand and optimize the electric water heater 
operation [88]. Large-scale virtual power plants (VPPs) enable load 
shifting [89] and novel controls lower district energy flow through 
charging of domestic hot water tanks [90]. In addition, evaluation ap
proaches to smart energy management are developed to optimize in
vestments [91] or compare working conditions in office buildings [92]. 

The second refers to distributed energy management, which facili
tates localized energy production, storage, and distribution. Leveraging 
renewable resources like solar panels and energy storage systems, it 
fosters independent and efficient energy systems that cater to local de
mands while reducing dependency on conventional electric grids. An 
automatic power control and management system was proposed, which 
supplied power to home appliances based on the power demand [93]. 
Distributed energy management systems were presented to optimize 
renewable energy distribution and storage [94]. An optimization model 
was developed to determine optimal operation of home energy storage 
for energy saving and peak demand reduction [95]. A strategy mini
mizing total fuel consumption and extending batteries lifetime for off
line smart homes was proposed [96]. One model was developed to 
optimize PV, batteries, and EV charging for minimizing household 
electricity costs [97]. A novel method to optimize energy utilization in 
smart buildings was proposed considering equipment costs, power 
supply costs, and occupants’ comfort [98]. A Time Delay Neural 
Network with stochastic MPC was developed to enhance energy man
agement efficiency in renewable energy communities [62]. Deep rein
forcement learning was used to optimize building energy systems in 
smart elderly care communities [99]. 

5.2.5. Research gap 1 - A lack of human-centered design for within-building 
optimizations 

The research of human-centered design is an emerging area and 
demonstrates a great potential for energy savings. Particularly, occupant 
behavior, namely human activities that influence building energy use, 
can influence 50 % of energy use [100]. Scholars have shed light on the 
influence of energy use behavior on urban energy consumption and have 
advocated for the enhancement of user energy conservation behavior, 
for example, hundreds of relevant factors [101]. Retrofit technologies 
such as smart home control systems are closely related to occupant 
behavior and they are studied to reduce energy consumption consid
ering occupants’ preference, such as thermal comfort, indoor air quality, 
and appliance usage habit. However, most of the current approaches 
stay in the operations stage and they are not efficient to incorporate 
occupant behaviors into the design of building retrofitting technologies, 
for example, energy simulations [102]. The synergy between smart 
home, HVAC systems, and building envelopes remains an underexplored 
domain. Current engineering designs primarily focus on optimizing 
HVAC and building envelopes in isolation, neglecting the integrated 
benefits that smart home technologies can provide. A distinct need exists 
for holistic approaches that simultaneously consider smart home control 
systems, HVAC systems, and building envelopes to formulate more 
cost-effective and efficient retrofit solutions. Overall, addressing this gap 
is inherently challenging, particularly for residents with flexible home 
behaviors, making accurate predictions of energy use exceedingly 
difficult to achieve [103]. This gap, in turn, leads to imprecise and often 
unnecessary retrofit decisions. For example, installing a highly 
energy-efficiency range may not yield substantial energy savings in 
cases where occupants infrequently engage in cooking activities at 
home. 

5.3. Focused Area#2: between-building connections – the ties 

5.3.1. Power grid 
The power grid, as the backbone of modern energy infrastructure, 

represents between-building connections through electricity networks. 
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This research identifies three specific technologies to reduce power peak 
loads and integrate renewable energy sources. 

The first refers to demand response, a technology to adjust energy 
consumption in response to energy network conditions. Dynamic pricing 
models are the core of this technology [104], which can connect with 
demand and renewable fluctuations to match supply and demand [105]. 
A real-time dynamic pricing model for EV charging and discharging and 
building energy management effectively reduces peak loads [106]. 
Game theory is used to adaptively adjust the electricity tariff following 
the changes in electricity consumption [107]. When combining load 
forecasting models, dynamic pricing schemes enable household load 
shifting [108]. Notably, the usage of IoT leverages the demand response 
and optimizes multi-layer grid operations. The IoT approach can 
incorporate dynamic pricing with energy storage [109], stochastic 
operation management [110], or HVAC thermal dynamics [111]. Other 
intelligent approaches include digital twins, min-conflict algorithms, 
and grey wolf optimization algorithm [112]. A multi-layer interactive 
optimization model considers individual sensitivity for demand 
response [113]; and a bi-level scheduling model coordinates demand 
response with renewable energy [114]. Other demand response strate
gies connect MPC of HVAC control [115], renewable energy generation 
[116], and PV scenarios in distribution networks [117]. Recent ad
vancements in demand response have led to practical applications; thus, 
studies are associated with implementation, such as the evaluation using 
quantitative key performance indicators [118], social feedback devel
oped in a smartphone app [119], and the profitability of energy service 
providers [120]. 

The second refers to energy sharing and trading, the energy redis
tribution and transactions among individual homes where consumers 
actively participate in the energy market, potentially lowering costs and 
promoting the use of renewable energy sources. Energy sharing strate
gies stand at the core of this technology, for example, simulation-based 
techno-economic analysis [121], cooperative game theory-based models 
[122], stochastic linear models [123], and mixed-integer programming 
models [124]. Notably, intelligent computing plays a very important 
role to optimize energy sharing and trading decisions, such as RL [125], 
GA [126], game theory [127], multi-agent systems [128], blockchain 
[129], VPPs in microgrids [130], IoT sensing [131], and GIS [31]. 
Associated evaluation studies emerge to explore the impacts of energy 
sharing on economic, technical, and environmental performance [132], 
diverse building types, energy market scenarios [133], and stakeholder 
participation [134]. In addition, research in energy sharing expands to 
building-vehicle energy interactions, using the augmented ε-constraint 
approach [135] and Pareto archive NSGA-II [136], and outputs insights 
into vehicle-to-grid (V2G) [137] and vehicle-to-home (V2H) modes 
[138]. 

The third refers to microgrid energy management, which explores 
optimization and controls of sustainable community microgrids. 
Microgrid management, especially when connecting distributed energy 
generators, can achieve energy positive or neutral communities [139], 
optimize energy trading through innovative negotiation [140], and 
incorporate IoT schemes in smart grid [141]. The trust-less approach 
[142], GA [143], PSO [144,145], RL aided Monte Carlo tree search al
gorithm [146], and the alternating direction method of multipliers were 
used to optimize energy scheduling for communities [147]. Quantum 
controlled-NOT gate induced feed-forward neural network [148] was 
used to accurately forecast energy load and efficiently manage power 
supply and demand in the smart grid. One work optimized integration of 
PV, biomass, and storage for a standalone hybrid hospital microgrid 
[149]. One study designed and analyzed an optimal microgrid config
uration with renewable energy and storage technologies [150]. One 
study assessed the sustainable community shift using distributed energy 
resources and a community-based market, noting voltage challenges in 
winter [151]. An energy management concept was introduced that co
ordinated home energy storage and adjustable appliance usage within a 
local energy community [152]. Monte Carlo simulation was used to 

evaluate community shared solar PV under uncertainty [153], while 
another study optimized renewable sizing in a community microgrid 
[154,155]. MILP and mixed integer piecewise linear optimization model 
[155] were used to optimize sizing and operation of distributed energy 
storage in smart microgrid. Decentralized architectures were investi
gated for optimizing renewable energy utilization and demand-side 
management in residential communities [156]. Frameworks were 
developed for simultaneous optimization of building and distribution 
grid operations through integrated building-to-grid (B2G) management 
[157]. 

5.3.2. District energy system 
The district energy system distributes steam, hot water, or chilled 

water from centralized plants through pipes to buildings. The system 
represents between-building connections through thermal networks. 
This research identifies three specific technologies. 

The first refers to demand response. Different from the electricity 
demand in power grid, the demand response here relies on heat gener
ation and heat demand to improve energy efficiency [158]. MPC is 
important for district energy system due to the high relevance to HVAC 
networks and building thermal capacity [159]. The integration of MPC 
can effectively reduce peak loads through controlling return and supply 
temperatures [160]; and the involvement of demand side management 
systems can further coordinate supply and demand in an interconnected 
district energy system network [161]. An intelligent building controller 
for a district energy system was developed, focusing on demand 
response strategies to improve thermal comfort and reduce peak energy 
demands [162]. 

The second refers to energy sharing and trading, particularly thermal 
energy trading rather than electricity. Although a few research solely 
investigated energy sharing and trading strategies in district energy 
systems, an intelligent network model adopting the concept of heat 
trading in a district energy system emphasizes the optimization of 
thermal comfort and energy costs [163], which allows for exchange of 
excess heat between buildings and overall energy use reduction. 

The third refers to energy performance assessment, for example, on 
the energy saving potential of different strategies for district energy 
system operation. The impact of various demand side management 
strategies of district energy system systems on energy saving was 
analyzed and found limited performance [164]. The potential of high 
temperature district cooling was examined by data analysis, and it was 
found to significantly enhance energy saving [165]. A workflow was 
developed to extract and consolidate housing data from various sources 
like permits and smart thermostats to support energy mapping and 
retrofit planning [166]. One study compared centralized district energy 
systems with multiple sources to decentralized electricity-driven energy 
systems at the district level, finding that the centralized architecture 
offers greater robustness [167]. 

5.3.3. Integrated energy system 
The integrated energy system refers to a network where various 

forms of energy are integrated and interact to ensure a steady and effi
cient supply of energy to a community. The system represents between- 
building connections through multiple networks such as electricity, 
heat, and natural gas. This research identifies two specific technologies 
to achieve the maximization of overall energy utilization, improve en
ergy efficiency, and reduce energy waste. 

The first refers to system optimization, which optimizes the overall 
capacity and efficiency of multi-energy systems. A new approach for 
generating various concepts for local energy systems that maximize the 
use of local renewable resources was proposed [168]. Simulation-based 
decision support methodologies by means of scenario analysis to facil
itate the planning process to realize energy neutral neighborhoods was 
developed [169]. Overall methodology for transition from traditional 
historic urban blocks to positive energy block was developed [170]. PSO 
[171], RL [172] and MILP [173–175] algorithms were used to optimize 
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the operation of polygeneration systems. Some research studied inte
gration of distributed heat pumps [176], thermal energy storage [177, 
178], EV charging station [179], and solar energy [178] aiming to 
optimize the design of polygeneration systems. A novel optimal sched
uling model was presented to improve operational flexibility of the in
tegrated energy system by leveraging thermal inertia of buildings and 
different kinds of auxiliary equipment [180]. A data-driven two-stage 
distributionally robust optimization model was developed for commu
nity integrated energy systems to efficiently coordinate demand 
response and renewable energy generation uncertainties [181]. A dou
ble auction-based peer-to-peer multi-energy sharing and trading mech
anism, to conduct the electricity sharing and heat sharing 
simultaneously, was proposed [182]. A blockchain-based network was 
presented to improve coordination of both electrical demand manage
ment and thermal comfort [183]. 

The second refers to energy interaction analysis, which optimizes the 
interactions between different energy networks. One study found dis
trict energy systems could increase power system flexibility by reducing 
peak electric loads and enabling additional hydropower exports [184]. A 
multi-agent simulation was used to study the interplay between gas and 
electric systems during building retrofits [185]. A sequential coupling 
approach was used to assess operations between district energy system 
and power distribution grids [186]. One study investigated renewable 
energy communities, showcasing how factors like electrification of 
heating and transportation can impact energy performance [187]. One 
study utilized data-driven energy modeling to determine the optimal 
heat storage capacity for supporting heating electrification, effectively 
reducing peak power demand and carbon emissions through demand 
response [188]. Frameworks and key performance indicators (KPIs) 
were proposed to guide urban energy system planning [189]. In addi
tion, one study used a linear-optimization approach to study the cost 
difference between shared energy infrastructure and individually plan
ned buildings [190]. One study utilized an improved optimization al
gorithm to analyze the impacts of different decision maker types on joint 
electrical and thermal energy scheduling in a community [191]. 

5.3.4. Research gap 2 - A short expansion of smart home technology into 
between-building connections 

The potential of smart home technology in energy retrofits has pre
dominantly been explored within individual buildings, with a focus on 
aspects like smart appliance management. However, there is limited 
attention given to its connectivity between buildings. For instance, the 
impact of a distributed energy management system on the functional
ities of the smart grid, particularly in the context of demand response 
strategies, remains an often-overlooked gap. This gap signifies a need to 
understand the interplay between within-building optimizations and 
between-building connections. Consequently, implementing energy- 
saving measures solely based on overall energy demand, without 
considering the specific energy consumption in a multi-building context, 
may not yield the desired outcomes. For instance, two homes with 
identical peak electricity loads may differ in load types: the first, 
equipped with deferrable loads, can leverage demand response to reduce 
peaks, while the second, with non-deferrable loads, may not derive the 
same benefits despite displaying similar load patterns. Overall, 
addressing this gap is crucial for developing effective energy retrofit 
strategies that extend the scope of smart home technologies across 
interconnected buildings. 

5.3.5. Research gap 3 - A lack of interactive dynamics in the research of 
between-building connections 

Research in the field predominantly emphasizes power grid retrofits, 
often neglecting district energy systems and their intricate interactions 
with power grids. This oversight highlights a significant gap in the 
literature and underscores the need for more integrated studies focusing 
on their joint retrofitting, considering their inherent interdependence. A 
comprehensive understanding of the mutual influences of retrofitting 

both energy networks is imperative for developing stable, optimized 
solutions and unlocking the full potential of community-wide energy 
savings. Moreover, recognizing this gap underscores the significance of 
integrating Combined Heat and Power (CHP) technology into retrofit 
strategies. This integration holds the promise of elevating overall system 
efficiency, mitigating emissions, and fostering more resilient and sus
tainable energy networks. By seamlessly incorporating CHP into the 
broader discourse on power grid and district energy system retrofits, 
researchers can pioneer innovative pathways to attain comprehensive 
and synergistic solutions. This approach aims to maximize energy effi
ciency and cultivate community-wide benefits. Such an expanded vision 
accentuates the critical importance of holistic approaches that encom
pass diverse energy technologies, meeting the evolving demands of 
community energy systems. 

5.3.6. Research gap 4 - A latent between-building connection by social and 
behavioral networks 

Research frequently overlooks the between-building impacts of in
dividual retrofit projects, a gap that becomes increasingly pertinent with 
the rising trend of energy sharing and trading, amplifying the inter
connectivity between buildings. The effects of a retrofit in one building 
can significantly influence neighboring buildings through these inten
sified energy links, as well as through social networks. Smart and con
nected technologies invisibly establish a latent social tie among 
residents in a community. For example, a smart thermostat will 
benchmark the temperature settings of other surrounding homes. 
Therefore, intelligent technologies establish an invisible network of 
human activities and facilitate the exchange of behavioral knowledge in, 
such as thermostat setting [8], lighting and appliance use [192], and 
window opening [193]. All the above behavior knowledge is important 
for energy retrofit decisions. Understanding these dynamic interactions 
is crucial for effectively expanding a single building retrofit strategy to 
encompass the entire community. Overall, we have observed the third 
important between-building connection – behavioral connectivity – 
despite the electrical grid and thermal energy grid. Unfortunately, there 
exists an often-overlooked gap in understanding occupant behavior 
across multiple buildings. 

5.4. Focused Area#3: whole-community integrations – the network 

5.4.1. Technology overview 
Some studies explored both the retrofitting of buildings and the 

optimization of energy systems connected to building stocks. One study 
developed a net-zero building cluster emulator that could simulate en
ergy behaviors of a cluster of buildings and distributed energy systems 
[194]. Another study evaluated different retrofit interventions for the 
building stocks as well as the energy sharing between buildings [195]. 
One study used agent-based fuzzy logic to define and evaluate urban 
transition scenarios [196]. Overall, whole-community integration is an 
emerging area, and an increasing number of studies are expected, 
enabled by recent, advanced computations. 

5.4.2. Research gap 5 - few retrofit technologies for whole-community 
integrations 

Current research predominantly focuses on individual facets of en
ergy retrofits, honing in on isolated within-building optimizations (i.e., 
nodes) and/or between-building energy systems (i.e., ties). This 
segmented approach overlooks the potential advantages that a holistic 
perspective can bring. A noticeable gap emerges in the literature when it 
comes to collectively retrofitting entire communities, involving the 
integration of power grids, district energy systems, and individual 
buildings. By amalgamating these elements, researchers can unlock 
synergistic effects that transcend the sum of individual optimizations. 
Addressing this research gap is not only essential but also pivotal for 
fostering effective and comprehensive energy retrofit strategies in the 
context of smart and connected communities. Embracing a holistic 
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and socially cohesive energy solutions. The second domain focuses on 
integrated research involving PV panels, heat pumps, and EVs to drive 
urban sustainability transformations. PV panels are commonly used 
energy saving measures enabling urban sustainable development; 
however, their intermittent and weather-dependent property restricts 
energy saving potential. Alongside PV battery storage solutions, load 
shifting further alleviates PV application limitations. Heat pumps 
convert electricity into heat, and buildings have thermal storage ca
pacities, so heat pumps can convert immediate electricity into delayed 
heat. This facilitates building electrification while also enabling electric 
load shifting. EV can transfer electricity of buildings via charging/dis
charging facilities, enhancing demand response flexibility and multi- 
building energy sharing potential. Leveraging heat pumps and EVs 
promotes electricity flexibility, which can improve solar utilization 
efficiency. 

7. Conclusions 

Emerging intelligent technologies enable optimal energy retrofits in 
future Smart and Connected Communities, showing significant promise 
for extensive energy savings. S&CC seamlessly integrates intelligent 
technologies into natural and built environments, gaining importance as 
US communities enter a transformative era. This research outlines the 
future landscape of energy retrofits in S&CC, delineating new research 
scopes and technologies comprehensively. Unlike fragmented reviews, it 
offers architects, engineers, and builders a crucial, holistic overview 
essential for navigating the evolving landscape of smart and connected 
urban development. 

A primary finding in this review identifies four research scopes 
(building construction, mechanical systems, electrical systems and 
computing, and human-centered design and connectivity), unveiling a 
novel landscape for energy retrofit research that extends from the built 
environment to advanced computing, renewable energy, and human- 
centered connectivity. These interconnected scopes underscore the 
multidisciplinary nature of research in this area, emphasizing the ne
cessity for collaborative efforts drawing on a synergy of expertise to 
address the complex challenges associated with large-scale energy 
retrofit. 

Another significant finding unveils a new paradigm of retrofit tech
nologies with three focused areas: Within-building optimizations (e.g., 
high-efficiency HVAC, building envelope, engineering design, and smart 
home), Between-building connections (e.g., power grid, district energy, 
and integrated energy system), and Whole-community integrations. 
These areas represent the nodes, ties, and interplay within S&CC net
works. Notably, advanced computational techniques including AI and 
IoT hold distinct prominence in the current research approach. 

Research gaps have surfaced, collectively shaping the trajectory of 
urban development. The lack of human-centered design in within- 
building optimizations calls for a more empathetic approach to 
improve living experiences. The expansion of smart home technology 
should embrace between-building connections to foster robust 
community-level interactive dynamics. The untapped potential of 
human and behavioral networks in inter-building connections presents 
an opportunity for deepening community engagement. Moreover, the 
scarcity of retrofit technologies for comprehensive community integra
tion points to an essential area for innovation in upgrading existing 
urban infrastructures. 

The trend towards S&CC reflects a forward-looking approach, 
recognizing the potential for interconnected urban ecosystems to 
enhance overall quality of life, economic opportunities, and sustain
ability. Researchers are navigating innovative paths amid the evolving 
urban housing landscape, envisioning a holistic and interconnected 
experience where technology and social dynamics converge for smarter, 
more efficient communities. To enable this vision, understanding 
between-building connections for effective energy retrofits is crucial, 
requiring advancements in simulation tools, network modeling, and 

optimization algorithms. Proactive smart home systems guiding energy 
savings and integrated "whole-community" approaches are growth 
areas, as is research on transformative technologies like PV panels, heat 
pumps, and EVs. Exploring these areas and leveraging opportunities 
brings us closer to realizing the vision of S&CC. 

This research is limited due to the focus specifically on technological 
advancements in building energy retrofits within the context of S&CC. It 
does not encompass the broader scope of S&CC, including trans
portation, waste management, water systems, street lighting, and 
network infrastructure. The exclusion of these sectors from our study is a 
limitation, as they are integral to the overall energy efficiency of S&CC. 
Subsequent research endeavors should address these critical sectors to 
provide a more comprehensive understanding of energy efficiency 
within the broader framework of S&CC. 
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