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Abstract

We construct proper good moduli spaces parametrizing
K-polystable Q@-Gorenstein smoothable log Fano pairs
(X,cD), where X is a Fano variety and D is a rational
multiple of the anticanonical divisor. We then establish
a wall-crossing framework of these K-moduli spaces as
c varies. The main application in this paper is the case
of plane curves of degree d > 4 as boundary divisors of
P2. In this case, we show that when the coefficient ¢
is small, the K-moduli space of these pairs is isomor-
phic to the GIT moduli space. We then show that the
first wall crossing of these K-moduli spaces are weighted
blow-ups of Kirwan type. We also describe all wall
crossings for degree 4,5,6 and relate the final K-moduli
spaces to Hacking’s compactification and the moduli of
K3 surfaces.
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1 | INTRODUCTION

Constructing compactifications of moduli spaces of varieties is a fundamental question in alge-
braic geometry. While it is well known that singular varieties will occur on the boundary of the
moduli space, an interesting question to investigate is how different compactifications yield differ-
ent singularities on the boundary. The classical approach of Deligne and Mumford for genus > 2
curves only allows stable curves (i.e., nodal singularities) in the boundary. Later on, it was realized
that there are meaningful alternate compactifications allowing curves with worse singularities
that can be obtained from running the minimal model program (MMP) on the Deligne-Mumford
compactification, often going by the name the Hassett—Keel program.

If we consider plane curves, there are two well-known compactifications of the moduli
space. Classically, Mumford’s geometric invariant theory (GIT) yields a projective variety I_JdGIT
parametrizing S-equivalent classes of GIT semistable plane curves of degree d. Moreover, in each

S-equivalence class, there exists a unique closed orbit whose representative is a GIT polystable
—GIT ~ —GIT
plane curve. In the philosophy of Alper, this gives a good moduli space morphism P, — P,

where 5dGIT is the GIT quotient stack. An approach due to Hacking (following ideas from Kollar-
Shepherd-Barron and Alexeev) is via stable pairs and the MMP [49, 50]. Roughly speaking, each
smooth plane curve C of degree d > 4 can be viewed as a boundary divisor in P2, and so, one can
study certain pairs of degenerations of the plane with a curve subject to some conditions on posi-

—H
tivity and singularities of the pair coming from the MMP. Hacking’s moduli stack P is a proper

—H
Deligne-Mumford stack whose coarse moduli space P is a projective variety.

One notable feature of these two different approaches is that although GIT semistable curves
all lie in P2, they can be quite singular; on the other hand, although the surfaces in the boundary

of 53 can be quite singular (possibly nonnormal), the singularities of the degenerate curve are
usually mild. As these two moduli spaces are birational, it is a natural question to ask how to
interpolate between them.

For example, we illustrate the simplest nontrivial case: degd = 4. The six-dimensional GIT

. =GIT . . e s
quotient P,  generically parametrizes curves that are at worst cuspidal in P“, has a curve
parametrizing tacnodal curves (i.e., locally y? + x* = 0), and a point parametrizing the double

conic. On the other hand, Hacking’s space I_’:l (see also [52]) also generically parametrizes cuspidal
curves in P2, but has a divisor parametrizing curves on P(1, 1,4) (which are at worst cuspidal away
from the singular point, and at worst nodal at the singularity), and has a codimension two locus
parametrizing curves on the nonnormal surface P(1,1,2) U P(1, 1, 2). Here, the curves are snc at
the double locus and at worst cuspidal elsewhere. In particular, one can see directly the trade-off
between having very singular curves that still are in P2, and having mildly singular curves on
singular surfaces. It is natural to ask how to relate the two spaces in a modular way.

In this article, we investigate a new family of compactifications of the moduli space of smooth
plane curves using K-stability and (conical) Kéhler-Einstein metrics. For any smooth plane curve
C of degree d > 4, the celebrated work [28] and [120] implies that (P2, cC) admits a conical Kéhler—
Einstein metric for any 0 < ¢ < % hence is K-stable. Thus, it is natural to construct K-stability
compactifications of these moduli spaces. Recently, Li, Wang, and Xu [92] showed that there exist
proper good moduli spaces parametrizing K-polystable Q-Gorenstein smoothable Fano varieties
(see also [104] and [115]). Based on [92] and the very recent work by Tian and Wang [121] on the
solution of the log smooth Yau-Tian-Donaldson conjecture, we construct K-moduli stacks and
spaces for all @-Gorenstein smoothable log Fano pairs (see Definition 2.21). In particular, this
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implies that the K-stability compactification of the moduli space of log Fano pairs (P2, cC) with
0<c< 3 a rational number exists as a proper good moduli space.

Theorem 1.1 (= Theorem 3.1). Let y,, be the Hilbert polynomial of an anticanonically polarized
Fano manifold. Fixr € Q. and a rational number ¢ € (0, min{1,r~'}). Then there exists a reduced
Artin stack KM, . . of finite type over C parametrizing all K-semistable Q-Gorenstein smoothable
log Fano pairs (X, cD) with Hilbert polynomial (X, Ox(—mKyx)) = x,(m) for sufficiently divisi-
ble m and D ~q —rKy. Moreover, the Artin stack KM, , . admits a good moduli space KM, , .
as a proper reduced scheme of finite type over C whose closed points parametrize K-polystable
pairs.

It is thus natural to ask how the moduli spaces depend on the coefficient c. In this setting, we
prove the following wall-crossing type result. In the statement below, VGIT refers to variation of
GIT as in [6] and CM stands for Chow-Mumford (see Definition 2.17).

Theorem 1.2 (= Theorem 3.2). There exist rational numbers
0=cy<c; << <c=min{l,r 1}

such that c-K-(poly/semi)stability conditions do not change for c € (c;,c¢;,,). Foreach1 <i<k—1
and 0 < € <« 1, we have open immersions

kM S OTM, o © PTRM, e

Xo»lsCi—€

which induce projective morphisms

¢ ¢
KM — KMX «— KM

XootsCi—€ 0-F'5Ci XoolsCit+e*
Moreover, all the above wall crossing morphisms have local VGIT presentations as in [6, (1.2)], and
the CM Q-line bundleson KM, . ... are ¢;—“-ample.

While the two above results hold for any K-moduli stack and space of Q-Gorenstein smoothable
log Fano pairs, the remainder of this paper will focus on 55 . and 1_35 o» thatis, the K-moduli stack
and space parametrizing K-semistable and K-polystable limits of (P2, cC), respectively, where C
is a smooth plane curve of degree d and ¢ € (0, %) is a rational number.

Since K-semistable log Fano pairs are always Kawamata log terminal (klt) by [102], as ¢

—K
increases the surface X in P, . must become more singular, while the divisor D becomes less
singular; this is a general version of the phenomenon seen in the degree 4 example. In particular,
it is reasonable to expect that these moduli spaces provide the proper framework for interpolat-

ing between 5dGIT and 5?. Our next results characterize the behavior of the wall crossings for
K-moduli spaces of plane curves.

First, we give a complete understanding of the first wall crossing in all degrees. The K-moduli
space corresponding to 0 < ¢ < 1 is isomorphic to the GIT moduli space, and the first wall cross-
ing is a Kirwan-type blow-up of the GIT quotient. Note that since the K-moduli stacks and spaces
for d < 3 are well known (see Example 4.5), we usually assume d > 4.
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Theorem 1.3 (First wall crossing). Let d > 4 be an integer, ¢ € (0, %) be a rational number, let Q be

a smooth conic in P2, let L be a line in P2 transverse to Q, and let x, y, z be coordinates of P(1,1,4).
Let

3 . d . .
= d is even =Q d is even z4/2 = ¢ d is even
Clz{Zd Qd={2 Qé:{

T3_3 d is odd %Q +L disodd xyz@V/2 =0 disodd

(1) Forany0 < c < ¢y, a plane curve C of degree d is GIT (poly/semi)stable if and only if the log Fano

pair (P2, cC) is K-(poly/semi)stable. Moreover, there is an isomorphism of Artin stacks 5:1 e =

—GIT
d
. . . _ . =CGIT —X —K . .
(2) Thereis an open immersion ®~ : P, =P dej—e & P, o that descends to an isomorphism of

good moduli spaces.

—K —K
3) Ifo* : P, e = P, o denotes the latter morphism in the first wall crossing, then there

—K —K —GIT
exists a stacky weighted blow-up morphism p : P, e = P, —— P, along {[Qg]} (see
Definition 5.10) such that ®* = ®~op. In particular, we have

(a) The descent morphism ¢ = () Lopt :?S’Cl e _)?g,cl—e =1_3dGIT of p between good

moduli spaces is a weighted blow-up of the point [Q ].
(b) Ifdiseven, then ¢ is a partial desingularization of Kirwan type.

Before preceding, we note that Gallardo, Martinez-Garcia, and Spotti independently showed in
[47, Theorem 1.2] that a similar result to Theorem 1.3 (1) holds for all hypersurfaces in P assuming
the Gap Conjecture [114, Conjecture 5.5] that is true when n < 3 by [82, Proposition 4.10] and [96,
Theorem 1.3]. The following result removes this assumption.

Theorem 1.4 (= Theorem 9.24). Let n and d > 2 be positive integers. Then there exists a positive
rational number ¢, = c¢,(n, d) such that for any fixed 0 < ¢ < c¢;, a hypersurface S C P" of degree d
is GIT (poly/semi)stable if and only if the log Fano pair (P", cS) is K-(poly/semi)stable.

It is natural to ask what happens beyond the first wall crossing for plane curves. When d is
small (d < 6), we explicitly determine all K-moduli wall crossings. In fact, if d is 4 or 6, we can
relate our moduli spaces to Baily-Borel compactifications of moduli spaces of K3 surfaces (see
Section 6). Let I_JZ denote the Baily-Borel compactification of the moduli space of ADE K3 surfaces
of degree 4 with Z/4Z symmetry constructed by Kondo [74], and let I_JZ denote the Baily-Borel
compactification of the moduli space of K3 surfaces of degree 2.

Theorem 1.5 (d = 4, 6, see Theorem 6.1 and Section 6.2). If d = 4 (resp. 6), there is only one wall
crossing for K-moduli spaces given by the weighted blow-up ﬁf” - FfIT (resp. ﬁg” - I_JSIT) at the
double conic (resp. triple conic). Furthermore, the ample model of the Hodge line bundle on ﬁfIT
(resp. l/’\ng )is ﬁ: (resp. 1_32 ).

In fact, in the degree 4 case, we can say more using Hyeon and Lee’s results on the log MMP
for moduli of genus three curves [54]; see Section 9.3.1.
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6 of 113 ASCHER ET AL.

TABLE 1 Wall crossings for K-moduli spaces of plane quintics

i c; E- E’

1 2 (P2,Q5) (P(1,1,4), (xyz* + (ax® + by®)z + g(x,y) = 0))
2 2 (P2, A,,-quintic) Xy, (0 = g(x,¥)))

3 % (P2, A;;-reducible quintics) (P(1,1,4), (x*z% + y°z + g(x,y) = 0))

4 = (P?, A,,-irreducible quintics) (P(1,4,25), (2% + x*y2 + x%(x,y) = 0))

5 ;—: (P2, Ap-quintics) (P(1,4,25), (2% + xSy + xg(x,y) = 0))

Theorem 1.6 (d = 5, see Theorems 5.9, 7.1 and Section 8). If d = 5, then there are five wall crossings
for K-moduli spaces of plane quintics. Among them, the first two are weighted blow-ups, while the
last three are flips.

In Table 1, we summarize the behavior of all wall crossings for plane quintics (see also Figure 1

— —K
on Page 60). Here, we denote by E;—' the exceptional loci of q,'>l.i : P — P, . where general pairs

5,cix€
parametrized by them are described in the table. The full description of Eli will be presented in
Theorems 5.8, 7.1, and Section 8. We use [x, y, z] for projective coordinates of weighted projective
planes P(1,1,4) and P(1,4,25). The surface X, is the degree 26 weighted hypersurface (xw =
'3+ z2) in P(1, 2, 13, 25) with projective coordinates [x, y, z, w].

In general, it is expected that K-moduli spaces are projective with ample CM line bundles (see
[27,29]). Using recent work of Codogni and Patakfalvi [29] and Posva [107], we show the following.

—K
Theorem 1.7 (= Theorem 9.1). The K-moduli spaces P . are projective when d € {4, 5, 6} with
ample CM line bundles.

During the review process of this paper, we learned that the ampleness of CM line bundles
on K-moduli spaces of log Fano pairs is proved in [98, 125] using purely algebraic methods (see

Remark 1.9). In particular, the CM line bundle is ample on 1_35’ . for all degrees and all coefficients
(see Theorem 9.2).

The remainder of our paper is devoted to some further questions that will serve as motivation
for our future work. For example, in Section 7.3, we discuss the second weighted blow-up ford > 7
(see Theorem 7.10). Another consequence of our work is that the birational maps FEC, --> ﬁ; . are
birational contractions for 0 < ¢ < ¢’ < % whenever 3 | d or d < 13 (see Theorem 9.5). If this is
true for 3 + d and d > 13, then together with the ampleness of the CM line bundle (Theorem 9.2),
this would imply that the wall crossing of K-moduli spaces exhibit similar behavior to the Hassett—-
Keel program for M , (see Theorem 9.4).

—K
We show in Theorem 9.18 that the only difference between the K-moduli space P; 3 __ and
’d
—H
P, are the maximally Ic pairs in the K-moduli space, and the nonnormal pairs in the Hacking

moduli space. We conjecture that there is a proper good moduli space of log Calabi-Yau pairs,
which relates to the K-moduli and Hacking moduli spaces via the following wall crossing.

Conjecture 1.8 (Log Calabi-Yau wall crossings, see Conjecture 9.19). There exists a proper good
—CY

moduli space P, that parametrizes S-equivalence classes of semistable log Calabi-Yau pairs

X, %D) where X admits a Q-Gorenstein smoothing to P2. Moreover, we have a log Calabi-Yau wall
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‘WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES 7 of 113

crossing diagram

—X $oy —cy P&y —H
P d,g—e >y < d

—CY —K —H
where P, is the common ample model of the Hodge line bundleson P; 3 __and P,;.
’d

We partially verify this conjecture in degree 4,5,6, and will investigate this space in forthcoming
work.

Remark 1.9 (Postscript). Since the first version of this article appeared on the arXiv, there has
been much progress on the study of K-stability and K-moduli spaces of log Fano pairs and wall
crossings. We list a few related works below.

(1) The K-moduli spaces for log Fano pairs are shown to exist as a projective good moduli space
where the CM line bundle is ample. This is a combination of many recent works [1, 19, 25,
27, 29, 60, 93, 98, 124-126]. As a result, the construction of our moduli spaces XM
generalized to all log Fano pairs using purely algebraic methods.

(2) The Yau-Tian-Donaldson conjecture for all (possibly singular) log Fano pairs is solved as a
combination of [14, 80, 91, 98].

(3) The wall crossing framework from Section 3, except the local VGIT presentation from Sec-
tion 3.7, is generalized to all log Fano pairs (X, D) satisfying D ~, —rKy for some r € Q. in
[128] using purely algebraic methods.

(4) The wall crossing framework of this paper has been applied to the study of moduli of quartic
K3 surfaces in [3, 4]. In particular, the paper [4] verifies Laza-O’Grady’s conjecture on the
Hassett-Keel-Looijenga program for quartic K3 surfaces (see [85-87] for backgrounds).

(5) For moduli of stable pairs in terms of Kollir-Shepherd-Barron-Alexeev, the wall crossing
framework was established in [2]. The main difference of these two wall crossing frameworks
is that wall crossing maps in [2] are always morphisms (after normalization), while our wall
crossing maps may be flips.

XoTC 1S

Organization

This paper is organized as follows. In Section 2, we collect preliminary materials on K-stability,
normalized volumes, CM line bundles, good moduli spaces, and Hacking’s moduli spaces. In Sec-
tion 3, we give a detailed construction of K-moduli stacks and spaces of Q-Gorenstein smoothable
log Fano pairs which is largely based on [92] with new inputs from [27, 60, 121]. We prove The-
orem 3.1 that is a generalization of [92, Theorem 1.3]. Our main new result is Theorem 3.2 that
characterizes fundamental behaviors of K-moduli wall crossings when varying the coefficient.
Our construction heavily relies on the solution of Yau-Tian-Donaldson conjecture for log smooth
log Fano pairs by Tian and Wang [121] that is a generalization of [28, 120]. Hence, our approach is
a mixture of algebraic and analytic methods.
—K —K

In Section 4, we study the general properties of K-moduli stacks P, . and spaces P de of degree
d plane curves with coefficient c. We describe the well-known K-moduli stacks and spaces for
degree at most 3 in Example 4.5. Using normalized volumes, we prove a result on bounding local
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8 of 113 | ASCHER ET AL.

—K
Gorenstein indices of singular surfaces appearing in P, . (see Theorem 4.8). This is crucial in the
detailed study of our K-moduli spaces.
Section 5 is devoted to studying the first wall crossing in all degrees. We prove parts (1) and

(2) of Theorem 1.3 in Section 5.1 by applying the index bound (Theorem 4.8) and the Paul-Tian
—K
criterion (Theorem 2.22). In Section 5.2, we show that the K-moduli stack P, orte is a weighted

blow-up of the GIT moduli stack of Kirwan type, hence confirming part (3) of Theorem 1.3. This
is done by a careful analysis of GIT of curves on P(1, 1,4) (see Definition 5.7 and Theorem 5.8)
and the index bound (Theorem 4.8).

In Section 6, we show that there is only one log Fano K-moduli wall crossing in degree d = 4 or
6 (see Theorem 6.1). This is proven by computing the log canonical thresholds of GIT polystable
curves on P? and P(1, 1,4) (see Propositions 6.3 and 6.4) and applying an interpolation result on

—K
K-stability (see Proposition 2.13). In Section 6.2, we relate the final K-moduli spaces P 3 __ for
’d

d = 4 or 6 to the Baily-Borel compactification of moduli spaces of K3 surfaces as cyclic covers
(see Theorems 6.5 and 6.6).

Sections 7 and 8 are devoted to studying all wall crossings in degree 5. In Section 7, we
show that the second wall crossing of plane quintics precisely replaces the plane quintic with
a unique A,,-singularity by curves on X,4 (see Theorem 7.1). Its proof involves a valuative cri-
terion computation (see Proposition 7.3), an explicit construction of a special degeneration (see
Proposition 7.4), and verifying the K-polystability of this degeneration using techniques of Ilten
and Siif3 [59] on T-varieties of complexity one (see Proposition A.2). In Section 8, we use similar
strategy to further study the rest wall crossings of plane quintics where the auxiliary compu-
tations are collected in Appendix A. In Section 7.3, we apply these results for quintics to get
more information on the second weighted blow-up of K-moduli spaces in higher degrees (see
Theorem 7.10).

In Section 9, we discuss further questions regarding our K-moduli spaces. In Section 9.1, we

show that 1_35 . is projective for degree d € {4, 5, 6} by proving the ampleness of CM line bundles
using work of Codogni and Patakfalvi [29] and Posva [107]. In Section 9.2, we study the question

of whether the birational map ﬁzc, > 1_’5 . is a birational contraction when 0 < ¢ < ¢’ < % (see
Question 9.3). We give affirmative answers when d < 13 or d is divisible by 3 (see Theorem 9.5).
In Sections 9.3 and 9.4, we provide evidence supporting Conjecture 9.19 on the log Calabi-Yau wall
crossing when d € {4, 5, 6}. In degree 4, we relate our wall crossings to the log MMP for M3 (see
Section 9.3.1). We give a set-theoretic description of the conjectural log Calabi-Yau moduli spaces
of plane quintics in Section 9.4. Finally, we prove Theorem 1.4 in Section 9.5 as an application of
our machinery developed in Sections 2 and 3.

2 | PRELIMINARIES
2.1 | K-stability of log Fano pairs

In this section, we give a review of K-stability of log Fano pairs.

Definition 2.1. Let X be a normal variety. Let D be an effective Q-divisor on X. Then, (X, D) is
called a log pair. If in addition X is projective and —(Kx + D) is Q-Cartier ample, then we say that
(X, D) is a log Fano pair. If a log Fano pair (X, D) is klt, then we say that it is a klt log Fano pair.
We say that X is a Q-Fano variety if (X, 0) is a klt log Fano pair.
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‘WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES 9 of 113

We first recall the definition of a test configuration.
Definition 2.2 [36, 118]. Let X be a projective variety. Let L be an ample line bundle on X.

(a) A test configuration (X; £)/A! of (X; L) consists of the following data:
* avariety X together with a flat projective morphism 7 : X — Al;
* am-ample line bundle £ on X;
* a G,,-action on (X; £) such that 7 is G,,-equivariant with respect to the standard action of
G,, on A! via multiplication;
* (X\ Xp; L] x\x,) is G,-equivariantly isomorphic to (X; L) X (AL {0}).
(b) Letw,, be the weight of the G,,-action on the determinant line det H°(X,, L?m), and N, :=
hO(X,L®™). Then we have an asymptotic expansion

Wiy

=F,+m'F, + mF, + -
mN 0 1 2

m

with F; € Q. The generalized Futaki invariant of (X; £)/A! is defined as Fut(X; £) = —2F,.
More precisely, if we write

N,, = aom™ + aym™™' + 0(m"?), w,, = bym"™ + b;m" + O(m"™1),

then Fut(X; L) = Mf‘)bl).

0
Definition 2.3 [36, 77, 94, 105, 118]. Let (X,D = 25;1 ¢;D;) be a projective log pair. Let L be an
ample line bundle on X.

(a) A test configuration (X, D; £)/A! of (X, D; L) consists of the following data:
* atest configuration (X; £)/A! of (X;L);
* aformalsum D = Z;‘:l ¢;D; of codimension one closed integral subschemes D; of X such
that D; is the Zariski closure of D; X (A! \ {0}) under the identification between X \ X, and
X x (AT \ {0}).
It is clear that (D;; £|Di) /Al is a test configuration of (D;; L| Di)'
(b) For each 1<i<k, let w;,, be the weight of the G,-action on the determinant line
det H(D; , Ll%’”), and N; , := h°(D;, L®™). Then we have an asymptotic expansion

Ni,m = di,omn_l + O(mn_z), l[)l-’m = Ei’omn + O(mn_l).

We define G, = Y, ¢;d;, and by = ¥ ¢ib;o. The relative Chow weight of (X, D; £)/A!
is defined as CH(X,D; L) := %. The generalized Futaki invariant of (X, D; £)/Al is

0
defined as Fut(X, D; £) = Fut(X; L) + CH(&X, D; L).
(c) A test configuration (X, D;L£)/A! is called a normal test configuration if X is normal. A
normal test configuration is called a product test configuration if

(X,D;L£) = (X x A',D X AL priL ® O (kX,))
for some k € Z. A product test configuration is called a trivial test configuration if the above

isomorphism is G,,-equivariant with respect to the trivial G,,-action on X and the standard
G,,-action on A! via multiplication.
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10 of 113 | ASCHER ET AL.

(d) Let(X,D)be alog Fano pair. Let L be an ample line bundle on X such that for some | € Q,

we have L ~, —I(Ky + D). Then the log Fano pair (X, D) is said to be:
(i) K-semistable if Fut(X, D; L) > 0 for any normal test configuration (X, D; £)/A! and any
I € Q. such that L is Cartier;
(ii) K-stable if it is K-semistable and Fut(X,D;L) =0 for a normal test configuration
(X,D; L)/ Al if and only if it is a trivial test configuration; and
(iii) K-polystable if it is K-semistable and Fut(X, D; £) = 0 for a normal test configuration
(X, D; £)/Al if and only if it is a product test configuration.

(e) Let(X,D) be akltlog Fano pair. Let L be an ample line bundle on X such that L ~o —I(Ky +
D) for some [ € Q.. Then a normal test configuration (X, D; £)/A! is called a special test
configuration if L ~g —l(KX/N + D) and (X, D + X)) is plt. In this case, we say that (X, D)
specially degenerates to (X, D)) that is necessarily a kit log Fano pair.

Remark 2.4. We give some useful remarks toward the above definition.

(1) We provide an intersection formula for the generalized Futaki invariant (cf. [101, 123]). Let
(X, D) be a log Fano pair. Let L be an ample line bundle on X such that L ~5 —I(Ky + D)
for some | € Q. Assume 7 : (X,D; L) - Al is a normal test configuration of (X, D; L). Let
7 1 (X,D; L) — P! be the natural G,,,-equivariant compactification of 7z. Then we have the
intersection formula

Loy 1
Fut(X, D; L) := & +D))n<

n o (£nty (L' (Kgp + D))
n+1 [ntl In ’

(2) By the work of Odaka [100], any K-semistable log Fano pair is kit. By the work of Li and Xu
[94], we know that to test K-(poly/semi)stability of a kit log Fano pair, it suffices to test only
on special test configurations.

(3) A test configuration is called almost trivial (resp. almost product) if its normalization is trivial
(resp. product). By [17, Proposition 3.15], we know that the generalized Futaki invariant never
increases under normalization.

Definition 2.5. Let X be a Q-Fano variety. Let D ~5 —Kx be an effective Q-divisor on X. We
say that (X, D) is K-semistable if (X, D; L) is K-semistable for some Cartier divisor L ~o —IKy and
some | € Z,. From [102], this is equivalent to saying that (X, D) is log canonical.

2.2 | Valuative criteria for K-stability

In this section, we recall the valuative criteria for K-stability due to [45, 78] with a slight
improvement from [27]. For this, we need to make a few definitions.

Definition 2.6. Let X be a normal variety of dimension n. We say that E is a prime divisor over
X if E is a divisor on a normal variety Y where f : Y — X is a proper birational morphism. Let
L be a Q-Cartier Q-divisor on X. Take m € Z., such that mL is Cartier and let x € R,. If X is
projective, we define the volume of L — xE on X as

hX, o L— E
voly(L — xE) :=voly(f*L —xE) = limsup (X, Ox(mlL — [mx] ))_
m— oo m”" /n!
mlL is Cartier
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‘WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES | 11 of 113

Remark 2.7. By [45, Definition 1.1, Remark 1.2], the above lim sup is actually a limit, the function
voly (L — xE) is a monotonically decreasing continuous function that vanishes for x sufficiently
large, and the definition does not depend on the choiceof f : ¥ — X.

Definition 2.8. Let (X, D) be a log pair such that Ky + D is Q-Cartier. Let E be a prime divisor
over X. Assume that E is a divisor on Y where f : Y — X is a proper birational morphism from
a normal variety Y. We define the log discrepancy of E with respect to (X, D) as

A pylordg) 1= 1+ ordp(Ky — f*(Kyx + D)),

where ordp, is the divisorial valuation measuring order of vanishing along E. If (X, D) is a log Fano
pair, we also define the following functional:

Sx,pylordg) 1= voly(—Ky — D — tE)dt.

1 [s]
voly(—Kx — D) /0

Sometimes, we also use the notation Ay py(E) and Sixp)(E) for A p)(ordg) and
Scx,py(ordg), respectively.

The following theorem summarizes the valuative criteria of uniform K-stability [45], K-
semistability [45, 78], and K-stability [27]. We will view part (2) of this theorem as an alternative

definition of uniform K-stability of log Fano pairs.

Theorem 2.9 [27, 45, 78]. Let (X, D) be a log Fano pair.

(1) (X, D) is K-semistable (resp. K-stable) if and only if for any prime divisor E over X,
Ax pylordg) > (resp. >) S(x py(ordg).
(2) (X, D) is uniformly K-stable if and only if there exists € > 0 such that
A(X,D)(ordE) >0+ e)S(X’D)(ordE)
for any prime divisor E over X.
From Theorem 2.9, we see that uniform K-stability implies K-stability for log Fano pairs. More-
over, it follows from a recent result [98, Theorem 1.6] that these two stability notions are indeed

equivalent to each other for log Fano pairs.

Definition 2.10 [20, 39]. The stability threshold (X, D) of a klt log Fano pair (X, D) is defined as

A ord
8(X,D) := inf M,
E S(x,plordg)

where the infimum is taken over all prime divisors E over X.

Theorem 2.11 [20, 39]. A klt log Fano pair (X, D) is K-semistable (resp. uniformly K-stable) if and
onlyif §(X,D) > 1 (resp. > 1).
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12 of 113 | ASCHER ET AL.

Definition 2.12. Let X be a Q-Fano variety. Let D ~, —rKy be an effective Q-divisor. For a ratio-
nal number 0 < ¢ < r~!, we say that (X, D) is c-K-(poly/semi)stable (resp. uniformly c-K-stable) if
(X, cD) is K-(poly/semi)stable (resp. uniformly K-stable).

Next we provide a useful result on interpolation of K-stability (see, e.g., [31, Lemma 2.6]). These
kinds of interpolation results were known before in the smooth case via analytic arguments (see,

e.g., [90]).
Proposition 2.13. Let X be a Q-Fano variety. Let D and A be effective Q-divisors on X satisfying the
following properties.

* Both D and A are proportional to —K y under Q-linear equivalence.
* —Kx — D isample, and —Kx — A is nef.
* The log pairs (X, D) and (X, A) are K-(poly/semi)stable and K-semistable, respectively.

Then, we have

(1) IfD # 0, then (X,tD + (1 — t)A) is K-(poly/semi)stable for any t € (0,1].
(2) If D =0, then (X, (1 — t)A) is K-semistable for any t € (0,1].
(3) IfA ~g —Kx and (X, A) is klt, then (X, tD + (1 — t)A) is uniformly K-stable for any t € (0, 1).

Proof. Parts (1) and (2) follow directly from the linearity of generalized Futaki invariants in terms
of the coefficient. For part (3), we use the valuative criterion (Theorem 2.9). Simple computation
shows that

S, ip+1-08)E) = tSx p)(E),  Arx ip+-na)(E) = tAx py(E) + (1 — 1)Ax 2)(E).

By [20, Theorem A], we know that §, := 6(X, A; =Ky — D) = infp Ay 2)(E)/S(x p)(E) is strictly
positive. Since (X, D) is K-semistable, Theorem 2.9 implies Ay py(E) > Six p)(E). Hence,

1-1)
Ax ip+(1-0a)(E) 2 tSx py(E) + (1 = 1)8,S(x py(E) = <1 + % Sex ip+(1-0)a)E)-

This implies the uniform K-stability of (X, tD + (1 — t)A) for any ¢ € (0,1) by Theorem 2.9. []

2.3 | Normalized volumes

We give a brief review of normalized volume of valuations introduced by Chi Li [79]. See [83] for
a survey about recent developments on this subject.

Definition 2.14. Let (X, D) be a kit log pair of dimension n. Let x € X be a closed point. A valu-
ation v on X centered at x is a valuation of C(X) such thatv > 0 on Oy ,, and v > 0 on m,.. The set
of such valuations is denoted by Valy ... The volume is a function voly , : Valy , — R, defined
as

dimC OX,x/{f € OX,x | U(f) > k}
k" /n! '

voly ,(v) 1= klg{.lo
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‘WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES | 13 of 113

The log discrepancy is a function A(x py : Valy , = R, U {+oo} defined in [15, 61]. Note that if
v = a - ord; where a € R, and E is a prime divisor over X centered at x, then

A py() = a(l + ordg(Ky — 7*(Ky + D))),

where 77 : Y — X is a birational model of X containing E as a divisor.
The normalized volume is a function vol(x ), : Valy , — R, U {+co} defined as

\751(X px®) = Acepy ()" - VOl (0) %fA(X’D)(U) < e
T +00 lfA(X,D)(U) = 4+00.

The local volume of a klt singularity x € (X, D) is defined as

vol(x,X) 1= min Vol ), (v).
X, x

Note that the existence of a vol-minimizer is proven in [24].

The following theorem from [82] generalizing [43, Theorem 1.1] and [81, Theorem 1.2] is crucial
in the study of explicit K-moduli spaces.

Theorem 2.15 [82, Proposition 4.6]. Let (X, D) be a K-semistable log Fano pair of dimension n.
Then for any closed point x € X, we have

n ~
(—Ky - D) < (1 + %) vol(x, X, D).

The following useful result is proved in [22, Corollary 4] and independently in [95, Proposition
2.36] as an application of the lower semicontinuity of local volumes.

Theorem 2.16. Let (X, D) be a kit log Fano pair. If (X, D) specially degenerates to a K-semistable
log Fano pair (X, D), then (X, D) is also K-semistable.

2.4 | CM line bundles

Let us start with the original definition of CM line bundles due to Paul and Tian [109, 110]
(see also [40]).

Definition 2.17. Let f : X — T be a proper flat morphism of schemes of finite type over C. Let
L be an f-ample line bundle on X. We assume that the fibers (X}, £,) of f have constant pure
dimension n > 1 and constant Hilbert polynomial y. A result of Mumford—-Knudsen [68] said
that there exists line bundles 4; = 4;(X, £) on T such that for all k,

( G

k
det f,(cF) = /1n”++11) 4" ® - ® A
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14 of 113 | ASCHER ET AL.

By flatness, the Hilbert polynomial x(&;, £5) = agk™ + a;k" ! + O(k"~2). We set u = u(X, L) :=
Zaﬂ. Then the CM line bundle is defined as
0
lCM,f,C = ﬂ'gif(n-H) ®/1;2(n+1).

The Chow line bundle' is defined as

/IChow,f,ﬁ = /1n+1~

Next, we recall the definition of log CM line bundles.

Definition 2.18 (log CM line bundle). Assume f : X — T and L satisfy the conditions in Defi-
nition 2.17. For i = 1, ..., k, let D; be a closed subscheme of X such that f|Di : D; —» T is of pure
dimension n — 1, and either f|, is flat whose fibers have constant Hilbert polynomial, or f|p,

is a well-defined family of cycles over a seminormal base scheme T. Let ¢; € [0, 1] be rational
k

numbers. We define the log CM Q-line bundle of the data (f : X - T,L,D := Y., ¢;D;) tobe
n(Lt-D,)
Aemfpe 1=Aemfe — (E—n)lchow,f,ﬁ + (n + Dlchow, f1p.clp>
t
where
k k
_ . - . ®c;
(C? t. Dt) -z Z ci(ﬁ’: L Di,f)’ /IChOW7f|Dv£|D -= Acﬁow,ﬂD,,EID. '
i=1 i=1 e

For any G,,-linearized line bundle over A! equipped with the standard G,,-action, we denote
by wt(-) the corresponding G,,-weight of the central fiber. The following result from [109] is a
fundamental property of (log) CM line bundles.

Proposition 2.19. Let (X,D = Zle ¢;D;) be an n-dimensional projective log pair. Let L be an
ample line bundleon X. Let 7t : (X,D; L) — Al be a test configuration of (X, D; L). Then, ACM%D
Achow,z,c ANd Achow x|, |, are all G, -linearized line bundles over AL, Then, we have

1

Fut(X; L) = ————wt(4 ,

ut(X; £) o 1)(Ln)W( cMz.c)
1 n(L""!.D)
CH(x. D: L) = (n + 1)(L") <_ D) Wt(Achow,z,c) + (0 + DWHAchow xp.c1,) |-
In particular,
. _ 1

Fut(X,D; L) = th(ACM,n,D,E)

This can also be defined when f is a well-defined family of n-dimensional cycles over a seminormal base scheme T (see
[69, Section 1.3]).
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‘WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES | 15 of 113

Next, we will introduce the concept of Q-Gorenstein flat families of log Fano pairs. In order to
adapt this concept to our moduli problems, we need to include cases when the base is a normal
Deligne-Mumford stack.

Definition 2.20.

(a) Let f : X — T be a proper flat morphism between reduced schemes. Let D = Zle ¢;D; bea
finite Q. ,-linear combination of reduced closed subschemes of X. We say f : (¥,D) — T is
a Q-Gorenstein flat family of log Fano pairs if the following conditions hold:

* f has normal, geometrically connected fibers of the same dimension n;

* D, is a relative Mumford divisor on X over T for every i (see [73, Definition 1]);

* —(Ky/r + D) is Q-Cartier and f-ample.

We define the CM Q-line bundle of f : (X,D) > T as ey rp = 17" Acw fp,c Where L 1=
—l(Ky/r + D) is an f-ample Cartier divisor on X for some | € Z.,,

(b) Let X and 7 be normal separated Deligne-Mumford stacks that are finite type over C. Let
D be an effective Q-divisor on X. We say f : (X,D) —» T is a Q-Gorenstein flat family of log
Fano pairs if for some (or equivalently, any) étale cover u : U — T from a normal scheme
U, the base change f Xy u : (¥,D) X, U — U is a Q-Gorenstein flat family of log Fano
pairs.

In our moduli problems, we mainly consider the following class of log Fano pairs.

Definition 2.21. Let c, r be positive rational numbers such that cr < 1. A log Fano pair (X, cD) is
Q-Gorenstein smoothable if there exists a Q-Gorenstein flat family of log Fano pairs 7 : (X,cD) —
B over a pointed smooth curve (0 € B) such that the following holds:

* Both —K /g and D are Q-Cartier, 7-ample and D ~¢ , —rKy/p;
* Both 7 and 7|, are smooth morphisms over B \ {0};
* (Xy,cDy) = (X,cD).

A Q-Gorenstein flat family of log Fano pairs f : (X,cD) — T is called a Q-Gorenstein smooth-
able log Fano family if all fibers are Q-Gorenstein smoothable log Fano pairs and D is
Q-Cartier.

For application purposes, it is always convenient to work with a smaller family rather than the
whole Hilbert scheme. Thus, the next criterion is important when checking K-stability in explicit
families. It is a partial generalization of [109, Theorem 1] and [106, Theorem 3.4].

Theorem 2.22. Let f : (X, D) — T be a Q-Gorenstein flat family of log Fano pairs over a normal
proper Deligne-Mumford stack T that is finite type over C. Denote by T the coarse moduli space of
T. Let G be a reductive group acting on X and T such that D is G-invariant and f is G-equivariant.
Assume in addition that

(a) if Aut(X,, D,) is finite for t € T, then the stabilizer subgroup G, is also finite;
(b) if (X,,D,) = (X, Dy) fort,t’' €T, thent' € G - t;
(©) Acwm,f,p descends to an ample Q-line bundle Acy pponT.

Then, t € T is GIT (poly/semi)stable with respect to the G-linearized Q-line bundle Acy ¢ 1 if (X, D;)
is a K-(poly/semi)stable log Fano pair.
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16 of 113 | ASCHER ET AL.

Proof. We first show that K-semistability implies GIT-semistability. Denote by £ := —I(K /7 +
D) a Cartier divisor on X forl € Z. . Lett € T be a closed point such that (X}, D,) is K-semistable.
Then ¢ induces a morphism 7 : Spec C — 7 that is unique up to isomorphism. Leto : G,, - G
be a 1-PS of G. Then, we have a morphism p : G,, > 7 as the composition of 7 X0 : G, =
G,, X Spec C — G X T and the G-action morphism G X 7 — 7. Since T is proper, p extends to
a G,,,-equivariant morphism g : Al — 7. Pulling back the morphism f : (X¥,D) - 7 and L to
A! under § yields a test configuration (X, ,, D, ,; L, ;)/A" of (X,,D,). By Proposition 2.19, we
know that Fut(X, ;, D, ,; L, ;) is a positive multiple of the GIT weight uiemro(t o) (see [99,
Definition 2.2]) that implies that both are nonnegative by K-semistability of (X;, D,). Thus, the
Hilbert-Mumford criterion implies that ¢ € T is GIT semistable.

Next, assume that (X;, D,) is K-polystable. From the above discussion, we see that ¢ is GIT
semistable. Let o : G,, — G be a 1-PS such that ¢, : = lim,_,, o(s) - t is GIT polystable. Then, the
GIT weight u*c™./0(t, o) is zero, which implies that Fut(X, 5, D, ;; L, ;) vanishes as well. Thus,
we have (X;,D;) = (X[O, D,O) which implies that t € G - ¢, is GIT polystable by assumption (b).
The stable part is a consequence of the polystable part and assumption (a). O

The following proposition provides an intersection formula for log CM line bundles. For
the case without divisors, this was proven by Paul and Tian [109]. The current statement is a
consequence of [29, Proposition 3.7]. We provide a proof here for readers’ convenience.

Proposition 2.23. Let f : (X, D) — T be a Q-Gorenstein flat family of n-dimensional log Fano
pairs over a normal proper variety T. Then,

¢;(Aem f.p) = —f (=K )r — DY) 2.1)

Proof. Since both sides of (2.1) are functorial under pull-backs, by passing to a resolution, we may
assume that T is smooth and projective. Then, [29, Lemma A.2] implies that

femthy B Ky - L")

L®1) = "+ 0(g" ),
¢ (fL29) D) S 1 0@
where £ := —l(KX/T + D) is Cartier and f-ample. Hence, we have ¢, (Adcpow, f,c) = f.(£™ 1) and
.rn—1
1y f) = %f*(n(ﬁn“) — (Ky)r - £L™)). Itis clear that u(X, £) = —M?ﬂ—;)‘). Hence,
n(KXl ) [::l_l) n+1 n
ci(lem,p,e) = —Tf*(ﬁ )+ (+ 1D f (Kyyp - L7).
t
We also know that ¢, (Acpow, f|,,,21,) = f+(L" - D). Thus,
l’l(KXl M [::l_l)
c1(lem,r,oe) = Cilem,f,e) — T%(/lcmw,f,g) + (n+ Dey(Achow, fip.c1,)
t

_ (=K, =D)- £
) )

= —1"f (~Kzr = D", O

£, = (n+ Df (—Kyyr —D)- L")
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‘WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES 17 of 113

Next, we recall the definition of Hodge line bundles.

Definition 2.24. Let f : X — T be a Q-Gorenstein flat family of Q-Fano varieties over a nor-
mal base. Let D be an effective Q-Cartier Q-divisor on X not containing any fiber of f such
that D ~q ; —rKy r for some r € Q.. The Hodge Q-line bundle Ayogqc 1 -1p is defined as the
Q-linear equivalence class of Q-Cartier Q-divisors on T such that

-1
Kz\?/T +r—D ~Q f*lHodge,f,rle'

Proposition 2.25. With the notation of Definition 2.24, for any rational number 0 < ¢ < r~%, we
have

a- Cr')_n/1CM,J‘,cD =(1- CV)ACM,f +cr(n+ 1)(_th)n/1H0dge,f,r—1D' (2.2)

Proof. For simplicity, we denote 4. := Acy, rep ad Agodge = Atiodge, f,r-1p- L€t £ 1= —IK /1 be
an ample Cartier divisor on X for some | € Z. . Since CM line bundles are invariant by twisting
pull-back of a line bundle on the base, we know that 4, = I7"(1 — cr)"Acy 1 op, - We also know
that

n(Lpt-D,)

A —(n+1)4 .
€ Chow, f,L (n )Chow,f|D,£|D>

Ao, feD.L = Aewm, fe—¢€ (

Hence, to show (2.2), it suffices to show that Acy f ,-1p r = (1 + DI"(=Ky, )" Ag1ogge- Since both
sides are functorial under pull-backs, we may assume that T is smooth and quasi-projective. By
taking closure in the relative Hilbert scheme of (X;, D;; L,), passing to a resolution of the base,
and taking normalization of the total family, we can find a smooth projective closure T of T, an
extension f : (X, D) — T of f, and an f-ample Cartier divisor £ on X such that X is normal pro-
jective, D is an effective Q-Cartier Q-divisor on X, f and f |75 are pure dimensional, and C| x=L.
Although f isnot necessarily flat, the CM line bundle ACM, 7D can still be defined by [29, Lemma
A.2] such thatits restriction to T i Acyy f ¢p, o - By similar argument to the proof of Proposition 2.23,
we have that

“Ky —rD) - £n-ly D). "
Ky, -7 D) & )'*(c+1)—(n+1)f*((—K———V_ID)'ﬁ)

G (ACM,f,rflﬁ,Z) = D) f X/T
t

— —=n
=+ Df(Kz 7+ riD)- L)
Since Ky +17'D = f*A144ge, We know that

Aem,f e = (M + DL Age = (0 + DIN(=K )" Agodge-

The proof is finished. O

2.5 | Good moduli spaces in the sense of Alper

We recall the definition and some notions regarding good moduli spaces from [10], as these objects
naturally appear in the construction of moduli spaces in K-stability.
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18 of 113 | ASCHER ET AL.

Definition 2.26. A quasi-compact morphism ¢ : X — Y from an Artin stack to an algebraic
space is a good moduli space if

(1) the push-forward functor on quasi-coherent sheaves is exact, and
(2) the induced morphism on sheaves Oy — ¢, is an isomorphism.

Definition 2.27. Let ¢ : X — Y be a good moduli space. An open substack V" C X is saturated
for ¢ if p~1(p(V)) = V..

This is useful for the following reasons.

Remark 2.28 [10, Remark 6.2, Lemma 6.3].

(1) If U is saturated for ¢, then ¢(V") isopenand ¢ |;-: U — ¢(U") is a good moduli space.
(2) Ify : X — Z is a morphism to a scheme Z and V C Z is an open subscheme, then {p~1(V) is
saturated for ¢.

2.6 | Hacking’s compact moduli of plane curves

Hacking constructed a proper moduli stack 53 of plane curves of degree d > 4 using tools from the
MMP [49, 50]. It is a special case of the moduli theory of log canonically polarized pairs developed
by Kollar, Shepherd-Barron, and Alexeev. Roughly speaking the parametrized elements are demi-
normal pairs (X, D), where X is a Q-Gorenstein deformation of P? and D is a degeneration of plane
curves such that the pair satisfies some natural properties that will be reviewed below. First, we

—H
recall the normal surfaces parametrized by P,; .

Definition 2.29. A Manetti surface is a klt projective surface that admits a Q-Gorenstein
smoothing to P2,

Proposition 2.30 [50, Theorems 8.2 & 8.3]. A surface X is a Manetti surface if and only if it is a
Q-Gorenstein deformation of the weighted projective plane P(a?, b2, ¢*) where a® + b* + ¢ = 3abc.
Moreover, all such X have unobstructed Q-Gorenstein deformations.

—H
We now give the definition of the surface pairs parametrized by P .

Definition 2.31. Let X be a demi-normal surface and let D be an effective Q-Cartier divisor on
X. Letd > 4 be an integer. The pair (X, D) is a Hacking stable pair of degree d if:

(1) the pair (X, (% + ¢)D) is slc, and the divisor Ky + (% +¢)Disample forany 0 < e < 1,

(2) dKx + 3D ~ 0, and

(3) there is a Q-Gorenstein deformation of (X, D) to (P?, C,) where C, is a family of plane curves
of degree d.

—H
‘We can now define the stack P d
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‘WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES | 19 of 113

—H
Definition 2.32. Letd > 4 be an integer. We define the Hacking moduli stack P q to be the reduced
stack representing the following moduli pseudofunctor over a reduced base S:

5?(5) ={(X,D)/S | (X,D)/S is a @ — Gorenstein family of Hacking stable pairs of degree d}.

—H
Theorem 2.33 [50, Theorem 4.4, 7.2] and [9]. The stack P ; is a reduced proper Deligne-Mumford

—H
stack of finite type over C. Its coarse moduli space P ; is a reduced projective variety that compactifies
the moduli space of smooth plane curves of degree d. Furthermore, if 3 + d, then

—H
(1) thestack P ; is smooth, and
(2) the underlying surface of a Hacking stable pair of degree d is either a Manetti surface, or the slt’
union of two normal surfaces glued along a smooth rational curve.

3 | CONSTRUCTION OF K-MODULI SPACES OF SMOOTHABLE LOG
FANO PAIRS

In this section, we construct K-moduli stacks and spaces of Q-Gorenstein smoothable log Fano
pairs (see Definition 2.21). Our construction is largely based on [92] with new input from [27,
60, 121]. Results from this section can be applied to the study of many explicit K-moduli spaces,
including the K-moduli spaces of plane curves as the main subject of this paper. We will investigate
other applications in forthcoming work.

The following theorems are the main results of this section. The first theorem is a natural
generalization of [92, Theorem 1.3].

Theorem 3.1. Let y, be the Hilbert polynomial of an anticanonically polarized Fano manifold.
Fix r € Q. and a rational number ¢ € (0, min{1,r~}). Then there exists a reduced Artin stack
KMy, . of finite type over C parametrizing all K-semistable Q-Gorenstein smoothable log Fano
pairs (X, cD) with Hilbert polynomial y(X,Ox(—mKy)) = y,(m) for sufficiently divisible m and
D ~q —rKx. Moreover, the Artin stack KM admits a good moduli space KM, . . as a proper
reduced scheme of finite type over C.

X0sI'C

Indeed, in Section 3.6 we show that the K-moduli stack M, . . represents the moduli pseud-
ofunctor of Q-Gorenstein smoothable K-semistable log Fano families with certain numerical
invariants over reduced base schemes.

The second theorem provides a wall crossing principle for these K-moduli spaces when varying
the coefficient c.

Theorem 3.2. There exist rational numbers 0 = ¢, < ¢; < ¢, < -+ < ¢, = min{1,r~'} such that c-
K-(poly/semi)stability conditions do not change for ¢ € (c;,c;,;). For each 1 <i < k —1, we have
open immersions

M S OTOM, 0 © PTRM e

XosTCi—€ i XoTCi

which induce projective morphisms

¢ ¢F
KM — KM «— KM

Xo»lsCi—€ Xo»l'sCi XoolsCit+e*

* Recall that a demi-normal pair (X, D) is semi-log terminal (slt) if it is slc and its normalization is pit.
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20 of 113 | ASCHER ET AL.

Moreover, all the above wall crossing morphisms have local VGIT presentations as in [6, (1.2)], and
the CM Q-line bundles on KM, ... are ¢;—L-ample (see Theorems 3.33 and 3.36 for the precise
statements).

Remark 3.3. Recently, there has been tremendous progress on constructing K-moduli spaces and
stacks using purely algebraic methods. We point the reader to Remark 1.9 for a further discussion
and citations. Our construction is mostly based on the analytic works [92, 104, 115] and algebraic
works [27, 60, 93]. Since many of the works mentioned in Remark 1.9(1) appeared simultaneously
to or after the preparation of this paper, our constructions do not rely on those results, though it
is likely some of our arguments can be simplified using those results.

Meanwhile, a suitable condition for families of log pairs over nonreduced bases was discovered
in [73] as the K-flatness condition. Since we only study families of Q-Gorenstein smoothable log
Fano pairs, in this paper, we restrict the bases of such families to be reduced.

3.1 | Foundations

We will fix an arbitrary rational number ¢, € (0,1). For technical reasons, we will concentrate
on constructing the K-moduli space of Q-Gorenstein smoothable log Fano pairs (X, cD) where
D ~¢ —rKy and ¢ € (0, min{1, (1 — €,)r~'}) a rational number. As we will see in Theorem 3.20,
the K-(poly/semi)stability conditions will not change for ¢ sufficiently close to r~!. Besides, all
numbers except 3, 5., and B are assumed to be rational.

The first boundedness result is a generalization of work in [92] that was a consequence of [28,
120].

Theorem 3.4. Fix n a positive integer, r a positive rational number, and €, € (0,1) a rational
number. Then the following collection of Q-Gorenstein smoothable pairs

{X,D) | dimX = n, (X,cD) is K-semistable for some c € (0, min{1, (1 — ¢,)r "}

is log bounded. In particular, there exists m; = my(n,r,e,) € Z, such that m;Ky is Cartier
whenever (X, D) belongs to the above collection.

Proof. Since D ~y —rKy, it suffices to bound the variety X. From the assumption that (X, cD) is
K-semistable for some ¢ < (1 — ¢,)r~!, by [23, Theorem 7.2], we conclude that §(X) > ¢,. Since
the volume of X is a positive integer, X belongs to a bounded family by [60]. O

Proposition 3.5. Fixn,m € Z., r € Q. and ¢, € (0,1). Let X be a Q-Fano variety with mKy
Cartier. Let D ~¢ —rKy be a Weil divisor. Let ¢ < (1 — €,)r~"! be a rational number such that (X, cD)
is a log Fano pair. Then,

there exists a positive integer q = q(n,r,€,,m) and a Cartier divisor A € | — such that
D) th ists a positive integer q = q( 0-m) and a Cartier divisor A € | — qKx| such th
(X,1ct(X; D) - D + A) is a log canonical pair.
-1
there exists y, = yo(n,r, €y, m) such that either ¢ > Ict(X; D) — 2— which implies a(X,cD) <
Q) th ists ¥, = yo(n, 7, €y, m) such that eith Ict(X; D) — 2— which implies a(X, cD)

n%l, or (X,cD + %A) is uniformly K-stable for any 5 € (0, y,]
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‘WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES 21 0f 113

Proof.

(1) By [58], such X form a bounded family. This follows from the Bertini theorem for bounded
families.

(2) Let us assume that oc(X ¢D) > —. We know that a(X,cD; —Kx) = (1 — cr)oc(X cD) > n+1
Thus, (X,cD < let(X; D) — >—. It is clear that
X, (ct(X; D) — )D + = A) form a bounded family of klt pairs. Hence [23] implies that
there exists a; = ocl(n r, 60, m) > 0 such that

(X eD + A —KX> <X (Iet(X: D) — 22)D + L La; KX)
Hence,
a(X,eD + CRU=DN) = L —a(X,ep 4 G0 )
9 B —cr) q
1

> m(ﬁa(X,cD;—Kx) +(1 —5)O£<X,CD + %A;_Kx»

> a(X,cD;—Ky) + (87 — Dat (X, D+, —KX>

> + (B =1)a.

n+1

Let us take y, := 1“
[39] implies that (X, cD + (l_ﬁ)qMA) is uniformly K-stable. C

(l—ﬁ)qMA) > 1. Thus,

Next, we use an important result obtained in the solution of Yau-Tian-Donaldson conjecture
for log smooth log Fano pairs [121]. It plays a crucial role in proving openness and properness of
the K-moduli conjecture in our setting. We are very grateful to Feng Wang for kindly providing a
proof. For the case where D; = 0, that is, the boundary is a single smooth pluricanonical divisor,
see [16, 28, 120] or [92, Theorem 4.1].

Theorem 3.6 [121]. Fix n,q € Z,,, r € Q,, and €,,¥, € (0,1). Let X; be a sequence of n-
dimensional Fano manifolds with a fixed Hilbert polynomial x. Let D; ~g —rK x, besmooth divisors
on X;. Let A; be smooth divisors in | — gKx | that are transversal to D;. Let c; and f3; be a sequence
converging, respectively, to c., and f8, with ¢, < min{1, (1 —¢,)r '} and 0 < y, < f; < 1. Suppose
that each X; admits a conical Kdhler-Einstein metric w(f;) solving:

Ric(@() = (1 - rw(B) + a[Di] + %M[AJ. G

Then, the Gromov-Hausdorff limit of any subsequence of {(X;, w(8;))}; is homeomorphic to a Q-Fano
variety Y. Furthermore, there are unique Weil divisors E,T" C Y such that

1) (Y,c E+ WF) is a klt log Fano pair;
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22 0f 113 | ASCHER ET AL.

(2) Y admits a weak conical Kdhler—Einstein metric w(f,) solving

(1 - ﬁoo)(l - coor)
q

Rlc(w(ﬁoo)) = ﬁoo(l - Coor)w(ﬁoo) + Coo [E] + [F]
In particular, Aut(Y, E + TI) is reductive and the pair (Y, c E + WF) is K-polystable;

(3) there exists a positive integer m, = m,(x,,¥,q, €y, ¥o), Such that possibly after passing to a
subsequence, there are Tian’s embeddings T; : X; —» PN and T, : Y — PV, defined by tak-
ing a suitable orthonormal basis of the complete linear system | — mei| and | — mKy | with
respect to w(B;) and w(B,,), respectively, such that for any multiple m of m, and N +1 =
xX;, OXi(—mKXi)), we have that T;(X;) converge to T (Y') as projective varieties, and T;(D;)
(respectively, T;(A;)) converge to T . (E) (respectively, T . (I")) as algebraic cycles.

Proof. It is a combination of [121, Proposition 4.18, Corollary 4.19, and Lemma 5.4]. By taking
subsequences, we can assume that (X;; w(;)) converges to a metric space (X;d) in the Gromov-
Hausdorff topology. Since the divisors are ample, Cheeger—Colding-Tian’s theory applies. From
[121, Proposition 4.18], there exists a positive integer m, such that the partial C° holds for
(X;;w(B;); —mKy, ) for any multiple m of m,. Then, we get a sequence of Tian’s embeddings
T; : X; — PN using an orthonormal basis of H(X;, Oy, (-mKy.)). By taking subsequences again,
we can assume that T;(X;) converges to Y as cycles. Since T; are uniform Lipschitz, we get a map
T, from (X;d) to Y. By [121, Corollary 4.19], T, is a homeomorphim and Y is a normal projective
variety. Moreover, if we define the Gromov-Hausdorfflimit of D;, A;as D, A, thenE = T (D)
andI' =T (A,) are divisors on Y such that (Y, cE + MF) is a kit log Fano pair, and
it admits a weak conical Kdhler-Einstein metric w(g,):

(1 - ;800)(1 - coor)
q

Rlc(w(ﬁoo)) = ‘800(1 - Coor)a)(ﬁoo) + Coo [E] + [F]

Since both D; and A; are proportional to —Kx. , we have that both E and I are also proportional to
—Ky ascycle limits. Thus, Y is a Q-Fano variety, and both E and I are Q-Cartier divisors on Y. By

[121, Lemma 5.4], Auty(Y,c E + WF) is reductive. O
We now introduce the relevant Hilbert schemes.

Definition 3.7. Let HVN := Hile(IPN ) denote the Hilbert scheme of closed subschemes of
PN with Hilbert polynomial y. Given a closed subscheme X c PV with Hilbert polynomial
x(X,0pv(k)|x) = x(k), let Hilb(X) € H*N denote its Hilbert point.

Let y, be a Hilbert polynomial of an anticanonically polarized Fano manifold. Let m be a pos-
itive integer. Denote y(k) := y,(mk), (k) := xo,(mk) — xo(mk —r), and N = y,(m) — 1. Let
x = (x, 7) be the Hilbert polynomials of (X, D) < PV, Denote by H*'N = HXN x H¥:N. We define

X is a Fano manifold, D ~g —rKy is a smooth divisor,
Z :=<{Hilb(X,D) e WV | Opn(D]x = Ox(—mKx),
and HO(PN, Opn (1)) — HOX, Ox (—mKy)).
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Then, Z is a locally closed subscheme of H¥:N. Let Z be the Zariski closure of Z. We also
define

X isa Q-Fano variety, D ~, —rKy is an effective Weil divisor,
zMt .= JHilb(X, D) € Z | =m Ky is Cartier, Opn(1)|x = Ox(—mKy),
and H(PN, Opv (1)) = HO(X, Ox(-mKy)),

and
Z? = {Hilb(X, D) € Z¥" | (X, cD) is K-semistable}.

It is clear that ZX!! is a Zariski open subset of Z. We will see in Theorem 3.15 that Z: is a Zariski
open subset of ZX. Let Z™*¢ and Z'*? be reduced schemes supported on Z and Z2, respectively. In

the cases when we keep track of m, we use the notation Z,,,, Z, Zi‘r}t, Z3 0 Z{rfd, and derfl instead
of Z,Z, ZKt, Z,Z red and ded, respectively.
We define the K-moduli stacks and spaces as follows.

Definition 3.8. Let y, be a Hilbert polynomial of an anticanonically polarized Fano manifold.
Fix r € Q. and 0 < ¢; < 1. Let ¢ € (0, min{1, (1 — ¢,)r~'}) be a rational number. We denote by
x(k) := xo(mk), (k) := yo(mk) — yo(mk —r), and N,,, := y,(m) — 1. As we will see in The-
orem 3.24, the Artin stacks [ngr‘jl /PGL(N,, + 1)] stabilize for m sufficiently divisible which we
simply denote by KM, . .. Moreover, according to Theorem 3.1, the Artin stack XM, . . admits
a proper reduced scheme KM, . . as its good moduli space. We define the K-moduli stack (resp.
K-moduli space) with respect to the triple (x,,r,¢) as the reduced Artin stack KM, . . (resp.

reduced proper scheme KM, . ).

3.2 | Continuity method

In this section, we will use Theorem 3.6 and the continuity method [92, Section 4.2 and 6] to prove
the following theorem.

Theorem 3.9. Fixn e Z,, and r € Q. Fix ¢, € (0,1). Fix a Hilbert polynomial y, of an n-
dimensional anticanonically polarized Fano manifold. Then there exists my = m3(x,, ¥, €) such
that for any multiple m of ms, any rational number ¢ € (0, min{1, (1 — ¢,)r~'}), and any log pair
(X, D) with Hilb(X, D) € ZX\, the following holds:

-1
egr or there exists a 1-PS in SL(N,,, + 1)

(1) If (X,cD) is K-unstable, then either ¢ > Ict(X; D) — ™)

that destabilizes (X, cD).

(2) If (X, cD) is K-semistable but not K-polystable, then there exists a 1-PS in SL(N,, + 1) that pro-
vides a special degeneration to a K-polystable log Fano pair (X', ¢cD"). In addition, Hilb(X’,D') €
Zklt.

3) IfnZX ,cD) is K-polystable, then it admits a weak conical Kihler-Einstein metric. In particular,
Aut(X, D) is reductive.

(4) If (X, cD) is K-stable, then it is uniformly K-stable.
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Before presenting the proof of Theorem 3.9, we introduce the following notation and prove
several preliminary results.

Notation 3.10. Let us fix n € Z,, r € Q, €y € (0,1), and y, a Hilbert polynomial of an n-
dimensional Fano manifold. Let m; = m;(n,r,¢€,) € Z,, be chosen as in Theorem 3.4. Let g =
q(n,r,ep,my) € Zy and y, = yy(n,r, €y, m;) € (0,1) be chosen as in Proposition 3.5. Let m, =
my(Xo, 7, q, €y, Vo) be chosen as in Theorem 3.6. Let us take m; := Icm(m,, m,). For m € Z,
a multiple of mj, let us pick an arbitrary pair (X, D) with Hilb(X,D) € Zklt We also fix ¢ €

(0,min{1, (1 — ¢,)r~'}) such that ¢ < Ict(X; D) —
According to Proposition 3.5, let A € | — gKx| be chosen such that (X,cD + (1 — ,B)aA) is uni-

formly K-stable for any 0 < 8 < 7,. Let us choose a smoothing (X, D + A) — B over a pointed
curve 0 € B such that all fibers over B \ {0} are log smooth, and (X,, Dy, A,) = (X, D, A). Denote

by

€0r 1—cr

. To avoid bulky notation, leta : =

B :=sup{f €(0,1) | (X,cD + (1 — B)aA) is uniformly K-stable}.

By [44], we know that y, < B < 1. Since the pair (X,cD + (1 — f)aA) is uniformly K-stable for
any 8 € (0,8), by [23, 121], we know that there exists a Zariski neighborhood B of 0 in B such
that (X}, cD; + (1 — f)ad) is uniformly K-stable hence admits conical Kédhler-Einstein met-
rics for any b € BE := Bg \ {0}. Consider the triple Hilbert scheme HOTN of PN with the same
Hilbert polynomials as (X, D, A). Let Hilb(X,, cD,, + (1 — f)aA,) € W¢%N be the Hilbert point of
(X, Dy, + (1 — B)aA,) via Tian’s embedding.

Proposition 3.11. With Notation 3.10, the log Fano pair (X,cD + (1 — §)aA) admits a weak conical
Kdhler-Einstein metric for any 8 € [y, B). Moreover, for any sequence of points b; — 0 in BE, there
exists a sequence of matrices g; € U(N + 1) such that

g; - Hilb(&y, , ¢Dy, + (1 — ﬁ)aZbi) — Hilb(X,eD + (1 — B)ad) € W4 asi — oo.

Proof. By Theorem 3.6, we know that after choosing suitable g; € UN + 1), the Hilbert
points g; - Hilb(Xbl_, cDy, + a- B)aZbi) converge as i — oo to Hilb(Y, cE + (1 — B)ar) that is the
Hilbert point of a log Fano pair (Y,cE + (1 — §)al’) via Tian’s embedding of its weak conical
Kéhler-Einstein metric. Then [16] (see also [82, Section 3.1]) implies that (Y,cE + (1 — 8)al) is
K-polystable. By Lemma 3.12, after possibly replacing (0 € B) by its quasi-finite cover (0’ € B’),
the log Fano pair (Y, cE + (1 — B)al) is a K-polystable fill-in of the family (X, cD + (1 — f)al) x5
(B’ \ {0'}). Since a K-polystable fill-in is always unique by [27], we know that

(Y,cE+ (1 —B)al’) 2 (X,cD + (1 — f)aA).
The proof is finished. O
Lemma 3.12. Let G be an algebraic group acting on PM. Let z : B — PM be a morphism from a
smooth pointed curve (0 € B). Denote by B° := B \ {0}. Suppose that z, is a point in PM satisfying

that there exists g; € G and B° 3 b; - 0 fori € Z_ such that g; - z(b;) = z, asi — oo. Then, there
exists a quasi-finite morphism rr : (0’ € B') — (0 € B) from a smooth pointed curve (0’ € B") with
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{0’} = 771({0}) and two morphisms t : B'® :=B'\ {0} - Gand z’ : B’ — PM such thatz'(b') =
7(b") - z(z(b")) for any b’ € B'° and 2/ (0') = z,.

Proof. Let ¢ : G X B - PM x B be the morphism defined as ¢(g, b) := (g - z(b), b). Let G be a
normal proper variety that compactifies G. Let I' be the normalized graph of the rational map
¢ : G X B — PM x B. Hence, we have a proper birational morphism ¢ : I' - G X B that is an
isomorphism over G x B°, and a proper B-morphism ¢ : T — PM x B. From the assumption,
we know that (z,,0) € $(G x B°) = §(I'). Let us take a point z, € $~'(z,,0) C . Then we may
choose a smooth pointed curve (0’ € B’) together with a finite morphism f : B’ — T such that
f0) =2, and f(B') N (G x B°) # . After possibly shrinking (0’ € B’), we may assume that
f(B'’®) C G x B°. Then, by defining 7 := pryoof, T := pryof|gze,and z’ := prjodof, it is easy
to check that the conclusion is satisfied. O

A priori 8 might only be a real number. Nevertheless, the following result shows that 3 has to
be rational and we can find a destabilizing test configuration in PNm,

Proposition 3.13. With Notation 3.10, if B < 1, then (X, cD + (1 — B)aA) does not admit a weak
conical Kihler-Einstein metric. There exists a 1-PS A of SL(N,,, + 1) inducing a nonproduct special
test configuration of (X, cD + (1 — B)aA) such that the central fiber (X', cD’ + (1 — B)aA') admits
a weak conical Kéhler-Einstein metric. Moreover, the generalized Futaki invariant of this special test
configuration vanishes. In particular, B is a rational number.

Proof. We first show that (X,cD + (1 — B)aA) does not admit a weak conical Kidhler-Einstein
metric. Since (X,cD + (1 —y,)aA) is uniformly K-stable, we know that (X,D,A) has finite
automorphism group by [27, Corollary 3.5]. Assume to the contrary that (X,cD + (1 — B)aA)
admits a weak conical Kihler-Einstein metric. Then, from [13, 30, 35], we know that the Mabuchi
energy is proper. This indeed implies that (X, cD + (1 — B)aA) is uniformly K-stable by [14, 18].
However, by [44] we know that (X, cD + (1 — B — €)aA) is also uniformly K-stable for 0 < € < 1
which contradicts our definition of 8.

Next, let us choose y, < 3; /" B asi — oo. Then by Proposition 3.11, we may choose Bgi S5b; —»

0 as i — oo such that both (Xbi,cDbi +(1 - ,Bi)aZbi) and (X,cD + (1 — ;)aA) admit a (weak)
conical Kdhler-Einstein metric for any i, and

lim distyy.qv <Hi1b(Xbi, ¢Dy, + (1 — B)aky, ), UN + 1) - Hilb(X, D + (1 ,Bi)aA)) = 0.

=00

By the results of Theorem 3.6, there exists a sequence of matrices g; € U(N + 1) and a log Fano
pair (X’,¢D’ + (1 — B)aA) admitting a weak conical Kidhler-Einstein metric such that

g; - Hilb(X, ,cD,, + (1 - ﬁi)aZbi) — Hilb(X’,eD’' + (1 — B)aA") e WS asi — oo.

Since Hilb(X,cD + (1 — 8;)aA) € SL(N + 1) - Hilb(X, D, A), we know that

Hilb(X’,cD’ + (1 — B)aA’) € SL(N + 1) - Hilb(X, D, A) c HXSN,

On the other hand, we know that (X’, cD’ + (1 — 8B)aA’) isnot isomorphic to (X, cD + (1 — B)aA)
since the latter does not admit a conical Kihler-Einstein metric. Since (X’,cD’ + (1 — B)aA’)
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admits a weak conincal Kdhler-Einstein metric, its automorphism group is reductive by [13,
Theorem 5.2]. Hence, by [37, Proposition 1], there exists a 1-PS 1 of SL(N + 1) that induces
a special test configuration (X;,cD; + (1 — B)aA,;) of (X,cD + (1 — B)aA) with central fiber
(X',eD’ + (1 —B)aA'). Let L, be a sufficiently divisible multiple of —(K x, /a1 + D). Itis clear
from the definition that § = Fut(X;,cD; + (1 — )aA,; L,) is a degree 1 polynomial in § with
rational coefficients. Since (X, cD + (1 — 8)aA) is uniformly K-stable when § < 8B, we know that

Fut(X;,cD; + (1 —BlaA,;L;) = 0.

On the other hand, the 1-PS 7! of Aut(X’, D’, A") € SL(N + 1) induces a product test configura-
tion (X,,l—v CD:H +(1 - %)aA:l_l) of (X', c¢D’ + (1 — B)aA) such that

Fut(X;_,cD_, + (1 =B)ad)_; L))+ Fut(X;,cD; + (1 —B)aA,; £,;) = 0.

Again, by [16], we know that (X’,cD’ + (1 — B)aA’) is K-polystable. Hence, both general-
ized Futaki invariants in the above equation are zero. Thus, g = 8B is the solution of the
equation Fut(X;,cD; + (1 — B)aA;; L) = 0 which implies that B is a rational number. O

Now we are ready to prove Theorem 3.9.

Proof of Theorem 3.9. We follow Notation 3.10.

eor !

(1) Assume (X,cD) is K-unstable and c¢ < Ict(X; D) — T Thus, we have B < 1. Then, by
Proposition 3.13, there exists a 1-PS A of SL(N,, + 1) which induces a test configuration
(Xy,¢D; + (1 — B)aA;) of (X,cD + (1 — B)aA) such that

Fut(X,,cD; + (1 —pBlaA;;L£;) >0 ifandonlyif § < B.

Therefore, Fut(X;,cD;; L£;) < 0 which implies that (X, cD) is destabilized by A.

(2) Assume that (X, cD)is K-semistable but not K-polystable. Let us choose y, < 5; / 1asi — oo.
Following the proof of Proposition 3.13, there exists a log Fano pair (X’,cD’ +0-A") c PV
admitting a weak conical Kédhler-Einstein metric such that

Hilb(X',cD’ +0- A") € SL(N + 1) - Hilb(X, D, A) € B,

In particular, (X', cD’) is K-polystable by [16] hence is not isomorphic to (X, cD). Then, by
[37, Proposition 1], we obtain a special degeneration from (X, ¢D) to (X’,¢D’) induced by a 1-
PSin SL(N + 1). In addition, since Hilb(&, , cDj, + (1 — 5i)a5bi) converges to Hilb(X’,cD’ +
0-A") in WO-%N as i — oo, we know that Hilb(}, , Dy, ) converges to Hilb(X”,D’) in H**N for
suitable embeddings. Hence, Hilb(X’,D’) € Z]r;lt.

(3) Assume that (X, cD) is K-polystable. Similar to part (2), there exists a log Fano pair (X’,cD’ +
0-A’) in PN admitting a weak conical Kihler-Einstein metric such that

Hilb(X’,eD’ + 0- A") € SL(N + 1) - Hilb(X, D, A) C HXO%N.

If Hilb(X’,cD’ + 0 - A’) € SL(N + 1) - Hilb(X, D, A), then we are done. So, we may assume
Hilb(X’,cD’ + 0 - A") ¢ SL(N + 1) - Hilb(X, D, A). Then, again, by [37, Proposition 1], we get
a special degeneration from (X, cD) to (X', cD’) induced by a 1-PS in SL(N,,, + 1). By a simi-
lar argument as the proof of Proposition 3.13, the generalized Futaki invariant of this special
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test configuration vanishes since both (X, ¢D) and (X', cD’) are K-polystable. Hence, they are
isomorphic.

(4) Assume that (X,cD) is K-stable. Then it admits a weak conical Kihler-Einstein metric
and Aut(X, D) is reductive by (3). Hence, K-stability of (X, cD) implies that Aut(X, D) is a
finite group, which implies uniform K-stability of (X, cD) by [13, 14, 18, 30, 35]. The proof is
finished. U

3.3 | K-semistable thresholds are constructible

In this section, we show that the K-semistable thresholds are constructible functions satisfying
certain semicontinuity conditions. In particular, this implies the openness of K-semistability in
our setting. Our approach is based on [92, Section 7 and A.1].

Definition 3.14. Fix a rational number ¢, € (0,1). For any (X, D) with Hilb(X,D) € ZX!t, we
define the upper and lower K-semistable thresholds as follows:

kst, ¢ (X, D) := sup{c € (0, min{1, (1 - €)r 1D | (X,cD) is K-semistable};

kst_,eo(X,D) ;= inf{c € (0, min{1, (1 — eo)r_l}) | (X,cD) is K-semistable}.

Next, we will start the construction of the K-moduli stack XM Yourer 1 this section, we will focus
on showing the openness of c-K-semistability and constructibility of K-semistable thresholds.

Theorem 3.15. The functionskst, . on ZNIt are constructible with rational values. Moreover, kst +eo
(resp. kst_ . )is lower (resp. upper) semicontinuous on ZX\'. In particular, Z: are Zariski open subsets
of ZXt whenever ¢ € (0, min{1, (1 — ¢,)r~'}).

Note that the semicontinuity properties of these types of functions (in relation to existence of
conical KE metrics) were observed earlier in [92, 115].

Before presenting the proof of Theorem 3.15, we recall some results from [92, Section A.1] (see
also [99, Chapter 2, Proposition 2.14] and [103, Proof of Lemma 2.11]).

Lemma 3.16 [92, Lemma A.3]. Let Z be a projective variety. Let L, M be two G-linearized ample
line bundles over Z. Let T C G be a maximal torus. Then there is a finite set of linear functionals
.., lrLL, M, ..., li‘]’\[/l that are rational on Homg(G,,, T) with the following property:

Foranyz € Z, thereexistI(z,L) C{1,...,r;}, I(z,M) C {1, ...,7)} Such that the A-weight of z € Z
with respect to the linearization of G on L ® M~ is given by

ul(z, 1) = uM(z,2) = max{ll.L(/l) |ieI(z,L)} - max{llM(/l) |i€I(z,M)}

for all 1-PS A of T. Moreover, the function

zw— (I(z,L),I(z,M))

is constructible.

d "9 '¥TOT XPPTO9r]

00 oA

u) weIsomMLON Aq §[9Z1*SWId/Z] [ 1°01/10p/u

IqUT Ausiont

uo A1eiqr] QUIUQ Ko[1AY “SoLn

UL, oY1 93§ “[$20T/90/1 1]

OnIpUOY) pue suL

reaqueuIuo//:sdny) su

05 Koj1mnAn

0 S9[n1 10§ AIRIQIT AUIUQ AS[1A UO (SUONIPUOD-PUB-SULIDY /U

1 so[onIE YO tsn

A0T ot

wo) aanear) ajquatdde oy £q pouso

252011 suown



28 of 113 | ASCHER ET AL.

We present the proof of Theorem 3.15 below which essentially follows from [92, Proposition
AA4].

Proof of Theorem 3.15. Let us consider the ¢-K-stability on Z*' for ¢ € (0, min{1, (1 — eo)r~}).
Denote by 7 : (X, D) —» Z the universal family with £ representing the pull back of the line
bundle Opn(1). According to Definition 2.18, denote by

n(£"1'.D,)
M, i=Acyze and M, = Z(E—n)/lchow,n,ll — (1 + Dachow,zlp.clp: (3.2)
zZ

Hence, from Definition 2.18, we know that Acy , .p = M; — c¢M,. Notice that by flatness of the
universal family, this function z € Z - n(EZ‘1 -D,)/(L}) does not depend on the choice of z.
Let (X, D) be a log pair with z := Hilb(X, D) € ZX!. For simplicity, denote by G := SL(N + 1).
Then every 1-PS 1 : G,, — G naturally induces a test configuration (X;,cD;; £;) of (X,cD;L).
Moreover, Proposition 2.19 implies that

1

Fut(X;L,DA;EA) = m

(luMl(Za A) - CIUMZ(Za A)) .

€

Thus, Theorem 3.9 implies that (X,D) is c-K-semistable if and only if ¢ < lct(X;D) — n—J‘r’l
and

wMi(z,2) — cuM2(z,1) > 0 forany 1-PS A of G.

Pick a sufficiently divisible positive integer k such that M ?k and M f’k are line bundles over Z.
Let M be a sufficiently ample SL(N + 1)-line bundle on Z such that L, := M @ M 1®k and L, :=
MM f’k are both ample line bundles. Then we have

k(uMi(z,2) = cp2(z,2)) = (11(2, 1) — 1M(2,2)) — c(u"2(z,2) — uM(2, ).

We fix a maximal torus T C G. Hence, using Lemma 3.16, we know that there exists a decom-
position ZKIt = uISIT to constructible subsets SIT where I belongs to some finite index set, such
that for any z € SIT, the functions uM1(z,-) and uM2(z, -) are rational piecewise linear functions
on Homg(G,,, T) that are independent of the choice of z. We denote these two functions by x, ;(-)
and u, ;(-), respectively. On the other hand, since any 1-PS A of G is conjugate via g € G to a 1-PS
glg~' of T, and uMi(z,2) = uMi(g - z, gAg~") for i = 1,2, we know that (X, D) is c-K-semistable
ifand only if ¢ < lct(X; D) — nE_J(:l and

p11(A) > cpy (1) forany 1-PS Aof T and any I with z € SY.

Here SIG =G- SIT is a constructible subset of ZX! by Chevalley’s Lemma [51, Exercise 11.3.19].
Since g is a rational piecewise linear function on Homg(G,,, T), the union U;SY = ZX!', and
z € ZNt s 1ct(X; D) is a constructible function with rational values (see, e.g., [11, Corollary 2.10]),
we know that kst, . are constructible with rational values as well. Their semicontinuity follows
from the very genericity of K-semistability [22, Theorem 3]. O
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Corollary 3.17. Let 7w : (X,cD) — T be a Q-Gorenstein smoothable log Fano family over a normal
base T where D ~, —rKy r. Then for any ¢ € (0, min{1, r~1}), the set

{t e T | (X;,cD,) is K-semistable}
is a Zariski open subset of T.

Proof. For each ¢ € (0, min{1,r~'}), we may choose 0 < ¢, < 1 such that ¢ < (1 — ¢y)r~!. Then
the result follows from Theorems 3.4 and 3.15. O

We finish this section with a useful result on K-polystability. See [90, Theorem 1.1] for a related
result in the smooth case.

Proposition 3.18. Let (X, c,D) be a Q-Gorenstein smoothable K-polystable log Fano pair. Then the
set

{c € (0,min{1,r™'}) : (X, cD) is K-polystable}
is either {c,} or an open interval containing c,,.

Proof. By choosing 0 < ¢, < 1, we may assume that ¢, < min{1, (1 — ¢,)r~!,1ct(X; D) — n€—+°1}. By
Proposition 2.13, we know that the set

J :={c € (0,min{1,r 1} : (X,cD) is K-polystable}

is either {c,} or an interval containing c,,. Hence, it suffices to show that J contains an open neigh-
borhood of ¢,. Denote by z, = Hilb(X, D) € ZX'. Let G := SL(N + 1) and T be a maximal torus
of G.

Assume to the contrary that J does not contain any neighborhood of c, and J #
{co}. Then there exists 0 < |e] <1 such that (X,(c,+¢)D) is K-polystable, and (X, (c,—
¢/)D) is K-unstable whenever 0 < ¢’/e < 1. From the proof of Theorem 3.15, we know
that

p1 (D) < (o — €y (A)  for some 1-PS A of T and some I with z € S¥.
A priori A and I may depend on the choice of /. Nevertheless, since I belongs to a finite index
set, and ; ; is a rational piecewise linear function on Homg(G,,, T) for i = 1, 2, there exist 1 and
I that are independent of the choice of ¢ satisfying

py (A) < (co — €y (A)  whenever 0 < €’/e < 1. (3.3)

In particular, we know that u, ;(1) < cou, ;(4). Since z, € SIG =G- SIT,W(e choose g € G such that
g-zy € SIT. Then, since (X, ¢,D) is K-polystable, we have

My ) = uMi(zg, g7 A9) 2 cou™2(2g, g7 A9) = CoMa,1(A). (3.4)
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Combining (3.3) and (3.4), we have that uMi(z,, g7'1g) = cou™2(zy, g~'1g) # 0. This together
with the K-polystability of (X, ¢,D) implies that g~'1g induces an almost product test configura-
tion of (X, c,D). Since (X, (¢, + €)D) is also K-polystable, we have

uM(zg, g7 Ag) = (¢o + OuM2(20, g7 29),

which implies uMi(z,, g~'1g) = 0 for i = 1,2. However, this contradicts to (3.3). Thus, the proof
is finished. L]

3.4 | Properness

In this section, we prove the valuative criterion of properness of K-moduli spaces. Recall that Blum
and Xu [27] proved separatedness of K-moduli spaces (if they exist) for log Fano pairs. Hence, we
only need to show compactness of K-moduli spaces, that is, the existence of a K-semistable filling
for a K-semistable family over a punctured smooth curve.

Theorem 3.19. Let 0 € B be a smooth pointed curve. Let 7° : (X°,cD°) — B° be a Q-Gorenstein
smoothable log Fano family over B° := B \ {0} where D° ~ . —rKyo /o and c € (0, min{1,r~1}). If
all fibers of m° are K-semistable, then there exists a quasi-finite morphism (0’ € B') — (0 € B) from
a smooth pointed curve 0’ € B’ and a Q-Gorenstein smoothable log Fano family ' : (X',cD') - B’
suchthat (X', D) Xg B'° = (X°,D°) Xgo B’ whereB’° := B’ \ {0'}and (X(g,, cDg,) is K-semistable
(even K-polystable).

Proof. By choosing 0 < ¢, < 1, we may assume that ¢ < min{1,(1 —¢,)r~'}. Let b; — 0 be a
sequence of points in B°. Denote by (é\’bi, Dbi) the fiber of 7° over b;. Let y, be the Hilbert poly-
nomial of a smoothing of each fiber &}, that certainly does not depend on the choice of i or
smoothing. Let us choose m;, m, y,, g, and a as in Notation 3.10. Since (Xbi , cDbi) is K-semistable,
we have ¢ < let(&), ; Dy, ). Hence, Proposition 3.5 implies that there exists A, € | — gKy, | such
that (X}, c¢Dj, + (1 —y)ady,) is uniformly K-stable. Let us choose y, < 8; /' 1. Then, Plroposi—
tions 2.13 and 3.11 imply that (&}, ,c¢Dj, + (1 — §;)ad, ) admits a weak conical Kéhler-Einstein
metric whose Hilbert point in HX-%N is the limit of Hilbert points of conical Kiihler-Einstein log
smooth log Fano pairs. In particular, there exists a conical Kdhler-Einstein log smooth log Fano
pair (Y}, cE; + (1 — ;)al;) as a smoothing of (&, cDy, + (1 — B;)ady, ) such that Hilb(Y;, E;) €
Zn T € | —qKy,|, and

lim distyy.qv <Hilb(Yi, ¢E; + (1 — B)al), Hilb(X, , Dy, + (1 - ﬁi)aAbi)> =0. (35

1—>00

By Theorem 3.6, there exists a sequence of matrices g; € U(N + 1) and a log Fano pair (Y, cE +
0-T) in PN admitting a weak conical Kdhler-Einstein metric such that

g - Hilb(Y;, cE; + (1 — B,)al;) — Hilb(Y,cE +0-T) € 9N asi — co.
This together with (3.5) implies that

g - Hilb(X, , cDy, + (1 - ad,) — Hilb(Y,cE+0-T) € WY asi— co.

d "9 '¥TOT XPPTO9r]

00 oA

u) weIsomMLON Aq §[9Z1*SWId/Z] [ 1°01/10p/u

IqUT Ausiont

uo A1eiqr] QUIUQ Ko[1AY “SoLn

UL, oY1 93§ “[$20T/90/1 1]

OnIpUOY) pue suL

reaqueuIuo//:sdny) su

05 Koj1mnAn

0 S9[n1 10§ AIRIQIT AUIUQ AS[1A UO (SUONIPUOD-PUB-SULIDY /U

1 so[onIE YO tsn

A0T ot

wo) aanear) ajquatdde oy £q pouso

252011 suown



‘WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES | 310f113

Thus, there exists g/ € SL(N + 1) such that g/ - Hilb(&,,, D}, ) converges to Hilb(Y,E) in Z
Thus, by Lemma 3.12 after a quasi-finite base change of 7°, we may fill in (Y,cE) as the
K-polystable central fiber. The proof is finished. O

3.5 | Almost log Calabi-Yau cases

Notice that Definition 3.8 depends on the choice of €,. Indeed, if r < 1, then it suffices to choose
€p = 1 —r.Whenr > 1, we will show that there exists €, = €,(n,r) € (0, 1) such that the K-moduli
spaces/stacks are the same for any ¢ € [(1 —¢y)r—,r71).

Theorem 3.20. Foranyn € Z., and any rational numberr > 1, there exists €, = €,(n,r) € (0,1)
such that for any Q-Gorenstein smoothable log Fano pair (X,cD) with ¢ € [(1 —eo)r—L,r7Y), it is
K-(poly/semi)stable if and only if (X, (1 — €,)r ' D) is K-(poly/semi)stable.

Proof. First, let us assume that (X, (1 —¢,)r'D) is K-(poly/semi)stable hence klt. By ascend-
ing chain condition (ACC) of log canonical thresholds [55], there exists €; = €;(n,r) such that
(X,r7'D) is log canonical whenever (X, (1 —¢;)r'D) is log canonical. This is guaranteed for
any ¢, € (0,¢,] since (X, (1 —¢,)r~'D) is kit. Thus, (X,cD) is K-(poly/semi)stable for any ¢ €
[(1 — ey)r~t,r~1) provided ¢, € (0,¢,].

Next, let (X,cD) be a @-Gorenstein smoothable log Fano pair for some ¢ € (0,1). We may
choose a smoothing 7 : (X, D) — B over a smooth pointed curve (0 € B) such that 7 is smooth
over B\ {0} and (X, D,) = (X,D). By Lemma 3.21, we may choose €, = ¢,(n,r) € (0,1) such
that (X}, ¢’ D)) is K-polystable for any ¢’ € [(1 —¢,)r~!,r!) and any b € B \ {0}. For simplic-
ity, let us assume ¢, < €;. Then by Theorem 3.19, we know that there exists a K-polystable limit
X', (1 = e;)r 1D") of (X, (1 — €,)r 1 Dy) after possibly passing to a finite cover of B. Since ¢, < ¢,
we know that (X’,r~1D’) is log canonical. Then by Proposition 2.13, we know that (X’,c’D’)
is the K-polystable limit of (&}, c’D,) whenever ¢’ € [(1 —¢,)r~1,r1). Let us choose ¢, := %2
Assume that (X, ¢D) is K-(poly/semi)stable for some ¢ € [(1 — ¢,)r~!, r~1). Then by [27] we know
that (X, cD) specially degenerates to the K-polystable pair (X’,cD’). Hence, (X, (1 —€,)r~'D)
specially degenerates to the K-polystable pair (X, (1 — ¢,)r~'D’). In particular, (X, (1 — €,)r'D)
is K-semistable by Theorem 2.16. Again, by Proposition 2.13, we know that (X, (1 — ¢,)r D) is
K-(poly/semi)stable. The proof is finished. O

Lemma 3.21. Letn € Z,, and r > 1 be a rational number. Then there exists €, := €,(n,r) € (0,1)
such that for any pair (X, D) where X is an n-dimensional Fano manifold, D is a smooth prime
divisor on X and D ~q —rKy, we have that (X, cD) is K-polystable whenever ¢ € [(1 — e)r~Lr .

Proof. When r > 1, this is a consequence of [92, Theorem 5.2] based on ACC of log canonical
thresholds [55]. When r = 1, we know that D ~ —K since X is a Fano manifold. By bounded-
ness of Fano manifolds, there exists a smooth proper morphism 7 : (X, D) — T over a (possibly
disconnected) normal base scheme T that parametrizes all pairs (X, D) where X is a Fano man-
ifold and D is a smooth anticanonical divisor on X. For each ¢ € (0,1), let us consider the
subset

T. :={teT| (X, —e¢)D,)is K-semistable}.
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By Corollary 3.17, we know that T, is an open subset of T'. Since (X}, D) is log canonical, by Propo-
sition 2.13, we know that T, C T, whenever 0 < €’ < ¢ < 1. Therefore, the noetherian property
implies that (T,) stabilizes as 0 < ¢ <« 1. By [62, Corollary 1], we know that for each t € T, there
exists B; € (0,1) such that (X;, (1 — 3,)D;) is K-polystable. In particular, we have T, = B for any
0 < € <« 1. Then, again by interpolation, we may choose 0 < €, < 1 such that (X;,(1 — €,)D;) is
K-polystable for any t € T. The proof is finished. [l

The following result on boundedness is an easy consequence of Theorems 3.4 and 3.20.

Corollary 3.22. Fixr > 1 a positive rational number and n a positive integer. Then the following
collection of Q-Gorenstein smoothable pairs

{(X,D) | dimX = n, (X, cD) is K-semistable for some c € [0,r 1)}
is log bounded.
Next, we prove finiteness of K-moduli walls.

Proposition 3.23. There exist rational numbers 0 = ¢, < ¢; < ¢, < - < ¢, = min{1,r~'} such
that forany c,c’ € (¢;,¢;1) andany 0 < i < k — 1, we have Z;ed = Z;?d. Moreover, Z;l?ie are Zariski
open subsets onfd foreach1 <i<k-1

L

Proof. The first statement follows from combining Theorems 3.15 and 3.20. The second statement
follows from the continuity of generalized Futaki invariants with respect to coefficients. 1

3.6 | Stabilization of quotient stacks
Next, we study the stabilization problem for the stacks [ng’rfl /PGL(N,, + 1)].

Theorem 3.24. Assume that m is sufficiently divisible. Then for each k € Z, there exists a
canonical isomorphism

Oy : [Z55/PGL(N,, + 1] — [Z5% /PGL(Ny,, + 1)]
between reduced Artin stacks.

Proof. We first construct ®, as a morphism. For simplicity, denote by T := Zfr‘ril, T = sz’]fm,
N :=N,,,and N’ := Ny,,. Let (X, D) C PN x T be the pull-back family of the universal family
over the Hilbert scheme. Denote by 7 : (X, D) — T the projection morphism. Then, 7,0 (k)
is a rank N’ + 1 vector bundle over T. Let p : & — T be the PGL(N’ + 1)-torsor correspond-
ing to projectivized basis of the vector bundle 7,0y (k). Then we will define a PGL(N’ +
1)-equivariant morphism f : & — T’ as follows. Since T” is a locally closed subscheme of the
Hilbert scheme I]-I]’lg;N’, we will first construct f : & — I]-I]’lg;N’. Consider 7 : (X%, Dg) > P
where (X, D) 1= (X, D) X . Then we have a closed embedding (X, D) < PN x P given
by the projectivized basis information encoded in 2. This gives a morphism f : P — HN "
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Since T contains a Zariski dense open subset T N Z,, parametrizing smooth log Fano pairs, we
know that the restriction of f on p~!(T n Z,,,) factors through Z,,,,. Thus, f factors through the
scheme-theoretic closure Z,,. It is clear that the image of f lies inside Supp(T’), so f factors

as & i» T’ & WN" where the latter map is a locally closed embedding. It is clear that f is
PGL(N’ + 1)-equivariant. Thus, f descends to a morphism ¢ : T — [T’//PGL(N’ + 1)]. On the
other hand, we may lift the PGL(N + 1)-action on T to & via push forward sections. It is clear
that f is PGL(N + 1)-invariant that implies that g is also PGL(N + 1)-invariant. Thus, we obtain
O, as the descent of g.

From the above arguments, it is clear that the actions of PGL(N + 1) and PGL(N’ + 1) on &
commute. Hence, to show 0 is an isomorphism, it suffices to show that f : & — T"isa PGL(N +
1)-torsor, from which @;1 can be constructed easily. Let us consider the pull back of the universal
family (X', D) c PV x T’ with 7/ : (X', D’) - T'. Since all fibers of 7’ are kit with the same
volume, by [72, Theorem 5.4], we know that X’ — T’ is alocally stable family, in particular, K /T
is Q-Cartier whose Cartier index is divisible by km. Since —mK X, is Cartier for any fiber Xt’, =

7~ 1(t"), we know that —mK /v is also Cartier. It is also clear from the construction that ¢’

ho(x’ co[y”,’]) is a constant function on T’. Hence, the coherent sheaf 7’/ @™ is a vector bundle
t/

A * X’/T/
of rank N + 1 on T". Thus, we may cover T’ by Zariski open subsets T} which trivialize 7/ o™

sk X//T/ *
Then over Tl.’ , a basis of sections of ﬂ;cug)"f}T, gives us a Zariski local section Tl.’ — P of f. These

sections enable us to trivialize the map f : & — T’ over Tl.’ . [

Remark 3.25. As a consequence of Theorem 3.24, we know that the K-moduli stack XM,
represents the following moduli pseudofunctor over reduced base S:

0,15C

(X,cD)/S is a @-Gorenstein smoothable log Fano family,
KMy o(8) =1(X,D)/S | D ~54 —rKy/s, each fiber (X;,cDy) is K-semistable,
and ;((XS,OXS(—I{K Xs)) = xo(k) for k sufficiently divisible.

3.7 | Existence of good moduli spaces and local VGIT

In this section, we will show that the K-moduli stack XM Yo admits a proper good moduli space
KMy re generalizing [92, Section 8]. Moreover, there are finitely many wall crossings when ¢
varies in the interval (0, min{1,7~'}), and each wall crossing has a local VGIT presentation in the
sense of [6, (1.2)].

We follow Notation 3.10. Throughout this section, we will assume that ¢ < min{1, (1 — ¢,)r '}
thanks to Theorem 3.20. Let us fix two Pliicker embeddings H*N < PM and H¥N < pM, Then
we have an embedding W**N & PM ;= pM x pM_ Let (X, cD) be a K-polystable log Fano pair
parametrized by a point in ded. Then by Theorem 3.9, it admits a weak conical Kdhler-Einstein
metric and Aut(X, D) C SL(N + 1) is reductive. (Note here that in order to obtain a natural lin-
earization on Opm (1, 1), we always treat the automorphism group as a subgroup of SL(N + 1).) Let
us pick a U(N + 1)-invariant metric on PM coming from product of U(N + 1)-invariant Fubini-
Study metrics on PM and PM. Let z, = (20,15 Z0) 1= Hilb(X,cD) € PM be the Hilbert point of
(X, cD) via Tian’s embedding with respect to the weak conical Kdhler-Einstein metric. Then we
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may decompose the tangent space as Aut(X, D)-invariant subspaces
T,,PY =W @ aut(X,D)".

Similarly, we have PM =P(W,®C-zy, ® aut;(X,D)!) and PM = p(W, @ C- Zp, ®
aut,(X,D)%). Let us take z(’)‘ = (Z(*),1’Z;,2) e (PM)* X(PM)* be the dual point of z,. Then
the locus (z; # 0) gives an open immersion AM := AM x AM < pM that maps the origin to z,.
Hence, the image of W under the exponential map is a vector subspace of AM which we also
denote by W. Let W be the Zariski closure of W.

It is clear that z; is an Aut(X, D)-fixed point. Hence, AM and W are both Aut(X, D)-invariant.
We have two induced representations

py : Aut(X,D) - SL(W; @ C-z,;) andp, : Aut(X,D) —» SL(W, @ C - 2, ,).

Let p :=p; Xp, be the product representation that induces a linearization of OyA(1,1).
Denote by pxpy : Aut(X) - G, the character corresponding to the Aut(X, D)-linearization
of Opm(1,1)| 2, Since the universal family (X, D) — Z is Aut(X, D)-equivariant, it induces an
Aut(X, D)-linearization on M, which we denote by P, (see (3.2) for the definition of M,).

Definition 3.26. Let z € W n Z be a point.

(1) We say that z is ¢-GIT (poly/semi)stable if it is GIT (poly/semi)-stable with respect to the
Aut(X, D)-action on W with linearization p ® p(‘X1 ) of Op(1, 1).
(2) We say that z is (¢ + €)-GIT (poly/semi)stable for some 0 < |e| < 1 if it is GIT (poly/semi)-

stable with respect to the Aut(X, D)-action on W n Z with linearization p ® ,o)_(lD ® pf@z_e of
®—€
Opz(LD @M, O.

The next theorem on local GIT chart is a direct generalization of [92, Theorem 8.8].

Theorem 3.27. Thereis an Aut(X, D)-invariant saturated affine Zariski open neighborhood Uy, of
z, = Hilb(X,cD) in W N Z such that every point in Uy is c-GIT semistable whose corresponding log
pair is c-K-semistable, and for any Hilb(Y, E) € Uy, (Y, cE) is K-polystable if and only if Hilb(Y, E)
is c-GIT polystable.

Moreover, for all c-GIT polystable point Hilb(Y, E) € Uy, we have Aut(Y, E) < Aut(X, D), that

is, the local GIT presentation Uy, // Aut(X, D) is stabilizer preserving in the sense of [6, Definition
2.5].

Proof. By definition, z, is c-GIT polystable. Since saturated affine open neighborhoods of z, form
a basis of all Zariski open neighborhoods of z,, we just need to find one Uy, that is an Aut(X, D)-
invariant Zariski open neighborhood of z,. The semistable equivalence part of the statement
follows from the openness of GIT semistability and openness of K-semistability in our setting
(see Corollary 3.17). For the polystable equivalence part, the proof is the same as the proof of [92,
Theorem 8.8], except that we replace [92, Lemma 8.10] by Lemma 3.28.

Next, we prove the stabilizer preserving for polystable points. First, we recall the U(N + 1)-
invariant slice T constructed in [92, Summary 8.6]. Let = be the subset of H*:" consisting of Hilbert
points of K-polystable log Fano pairs in Zied via Tian’s embedding with respect to their weak
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conical Kdhler-Einstein metrics. By Lemma 3.28, we know that X satisfies [92, Assumption A.9].
Hence, we obtain stabilizer preserving for polystable points by [92, Theorem A.10]. This finishes
the proof. O

Lemma3.28. Let z; = Hilb(X;, D;) € Z;ed be a sequence of Hilbert points of c-K-semistable log pairs
converging to z, = Hilb(X, cD). Then each (X;, cD;) specially degenerates to a K-polystable log Fano
pair (Y;,cE;) € Z'Y, such that

=00

where Hilb(Y, cE;) is the Hilbert point corresponding to Tian’s embedding of (Y;, cE;) with respect
to the weak Kdihler-Einstein metric.

Proof. Assume to the contrary. After passing to a subsequence, we know that zlf := Hilb(Y}, cE;)
converges to z’ := Hilb(Y, ¢E) by taking Gromov-Hausdorff limits as Theorem 3.6, and (Y, cE) is
not isomorphic to (X, cD). Since zlf € SL(N + 1) - z;, there exists a sequence g; € SL(N + 1) such
that g; - z; » z’ asi — 0. Thus, z’ € %ZO N Z;ed where %ZO is the broken orbit of z, with respect

to the action of SL(N + 1) on Z (see [92, Section 3] for the definition). By [27] on the uniqueness
of K-polystable limit, we know that (Y, cE) = (X, cD), a contradiction. O

The next result gives stabilizer preserving property of semistable points near z, as a
straightforward consequence of [92, Lemma 8.12].

Lemma 3.29. After possibly shrinking Uy,, we have that Aut(Y,E) < Aut(X, D) for any point
Hilb(Y,E) € Uy.

Proof. We follow the proof of [92, Lemma 8.12]. By the proof of [92, Theorem 3.1], we know that
the connected component Aut,(Y, E) is a subgroup of Aut(X, D). Let us pick a finite subgroup
H < Aut(Y, E) that meets every connected component of Aut(Y, E). Hence, it suffices to show
that H < Aut(X, D). We also know from [92, Proof of Theorem 8.8] that the set

{Hilb(Y,E) € W n Z | Aut(Y, E) < Aut(X, D)}

is constructible. Hence, it suffices to show that the statement for z lies inside an analytic open
neighborhood U} of z, in W N Z. We may assume that z degenerates via a 1-PS 1 of Aut(X)
to a c-GIT polystable point z’ = Hilb(Y’, E’) in U};}. Hence, Theorem 3.27 implies that (Y’,cE’)
is K-polystable.

Since (Y, E) belongs to a bounded family, we may assume that |H| is uniformly bounded
from above. Since (Y, cE) is kit and belongs to a bounded family, there exists a positive integer
q, = q;(n,r,€y) > 1 and an H-invariant divisor I € | — q;Ky| such that (Y, cE + I') is log canon-
ical. Hence, by Proposition 2.13, we know that (Y, cE + (1 — §)ar’) is uniformly K-stable where
a=1=< and 8 € (0,1). Let us take m, := lem(m,(xy, ¥, q;, €y, Vo), M3) Where m,(xo, ¥, q1, €9, Vo)

1
is chosen as in Theorem 3.6. From now on we assume that m is a multiple of m,. Then by Propo-
sition 3.11, for each 8 € [y, 1), there exists an H-invariant weak conical Kéhler-Einstein metric
wy .£(B) together with a Tian embedding Hilb(Y, cE, wy .£(8)) € W¥N via wy (). Moreover,

d "9 '¥TOT XPPTO9r]

00 oA

u) weIsomMLON Aq §[9Z1*SWId/Z] [ 1°01/10p/u

IqUT Ausiont

uo A1eiqr] QUIUQ Ko[1AY “SoLn

UL, oY1 93§ “[$20T/90/1 1]

OnIpUOY) pue suL

reaqueuIuo//:sdny) su

05 Koj1mnAn

0 S9[n1 10§ AIRIQIT AUIUQ AS[1A UO (SUONIPUOD-PUB-SULIDY /U

1 so[onIE YO tsn

A0T ot

wo) aanear) ajquatdde oy £q pouso

252011 suown



36 of 113 | ASCHER ET AL.

from the uniqueness of K-polystable limits [27], we have

-1
Hilb(Y, cE, wy £(B)) ﬁ—> U(N +1) - Hilb(Y’, cE") c w5V,
Hence, the proof proceeds the same as [92, Proof of Lemma 8.12]. O

The following Luna slice-type result is also a straightforward consequence of [92, Lemmas 8.15
and A.15]. We omit the proof here because it is identical to the proof therein on verifying the finite
distance property.

Lemma 3.30. After possibly shrinking Uy, the morphism
% SLIN + 1) Xpux.p) Uw = U
is a finite strongly étale SL(N + 1)-morphism onto a Zariski open subset U of Z f’d.

Now we are ready to prove Theorem 3.1, the first main result of our construction of K-moduli
stacks and spaces.

Proof of Theorem 3.1. We first show that the Artin stack KM, , . admits a good moduli space
KM, . as a proper reduced algebraic space. By [6, Theorem 1.2], this boils down to proving the

following: for any closed point [z,] € [ded /SL(N + 1)], there is a saturated affine neighborhood
z, 1= Hilb(X,cD) € Uy, C W N Z (as in Lemma 3.30) such that

(1) The morphism f : [Uy, /Aut(X,D)] — [ded /SL(N + 1)] is a local quotient presentation in
the sense of [6, Definition 2.1]. Moreover, f is stabilizer preserving and sends closed point to
closed point, and L

(2) For any C-point z € ded specializing to z, under the SL(N + 1)-action, the closure {[z]}
admits a good moduli space.

We have shown the Aut(X, D) is reductive, and z; is a c-GIT polystable point with stabilizer
Aut(X, D). Since SL(N + 1) X x,p) Uw is the quotient of the affine scheme SL(N + 1) X Uy, by
the free action of the reductive group Aut(X, D), we know that SL(N + 1) X x,p) Uw 1s also
affine. Hence, Lemma 3.30 implies that f is étale and affine, in particular U = SL(N + 1) - Uy, is
affine. Thus, f is a local quotient presentation according to [6, Definition 2.1]. In Lemma 3.29,
we showed that f is stabilizer preserving. By Theorem 3.9.2, we know that a closed point in
[Z;ed /SL(N + 1)] corresponds to a c-K-polystable pair. Thus, f sends closed point to closed point

by Theorem 3.27. Hence, part (1) is proved. For part (2), notice that the closure SL(N + 1) - z in
Zied is a closed subset of U since SL(N + 1) - z = SL(N + 1) - Aut(X, D) - z and ¢ is finite onto U.

Since U is affine, we know that SL(N + 1) - z is also affine. Thus, we finish the proof of part (2).
Indeed, we have shown that U // SL(N + 1) is affine. Hence, the good moduli space KM, , . is
a reduced scheme. Its properness follows from [27] and Theorem 3.19. O

The next theorem provides a local VGIT chart of K-moduli wall crossing in the slice W. Before
stating the theorem, we recall a lemma we will need.
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Lemma 3.31.

(1) ([63]) Let G be a reductive group acting on a polarized projective scheme (Z,L). Let z € Z be a
closed point. Let A : G,, — G be a I-PS. Denote by z’ = lim,_,( A(t) - z. If z is GIT semistable and
,uL(z,/l) = 0, then z' is also GIT semistable.

(2) ([93, Lemma 3.1]) Let (X, A) be a log Fano pair. Let (X, A; £)/A! be a normal test configura-
tion of (X, A). If (X, A) is K-semistable and Fut(X, A; £) = 0, then (X, A; £)/A! is a special test
configuration and (X, A,) is also K-semistable.

Theorem 3.32. There is an Aut(X, D)-invariant saturated affine Zariski open neighborhood
Uy (as in Lemma 3.30) of z, = Hilb(X, cD) such that for any Hilb(Y,E) € Uy, and any |e| <
1, the log Fano pair (Y,(c + €)E) is K-(poly/semi)stable if and only if Hilb(Y,E) is (c + €)-GIT
(poly/semi)stable.

Proof. Let (Y, E) be a pair with z : = Hilb(Y, E) € Uy,. Suppose that (Y, (c + ¢€)E) is K-semistable.
We will show that Hilb(Y, E) is (¢ + €)-GIT semistable. Assume to the contrary that Hilb(Y, E) is
(c + €)-GIT unstable, then there existsa1-PS 1 : G,, - Aut(X, D) such that

#(9(1,1)(21/1) _ e,uMz(Za/U < 0.

From the discussion in Section 3.3, we can choose 1 so that u0D(z,1) = 0 and eu™2(z,1) >
0. Since z € W N Z is ¢-GIT semistable, by Lemma 3.31.1, we know that z’ :=1im,_,A(¢) - z is
also ¢-GIT semistable. Since Uy, is saturated, we know that z’ € Uy,. Let (Y’, E’) be the pair
such that Hilb(Y’, E”) = z’. Then, Theorem 3.27 implies that (Y’, cE") is also K-semistable. Hence,
uMi(z,2) — cuM2(z, 1) = 0since A induces a c-K-semistable family over Al. Let (¥;, (¢ + €)€;; L)
be the test configuration of (Y, (¢ + €)E) induced by A. Thus,

Fut(YV;,(c+€)éE L) = ,LtMl (z,A)—(c+ c—:),uMZ(z, ) = —e,uMZ(z,/l) <0.

This contradicts the assumption that (Y, (¢ + €)E) is K-semistable.

Next, we want to show (c + ¢)-GIT semistability implies (c + €)-K-semistability in Uy,. Sup-
pose z = Hilb(Y, E) € Uy, is (c + €)-GIT semistable. Assume to the contrary that (Y, (c + €)E)
is K-unstable. From Theorem 3.9, we know that to test K-(poly/semi)stablility of (Y, (c + €)E),
it suffices to test all 1-PS in SL(N + 1). Hence, there exists a 1-PS 1 : G,, = SL(N + 1) such that
uMi(z,2) — (c + €)uM2(z, 1) < 0. Again, from the discussion in Section 3.3, we may choose 4 so
that uM1(z, 1) — cuM2(z, 1) = 0and euM2(z, 1) > 0. Since (Y, cE) is K-semistable, by [94] we know
that Y, is normal in codimension 1 where (V;, c&£;; L) is the test configuration of (Y, cE) induced
by A. If Y, is not normal, then we may take its normalization and reembed it into PV with-
out changing the generalized Futaki invariants. By doing so we may assume that A induces a
normal test configuration of (Y,cE). Denote by z’ = Hilb(Y’,E’) : = lim,_,A(t) - z € Z. Since
(Y,cE) is K-semistable, Lemma 3.31.2 implies that (Y’,cE’) is also a K-semistable log Fano pair.
Let z, := Hilb(Y,, E;) be the c-GIT polystable degeneration of z in Uy,. Hence, (Y, cE,) is the
K-polystable degeneration of (Y, ¢cE) by Theorem 3.27. From Theorem 3.9, we know that (Y’, cE")
specially degenerates to a K-polystable log Fano pair (Y}, cE}) in PN via a 1-PS A’ of SL(N + 1).
Since K-polystable degenerations of S-equivalent K-semistable log Fano pairs are isomorphic by
[93], we know that (Y, cE;) = (Y7, cE!). Hence, there exists g € SL(N + 1) such that

%ina/l’(t) -z = g -z, = Hilb(Y], cE}).
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By Lemma 3.30, we know that U = SL(N + 1) - Uy, is a Zariski open subset of Zfd. Hence,
z,21, g - z1, and z’ all belong to U. Hence,

eu? M2((id, 2), 1) = euM2(z,2) > 0.

This implies that (id, z) is GIT unstable on SL(N + 1) X y¢x,py Uy With respect to the SL(N +
1)-linearized Q-line bundle z,b*M?_e. Since %*M, is induced from the Aut(X, D)-linearized Q-
line bundle M,|y,, on Uy, we know that z is (¢ + ¢)-GIT unstable in Uy,. Thus, we reach
a contradiction.

Finally, we show that the polystability conditions coincide. Denote by Uf;)e the (c + €)-GIT
semistable locus in Uy,, and U the (c + €)-K-semistable locus in U. From Lemma 3.30 and the
discussion above, we know that ¢ : SL(N + 1) Xyx,p) Uy . = UZ® is a finite surjective strongly
étale SL(N + 1)-morphism. We also see that U is a saturated affine open subset of Z;‘*d from the
proof of Theorem 3.1; hence, U** is a saturated open subset of Zgide Thus, a point z = Hilb(Y,E) €
Uy . is (¢ + €)-GIT polystable 1f and only if its Aut(X, D)-orbit is closed in USS . This is equiva-
lent to SL(N + 1) - z is closed in U$® that is the same as saying (Y, (c + e)E) 1s K-polystable by
saturatedness of UZ®. The proof is f1n1shed O

Theorem 3.33. Given any closed point [z,] in KM XoC and0 < € < 1, after possibly shrinking Uy,
there exist a local quotient representation f : [Uy /G, | > KM, . ., a G, -linearized line bundle
L,, on Uy, and a Cartesian diagram

Uy /G.,] — [Uw /G, ] <— Uy /G,

\Lf - \Lf \Lf *

(o ot
]CMXOJ,C—E : ]CM)(()J’,C : ]CMX()s"sC+€

such that the following are true.

(1) The quotient stacks [U,/ G,, ] are the VGIT chambers of [Uy, /G, ] with respect to L,  (see [6,
Definition 2.4] for a definition).

(2) Allvertical arrows are finite strongly étale morphisms onto saturated open substacks of K-moduli
stacks.

In particular, we have a Cartesian diagram

U; /GZO — UW//GZO « U;’V//GZO

1r ) I + 1 (3.6)

¢ ¢
KM)((,,r,c—e ) KM)(I,,r,c % KM;((),r,c+€

where all vertical arrows are finite étale morphisms onto Zariski open subsets of K-moduli spaces,
and all horizontal morphisms are projective.

Proof. We first look at the K-moduli stack parts. Let Uviv be the (c + €)-GIT semistable locus of
Uy . By Lemma 3.30, we know that f is a finite strongly étale morphism onto [U/SL(N + 1)]

that is a saturated open substack of KM, .= [ZZ,ed /SL(N + 1)]. The diagram is Cartesian
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by Theorem 3.32. Hence, f* are finite étale. From the proof of Theorem 3.32, we know that
U* :=SL(N+1)- Uﬁ, = Zﬁi‘i N U. Hence their saturatedness follows from saturatedness of U.
The stabilizer preserving property of f* follows from 3.29. The morphisms f* also send closed
point to closed point by Theorem 3.32. Hence, we finish proving part (2). For part (1), we take
L, 1= Op(1,Dly,, together with the G, -linearization p ® p(‘xl’D) (see Definition 3.26). After
shrinking Uy, if necessary we may assume that M, |, is trivial. Hence, the G, -representation
p‘12 on M3 ! corresponds to a G, -character X, : G;, = Gy,. Then the VGIT chamber statement
follows from Theorem 3.32. For the K-moduli spaces statements, the Zariski open part is clear by
definition of saturatedness, the finite part follows from the definition of good moduli spaces, and

the strongly étale part follows from descent property (see [6, Proposition 2.7]). O

Definition 3.34. Let 7 : (X, D) — Z be the universal family over Z.Let . . (X, D,) — Z;ed be
the base change of 7 to ded. Let 0 < ¢’ < r~! be another rational number. Then the CM Q-line
bundle Acy ;_p, on ZE* descends to a Q-line bundle 4., on KM = [Z"*4/PGL(N + 1)].

Xool'sC
We call 4, s the CM Q-line bundle on KM with coefficient ¢’. We simply denote 4, := 4.
We also denote A podge = Arodge,r,,~1D-

Xool'C

Proposition 3.35. With the above notation, the CM Q-line bundle 1, on KM, , . descends to a Q-
line bundle A, on the K-moduli space KM P Ifin addition ded =Z gf:dg forany0 < € <« 1, then the
Hodge Q-line bundle A 11044 and the CM Q-line bundle A, o on KM, . . descends to Q-line bundles
A¢ Hodge and Ao on KM, . . for any 0 < ¢’ < r71, respectively. Moreover, we have the following
interpolation formula:

(L= Ay = A =M+ c'r(n + 1)(=Kx)" A podge- (3.7)

Proof. First, we show the statements on descents. Let [z,] = [Hilb(X, D)] be any closed point
of KM By [10, Theorem 10.3], to show that 1. » on XM can descend to KM it

Xo»lsC* Xool'sC Xo»lsC?
suffices to show that the group of stabilizers Aut(X, D) acts trivially on Afclf for k sufficiently
divisible. Since Aut(X, D) is reductive, it suffices to show that any 1-PS ¢ in Aut(X, D) acting on
Aee |z, has weight zero. By Proposition 2.19, this weight is a nonzero multiple of the generalized
Futaki invariant of the product test configuration (X,,c'D,; L,) of (X, ¢'D) induced by o. Since
(X, cD) is K-polystable, we know that the o-weight of 1, at [z,] always vanishes. If in addition
that (X, (c + €)D) is K-semistable, then by the linearity of generalized Futaki invariants in terms
of coefficients, we know that Fut(X,,c'D,; L) = 0 forany 0 < ¢’ < r1. By Proposition 2.25, we
know that

(1- C,r)_n/lc’cf =(1- C,r)/lc,() + c’r(n + 1)(_KX)H/10,Hodge'

Hence, 4, poqge descends to KM, .. if 4. s descends for all c’. Thus, the interpolation formula

(3.7) is just the descent of the above equation. O

Theorem 3.36. With the above notation, the Q-line bundles A, on KM, . ... are $*=-ample. In
addition, we have lim,_o A .. = Ao = (@F)A,.

Proof. By Theorem 3.32, it suffices to verify the statements over the local GIT chart Uy, // G,, for
each closed point [z,] € KM yourc- Recall from (3.2) that for the universal family 7 : (X, D) — Z,
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40 of 113 | ASCHER ET AL.

we have a line bundle £ on X as the pull back of Op~ (1) and Q-line bundles M; on Z such that
Aemrepe = My —cM,. Let £, be the pull back of £ to X,. Since

-1
‘C'C ~ar, —mKXC/ded N@’”c m(l - Cr) (_KXL./ded - CDC),
we know that
m"(1 = cr) ™ Aema, ep, = AcMzep,elzes = (My = M) yrea.

Thus, m"(1 —cr)™"*(f*)* A, On [Uﬁ,/GZO] is the descent of (M; — (c + €)M2)|U$V. By Defini-

tion 3.26, we know that the descent of +M, on Uﬁ, // G,, is antiample over Uy, // G, hence A

is ¢*-ample. The second statement follows directly from the above computations.
Finally, we are able to prove Theorem 3.2 using the above results.

Proof of Theorem 3.2. The statements follow from combining Proposition 3.23 and Theorems 3.1,
3.32, and 3.36. [l

4 | GENERAL PROPERTIES OF K-MODULI OF PLANE CURVES

In this section, we use results from Section 3 to construct K-moduli stacks (resp. K-moduli spaces)
of plane curves parametrizing K-semistable (resp. K-polystable) log Fano pairs (X, cD) where X
is a Q-Gorenstein degeneration of P2, the curve D is a degeneration of smooth plane curves of
degree d, and 0 < ¢ < 3/d. We also study properties of these K-moduli stacks and spaces. We note
that similar computations and comparisons of K-moduli to GIT were carried out in [106] in the
case of low degree del Pezzo surfaces.

4.1 | Definition and properties
We first recall the GIT moduli stacks and spaces of plane curves.

Definition 4.1. Let d be a positive integer. Let P : = P(H(P?, Op2(d))) be the projective space
of dimension (dzz) — 1 parametrizing all plane curves of degree d. It is clear that the natural

PGL(3)-action on P? lifts up to an action on P,;.

(1) The line bundle (9Pd(1) has a unique SL(3)-linearization. Let PZS be the GIT semistable locus

of P, with respect to the SL(3)-linearized line bundle Op ., (1). We define the GIT moduli stack

—GIT —GIT
P, ofplanecurvesofdegreedtobe P; := [P(Sis /PGL(3)]. We define the GIT moduli space

of plane curves of degree d to be I_JdGIT =Py / SL(3).

(2) Let sz be the Zariski open subset of P; parametrizing smooth plane curves. Then the moduli
stack P, of smooth plane curves of degree d is defined as P,; : = [sz /PGL(3)]. When d > 2,
it is clear from [99, Chapter 4 §2] that Pfim is a saturated Zariski open subset of PZS. Hence, Py

—GIT
admits a good moduli space P, as a Zariski open subset of P; . We call P; the moduli space
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—GIT
of smooth plane curves of degree d. Notice that when d = 1, the GIT moduli space P, is
empty, and P, does not admit a good moduli space due to the nonreductivity of stabilizers;
when d > 3, the stack P, is Deligne-Mumford.

Now we begin with the definition of K-moduli stacks and spaces of plane curves. Recall that in
Definition 3.8, we define K-moduli stacks and spaces of Q-Gorenstein smoothable log Fano pairs.
In what follows, we adapt this definition to define K-moduli stacks and spaces of plane curves.

Definition 4.2. Let d and m be positive integers. Let ¢ € (0, min{1, %}) be a rational num-
ber. Denote by y(k) := x(P?, Op(3mk)), 7(k) = x(P?, Op2(3mk)) — x(P%, Op.(3mk — d)), x :=
(x> %), and N = h°(P?, Op2(3m)) — 1. Let HX*N be the Hilbert schemes of pairs (X, D) < PN of
Hilbert polynomial (y, ).

We define

(X,D) = (P?,C) where C is a smooth plane curve of degree d,
Z :={Hilb(X,D) € WN | Opn(D]x = Ox(—=mKy),
and HO(PV, Opn (1)) — HOX, Oy (—mKy)).

In other words, Z parametrizes Hilbert points of (3m)th Veronese embedding of (P2, C) into PV,
Then Z is a locally closed subscheme of H¥*N. Let Z be the Zariski closure of Z. We also define

X is a Manetti surface, D ~¢ —gK v is an effective Weil divisor,

Z? :={Hilb(X,D) € Z | (X,cD) is K-semistable, Opn (1)|x & Ox(—mKy),
and HO(PV, Opn (1)) — HO(X, Oy (—mKy)).

By Corollary 3.17, we know that Z? is a Zariski open subset of Z. We denote by ded the reduced
scheme supported on Z.

—K
Assume m is sufficiently divisible. We define the K-moduli stack P ; . of plane curves of degree
d with coefficient c as the quotient stack

K

Py, =121 /PGL(N + 1)].

—K
By Theorem 3.24, we know that P, . does not depend on the choice of sufficiently divisible

—K —K
m. By Theorem 3.1, we know that P, . admits a good moduli space P, . as a reduced proper

—K
scheme of finite type over C. We call P, . the K-moduli space of plane curves of degree d with
coefficient c.

Indeed, if we denote by y,(k) := x(P?, O(3k)), then fjc =KM, 4/3.and I_DE’C =KM,, q/3¢
as in Definition 3.8 since P? is the only smooth del Pezzo surface of degree 9. From the definition,
we also know that a pair (X, cD) is parametrized by 55 . (resp. ﬁg’ o) if and only if (X, cD) is K-
semistable (resp. K-polystable), and it admits a Q@-Gorenstein smoothing to (P?,cC,) with C, a
smooth plane curve of degree d.

d "9 '¥TOT XPPTO9r]

00 oA

u) weIsomMLON Aq §[9Z1*SWId/Z] [ 1°01/10p/u

IqUT Ausiont

uo A1eiqr] QUIUQ Ko[1AY “SoLn

2S *[¥202/90/1 1]

VRS

105 Ka[1mvKrpaqupoutuo//:sdny) suonipuoy pue sur

951 JO SO 10) AIEIQIT QUIUQ A9[1AL UO (SUONIPUO-PUT-SULID U

2 SOnIE VO ¢

A0T ot

wo) aanear) ajquatdde oy £q pouso

252011 suown



42 of 113 | ASCHER ET AL.

The following useful proposition is an easy consequence of the Paul-Tian criterion Theo-
rem 2.22.

Proposition 4.3. Let C be a plane curve of degree d. Let ¢ € (0, min{1, 3/d}) be a rational number.
If (P2, cC) is K-(poly/semi)stable, then C is GIT (poly/semi)stable.

Proof. Consider the universal family 7 : (P? X P4, cC) — P, of plane curves of degree d. From
Theorem 2.22, it suffices to show that the CM Q-line bundle ¢y . ¢ is ample on P,. Here we
use the intersection formula as in Proposition 2.23. It is clear that —Kpayp, /p, ~ Op2yp,(3,0)
and C ~ Op2yp,(d,1). Denote by p : P2 x P; — P2 the projection to the first component. By
computation,

AcMrec = =T ((_Kuﬂde/Pd - CC)3) = _ﬂ*(OPZXPd(?) —cd, _0)3)
= —7,(p* OB —cd)’ +3p* O3 — cd)* - *O(—c) + 3p* O3 — cd) - 7*O(—c)* + *O(—c)*)

=3(3 = cd)’cOp (1).
Hence, Acy 7 oc is ample whenever ¢ € (0, %). The proof is finished. O

The following corollary was proved by Hacking [50, Propositions 10.2 and 10.4] and Kim and
Lee [67, Theorem 2.3]. We give a proof using K-stability and CM line bundles.

Corollary 4.4. Let C be a plane curve of degree d. If Ict(P?;C) > % (vesp. > 3 ), then C is GIT
semistable (resp. GIT stable).

Proof. If Ict(P?;C) > %, then the log Calabi-Yau pair (P2, %C) is K-semistable. Hence, (P2, cC) is
K-semistable for any ¢ € (0, %) by Proposition 2.13. Thus, Proposition 4.3 implies that C is GIT
semistable. If lct(P?; C) > %, then again by Proposition 2.13, we know that (P2, cC) is uniformly
K-stable for any ¢ € (0, g). Hence, C is GIT stable by Proposition 4.3. O

Example 4.5. We summarize the description of K-moduli stacks and spaces for d < 3.
(1) d = 1. In this case, we know that (P2, cC) is K-unstable for C a line and any ¢ € (0,1) by
[90, Example 3.16]. Hence, Z N Z? is empty. Since K-semistability is an open property by

Corollary 3.17, we know Z? = . Hence, both 511<, . and I_Ji . are empty for any ¢ € (0, 1).
(2) d = 2. Denote by C a smooth plane conic curve.
(a) If c € (0, %), by [90, Theorem 1.5], we know that (P2, cC) is K-polystable. By Proposi-
tion 4.3, we know that (P2, cC’) is K-unstable for any singular plane conic curve C’. Thus,

—K
the only K-semistable point in P, is [(P?,cC)] which is indeed K-polystable. Hence
—K  —GIT — —G

P, =P, =[SpecC/PGL(2)]andP,, =P, = SpecC.

2,c =
(b) If c = 3, then by [90, Proof of Theorem 1.5], we know that (P2, %C) is K-semistable and
admits a special degeneration to the K-polystable pair (P(1, 1, 4), %CO) where C, = (z =
0) with [x,y, z] the projective coordinates of P(1,1,4). If [(X, %D)] is a K-semistable

—X
point in P, , /4 with X nonsmooth, then by [93] it admits a special degeneration to
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(P(1,1,4), %CO). Hence, the Gorenstein index of X is 2 and D is smooth which implies
that (X, D) = (P(1,1,4),C,) by [50, Theorem 8.3]. Thus, there are only two K-semistable
points: [(P?, %C)] and [(P(1,1,4), ZCO)] where the latter one is the only K-polystable
point.

(c) Ifc > %, then by [90, Example 3.16], we know (P2, cC) is K-unstable. Hence, similarly as

—K —
in (1), both P, , and P?C are empty for any c € (%, 1).

(3) d = 3. We will show 5131 = 5(3}” for any ¢ € (0,1). From [99, Page 80], we know that a plane
cubic curve C is GIT semistable (resp. stable) if and only if it has at worst nodal singularities
(resp. smooth). Thus, we know that (P2, C) is a log canonical log Calabi-Yau pair whenever
C is GIT semistable. Then, we know by Proposition 2.13 that (P2, ¢C) is K-semistable for any
¢ € (0,1). If C is GIT stable, that is, smooth, then [62] implies (P2, (1 — €)C) is K-polystable.
Hence, (P2, cC) is K-stable for any ¢ € (0, 1) by Proposition 2.13. It is well known that (xyz =
0) is the unique GIT polystable plane cubic curve up to a projective transformation. By [46],
we know that (P2, c(xyz = 0)) is K-polystable for any ¢ € (0, 1). If [(X, cD)] is a point in 5? o
then it is a K-semistable limit of K-semistable log Fano pairs (P2, cC,) where {Cilier\joy Is a
family of cubic curves over a punctured smooth curve T \ {0}. Since C; is GIT semistable by
Proposition 4.3, we know that (possibly after a finite base change of T) there exists an algebraic
family g, € PGL(3) and a GIT polystable plane cubic curve C, such that g, - C; - C, in P5.
Therefore, (P2, cC,) is the K-polystable limit of (P2, ¢C,). By [27] we know that (X, cD) admits

a special degeneration to (P2, cC,) which implies X = P2 and D is GIT semistable. Hence, by
—K  —GIT
similar arguments to the last paragraph in the proof of Theorem 5.2, we have P, . = P

h —K  —GIT
ence P3, = P3

N and

From now on, we will always assume d > 4. We now mention some basic properties satisfied
by the loci Z, Zg as well as the K-moduli stacks and spaces we just defined.

Proposition 4.6. With notation as above, the following properties hold for any ¢ € (0, %):

(1) Hilb(X,D) € Z ifand only if (X, D) is isomorphic to (P2, C) where C is a smooth plane curve of
degree d. Moreover, the locus Z is a saturated open subset of Z.

—X

(2) The locus Z? is smooth for any ¢ € (0, %). In particular, Z? = ded, and P . is a smooth Artin
stack. -

(3) The open immersion Py < P, . induces an open immersion between their good moduli spaces

—K —K
Py < P, . Furthermore P, . is a normal proper variety, and P, has only quotient singularities.

Proof. For part (1), it suffices to show that (P2, cC) is K-stable for any ¢ € (0,3/d) and any smooth
plane curve C of degree d > 4. This follows from Proposition 2.13 since (P, %C) is klt. Since Z lies
inside the K-stable locus of Z7, we know that Z is saturated in Z? by the uniqueness of K-polystable
degeneration [93].

For part (2), recall that for any point Hilb(X,D) € Z?, the surface X is a Manetti surface.
Hence, X has unobstructed Q-Gorenstein deformations by Proposition 2.30. Since K-semistability
is an open condition by Corollary 3.17, it suffices to show that the Q-Gorenstein deformations
of the pair (X, D) are also unobstructed. Let 7 : (¥,D) — T be a @-Gorenstein smoothing of
(X,D) over a smooth pointed curve 0 € T, that is, (X,, D,) = (X,D) and 7 is smooth over
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T° :=T \ {0}. Denote by (X°,D°) := 7~ 1(T°). Then it is clear that dK y. + 3D° ~, 0. By tak-
ing Zariski closure, we know that dK, + 3D ~, 0 which implies dKy + 3D ~ 0 by adjunction.
In addition, if 3 | d, then we get %KX + D ~ 0. Hence, the statement of [50, Lemma 3.13] holds
for (X, D). Since X is kIt and D — Ky ~g —?KX is ample, Kawamata-Viehweg vanishing
implies H'(X, Oy (D)) = 0. Hence, the statement of [50, Lemma 3.14] also holds for (X, D). There-
fore, we may apply [50, Theorem 3.12] to deduce that (X, D) has unobstructed Q-Gorenstein
deformations. x
For part (3), the first statement follows from part (1) and [10, Remark 6.2]. The normality of P de
follows from part (2) and a result of Alper [10, Theorem 4.16 (viii)]. Since any smooth plane curve
of degree d > 4 has finite automorphism group, we know that P, is a smooth Deligne-Mumford
stack. Hence, P, has only quotient singularities. O

—K
There are certain open subsets of P, . that remain unchanged under subsequential wall cross-

. =K .. .

ings. Let P! and P! be the subsets of P, . parametrizing c-K-polystable curves with lct > % and

Ict > 3, respectively. By the constructibility and lower semicontinuity of log canonical thresholds
—K
in bounded families, we know that both Pglz and P:icc are Zariski open subsets of P .. Denote by

—K —K
kit lc : kit lc ; ;
P e and P e the preimage of P e and P de under the quotient map P, . — P, ., respectively.

Proposition 4.7.

—K
(1) There exist open immersions Pi!' & PI¢ '« P , that descend to open immersions P <

—H
Plc SN P e’ forany 0 < ¢ < ¢’ < 3/d. Moreover, there exists an open immersion Pliz < P, for
any c €(0,3/d).

—K
(2) Assume c, € (0,3/d) satisfies the following: for any K-polystable point [(X,c,C)] € P dey We

—K —K —K
havelct(X; C) > 3/d (or equivalently, P}zco = Pd,CO). ThenP, = Pd’COfor anycy, <c<3/d. In
other words, there are no wall crossings among K-moduli spaces in the region c € (c, — €,3/d)
foro<ex 1.

Proof. For part (1) if (X, cD) is log K-semistable and 1ct(X; D) > 3 , then (X, ¢'D) is K- semistable

foranyc < < = by Proposition 2.13. Hence, we have open immersions Pk“ < Plc < P del To
show that they descend to open immersions among the good moduh spaces it sufflces to show

that the larger open substack P}fe is a saturated open substack of P a0 Let[(X,cD)] € P}icc be a
point. Then (X, cD) admits a K-polystable degeneration (X, cD,) in P(lifc such that Ict(X,, D) >

%. Thus, by Proposition 2.13, we know that (X, ¢'D,) is K-polystable. Hence, PClicC is saturated

. —K
in Pdgc,.

By definition, we know that Pklt

Pklt

admits an injective map to P . To show that admits an

open immersion to P 4 by [23] it suffices to show that a Hacking stable pair (X, D) belongs to Pklt
if and only if it is uniformly c-K-stable. The “if” part is clear from the definition. For the “only 1f
part, if (X, D) is both Hacking stable and c-K-polystable, then by Theorem 3.9, it admits a weak
conical Kdhler-Einstein metric, and its automorphism group is finite. Hence, (X, cD) is uniformly
K-stable by Theorem 3.9(4). This finishes the proof of part (1).
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—K
For part (2), notice from part (1) that P(licc is a saturated open substack of P . for ¢ € (c,, %)
»Co ’

—K —K
which induces an open immersion ¢ : P, 0 = Plicc < P, .. Since the K-moduli spaces are nor-
: Co .
mal proper varieties by Proposition 4.6, we know that ¢ is an isomorphism by [10, Proposition
— —K
6.4]. Hence, Pd,CO = P(lifco =P, whenever ¢ € (cg, %). The c € (¢, —€,¢y) part follows from
Proposition 3.18. Ol

4.2 | Indexbounds

In this section, we prove the following theorem on bounding local Gorenstein indices of singular
surfaces appearing in the boundary of K-moduli spaces. It is a K-stability analog of Hacking’s
result [50, Theorem 4.5] and [49, Theorem 2.22]. As in Hacking’s work, it is crucial in the study of
singular objects in K-moduli spaces of plane curves.

Theorem 4.8. Let (X, cD) be a K-semistable log Fano pair that admits a Q-Gorenstein smoothing
to (P2, cC,) withc € (0,3/d) and deg C, = d. Let x € X be any singular point with Gorenstein index
ind(x, Ky), then

. 3 .
mln{LmJ,d} if3+d,

ind(x,Ky) < X .
min{[3_cd ,?} if3 | d.

Proof. Let § :=1—-cd/3 €(0,1). By [50, Propositions 6.1, 6.2, & Theorem 7.1], we know that
a Gorenstein index n point x € X is a cyclic quotient singularity of type %(1, an — 1) where
gcd(a,n) =1and 3 } n.

We first show that n < Lﬁj. By Theorem 2.15, we know that

Vol(x, X, D) > 3(~Ky — cD)? = 48>

On the other hand, we have \751(x,X ,cD) < \7/61(X,X )= % by [82, Proposition 4.10]. Combining

these two inequalities, we get n < [87!] = | =—].

Next, we show the inequality n < d or % depending on divisibility of d by 3. We know that
dKy +3D ~0,s0if x ¢ D, thenn | d hence n < d (in fact n < d/3if 3 | d). From now on, let us
assume x € D. Let (¥ € X) be the smooth cover of (x € X), with D being the preimage of D. Since
the finite degree formula for local volumes is true in dimension 2 by [96, Theorem 2.7(3)] [83,

Theorem 4.15], we have
vol(x,X,cD) = n* - vol(x, X, cD).
On the other hand, Theorem 2.15 implies that V/El(x,X ,cD) > 482, so we have

vol(x, X, cD) 2= cordyD

7 <73 (4.1)

n<
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In particular We have n < 7. We know that lct(X; D) > ¢, and Skoda’s estimate [113] implies
let.(X; D) < , so we have ord;D < 2. Assume % € X has local coordinates (u,v) where
the cyclic group actlon is scaling on each coordinate. Let u'v/ be a monomial appeared in the
equation on D with minimal i + j = ord;D. Then dKy + 3D ~ 0 implies 3(i + (na — 1)j) = dna
mod n?, in particulari = j mod n.

Case 1. Assume 3 }d. If 8 > —, then n < 7! < d + 1. Thus, we may assume f3 <43 . Then

i+ j=ordyD < = 2 < Z(d“) Assume to the contrary that n > d + 1. Then i = j mod n and i+
j < nimplies thatl =J. Hence, 3(i + (na — 1)j) = dna mod n?implies3i = d mod n.Butsince

i< ﬂ , we know that 3i = d which is a contradiction.

Case 2. Assume 3 | d. If g = 3 d 3 thenn < 71 M. Thus we may assume < m Then

i+ j=ordyD < = < 4 4 1. Assume to the contrary thatn > 24 +1. Theni = j mod nandi+
j <nimpliesi = ]. Hence, 3(i + (na — 1)j) = dna mod n? 1mplies 3i=d mod n. Hence, i =
j= g and ord;D = %. Then (4.1) implies

2-¢- % 2-20-p)
28 2B

n< =1,

a contradiction! m

5 | THE FIRST WALL CROSSING

The goal of this section is to prove Theorem 1.3, which completely describes the first wall crossing
of K-moduli spaces of plane curves for all degrees. We show that K-moduli and GIT coincide for
small weights (see Theorems 5.2 and 5.5) and describe the explicit birational modification on the
GIT moduli space occurring while crossing the first wall (see Theorem 5.6).

5.1 | Before the first wall

In this section, we will show that the K-moduli space for small coefficient is isomorphic to the
GIT moduli space. We prove two results, Theorems 5.2 and 5.5, which correspond to parts (1) and
(2) of Theorem 1.3.

Before we start, let us fix some notation for the discussion of the first wall crossing.

Notation 5.1. Letd > 4 be an integer. Let ¢ € (0, 3) be a rational number. Let Q be a smooth conic
in P2, let L be a line in P? transverse to Q, and let x, y, z be coordinates of P(1,1,4). Let

% d is even 0 gQ d is even o zd/2 = ¢ d is even
¢ = = _
1 s disodd ‘ £1Q+L disodd xyz@=D/2 =0 disodd

We are ready to prove part (1) of Theorem 1.3.
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Theorem 5.2 (First wall crossing 1). We follow Notation 5.1. For any 0 < ¢ < ¢;, a plane curve C
of degree d is GIT (poly/semi)stable if and only if the log Fano pair (P2, cC) is K-(poly/semi)stable.
—GIT

—K
Moreover, there is an isomorphism of Artin stacks Pi.2Py

—K
Proof. We first show that if (X, cD) is a K-semistable point in P de for0 <c <cy, then X = P2.
From Theorem 4. 8 we know that the local Gorenstein indices of X are at most |f~!| where
B=1—-=.1Ifc <55 , then we have 8 > =. This implies that X is a Gorensteln Manetti surface

soX & IP2 Hence we may assume that d > 5isodd and <c< =By the same argument as

above, the local Gorenstein indices of X are at most |3~ 1J < = Zd 3 < 2. Hence,X has local Goren-

stein index at most 3, which implies X = [P’2 or P(1,1,4). We shall show that the P(1,1,4) case is

impossible under the assumption ¢ < — 3 d 3

—K
Assume to the contrary that (X = P(1,1,4),cD) is a K-semistable point in P, .. Then D is of
degree 2d in P(1, 1,4). Write d = 2l + 1, then the equation of D is

Zle(x’y) + Zl_lfé(x’y) + e+ f4l+2(x’J’) = 09

where f; is a homogeneous polynomial of degree i in (x,y). Let E be the (—4)-curve over the
singular point [0,0,1] of type 411(1’ 1). Then, from the defining equation of D, we see that ord;(D) >

1
3 Thus,

1—-c

On the other hand, —Ky — ¢D ~g O(6 — 2dc), and voly(O(1) — tE) = max{j—l — 4t%,0}. Hence,

(6—2dc) [* de
S dp) = ———= Iy (O1) —tE)dt =1—- =
(X,cD)(Or B) Vol (0(1)) voly(O(1) ) 3
Since ¢ < —— 3 , we know that Ay .p)(ordg) < <1- = = Sixpylordg). Hence, (X, cD) is K-

unstable by the valuative criterion (Theorem 2. 9)

So far we have shown that any K-semistable point (X, cD) in P . Is isomorphic to (P2%,cC)
where C is a plane curve of degree d. By Proposition 4.3, we know that K-(poly/semi)stability
of (P2, cC) implies GIT (poly/semi)stability of C. Hence, we just need to show the converse to
deduce the equivalence between K-stability and GIT stability. Suppose that C is a GIT semistable
plane curve. Take {C,},cr a family of plane curves over a smooth pointed curve (0 € T) such that
Cy = C and C; is smooth for t € T \ {0}. Then by properness of K-moduli spaces (Theorem 3.19),
we have a K-polystable limit (X, cD) of (P?,¢C,) as t — 0 after a possible finite base change of T.
Hence, (X, cD) = (P?, C{) where C| is a GIT polystable plane curve. By the separatedness of GIT
quotients, we know that C specially degenerates to g - C, for some g € PGL(3). Thus, (P?,cC)
is K-semistable by Theorem 2.16. If in addition that C is GIT polystable, then (P2, cC) has a K-
polystable limit (P2, cC(’)). In particular, by Proposition 4.3, we know that C(’) is a GIT polystable
point S-equivalent to C. Hence, C = g - C, for some g € PGL(3) and (P2, cC) is K-polystable.

From the equivalence between c-K-semistability and GIT semistability, we obtain a morphism

—GIT —K
of Artin stacks ¢ : P; — P, . It suffices to show that ¢ is an isomorphism of stacks. Con-

—K
sider the morphism of Artin stacks ¢ : P de ™ BPGL(3) sending [(X, D) — S]to [X — S], where
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BPGL(3) is the classifying stack of P2-bundles. Clearly, ¢ is representable as the group homomor-
—K
phism Aut(X, D) — Aut(X) is injective for [(X,D)] € P de We look at the base change of ¢ under
the natural quotient map Spec C — BPGL(3), in which we obtain a PGL(3)-equivariant morphism
—K
of algebraic spaces ¢ : P’ — Z where Z =P d.c XBpGL(3) Spec C. Thus, for any reduced scheme

S of finite type over C, the set Z(S) is given by {(X, D; f)}/ = where [(X,cD) — S] € 556 and
fiX—- Pg is an isomorphism. From the equivalence between K-semistability and GIT semista-
bility, we know that @(S) is a bijection for every reduced S, which implies that ¢ is an isomorphism
between reduced algebraic spaces. Hence, ¢ is an isomorphism between Artin stacks. This finishes
the proof. O

Next, we discuss the K-moduli stack and space when ¢ = c;.

Lemma 5.3. We follow Notation 5.1. Then the log Fano pair (P?,¢,Q,) is K-semistable with K-
polystable degeneration (P(1,1,4), leé). Moreover, the only c,-K-polystable curve on P(1,1,4) of
degree 2d is Q..

Proof. By taking the degeneration of P? to the normal cone of Q, the pair (P2, Q) specially degen-
erates to (P(1, 1,4), (z = 0)). Since L intersects Q transversally, it degenerates to the union of two
distinct rulings of P(1, 1, 4). Hence, a suitable choice of projective coordinates of P(1, 1, 4) yields
that (P2, Q, L) specially degenerates to (P(1,1,4), (z = 0), (xy = 0)).

Next, we show that (P(1, 1,4),¢; Qé) is K-polystable. When d is even, we have c; Qé = Z(Z =0).
Hence, by [90, Proof of Theorem 1.5], we know that (P(1, 1, 4), %(z = 0)) is K-polystable. When

d is odd, we have le:i i 3(xy 0) + 23((2(3__13))(2 = 0). Hence, (P(1,1,4), Cleli) is a projec-
. N d
tive con;dmit)er (IPl, 2d 3([0] + [o0])) with polarlzatlon Op1(4) ~¢ 2d 33( Kp1 — TL([O] + [o0])).

Since

S2d=3) (Zd 3) L and (P!, T 3([ ]+ [e0])) admits a conical K#hler-Einstein

metric, by [82, Proposmon 3.3], we know that (P(1,1,4), Cthli) is conical Kihler-Einstein
hence K-polystable.

Finally, we show that Q:i is the only c;-K-polystable curve on P(1,1,4) of degree 2d. Suppose
(X :=P(,1,4),c,D) is K-polystable with deg D = 2d. Let E be the (—4)-curve over the singular
point x := [0,0, 1] of type %(1, 1). Then, by Theorem 2.15, we have

4(Ky + ¢;D)* < 9A(X’C1D)(ordE)2V01X,x(ordE). (5.1)
By computation, we know that

When d is even, we know that (K + ¢;D)? = g. Hence, (5.1) implies that 9 < 9(1 — 2¢;ord;(D))?,
that is, D does not pass through x. Thus, the equation of D is given by

Z4/2 4 f4(x,y)z(d_2)/2 + -+ fre(x,¥) = 0.

By taking the 1-PS 1 : G,, —» Aut(X) as A(t)([x,y,z]) = [x,y,tz] for t €G,,, we see that
lim, ,,A(t)-D = Q(’j. Thus, (X, ;D) = (P(1,1,4), le"i) since they are both K-polystable. When
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_ 9(d-3)?
~ (2d-3)%°
Y d6_3 ord;(D))?, that is, ord;(D) < % Since the equation of D is given by

36(d—3)? <9(1 —

: 2
d is odd, we know that (Kyx +c¢;D) a3 S

Hence, (5.1) implies that

Zlfz(x’J’) + Zl_lfé(x’y) + e+ f4l+2(x’J’) = 0’

wherel := d%l, we have ordg(D) > % with equality holds if and only if f, # 0. Hence, ordg(D) =
%, f> # 0 and the equality of (5.1) holds. Then by [81, Lemma 33], we know that E minimizes
the normalized volume function at the singularity x € (X, ¢;D). So, [97, Theorem 1.2] implies
that (E,Ap) = (I]J’[lx’y],cl( fo(x,y) = 0)) is a K-semistable Kollar component. Thus, f, is a non-
degenerate quadratic form in (x,y), and after a suitable choice of projective coordinates of
P(1,1,4), we may assume that f,(x,y) = xy. By taking the same 1-PS 1 as before, we see (X, ¢;D)
specially degenerates to (P(1, 1,4),01Q;). Thus, (X,c,D) = (P(1,1,4), le;) since they are both

K-polystable. We finish the proof. [l
Corollary 5.4. The plane curve Q is GIT polystable.

Proof. 1f d is even, we know that (P?,eQ, = %Q) is K-polystable by [90, Theorem 1.5]. Thus,
Q, is GIT polystable by Proposition 4.3. If d is odd, we know that (P?,¢,Q,) is K-semistable by
Lemma 5.3. Hence, Q, is GIT semistable by Proposition 4.3. Assume to the contrary that Q, is
not GIT polystable. Denote by C, the GIT polystable plane curve that is S-equivalent to Q . If
Supp(C,) contains a smooth conic Q, then C;, = %Q + L' where L’ is a tangent line of Q. But
then Aut(P?,C,) = Aut(P!, [0]) is nonreductive, a contradiction. Hence, Supp(Cy,) is a union of
lines. By Theorem 5.2, we know that (P2, eC,) is K-polystable. This implies that (P2, %Co) is log
canonical by [46, Theorem 1.5]. But 3 . % > 1since d > 5, so (P2, iCO) cannot be log canonical,
a contradiction. The proof is finished. O

We present the proof of part (2) of Theorem 1.3 as follows.

Theorem 5.5 (First wall crossing 2). We follow Notation 5.1. A log Fano pair (X,c,D) is a K-
. =K . . .

polystable point of P, o if and only if either X = P? and D is a GIT polystable plane curve not

projectively equivalent to Qg4, or (X, D) = (P(1, 1, 4), Q;). Moreover, there is an open immersion ®~ :

—GIT =K —K . . ) ) _ . =GIT
P, =P dej—e & Py o which descends to an isomorphism of good moduli spaces ¢~ : P; =
—K = K

Pd,cl—e - Pd,cl

Proof. We first show that ¢~ is an isomorphism. It is clear that ¢~ is a birational morphism

T . —GIT —K .
between normal proper varieties since P; is a common open subset of P;  and P, o by Proposi-

—GIT
tion 4.6. Indeed, we will show that the Picard number p(P,; ) is one. Since SL(3) has no nontrivial
characters, there are injections

Pic(PS //SL(3))  Pics(3)(PS) < Pic(P%)

by [66, Proposition 4.2 and §2.1]). Since we have a surjection from Pic(P;) = Z to Pic(PZS), we

—GIT
know that p(P; ) = 1. Thus, ¢~ is an isomorphism between good moduli spaces.
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Let C be a GIT polystable plane curve not projectively equivalent to Q4. Let (X, cD) be the K-
polystable degeneration of (P2, cC). From the index estimate in the proof of Theorem 5.2, we know
that X is isomorphic to either P? or P(1, 1, 4). If X is isomorphic to P(1, 1, 4), then D has to be Q:i
by Lemma 5.3. Thus, ¢~ ([C]) = ¢~ ([Q,]) which contradicts to the injectivity of ¢~. Thus, X = P?
hence (X, cD) = (P2, cC) by GIT polystability of C. The proof is finished by Lemma 5.3. O

5.2 | After the first wall

K

In this section, we will show that the K-moduli stack 5(1 eite

weighted blow-up of the GIT moduli stack.

is isomorphic to a Kirwan-type

—K —K
Theorem 5.6 (First wall crossing 3). Let @+ : P dejte Py o be the latter morphism in the first
K —K —GIT
d,c;+e - 7)d,cl -~ ra
along {[Q41} (see Definition 5.10) such that ®* = ®~ op. In particular, we have

wall crossing. Then there exists a stacky weighted blow-up morphism p : P

(1) The descent morphism ¢ = (¢~) Lop™ : 1_JK - 1_JK = I_DdGlT of p between good moduli

*Tdete d,ci—€

spaces is a weighted blow-up of the point [Q,].
(2) Ifdiseven, then ¢ is a partial desingularization of Kirwan type.

The proof of this theorem will be split up into a few parts. Before we analyze the stack structure

—K
of P, o 400 W€ first give a complete description of its closed points.

Definition 5.7. We define GIT stability for certain curves on P(1, 1,4).

(1) Assume d is even. Given a curve D in P(1, 1, 4) of degree 2d with equation

297 4 fo(e, p)29I2 4 £, )2 O 4+ fo(x,y) = 0, (52)

HOPY, O (4)).
Consider the G,,-action o on A:i with weight j in each direct summand H(P!, Op1(4))).
Let P:i be the weighted projective space as the coarse moduli space of the quotient stack
[(Aé \ {0})/G,,]. There is a natural SL(2)-action on A:1 induced by the usual SL(2)-action on
HO(P!, Op:1(1)) = Cx @ Cy. Since this SL(2)-action commutes with the previous G,,-action, it
descends to an SL(2)-action on (P, OPQ(I)). We say [D] € Pfi is GIT (poly/semi)stable if it is
GIT (poly/semi)stable with respect to this SL(2)-action on (P’,, OP&(l)).

(2) Assume that d is odd. Suppose that D is a curve in P(1, 1,4) of degree 2d with equation

we identify D to a point (fg, f12, ., f24) in the vector space A =~ @

xyz¥@=D2 4 f (e, )29 4 1002 I 4k (2, ) =0,

where f4(x,y) contains no monomial divisible by xy. Then, we identify D to a point
(f6> f10> - » f24) in the vector space

Al =V, @@L HP!, 0,1(4) +2)),

where V, := Cx® @ Cy® is a sub vector space of H(P!, Op1(6)). Consider the G,,-action o on
A/, with weight 1 on V; and weight j on each direct summand H(P', Op:1(4j + 2)). Let P/,
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be the weighted projective space that is the coarse moduli space of the quotient stack [(Aé \
{0})/G,,]. Consider another G,,-action ¢’ on Aé induced by

a'(t)- Faj2(x,¥) = faja(tx, t'y)

for te€G,, and 1< j < ?. Since ¢’/ commutes with o, it descends to a G,,-action on
P, (91,;(1)) which we also denote by o’. We say [D] € P(’i is GIT (poly/semi)stable if it is GIT

(poly/semi)stable with respect to the G,,-action ¢’ on (P’,, Opé(l)).

Care is taken in the above definition to define GIT stability for curves on P(1, 1,4) because the
automorphism groups of weighted projective spaces are in general nonreductive. Recently, the
theory of nonreductive GIT and variation of nonreductive GIT has been developed (see, e.g., [21,
34]) which may be useful in similar endeavors.

Theorem 5.8. Let D be a curve on P(1,1,4) of degree 2d such that [D] € P:i. Then the pair
(P(1,1,4),(c; + €)D) is K-(poly/semi)stable if and only if [ D] is GIT (poly/semi)stable in the sense of
Definition 5.7.

Proof. We first prove the “only if” part. Let 7 : (P(1,1,4) X A:1’ D) — A;l be the universal family
of pairs over Aii where the fiber of 7 over each point D of Aii is (P(1,1,4), D). Then the G,,-
action o on Aii has a natural lifting to the universal family, which we also denote by o, namely,
a(®) - ([x,y,z],D) = ([x,y,tz],o(t) - D). Hence, by quotienting out o, we obtain a Q-Gorenstein
family of log Fano pairs over the Deligne-Mumford stack [(A:i \ {0})/G,,]. The CM Q-line bundle
AcMzep ON A:i also descends to a Q-line bundle on P:i which we denote by A.. By Theorem 2.22,
it suffices to show that A, .. is ample. Since A¢y - .p is a trivial Q-line bundle over A’ the degree
of A, is equal to the o-weight of the central fiber Acy , .p ® C(0). By Proposition 2.19, we know
that

deg A, = Fut((P(1,1,4),cQqy; Opa 1.4)(4)) X Ab),

where the product test configuration (P(1,1,4),cQg; Op( 1,.4)(4)) X Al is induced from the G,,-
action o. From the definition, easy computation, and K-polystability of (P(1, 1,4), ¢;Q,) we know
that Fut((P(1,1,4), cQg; Op(y 1,4y(4)) X Al)islinearin c, is negative when ¢ = 0, and zerowhen ¢ =
c,. Hence, it is positive when ¢ = ¢, + €. As a result, the CM Q-line bundle A, .. is ample on P:i.
Note that when d is odd, the action ¢’ on Aii has zero weight on the central fiber Acy; , .p ® C(0)
by a straightforward computation of the generalized Futaki invariant. Thus, the G,,-linearization
of a suitable positive power of A, ,. coincides with the G,,-linearization on (91,‘/1(1) of ¢’. This
completes the proof of the “only if” part.

Next, we prove the “if” part. Since each curve [D] € P:i admits a special degeneration to Q,, we
know (P(1,1,4),c, D) is K-semistable by Lemma 5.3 and Theorem 2.16. By Bertini’s theorem, it is
clear that a general curve D in Pfi has at worst a nodal point at the unique singularity of P(1,1,4)
and smooth elsewhere. Thus, for a general curve D, we know that (P(1,1,4), gD) is klt. This
implies that (P(1,1,4), (c; + €)D) is K-stable by Proposition 2.13. Let [D,] € P:i be a GIT polystable
point. From the above argument, we can find a family of curves [D;] € P:i parametrized by a punc-
tured smooth curve t € T \ {0} such that (P(1, 1,4), (c; + €)D,) is K-stable and lim,_,4[D,] = [D,].
Then by properness of K-moduli spaces (i.e., Theorem 3.19), after a possible finite base change of T,
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we obtain a K-polystable limit (X, (¢; + €)D”) of (P(1,1,4), (¢; + €)D,) as t goes to 0. By the index
estimate Theorem 4.8, we know that X = P(1,1,4). From the continuity of generalized Futaki
invariants in ¢, we know (P(1, 1,4), ¢; D) is K-semistable. Thus, D’ specially degenerates to Q, by
Lemma 5.3. After a suitable change of coordinates of P(1, 1,4), we may assume [D’] € P"i. Thus,
the “only if” part implies that [D’] is a GIT polystable limit of g, - [D,] for g, € SL(2) (for even d)
or G, (for odd d). By separatedness of the GIT quotient, we know that [D’] and [D,] lie in the
same orbit. Thus, (P(1,1,4), (c; + €)D,) is K-polystable. The proof regarding K-semistability and
K-stability follows from similar arguments as in the proof of Theorem 5.2. I

Theorem 5.9. Let [(X,(c; + €)D)] be a K-polystable point in ﬁgcﬁe. Then either (X, D) = (P?,C)
where C is a GIT polystable plane curve not projectively equivalent to Q,4, or (X, D) = (P(1,1,4),D")
where [D'] € Péi is GIT polystable. Conversely, any such pair (P?,C) or (P(1,1,4),D") is (¢; + €)-K-
polystable.

Proof. We first prove that K-polystability implies GIT polystability. Let [(X, (c; + €)D)] be a point
in 1_35 o 4e Then from the index estimate in the proof of Theorem 5.2, we know that X is isomor-
phic to either P? or P(1,1,4). If (X, D) = (P2, C), then C is GIT polystable by Proposition 4.3. It
suffices to show that (P2, (¢; + €)Q,) is K-unstable. In fact, if (P2, (¢; + €)Q4) were K-semistable,
then Proposition 2.13 together with K-polystability of (P?,eQ,) (see Theorem 5.2) implies that
(P2, ¢;Q,) is K-polystable as well. But this contradicts Lemma 5.3, so (P2, (¢; + €)Q,) is K-unstable.
If X =~ P(1,1,4), then the statement follows from Theorem 5.8.

Next, we prove that GIT polystability implies K-polystability. If C C P? is a GIT polystable plane
curve not projectively equivalent to Q4, then Theorem 5.5 implies that (P2, cC) is K-polystable for
any ¢ € (0, ¢, ]. Hence, (P?, (c; + €)C) is also K-polystable by Proposition 3.18. The P(1,1,4) case
follows from Theorem 5.8. O

—GIT —K
So far we have shown that P, \{[Q4]} = P de,+e is an open immersion. Before proving
Theorem 5.6, we set up some notation.

Definition 5.10. Let Z C X be a smooth closed subvariety of a smooth quasi-projective variety X.
We define Bly, ,X, the stacky weighted blow-up of Z in X with weight w (see also [12, Section 3]).
The standard weighted blow-up Bl ,X will be the coarse space of Bl, ,X.

Let N}, /x be the normal bundle of Z C X and consider a group G acting on X. Suppose that
N /x has a decomposition with respect to representations of G

NZ/X:N1®N2®'"®NI<'

Letw = (w;, w,, ..., wy) be a weight vector with w; € Z.,. This gives a monomial valuation v of
C(X) centered at Z of weights (w,, w,, ..., wy) with respect to the decomposition of the normal
bundle N7 .

Define R := @;;_,a,,(v)t"™, where a,,,(v) = {s € Oy : v(s) > m}. The standard weighted blow-
up of Z in X is defined by Bly, ;X := ProjyR. Define Y := SpecyR. Then, we have the zero
section X < Y whose defining ideal is given by I = @;°_, a,,(v)t™. We define the stacky weighted
blow-up of Z in X to be

Bly zX = [(Y \ X)/Gy,],
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where G,, actsast — At, for A € G,,.

Remark 5.11. The stack BlW’ZX is a smooth Deligne-Mumford stack, its coarse space is indeed
Bly, 7X, and the exceptional divisor E has weighted projective stacks as fibers over Z.

We now proceed with our construction of the partial desingularization of Kirwan type. First,
let us recall some representation theory of SL(2). Consider the standard action of SL(2) on P! =
P(VV). Then we have the dual SL(Z) actiononV = H(P!, Op1(1)). We have a natural SL(2)-action
on'V := H(P!, Op1(2)) = Sym?V so that the second Veronese embedding P! < P? = P(VV) is
SL(2)-equivariant. Denote by Q = (g = 0) the image of this Veronese embedding. Then we have

4 4 X GBd/ 2Sym if d iseven,
Sym“V = Sym“(Sym“V) = 4 . (5.3)
EBEZED/ZSym‘“”V if d is odd.

Since g is SL(2)-invariant, we have an injection between SL(2)-representations Sym?—2V <
Sym<V by multiplying with q. Let V; be the cokernel of this injection. Then from (5.3), we know
that the restriction map H°(P?, Op2(d)) - H°(Q, Oy(d)) induces an isomorphism between V,
and Symde. As a summary, we have

HO(®?, Opa(d)) = ®12") g7 - Vg = @12 sym* 41y (54)

Lemma 5.12. Let d be even and let Q, denote the nonreduced curve defined by (qd/ 2 = 0) where

(q = 0) is a smooth plane conic. Then a Luna slice to SL(3) - [Q4] C PZS at [Q4] is given by the locally
closed subset

={@+ £1aP 2+ g P e+ fa =0,
where f5; € V,; C HY(P?, Op2(20)) for2 <i < d/2.

Proof. Denote by G := SL(3). Since Q, is GIT polystable by Corollary 5.4, we know that the orbit
G[Qq] is closed in P¥. The tangent space of P’ at [Q,] is given by Tpss = (Syde) /Cqd/2. 1f

q, is a small deformation of g, = ¢ in Sym?V, then we have —(qd/z)h _o = 5q4/*! dqt ©|;—o- Thus,

the tangent space of G[Qq] at [Q,] is given by Tgq, 10,1 (qd/ 2-1 SymZV)/ qu/ 2 Hence by
(5.4), the normal space of G[Q,4]/ PSS at the point [Q,] satisfies

d/2
NG[Qd]/PZS’[Qd TP« [Qq] /TG [Qa1[Qq4] = Syde/(qd/2 1 SymZV) @ / VZ[ (55)
Therefore, taking the exponential map of the normal space yields a Luna slice
= {@+ £ + fogP 7 e+ = 0,
where f,; € V,; for2 <i<d/2. ]

Lemma 5.13. Let d be odd and let Q, denote the curve (Ig\4=1/2 = 0), where (q = 0) is a smooth
plane conic and (I = 0) is a line transverse to q. Then a Luna slice to SL(3) - [Q4] € P(S; at [Qq] is
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given by the locally closed set
W o= {(lg\ V2 4 qu(d—3)/2 + fsq(d—S)/2 + e+ fg=0)}

where f3 € V3 and [ € Vi forany2 <i < (d —1)/2. Here, V3 is a subspace of V5 such that it
pulls back to Cu® + Cv® C HO(IP%M o] O(6)) under the isomorphism from (P[lu o (uv =0)) to ((q =

0),(I=q=0)).

Proof. Again, we consider the orbit G[Q ] under the action of G := SL(3). It is clear that
Tos Qg1 = Sym?Vv /Clg@=1/2 1f I, and q, are small deformations of [, =1 and g, =q in V

and Sym?V, respectively, then we have %(ltqt(d_l)/z)hzo = %lq(d_@/z‘z—qt‘ o + q(d—l)/2% li—o-

Thus, the tangent space of G[Q4] at [Q,] is given by Tgq, 1o, = (1g“4~3/? - Sym?V + ¢(=1/2.
V)/Clq‘@=1/2, Hence, the normal space of G[Q,]/ P% at the point [Q,] satisfies

Notog1res 100 = Tesj0g1/ Toiog 0, = SYMV/(1g =2 - sym?V + g@=D/2. ),

It is clear that [ - Sym?V and q - V are both contained in Sym>®V. Let G, & G,, X Z/2 be the sub-
group of SL(2) preserving both [ and g. Then both [ - Sym?V and q - V are sub G, -representation
of Sym3V. Since Sym>V /(q - V) & V; by (5.4), we denote by V3 the sub G, -representation of V3
complementary to (I - Sym?V + q - V)/(q - V).

By (5.4), we have

Noigg1/ps 10,1 = SYm*V/(L- Sym’V + ¢ - V) @ SymV/(g~2sym*V)

o d-1)/2
S X P (5.6)

Therefore, taking the exponential map of the normal space yields a Luna slice
W= 1UgP 4 fq T+ f5g I gt = 00

where f3 € VS and 51 € Vy for2<i<(d—-1)/2.

Finally, we verify that V§ corresponds to Cu® + Cv® under the pull back to P'. Since the pull-
back of [ on P! is uv, we know that V3 is complementary to uv - H'(P', 0(4)) in H°(P', O(6)).
Since the identity component of G, acts on H(P!, @(1)) = Cu + Cv diagonally, we know that V3
corresponds to Cu® + Cv® under the pull back to P!. This finishes the proof. O

We now proceed to the proof of Theorem 5.6.

Theorem 5.14. Let U = PZS, and consider the universal family (P?, C;;) — U, where each fiber is

c-K-polystable for c € (0, c;). After base change to a stacky weighted blow-up U->U along the orbit
G[Q,] with stacky exceptional divisor € where G = SL(3), a blow-up along the conic component over
&, and a divisorial contraction, there exists a family (X,Cy) — U which:

(1) is isomorphic to (Pi’\G[Qd], CU\G[Qd]) — U\ G[Q,] over the complement of &,
(2) and whose fibers over £ are curves on P(1,1,4).
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(3) Let &y, be the exceptional divisor of the stacky weighted blow-up wW:=U Xy W — W over the
Lunaslice W as in Lemmas 5.12 and 5.13. Then the family (Y, Cy)) X Ey, over Ey, is isomorphic
to the universal family over [(A(’i \ {0})/G,,] as in Definition 5.7.

Proof. By (5.5) and (5.6), we have an Aut(Q,)-equivariant decomposition of the normal space

IR

N EB?Z/ 22V21 if d iseven,
G[Q41/U.[Qq]

o d-1)/2 . .
A’ @@gzz % V,iq if d isodd.

Thus, by translating the above decomposition via the G-action, we obtain a G-equivariant decom-
position of the normal bundle N g1,y Which we denote by @?z/ ; N; and @Ei;l)/ N, when d is
even and odd, respectively. Let U" — U be the weighted stacky blow-up along the G-orbit of Q,
as in Definition 5.10 given by weight i on V. Let € denote the corresponding stacky exceptional
divisor, and let U and E denote the weighted projective blow-up coarse space and corresponding
exceptional divisor, respectively. Note that £ is a smooth Cartier divisor in U as we are doing a
stacky weighted blow-up.

We note that this blow-up is SL(3)-equivariant. Let (Pzﬁ, Cp) — U denote the pullback of this
universal family via the blow-up, and denote by the pullback of the universal family to the stack
by (P2,.Cp) > U

Consider the blow-up ¢ : (¥,Cy) — (P%, Cy) of the universal family at the conic compo-
nent Q of Cﬁluj,(z€ over the exceptional divisor £ C 17‘, where Cy, is the strict transform of Cp
Let F denote the ¢-exceptional divisor. Since Q is smooth of codimension 2 in [P’f7 ,and £ is a

smooth Cartier divisor of T/, we know that 77 = pryod 1 Y — Uisa projective equidimensional
morphism between smooth Deligne-Mumford stacks, which implies that Y is flat over U by
miracle flatness. Furthermore, the codimension two locus Q we blow-up is SL(3)-equivariant.
In particular, we obtain the following diagram:

.

N
J

M= D —
e D <—

~

\ G

—

Qq4]

Note that fibers of (), Cy) — U over U \ € are unchanged, and the fibers over £ are simple
normal crossing surfaces of the form P2y F,, where F, denotes the fourth Hirzebruch surface,
and they are glued along the conic component in P? and the negative section in [F,. Let D denote
the strict transform of Pé under ¢.

We claim that there is a divisorial contraction ¥ : Y — X over T that contracts D to a sec-
tion over €. Indeed, let £ := cf)*(ﬂuj,?7 1+ %D be a Q-Cartier Q-divisor on Y. Then we know that

2L = ¢*OP{ (2) + DisaCartier divisor on Y. First, we show that 2L is nefand big over U. Clearly,
U

2L is ample over U \ € where ¢ is isomorphic. Now, let us restrict to a fiber J, over a geometric
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pointe € |£]. Since F + D = *&, we have 2L ~5. $*Op2 (2) — F. Denote by Y, = [P’? UF,,. Let
v

H, be an element of Op(2). Then ¢*H, — F is 0 over P2 and big and nef on F, ,, where F is the
restriction of F to the fiber V,. Indeed, if  is a line in Pg, then (¢*H, - 1) =2 = (F - 1), since F
came from blowing up a conic. Therefore, ((¢*H, — F) - I) = 0 for any line in IP’?. An adjunction
calculation shows that (¢*H, — F )l[F4,e = 4f + s, where f is a fiber of the ruled surface F,, and s
is the negative section. Therefore, (¢*H, — F) - f) = 1and ((¢p*H, — F) - s) = 0and ¢*H, — F is
big and nefon F, .

In particular, we see that 2L is a big and nef line bundle over U that is 0 on D over £. In order
to show that 2L defines a divisorial contraction, we use cohomology and base change. In fact,
since Y — 1 is a Q-Gorenstein flat family of slc Fano varieties (this can be checked fiberwise,
as both P? and P? U [, are slc with ample anticanonical divisors), by Fujino’s vanishing theorem
[42, Theorem 1.7], we know that Rizx,, Oy(2mL) = 0and 7,0y (2mL) is locally free for every i > 0
and m > 0. Moreover, both sheaves commute with base change. Note that this argument can be
applied over the smooth Deligne-Mumford stack U as we can first pass to an étale cover of U
by smooth schemes, apply Fujino’s vanishing theorem there, then descend to U See also [26] for
cohomology and base change for Deligne-Mumford stacks. Therefore, since 2L is basepoint free
on every geometric fiber, we know that 2L is relatively basepoint free, and we obtain a divisorial
contraction ¢ : Y — X where

X 1= Projy @, _, 7.0y(2mL).

LetCy :=1,Cy.Since the line bundle 2£ has a natural SL(3) linearization, this contraction is a}:c,o
SL(3)-equivariant. Thus, we obtain an SL(3)-equivariant Q-Gorenstein flat family (X,Cy) — U'.

Next, we verify conditions (1) and (2). Since 2L is ample over U \ &€, (1) follows directly from the
construction. For (2), note that 2| v, is trivial on Pg and hasclass4f +sonF, , fore € |£|. There-
fore, the linear system |2L| ye| is basepoint free and contracts [P’? UF,, to P(1,1,4). In particular,
we know that the algebra @), H °Y,,2mL| ye) is generated in degree 1. Thus, by cohomology
and base change, we know that the fiber &, is isomorphic to P(1,1,4).

Finally, we discuss what happens to the family of curves over the Luna slice W. Let py, :
W — W be the base change of the stacky weighted blow-up U — U. Denote by YwCy,,) 1=

Y, Cy) xp W and (X, Cx,,) = (X,Cx) X W.Letgy : Yy — IP% be the pullback of ¢ under

the base change W — U Let 7y, : Yy, — W be the projection. Then, we know that ¢y, is the
blow-up of the smooth conic component Qy, C [P’éw. Let Dy, := (¢>W);1P§W. Denote by Ly, :=

¢35 O0p2 (1) + %DW. Then from the above discussion, we know that 2Ly, is relatively basepoint
w

free over W. We shall define a morphism from Yy, to a P(13,2)-bundle PV over W that induces a
closed embedding &}, < PV.
Since [Ly ] = ¢;,0p2 (1), we know that (”w)*OyW( [Lw]) =V ROy =:V, where V=
w

H(P?%, 0(1)). Moreover, we have
() Oy, 2Ly) = (7TW)*(¢1*V(9P%(2) ® Oy, (Dy)).

Recall that F denotes the exceptional divisor of ¢. We know that Q = (q = 0) where q €
HO(P?,0(2)) defines a divisor (¢y,);1(Q X W) — Fy, which corresponds to a section

qw € H'O, (3). (8} Op2 (2) ® O, (=Fiy ).
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Let V, 1= Oy(Ey ). Then there is a surjection
(Sym®v) @ v, » () Oy, 2Ly ),

whose first component is given by the usual embedding ¢§V(9P% 2)o ¢§V0Pi (2) ® Oy, (Dy),
and whose second component is given by multiplying with gy, as Dy, = 71;*{,8‘;; — Py, We define
V 1=V, @V, and define PV := Projy; @;°_ ) Sym™V where V; has degree i. Since the ample
model of 2L is defined by |2£| on each fiber, by cohomology and base change from earlier, we
know that the above surjection gives a closed embedding Xy, < PV.

Next, we work out the defining equations of Xy, and its family of curves Cy, . We focus on the
d even case as the d odd case is similar. Let x,, X;, X, be a basis of V; induced by the standard
basis of V.= H(P?,9(1)). Let x; be a nonzero constant section of V, ® O w(—Ew) = Oy Then
the equation of Xy, is given by

Xy = (8x3 — q(xy, X1, Xx,) =0) C PV,

where s € HO(W, Oy(Ew)) is some defining section of &y,. Since d is even, W has affine
coordinates (fy4, fg,-»fd_2, fq) Where each f,; € V,; C HO(P?, Op2(2i)). Since each f,; is the
coordinate of W; with weight i under the stacky weighted blow-up py,, we know that le- 1=
s~p, fo; is a global section of Oy;(—i&y,). Therefore, we have

d/2

—|,4/2 3 d/2—i _
Cx, =|x%'"+ z:f%(xo,xl,xz)x3 =0 |Xw'
i=2

Next, we pullback Xy, < PV under the quotient map A/, \ {0} — &, = [(A/, \ {0})/G,,]. Since V,
is a trivial vector bundle and V, = O, (&), we know that the pull-back PV X (A’ \ {0} is G,,-
equivariantly isomorphic to the product P(13, 2)xgx1x005] X (A \ {0}) where G,,, acts on P(1%,2)
as t - [xg, X1, X5, X3] = [Xg, X1, X,, x5]. Under an isomorphism P! - Q = (g =0) C P2, we may
identify &y, X3 (A:i \ {0) with P(1,1,4)y ), ;1 X (A:i \ {0}) where x,, x;, X, are a basis of quadratic
forms in x, y such that q(x,, x;, x,) = 0, and x; = z. Clearly, the G,,-action on P(1,1,4) X (A:i \
{0})ist - [x,y,z] = [x,Y,tz]. Then the equation of Cxy, X9 (A:j \ {0}) becomes

d/2
292 4+ Y g6, )27 = 0| C P(1,1,4) x (A] \ {0}),
i=2

where g,;(x,¥) 1= f, (X0, X1, %,) € Vy; = H'(P!,©(4i)). Thus, the pullback of the family
(X,Cy) — U to &y is isomorphic to the universal family over [(Aii \ {0})/G,,]. This verifies
3. d

Let us choose an ideal sheaf 7 ¢ @y, such that U = Bl U. Let T C Op,, be an SL(3)-equivariant

extension ideal sheaf of T that is cosupported on the Zariski closure of G[Q,] in P;. Let P, be
the normalization of BlzP; with 7p_ : P, > P, the projection morphism. Let E be the Tp,-

exceptional divisor on ﬁd such that Of,d( E) =7 Of’d' Then, for k > 1, the line bundle L, :=
ni*;d Op, k) ® Of,d(—E) is an SL(3)-linearized ample line bundle on ﬁd. By [64] we know that the
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GIT stability of (P,, L,) is independent of the choice of k > 1, and the GIT semistable locus f’zs
is contained in U = ﬂljdl(PzS). Denote by U := IA’ZS and Uss := U Xg Uss.

~ —K
Theorem 5.15. There is an isomorphism ¢ : [U /PGL(3)] —» P, o 4e

Proof. We start from the construction of a morphism ¥ : [Tss /PGL(3)] — P die+e . Denote by P

and UPS the GIT polystable locus in ?d and P, respectively. Let UPs be the preimage of UPS under
the coarse moduli space morphism U - U. For simplicity, denote G := SL(3). Then by [64] we
know that

grs —npl(UPS\G[Qd YUG - EP,

where Eaf is the GIT polystable locus in the exceptional divisor Ey, of the weighted blow-up W —

Iil. Then by Theorems 5.8, 5.9, and 5.14, we know that the fibers of (¥, (c; + €)CX) — U over

U'Ps are all K-polystable. Hence, by Theorem 2.16, we know that the fibers over U are all K-

semistable. Then 1 is constructed by the universality of the K-moduli stacks (see Section 3.6).
Next, we show that 1 is an isomorphism between Artin stacks. By Theorem 5.2, it is clear that

1 is birational. Since 555 o +e is normal, by Zariski’s Main Theorem, it suffices to show that the
above morphism is finite. To do so, we use [10, Proposition 6.4]. To use Alper’s result, we must
check that the morphism on the level of good moduli spaces is finite, and that the morphism ) is
representable, separated, quasi-finite, and sends closed points to closed points.

First, we note that the good moduli spaces are isomorphic since GIT-polystability and K-
polystability coincide by the above argument and Theorem 5.9. In particular, we also see that
the morphism 3 sends closed points to closed points, as the closed points are the same. Hence, it

suffices to show that ¢ is representable, separated, and quasi-finite. O

Lemma5.16. There exists a morphism ¢ : P diete — [U/PGL(3)] such that the composition o) :

[T75s /PGL(3)] — [U/PGL(3)] is induced from the stacky weighted blow-up U — U.

Proof of the lemma. Recall from Section 3.1 that Z; o+ is a locally closed subscheme of the rel-
ative Hilbert scheme H¥:N x HZN . For simplicity, denote by T := Z° Let7: (X,D)—>T

m,cy +€°

be the universal family. Let T’ := pr,(T) be the projection in the Hilbert scheme HXN. Let
7' : X' — T’ be the universal family such that 7 = 7’/ X;» T. Let H' C T’ (resp. H C T) be the
divisor parametrizing P(1,1,4). By the proof of Proposition 4.6(2), we know that T and T’ are
both smooth, and pr; : T — T’ is a smooth morphism. Moreover, since H’ is a PGL(N + 1)-orbit
in HXN, we know that H' and H are smooth prime divisors in T’ and T, respectively.

Since 7’ is a P2-fibration over T’ \ H’, there exists a dominant étale morphism T° — T’ \ H’
such that 77/ X+ T° is a trivial P2-bundle over T°. By Zariski’s main theorem, there exists an open
immersion T° < T to a smooth variety T together with a quasi-finite morphism T — T’ étale
away from H’ whose image contains the generic point of H'. In particular, T is flat over T’ by
miracle flatness. Since both T’ \ H" and H' are PGL(N + 1)-orbits, there exists T} = g; - T where
9; € PGL(N + 1) such that i,T] — T' is a fppf covering Denote by H the preimage of H' in T.

Then from the above dlscussmn we see that 7’ X7 (T} \ H)) : X’ N — T/ \ H] is a trivial P*-

bundle. Let E’ be the Weil divisorial sheaf on X’ as the Zariski closure of O(1) on X’ T Since
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the families here are Q-Gorenstein with integral fibers, we know that [:;[_3] is the same as wyr 7/
T 1

twisted by the pull-back of some line bundle on the base Tl.’ . After replacing Ti’ by its Zarliski
/=31

covering, we may assume that £," ™ = w x! 7+ By Kawamata-Viehweg vanishing, we know that
T, i

(71"T ,).L! is a rank 3 vector bundle over T.
We claim that the PGL(3)-torsors {%'/T'};, by taking a projectivized basis of (7T’T DL, is a

descent datum. Indeed, from the above construction, we know that the cocycle condition of £lf
is off by a third root of unity. Hence, the cocycle condition of (7T’T ,)*Eg is off by a scalar, which

implies that a projectivized basis of (n’T ()*Elf satisfies the cocycle condition. Hence, by the fppf

descent of G-torsors [116, Tag 04U1], t}lle PGL(3)-torsors {9;’ /Tl( }; descend to a PGL(3)-torsor
' /T’. Pulling back to T, we get a PGL(3)-torsor /T where over T \ H it is obtained by
taking projectivized basis of 7 X (T \ H). It is clear that & — T is PGL(N + 1)-equivariant.
Hence, the morphism ¢ is induced by the PGL(3)-equivariant morphism % — U where
(t, [50, 51, 5,]) = [80,51,5,1(D,) € P2, O

From Lemma 5.16 and the separatedness of U - U, we know that to check 1y isrepresentable,
separated, and quasi-finite, it suffices to show that the restriction of ¢ on [£%/PGL(3)] maps
isomorphically onto [H/PGL(N + 1)] where £ := & n U'S. To prove this, we will construct an
inverse morphism ¢! : [H/PGL(N + 1)] — [£%/PGL(3)]. We will focus on the case when d is
even, as the strategy for d odd is similar. By Theorem 5.14, we know that £ = &, Xpgy2) PGL(3)
where PGL(2) is identified with Aut(P?,Q,) as a subgroup of PGL(3). Hence, we know that
[£%/PGL(3)] = [&};/PGL(2)]. From Theorem 5.14, we know that &, = [(Aé \ {0})/G,,] is the
weighted projective stack. Let us consider the action of GL(2) X G, on A:i where GL(2) acts on
HO(P', Op1(4))) as the symmetric power of the standard GL(2)-action on (P!, ©(1)), and G,, acts
as 0. Consider a1-PS 7 : G,, — GL(2) X G,,, defined as 7(t) = (diag(t, t), t*), then it is clear that T
acts as identity on Aé. Consider the group G := GL(2) X G,,,/,G,,. It is clear that the quotient &
of o givesa1-PSin Gand G/;G,, =~ PGL(2). Hence, we know that [£};, /PGL(2)] = [(A(’i \ {0})/G].

Next, we will construct a morphism [H /PGL(N + 1)] - [(A:i \ {0})/G] which directly induces
¥~1. Indeed, this reduces to construct a PGL(N + 1)-equivariant G-torsor %, /H and a PGL(N +
1)-invariant morphism %; — A:i \ {0}. Let 7y : (Xy, Dy) — H be the universal family where
each fiber is isomorphic to P(1, 1,4) with a degree 2d curve. By similar argument to the proof of
Lemma 5.16, there exists an étale covering Li;H; — H and a Weil divisorial sheaf £;; on &} (as

fiberwise O(1) on P(1,1,4)) such that E[};ﬂ = wy, /o LetF; 1= (nHi)*Ei as a rank 2 vector bun-

dle on H;. Define 7/ := (7y, )*44] /Sym*F; as aline bundle on H;. Then taking basis (s,, s;) and s,
of F; and 7/ resp. gives a GL(2) X G,,,-torsor iji /H;. By projectivizing (s, $1,,) = (£5¢, t5;,t*s,)
under 7, we get a G-torsor % /H;. Since the descent datum of {£;} is off by a sixth root of unity, it is
easy to see that {#; /H;}; form an étale descent datum hence descend to a G-torsor %;/H. As the
U;H; and Ly, can be chosen PGL(N + 1)-equivariantly, we know that %; /H is also PGL(N + 1)-
equivariant. Notice that a projectivized basis [s,, 5;, 5] in F; is the same as an equivalent class of
projective coordinates [x, y, z] for P(1, 1,4) under the equivalence relation z ~ z + g(x, y). For a
pointt € H and a projectivized basis [s,, s;, 5,] lying over ¢, there is a unique projective coordinates
[x,y, z] in the equivalent class such that D, has the form (5.2). This gives the PGL(N + 1)-invariant
morphism %; — Aii \ {0} whose image is contained in the GIT semistable locus by Theorem 5.8.
Thus, the proof is finished.
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Proof of Theorem 5.6. The theorem follows from Theorems 5.8, 5.14, and 5.15. O

‘We have thus completed the proof of Theorem 1.3.

Proof of Theorem 1.3. The proof follows from Theorems 5.2, 5.5, and 5.6. O

6 | K-MODULI SPACES OF PLANE QUARTICS AND SEXTICS AND K3
SURFACES

In the first section, we show that the wall crossing discussed in Section 5 is the only wall crossing
in the log Fano region for d = 4 and 6. Using that, we relate the K-moduli spaces to certain moduli
spaces of K3 surfaces.

6.1 | K-moduli wall crossings

The goal of this section is to prove the following theorem.

K

—K —
Theorem 6.1. Assumed = 4 or 6. Then for any % <c< %, wehaveP,; . =P, s asArtinstacks.

3
*2d
In other words, there is only one wall crossing in the log Fano region.

—K

Remark 6.2. Note that the K-moduli space P, 1 was previously described by Odaka, Spotti, and
’2

Sun [106] in their study of K-moduli spaces of del Pezzo surfaces of degree 2.

—K —GIT
Recall in Theorem 1.3, we constructed P, o e 38 the partial Kirwan blow-up of 7, . Therefore,
by Proposition 4.7, to prove the above theorem it suffices to show that Ict(X; C) > 3/d for any K-
—K
polystable point [(X, (c; + €)C)] € P die+e for d = 4 or 6. Using an explicit description of such GIT
polystable points, we will verify the Ict inequality as follows. Here, we consider GIT of curves on

P(1,1,4) in the sense of Definition 5.7.
Proposition 6.3 (Degree d = 4).

(1) Any GIT polystable plane curve of degree 4 that is not the double conic has Ict > 3 /4.
(2) Any GIT polystable curve of degree 8 in P(1,1,4) has Ict > 3/4.

Proof.

(1) Recall that a plane quartic curve is GIT stable if and only if it has type A, or A, singularities.
Moreover, the only reduced strictly GIT polystable quartic curves are the “cat-eye” and “ox”
which have type singularities of type A; and possibly A; (see [99, Table on Page 80] and [54,
Proposition 7]).

(2) Any GIT semistable curve C of degree 8 in P(1,1,4) is given by the equation z? = f(x,y)
where f # 0 is a degree 8 polynomial whose roots have multiplicities at most 4. Therefore, C
has at worst singularities of type A;.

Proposition 6.4 (Degree d = 6).

(1) Any GIT polystable plane curve of degree 6 that is not the triple conic hasIct > 1/2.
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(2) Any GIT polystable curve of degree 12 in P(1,1,4) haslct > 1/2.

Proof.

(1) The GIT polystable plane sextics are classified in [112, Theorem 2.4]. In Shah’s terminology,
we only need to check that all curves in Group I, II, or III have Ict > 1/2. Group I are ADE
singularities, so they have Ict > 1/2. Group II and III both have Ict = 1/2.

(2) This follows from [112, Theorem 4.3]. In Shah’s terminology, Case 1(i) corresponds to ADE
singularities so Ict > 1/2. Case 1(ii) has equations (z* + a(xy)*z + b(xy)® = 0) where a, b are
not simultaneously zero, and the Ict = 1/2 in this case. Case 2 is similar.

Proof of Theorem 6.1. As mentioned above, the proof follows from Theorem 1.3, Proposition 4.7,
Theorem 5.9, and the two above propositions explicitly calculating the Ict of the GIT polystable
curves. 0

6.2 | Relating degree 4 and 6 plane curves to K3 surfaces

In this section, we describe a relation between K-moduli spaces of plane curves of degree 4 and 6
and certain Baily-Borel compactifications of moduli spaces of K3 surfaces that already appear in
the literature. In the case of quartics, we use work of Hyeon and Lee [54] and Kondo [74]. In the
case of sextics, we use work of Shah [112] and Looijenga [89] (see also Laza [76]).

6.2.1 | Plane quartics

—GIT
We recall that the GIT quotient P,  generically parametrizes curves in P2 with at worst cuspidal
singularities. There is a curve parametrizing plane curves with a tacnode (locally (x? + y* = 0)),
and there is a point on this curve parametrizing the double conic. In [54], the authors construct

—G

two GIT moduli spaces that do not coincide with the standard GIT quotient P, IT. In particular,
—h

they construct M 3S := Hilb; , /SL(6) and J\_4§S := Chow,, /SL(6), where Hilbs , (resp. Chows ,)

denotes the closure of the locus of bicanonical curves of genus three in the Hilbert scheme (resp.

Chow scheme). They then show the existence of the following diagram (see [54, Theorem 1 and

Page 4]):

—c ¥Y' —hs © —GIT
M, «—M, — P,
where O is a divisorial contraction corresponding to the blow-up of the point parametrizing the
. . =CGIT . L p s . —hs
double conic in P,  and W* is a small contraction identifying all tacnodal curves in M, to the

—c —hs —K
same point in M :. By Theorems 1.3 and 6.1, we have M 3S ~ P, 3__. By construction, the space
’4

—K
P, s__ has a divisor parametrizing curves on P(1,1,4) (the exceptional divisor of the weighted

blow-up of the double conic), along with a curve that still parametrizes the tacnodal curves. This
is the curve that is contracted via ¥* to a point in M;S.

In [74], Kondd constructs a moduli space of K3 surfaces by considering Z/4Z-cover of P?
branched along a quartic curve. Kondd’s moduli space 1_3: is a Baily-Borel compactification of
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the moduli space M of ADE K3 surfaces of degree 4 with Z/4Z-symmetry. The boundary 1_3: \ M
is a single point. Hyeon and Lee prove (see [54, Proposition 21]) that I_’: =] 1\_/I§S and identify the
point in the boundary of 1_3: with the locus of tacnodal curves (i.e., the image of the tacnodal curves

—h —

in M 3S under the small contraction ¢*). We now prove that the moduli space P: of K3 surfaces
—K

is the ample model of the Hodge line bundle (see Proposition 3.35) on P, , Ja—e

K-moduli to a moduli space of K3 surfaces.

, thus relating our

Theorem 6.5. The moduli space 1_’: is the ample model of the Hodge line bundle on 1_94K,3 Ja—e
Proof. For simplicity, denote by 4344, the Hodge line bundle on 1_353 e Let M be the open sub-

set of }_’Z parametrizing ADE K3 surfaces. Then by taking Z/4Z-quotient, it is clear that M also

parametrizes quartic curves on P? and degree 8 curves on P(1, 1, 4) with at worst A,-singularities.

Indeed, the moduli stack M associated to M is a (Z/4Z)-gerbe over P‘l:l; . Thus, M can be iden-
,>—€

It
2—c

—K
tified with the open subset PZ of P, 3__ whose complement has codimension > 2. By [57,
4

Section 6.2], Ayjoqgel s is pulled back from the Hodge line bundle on the relevant period domain
D /T, which is the descent of O(—1), and thus ample. Since ﬁ: is the Baily—Borel compactification
of M, we know that Ayjoqec|p extends to an ample Q-line bundle on 1_’:. By [29] we know that

. SK . . . K =
Atiodge is nefon P, e Since M are big open subsets in both P, e and P:, we know that Agogee

is big and semiample, and 1_9: = Proj(@,-,H 0(1_32(’ 3 /lgé‘ dge)) is the ample model of Ay, gge- This
finishes the proof. )

Finally, we remark here that an alternative proof can be obtained using [41, Theorem 1.2] and
functoriality of the Hodge line bundle. 1

s . —cs —hs —x —GIT ,
We note that Hyeon-Lee’s paper also studies the spaces M, ,M, ,P,,and P,  in the context of
the log MMP on M; (i.e., the Deligne-Mumford compactification) as well as their relations with
Hacking’s 1_’4 . We postpone discussing this viewpoint until Section 9.3.

6.2.2 | Plane sextic curves

For sextic curves, we recall that Shah constructed a partial Kirwan desingularization of the GIT
quotient of plane sextic curves [112]. In particular, as above there is a divisorial contraction

—GIT
13\6(3IT — P, corresponding to a weighted blow-up of the triple conic. Shah also constructed a set-

theoretic morphism ﬁSIT - I_DZ, where I_DZ denotes the Baily-Borel compactification of the space

of polarized K3 surfaces of degree two. This map was shown to be algebraic by Looijenga [88, 89]
(see also [76, Theorem 1.9]). In particular, we have a similar diagram in the sextic case.

—GIT
poIT __,p7 .

—
P6 6 6

PG

—K
Again using Theorems 1.3 and 6.1, we can identify P, T P, 1__. The proof of Theorem 6.5 gives
’2

—K
the following, noting that the codimension of the klt locus inside P, 1__is > 2.
’2
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Theorem 6.6. The moduli space 1_32 is the ample model of the Hodge line bundle on Flﬁ{ 1,
’2

—H
As in the case of quartics, we will discuss the relation of the above picture with Hacking’s P,
and I_JZ in Section 9.3.

7 | THE SECOND WALL CROSSING FOR PLANE QUINTICS

In this section, we discuss the second wall crossing for K-moduli spaces of plane quintics. For

—K —K —K —K
simplicity, we abbreviate P, . and P, to P, and P, respectively. The main result goes as
follows.

Theorem 7.1 (Second wall crossing for plane quintics). Let C,, be a plane quintic curve with a

singular point of type A;,. Denote by X, := (xw — y'* — 2% = 0) C P(1,2,13,25). Let C, be the

curve (w = 0) on X .

3 8

neeh

(2) Thereisanisomorphism of good modulispaces$, : Ps __ — P s whichonly replaces [(P%,Cy)]
15 15

by (X35, C)1-

3) There is a weighted blow-up morphism ¢ : I_JKs
(3) g p morp ¢, 1 Ps
15

—K
(1) Thereis no wall crossing for K-moduli stacks P, when ¢ € (

+€

- ﬁ? at the point [(X,4, C;)]. The excep-
15

tional divisor of gb; parametrizes curves on X4 of the form (w = g(x,y)) where g # 0 and ¢
does not contain the term xy'2.

In particular, the second wall for K-moduli spaces of plane quintics is ¢, = %.

We will split the proof of Theorem 7.1 into several steps.

7.1 | K-polystable replacement of A,,-quintic curve

Let C, be a plane quintic curve with a singular point of type A,,. Then by [122, 127], we know that
up to a projective transformation, the equation of C, is

Co = ((y2 - xz)2<}1x +y+ z) - X2 = x2)(x +2y) +x° = O).

In the affine patch [x, y, 1], there is a unique 6-jet x’ = x — y? + y° — % ¥° so that the equation of
C in the coordinates (x’, y) becomes

x'? = ay® + higher order terms, where a # 0.

Here, we assign weights 13 and 2 to x’ and y, respectively. Since C,, has only one singularity that
is a double point, we know that it is a GIT stable plane quintic curve by [99, Table on Page 80].

In this section, we will show that 18—5 is the upper K-semistable threshold of (P?,C,) by
constructing its K-polystable degeneration. The goal is to prove the following.
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Theorem 7.2. The log Fano pair (P?,cC,) is K-semistable if and only if 0 < ¢ < % Moreover,
X5, 18—5C(’]) is the K-polystable degeneration of (P2, %CO).

We prove this in steps.
Proposition 7.3. If the log Fano pair (P2, cC,) is K-semistable, then 0 < ¢ < %

Proof. Suppose (P?,cC,) is K-semistable. Let us perform the (13,2)-weighted blow-up in
the coordinates (x’,y), and denote the resulting surface and exceptional divisor by (X, E).
Let 7 : X — P? be the weighted blow-up morphism. Straightforward computation shows
that

A(PZ,CCO)(E) = 15 - 260, _KPZ - CCO NQ (3 - SC)H,

where H ~ O(1) is the hyperplane divisor on P2. If C, := 7'C, C X, then we know that C,
is a smooth rational curve in the smooth locus of X. It is easy to see that (E?) = —2l6, the

— —2 —
curve Cy ~ 57*H — 26F, and (C) = —1. Thus, the Mori cone of X is generated by E and C,,.
Hence, 7*H — tE is ample if and only if 0 < ¢t < 5, and big if and only if 0 < t < 2?6. Then, by
computations,

12 . .
1—% ifo0<t<5;

(26—5t)?
26

voly(7*H — tE) =

ifsstsz—:.

Hence, Sp2 ¢, (E) = 1o voly(*H — tE)dt = 1?7(3 — 5¢). Since (P?, cC,) is K-semistable, by the
valuative criterion (Theorem 2.9), we know that

17
15 —26¢c = A(PZ,CCO)(E) P S(PZ,CCO)(E) = ?(3 - SC)

This is equivalent to ¢ < % Ll
Now we construct a special degeneration.

Proposition 7.4. The log Fano pair (P?,¢cC,) admits a special degeneration to (X26,CC(/))
where C(’) is given by the equation (w = 0) with [x,y,z,w] being the projective coordinates
of X 5.

Proof. We construct the special degeneration. Consider the family (P2, C,) x A! and perform the
following birational transformations,
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where in the central fiber, we have

(1) 7 is the (13,2,1)-weighted blow-up of P? x Al in the coordinates (x’,y,t) where ¢ is the
parameter of A!,

(2) the surface S = P(1,2,13) is the exceptlonal divisor of 7,

(3) the map g is the contraction of C, in X C X, where Cj, is the strict transform of C;, in X,

(4) the map f is the Atiyah flop of the curve C,, in X, (by computation the normal bundle N cy e =
Oz (-1) ® Oz (-1)), and

0 0
(5) 1 is the divisorial contraction that contracts X’ to a point.

Let us analyze the geometry of these birational maps. Suppose that S has projective coordi-
nates [xy, x,, x5] of weights (1,2,13), respectively. Then SN X = E = (x; = 0), and 50 NE = {p}is
a smooth point of S and X. So, h : S= Bl,S — S,themap g : X — X' contracts the (—1)-curve
Cp,and 9 : § — S’ contracts h‘l(E) A simple analysis of the singularity of S’ shows that S” has
only one singularity of type (1 4).

Let F be the exceptional d1v130r ofh : § > S = P(1,2,13). We may look at the Q-divisor D : =

F + ;g h'E.1tis clear that the ample model of D on Sis exactly S’. The projective coordinate ring

Dol (S, O4( [mDJ )) has four distinguished generators in degree 1, 2, 13, and 25, corresponding
to x, xz, X3, and x + x2 on S.If we denote x, y, z, w as these four generators, then their relation is
xw =z + b3 Wthh shows S’ = X,. Itis clear that 7, C, X A! N S has the equation x}° + x2 =
0. Hence, the degeneration of C, on X, is the strict transform of the curve (x;3 + x§ = 0) which
is exactly (w = 0). This finishes the proof. O

In the Appendix, we use techniques of Ilten and Siif3 [59] to show that (X26, —~C{) is indeed
K-polystable (see Proposition A.2). We now prove Theorem 7.2.

Proof of Theorem 7.2. By Proposition 7.4, the log Fano pair (P2, ﬁCO) admits a special degener-

ation to (X26, C!), which is K-polystable by Proposition A.2. Therefore, the pair (P2, —Co) is

15 707
K-semistable by Theorem 2.16. We then conclude that (P2, cC,) is K-semistable for any ¢ € (0, %)

using Propositions 2.13 and 7.3. O
7.2 | Proof of second wall crossing

In this section, we prove Theorem 7.1. Before presenting its proof, we provide several results that
are needed. First, we limit the surfaces that can appear.

—K
Lemma 7.5. If [(X,cD)] € P, for some c € (0, %), then X is isomorphic to one of the following
surfaces: P%, P(1,1,4), X5, or P(1,4,25).
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Proof. By the index estimate (Theorem 4.8), we know that the Gorenstein index of any singular
point on X is at most 5. Thus, from the classification of Manetti surfaces, we know that X is either
isomorphic to P2, P(1,1,4), P(1, 4, 25) or isomorphic to some of their partial smoothings. It is clear
(e.g., from [50]) that X, is the only new surface appearing which is a partial smoothing. O

Next, we discuss K-stability of curves on X,.
Proposition 7.6. Let C be a curve on X,4 of degree 25. If (X5, cC) is K-semistable, then c > 1—85.
If in addition that C passes through the singular point of X, then (X,4,cC) is K-unstable for any
3
ce(0,2).
5

Proof. For simplicity, we denote by X := X,.. Let us consider the unique singular point [0,0,0,1]
on X. Denote by [x,y, z, w] the projective coordinates where X is defined by xw = y'3 + z2. If

we set w = 1, then we have a cyclic quotient map 7 : A(Zy ;) — X defined by 7(y,z) = Y8+

z2,y,z,1]. Let F be the exceptional divisor on A(Zy 2 given by the (2,13)-weighted blow-up. Let E be
the quotient of F over X. Then it is clear that ord; = 7,ord /25, (F?) = —2—16 and (E?) = —%. Let

T be the curve x = 0 on X. Then ordg(I") = ord,(I')/25 = ;—2. Hence, on the blow-upu : ¥ - X

- - —2
extracting E, the proper transform I" of I" satisfies I' = u*I" — %E and (I' ) = —1. So, the Mori cone

of Y is generated by E and I'. Computation shows

%—%tz ifo<t<
voly(O(1) —tE) = - 2 %
%(E_t> leSISE

Thus,

15— 25c¢

- 9
Vol (OM) /o voly (0(1) - tE)dt = —(15 - 25¢).

S(X,CC)(OrdE) =

Since Ay(ordg) = Ax2(ordp)/25 =15/25 =3/5 and (X, cC) is K-semistable, the valuative cri-
terion (Theorem 2.9) yields % > Ax coy(ordg) = Six ocy(ordg) = %(15 — 25¢) which implies ¢ >
8
15°

If C passes through [0,0,0,1], then its equation is given by (f(x,y)z + g(x,y) = 0) where
deg f = 12 and deg g = 25. Let C be the preimage of C under 7. Then, C has equation

fOP+2 )z + g0P + 2% y) =0.
Then, by simple calculation, we see that ord;(C) = ord;(C)/25 > 1. Thus, we have

1 9
A(X’Cc)(ordE) < 5(3 - SC) < g(ls - 25C) = S(X’Cc)(ordE).

This implies that (X, cC) is always K-unstable for ¢ € (0, %) by the valuative criterion (Theo-
rem 2.9). The proof is finished. O
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Proposition 7.7. Let C be a curve on X, of degree 25. Then (X, %C) is K-semistable if and only

if C does not pass through the unique singular point of X,s. Moreover, (X, %C) is K-polystable if
and only if C = C(’) under an automorphism of X,.

Proof. We first look at the K-semistable statement. The “only if” part holds by Proposition 7.6. For
the “if” part, suppose that C does not pass through [0,0,0,1]. Hence, the equation of C is given by
w = f(x,y)z + g(x,y). Consider the 1-PS in Aut(X,) defined by [x, y, z, w] = [t%x, 2y, t13z, w].
It is clear that C specially degenerates to C(/) = (w = 0) via this 1-PS as t - 0. Hence, (X26, 8 C)
is K-semistable by Theorem 2.16 and the K-polystability of (X26, = 0) (see Proposition A.2). The
K-polystable statement follows by uniqueness of K-polystable degenerations [93]. O

Now we are ready to prove Theorem 7.1.

Proof of Theorem 7.1.

(1) Assume to the contrary that there are wall crossings within the interval (%, %). Letc, € (%, %)
be the second wall. Then there exists a new K-polystable pair (X, c,D) such that (X, c¢D) is K-
unstable for any ¢ # c, by Proposition 3.18. Thus, X is not isomorphic to X,4 or P(1, 4, 25) by
Propositions 7.6 and A.14 (the valuative criterion for curves on P(1,4,25)) since ¢, < %. By
Lemma 7.5, we are left with two possibilities, that is, X is isomorphic to P? or P(1,1,4). If
X = P2, then Proposition 2.13 implies that (X, D) is also K-polystable that is a contradiction.
Hence, we may assume (X, D) = (P(1,1,4),C).

Assume that the equation of C is given by f(x,y)z? + g(x,y)z + h(x,y) = 0. If f(x,y) is
a nondegenerate quadratic form, then it is clear that C specially degenerates to QL. Since
(P(1,1,4), %Q’S) is K-polystable by Lemma 5.3, we know that (P(1, 1, 4), %C) is K-semistable by
Theorem 2.16. But this is a contradiction since (X, %D) is K-unstable. Thus, f(x,y)is a degen-
erate quadratic form. By Proposition A.13 (the valuative criterion for curves on P(1, 1,4)), we
know that ¢, > % > % a contradiction. This finishes the proof of part (1).

(2) From Theorem 7.2, we know that ¢ replaces [(P?, C,)] with [(X,4,C))]. By Proposition 7.7,
we know that (X26, =C! o) is the only new K-polystable pair appearing in P 2. Hence, to
show ¢ is an 1somorph1sm it suffices to show that the preimage of [(X,, C )] under ¢>2
is exactly [(P?,C,)]. Denote by E— the preimage of [(X26,C )] under the morphisms ¢2
Assume to the contrary that E5 contains at least two points. Since all K-moduli spaces of
plane curves are normal by Proposition 4.6, we know that E" is connected hence has pos-
itive dimension. It is clear that Auty(X,, C(’)) & G,. Let Uy, be the Luna slice at the point
zy = Hilb(X 5, 1—85C6) € Z%; satisfying Theorem 3.33. Hence, we know that z, is the only G,,,-

15
invariant point in Uy, . The smoothness of Z (Proposition 4.6) implies that Uy, is also smooth.
Applying [32, Theorem 0.2.5] or [117, Corollary 1.13] to the local VGIT presentation (3.6) near
z, implies that

dim(E;) + dim(E}) + 1 = dlm( Py ) =12,
15

In particular, we know that the locus E; has codimension at least two in the K-moduli space.
However, we will show that this is not true.
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Let C be a curve on X, of the form (w = ¢g(x,y)) where g # 0 and ¢ does not contain the
term xy'2. Hence, C does not pass through the singular point [0,0,0,1] of X,. It is clear that
C is a smooth curve on X, for a general choice of g. Hence, (X4, %C) is kIt for a general
choice of g. Since (X, %C) is K-semistable by Proposition 7.7, we know that (X, (% +¢)C)
is K-stable for a general g. In the affine chart x = 1, the equation of C becomes

Z2 = —y13 + allyll + aloylo + -+ ao- (71)

Hence, C is a hyperelliptic curve of arithmetic genus six. Indeed, from the above discus-
sion, we see that any smooth hyperelliptic curve C of genus six produces a K-stable pair

X5 (% +¢)C) in the K-moduli space 1_311(% +e- Since the moduli space of smooth hyperellip-

tic curves of genus six has dimension 11, we know that E; has dimension at least 11 that
contradicts to the assumption that ¢> is not an isomorphism. This finishes the proof of
part (2).

(3) From the local VGIT argument in part (2), we know that ¢} is a weighted blow-up since ¢
is an isomorphism (see [32, Theorem 0.2.5] or [117, Corollary 1.13]). If [(X, D)] is a point in
E; , then it admits a special degeneration to (X, C(’)). Thus, X is either P2 or X,6- However,
if X =~ P2, then (X, %D) is K-polystable as well by Proposition 2.13, a contradiction. Hence,
X =~ X, and D does not pass through the singular point on X by Proposition 7.6. Thus, after a
suitable change of coordinates, we can put D into the form in the statement. Note that g # 0
is because otherwise (X, D) = (X4, C(’)) is (% + ¢)-K-unstable.

To prove the rest of part (3), it suffices to show that (X, (% + ¢)C) is K-polystable for
any curve C on X, described in the statement. Given such a curve C, we may find a family of
smooth hyperelliptic curves D, on X,4 of the same form over a punctured smooth curve T \ {0}
such thatlim, ,, D, = C.Let(X, (18—5 + ¢)D) be the K-polystable limit of (X, (% + ¢)D;) using
Theorem 3.19. Since the Gorenstein index of X is a multiple of X,, which is 5, we know that X
can only be X,, or P(1, 4,25). But P(1, 4, 25) is impossible by Proposition A.14. Hence, X =~ X,
and D is a curve not passing through the singular point [0,0,0,1]. By an automorphism of X,
we may assume that D has the equation (w = h(x,y)) where h is a homogeneous polynomial
of degree 25. Since (X, (18—5 + e)C(’)) is K-unstable by Proposition 3.18, after a further change
of coordinates, we may assume that h # 0 and h does not contain the term xy'2. Thus, we
conclude that (X, D) 2 (X, C). The proof is finished. 0

The following result follows easily from the proof of Theorem 7.1 (see, e.g., (7.1)).

Corollary 7.8. The moduli stack of smooth hyperelliptic curves C of genus six with a marked Weier-

—K
strass point p admits a locally closed embedding into the K-moduli stack P s . _. Moreover, this

+
embedding is stabilizer preserving and sends closed points to closed points. In particular, the coarse

moduli space of such pairs (C, p) admits a locally closed embedding into the K-moduli space I_JKE e
15

whose image closure is the exceptional divisor of qb; .

Corollary 7.8 is a strengthening of an earlier result of [48]. Although not explicitly stated, it is
a consequence of [48, Theorem 1, Theorem 1.A] that a smooth hyperelliptic curve C of genus six
admits an embedding into X,, coming from the marked Weierstrass point p. Indeed, the author
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computes an embedding C < P(1,1,1,2,3,3) by
C = Proj(R(C, O(5p)) = Proj C[x;, Xy, X3,¥, 21, 251/,

where x; has weight 1, y weight 2, and z; weight 3 and I depends on a uniquely determined degree
5 polynomial Q. One can show that X, admits an embedding into P(1,1,1,2, 3, 3, 5) such that, if
t is the variable of weight 5, the curve C C X, is cut out by the equation ¢t = Q.

7.3 | Applications to higher degree

It is natural to ask what can be said about wall crossing beyond the first wall in higher degree, and
we address that now. The key observation is the following proposition (see Definition 2.10 for the
definition of §).

Proposition 7.9. We have §(X,4) = %.

Proof. For simplicity, denote by X := X,.. We follow notation from Proposition 7.6. Consider
the valuation ordgp centered over the unique singular point of X. Since —Ky ~q Ox(15), by
Proposition 7.6, we have

_3 __ 15 [" _ _ 27
Ax(ordg) = = Sx(ordg) = volX(O(l))/o volx(O(1) — tE)dt = =

Hence, we have 6(X) < Ax(ordg)/S(ordy) = %. Assume to the contrary that §(X) < % From
Proposition A.2, we know that (X, 18—5C(’)) is K-polystable where C(’) = (w = 0). On the other hand,
[23, Theorem 7.2] implies that (X, %C(’)) is K-unstable by taking 8 = % and D = %C(’). This is a
contradiction. Therefore, §(X) = %. O

Using the above proposition, we can prove the following.

Theorem 7.10. Letd > 4 be an integer.

—K
(1) Foranyc < %, the only surfaces appearing in the K-moduli stack P ; . are P2 orP(1,1,4).

(2) Suppose 5 | d, then we have the following wall crossing at ¢ = %:

—K ¢’ —K ¢+ —K

P,s — P, s «—P_ s
d’_sd —€ d’_sd d’_3d +e

where ¢ is an isomorphism near ([FDZ, —ZC) whose replacement is (X26’ —t; C(/)), and ¢ is a

weighted blow-up at (X, %C(’)). In particular, % is the second smallest wall extracting a divisor.

Proof.

—K
(1) Let(X,cD)beaK-semistable pairappearingin P, . for somec < %. By Theorem 4.8, we know
that any local Gorenstein index of X is at most 9. Then from the classification of Manetti sur-
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faces,weknowthatXisisomorphic to oneof[p>2 [P>(1 1,4),P(1,4,25)or X,,. If X = P(1, 4, 25),

then §(X) = = by [20, Section 7] Since1 — ¢ > E’ by [23, Theorem 7.2], the pair (X, cD) is

K-unstable by takmg B=1—-= ¢ Thisisa contradlctlon IfX =~ X5, then §(X) = 1 by Propo-
sition 7.9. Hence, the same argument implies that (X, cD) is K-unstable Whenever c< %,
again a contradiction.

(2) The statement essentially follows from the proof of Theorem 7.1. Indeed, if C is a general
curve on X,4 of degree 5d, then C does not pass through the singular point [0,0,0,1] on X .
Thus, the same argument as the proof of Proposition 7.7 implies that (X, %C) is K-semistable.
Since a general C is smooth, by Proposition 2.13, we know that (X, cC) is K-stable for any

cE ( o d) It is clear that dim Aut(Xzé) = dim Aut(P?) — 1, hence such pairs (X,4, C) form

a divisor in the K-moduli space P 4 & 4+ (see Section 9.2). Hence, the proof is finished by [32,
’3d

Theorem 0.2.5] or [117, Corollary 1.13]. U

8 | LOG FANO WALL CROSSINGS FOR K-MODULI SPACES OF
PLANE QUINTICS

In this section, we discuss all wall crossings of K-moduli spaces of plane quintics in the log Fano
region ¢ € (0, g). For simplicity, we again abbreviate l_’g ' 5 o and P . to I_JGIT, 5?, and ﬁf,
respectively. Thanks to Sections 5 and 7, we have detailed descriptions of the first two wall cross-
ings. The main results of this section, namely, Theorems 8.2-8.5 will show that there are three

—GIT
more wall crossings after the first two walls. We begin by a description of P

8.1 | GIT of plane quintics

—K
By Theorem 1.3, we know that the K-moduli space P_ is isomorphic to the GIT quotient for plane
—GIT
quintics, so we begin with a description of the (classical) GIT quotient P for plane quintics.
This was calculated by Mumford [99, Chapter 4, Section 5]. A detailed description also appears in
—K —GIT
[75]. Under the identification of P, and P, Proposition 4.7 provides open embeddings

GIT

>

pPMte, plec, p

—GIT
where plt and P denote the loci in P~ parametrizing GIT polystable plane quintics with lct

> E and > respectlvely

—GIT
Lemma 8.1. The boundary P\ Pf“ is a disjoint union of the following locally closed strata:
Zero-dimensional loci

Z; ={[Qsl} and
* X, parametrizing a plane quintic curve with an A,, singularity.

One-dimensional loci

* X, parametrizing a reducible plane quintic curve with an A, singularity,
* X, parametrizing an irreducible plane quintic curve with an A, singularity, and
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* X parametrizing the union of two conics tangent at two distinct points and a line through them
(two Dy singularities), that is,

(z(xy —z%)(xy —az®) =0) wherea # 1.
Two-dimensional locus
* X parametrizing a plane quintic curve with an A, singularity.
Three-dimensional locus
* X, parametrizing a plane quintic curve with an A, singularity.
Moreover, the incidence of such strata is as follows:
s %, by
\ \
Ty—2

s

Z6

27 2

—GIT
Here, Z; — X; means that Z; is contained in the Zariski closure of £; in P~ . The closure of the
stratum T, = ¢ L T, is isomorphic to P!, and is the only strictly semistable stratum. The other strata

—GIT
are contained in the stable locus. In addition, P\ Plc = |_|;.5=1 P

Proof. By the GIT analysis in [75], we know that if C is a plane curve of degree 5, then

» C is GIT stable if and only C is either smooth or has singularities of type A, with 1 < k < 12,
D, and Ds.

» C is GIT strictly semistable (i.e., semistable but not stable) if and only if it has a singularity of
type D, with 6 < k < 12 such that if k = 9, then C is not the union of a nodal quartic and line.

* Cis GIT strictly polystable (i.e., polystable but not stable) if and only C is the union of double
conic and a transverse line or the union of two tangent conics and a line passing through their
tangent points.

—GIT
Therefore, the GIT quotient P is the union of the GIT stable locus and a smooth rational curve
parametrizing the GIT strictly polystable plane quintics. The statement follows by considering the
log canonical thresholds of these singularities and the jet computations (see Proposition A.1). []

8.2 | Explicit wall crossings

—GIT
As we saw in Theorem 1.3, the GIT quotient P of plane quintics can be identified with the

K-moduli space 55 where 0 < ¢ < 3/7. In this section, we discuss the subsequent wall crossings
among the K-moduli spaces of plane quintic curves. The following diagram gives an overview of
the K-moduli spaces for plane quintics based on results from Sections 5, 7 and this section (see
Table 1 for a summary).
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—H —=K —K —=K —=K —=K =K
P ——->Ps =2Pss, ————3Psa__=Pss - ———— +Pes _=Ps
5€ 95 1€ 95 € 115 € 115 € i te
Psa Pes
95 11
—K — =K —K =K —K ., =GIT
—_ — — = = _— e =
P%—&-e —>P%_6 P%_i_E P%_e P%+€—>P%_€ P

e
\
/
/
N

FIGURE 1 Log Fano wall crossings for K-moduli spaces of plane quintics.

The following results describe the remaining three walls that occur after the first two walls for
K-moduli spaces of plane quintics. Their proofs will be presented in Section 8.3 with ingredients

—GIT =K
from calculations of Section A. If the birational map P~ --> P is isomorphic at the generic point

— —K
of a locus %;, then we denote by X ; the Zariski closure of the proper transform of Z; in P, .
Theorem 8.2 (Third wall crossing). The third wall is c; = %
—K —K —
(1) The birational morphism ¢ : Ps __ — Ps is an isomorphism away from the locus Z s _
11 11 11

5
> 11

€3

Moreover, ¢ contracts Ei_s , toapoint [(P(1,1,4), = (x*2* + y°z = 0))].
11 ’

+€

—K —K
(2) The birational morphism qb;' :Ps._—Ps is an isomorphism away from the point
11 11

[(P(1,1,4), %(xzz2 + Y%z = 0))]. Moreover, the exceptional locus E of 7 is of codimension

2 and parametrizes curves on P(1, 1, 4) of the form (x*z* + y°z + g(x,y) = 0) with g # 0.

Theorem 8.3 (Fourth wall crossing). The fourth wall is ¢, = %.
—K —K —
(1) The birational morphism ¢, : Pss __ — P 63 is an isomorphism away from the locus £ 63 _
115 115 115

Moreover, ¢, contracts Ea_g_e , to a point [(P(1, 4,25) 83 (22 + x2y12 = 0))].
115 ’

€4’

’ 115

—K —K
(2) The birational morphism gbz P& _— Pe is an isomorphism away from the point

115 +e 115
[(P(1,4,25), %(Z2 + x2y!'? = 0))]. Moreover, the exceptional locus E; of ¢} is of codimension
2 and parametrizes curves on P(1, 4, 25) of the form (z2 + x*y'2 + x'0g(x, y) = 0) with g # 0.
Theorem 8.4 (Fifth wall crossing). The fifth wall is c5 = ;—:.
—K —K _
(1) The birational morphism ¢ : Psi__ — Psi is an isomorphism away from the locus Zss__ .
95 95 95 i

Moreover, ¢ contracts fg_e 5 to a point [(P(1, 4, 25), %(z2 + x%yt = 0))].
95 ’
—K —K
(2) The birational morphism qb;r :Psi, — Psi is an isomorphism away from the point
95 95

[(P(1,4,25),;—:(z2+x6y11=O))]. Moreover, the exceptional locus EX of ¢ is of
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codimension 3 and parametrizes curves on P(1,4, 25) of the form (z* + x5y + x*¢(x,y) = 0)
with g # 0.

Theorem 8.5 (No other walls). The five walls above are all walls occurring for K- moduli spaces
of plane qulntlcs in the log Fano region 0 < c < =. In other words, for any < c < 2, we have an

isomorphism 73 = P s4, . between Artin stacks.
95

8.3 | Proofs

In this section, we present proofs of Theorems 8.2-8.5. Our strategy is quite similar to the proof of
Theorem 7.1.

Proof of Theorem 8.2.

(1) We first show that there is no wall crossing when c € (— —) Assume to the contrary that the

15° 11
third wall c¢; € & BT £, Then there exists a new K- -polystable pair (X, c;D) such that (X, cD) is

K-unstable for any ¢ # c; by Proposition 3.18. Thus, X is not isomorphic to P? or P(1, 4, 25) by
Propositions 2.13 and A.14. Hence, by Lemma 7.5, we are left with two possibilities, that is, X is
isomorphic to P(1, 1,4) or X,4. If X = X, then D does not pass through the singular point on
X by Proposition 7.6. Hence, (X, %D) is K-semistable by Proposition 7.7, but this is a contra-

diction since ¢; # %. Thus, we may assume (X, D) = (P(1, 1,4), C) where the equation of C is
given by f(x,y)z% + g(x,y)z + h(x,y) = 0.If f(x, y) is nondegenerate, then (P(1, 1,4), %C) is
K-semistable since C specially degenerates to Qg which is a contradiction. If f(x,y) is degen-
erate, then Proposition A.13 implies that (P(1,1,4), c; C) is K-unstable since ¢; < 16—1. Thus, we

have shown that no walls can appear in the interval (2 = ﬁ)

Next we show that (P(1,1,4), : 1(x z? 4+ yz = 0)) is the only new K-polystable pair in

P 5. Clearly, this pair is K-polystable by Proposition A.6. If (X, D) is a new K-polystable

palr then from the argument above, we see that (X,D) = (P(l 1 4),C) and the defining
equation of C has a degenerate quadratic form in (x,y) as the z>-term coefficient. Then,
by Proposition A.13, we know that after a coordinate change, the equation of C has the
form x?z? + y°z + g(x,y) = 0. Consider the 1-PS in Aut(P(1,1,4)) defined by [x,y,z] —
[£3x,ty, z]. Itis clear that C specially degenerates to the curve C; := (x?z? + y%z = 0) via this
1-PS as t — 0. Since (P(1, 1, 4) Cl) is K-polystable, it follows that (X, D) = (P(1,1,4),C,)
by [93].
So far we have shown that c; = =. Next, we analyze the wall crossing morphisms ¢3

Since (P(1,1,4), Cl) is the only new K-polystable pair in P £y we know by Proposi-

tion 3.18 that qb3— are isomorphic over P o \{[(P(1,1, 4), L —=C;)]}. Denote byE the preimage of
11

*11
[(P(1,1,4), %Cl)] under the morphisms gb;—'. It is clear that Auty(P(1,1,4),C;) = G,,. Using
the local VGIT presentation (3.6) and applying [32, Theorem 0.2.5] or [117, Corollary 1.13], we
have

dim(EJ) + dim(E}) + 1 = dim (P 6 ) (8.1)

11
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2

Moreover, E;—r are weighted projective spaces quotient out some finite group action, so they
are irreducible. By Theorem A.4, we know that 3 ¢ _o3 C EJ which implies dim EZ" > 1. Let
L€,

C be a general curve on P(1, 1,4) of the form xzz5 + %z 4+ g(x,y) = 0. Then, it is clear that
Iet(P(1,1,4);C) = % > % Hence, (P(1, 1,4),(% + ¢)C) is K-stable by Proposition 2.13. It is
easy to see that such pairs (P(1,1,4),C) form a locally closed subset in the K-moduli space
Flf% +e Of codimension two. Hence, dim(ﬁ%) — dim(E;r ) < 2 which implies dim(E7) < 1 by
(8.1). Therefore, we know dim(E7) = 1 and hence b3 LA = EJ by irreducibility of E7". This
finishes the proof of part (1).
The proof of this part is basically the same as the proof of Theorem 7.1(3). First, if [(X, D)]
is a point in Ef, then (X, D) specially degenerates to (P(1,1,4),C;). Hence, X is either P2
or P(1,1,4). If X =~ P2, then (X, 1—61D) is K-polystable by Proposition 2.13, a contradiction.
Hence, (X, D) = (P(1,1,4), C). If C has the form xyz? + f(x, y)z + h(x,y) = 0 after a suitable
change of coordinates, then it admits a special degeneration to Q5 which implies that (X, %D)
is K-semistable by Theorem 2.16 and Lemma 5.3. Hence, (X, %D) is K-polystable by Propo-
sition 2.13, again a contradiction. Then by Proposition A.13, we know that C must have the
form x?z? + y°z + g(x, y) = 0 after a suitable change of coordinates. Note that g # 0 because
otherwise (X, D) = (P(1,1,4),C;) is (% + €)-K-unstable.

To prove the rest of part (2), it suffices to show that (P(1,1,4), (1—61 + ¢)C) is K-polystable
for any curve C on P(1,1,4) described in the statement. We omit the rest of the proof here

since it is the same as the proof of Theorem 7.1(3) by using properness of K-moduli spaces
(Theorem 3.19). U

Proof of Theorem 8.3.

@

We first show that there is no wall crossing when c € ( ) Assume to the contrary that the

11’ 115
fourthwallc, € (H m 5) Then there exists a new K-polystable pair (X, ¢,D) such that (X, cD)
is K-unstable for any ¢ # ¢, by Proposition 3.18. Thus, similar argument to the proof of Theo-
rem 8.2(1) implies that (X, D) has to be isomorphic to (P(1, 1,4), C) where the equation of C is
given by f(x,y)z% + g(x,y)z + h(x,y) = 0 with f degenerate. Then Proposition A.13 implies
that the equation of C has to have the form x?z? + y°z + h(x,y) = 0, so C admits a special
degeneration to the curve C1 (x2z% + y°z = 0). Thus, by Proposition A.6 and Theorem 2.16,

we know that (P(1,1, 4), C) is K-semistable, but this is a contradiction as ¢, ;é —= Thus we
63

11° 115

83 (22 4+ x2y12 = 0)) is the only new K-polystable pair in

have shown that no walls can appear in the interval (

Next, we show that (P(1, 4, 25) e

P s . Clearly this pair is K-polystable by Proposition A.9. If (X, 2.D) is a new K- -polystable

115
palr then from the argument above, we see that (X, D) = (P(1, 4, 25), C). By Proposition A.14,

the defining equation of C has the form z? + x?y'? + x°¢(x,y) = 0. Consider the 1-PS in
Aut(P(1,4,25)) defined by [x, y, z] — [x, ty, t%z]. Itis clear that C specially degenerates to the
curve C, := (2% + x2y'? = 0) via this 1-PS as t — 0. Since (P(1,4,25), == C,) is K-polystable,
it follows that (X, D) = (P(1, 4, 25), C,) by [93].

So far we have shown that ¢, = 63 . Next, we analyze the Wall crossing morphisms ¢f

Since (P(1,4, 25)

’ 115

' Tis C2) is the only new K-polystable pair in P 63, we know by Proposi-
115

83 )]} Denote by E; the preimage

tion 3.18 that ¢Z are isomorphic over Pﬁ \ {[(P(1, 4, 25), G
115
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2)

of [(P(1, 4, 25) 63 Cz)] under the morphisms qb4 Itis clear that Aut,(P(1, 4, 25),C,) = G,,,. By

Theorem A.7, we know that T 63 _.4 C E; which implies dim(E;") > 1. Using a similar argu-
115 ’

ment to the proof of Theorem 8.2(1), it suffices to show that EI has codimension at most
2 in the K-moduli space. Let C be a general curve on IP’(l 4,25) of the form z2 + x2y'? +
x0g(x,y) = 0. Then it is clear that Ict(P(1,4,25);C) > 1 > g Hence, (P(1, 4, 25), ( - +6)C)
is K-stable by Proposition 2.13. It is easy to see that such pairs (P(1,4,25),C) form a locally

—K
closed subset in the K-moduli space Ps: ,  of codimension 2. Hence, = & _.,=E; by
115 11 ’

irreducibility of E;” and local VGIT presentation. This finishes the proof of part (1).
The proof of this part is basically the same as the proof of Theorem 7.1(3). First, if [(X, D)]
is a point in EJ, then (X, D) specially degenerates to (P(1,4,25),C,). If X is isomorphic to
2 or Xy, then X, 15D) is K-polystable by Proposition 2.13, a contradiction. If (X, D) =
(IP(l, 1,4),C), then by Propos1t10n A.13, we know that the equation of C has the form xyz? +
f, )z + g(x,y) = 0 or x*z% + y°z + h(x, y). From the proof of Theorem 8.2, we know that
the former curve is —-K semistable, while the latter curve is H'K semistable. Hence, (X D)
is K-polystable by Propos1tlon 2.13, again a contradiction. Therefore, (X, D) = (P(1, 4, 25) C)
By Proposition A.14, we know that the equation of C must be of the form z? + x?y!2 +
xéh(x, y) = 0. After a suitable change of coordinates, the equation of C can be even simplified
to z + x?y12 4+ x1%(x,y) = 0. Note that g # 0 because otherwise (X, D) = (P(1,4,25),C,)
is ( s+ €)-K-unstable. The rest of part (2) also follows from similar argument to proof of
Theorem 7.1(3) by using properness of K-moduli spaces (Theorem 3.19). U

Proof of Theorem 8.4.

@

We first show that there is no wall crossing when c € (&

115° 95
the fifth wall ¢5 € (%, S—:). Then there exists a new K-polystable pair (X, c;D) such that
(X, cD) is K-unstable for any c # c5; by Proposition 3.18. Thus, similar argument to the proof
of Theorems 8.2(1) and 8.3(1) implies that (X, D) has to be isomorphic to (P(1,4,25),C). By
Proposition A.14, the equation of C must have the form z? + x%y'? + x%¢(x, y) = 0 since

cs < . So, C admits a special degeneration to the curve C, = (z? + x?y!? = 0). Thus, by
Proposmon A.6 and Theorem 2.16, we know that (P(1, 4, 25), EC) is K-semistable, but this
isa contradiction ascs # 1% Thus, we have shown that no walls can appear in the interval

24y, Assume to the contrary that

(115 95
Next, we show that (P(1, 4,25), 54(22 + x%y!! = 0)) is the only new K-polystable pair in
P54 Clearly, this pair is K-polystable by Proposition A.12. If X, 2 D) is a new K-polystable

pair then from the argument above, we see that (X, D) = (P(1,4, 25), C) such that C admits
no special degeneration to C,. Thus, Proposition A.14 implies that the defining equation of
C has the form z? + xy!! + x1%g(x,y) = 0. Consider the 1-PS in Aut(P(1,4,25)) defined
by [x,y,z] = [x,t2y,t11z]. It is clear that C specially degenerates to the curve C; := (2% +
x®y!l = 0) via this 1-PS as ¢t — 0. Since (P(1,4,25), g—:C3) is K-polystable, it follows that
(X,D) = (P(1,4,25),C5) by [93].

So far we have shown that ¢5 = 5—4 Next, we analyze the wall crossing morphisms ¢5i

Since (P(1,4,25), > C3) is the only new K-polystable pair in Ps4 we know by Proposi-

tion 3.18 that ¢5 are isomorphic over P54 \ {[(P(1, 4, 25), 2 C3)]} Denote by E the preimage
of [(P(1, 4, 25), Z: C;)] under the mOI‘phlSl’nS ¢5—. Itis clear that Aut,(P(1, 4, 25), C3) =2 G,,,. By
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Theorem A.10, we know that £ 54 C EZ which implies dim(E7) > 2. Using a similar argu-
5

—€,5
ment to the proof of Theorem 8.2(1), it suffices to show that E;L has codimension at most
3 in the K-moduli space. Let C be a general curve on [P’(l 4,25) of the form z? + xOyll 4
xg(x,y) = 0. Thenitis clear that lct(P(1, 4, 25); C) > > . 2 Hence, (P(1, 4, 25), ( +¢)C)is
K-stable by Proposition 2.13. It is easy to see that such palrs (*(1,4,25),C)forma locally closed

subset in the K-moduli space P54 . of codimension 3. Hence, 554 = E7 by irreducibility

—€,5
of ES and local VGIT presentatlon ThlS finishes the proof of part .

(2) The proof of this part is basically the same as proofs of Theorems 7.1(3) and 8.3(2). First,
if [(X,D)] is a point in EZ, then (X, D) specially degenerates to (P(1,4,25),C;). By simi-
lar argument to the proof of Theorem 8.3(2), we know that (X, D) = (P(1,4,25),C). If the

equation of C has the form z? + x?y'? + x%¢g(x, y) = 0, then it is %-K-semistable since it

specially degenerates to C,. Hence, (X, ;—:D) is K-polystable by Proposition 2.13, a contradic-
tion. Hence, Proposition A.14 implies that the equation of C must be of the form z2 + x%y'! +
x'%h(x, y) = 0. After a suitable change of coordinates, the equation of C can be even simplified
to z2 + xy!! + x1*g(x,y) = 0. Note that g # 0 because otherwise (X, D) = (P(1,4, 25),C5)
is (% + ¢)-K-unstable. The rest of part (2) also follows from similar argument to proof of
Theorem 7.1(3) by using properness of K-moduli spaces (Theorem 3.19). O

Proof of Theorem 8.5. Assume to the contrary that the sixth wall ¢, € (;—:, %) exists. Then there

exists a K-polystable log Fano pair (X, csD) in I_’i such that (X, ¢D) is K-unstable for any ¢ # c.
Then X is isomorphic to P2, P(1,1,4), X5, or P(1,4,25) by Lemma 7.5. If X = P2, then (X, eD) is
K-semistable by Proposition 2.13, a contradiction. If X = P(1, 1,4), then Proposition A.13 implies
that the equation of D has the form xyz? + f(x,y)z + g(x,y) = 0 or x?z> + y°z + h(x,y) = 0
after a suitable change of coordinates. Hence, D admits a special degeneration to either Qg
or C; = (x?z% + y%z = 0). Thus, Lemma 5.3 and Proposition A.6 combined with Theorem 2.16
imply that either (X, %D) or (X, 16—1D) is K-semistable, a contradiction. If X =~ X,., then Propo-
sition 7.6 implies that D does not pass through the singular point of X. Hence, (X, %D) is
K-semistable by Proposition 7.7, a contradiction. If X = P(1, 4, 25), then Proposition A.14 implies
that D admits a special degeneration to either C, = (z* + x?y'2 = 0) or C; = (2> + xﬁy11 =0).
Thus, Propositions A.9 and A.12 combined with Theorem 2.16 imply that either (X, T 15D) or
X, S—;‘D) is K-semistable, again a contradiction. Since we rule out all four possibilities, the proof
is finished. O

9 | PROJECTIVITY, BIRATIONAL CONTRACTIONS, AND THE LOG

CALABI-YAU WALL CROSSING

In this final section, we discuss some questions with incomplete answers that are interesting for
future study.

9.1 | Projectivity

In this section, we will show that the for any d € {4, 5, 6} and any ¢ € (0, 3), the CM Q-line bundle

—K
A, (see Proposition 3.35) on the K-moduli space P . is ample, which, in particular, implies the
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projectivity of P o Our main tools are the work of Codogni and Patakfalvi [29] and its generaliza-
tion by Posva [107] as well as the relative ampleness of CM line bundles under wall crossing (see
Theorem 3.36).

—K
Theorem 9.1. When d € {4, 5, 6}, the CM Q-line bundle A, on Pd’c is ample for any ¢ € (0, %).

Proof We first treat the cases when d = 4 or 6. When ¢ < -, Theorem 5.2 implies that P

P q - Moreover Proposition 4.3 implies that A, is the descent of 3(3 — Cd)ZCOPZS(l). Hence, AC

—GIT
is ample when ¢ <35 By Theorem 5.5, we know that ¢~ d 3/0d) P, is an isomorphism.
Hence, Theorem 3.36 1mp11es that Az 5q) is the ¢™-pull back of the descent of 3(3 — c;d)’c, Opzs(l)
with ¢; = 3/(2d). Hence, A, /(2d) is ample. By Theorem 3.36, we know that A; ;4 is ample for

0 < ¢ < 1. We know that P de s 1ndependent of the choice of ¢ € (=, 3) by Theorem 6.1. Hence,

2d’ d
the ampleness of A, for = 5 <c<3 2 follows from the ampleness of A, J(2d)+e> the nefness of A y104ge

(see Theorems 6.5 and 6.6), and the interpolation formula (3.7).
Next, we consider the case when d = 5. For simplicity, we omit d in the subscript of K-moduli
stacks and spaces. Similar to the above arguments, we know that A, is ample for ¢ < + € with

0 < € <« 1. Hence, we will assume ¢ € (;, —) in the rest of the proof. By [29, Theorem 1.13], we

—K —K
know that A, is nefon P, . Denote by U, the Zariski open subset of P, that parametrizes K-stable

—K
pairs. Denote by S, := P, \ U,.. Then by the Nakai-Moishezon criterion, it suffices to show the
following statements:

(i) A.lg, is ample.

—K
(ii) For any generically finite morphism f : V' — P from a normal proper variety V, the pull-
back f*A, is big on V whenever f(V) intersects U,.

For (i), from the description of Ff in Sections 7 and 8, we know that S, is either 50,6 (when c does
not lie on a wall) or 50’6 union an isolated point as the exceptional locus of a wall crossing (when c
lies on a wall). Recall from Section 8 that fcﬁ isarational curve precisely parametrizing 2D4-curves
{(P?, (z(xy — 2*)(xy — az?) = 0))},; and {(P(1,1,4), (xy(z* — x*y*) = 0))}. In particular, Ec,s is
not changed under every wall crossing for ¢ € (%, %). Hence, by the nefness of A, the ampleness
of A3 /7, and the interpolation formula (3.7), we know that A | is ample for any c € (%, %

The proof of (ii) is more involved. By Theorem 3.9(4), we know that U, also parametrizes uni-
formly K-stable pairs in I_’f. Let U, be the preim}a;ge of U, as a saturated open substack of 5?. By
[38], there exists a birational morphism P, — P, from a smooth proper Deligne-Mumford stack

P. that is an isomorphism over V.. By [84, Chapter 16], there exists a finite surjective morphism
F’ — P, from a normal proper variety ﬁé. Let V be a projective resolution of the main component

. ~  —K
of V Xk P’ Denote by 7 : V — Vand o : V — P,. Then from the above construction, we see

thattis generlcally finite, and t*(f*A,) = 0*4,. Since the o-pull-back of the universal family over
V has K-semistable fibers where a general fiber is uniformly K-stable, and is of maximal variation,
by [107] as a generalization of [29, Theorem 1.2(c)] to log Fano pairs, we know that 01, is nef and
big on V. This implies that f*A, is big on V. The proof is finished. O
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We expect A, to be ample in any degree that is a special case of the projectivity part of the
Fano K-moduli conjecture (see, e.g., [29, Conjecture 1.1(c)] and [27, (VI) on page 611]). During the
review process, this expectation was proved in [98, 125] as part of the proof of the Fano K-moduli
conjecture (see Remark 1.9).

Theorem 9.2 cf. [98, 126]. The CM Q-line bundle A, on }_’j . is ample for any ¢ € (0, %) and any
d>3t

9.2 | Birational contractions along wall crossings

—K —K
As we saw in Sections 6 and 8, the birational map P ac > Py, is always a birational contraction
ford € {4,5,6}and0<c < ¢’ < 3. It is natural to ask whether this holds true for all degrees.

—X —K
Question 9.3. Is P ger Py birational contraction forall0 < ¢ < ¢’ < % and all d > 4?

As the CM line bundles are always ample by Theorem 9.2, an affirmative answer to the above
question would imply that the wall crossing of K-moduli spaces have similar behavior to the
Hassett-Keel program for Deligne-Mumford moduli spaces M .

Theorem 9.4. Assume that Question 9.3 is true for some d > 4. Then for any c € (0, %) and a
sufficiently divisible | € Z.,,, we have

o]
K . 05K . 3—cd
Py = Proj @H <Pd,§—e’ Lj (Ag—e,Hodge + ml\g—w»'
j=0
Proof. By Proposition 3.35, we know that A e is a positive multiple of A 3¢ Hodge + % cor

—K —K
Denote by ¢ : P, s__ -> P, the birational contraction. By the functoriality of CM line bundles,
.3 X
—K
weknow that A, = ¢, A3 __ ascycles.Since A, isampleon P; . by Theorem 9.2, it suffices to show
2 =€, :

. ~ =X —K .
that for a common resolution (p,q) : Py = P, 3__ X P, ,wehave p*A; _
o X 2
Definition 2.3 and Remark 2.4]).

—K
Let0=cy<cy < < = % be the walls of K-moduli spaces P, ,. By passing to a higher
K

d,ci+e

i q*A, > 0 (see [65,

€,

birational model, we may assume that ﬁd is a resolution of P forany 1 < i < k — 1 with bira-

tional morphisms ¥, : P; — l_’ici and zpl.i 1Py, - I_JE,CI_ L Since A, . is ample by assumption,
we know that (z,b;r)*Aci +e = (W7) A _ccve i P -nef and 3, -exceptional. Hence, by negativ-
ity lemma, we know that (z,b;r)*Aci +e S () A¢ e 4c Is effective. By Theorem 3.36, we know
that (t,b;r)*Aci +ee, = @) A _c - Since a positive rescaling of A,/ is linear in ¢’, we know that
(gb;r)*Aci +ec 2 () A, _ . whenever ¢; > c. Hence, by the reverse induction on i for ¢; € [c, %),
we conclude that p*A e q*A. = 0. The proof is finished. O

. —K
fIfd = 2and c € (0, %], then the theorem is also true for trivial reasons as P . is a point (see Example 4.5).
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The goal of this section is to verify Question 9.3 when either d is divisible by 3 or d is small.
Theorem 9.5. Question 9.3 is true when either 3 | d, or3 } d and d < 13.
First, we rephrase the question in a form that is easier to verify.

Question 9.6. Suppose that X is a Manetti surface with the following properties:

1) dimAut(X) = dim Aut(P?) +1 =9, and
(2) (X,cD) is K-stable for some 0 < ¢ < 3 and a general D € | — %KX| (in particular, C has local

indices < d when 3 $ d or < % when 3 | d).

Then, is Ict(X; D) > %
Lemma 9.7. Let X be a singular Manetti surface. Then we have h°(X, OX(—gKX)) = ho(P?, O0(d))
foranyd € 7., and dim Aut(X) > dim Aut(P?) = 8.

Proof. Let X — B over a smooth pointed curve 0 € B be a Q-Gorenstein smoothing of X = X,,.
Let £ be the Q-Cartier Weil divisor on & such that 3L ~p —dKy . Since & has kit singulari-
ties, we know that Ox(L) ® Oy, = Oy (L,). By Kawamata-Viehweg vanishing, we know that

Hi(X,, L,) = H'(X, OX(—%K v)) = Oforanyi > 0. Hence, the equation of h° follows from the flat-
ness of £ over B. For the automorphism part, let p be a sufficiently large positive integer such that
| — pKx| is base point free. Then for a general curve D € | — pKy|, we know that (X, %D) isa

kit log Calabi-Yau pair. By [92, Theorem 5.2] and Theorem 3.20, we know that (X, (% —¢)D)is
uniformly K-stable for 0 < € <« 1. Let U C | — pKx| be the Zariski open locus parametrizing D
such that (X, (% — ¢)D) is uniformly K-stable for some (or any) 0 < € < 1. Then [U/Aut(X)] is a

—K
Deligne-Mumford stack whose coarse moduli space U /Aut(X) admits an injection into P, bl

Since a general point in the K-moduli space parametrize a smooth plane curve on P2, we know that
dim(U/Aut(X)) < dim P;, = dim(PZI;1 /Aut(P?)) that implies dim Aut(X) > dim Aut(P?). O

Proposition 9.8. Questions 9.3 and 9.6 are equivalent to each other.

Proof. For the “=” direction, let X be a Manetti surface satisfying (1) and (2) of Question 9.6.
Assume to the contrary that Ict(X; D) < 3 for a general D € | — %le. Then (X, (% —¢)D) is K-
unstable for 0 < € <« 1. Let ¢; be the K-semistable threshold of (X, D). Let U be the open subset of
| — %KX| parametrizing D with (X, (¢c; — €)D) K-stable. Then [U/Aut(X)] is a Deligne-Mumford

—K
stack whose coarse space U/Aut(X) injects into P, e whose image closure E is a divisor by

Lemma 9.7. Thus, the wall-crossing morphism ¢ P e P dc, contracts E to a codimension
> 2 locus since the ¢;-K-polystable pairs replacmg (X D) have continuous automorphisms. This
contradlcts the assumption on birational contractions.

For the “<” direction, assume to the contrary that a wall-crossing morphism ¢ : P -

d.ci—€
=K . . . . . .
P, . contracts a divisor E. Since Manetti surfaces have no continuous moduli, a general point on
E parametrizes (X, D) for the same Manetti surface X. For the same U as above, we know that

—K
U/Aut(X) injects into P, . __ with image closure E. Hence, dim Aut(X) = dim Aut(P?) + 1 by
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Lemma 9.7. Then Ict(X; D) > % for a general D € | — %le which implies that (X, cD) is K-stable

for any ¢; < ¢ < % by Proposition 2.13. This contradicts to the assumption that E is contracted
under ¢;". The proof is finished. O

Thanks to Proposition 9.8, we only need to verify Question 9.6 for either 3 | d or d < 13. The
following lemma proves the case when 3 | d.

Lemma 9.9. If3 | d, thenIct(X;D) > % for X and D satisfying conditions in Question 9.6.

Proof. When 3 | d, we can degenerate (X, D) to a weighted projective plane and the (d/3)th mul-
tiple of the toric boundary divisor. Hence, the inequality lct(X; D) > 3/d is obtained by lower
semicontinuity of Ict (see, e.g., [33]). O

Next, we turn to the case d < 13 and 3 } d that will be confirmed by careful study of the Manetti
surfaces appearing in our K-moduli spaces. First, note that by Theorem 4.8 and Proposition 2.30,

—K
for d < 13 the only Manetti surfaces satisfying the conditions in Question 9.6 appearing in P
for0<c< 3 are P(1,1,4) and X,.. For X = P(1, 1, 4), the canonical Ox(Ky) = Ox(—6), so the

linear system | — ngl parametrizes elements of Ox(2d), hence we are interested in answering
Question 9.6 only for curves of even degree on P(1, 1,4).

As we can degenerate X,, to P(1,4,25), by semicontinuity of Ict, we can study curves on
P(1,4,25). Provided that the general curve on P(1,4,25) has the appropriate Ict, we can reach
the same conclusion for X,.. If X = P(1, 4, 25), then Ox(Kx) = Ox(—30), so the linear system
| — %le parametrizes elements of Oy (10d), hence we are interested in answering Question 9.6
only for curves of degree a multiple of 10 on P(1, 4, 25).

Lemma 9.10. For a general curve C of even degree on P(1, 1,4), we have Ict(P(1,1,4),C) = 1.

Proof. If the degree d of the curve satisfiesd = 0 mod 4, then the general curve C, is smooth and
contained in the smooth locus of P(1, 1, 4), hence Ict(P(1,1,4); C;) = 1. Next, consider the case
when d =2 mod 4. If d = 2, the general curve C, := (ax? + bxy + cy? = 0) passes through the
singular point of P(1, 1, 4) and is nodal at that point. A computation shows thatIct(P(1,1,4); C,) =
1.Foranyd such thatd = 2 mod 4, thecurve C;_, U C, isin the linear system |@(d)|, where C;_,
is a general curve of degree d — 2. As the general C,_, is smooth, contained in the smooth locus
of P(1,1,4), and intersects C, transversally away from the singular point of the surface, we have
Ict(P(1,1,4); C4_, U C,) = 1. Therefore, by semicontinuity of Ict, the general curve C,; of degree
d also haslct(P(1,1,4);Cy) = 1. O

Remark 9.11. The previous statement is false without the assumption on even degree. If C
is a general curve of degree 3 (or, more generally, degree d such that d =3 mod 4), then
let(P(1,1,4);C) = 2.

Now, we mimic the previous argument for curves of degree 10 on P(1, 4, 25).

Lemma 9.12. For a general curve D of degree d such that d = 0,30 mod 50 on X = P(1,4,25),
Ict(P(1,4,25),C") = 1. Ifd = 10 mod 50, Ict(X; D) = . Ifd = 20 mod 50, Ict(X; D) = 3, and if
d =40 mod 50, Ict(X;D) = %
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Proof. If the degree d of the curve is a multiple of 100, then the general curve C; is smooth and
contained in the smooth locus of P(1, 4, 25), hence Ict(P(1, 4,25); C;) = 1. If the degree is a mul-
tiple of 50, the general curve C,; has a nonzero z2 term, so misses the %(1, 4) singularity, and so
the previous lemma implies the result.

For d = 10, consider the general curve C = (ax!'® + bx%y + cx?y? = 0). This has even degree
through the i(l, 1) singular point, so the Ict in a neighborhood of that point is 1. In a neighborhood

of the 2%(1,4) singular point, we compute the Ict under the finite morphism 7 : A?> — 2i5(1,4)
where 77*C is defined by the same equation. By [70, Lemma 8.12], lct(%(l, 4);C) = Ict(A%; 7#C),

and we compute lct(A2, 7*C) = % using [56, Example 4, 5]. For a general curve of degree d =
10 mod 50, there are nonzero terms of the form z"f,,(x,y), where f,,(x,y) is a degree 10
polynomial, so for C,; a general curve of degree d = 10 mod 50, we have lct(%(l, 4);C) = %

For d = 20 mod 50, consider a general curve C,; of degree d. Because this passes through the
%(1, 4) singular point with high multiplicity, we do not expect that lct(%(l, 4);C;) = 1. Indeed,
using the same method as above, we can compute lct(zl—s(l, 4),Cy) = 3—‘.

For d = 30, the general curve has an xyz term, so is at worst nodal at each singular point of the
surface, so actually has Ict equal to 1. For d = 30 mod 50, the general curve has an xyz?*! term,
so is nodal in a neighborhood of the Zis(l, 4) singularity and has even degree in a neighborhood

of the i(l, 1) singularity, so still has Ict equal to 1.

For d = 40, the general curve has a y'0 term, and so, it misses the ‘1—‘(1, 1) singular point. The
general curve has a nonzero x3y3zterm,soina neighborhood of the %(1, 4) singularity, a compu-
tation similar to that above shows that lct(zls(l, 4);Cy) = % Ford = 40 mod 50, the general curve
could be nodal through the %(1, 1) singular point, but still has Ict equal to 1 in a neighborhood of

that point.
Finally, for d = 50, the general curve has a z2 term, and so, it misses the %(1, 4) singular point

and passes through the i(l, 1) singular point with even degree, so the discussion of P(1, 1, 4) above
shows Ict(P(1, 4, 25); C5y) = 1. O

Although the previous computation was done for X = P(1, 4, 25), the Ict computation is local,
so the same result holds for curves of the appropriate degree on X = X,.. The computation shows
that, for d = 4,5,8,10, and 11, the answer to Question 9.6 is yes. For curves on P(1,1,4), by
Lemma 9.10, we have that Ict(X;D) =1 > %.

For curves on X,,, we need a finer analysis. No curves on X,, appear for degree d = 4, but
for d = 5,8, and 10, Lemma 9.12 shows Ict(X;D) =1 > %, and for d = 11, Lemma 9.10 shows
let(X; D) = % > 1—31 This leaves four exceptional cases: d = 6,7,9, and 12. For degrees 6,9, and
12, we have 3 | d, so Lemma 9.9 implies Ict(X; D) > %. Therefore, we have contraction morphisms
}_’56, . 1_950 forall0<c<c < 3.

This leaves only the case d = 7. The desired result (an affirmative answer to Question 9.6) will
follow from the next surprising proposition.

—K
Proposition 9.13. For d = 7, curves on X, or P(1,4,25) are K-unstable in P7Cf0r all c € (0, %).

—K
In other words, the only surfaces appearing in P, . for some ¢ € (0, %) are P? and P(1,1, 4).

Proof. Let X be either X, or P(1,4,25). Assume to the contrary that (X,cD) is K-semistable
for some curve D € | — %KX| and some c € (0, ;). From the above discussion, we know that
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let(X;D) < = Wthh implies ¢ < =. Since X has a smgularlty of local Gorensteln index 5, by
Theorem 4.8, we know that 5 < 3 / (3—=7c)hencec > = Th1s contradicts ¢ < = O

Proof of Theorem 9.5. The result follows from Lemmas 9.9, 9.10, and 9.12 and Proposition 9.13. []

Remark 9.14. For d = 9 or 12, a valuative criterion computation shows that X, cannot appear in

—K
the K-moduli spaces P,; . for0 < ¢ < 3.

9.3 | Quartics and sextics revisited

Recall from Section 6, we interpreted the K-moduli spaces of quartic and sextic plane curves via
K3 surfaces. In this section, we revisit these moduli spaces and study them via their relation to

—H
Hacking’s moduli space P, and give a log Calabi-Yau interpretation.

9.31 | Quartics

Recall that Hacking’s space ﬁf generically parametrizes plane curves with at worst cuspidal singu-
larities. There is a divisor parametrizing curves in P(1, 1, 4) which are at worst nodal at the singular
point, and at worst cuspidal elsewhere. Finally, there is a codimension two locus parametrizing
curves on the nonnormal surface P(1,1,2) U P(1,1,2) — the curves are snc at the double locus,
and at worst cuspidal elsewhere.

Hyeon-Lee’s original motivation was to complete the log MMP on M;. Let M5(c) denotes
Proj @50 I(M3, m(KM3 + ad)), where § is the boundary divisor of M 5. Hyeon-Lee produce the
following diagram:

— — T — 9 —ps 9 — 7 —hs
M3(1)gM3—>M3<H)§M3 ——————— N M3<B—e>§M3
x Wt X
J— 7 —CS —% — 17 —GIT
M (5) =My =Py M (5) =P,

The main results of their work can be summarized in the following.

Theorem 9.15 (Birational geometry of the moduli space of genus three curves [54]).

— — —ps
* There is a contraction morphism T : M3 — M;(5; °) 13)

pseudostable curves, given by contracnng the locus of elllptlc tails.
* Thereisasmall contraction ¥ : M - M , to the GIT quotient of the Chow variety of bicanonical
curves Chow , //SL(6) given by contractlng the locus of elliptic bridges.

— — — —h
» There is a flip W* : My(a) - My(Z) for 17/28 < a < 7/10, where My(a) = M, , the GIT
quotient of the Hilbert scheme of bicanonical curves Hilbs , /SL(6).

to Schubert’s moduli space of

—hs —GIT
* There is a divisorial contraction ® : M, — P,  to the GIT quotient of plane quartics given by

P(I(Op2(4))) /SL(3).
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— —H
Furthermore, M ;;s can be identified with P, , Hacking’s moduli space of plane quartics.

Remark 9.16.

(1) The contraction at &« = 9/11 was originally discovered by Hassett—-Hyeon [53].
(2) In the case of degree d = 4, the space of Hacking was independently constructed by Hassett
(see [52]).

(3) Aswe saw in Section 6, we have an isomorphism M 3

—H
The flip 9 can be realized as flipping the codimension 2 locus in P, parametrizing the curves

—K
on P(1,1,2) UP(1,1,2) to the curve in P, ; __ parametrizing tacnodal curves. These flipping and
4

flipped loci of § are contracted (via ¥ or ¥*) to a point as the unique 0-cusp in ﬁ:. Itis thus natural
— . ) —CY . .

to expect that PZ serves as the conjectural (good) moduli space P, that parametrizes certain

log canonical log Calabi-Yau pairs that are Q-Gorenstein degenerations of (P2, %C4). Recall from

s —K
Section 6 we showed that there was a large open set M C PZ whose codimension inside P, 3 __ is
°4

> 2. Using this, we proved (see Theorem 6.5) that the moduli space I_Jz was the ample model of the
. =K . . . . ., =H.
Hodge line bundle on P 4 3_.- Noting that the codimension of M inside P 4 18 also > 2, the same
4

proof gives the following.

Theorem 9.17. The moduli space I_Jz is the ample model of the Hodge line bundle on 1_3:1.

9.3.2 | Sextics

Recall from Section 6, we discussed the Kirwan desingularization of the GIT quotient of sextic
curves (constructed by Shah), as well as the morphism from this moduli space to the Baily—-Borel

—H —_
compactification of degree 2 K3 surfaces. By the work of [5], there is also a morphism P, — PZ,
and so, we obtain the following diagram.

K
Pg ——————-—- > ﬁgITEPG,I

-—¢
2

NN

. . . . =CY . =
Again, we argue that it is natural to believe that the candidate for P, is PZ. The locus con-

tracted from 1_3? - I_JZ is divisorial, so the proof of Theorem 6.6 does not imply the same result on
the Hacking side as immediately as it did for degree four. In fact, [5] shows that there are actually
several divisors contracted — these divisors parametrize pairs whose double covers give K3 sur-
faces of Type II or Type III, in the sense of Kulikov degenerations. Valery Alexeev has suggested
to us that the result is still true and can be proven by looking at the Kulikov degenerations of the
relevant K3 surfaces.
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9.3.3 | Log Calabi-Yau wall crossing

In general, we can say the following.

—H,o . . =H  —Ko
Theorem 9.18. Let P; denote the complement of the locus of nonnormal pairsin P ;. Let P 5 __
’d

—K,o

—K —H,
denote the complement of the locus of pairs with Ict = S insideP; 3 __. Then P, = P,s_..
3 -

—K,o —H,o . . . —K,o
Proof. We first show thatP 5 _C P, .If (X, D) is a pair parametrized by P 4.3_> thenlct > %
’d ’d

—H,o .
and so by definition (X, D) is a pair parametrized by P, . Conversely, by [92, Theorem 5.2], if
(X, D) is parametrized by 1_35’0, then (X, D) is parametrized by 1_352 e O

’d

In particular, the above result says that if one looks at the K-moduli space for coefficient
%— €, then the only difference between this space and the Hacking moduli space are the
maximally Ict pairs in the K-moduli space and the nonnormal pairs in the Hacking moduli
space. In particular, we conjecture that there is a proper good moduli space of log Calabi-Yau
pairs which relates to the K-moduli and Hacking moduli spaces via the following conjectural
picture.

Conjecture 9.19 (Log Calabi-Yau wall crossings). There exists a proper good moduli space
—CY
P, that parametrizes S-equivalence classes of semistable log Calabi-Yau pairs (X, gD) where

X admits a Q-Gorenstein smoothing to P2. Moreover, we have a log Calabi-Yau wall crossing
diagram

—K oY _cy ¢S _m
d,%—e > Py d’

—CY —K —H
where P, is the common ample model of the Hodge line bundleson P; 3 __andP,;.
’d

9.4 | Log Calabi-Yau quintics

—H
Recall that Hacking’s moduli space P, parametrizes Q-Gorenstein deformations of pairs (P2, cC)
where ¢ = % + ¢ for ¢ sufficiently small and deg(C) = 5. From Theorem 9.18, we know that there
is a birational map

—H =K
P5 -> PC s
where ¢ € (%, %), which is an isomorphism over the locus of pairs (X, D) where X is normal and

let(X,D) > % Here we omit the degree 5 in the subscript of K-moduli spaces and stacks. In other
words, the pairs that will become unstable when increasing the weight from % —cto % + ¢ are
precisely the pairs with Ict = % — thatis, Ay and Dy singularities. Note that the A, singularity can
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occur either at a smooth point of the surface X or at a %(1, 1) singularity. In this setting, we have
the following results:

—H
(1) the stable replacement in P, of a curve C C X with Ag singularity is either a curve on
P(1,1,5) U X4 oracurve on P(1,1,5) U P(1,4,5), and
—H
(2) the stable replacement in P. of a curve C C X with a D, singularity is a curve on P(1,1,2) U
p 5 6 SING y
P(1,1,2).

. . . wH . .
These are precisely the nonnormal pairs that appear in P,. We conjecture that there is a

—CY
projective variety P,  parametrizing S-equivalence classes of slc log Calabi-Yau pairs (X, %D).

—H —K
Conjecture 9.20. The ample models of the Hodge line bundles on P, and P __ exist and coincide.
5

—CY
We denote this common ample model by P . It parametrizes S-equivalence classes of slc log Calabi-
Yau pairs that are Q-Gorenstein deformations of (P2, %C).

—C
In particular, PSY should serve as the base of a flip

—H =K
which realizes the rational map P, --> P, J5—e

In the following section, we provide some evidence for Conjecture 9.20.

9.41 | Evidence for the log Calabi-Yau conjecture

First, we verify that any curve with an A, singularity admits a common degeneration to a unique
curve on P(1, 1, 5) U P(1,4, 5) with an A, singularity in each component. Similarly, any curve with
a Dy singularity admits a common degeneration to a unique curve on P(1,1,2) UP(1,1,2) with a
Dy singularity in each component.
Proposition 9.21. All curvesin 1_31;/5_ . With an Aq singularity and all curves in 1_315{ onX,UP(1,1,5)
or P(1,1,5) U P(1,4,5) admit a common degeneration to a unique curve on P(1,1,5) U P(1,4,5)
with log canonical threshold exactly %

Proof. By Proposition A.1, a plane quintic curve C with an A, singularity has the equation
(x = y)((x = yHA + 5x) — x*2py + X)) + ux® = 0

in the affine coordinates [x, y, 1] for some choice of (s, r, p, u) € A* satisfying p? # u. We will first
construct a weakly special degeneration of (P2, %C) to a pair (X, U P(1,1,5), %CO).
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Take our family (P2, C) x Al. We perform the following birational transformations:
P2x Al L—x 1.y,
where in the central fiber, we have
2 7 9 '
P e—SUX — SUX
Here, 7 is the (5,1,1)-weighted blow-up of P? x A! in the local coordinates (x’,y,t) with x’ :=

x —y?—py’,and S = P(1, 1, 5) is the exceptional divisor of 7z. Let Q = (x — y*> = 0) be a smooth
conicin P2. Thenitis clear that 7*Q = Q + 5E where E is the exceptional curve of 7 : X — P? and

— -2 —
Q:= n;lQ. Since (E?) = —%, we know that (Q ) = —1 and Q is a smooth rational curve contained
in the smooth locus of X. By computation, we know that J\fa x & 05(_1) &) 05(_1)' Hence, ¢ :

X — Y is the small flopping contraction of Q.

Next, we show that (X', 7,E) = (X4, (x; = 0)) where X, = (xoX; = x; + x7) is a weighted
hypersurface in P(1,2,3,5), « x,x,- Let L :=7*O(1) — 2E be a divisor on X. Then L induces
a morphism ¢’ : X — P(1, 2, 3, 5) defined by

Xo=n*x —2E € H'(X,L), x, = n*(xz—y*)—4E € H(X,2L),

x, = 7*(y(xz — y?)) — 6E € H(X,3L), x; = n*(z(xz —y*)*) — 10E € H°(X, 5L).

It is easy to show that ¢’ is a birational map that only contracts Q, and the image of ¢’ is exactly
X4.Thus, ¢’ = gand 7,.E = 7,(Q + E) = (x, = 0). Let [y, y;, ¥,] be the projective coordinates of
P(1,1, 5) as the projectivization of (¢, y, x"). Thus, S UX = P(1, 1, 5) U X, where the double locus
n.Eis(y, =0) C P(1,1,5) and (x; = 0) C X,. The degeneration C, of C has equations

03 =@ -wy) cP,1,5) and  (x3 + xox] — 2pxgx, — rx;x; + ux) = 0) C X,.

Next, we show that (P(1,1,5) U X, %CO) admits a weakly special degeneration to an slc log
Calabi-Yau pair (P(1,1,5) U P(1,4,5), %C(’)) that is unique up to isomorphism. Consider the
1-PS ¢ : G,, — Aut(P(1,2,3,5)) defined as o(t) - [x, X, X, X3] = [X0, £ 71X, X5, X3]. Then we
know that o(t) - X, has the equation (x,x; = £3x? + x7) in P(1,2, 3, 5). Hence, lim,_, o(t) - X =
(xpx5 = xi). Indeed, we have an embedding from P(1,4,5), . . to P(1,2,3,5) as [zy, 2, 2,] —
(25,21, 2025, 2;] whose image has equation x,x; = x3. Hence, lim,_, o(t) - X, = P(1,4, 5). By tak-
ing limit of the equation of Cy N X, under the action of o, we know that C(’) NP(1,4,5) has
equation (z2 — 2pz;z, + uz,” = 0). Since p* # u, after a suitable projective coordinate change,
the equation of C} becomes (y2 = y;°) and (22 = z}°)in P(1,1,5) U P(1,4, 5). Itis clear that C] has
an Ay-singularity in the smooth locus of P(1, 1, 5) and an A;-singularity at the }‘(1, 1)-singularity
of P(1, 4, 5). Thus, Ict(P(1, 1, 5) U P(1, 4, 5); C(’)) = % Since o fixes 7, E pointwisely, we may com-
pose the two degenerations as in [93, Proof of Lemma 3.1] to obtain a weakly special degeneration
of (P2, 2C,) to (P(1, 1,5) U P(1,4,5), 3C}).

The computation above can be extended to include the case of curves with Ag-singularities

—K
on P(1,1,4), P(1,4,25) and X, in P3__. For the Hacking moduli space, the construction is sim-
5
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ilar to the second step in the above degenerations with minor difference to consider 1-PS in
Aut(P(1,1,5)) and Aut(P(1,4, 5)) as well. Thus, the proof is finished. O

.ps . =K . . . . o=H .
Proposition 9.22. All curvesin P3/5_€ with a Dg singularity and all curvesin P lyingonP(1,1,2) U

P(1,1,2) admit a common degeneration to a unique curve on P(1, 1, 2) U P(1, 1, 2) with log canonical
threshold exactly %

Proof. Consider the family 7 : X — A? given by
X 1= (xpx, = rxf +5x3) CP(L,1,1,2) o, xy X Af’s.

The fiber of 7 above r = 0,s = 0 is isomorphic to P(1,1,2) U P(1,1,2) with projective coordi-
nates [x,, X, x3] and [xy, x,, x3], respectively. For s = 0 but r # 0, the fiber of 7 is isomorphic to
P(1,1,4),, ,, ,, Where the isomorphism is given by [y,,y;,,] = [ryg, Vo)1 yf, ¥,]. For s # 0, the
fiber of 7 is isomorphic to [P’fc,y’z where the isomorphism is given by [x,y,z] — [x, ), z, s (xz —
ry?)]. Leto : G,, — Aut(X) be a 1-PS defined as

a(t) - ([xg, X1, X5, X351, (1, 8)) 1= ([tx0, X1, Xy, X3], (t7, 5)).

Then 7 is G,,-equivariant with respect to o and the G,,-action (r, s) ~ (tr, ts) on A2. Consider a
divisor D on X defined by

D = (x; (x3—x7) (x3+x]) =0).

It is clear that D is G,,-invariant under the action of o. We will show that suitable restrictions of
the family 7 : (X, %D) — A?Z give the desired weakly special degenerations of curves in 1_3%(_ . with
Dg¢-singularities.

From Section 8, we know that the locus of curves with Dg-singularities in }_’Ig_ s EG’ . that is

isomorphic to P'. The pairs parametrized by fé 3 _. consist of the following form:
’5

(P, (y(xz = (1 + a)y*)(xz + (1 — a)y*) = 0)) where a € A', and (P(1,1,4), oy, (v; — yg¥7) = 0)).

Then one can check that the restriction of 7 : (X, %D) — A? to the affine line {(as,s) | s € Al}
(resp. {(r,0) | r € A}) gives weakly special degeneration of Dy-curves on P? (resp. P(1, 1,4)).

A similar computation can be done for curves on P(1,1,2) U P(1,1,2) in the Hacking mod-
uli space. Note that the common degeneration has equation (xl(xg — x‘l‘) =0) in P(1,1,2) U

P(1,1,2). O

—CY
These two propositions essentially show that if the log Calabi-Yau moduli space P, exists,
—CY
then there must be two distinct points in P, of S-equivalence classes of slc log Calabi-Yau
degenerations of pairs (P2, %C) parametrizing curves with Ay or Dy singularities, respectively.

. =K C .=
In other words, the conjectural map P3__ — P must contract the disjoint loci X 3__ and
5 ’5

—H —H —H
z, . to two distinct points. Denote by X, (resp. Z,) the disjoint loci in P, parametrizing
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curves on P(1,1,2) UP(1,1,2) (resp. P(1,1,5) U X, or P(1,1,5) UP(1,4,5)). Then similarly the
conjectural map 1_3? — P must contract the disjoint loci f? and f? to the same set of two
points.

To form the projective variety ﬁSY, we expect that the Hodge line bundles are semiample on
I_DI;_ . and 1_31: and Q-trivial exactly on these contracted loci. Indeed, the Hodge line bundle is the
1iFnit of the CM line bundle by Proposition 3.35. Moreover, the CM line bundle is known to be
ample on I_JI: by [111] and big and nef (and conjecturally ample) on I_Df by [29, 93, 107]. Therefore,
we expect some positivity properties of the Hodge line bundle.

As further evidence, we verify that the Hodge line bundle is trivial on the locus f? UEI;
parametrizing curves on nonnormal surfaces in 1_3?. Denote by L, and L_ the Hodge Q-line

—H —K
bundles over P, and P Pe respectively.

Proposition 9.23. The restriction L, |§n is Q-linearly trivial fori = 6, 7.

Proof. We first look at the case of E?. Each Hacking stable pair in f;{ is uniquely determined by
gluing two plt pairs (P(1,1,5),(y = 0) + %Cl) and (X, D) where

* C, has the equation z? = x1° + a,x3y? + a;x7y3 + -+ + a;,y'° where (a,,as, ..., a;0) € A%\
{0}

* X is a weighted hypersurface in P(1, 2, 3, 5) defined by the equation (xw = ty* + z2);

*D=(y=0)+ %Cz where C, has the equation w = x° + b; x>y + b,xy? such that (b, b,,t) €
A\ {0}.

The double locus on both components is a P! with three marked points: one of them is the index

5 singularity and the other two are intersections with curve C;. Hence, the gluing is unique up to
—H

a u,-action, and so, we have =, = (P(2,3,...,10) X P(1, 2, 3))/G where G is a finite group acting

on the weighted biprojective space identifying isomorphic fibers. Therefore, to show that L, |EH
7
is Q-linearly trivial, it suffices to show that the Q-line bundle L on each weighted projective space

is Q-linearly trivial.

Let us start with the weighted projective space P := P(2, 3,...,10). Denote T := A° \ {0}. Con-
sider the family 7oy : (X;, D) - T where Xp = P(1,1,5) X Tand Dy = (y = 0) + %Cl with C; =
(2% = x10 + a,x8y? + a3 x7y3 + - + a;y'?). We have a G, action on T given by (g;) = (Aq)).
This action lifts to X as ([x,y,z],(q;)) = ([x,47y, z],(A!a;)) so that 7} is G,,-equivariant. It is
clear that ;- descends to a universal family of plt log CY pairs over [T /G,,] whose coarse space
is P. Hence, it suffices to show that the G,,-linearized line bundle E?S 1= (1), Ox, 5Ky, 1 +
D)) on T descends to a trivial line bundle on P. We pick a nowhere zero section 7 of £$5 that

10 a,x10-1y1)=3(dx A dy)®S in the affine chart z = 1.

has the expression 7(a,, ..., a;9) = y (1 — X;_,

Hence, for any 4 € G,,,, we have

10 -3
A0)Aa,) = (/ly)_5<1 -y al-xlo_i(/ly)i) (dx A 2dy)®° = 1(Aa)).
i=2

Thus, the G,,-linearization on E?S is trivial.
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Next, we analyze the weighted projective space P(1, 2, 3). Since it has Picard number 1, it suffices
to show that L, restricting to the curve P(1, 2) is Q-linearly trivial where P(1, 2) corresponds to
t = 0, that is, the surface component being P(1, 4, 5). Using the projective coordinates [x, y, z] of
P(1,4,5), the divisor D = (y = 0) + %Cz where C, = (z2 = x!° + b, x%y + b,x?y?). Then similar
computations as in the case of P(1, 1, 5) imply that L, |p; ») is Q-linearly trivial. This finishes the
proof of Q-linear triviality of L, |§171.

The case of f? is similar to f;{. Since each surface component is P(1,1,2), we may just
consider one component given by the plt pair (P(1,1,2),(y =0) + %C) where C has the equa-
tion (xz? — x> = ay’z + by x*y + b,x*y? + --- + bsy>) for (a, by, ..., bs) € A%\ {0} =: T. Then the
G,,-action on X = P(1,1,2) X T is given by ([x, y, z], a, b;) = ([x,A7'y, z], 13a, A'b;). Hence, the
moduli space parametrizing (P(1,1,2),(y = 0) + %C) is given by P : = P(1,2,3,3,4,5) and f? =
(P x P)/G for some finite group G. Then similar computations show that the G,,-linearization on
E?S is trivial, hence L, |E? is Q-linearly trivial. O

To verify Conjecture 9.20, one must first show that the analogous statement of Proposition 9.23
—H —H
holds for L_ and that L, is, in fact, ample away from the loci z, and Z. If this holds, the ample
—H —K
models of the Hodge line bundles on P, and P3__ would coincide set-theoretically with our
5

notion of S-equivalence classes. However, putting a natural modular structure from the K-stability
viewpoint on the log Calabi-Yau space and determining the right class of objects to parameterize
prevent us from defining a moduli stack of these pairs in this paper. We will pursue that this is
forthcoming work.

9.5 | Higher dimensional applications

In this section, we give some applications of our machinery developed in Sections 2 and 3. The
following result improves [47, Theorem 1.2] by removing their assumption on the Gap Conjecture
and allowing small degree.

Theorem 9.24. Let nand d > 2 be positive integers. Then there exists a positive rational number c; =
¢,(n, d) such that for any fixed 0 < ¢ < ¢;, a hypersurface S C P" of degree d is GIT (poly/semi)stable
if and only if the log Fano pair (P", cS) is K-(poly/semi)stable.

Proof. Let y, be the Hilbert polynomial of (P",O(n + 1)). Let r := ni-i—l' We consider the K-
modulistack KM, . .asin Definition 3.8. By Theorem 3.2, there exists a positive rational number
¢, = ¢;(n,d) such that M, , . remains constant for any ¢ € (0, ¢;). Thus, for any K-semistable
pair [(X,cD)] € KM, o We have that X is K-semistable and (—Kx)'=(—Kp)"=(m+ 1"
Hence, by [81, Theorem 36], we know that X =~ P" and D C X is a hypersurface of degree d. By the
Paul-Tian criterion Theorem 2.22 and computations on CM line bundles similar to the proof of
Proposition 4.3, we know that K-(poly/semi)stability of (P", cS) implies GIT (poly/semi)stability
of S.

We first show that there is a morphism of Artinstacks ¢ : KM, . . — H] where H is the GIT
quotient stack [P(H°(P", O(d)))* /PGL(n + 1)] of degree d hypersurfaces in P". Indeed, the K-
moduli stack M is defined to be the quotient [Z'*4 /PGL(N,, + 1)] for every m sufficiently

Xoot>C c,m
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divisible. Let
. kl ~
z8 :={(X,D) € Z&' | (X,D) = (P",D’) where [D'] € P(H"(P", O(d)))*}.

Since fiber being P" and GIT semistability are both Zariski open conditions, we know that ZSLIT
is a Zariski open subset of ZX!. We equip ZS'T with the reduced scheme structure. Thus, there
is a morphism ¢, from the K-moduli stack to the GIT stack H};  := [ZST /PGL(N,, + 1)]. By
Theorem 3.24, the K-moduli stacks stabilize. By a similar argument to the last paragraph
of the proof of Theorem 5.2, the morphisms ¢, stabilize to ¢ : KM, .. — H] for m
sufficiently divisible.

To show that the morphism ¢ is representable, we just need to show that the fiber product of
a scheme and the K-moduli stack over the GIT stack is a scheme. For simplicity, denote by G : =

PGL(N,, +1).AmapT — M}  fromascheme T to the GIT stack is equivalent to the data of a G-

< Z8Misa G-

torsory : Py — T together with a G-equivariant morphism Py — Z3'T. Since 2% <
equivariant open immersion, we know that P’ := P, X 201 Zgiﬂ is a G-invariant open subscheme
of P;.Since 9 : Py — T is flat, we know that T’ := $(P’) is an open subscheme of T. Thus, P’ —
T’ is a G-torsor as P’ admits a G-action and this map is surjective. As a result, we have T’

T an KM, rc» which implies that ¢ is representable and an open immersion of Artin stacks.

So, now it suffices to show that @ is an isomorphism.
Next, we verify that XM, . . is nonempty. If d > n + 1, then any smooth hypersurface S sat-

isfies (P", "+1S) is a log canonical log Calabi-Yau pair that implies [(P",cS)] € KM, re by
Proposition 2 13. If d < n, then we know that there exists a smooth hypersurface S that admits
Kidhler-Einstein metrics (see, e.g., [119, Page 85-87] or [7]). By degeneration to normal cone of S,
we know that (P", cS) special degenerates to (X, cS,,) where X, = CP(S, 0Os(d)) is the projective
cone (see [71, Section 3.1] for a definition) and S, is the section at infinity. By [82, Proposi-
tion 3.3], we know that (XO, Einstein metric. Hence,
(d 1)(n+1)

m > 0, we know
that (e eS) is K- polystable for0 < e < 1by Proposmon 2.13. Hence, ([P’” cS) is K-polystable for
any 0 <c <c¢j.

Finally, we show that ¢ is an isomorphism. By taking good moduli spaces, let ¢’ : KM YorsC
HZ be the descent of ¢ where H(’i’ 1= P(H°(P", O(d)))* JPGL(n + 1). It follows that ¢’ is an injec-
tive proper morphism that implies that ¢’ is finite. Hence, ¢ is finite by [10, Proposition 6.4]. This
together with ¢ being an open immersion implies that ¢ is an isomorphism by Zariski’s main

theorem. O

APPENDIX A: CALCULATIONS OF K-SEMISTABLE THRESHOLDS AND
K-POLYSTABLE REPLACEMENTS

In this appendix, we calculate the K-semistable thresholds and K-polystable replacements of K-
semistable pairs to determine the location of the walls for d = 5. By Proposition 4.7, to understand
the wall crossings occurring after the first wall, we must understand the curves parametrized

by 1_3S . \ PXI', In Section 8.1, we showed that the curves parametrized by this space (aside from
the nonreduced conic that was discussed at length in Section 5) have A,,, A;;, A19, 49, and Dy
singularities. Therefore, this section contains the relevant calculations used in Section 8.2, and
the subsections are organized by the singularity type.
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Before proceeding, we state a result that will be used throughout. A standard jet computation
shows that if a quintic curve has a double point of type A, with k > 9 (notincluding o), then after
a suitable projective coordinate change, we obtain the following equation in the affine coordinate:

(x =y ((x =y + sx) — x*(2py + rx)) + ux> = 0. (A1)

Here the double point is (0,0) for any parameters (s,r, p,u) € Al x (A®\ {0}). Indeed, in the
analytic coordinates (x’,y) where x’ := x — y? — py°, the above equation (A.1) becomes

x"? = (p? — w)y'® + higher order terms,

where (x’,y) has weight (51). When r,p,u all vanish, we recover the curve Qs. If we
rescale the coordinates as (x,y) = (172x,A17'y), then the coordinates change as (s,r, p,u) —
(A%s, 2%, 23 p, 2°u). Note that the two curves defined by (s, r, +p, u) are projectively equivalent
by y = —y. Therefore, we may take the parameter space A*\ {0} and quotient out by projective
equivalence to describe the locus of curves with an A; singularity (k > 9) including Qs.

Similarly, a standard computation shows that GIT polystable quintics with a Dy singularity, up
to a projective coordinate change, can be written as

y(x — 6 y3)(x — 5,3 =0,

where t; #t,. Since t; and ¢, are symmetric, we may take the coordinate change given
by (s,8,) 1= (t; + t5,(t; — t,)*). Then Z, corresponds to s, # 0. The G,,-action scales the
coordinates as (t,,t,) = (At;,1t,) and (s, 5,) = (1s;, 4%s,). It is clear that two curves with Dg-
singularities are projectively equivalent if and only if their (s, s,) belong to the same G,,-orbit.
Thus, we may take the parameter space Ai 5 \ {0} and quotient by this projective equivalence.
Combining the previous statements, following the notation of Lemma 8.1, we obtain the

—GIT
following description of the loci Z; in P .

- —GIT
Proposition A.1. The Zariski closure 2, of the Aq locus in P, is isomorphic to P(1,2, 3, 3) with
projective coordinates [s,r, h,u] where h := p2 — u. Moreover,

* X, corresponds to the point [1,0,0,0];
* X, corresponds to the point [0,0,0,1];
. 53 correspondstoh = u = 0;

. 54 correspondstor = 0and h = 0;
* 3 corresponds to h = 0.

= —GIT
The Zariski closure X of the Dg locus in P isisomorphic toP(1,2) = P! with projective coordinates
[s1, 5,]. Moreover,

* X, corresponds to the point [1,0] and
* X¢ and X, intersect only at the point ;.

Al | Ay

Recall that X, is given by (xw — y'3 — z2 = 0) C P(1, 2,13, 25). In this section, we verify the K-
polystability of (X, %C(’)), where C{ = (w = 0), using techniques of Iiten and Siif} [59].
Proposition A.2. The log Fano pair (X,, 18—5C(’)) is K-polystable where C(’) = (w = 0).
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Proof. Consider the projective coordinate ring A of X,4, where
A =C[x,y,z,w]/(xw — y' — z%).

Consider the action of G2 on Y := Spec A given by (x, y, z, w) (A% ux, 2y, ABul3z, u>w).

It is clear that this action descends to a G,,-action on (X26, = 0) Thus, by [93, Theorem 1.4], it

suffices to show G,,-equivariant K-polystability of (X 26, = C(/))
Denote by R := C[x,y,z,w],and F = xw — y'* — z2,50 A = R/(F). The character lattice M =

7{(26,1),(1,1)) C Z?, and for every (a, 8) € M, we know
R p) = (xyPzw? | a(26,1) + b(2,2) + c(13,13) + d(0, 25) = (a, B)).

In the ring A, if we want to determine A(aﬁ), it suffices to assume ¢ € {0, 1}. We also notice that
the parities of c and « are the same, so if we assume « even, then we only need to take ¢ = 0. Then
the equation becomes

A p = (x“yPw? | a(26,1) + b(2,2) + d(0,25) = (a, B)).

By passing to an even larger multiple, we may assume that (a, 8) = e(26,1) + f(0,25). Then
a(26,1) + b(2,2) + d(0,25) = e(26,1) + f(0,25) implies

a=e—g,d=f—g, b=13¢gwhere0 < g < minfe, f}.

The weight cone w C M, is generated by (26,1) and (0,25).

Next, we follow the setup by Altmann and Hausen on polyhedral divisors [8]. Recall that M C
72 is the sublattice generated by (25,0) and (1,1). Let N D Z2 be the dual lattice of M generated by
25( —1)and (0,1). Foreach u = («, 8) € w N M, we decompose itasu = e(26,1) + f(0, 25). Here

e,f € gzzo and e — f € Z. Then the polyhedral divisor D on P! is given by

D) = 13f[1] — 12f[0] ifexf>0
)\ 13f11] = 12f[0] + (e — f)leo] if f=e>0.
The polyhedrals are given by
Dy = 52:(1L,=26) +0, Dy = (1,26 +0, Dy = conv((0,0), 5-(1,-1)) +0
[0] 325 [1] 50 ’ ) [oo] s J)y 25 5

Here, o = w¥ C N is spanned by (1,0) and (—1, 26). Denote the four vertices by x, = —26),

=1,
325
( 1,26), x, = (0,0), and x5 = ( (1 —1)). Then these vertical divisors correspond to

D[O (y O) D[l],xl = (Z = 0), D[oo],xz = (w = 0), D[ = (x = 0)
We also denote the extremal ray by p; = ((1,0)) and p, = ((—1, 26)). Notice that
ulxg) =13, u(x) =2, ulxy)=1, u(x3)=1
Then, for any presentation Kp1 = a,[0] + a;[1] + a,[o0], we have

KY = (13610 + 12)D[0])x0 + (2(11 + 1)D[1]’x1 + a, (D[oo] + D[

X2 °0]VX3)'
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For simplicity, let us choose a; = a; = —1, a, = 0. Then Ky = —Djg} ,, — D|y) +,- Hence,

~(Ky + cDieo].x;) = Djoj.xy + D1}, = Dlooly-

Next, we will try to use T-varieties to study test configurations. We follow the notation of [59].
Let us choose a point Q € P!, a natural number m € Z.,, and a vector v € %N . Consider the

lattices M := M x Zand N := N X Z. Define & C N, as

- 1
o:=<<v+ 2 QP’E>’<Z®P’O>>'
PePI\{Q} Pepl

Define the polyhedral divisor D by

D= (conv((v, %),(@Q,O)> + 6) R0+ Z ((Dp,0)+6)R P.
PeP\{Q}

Then, we have a M-graded algebra

A= @ HELO(ID@)).

aesvnM

Let Y(Q, v, m) := Spec A. Then we see ‘5)(0, k) = 0, so we have a subring A, of A that consists
of (0, k)-graded pieces. Moreover, A, = C[t] where t is the canonical section of O(|D(0,1)]) = O.
Thus, we get a T X G,,-equivariant morphism Y — Al. It is clear that

5(u,k) = min {(v,u) + E,QDQ(u)} -Q+ Z Dp(u) - P.
" PeP\(Q}

Hence, when k > 0, we see ﬁ(u, k) = D(u). Thus, the localization A, = A ® C[t,!].
Next, we analyze the central fiber V,(Q, v, m) = Spec .A/(t). It is clear that

YVo@Q.u,m)y=Spec @@  HP', 0D, )])/HP', (D, k — D).

(u,k)eaVnM
For computational purposes, consider the lattice automorphism ¢ : N — N given by
o', m) = —m'mu,m").

The dual automorphism ¢V : M — M is given by ¢V (u, k) = (u, k — m(v, u)). Hence,
. D(u, k) = D(¢"(u,k)) = min { LY @o(u)} Q+ Y Dp(u)-P.
" PePT\(Q}

In order for the ¢V (u, k)-graded piece of Y, to be nonzero, we require two conditions:

@) [min{Z, Do)}] > [min{=L, Do)} l;
(2) deg|¢,D(u,k)] > 0.
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Conditions (1) and (2) together are equivalent to k € mZ and Dy (u) > % and

> D)+ £ >0
PeP'\{Q}

Denote by 7 C N, the cone generated by (@Q,—%) and (ZPeuﬂ\{Q} @P,%). Consider the
sublattice of M of index m, namely, M m - =MXmZC M. Consider the semigroup

si={mber nil, | Y (D) +<30b
PEPT\{Q} "

Then, we have

(1) The central fiber Y, is isomorphic to the affine toric variety Spec C[S];
(2) The normalization of Y, is isomorphic to the affine toric variety Spec C[zV n M ml

Hence, Y, is normal if and only if S = 7V n M,,,, which is equivalent of saying that the collection
{Dplpg is admissible.

Next, we want to study the limit of boundary divisor (w = 0) in the central fiber J,. We first
realize (w = 0) in Y as a Cartier divisor. Let f be a rational function on P! such that div(f) =
12[0] — 13[1] + [oo]. Then we can check by [108, Proposition 3.14] that

div(f - %) = Digo)x, = (W = 0).

By the admissibility condition, the only choice of Q will be Q = [0] or [1].
Case 1: Q = [0]. For simplicity, we also set v = 0 at the moment. Then, in our test configuration
Y([0],0, m), we can compute similarly that

le(f . X(O,ZS,k)) = (12}’1’1 + k)D[O],<O,l) + D[oo],(xz,O)'

Also, div(y©*0D) = Dy, = Y- Hence, we know that Do)y, o) = div(f - x©®*>712m). By

(0,2)
carefully checking the quotient map .A — A/(t), we find out that the restriction of f - y(©-25-12m)
is exactly the function y(®25=12™) on y),. Hence, we have (w = 0)| y, = div( x(025-12m)) So the
computations are about the toric variety ), and its boundary divisor A, := ¢ - (w = 0)]y,, . For sim-
plicity, we may assume m = 1. Then Y, = Spec C[r¥ n M|. The primitive vectors of 7 in N are
given by n; = (26—5(1, —26),—13), n, = (21—5(—1, 26),2), and n; = (2—15(1, 24),2). Let i, be the vector
in M, representing the anticanonical divisor —K ¥, then (&, n;) = 1. Let @1, be the vector in M,
representing the divisor (w = 0)| ,- Then computation shows

i, = (15,15,-7), i, =(0,25,—12).
Thus, for any toric valuation Vg of C(Y,) with & € 7, we have

Ay a0 Vg) = (g — city, §),  voly, ,(vy) = 6vol(z' N (£ < 1)).
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From [95], we know that
Fut AEgim) = — v/\ol )
o, ’go’ ) it |,—o (yo’Ao)’O(UEO )

In our setting, £, = (0, 1, 0) is induced by the quotient map Y \ {0} —» X4, and n = (—mv, m). We
know that all such 7 satisfy (1,7;) > 0 wheren; = (0,0,1) € M. We always have (£, ny)=0. O

Proposition A.3. Under the above notation, we have Fut(Y, A, §y;n) > 0 for any n satisfying
(n,my) > 0 if and only if the centroid @i, of TV N (§, = 1) satisfies

i, = a(ily — cily) + by,
forsome a,b > 0.

Proof. We first determine a by (ii,, §,) = a(@i, — cii;, &,). Then the vector a(#i, — cii;) € (§, = 1).
Then we may choose 7 in a way such that (i, — ¢#i;,7) = 0 and (,7;) > 0 since vol is invariant
under rescaling. Then Ay, A y(Vg,—s) = a~! > 0. Moreover, computation shows

% t—OVOl(TV N (& — ) < 1)) = vol(r¥ N (&, = 1)) - (alily — cily) — 1y, 7).

Hence, Fut(Y, A, £,;1) > 0 is equivalent to (a(@i, — cii;) — @,,1) > 0 for any 7 satisfying (&, —

cily,n) = 0 and (,7,;) > 0. This is equivalent to a(d, — cit;) — @, = a'(fiy — ciiy) + by, for some
a’ € Rand b > 0. Since (&, 1) = 0, we get a’ = 0. Hence, the proof is finished. I

By computation, we have

a, = (9, 1, —%), fig — ct, = (15,15 — 25¢,—7 +12¢), 7., = (0,0,1).

Hence, the only c satisfying the condition of Proposition A.3is ¢ = %
Case 2: Q = [1]. As always, we want to first determine the polyhedral divisors. We know that

6 1
= —(1,-26), —(19, —169 ) s
g[o] + g[oo] COI’IV( 325( ) 325( ))+0o

@[0] + @[1] + g[oo] = COHV(L(—L 26), l

1,0 ) + 0.
650 26( )

It is clear that Y([1], 0, m) has five distinguished vertical divisors:

Dyo1,(x0,00 Pplx,.00> Dm,<0 L)) Dloo},(x,,00 Dlool,(x3,0)-

We can compute that

- 0,25,k)\ _
le(f . )(( )=(-13m + k)D[l],<0 ) + D[oo],(xz,o)'

L
‘m
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We also have div(y (%)) = D ) = Yo Hence, we have Do)y, o) = div(f - x(0:25.13m)) Next,

(11,0,
we will analyze the cone 7 C ﬁ@. Assume m = 1 for simplicity. Then, the primitive vectors of 7 in
Naren, = (2—15(—1, 26),—2), n, = (%(1, —26),13), and n, = (%(19, —169),13). Let i, and ii; be
vectors in 1\71@ representing —Ky, and (w = 0)| Vo> respectively. Then

i, = (15,15,7), @, = (0,25,13).
We still have §, = (0,1,0) and ; = (0,0, 1). Hence,

i, = (9, 1, %), iy —cii, = (15,15 —25¢,7—13¢), 7% =(0,0,1).

Hence, the only c satisfying the condition of Proposition A.3isc = %

A2 | Ay
For plane quintic curves with A,;-singularities, we have two cases: reducible and irreducible
curves. We begin with the reducible case.

A, reducible

Let C be a reducible plane quintic curve with an A;;-singularity. Then after a projective
transformation, in the affine coordinates [x,y,1], we can write the equation of C as (see
Proposition A.1)

C = ((x—y)((x —y»)(A +sx)—x>) =0).

In other words, we have p = 0, u = 0, and r = 1 in (A.1). Let us choose a 6-jet (x’, y) at the origin
byx' i=x—y*— %y6. Then, the equation of C in (x’, y) becomes

x> = 2y'? + higher order terms,

where (x/, y) has weight (6,1). The only parameter of C here is s € Al. All these curves are GIT
stable. When s goes to infinity, the unique GIT polystable limit will be Qs, that is, the double conic
union a transversal line.

Theorem A.4. Suppose C C P? is a reducible quintic curve with an A,; singularity. Then the log
Fano pair (P2, cC) is K-semistable if and only if 0 < c < 1—61. Moreover, (P(1,1,4), %CO) is the K-

polystable degeneration of (P2, 1—61C) where Cy = (x?z% + y°z = 0).

Proof. We first prove the “only if” part. Suppose that (P2, cC) is K-semistable, and we want to show
c< % Let us perform the (6,1)-weighted blow-up of P? in the coordinates (x’,y), and denote
the resulting surface and exceptional divisor by (X, E), with 7 : X — P? the weighted blow-up
morphism. Let Q = (x = y?) be a smooth conic in P?. We know that the weight of x — y? = x’ +

— —2
%y(’ is 6, hence Q := 7'Q ~ 27*H — 6E is effective on X. It is easy to see (E?) = —% and (Q ) =
—2, hence the Mori cone of X is generated by E and Q. It is clear that

Ap2ec)(E) =7—12¢, —Kpa —cC ~g (3 —5¢)H.
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We also have 7*H — tE is ample if and only if 0 < t < 2, and big if and only if 0 < ¢t < 3. Then, by
computation, we have

t2
l—g ifogt<g2

voly(n#*H —tE) =

3—1)?
( ) if 2<t<3.

Hence, Sp2 oy(E) = (3 — 5¢) ]0°° voly(m*H —tE) = (3 — 50)%. So, the valuative criterion (Theo-
rem 2.9) implies

5
7—12c = A(IP’Z,CC)(E) = S(PZ,CC)(E) = (3 - SC)E,

which implies ¢ < 1—61.

We now begin showing the “if” part. Similar to the proof of Theorem 7.2, we construct a special
degeneration then later on use techniques of Ilten and Siif3 [59] to show K-polystability of the
degeneration. O

Proposition A.5. Thelog Fano pair (P2, cC) admits a special degeneration to (P(1,1,4), cC,)) where
C, is given by the equation x?z* + y°z = 0

Proof. Here is the construction of the special degeneration. Take our family (P2,C) x Al. We
perform the following birational transformations:

/\/\

P2 x Al

where in the central fiber, we have

Here 7 is the (6,1,1)-weighted blow-up of P? x Al in the local coordinates (x/, y,t), S = P(1,1, 6)
is the exceptional divisor of 7, g is the contraction of Q in X Xy, f is the flip of the curve Qin
X, (since by computation the normal bundle N+ o/x = ~ O= ( 2)® (9—( 1)), and 9 is the divisorial
contraction that contracts X’ to a point.

Let us analyze the geometry of these birational maps. Suppose that S has projective coordi-
nates [x;, x,, X5] of weights (1,1,6), respectively. Then SN X = E = (x; = 0), and QNE={p}isa
smooth point of S and X. Since Q has normal bundle O(—2) @ O(—1) in X, the surface Sis a (2,1)-

weighted blow-up of S at p. Let 5+ be the flipped curve in S, then S has an A,-singularity at the
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unique intersection of h'E and 6+. Theny : S — ' contracts h'E and creates a singularity of
type }‘(1, 1). Thus, S’ is P(1, 1, 4).

For the degeneration C,, of C in S’, note that n‘l(C X A1) N S is the curve C) = (x3 = 4x§2 )
In addition, we know that p has coordinate [0, 1, — ] which is contained in C’ It is clear that
C(’) has an A;;-singularity at [1,0,0] near where the blratlonal map S --> S’ is an isomorphism.
Thus, C, has an A,;-singularity at a smooth point of S’ as well. Since Q is contained in C, we
know that 6/ i= ¢*6+ is contained in the degeneration C, of C. By a toric computation, we know
that 6, =(z=0)in S’ = P(1,1,4). This implies that up to a projective transformation C,, has the
equation (x%z% + y%z = 0)in P(1, 1, 4). O

Now we return to the proof of the theorem. By Propositions A.5 and A.6 and Theorem 2.16, we
know that (P2, < m C) is K-semistable. Hence the proof is finished by Proposition 2.13.

We verify K-polystability of (P(1, 1, 4), CO) below.
Proposition A.6. The log Fano pair (P(1,1,4), CO) is K-polystable where C, = (x*z* + y°z = 0).

Proof. 1t is clear that the pair (P(1,1,4), > CO) admits a G,-action, which can be lifted to a G2, -
actiononY := C(P(1,1,4), Op( 1 4(1) = (xy 2 s
(x,¥,2) b (ux, Ay, A°u’*z).

Thus, by [93, Theorem 1.4], it suffices to show G,,-equivariant K-polystability of (P(1, 1,4), CO)

Denote by N the lattice of 1-PS’s in an Since Y is a toric variety with the standard an actlon
we denote by Ny the lattice of 1-PS’s in an. By [8, Section 11], we have an embedding of lattices
F : N — Ny and a (noncanonical) surjective map s : Ny — N with soF = id. Then the maps F
and s can be chosen as

F =

N = O

1 -1 1 0
1{, s= 1 o0 ol
4

Computation shows o C Ny, is spanned by (-2, 3) and (1,0). The nontrivial polyhedral divisors
are

D) = conv((0,0), (—%, %)) +0, D) = <é,0> +o0.

Denote by x, = (0,0), x; = (—%, %), X, = (%,0). Then computation shows
div(y©Y) = Dygp ., = (x = 0),
div(y™Y) = Dy}, = (v = 0),

div(f - x) = Dyg) 5, = (z = 0).
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Here, f is a rational function on P! with div(f) = [0] — [oo]. Let us choose a rational function g
on P! such that div(g) = [1] — [oo]. Then in a suitable coordinate of P!, we have

div(g- 2®9) = (2 =¥ = Dy

Hence, the boundary divisor is given by A = ¢ - div(fg - y1%19) = ¢(Dyo},x, + Dp11,0)-
Next, we will look at the test configuration picture.
Case 1: Q = [0]. Computation shows that there are four distinguished vertical divisors on Y:

Dio),ry,00 = X = 0), - Diaol(x,00 = 0 = 0), - Do 00 = (2= 0), - Dpoj0.1) = Vo
By computation, we have
div(f g - x>0 = Doy .00 + Dpit00) + (K + DDjop0.1)-

Hence, (Dyo,(x,.0) + Pj110.0)ly, = div(x1#1*~V). We know that 7 is spanned by n, = (0,0,—1),
n, = (-1,1,-2),and n; = (1,0, 6). We still have &, = (0,1,0) and ’73 = (0,0,1). Hence,

iy, = (7,6,-1), @, =(12,10,-1), @, = %(10, 12,-1).

To satisfy the condition of Proposition A.3, the only cisc = %.
Case 2: Q = [oco]. Computation shows that there are four distinguished vertical divisors on Y:

Diop ;.00 = (X =0)s Dioy(x,00 = ¥ =0)s Digj (0,00 = (Z=0),  Die0,1) = Vo-
By computation, we have
div(fg - x"*'*) = Dyg) (x,.0) + D) 00 + (K = 2)Djo0.1)-

Hence, (Djo) (x,.0) + D11,0,0)y, = div(x121%2). We know that 7 is spanned by n; = (0,0,1),n, =
(-1,1,2), and n; = (1,0, —6). We still have &, = (0,1,0) and 1y = (0,0,1). Hence,

iy, =(7,6,1), @, =(12,10,2), i, = é(lo, 12,1).

To satisfy the condition of Proposition A.3, the only cisc = %.

g

Ay irreducible
Let C be an irreducible plane quintic curve with an A;;-singularity. Then after a projec-
tive transformation, in the affine coordinate [x,y, 1], we can write the equation of C as (see
Proposition A.1)

C = ((c = y2)((x = ¥)(L +5%) + 2x%y) + x° = 0).

In other words, we have p = —1,u = 1,and r = 0in (A.1). Let us choose a 6-jet (x’, y) at the origin
by x’ := x — y? 4+ y°. Then the equation of C in (x’, y) becomes

x'? = —sy'? + higher order terms,
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where (x/, y) has weight (6,1). The only parameter here is s € Al \ {0}. All these curves are GIT
stable. If s = 0, we recover the GIT stable A;, quintic curve discussed earlier. When s goes to
infinity, the unique GIT polystable limit will be Qs, that is, the double conic union a transversal
line.

Theorem A.7. Suppose C C P2 is an irreducible quintic curve with an Ay, singularity Then the
log Fano pair (P2, cC) is K-semistable if and only if 0 < ¢ < E Moreover, (P(1, 4, 25), G CO) is the
K-polystable degeneration of (P2, 63 TzC) where Cy = (22 + x*y'? = 0).

Proof. We first prove the “only if” part. Suppose that (P2, cC) is K-semistable, and we want to show
c< % Let us perform the (6,1)-weighted blow-up of P? in the coordinates (x’,y), and denote
the resulting surface and exceptional divisor by (X, E), with 7 : X — P2 the weighted blow-up
morphism. LetQ = (x = y?) be asmooth conic in P?. We know that the weight of x — y? = x’ — y°
is 5, hence Q := 71Q ~ 277*H — 5E is effective on X. It is easy to see (E2) = (62) = —é; hence,
the Mori cone of X is generated by E and Q. We again use the valuative criterion of K-semistability
by Fujita and Li (Theorem 2.9), then

We also have 7*H — tE is ample if and only if 0 < ¢ < % and big if and only if 0 < t < % Then
by computation, we have

2
. 1-% ifo<t<;
voly(m*H — tE) = 6 ) 12\ h 3
(5 —2t)? if = <t<3

Hence, Sz .y (E) = (3 = 5¢) [, voly(m*H — tE) = (3 — Sc)%. Since (P?,cC) is K-semistable,
the valuative criterion (Theorem 2.9) implies

49
7—12c = A(PZ,CC)(E) > S([P’Z,CC)(E) = (3 - SC)%,

which implies ¢ < 1635

We now begin showing the “if” part. Similar to the proof of Theorems 7.2 and A.4, we construct
a special degeneration then later on use techniques of Ilten and Siif3 [59] to show K-polystability
of the degeneration. Cl

Proposition A.8. The log Fano pair (P?,cC) admits a special degeneration to (P(1,4,25),cC,)
where C, is given by the equation z*> + x*y'? = 0.

Proof. We follow notation from the first two diagrams of the proof of Proposition A.5. Here, 7
is the (6,1,1)-weighted blow-up of P? x Al in the local coordinates (x’,y,t), S = P(l 1,6) is the
exceptional divisor of 7, ¢ is the contraction of Q in X C X,, f is the flip of the curve Q in X, and
® is the divisorial contraction that contracts X’ to a point.

Let us analyze the geometry of these birational maps. Suppose that S has projective coordi-
nates [x;, X,, x3] of weights (1,1,6), respectively. Then, SN X = E = (x; = 0), and 6 NE ={p}is
the unique singular point of S (type é(l, 1)) and X (type As). Inside the surface X, we have two
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smooth rational curves E and Q intersecting at p, such that (E?) = (62) = —é. Hence, contracting
Q in X yields a smooth surface X’ that has to be P2 by degree computation. On the other hand, S
and X’ intersect along the proper transform E of E that becomes a conic curve in X’ = P2, Hence,
(E?) = —4in S. Moreover,h : § —» S ~ P(1,1,6) is a partial resolution of p that only extracts the
flipped curve 6+. By some combinatorial computation, we know that § is a toric blow-up of S at
p that creates a singularity of type L(1 4) away from E. Hence, S’ is a toric surface carrying two
singularities of types - (1 4) and (1 1). Thus, S’ = P(1, 4, 25).

For the degeneratlon C, of C on S/, note that 77,(C x A') N S is the curve C}) = (x3 + sx)* = 0).
In addition, we know that p has coordinate [0,0,1] which is not contained in C(’). It is clear that
C(’) has an A;;-singularity at the point [1,0,0] which is not p and does not lie on E. Since S --> S’ is
isomorphic around [1,0,0], we know that C(’) hasan A,;-singularity at a smooth point of P(1, 4, 25).
Since the %(1, 4) singularity on Sdoesnotlieon E , we know that C,, does not pass through [0,0,1]
onS’ = P(1, 4, 25). Hence, after a projective coordinates change, we may write C, = (22 + x2y'? =

0). [l

Now we return to the proof of the theorem. By Propositions A.8 and A.9 and Theorem 2.16, we
know that (P?, %C) is K-semistable. Hence, the proof is finished by Proposition 2.13.

We verify K-polystability of (P(1, 4, 25), 2C;) below.

Proposition A.9. The log Fano pair (P(1,4,25), < CO) is K-polystable where Cy = (z* + x*y'?

> 115
0).
Proof. 1t is clear that the pair (P(1,4,25), 2= s CO) admlts a G,,-action, which can be lifted to a
G,,-action on Y 1= C(P(1,4,25), Op(; 4.25)(1) = (xyz) as

(x,y,2) = (ux, Au'y, 1°u>z).

Thus, by [93 Theorem 1.4], it suffices to show G,-equivariant K-polystability of
(P(1,4,25), 2 s CO)

Denote by N the lattice of 1-PS’s in an. Since Y is a toric variety with the standard an-action,
we denote by Ny the lattice of 1-PS’s in an. By [8, Section 11], we have an embedding of lattices
F : N - Ny and a (noncanonical) surjective map s : Ny — N with soF = id. Then the maps F
and s can be chosen as

0 1
-4 1
F=]|1 4,s=[1 08]
6 25

Computation shows o C N, is spanned by (—4, 1) and (1,0). The only nontrivial polyhedral divisor
is
1
Dy = (—4,1,(—,0)) :
[eo] = conv{( ) o +0

Denote by x, = (é, 0) and x; = (—4,1). Then, we have

(x =0) = div(x*") = Dj} iy = 0) = div(x"?) = Dpeg) .-
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Moreover, for any P # [co], we may take the function f, on P! such thatdiv(f) = P — [oo]. Then,
we may compute out that

div(fp - x*¥) = Dp g ~ Dic].x, + 6Djcol.,
This implies that the curve C induces a divisor on Y which corresponding to div(f P, f P, )((12’50))
for some P, # P, € P! \ {oo}.

Next, we will look at the test configuration picture.
Case 1: Q = [oo]. Computation shows that on Y there are three distinguished vertical divisors:

Dioo) (0,00 = X = 0); Dieox,00 = ¥ =0), Doy 0,1) = Vo
Again, by computation, we have
div(fp - x“**9) = Dp ,0) + (k = DDjeo 0.1)-
Hence, we need to take k = 1, and we get Dp (g )ly, = div(x®?>D). This implies that A, = c -

div(y(12°%2)). The central fiber }, = Spec C[r¥ N M], where 7 is spanned by n; = (4,1, -1),
n, = (1,0,—6), and n; = (0,0, 1). We still have &, = (0, 1,0) and 77;)k = (0,0,1). Hence, we have

iy = (7,30,1), @, =(12,50,2), @,= 3—(1)0(49, 300, 4).

To satisfy the condition of Proposition A.3, the only cisc = %.

Case 2: Q # [oo]. Computation shows that on Y there are three distinguished vertical divisors:

Dico},(x0,0) = X =0); Digo)x,,00 = @ =0), Dgo1) = Vo-

Again, by computation, we have

- D + kD if P#Q
le(fP . X(6’25’k)) — { P,(0,0) 0,(0,1) .
D00+ (k+1)Dg o1y if P=Q.

Hence, we have

5 o diV()((é’zs'O)) if P#Q
P,0,0)1yy — diV()((é’ZS’_l)) if P=0Q.

This implies that A, = ¢ - div(y'>°°?) where § = —1 if Q € {P,,P,} and § = 0 otherwise. The

central fiber Y, = Spec C[rV N M], where 7 is spanned by n, = (—4,1,1), n, =(1,0,6), and
ny = (0,0, —1). We still have &, = (0,1, 0) and 1y = (0,0,1). Hence, we have

iy = (7,30,—1), @, =(12,50,8), i, = ﬁ(@, 300, —4).

To satisfy the condition of Proposition A.3, the only cisc = %. O
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A3 | A
Let C be an irreducible plane quintic curve with an A,;,-singularity. Then after a projective trans-
formation, in the affine coordinate [x, y, 1], we can write the equation of C as (see Proposition A.1)

C = (=)@ =y)A +5x) + 207y = rx)) +x° = 0).

In other words, we have p = —1 and u = 1 in (A.1). Let us choose a 5-jet (x/,y) at the origin by
x' 1= x — y? + y°. Then the equation of C in (x/, y) becomes

x'? = —ry™ + higher order terms,

where (x/,y) has weight (11,2). The parameter here is (s,7) € Al x (Al \ {0}). All these curves are
GIT stable. If r = 0, we recover the GIT stable irreducible A;; quintic curve discussed earlier.

Theorem A.10. Suppose C C P? is a quintic curve with an A, singularity. Then the log Fano pair
(P2, ¢cC) is K-semistable if and only if 0 < ¢ < %. Moreover, (P(1,4,25), %CO) is the K-polystable
degeneration of (P2, %C) where Cy = (z> + xby!! = 0).

Proof. We first prove the “only if” part. Suppose that (P2, cC) is K-semistable, and we want to show
c< %. Let us perform the (11,2)-weighted blow-up of P2 in the coordinates (x’, ), and denote
the resulting surface and exceptional divisor by (X, E), with 7 : X — P? the weighted blow-up
morphism. Let Q = (x = y?) be asmooth conic in P?. We know that the weight of x — y? = x’ — y°

is 10, hence Q : = 7;'Q ~ 27*H — 10E is effective on X. It is easy to see (E?) = —% and (62) =
—16—1, hence the Mori cone of X is generated by E and Q. It is clear that Ap2oc)(E) =13 — 22c and
—Kp2 —cC ~g (3 —5c)H. We also have 7*H — tE isample ifand only if 0 < t < 2—52, and big if and
only if % <t < 5. Then, by computation, we have

léﬁ if o<t<3

(10 — 2¢)?
12

voly(w*H — tE) =
if 2<t<s.

Hence, Sip2 .0y (E) = (3 = 5¢) [, voly(7*H — tE) = (3 — 5c)‘1‘—;. Since (P?,cC) is K-semistable,
the valuative criterion (Theorem 2.9) implies

47
13 —22¢ = A(IPZ,CC))(E) > S(PZ,cC))(E) = (3 - SC)E,

which implies ¢ < %.

We now begin showing the “if” part. Similar to the proof of Theorems 7.2, A.4, and A.7, we
construct a special degeneration then later on use techniques of Ilten and Siif3 [59] to show K-
polystability of the degeneration. O

Proposition A.11. The log Fano pair (P?,cC) admits a special degeneration to (P(1,4,25),cC,)
where C is given by the equation (z> + x°y!! = 0).
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Proof. We follow notation from the first two diagrams of the proof of Proposition A.5. Here,
is the (11,2,1)-weighted blow-up of P? x A! in the local coordinates (x’, y,t), S = P(1,2,11) is the
exceptional divisor of 7, ¢ is the contraction of Q inX C &, f is the flip of the curve Q in &}, and
® is the divisorial contraction that contracts X’ to a point.

Let us analyze the geometry of these birational maps. Suppose that S has projective coordinates
[x;, x5, x3] of weights (1,2,11), respectively. Then SN X = E = (x; = 0), and QNE ={p}isasin-
gular point of S (type 1—11(1, 2)) and X (type 1—11(1, 9)). Inside the surface X, we have two smooth

— —2
rational curves E and Q intersecting at p, such that (E?) = —21—2 and (Q ) = —%. Hence, contract-

ing Q in X yields a surface X’ with two singularities of types A, and %(1, 5). On the other hand, §

and X’ intersect along the proper transform E of E with (E?) = % Hence, (E?) = —% in S. More-
over,h : S — S P(1,2,11) is a partial resolution of p = [0, 0, 1] which only extracts the flipped
curve 6+. By some combinatorial computation, we know that S is a toric blow-up of S at p that
creates a singularity of type %(1, 4) away from E. Moreover, E passes through two singularities
of § of types A, and é(l, 1). Hence, S’ is a toric surface carrying two singularities of types %(1, 4)
and %(1, 1) (coming from contracting E). Thus, S’ = P(1, 4, 25).

For the degeneration C, of C on S’, note that 7. (C x A!) N S is the curve C(’) = (x% + rx;l =0).
In addition, we know that p has coordinate [0,0,1] that is not contained in C(’). It is clear that
C(’) has an A, -singularity at the point [1,0,0] that is not p and does not lie on E. Since S > S’ is
isomorphic around [1,0,0], we know that C’ hasan A, -singularity at a smooth point of P(1, 4, 25).
Since the —(1 4) singularity on S does not he on E, we know that C, does not pass through [0,0,1]
onS’ P(l, 4,25). Hence, after a projective coordinates change, we may write C, = (z% + x?(x* —
ay)y!! = 0). Since Aut(P(1,4,25), C,) is not discrete, we conclude that a = 0 which finishes the
proof. O

Now we return to the proof of the theorem. By Propositions A.11, A.12, and Theorem 2.16, we
know that (P2, ;—:C) is K-semistable. Hence, the proof is finished by Proposition 2.13.

We verify K-polystability of (P(1, 4, 25), %CO) below.

Proposition A.12. The log Fano pair (P(1,4,25), 2 CO) is K-polystable where C, = (z> + x%y!! =
0).

Proof. 1t is clear that the pair (P(1, 4, 25), 2 CO) admits a G,,,-action, which can be lifted to a 62

actiononY := C(P(1,4,25), 0P(1425)(1)) = (xyZ) as

(x,3,2) = (ux, A2uty, A1 u®z).

Thus, by [93, Theorem 1.4], it suffices to show G,,,-equivariant K-polystability of (P(1, 4, 25) CO)

Denote by N the lattice of 1-PS’s in an Since Y is a toric variety with the standard an actlon
we denote by Ny the lattice of 1-PS’s in G, . By [8, Section 11], we have an embedding of lattices
F : N —» Ny and a (noncanonical) surjective map s : Ny — N with soF = id. Then the maps F
and s can be chosen as
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Computation shows o C Ny is spanned by (—2, 1) and (1,0). The polyhedral divisor is
1 1 6
@[0] = (—z,O) + o, Q[oo] =COHV(E(1,1),(E,O>) + 0.

Denote by x, = (—%, 0), x; = (1 1), and x, = ( 0). Then computation shows

1’
div(y ") = D) x, = (x = 0),
div(f - x*¥) = Dio1x, = v = 0),

div(f® - x"*) = Dy}, = (2 = 0).

Here, f is a rational function on P! such that div(f) = [0] — [oo]. Let us choose a rational function
g on P! such that div(g) = [1] — [co]. Then in a suitable coordinate of P!, we have

div(fg - x5 = (2% = xSy" = 0) = Dy

Next we will look at the test configuration picture.
Case 1: Q = [0]. Computation shows that there are four distinguished vertical divisors on Y:

Dieo) ;.00 = (X =0)s Dieoj 00 = @ =0, Dygj 0=z =0), Digp01) = Vo-

By computation, we have
div(ftg - x##5%0) = Dy 0.0y + (k + 1DDg; 0.1y

Hence, Dyyjo0)ly, = div(x**>*~)). We know that 7 is spanned by n; = (-1,0,-2), n, =
(1,1,6), and n; = (6,0,11). We still have £, = (0,1,0) and 7y = (0,0, 1). Hence,

iy, = (13,30,—7), @, =(22,50,—11), i, = ﬁ(%, 300, —49).

To satisfy the condition of Proposition A.3, the only cisc = L

Case 2: Q = [oo]. Computation shows that there are four dlstlnguished vertical divisors on Y:
Diso)(x,,00 = X =0),  Dioyx,00 = ? =0), Dgj(xp0) = (2=10),  Dioy0,1) = Yo-
By computation, we have
div(fg - x#°00) = Dy 0.0) + (k = 12)Dyeg) 0.1

Hence, Dyy o0)ly, = div(y(?>°912)), We know that  is spanned by n; = (-1,0,2),n, = (1,1, —6),
and n; = (6,0, —11). We still have §, = (0,1,0) and n; = (0,0, 1). Hence,

fy = (13,30,7), @ =(22,50,12), @iy = %0(94, 300, 49).

To satisfy the condition of Proposition A.3, the only cisc = %. O
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A.4 | Valuative criterion computations

In this section, we provide several consequences of the valuative criterion (Theorem 2.9). These
results will be useful in proving wall crossings for K-moduli spaces of plane quintics.

Proposition A.13. Let C be a curve on P(1, 1, 4) of degree 10.

(1) Assume that the equation of C has the form x?z* + y%z + g(x,y) = 0. If (P(1,1,4),cC) is K-

semistable, then ¢ > 1—61.

(2) Assume that the equation of C has the form x?z> 4+ axy’z + g(x,y) = 0or f(x, )z + g(x,y) =
0. Then (P(1,1,4),cC) is K-unstable for any c € (0, %).

Proof. For simplicity, we denote by X := P(1,1,4).

(1) Let us consider the point [0,0,1] on X. If we set z = 1, then we have a cyclic quotient map

T /-\?x N> X defined by 7(x,y) = [x,y,1]. Letv := 7,0 where U is the monomial valuation

on A?x ) of weights (3,1). Since the equation of C is given by ax? + g(x,y) + h(x,y) = 0 where
deg g = 6 and deg h = 10, we have v(C) > 6. Since v is a toric valuation, computation shows
that

1(1—ﬁ> ifo<t<l
voly (O(1) — tv) = 41 3
5(3—02 if 1<t<3.

Hence, S cy(v) = ‘% f0°° voly(O(1) — tv)dt = %(6 —10c). Since (X,cC) is

K-semistable, by valuative criterion (Theorem 2.9), we have
4
4—6¢c> A(X,CC)(U) = S(X,CC)(U) = 5(6 — IOC),

which implies ¢ > 16—1.

(2) First, we assume that the equation of C has the form x?z? + y°z + g(x, y) = 0. We again con-
sider the affine chart z = 1 and the cyclic quotient map 7. Let v’ := 7,0’ where ¢’ is the
monomial valuation on /-\(Zx,y) of weights (5,1). By the equation of C, we have v/(C) > 10. Since
v’ is also a toric valuation, computation shows that

l(l—f) ifo<t<1
voly (O(1) — tv') = 41 5
%(S—t)z if 1<t<5.

Hence, S(X,CC)(U/) = WTX_(—IOO(CI)) /Ooo voly (O(1) — tv')dt = 2(6 — 10¢). Since (X,cC) is

K-semistable, valuative criterion (Theorem 2.9) implies that
6 - IOC > A(X,Cc)(v,) > S(X’cc)(v’) = 2(6 - IOC)

Thus, ¢ > % but this is a contradiction. So, (X, cC) is always K-unstable for any c € (0, %).
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Finally, we treat the case where C has equation f(x,y)z + g(x,y) = 0. It is clear that the
log canonical threshold of (X; C) at [0,0,1] is at least % since deg f = 6 and deg g = 10. Thus,

(X, cC) is K-unstable whenever ¢ > % On the other hand, by Theorem 5.2, we know that the

—K
surface X = P(1, 1,4) never appears in the K-moduli stack P. when ¢ < % Thus, (X, cC) is
always K-unstable for any ¢ € (0, %). This finishes the proof. [

Next, we will state results about curves on P(1,4, 25).

Proposition A.14. Let C be a curve on P(1,4,25) of degree 50.

(1) Suppose thatC is defined by z> + x?*y'? + x%g(x, y) = 0. If (P(1, 4, 25), cC) is K-semistable, then
63
c> =,
115
(2) Suppose that C is defined by z> + xSy + x1%g(x, y) = 0. If (P(1, 4, 25),cC) is K-semistable,
thenc > %.
(3) Supposethat C isdefined by z> + x'°g(x,y) = 0or f(x,y)z + g(x,y) = 0. Then (P(1, 4, 25),cC)

is K-unstable for any 0 < ¢ < 3/5.

Proof. For simplicity, we denote by X := P(1, 4, 25).

(1) Let us consider the point [0,1,0] corresponding to the %(1, 1) singularity in P(1,4, 25). If we
set y = 1, then we have a cyclic quotient map 7 : Agx ™ X defined by 7(x, z) = [x, 1, z].
Letv := mord), then Ayx(v) = 2, and

1 2 . 1
—(1—25¢ if 0t =
voly (O(1) — tv) = 1100( ) 5

. 30-50 26
Hence, computation shows Sy .cy(v) = volx(—c)(i)) 1o~ volx(O1) — tv)dt = =(30 = 500).

Since C is of degree 50, we have v(C) > 2 because the lowest degree terms of C at [0,1,0] are
x%y12, xzy%, and z2. Since (X, cC) is K-semistable, by valuative criterion (Theorem 2.9), we

have
26

L. . 63
which implies ¢ > s

(2) We follow the similar setup as (1), except that we consider the valuation v’ = 7,0’ where 0’
is the monomial valuation of weights (1,3) in coordinates (x, z). Thus, Ayx(v") = 4, and

2 .
L _ L 1f0<t<21

voly (O(1) — tv') = {ﬁ T2

5
T2 if 2
La-0? if Z<rsl

. 30-50c oo 28
Hence, computation shows S .c)(v') = ‘m Iy volx(O(1) — tv')dt = =(30 —500).

From the equation of C, it is clear that v’(C) > 6. Since (X, cC) is K-semistable, by valua-
tive criterion (Theorem 2.9), we have 4 — 6¢ > A(x .¢)(V") > S(x .c)(V') = %(30 — 50c), which

implies ¢ > ;—:.
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(3) First, we consider the case where C has equation z2 + x'%g(x, y) = 0. We follow the simi-
lar setup as (1), except that we consider the valuation v”" = 7,0"" where 0 is the monomial
valuation of weights (1,5) in coordinates (x, z). Thus, Ax(v"") = 6, and

1
< =
s
<1

vol, (O(1) — tv”") = {

(=53 if o<t
1 2 e 1
-0 if 3 <t

. 30—50 =) 2
Hence, computation shows Sy .c)(v") = xW@(i)) Jo volx(O(1) — tv")dt = (30 = 500).
From the equation of C, it is clear that v”/(C) > 10. If (X, cC) is K-semistable, then by val-
uative criterion (Theorem 2.9), we have 6 — 10c > A .cy(") > Sx .c)(V") = %(30 — 50c),
which implies ¢ > % Hence, (X, cC) is always K-unstable for any ¢ € (0, %).

Finally, we consider the case where C has equation f(x,y)z + ¢g(x,y) = 0. We consider the

singular point [0,0,1] of type %(1, 4). Let 7’ : A?x n X be the cyclic quotient map. Denote

by C’ the preimage of C under /. Then it is easy to see that ord,C’ > 7, hence Ict(X;C) <
Ict(AZ;C) < % Hence, we have ¢ < % if (X, cC) is K-semistable. However, by Theorem 5.2, we

—K
know that P(1, 4, 25) never occurs in the K-moduli stack P . when ¢ < % Hence, (X, cC) is

always K-unstable for any ¢ € (0, g). The proof is finished. [
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