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Abstract

We construct proper good moduli spaces parametrizing

K-polystable ℚ-Gorenstein smoothable log Fano pairs

(𝑋, 𝑐𝐷), where 𝑋 is a Fano variety and 𝐷 is a rational

multiple of the anticanonical divisor. We then establish

a wall-crossing framework of these K-moduli spaces as

𝑐 varies. The main application in this paper is the case

of plane curves of degree 𝑑 ⩾ 4 as boundary divisors of

ℙ2. In this case, we show that when the coefficient 𝑐

is small, the K-moduli space of these pairs is isomor-

phic to the GIT moduli space. We then show that the

first wall crossing of these K-moduli spaces are weighted

blow-ups of Kirwan type. We also describe all wall

crossings for degree 4,5,6 and relate the final K-moduli

spaces to Hacking’s compactification and the moduli of

K3 surfaces.
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1 INTRODUCTION

Constructing compactifications of moduli spaces of varieties is a fundamental question in alge-
braic geometry. While it is well known that singular varieties will occur on the boundary of the
moduli space, an interesting question to investigate is how different compactifications yield differ-
ent singularities on the boundary. The classical approach of Deligne and Mumford for genus ⩾ 2
curves only allows stable curves (i.e., nodal singularities) in the boundary. Later on, it was realized
that there are meaningful alternate compactifications allowing curves with worse singularities
that can be obtained from running the minimal model program (MMP) on the Deligne–Mumford
compactification, often going by the name the Hassett–Keel program.
If we consider plane curves, there are two well-known compactifications of the moduli

space. Classically, Mumford’s geometric invariant theory (GIT) yields a projective variety 𝑃
GIT

𝑑
parametrizing S-equivalent classes of GIT semistable plane curves of degree 𝑑. Moreover, in each
S-equivalence class, there exists a unique closed orbit whose representative is a GIT polystable

plane curve. In the philosophy of Alper, this gives a good moduli space morphism GIT𝑑 → 𝑃
GIT

𝑑

where GIT𝑑 is the GIT quotient stack. An approach due to Hacking (following ideas from Kollár–
Shepherd–Barron and Alexeev) is via stable pairs and the MMP [49, 50]. Roughly speaking, each
smooth plane curve 𝐶 of degree 𝑑 ⩾ 4 can be viewed as a boundary divisor in ℙ2, and so, one can
study certain pairs of degenerations of the plane with a curve subject to some conditions on posi-

tivity and singularities of the pair coming from the MMP. Hacking’s moduli stack H𝑑 is a proper
Deligne–Mumford stack whose coarse moduli space 𝑃

H

𝑑 is a projective variety.
One notable feature of these two different approaches is that although GIT semistable curves

all lie in ℙ2, they can be quite singular; on the other hand, although the surfaces in the boundary

of H𝑑 can be quite singular (possibly nonnormal), the singularities of the degenerate curve are
usually mild. As these two moduli spaces are birational, it is a natural question to ask how to
interpolate between them.
For example, we illustrate the simplest nontrivial case: deg 𝑑 = 4. The six-dimensional GIT

quotient 𝑃
GIT

4 generically parametrizes curves that are at worst cuspidal in ℙ2, has a curve
parametrizing tacnodal curves (i.e., locally 𝑦2 + 𝑥4 = 0), and a point parametrizing the double

conic. On the other hand,Hacking’s space𝑃
H

4 (see also [52]) also generically parametrizes cuspidal
curves inℙ2, but has a divisor parametrizing curves onℙ(1, 1, 4) (which are at worst cuspidal away
from the singular point, and at worst nodal at the singularity), and has a codimension two locus
parametrizing curves on the nonnormal surface ℙ(1, 1, 2) ∪ ℙ(1, 1, 2). Here, the curves are snc at
the double locus and at worst cuspidal elsewhere. In particular, one can see directly the trade-off
between having very singular curves that still are in ℙ2, and having mildly singular curves on
singular surfaces. It is natural to ask how to relate the two spaces in a modular way.
In this article, we investigate a new family of compactifications of the moduli space of smooth

plane curves using K-stability and (conical) Kähler–Einsteinmetrics. For any smooth plane curve
𝐶 of degree𝑑 ⩾ 4, the celebratedwork [28] and [120] implies that (ℙ2, 𝑐𝐶) admits a conical Kähler–
Einstein metric for any 0 < 𝑐 < 3

𝑑
hence is K-stable. Thus, it is natural to construct K-stability

compactifications of these moduli spaces. Recently, Li, Wang, and Xu [92] showed that there exist
proper good moduli spaces parametrizing K-polystable ℚ-Gorenstein smoothable Fano varieties
(see also [104] and [115]). Based on [92] and the very recent work by Tian and Wang [121] on the
solution of the log smooth Yau–Tian–Donaldson conjecture, we construct K-moduli stacks and
spaces for all ℚ-Gorenstein smoothable log Fano pairs (see Definition 2.21). In particular, this
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implies that the K-stability compactification of the moduli space of log Fano pairs (ℙ2, 𝑐𝐶) with
0 < 𝑐 < 3

𝑑
a rational number exists as a proper good moduli space.

Theorem 1.1 (= Theorem 3.1). Let 𝜒0 be the Hilbert polynomial of an anticanonically polarized
Fanomanifold. Fix 𝑟 ∈ ℚ>0 and a rational number 𝑐 ∈ (0,min{1, 𝑟

−1}). Then there exists a reduced

Artin stack𝜒0,𝑟,𝑐
of finite type over ℂ parametrizing all K-semistable ℚ-Gorenstein smoothable

log Fano pairs (𝑋, 𝑐𝐷) with Hilbert polynomial 𝜒(𝑋,𝑋(−𝑚𝐾𝑋)) = 𝜒0(𝑚) for sufficiently divisi-
ble 𝑚 and 𝐷 ∼ℚ −𝑟𝐾𝑋 . Moreover, the Artin stack 𝜒0,𝑟,𝑐

admits a good moduli space 𝐾𝑀𝜒0,𝑟,𝑐
as a proper reduced scheme of finite type over ℂ whose closed points parametrize K-polystable

pairs.

It is thus natural to ask how the moduli spaces depend on the coefficient 𝑐. In this setting, we
prove the following wall-crossing type result. In the statement below, VGIT refers to variation of
GIT as in [6] and CM stands for Chow-Mumford (see Definition 2.17).

Theorem 1.2 (= Theorem 3.2). There exist rational numbers

0 = 𝑐0 < 𝑐1 < 𝑐2 < ⋯ < 𝑐𝑘 = min{1, 𝑟
−1}

such that 𝑐-K-(poly/semi)stability conditions do not change for 𝑐 ∈ (𝑐𝑖 , 𝑐𝑖+1). For each 1 ⩽ 𝑖 ⩽ 𝑘 − 1

and 0 < 𝜖 ≪ 1, we have open immersions

𝜒0,𝑟,𝑐𝑖−𝜖
↪ Φ−𝑖 𝜒0,𝑟,𝑐𝑖

↩ Φ+
𝑖
𝜒0,𝑟,𝑐𝑖+𝜖

,

which induce projective morphisms

𝐾𝑀𝜒0,𝑟,𝑐𝑖−𝜖
𝜙−
𝑖
"""→ 𝐾𝑀𝜒0,𝑟,𝑐𝑖

𝜙+
𝑖
←""" 𝐾𝑀𝜒0,𝑟,𝑐𝑖+𝜖.

Moreover, all the above wall crossing morphisms have local VGIT presentations as in [6, (1.2)], and

the CM ℚ-line bundles on 𝐾𝑀𝜒0,𝑟,𝑐𝑖±𝜖 are 𝜙
±
𝑖
-ample.

While the two above results hold for anyK-moduli stack and space ofℚ-Gorenstein smoothable

log Fano pairs, the remainder of this paper will focus on K𝑑,𝑐 and 𝑃K𝑑,𝑐, that is, the K-moduli stack
and space parametrizing K-semistable and K-polystable limits of (ℙ2, 𝑐𝐶), respectively, where 𝐶
is a smooth plane curve of degree 𝑑 and 𝑐 ∈ (0, 3

𝑑
) is a rational number.

Since K-semistable log Fano pairs are always Kawamata log terminal (klt) by [102], as 𝑐

increases the surface 𝑋 in 𝑃
K

𝑑,𝑐 must become more singular, while the divisor 𝐷 becomes less
singular; this is a general version of the phenomenon seen in the degree 4 example. In particular,
it is reasonable to expect that these moduli spaces provide the proper framework for interpolat-

ing between GIT𝑑 and H𝑑 . Our next results characterize the behavior of the wall crossings for
K-moduli spaces of plane curves.
First, we give a complete understanding of the first wall crossing in all degrees. The K-moduli

space corresponding to 0 < 𝑐 ≪ 1 is isomorphic to the GIT moduli space, and the first wall cross-
ing is a Kirwan-type blow-up of the GIT quotient. Note that since the K-moduli stacks and spaces
for 𝑑 ⩽ 3 are well known (see Example 4.5), we usually assume 𝑑 ⩾ 4.
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Theorem 1.3 (First wall crossing). Let 𝑑 ⩾ 4 be an integer, 𝑐 ∈ (0, 3
𝑑
) be a rational number, let𝑄 be

a smooth conic in ℙ2, let 𝐿 be a line in ℙ2 transverse to 𝑄, and let 𝑥, 𝑦, 𝑧 be coordinates of ℙ(1, 1, 4).

Let

𝑐1 =

{
3

2𝑑
𝑑 is even

3

2𝑑−3
𝑑 is odd

𝑄𝑑 =

{
𝑑

2
𝑄 𝑑 is even
𝑑−1

2
𝑄 + 𝐿 𝑑 is odd

𝑄′
𝑑
=

{
𝑧𝑑∕2 = 0 𝑑 is even

𝑥𝑦𝑧(𝑑−1)∕2 = 0 𝑑 is odd

(1) For any 0 < 𝑐 < 𝑐1, a plane curve𝐶 of degree𝑑 is GIT (poly/semi)stable if and only if the log Fano

pair (ℙ2, 𝑐𝐶) is K-(poly/semi)stable. Moreover, there is an isomorphism of Artin stacks K𝑑,𝑐 ≅
GIT𝑑 .

(2) There is an open immersion Φ− ∶ GIT𝑑 = K𝑑,𝑐1−𝜖 ↪ K𝑑,𝑐1 that descends to an isomorphism of

good moduli spaces.

(3) If Φ+ ∶ K𝑑,𝑐1+𝜖 → K𝑑,𝑐1 denotes the latter morphism in the first wall crossing, then there

exists a stacky weighted blow-up morphism 𝜌 ∶ K𝑑,𝑐1+𝜖 → K𝑑,𝑐1−𝜖 = GIT𝑑 along {[𝑄𝑑]} (see

Definition 5.10) such that Φ+ = Φ−◦𝜌. In particular, we have

(a) The descent morphism 𝜚 = (𝜙−)−1◦𝜙+ ∶ 𝑃
K

𝑑,𝑐1+𝜖
→ 𝑃

K

𝑑,𝑐1−𝜖
= 𝑃

GIT

𝑑 of 𝜌 between good

moduli spaces is a weighted blow-up of the point [𝑄𝑑].

(b) If 𝑑 is even, then 𝜚 is a partial desingularization of Kirwan type.

Before preceding, we note that Gallardo, Martinez-Garcia, and Spotti independently showed in
[47, Theorem 1.2] that a similar result to Theorem 1.3 (1) holds for all hypersurfaces inℙ𝑛 assuming
the Gap Conjecture [114, Conjecture 5.5] that is true when 𝑛 ⩽ 3 by [82, Proposition 4.10] and [96,
Theorem 1.3]. The following result removes this assumption.

Theorem 1.4 (= Theorem 9.24). Let 𝑛 and 𝑑 ⩾ 2 be positive integers. Then there exists a positive
rational number 𝑐1 = 𝑐1(𝑛, 𝑑) such that for any fixed 0 < 𝑐 < 𝑐1, a hypersurface 𝑆 ⊂ ℙ

𝑛 of degree 𝑑

is GIT (poly/semi)stable if and only if the log Fano pair (ℙ𝑛, 𝑐𝑆) is K-(poly/semi)stable.

It is natural to ask what happens beyond the first wall crossing for plane curves. When 𝑑 is
small (𝑑 ⩽ 6), we explicitly determine all K-moduli wall crossings. In fact, if 𝑑 is 4 or 6, we can
relate our moduli spaces to Baily–Borel compactifications of moduli spaces of K3 surfaces (see
Section 6). Let 𝑃

∗

4 denote the Baily–Borel compactification of themoduli space of ADEK3 surfaces

of degree 4 with ℤ∕4ℤ symmetry constructed by Kondō [74], and let 𝑃
∗

6 denote the Baily–Borel
compactification of the moduli space of K3 surfaces of degree 2.

Theorem 1.5 (𝑑 = 4, 6, see Theorem 6.1 and Section 6.2). If 𝑑 = 4 (resp. 6), there is only one wall

crossing for K-moduli spaces given by the weighted blow-up 𝑃GIT
4
→ 𝑃

GIT

4 (resp. 𝑃GIT
6
→ 𝑃

GIT

6 ) at the

double conic (resp. triple conic). Furthermore, the ample model of the Hodge line bundle on 𝑃GIT
4

(resp. 𝑃GIT
6

) is 𝑃
∗

4 (resp. 𝑃
∗

6).

In fact, in the degree 4 case, we can say more using Hyeon and Lee’s results on the log MMP
for moduli of genus three curves [54]; see Section 9.3.1.
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6 of 113 ASCHER et al.

TABLE 1 Wall crossings for K-moduli spaces of plane quintics

𝒊 𝒄𝒊 𝑬−
𝒊

𝑬+
𝒊

1 3

7
(ℙ2, 𝑄5) (ℙ(1, 1, 4), (𝑥𝑦𝑧2 + (𝑎𝑥6 + 𝑏𝑦6)𝑧 + g(𝑥, 𝑦) = 0))

2 8

15
(ℙ2, 𝐴12-quintic) (𝑋26, (𝑤 = g(𝑥, 𝑦)))

3 6

11
(ℙ2, 𝐴11-reducible quintics) (ℙ(1, 1, 4), (𝑥2𝑧2 + 𝑦6𝑧 + g(𝑥, 𝑦) = 0))

4 63

115
(ℙ2, 𝐴11-irreducible quintics) (ℙ(1, 4, 25), (𝑧2 + 𝑥2𝑦12 + 𝑥10g(𝑥, 𝑦) = 0))

5 54

95
(ℙ2, 𝐴10-quintics) (ℙ(1, 4, 25), (𝑧2 + 𝑥6𝑦11 + 𝑥14g(𝑥, 𝑦) = 0))

Theorem1.6 (𝑑 = 5, see Theorems 5.9, 7.1 and Section 8). If 𝑑 = 5, then there are five wall crossings
for K-moduli spaces of plane quintics. Among them, the first two are weighted blow-ups, while the

last three are flips.

In Table 1, we summarize the behavior of all wall crossings for plane quintics (see also Figure 1

on Page 60). Here, we denote by𝐸±
𝑖
the exceptional loci of 𝜙±

𝑖
∶ 𝑃
K

5,𝑐𝑖±𝜖
→ 𝑃

K

5,𝑐𝑖
where general pairs

parametrized by them are described in the table. The full description of 𝐸±
𝑖
will be presented in

Theorems 5.8, 7.1, and Section 8. We use [𝑥, 𝑦, 𝑧] for projective coordinates of weighted projective
planes ℙ(1, 1, 4) and ℙ(1, 4, 25). The surface 𝑋26 is the degree 26 weighted hypersurface (𝑥𝑤 =
𝑦13 + 𝑧2) in ℙ(1, 2, 13, 25) with projective coordinates [𝑥, 𝑦, 𝑧, 𝑤].
In general, it is expected that K-moduli spaces are projective with ample CM line bundles (see

[27, 29]). Using recentwork of Codogni and Patakfalvi [29] and Posva [107], we show the following.

Theorem 1.7 (= Theorem 9.1). The K-moduli spaces 𝑃
K

𝑑,𝑐 are projective when 𝑑 ∈ {4, 5, 6} with

ample CM line bundles.

During the review process of this paper, we learned that the ampleness of CM line bundles
on K-moduli spaces of log Fano pairs is proved in [98, 125] using purely algebraic methods (see

Remark 1.9). In particular, the CM line bundle is ample on 𝑃
K

𝑑,𝑐 for all degrees and all coefficients
(see Theorem 9.2).
The remainder of our paper is devoted to some further questions that will serve as motivation

for our futurework. For example, in Section 7.3, we discuss the secondweighted blow-up for 𝑑 ⩾ 7

(see Theorem 7.10). Another consequence of our work is that the birational maps 𝑃
K

𝑑,𝑐′ ⤏ 𝑃
K

𝑑,𝑐 are

birational contractions for 0 < 𝑐 < 𝑐′ < 3

𝑑
whenever 3 ∣ 𝑑 or 𝑑 < 13 (see Theorem 9.5). If this is

true for 3 ∤ 𝑑 and 𝑑 ⩾ 13, then together with the ampleness of the CM line bundle (Theorem 9.2),
this would imply that thewall crossing of K-moduli spaces exhibit similar behavior to theHassett–
Keel program for𝑀

g
(see Theorem 9.4).

We show in Theorem 9.18 that the only difference between the K-moduli space 𝑃
K

𝑑, 3
𝑑
−𝜖 and

𝑃
H

𝑑 are the maximally lc pairs in the K-moduli space, and the nonnormal pairs in the Hacking
moduli space. We conjecture that there is a proper good moduli space of log Calabi–Yau pairs,
which relates to the K-moduli and Hacking moduli spaces via the following wall crossing.

Conjecture 1.8 (Log Calabi–Yau wall crossings, see Conjecture 9.19). There exists a proper good

moduli space 𝑃
CY

𝑑 that parametrizes S-equivalence classes of semistable log Calabi–Yau pairs

(𝑋, 3
𝑑
𝐷) where 𝑋 admits a ℚ-Gorenstein smoothing to ℙ2. Moreover, we have a log Calabi–Yau wall
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WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES 7 of 113

crossing diagram

𝑃
K

𝑑, 3
𝑑
−𝜖

𝜙−
CY
"""""→ 𝑃

CY

𝑑

𝜙+
CY

←""""" 𝑃
H

𝑑

where 𝑃
CY

𝑑 is the common ample model of the Hodge line bundles on 𝑃
K

𝑑, 3
𝑑
−𝜖 and 𝑃

H

𝑑 .

We partially verify this conjecture in degree 4,5,6, and will investigate this space in forthcoming
work.

Remark 1.9 (Postscript). Since the first version of this article appeared on the arXiv, there has
been much progress on the study of K-stability and K-moduli spaces of log Fano pairs and wall
crossings. We list a few related works below.

(1) The K-moduli spaces for log Fano pairs are shown to exist as a projective good moduli space
where the CM line bundle is ample. This is a combination of many recent works [1, 19, 25,
27, 29, 60, 93, 98, 124–126]. As a result, the construction of our moduli spaces 𝜒0,𝑟,𝑐

is
generalized to all log Fano pairs using purely algebraic methods.

(2) The Yau–Tian–Donaldson conjecture for all (possibly singular) log Fano pairs is solved as a
combination of [14, 80, 91, 98].

(3) The wall crossing framework from Section 3, except the local VGIT presentation from Sec-
tion 3.7, is generalized to all log Fano pairs (𝑋, 𝐷) satisfying 𝐷 ∼ℚ −𝑟𝐾𝑋 for some 𝑟 ∈ ℚ>0 in
[128] using purely algebraic methods.

(4) The wall crossing framework of this paper has been applied to the study of moduli of quartic
K3 surfaces in [3, 4]. In particular, the paper [4] verifies Laza–O’Grady’s conjecture on the
Hassett–Keel–Looijenga program for quartic K3 surfaces (see [85–87] for backgrounds).

(5) For moduli of stable pairs in terms of Kollár–Shepherd–Barron–Alexeev, the wall crossing
framework was established in [2]. Themain difference of these two wall crossing frameworks
is that wall crossing maps in [2] are always morphisms (after normalization), while our wall
crossing maps may be flips.

Organization

This paper is organized as follows. In Section 2, we collect preliminary materials on K-stability,
normalized volumes, CM line bundles, goodmoduli spaces, and Hacking’s moduli spaces. In Sec-
tion 3, we give a detailed construction of K-moduli stacks and spaces ofℚ-Gorenstein smoothable
log Fano pairs which is largely based on [92] with new inputs from [27, 60, 121]. We prove The-
orem 3.1 that is a generalization of [92, Theorem 1.3]. Our main new result is Theorem 3.2 that
characterizes fundamental behaviors of K-moduli wall crossings when varying the coefficient.
Our construction heavily relies on the solution of Yau–Tian–Donaldson conjecture for log smooth
log Fano pairs by Tian andWang [121] that is a generalization of [28, 120]. Hence, our approach is
a mixture of algebraic and analytic methods.

In Section 4, we study the general properties of K-moduli stacks K𝑑,𝑐 and spaces 𝑃K𝑑,𝑐 of degree
𝑑 plane curves with coefficient 𝑐. We describe the well-known K-moduli stacks and spaces for
degree at most 3 in Example 4.5. Using normalized volumes, we prove a result on bounding local
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8 of 113 ASCHER et al.

Gorenstein indices of singular surfaces appearing in K𝑑,𝑐 (see Theorem 4.8). This is crucial in the
detailed study of our K-moduli spaces.
Section 5 is devoted to studying the first wall crossing in all degrees. We prove parts (1) and

(2) of Theorem 1.3 in Section 5.1 by applying the index bound (Theorem 4.8) and the Paul–Tian

criterion (Theorem 2.22). In Section 5.2, we show that the K-moduli stack K𝑑,𝑐1+𝜖 is a weighted
blow-up of the GIT moduli stack of Kirwan type, hence confirming part (3) of Theorem 1.3. This
is done by a careful analysis of GIT of curves on ℙ(1, 1, 4) (see Definition 5.7 and Theorem 5.8)
and the index bound (Theorem 4.8).
In Section 6, we show that there is only one log Fano K-moduli wall crossing in degree 𝑑 = 4 or

6 (see Theorem 6.1). This is proven by computing the log canonical thresholds of GIT polystable
curves on ℙ2 and ℙ(1, 1, 4) (see Propositions 6.3 and 6.4) and applying an interpolation result on

K-stability (see Proposition 2.13). In Section 6.2, we relate the final K-moduli spaces 𝑃
K

𝑑, 3
𝑑
−𝜖 for

𝑑 = 4 or 6 to the Baily–Borel compactification of moduli spaces of K3 surfaces as cyclic covers
(see Theorems 6.5 and 6.6).
Sections 7 and 8 are devoted to studying all wall crossings in degree 5. In Section 7, we

show that the second wall crossing of plane quintics precisely replaces the plane quintic with
a unique 𝐴12-singularity by curves on 𝑋26 (see Theorem 7.1). Its proof involves a valuative cri-
terion computation (see Proposition 7.3), an explicit construction of a special degeneration (see
Proposition 7.4), and verifying the K-polystability of this degeneration using techniques of Ilten
and Süß [59] on 𝑇-varieties of complexity one (see Proposition A.2). In Section 8, we use similar
strategy to further study the rest wall crossings of plane quintics where the auxiliary compu-
tations are collected in Appendix A. In Section 7.3, we apply these results for quintics to get
more information on the second weighted blow-up of K-moduli spaces in higher degrees (see
Theorem 7.10).
In Section 9, we discuss further questions regarding our K-moduli spaces. In Section 9.1, we

show that 𝑃
K

𝑑,𝑐 is projective for degree 𝑑 ∈ {4, 5, 6} by proving the ampleness of CM line bundles
using work of Codogni and Patakfalvi [29] and Posva [107]. In Section 9.2, we study the question

of whether the birational map 𝑃
K

𝑑,𝑐′ ⤏ 𝑃
K

𝑑,𝑐 is a birational contraction when 0 < 𝑐 < 𝑐
′ < 3

𝑑
(see

Question 9.3). We give affirmative answers when 𝑑 ⩽ 13 or 𝑑 is divisible by 3 (see Theorem 9.5).
In Sections 9.3 and 9.4, we provide evidence supporting Conjecture 9.19 on the log Calabi–Yauwall
crossing when 𝑑 ∈ {4, 5, 6}. In degree 4, we relate our wall crossings to the log MMP for𝑀3 (see
Section 9.3.1). We give a set-theoretic description of the conjectural log Calabi–Yau moduli spaces
of plane quintics in Section 9.4. Finally, we prove Theorem 1.4 in Section 9.5 as an application of
our machinery developed in Sections 2 and 3.

2 PRELIMINARIES

2.1 K-stability of log Fano pairs

In this section, we give a review of K-stability of log Fano pairs.

Definition 2.1. Let 𝑋 be a normal variety. Let 𝐷 be an effective ℚ-divisor on 𝑋. Then, (𝑋, 𝐷) is
called a log pair. If in addition 𝑋 is projective and−(𝐾𝑋 + 𝐷) isℚ-Cartier ample, then we say that
(𝑋, 𝐷) is a log Fano pair. If a log Fano pair (𝑋, 𝐷) is klt, then we say that it is a klt log Fano pair.
We say that 𝑋 is a ℚ-Fano variety if (𝑋, 0) is a klt log Fano pair.
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WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES 9 of 113

We first recall the definition of a test configuration.

Definition 2.2 [36, 118]. Let 𝑋 be a projective variety. Let 𝐿 be an ample line bundle on 𝑋.

(a) A test configuration ( ;)∕𝔸1 of (𝑋; 𝐿) consists of the following data:
∙ a variety  together with a flat projective morphism 𝜋 ∶  → 𝔸1;
∙ a 𝜋-ample line bundle  on  ;
∙ a 𝔾𝑚-action on ( ;) such that 𝜋 is 𝔾𝑚-equivariant with respect to the standard action of
𝔾𝑚 on 𝔸

1 via multiplication;
∙ ( ⧵ 0;|⧵0) is 𝔾𝑚-equivariantly isomorphic to (𝑋; 𝐿) × (𝔸1 ⧵ {0}).

(b) Let 𝑤𝑚 be the weight of the 𝔾𝑚-action on the determinant line det𝐻
0(𝑋0, 𝐿

⊗𝑚
0
), and 𝑁𝑚 ∶=

ℎ0(𝑋, 𝐿⊗𝑚). Then we have an asymptotic expansion

𝑤𝑚
𝑚𝑁𝑚

= 𝐹0 +𝑚
−1𝐹1 +𝑚

−2𝐹2 +⋯

with 𝐹𝑖 ∈ ℚ. The generalized Futaki invariant of ( ;)∕𝔸1 is defined as Fut( ;) = −2𝐹1.
More precisely, if we write

𝑁𝑚 = 𝑎0𝑚
𝑛 + 𝑎1𝑚

𝑛−1 + 𝑂(𝑚𝑛−2), 𝑤𝑚 = 𝑏0𝑚
𝑛+1 + 𝑏1𝑚

𝑛 + 𝑂(𝑚𝑛−1),

then Fut( ;) = 2(𝑎1𝑏0−𝑎0𝑏1)
𝑎2
0

.

Definition 2.3 [36, 77, 94, 105, 118]. Let (𝑋, 𝐷 =
∑𝑘
𝑖=1 𝑐𝑖𝐷𝑖) be a projective log pair. Let 𝐿 be an

ample line bundle on 𝑋.

(a) A test configuration ( ,;)∕𝔸1 of (𝑋, 𝐷; 𝐿) consists of the following data:
∙ a test configuration ( ;)∕𝔸1 of (𝑋; 𝐿);
∙ a formal sum  = ∑𝑘

𝑖=1 𝑐𝑖𝑖 of codimension one closed integral subschemes𝑖 of  such
that𝑖 is the Zariski closure of𝐷𝑖 × (𝔸1 ⧵ {0}) under the identification between ⧵ 0 and
𝑋 × (𝔸1 ⧵ {0}).

It is clear that (𝑖;|𝑖 )∕𝔸1 is a test configuration of (𝐷𝑖; 𝐿|𝐷𝑖 ).
(b) For each 1 ⩽ 𝑖 ⩽ 𝑘, let 𝑤̃𝑖,𝑚 be the weight of the 𝔾𝑚-action on the determinant line
det𝐻0(𝐷𝑖,0, 𝐿

⊗𝑚
𝑖,0
), and 𝑁̃𝑖,𝑚 ∶= ℎ

0(𝐷𝑖 , 𝐿
⊗𝑚
𝑖
). Then we have an asymptotic expansion

𝑁̃𝑖,𝑚 = 𝑎̃𝑖,0𝑚
𝑛−1 + 𝑂(𝑚𝑛−2), 𝑤̃𝑖,𝑚 = 𝑏̃𝑖,0𝑚

𝑛 + 𝑂(𝑚𝑛−1).

We define 𝑎̃0 =
∑𝑘
𝑖=1 𝑐𝑖𝑎̃𝑖,0 and 𝑏̃0 =

∑𝑘
𝑖=1 𝑐𝑖𝑏̃𝑖,0. The relative Chow weight of ( ,;)∕𝔸1

is defined as CH( ,;) ∶= 𝑎0𝑏̃0−𝑏0𝑎̃0
𝑎2
0

. The generalized Futaki invariant of ( ,;)∕𝔸1 is
defined as Fut( ,;) = Fut( ;) + CH( ,;).

(c) A test configuration ( ,;)∕𝔸1 is called a normal test configuration if  is normal. A
normal test configuration is called a product test configuration if

( ,;) ≅ (𝑋 × 𝔸1, 𝐷 × 𝔸1; pr∗1𝐿 ⊗  (𝑘0))
for some 𝑘 ∈ ℤ. A product test configuration is called a trivial test configuration if the above
isomorphism is 𝔾𝑚-equivariant with respect to the trivial 𝔾𝑚-action on 𝑋 and the standard
𝔾𝑚-action on 𝔸

1 via multiplication.
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10 of 113 ASCHER et al.

(d) Let (𝑋, 𝐷) be a log Fano pair. Let 𝐿 be an ample line bundle on 𝑋 such that for some 𝑙 ∈ ℚ>0,
we have 𝐿 ∼ℚ −𝑙(𝐾𝑋 + 𝐷). Then the log Fano pair (𝑋, 𝐷) is said to be:
(i) K-semistable if Fut( ,;) ⩾ 0 for any normal test configuration ( ,;)∕𝔸1 and any
𝑙 ∈ ℚ>0 such that 𝐿 is Cartier;

(ii) K-stable if it is K-semistable and Fut( ,;) = 0 for a normal test configuration
( ,;)∕𝔸1 if and only if it is a trivial test configuration; and

(iii) K-polystable if it is K-semistable and Fut( ,;) = 0 for a normal test configuration
( ,;)∕𝔸1 if and only if it is a product test configuration.

(e) Let (𝑋, 𝐷) be a klt log Fano pair. Let 𝐿 be an ample line bundle on 𝑋 such that 𝐿 ∼ℚ −𝑙(𝐾𝑋 +
𝐷) for some 𝑙 ∈ ℚ>0. Then a normal test configuration ( ,;)∕𝔸1 is called a special test
configuration if  ∼ℚ −𝑙(𝐾∕𝔸1 +) and ( , + 0) is plt. In this case, we say that (𝑋, 𝐷)
specially degenerates to (0,0) that is necessarily a klt log Fano pair.

Remark 2.4. We give some useful remarks toward the above definition.

(1) We provide an intersection formula for the generalized Futaki invariant (cf. [101, 123]). Let
(𝑋, 𝐷) be a log Fano pair. Let 𝐿 be an ample line bundle on 𝑋 such that 𝐿 ∼ℚ −𝑙(𝐾𝑋 + 𝐷)
for some 𝑙 ∈ ℚ>0. Assume 𝜋 ∶ ( ,;) → 𝔸1 is a normal test configuration of (𝑋, 𝐷; 𝐿). Let
𝜋̄ ∶ (̄ , ̄; ̄) → ℙ1 be the natural 𝔾𝑚-equivariant compactification of 𝜋. Then we have the
intersection formula

Fut( ,;) ∶= 1

(−(𝐾𝑋 + 𝐷))
𝑛

(
𝑛

𝑛 + 1
⋅
(̄𝑛+1)
𝑙𝑛+1

+
(̄𝑛 ⋅ (𝐾̄∕ℙ1 + ̄))

𝑙𝑛

)
.

(2) By the work of Odaka [100], any K-semistable log Fano pair is klt. By the work of Li and Xu
[94], we know that to test K-(poly/semi)stability of a klt log Fano pair, it suffices to test only
on special test configurations.

(3) A test configuration is called almost trivial (resp. almost product) if its normalization is trivial
(resp. product). By [17, Proposition 3.15], we know that the generalized Futaki invariant never
increases under normalization.

Definition 2.5. Let 𝑋 be a ℚ-Fano variety. Let 𝐷 ∼ℚ −𝐾𝑋 be an effective ℚ-divisor on 𝑋. We
say that (𝑋, 𝐷) is K-semistable if (𝑋, 𝐷; 𝐿) is K-semistable for some Cartier divisor 𝐿 ∼ℚ −𝑙𝐾𝑋 and
some 𝑙 ∈ ℤ>0. From [102], this is equivalent to saying that (𝑋, 𝐷) is log canonical.

2.2 Valuative criteria for K-stability

In this section, we recall the valuative criteria for K-stability due to [45, 78] with a slight
improvement from [27]. For this, we need to make a few definitions.

Definition 2.6. Let 𝑋 be a normal variety of dimension 𝑛. We say that 𝐸 is a prime divisor over
𝑋 if 𝐸 is a divisor on a normal variety 𝑌 where 𝑓 ∶ 𝑌 → 𝑋 is a proper birational morphism. Let
𝐿 be a ℚ-Cartier ℚ-divisor on 𝑋. Take 𝑚 ∈ ℤ>0 such that 𝑚𝐿 is Cartier and let 𝑥 ∈ ℝ⩾0. If 𝑋 is
projective, we define the volume of 𝐿 − 𝑥𝐸 on 𝑋 as

vol𝑋(𝐿 − 𝑥𝐸) ∶= vol𝑌(𝑓
∗𝐿 − 𝑥𝐸) = lim sup

𝑚→∞
𝑚𝐿 is Cartier

ℎ0(𝑋,𝑋(𝑚𝐿 − ⌈𝑚𝑥⌉𝐸))
𝑚𝑛∕𝑛!

.
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WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES 11 of 113

Remark 2.7. By [45, Definition 1.1, Remark 1.2], the above lim sup is actually a limit, the function
vol𝑋(𝐿 − 𝑥𝐸) is a monotonically decreasing continuous function that vanishes for 𝑥 sufficiently
large, and the definition does not depend on the choice of 𝑓 ∶ 𝑌 → 𝑋.

Definition 2.8. Let (𝑋, 𝐷) be a log pair such that 𝐾𝑋 + 𝐷 is ℚ-Cartier. Let 𝐸 be a prime divisor
over 𝑋. Assume that 𝐸 is a divisor on 𝑌 where 𝑓 ∶ 𝑌 → 𝑋 is a proper birational morphism from
a normal variety 𝑌. We define the log discrepancy of 𝐸 with respect to (𝑋, 𝐷) as

𝐴(𝑋,𝐷)(ord𝐸) ∶= 1 + ord𝐸(𝐾𝑌 − 𝑓
∗(𝐾𝑋 + 𝐷)),

where ord𝐸 is the divisorial valuationmeasuring order of vanishing along𝐸. If (𝑋, 𝐷) is a log Fano
pair, we also define the following functional:

𝑆(𝑋,𝐷)(ord𝐸) ∶=
1

vol𝑋(−𝐾𝑋 − 𝐷) ∫
∞

0
vol𝑋(−𝐾𝑋 − 𝐷 − 𝑡𝐸)𝑑𝑡.

Sometimes, we also use the notation 𝐴(𝑋,𝐷)(𝐸) and 𝑆(𝑋,𝐷)(𝐸) for 𝐴(𝑋,𝐷)(ord𝐸) and
𝑆(𝑋,𝐷)(ord𝐸), respectively.

The following theorem summarizes the valuative criteria of uniform K-stability [45], K-
semistability [45, 78], and K-stability [27]. We will view part (2) of this theorem as an alternative
definition of uniform K-stability of log Fano pairs.

Theorem 2.9 [27, 45, 78]. Let (𝑋, 𝐷) be a log Fano pair.

(1) (𝑋, 𝐷) is K-semistable (resp. K-stable) if and only if for any prime divisor 𝐸 over 𝑋,

𝐴(𝑋,𝐷)(ord𝐸) ⩾ (resp. >) 𝑆(𝑋,𝐷)(ord𝐸).

(2) (𝑋, 𝐷) is uniformly K-stable if and only if there exists 𝜖 > 0 such that

𝐴(𝑋,𝐷)(ord𝐸) ⩾ (1 + 𝜖)𝑆(𝑋,𝐷)(ord𝐸)

for any prime divisor 𝐸 over 𝑋.

From Theorem 2.9, we see that uniformK-stability implies K-stability for log Fano pairs. More-
over, it follows from a recent result [98, Theorem 1.6] that these two stability notions are indeed
equivalent to each other for log Fano pairs.

Definition 2.10 [20, 39]. The stability threshold 𝛿(𝑋, 𝐷) of a klt log Fano pair (𝑋, 𝐷) is defined as

𝛿(𝑋, 𝐷) ∶= inf
𝐸

𝐴(𝑋,𝐷)(ord𝐸)

𝑆(𝑋,𝐷)(ord𝐸)
,

where the infimum is taken over all prime divisors 𝐸 over 𝑋.

Theorem 2.11 [20, 39]. A klt log Fano pair (𝑋, 𝐷) is K-semistable (resp. uniformly K-stable) if and

only if 𝛿(𝑋, 𝐷) ⩾ 1 (resp. > 1).
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12 of 113 ASCHER et al.

Definition 2.12. Let 𝑋 be aℚ-Fano variety. Let𝐷 ∼ℚ −𝑟𝐾𝑋 be an effectiveℚ-divisor. For a ratio-
nal number 0 < 𝑐 < 𝑟−1, we say that (𝑋, 𝐷) is 𝑐-K-(poly/semi)stable (resp. uniformly 𝑐-K-stable) if
(𝑋, 𝑐𝐷) is K-(poly/semi)stable (resp. uniformly K-stable).

Next we provide a useful result on interpolation of K-stability (see, e.g., [31, Lemma 2.6]). These
kinds of interpolation results were known before in the smooth case via analytic arguments (see,
e.g., [90]).

Proposition 2.13. Let𝑋 be aℚ-Fano variety. Let𝐷 and Δ be effectiveℚ-divisors on𝑋 satisfying the

following properties.

∙ Both 𝐷 and Δ are proportional to −𝐾𝑋 under ℚ-linear equivalence.
∙ −𝐾𝑋 − 𝐷 is ample, and −𝐾𝑋 − Δ is nef.
∙ The log pairs (𝑋, 𝐷) and (𝑋, Δ) are K-(poly/semi)stable and K-semistable, respectively.

Then, we have

(1) If 𝐷 ≠ 0, then (𝑋, 𝑡𝐷 + (1 − 𝑡)Δ) is K-(poly/semi)stable for any 𝑡 ∈ (0, 1].
(2) If 𝐷 = 0, then (𝑋, (1 − 𝑡)Δ) is K-semistable for any 𝑡 ∈ (0, 1].
(3) If Δ ∼ℚ −𝐾𝑋 and (𝑋, Δ) is klt, then (𝑋, 𝑡𝐷 + (1 − 𝑡)Δ) is uniformly K-stable for any 𝑡 ∈ (0, 1).

Proof. Parts (1) and (2) follow directly from the linearity of generalized Futaki invariants in terms
of the coefficient. For part (3), we use the valuative criterion (Theorem 2.9). Simple computation
shows that

𝑆(𝑋,𝑡𝐷+(1−𝑡)Δ)(𝐸) = 𝑡𝑆(𝑋,𝐷)(𝐸), 𝐴(𝑋,𝑡𝐷+(1−𝑡)Δ)(𝐸) = 𝑡𝐴(𝑋,𝐷)(𝐸) + (1 − 𝑡)𝐴(𝑋,Δ)(𝐸).

By [20, Theorem A], we know that 𝛿0 ∶= 𝛿(𝑋, Δ;−𝐾𝑋 − 𝐷) = inf𝐸 𝐴(𝑋,Δ)(𝐸)∕𝑆(𝑋,𝐷)(𝐸) is strictly
positive. Since (𝑋, 𝐷) is K-semistable, Theorem 2.9 implies 𝐴(𝑋,𝐷)(𝐸) ⩾ 𝑆(𝑋,𝐷)(𝐸). Hence,

𝐴(𝑋,𝑡𝐷+(1−𝑡)Δ)(𝐸) ⩾ 𝑡𝑆(𝑋,𝐷)(𝐸) + (1 − 𝑡)𝛿0𝑆(𝑋,𝐷)(𝐸) =

(
1 +
(1 − 𝑡)𝛿0
𝑡

)
𝑆(𝑋,𝑡𝐷+(1−𝑡)Δ)(𝐸).

This implies the uniform K-stability of (𝑋, 𝑡𝐷 + (1 − 𝑡)Δ) for any 𝑡 ∈ (0, 1) by Theorem 2.9. □

2.3 Normalized volumes

We give a brief review of normalized volume of valuations introduced by Chi Li [79]. See [83] for
a survey about recent developments on this subject.

Definition 2.14. Let (𝑋, 𝐷) be a klt log pair of dimension 𝑛. Let 𝑥 ∈ 𝑋 be a closed point. A valu-

ation 𝑣 on𝑋 centered at 𝑥 is a valuation of ℂ(𝑋) such that 𝑣 ⩾ 0 on𝑋,𝑥 and 𝑣 > 0 on𝔪𝑥. The set
of such valuations is denoted by Val𝑋,𝑥. The volume is a function vol𝑋,𝑥 ∶ Val𝑋,𝑥 → ℝ⩾0 defined
as

vol𝑋,𝑥(𝑣) ∶= lim
𝑘→∞

dimℂ𝑋,𝑥∕{𝑓 ∈ 𝑋,𝑥 ∣ 𝑣(𝑓) ⩾ 𝑘}
𝑘𝑛∕𝑛!

.
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WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES 13 of 113

The log discrepancy is a function𝐴(𝑋,𝐷) ∶ Val𝑋,𝑥 → ℝ>0 ∪ {+∞} defined in [15, 61]. Note that if
𝑣 = 𝑎 ⋅ ord𝐸 where 𝑎 ∈ ℝ>0 and 𝐸 is a prime divisor over 𝑋 centered at 𝑥, then

𝐴(𝑋,𝐷)(𝑣) = 𝑎(1 + ord𝐸(𝐾𝑌 − 𝜋
∗(𝐾𝑋 + 𝐷))),

where 𝜋 ∶ 𝑌 → 𝑋 is a birational model of 𝑋 containing 𝐸 as a divisor.
The normalized volume is a function v̂ol(𝑋,𝐷),𝑥 ∶ Val𝑋,𝑥 → ℝ>0 ∪ {+∞} defined as

v̂ol(𝑋,𝐷),𝑥(𝑣) ∶=

{
𝐴(𝑋,𝐷)(𝑣)

𝑛 ⋅ vol𝑋,𝑥(𝑣) if 𝐴(𝑋,𝐷)(𝑣) < +∞

+∞ if 𝐴(𝑋,𝐷)(𝑣) = +∞.

The local volume of a klt singularity 𝑥 ∈ (𝑋,𝐷) is defined as

v̂ol(𝑥, 𝑋) ∶= min
𝑣∈Val𝑋,𝑥

v̂ol(𝑋,𝐷),𝑥(𝑣).

Note that the existence of a v̂ol-minimizer is proven in [24].

The following theorem from [82] generalizing [43, Theorem 1.1] and [81, Theorem 1.2] is crucial
in the study of explicit K-moduli spaces.

Theorem 2.15 [82, Proposition 4.6]. Let (𝑋, 𝐷) be a K-semistable log Fano pair of dimension 𝑛.
Then for any closed point 𝑥 ∈ 𝑋, we have

(−𝐾𝑋 − 𝐷)
𝑛 ⩽

(
1 +
1

𝑛

)𝑛
v̂ol(𝑥, 𝑋, 𝐷).

The following useful result is proved in [22, Corollary 4] and independently in [95, Proposition
2.36] as an application of the lower semicontinuity of local volumes.

Theorem 2.16. Let (𝑋, 𝐷) be a klt log Fano pair. If (𝑋, 𝐷) specially degenerates to a K-semistable

log Fano pair (𝑋0, 𝐷0), then (𝑋, 𝐷) is also K-semistable.

2.4 CM line bundles

Let us start with the original definition of CM line bundles due to Paul and Tian [109, 110]
(see also [40]).

Definition 2.17. Let 𝑓 ∶  → 𝑇 be a proper flat morphism of schemes of finite type over ℂ. Let
 be an 𝑓-ample line bundle on  . We assume that the fibers (𝑡,𝑡) of 𝑓 have constant pure
dimension 𝑛 ⩾ 1 and constant Hilbert polynomial 𝜒. A result of Mumford–Knudsen [68] said
that there exists line bundles 𝜆𝑖 = 𝜆𝑖( ,) on 𝑇 such that for all 𝑘,

det 𝑓!(𝑘) = 𝜆(
𝑘
𝑛+1)
𝑛+1

⊗ 𝜆
(𝑘𝑛)
𝑛 ⊗⋯⊗ 𝜆0.
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14 of 113 ASCHER et al.

By flatness, theHilbert polynomial𝜒(𝑡,𝑘𝑡 ) = 𝑎0𝑘𝑛 + 𝑎1𝑘𝑛−1 + 𝑂(𝑘𝑛−2). We set 𝜇 = 𝜇( ,) ∶=
2𝑎1
𝑎0
. Then the CM line bundle is defined as

𝜆CM,𝑓, ∶= 𝜆𝜇+𝑛(𝑛+1)𝑛+1
⊗ 𝜆−2(𝑛+1)𝑛 .

The Chow line bundle† is defined as

𝜆Chow,𝑓, ∶= 𝜆𝑛+1.

Next, we recall the definition of log CM line bundles.

Definition 2.18 (log CM line bundle). Assume 𝑓 ∶  → 𝑇 and  satisfy the conditions in Defi-
nition 2.17. For 𝑖 = 1, … , 𝑘, let 𝑖 be a closed subscheme of  such that 𝑓|𝑖 ∶ 𝑖 → 𝑇 is of pure
dimension 𝑛 − 1, and either 𝑓|𝑖 is flat whose fibers have constant Hilbert polynomial, or 𝑓|𝑖
is a well-defined family of cycles over a seminormal base scheme 𝑇. Let 𝑐𝑖 ∈ [0, 1] be rational
numbers. We define the log CM ℚ-line bundle of the data (𝑓 ∶  → 𝑇,, ∶= ∑𝑘

𝑖=1 𝑐𝑖𝑖) to be

𝜆CM,𝑓,, ∶= 𝜆CM,𝑓, −
𝑛(𝑛−1𝑡 ⋅𝑡)
(𝑛𝑡 ) 𝜆Chow,𝑓, + (𝑛 + 1)𝜆Chow,𝑓|,| ,

where

(𝑛−1𝑡 ⋅𝑡) ∶=
𝑘∑
𝑖=1

𝑐𝑖(𝑛−1𝑡 ⋅𝑖,𝑡), 𝜆Chow,𝑓|,| ∶=
𝑘⨂
𝑖=1

𝜆
⊗𝑐𝑖
Chow,𝑓|𝑖 ,|𝑖

.

For any 𝔾𝑚-linearized line bundle over 𝔸
1 equipped with the standard 𝔾𝑚-action, we denote

by wt(⋅) the corresponding 𝔾𝑚-weight of the central fiber. The following result from [109] is a
fundamental property of (log) CM line bundles.

Proposition 2.19. Let (𝑋, 𝐷 =
∑𝑘
𝑖=1 𝑐𝑖𝐷𝑖) be an 𝑛-dimensional projective log pair. Let 𝐿 be an

ample line bundle on 𝑋. Let 𝜋 ∶ ( ,;) → 𝔸1 be a test configuration of (𝑋, 𝐷; 𝐿). Then, 𝜆CM,𝜋,,
𝜆Chow,𝜋, and 𝜆Chow,𝜋|𝑖 ,|𝑖 are all 𝔾𝑚-linearized line bundles over 𝔸

1. Then, we have

Fut( ;) = 1

(𝑛 + 1)(𝐿𝑛)
wt(𝜆CM,𝜋,),

CH( ,;) = 1

(𝑛 + 1)(𝐿𝑛)

(
−
𝑛(𝐿𝑛−1 ⋅ 𝐷)

(𝐿𝑛)
wt(𝜆Chow,𝜋,) + (𝑛 + 1)wt(𝜆Chow,𝜋|,|)

)
.

In particular,

Fut( ,;) = 1

(𝑛 + 1)(𝐿𝑛)
wt(𝜆CM,𝜋,,).

† This can also be defined when 𝑓 is a well-defined family of 𝑛-dimensional cycles over a seminormal base scheme 𝑇 (see

[69, Section I.3]).

 1
4
6
0
2
4
4
x
, 2

0
2
4
, 6

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n
d
m

ath
so

c.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
2
/p

lm
s.1

2
6

1
5

 b
y

 N
o

rth
w

estern
 U

n
iv

ersity
 L

ib
raries, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

1
/0

6
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES 15 of 113

Next, we will introduce the concept of ℚ-Gorenstein flat families of log Fano pairs. In order to
adapt this concept to our moduli problems, we need to include cases when the base is a normal
Deligne–Mumford stack.

Definition 2.20.

(a) Let 𝑓 ∶  → 𝑇 be a proper flat morphism between reduced schemes. Let = ∑𝑘
𝑖=1 𝑐𝑖𝑖 be a

finite ℚ⩾0-linear combination of reduced closed subschemes of  . We say 𝑓 ∶ ( ,) → 𝑇 is
a ℚ-Gorenstein flat family of log Fano pairs if the following conditions hold:
∙ 𝑓 has normal, geometrically connected fibers of the same dimension 𝑛;
∙ 𝑖 is a relative Mumford divisor on  over 𝑇 for every 𝑖 (see [73, Definition 1]);
∙ −(𝐾∕𝑇 +) is ℚ-Cartier and 𝑓-ample.
We define the CM ℚ-line bundle of 𝑓 ∶ ( ,) → 𝑇 as 𝜆CM,𝑓, ∶= 𝑙−𝑛𝜆CM,𝑓,, where  ∶=
−𝑙(𝐾∕𝑇 +) is an 𝑓-ample Cartier divisor on  for some 𝑙 ∈ ℤ>0.

(b) Let  and  be normal separated Deligne–Mumford stacks that are finite type over ℂ. Let
 be an effective ℚ-divisor on  . We say 𝑓 ∶ ( ,) →  is a ℚ-Gorenstein flat family of log
Fano pairs if for some (or equivalently, any) étale cover 𝑢 ∶ 𝑈 →  from a normal scheme
𝑈, the base change 𝑓 × 𝑢 ∶ ( ,) × 𝑈 → 𝑈 is a ℚ-Gorenstein flat family of log Fano
pairs.

In our moduli problems, we mainly consider the following class of log Fano pairs.

Definition 2.21. Let 𝑐, 𝑟 be positive rational numbers such that 𝑐𝑟 < 1. A log Fano pair (𝑋, 𝑐𝐷) is
ℚ-Gorenstein smoothable if there exists aℚ-Gorenstein flat family of log Fano pairs 𝜋 ∶ ( , 𝑐) →
𝐵 over a pointed smooth curve (0 ∈ 𝐵) such that the following holds:

∙ Both −𝐾∕𝐵 and are ℚ-Cartier, 𝜋-ample and ∼ℚ,𝜋 −𝑟𝐾∕𝐵;
∙ Both 𝜋 and 𝜋| are smooth morphisms over 𝐵 ⧵ {0};
∙ (0, 𝑐0) ≅ (𝑋, 𝑐𝐷).
A ℚ-Gorenstein flat family of log Fano pairs 𝑓 ∶ ( , 𝑐) → 𝑇 is called a ℚ-Gorenstein smooth-
able log Fano family if all fibers are ℚ-Gorenstein smoothable log Fano pairs and  is
ℚ-Cartier.

For application purposes, it is always convenient to work with a smaller family rather than the
whole Hilbert scheme. Thus, the next criterion is important when checking K-stability in explicit
families. It is a partial generalization of [109, Theorem 1] and [106, Theorem 3.4].

Theorem 2.22. Let 𝑓 ∶ ( ,) →  be a ℚ-Gorenstein flat family of log Fano pairs over a normal

proper Deligne–Mumford stack  that is finite type over ℂ. Denote by 𝑇 the coarse moduli space of

 . Let 𝐺 be a reductive group acting on  and  such that is 𝐺-invariant and 𝑓 is 𝐺-equivariant.

Assume in addition that

(a) if Aut(𝑡,𝑡) is finite for 𝑡 ∈ 𝑇, then the stabilizer subgroup 𝐺𝑡 is also finite;
(b) if (𝑡,𝑡) ≅ (𝑡′ ,𝑡′) for 𝑡, 𝑡′ ∈ 𝑇, then 𝑡′ ∈ 𝐺 ⋅ 𝑡;

(c) 𝜆CM,𝑓, descends to an ample ℚ-line bundle ΛCM,𝑓, on 𝑇.

Then, 𝑡 ∈ 𝑇 isGIT (poly/semi)stablewith respect to the𝐺-linearizedℚ-line bundleΛCM,𝑓, if (𝑡,𝑡)
is a K-(poly/semi)stable log Fano pair.
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16 of 113 ASCHER et al.

Proof. We first show that K-semistability implies GIT-semistability. Denote by  ∶= −𝑙(𝐾∕ +) a Cartier divisor on for 𝑙 ∈ ℤ>0. Let 𝑡 ∈ 𝑇 be a closed point such that (𝑡,𝑡) is K-semistable.
Then 𝑡 induces a morphism 𝜏 ∶ Spec ℂ→  that is unique up to isomorphism. Let 𝜎 ∶ 𝔾𝑚 → 𝐺
be a 1-PS of 𝐺. Then, we have a morphism 𝜌 ∶ 𝔾𝑚 →  as the composition of 𝜏 × 𝜎 ∶ 𝔾𝑚 =
𝔾𝑚 × Spec ℂ→ 𝐺 ×  and the 𝐺-action morphism 𝐺 ×  →  . Since  is proper, 𝜌 extends to
a 𝔾𝑚-equivariant morphism 𝜌̄ ∶ 𝔸

1 →  . Pulling back the morphism 𝑓 ∶ ( ,) →  and  to
𝔸1 under 𝜌̄ yields a test configuration (𝑡,𝜎,𝑡,𝜎;𝑡,𝜎)∕𝔸1 of (𝑡,𝑡). By Proposition 2.19, we
know that Fut(𝑡,𝜎,𝑡,𝜎;𝑡,𝜎) is a positive multiple of the GIT weight 𝜇ΛCM,𝑓,(𝑡, 𝜎) (see [99,
Definition 2.2]) that implies that both are nonnegative by K-semistability of (𝑡,𝑡). Thus, the
Hilbert-Mumford criterion implies that 𝑡 ∈ 𝑇 is GIT semistable.
Next, assume that (𝑡,𝑡) is K-polystable. From the above discussion, we see that 𝑡 is GIT

semistable. Let 𝜎 ∶ 𝔾𝑚 → 𝐺 be a 1-PS such that 𝑡0 ∶= lim𝑠→0 𝜎(𝑠) ⋅ 𝑡 is GIT polystable. Then, the
GIT weight 𝜇ΛCM,𝑓,(𝑡, 𝜎) is zero, which implies that Fut(𝑡,𝜎,𝑡,𝜎;𝑡,𝜎) vanishes as well. Thus,
we have (𝑡,𝑡) ≅ (𝑡0 ,𝑡0) which implies that 𝑡 ∈ 𝐺 ⋅ 𝑡0 is GIT polystable by assumption (b).
The stable part is a consequence of the polystable part and assumption (a). □

The following proposition provides an intersection formula for log CM line bundles. For
the case without divisors, this was proven by Paul and Tian [109]. The current statement is a
consequence of [29, Proposition 3.7]. We provide a proof here for readers’ convenience.

Proposition 2.23. Let 𝑓 ∶ ( ,) → 𝑇 be a ℚ-Gorenstein flat family of 𝑛-dimensional log Fano
pairs over a normal proper variety 𝑇. Then,

c1(𝜆CM,𝑓,) = −𝑓∗((−𝐾∕𝑇 −)𝑛+1). (2.1)

Proof. Since both sides of (2.1) are functorial under pull-backs, by passing to a resolution, we may
assume that 𝑇 is smooth and projective. Then, [29, Lemma A.2] implies that

c1(𝑓∗⊗𝑞) = 𝑓∗(
𝑛+1)

(𝑛 + 1)!
𝑞𝑛+1 −

𝑓∗(𝐾∕𝑇 ⋅ 𝑛)
2 ⋅ 𝑛!

𝑞𝑛 + 𝑂(𝑞𝑛−1),

where  ∶= −𝑙(𝐾∕𝑇 +) is Cartier and 𝑓-ample. Hence, we have c1(𝜆Chow,𝑓,) = 𝑓∗(𝑛+1) and
c1(𝜆𝑛,𝑓,) = 12𝑓∗(𝑛(𝑛+1) − (𝐾∕𝑇 ⋅ 𝑛)). It is clear that 𝜇( ,) = −

𝑛(𝐾𝑡 ⋅𝑛−1𝑡 )

(𝑛𝑡 ) . Hence,

c1(𝜆CM,𝑓,) = −
𝑛(𝐾𝑡 ⋅ 𝑛−1𝑡 )

(𝑛𝑡 ) 𝑓∗(𝑛+1) + (𝑛 + 1)𝑓∗(𝐾∕𝑇 ⋅ 𝑛).

We also know that c1(𝜆Chow,𝑓|,|) = 𝑓∗(𝑛 ⋅). Thus,

c1(𝜆CM,𝑓,,) = c1(𝜆CM,𝑓,) −
𝑛(𝐾𝑡 ⋅ 𝑛−1𝑡 )

(𝑛𝑡 ) c1(𝜆Chow,𝑓,) + (𝑛 + 1)c1(𝜆Chow,𝑓|,|)

=
𝑛((−𝐾𝑡 − 𝐷𝑡) ⋅ 𝑛−1𝑡 )

(𝑛𝑡 ) 𝑓∗(𝑛+1) − (𝑛 + 1)𝑓∗((−𝐾∕𝑇 −) ⋅ 𝑛)

= −𝑙𝑛𝑓∗((−𝐾∕𝑇 −)𝑛+1). □
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Next, we recall the definition of Hodge line bundles.

Definition 2.24. Let 𝑓 ∶  → 𝑇 be a ℚ-Gorenstein flat family of ℚ-Fano varieties over a nor-
mal base. Let  be an effective ℚ-Cartier ℚ-divisor on  not containing any fiber of 𝑓 such
that  ∼ℚ,𝑓 −𝑟𝐾∕𝑇 for some 𝑟 ∈ ℚ>0. The Hodge ℚ-line bundle 𝜆Hodge,𝑓,𝑟−1 is defined as the
ℚ-linear equivalence class of ℚ-Cartier ℚ-divisors on 𝑇 such that

𝐾∕𝑇 + 𝑟−1 ∼ℚ 𝑓∗𝜆Hodge,𝑓,𝑟−1.
Proposition 2.25. With the notation of Definition 2.24, for any rational number 0 ⩽ 𝑐 < 𝑟−1, we

have

(1 − 𝑐𝑟)−𝑛𝜆CM,𝑓,𝑐 = (1 − 𝑐𝑟)𝜆CM,𝑓 + 𝑐𝑟(𝑛 + 1)(−𝐾𝑡 )𝑛𝜆Hodge,𝑓,𝑟−1. (2.2)

Proof. For simplicity, we denote 𝜆𝑐 ∶= 𝜆CM,𝑓,𝑐 and 𝜆Hodge ∶= 𝜆Hodge,𝑓,𝑟−1. Let  ∶= −𝑙𝐾∕𝑇 be
an ample Cartier divisor on  for some 𝑙 ∈ ℤ>0. Since CM line bundles are invariant by twisting
pull-back of a line bundle on the base, we know that 𝜆𝑐 = 𝑙

−𝑛(1 − 𝑐𝑟)𝑛𝜆CM,𝑓,𝑐,. We also know
that

𝜆CM,𝑓,𝑐, = 𝜆CM,𝑓, − 𝑐
(
𝑛(𝑛−1𝑡 ⋅𝑡)
(𝑛𝑡 ) 𝜆Chow,𝑓, − (𝑛 + 1)𝜆Chow,𝑓|,|

)
.

Hence, to show (2.2), it suffices to show that 𝜆CM,𝑓,𝑟−1, = (𝑛 + 1)𝑙𝑛(−𝐾𝑡 )𝑛𝜆Hodge. Since both
sides are functorial under pull-backs, we may assume that 𝑇 is smooth and quasi-projective. By
taking closure in the relative Hilbert scheme of (𝑡,𝑡;𝑡), passing to a resolution of the base,
and taking normalization of the total family, we can find a smooth projective closure 𝑇 of 𝑇, an
extension 𝑓 ∶ ( ,) → 𝑇 of 𝑓, and an 𝑓-ample Cartier divisor  on  such that  is normal pro-
jective, is an effectiveℚ-Cartierℚ-divisor on  , 𝑓 and 𝑓| are pure dimensional, and | = .
Although𝑓 is not necessarily flat, theCM line bundle 𝜆

CM,𝑓,𝑐, can still be defined by [29, Lemma
A.2] such that its restriction to𝑇 is 𝜆CM,𝑓,𝑐,. By similar argument to the proof of Proposition 2.23,
we have that

c1(𝜆CM,𝑓,𝑟−1,) =
𝑛((−𝐾𝑡 − 𝑟−1𝐷𝑡) ⋅ 𝑛−1𝑡 )

(𝑛𝑡 ) 𝑓∗(𝑛+1) − (𝑛 + 1)𝑓∗((−𝐾∕𝑇 − 𝑟−1) ⋅ 𝑛)

= (𝑛 + 1)𝑓∗((𝐾∕𝑇 + 𝑟−1) ⋅ 𝑛).
Since 𝐾∕𝑇 + 𝑟−1 = 𝑓∗𝜆Hodge, we know that

𝜆CM,𝑓,𝑟−1, = (𝑛 + 1)(𝑛𝑡 )𝜆Hodge = (𝑛 + 1)𝑙𝑛(−𝐾𝑡 )𝑛𝜆Hodge.
The proof is finished. □

2.5 Good moduli spaces in the sense of Alper

We recall the definition and some notions regarding goodmoduli spaces from [10], as these objects
naturally appear in the construction of moduli spaces in K-stability.
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Definition 2.26. A quasi-compact morphism 𝜙 ∶  → 𝑌 from an Artin stack to an algebraic
space is a good moduli space if

(1) the push-forward functor on quasi-coherent sheaves is exact, and
(2) the induced morphism on sheaves 𝑌 → 𝜙∗ is an isomorphism.

Definition 2.27. Let 𝜙 ∶  → 𝑌 be a good moduli space. An open substack  ⊆  is saturated
for 𝜙 if 𝜙−1(𝜙( )) =  .

This is useful for the following reasons.

Remark 2.28 [10, Remark 6.2, Lemma 6.3].

(1) If is saturated for 𝜙, then 𝜙( ) is open and 𝜙 ∣ ∶  → 𝜙( ) is a good moduli space.
(2) If 𝜓 ∶  → 𝑍 is a morphism to a scheme 𝑍 and 𝑉 ⊆ 𝑍 is an open subscheme, then 𝜓−1(𝑉) is

saturated for 𝜙.

2.6 Hacking’s compact moduli of plane curves

Hacking constructed a propermoduli stackH𝑑 of plane curves of degree𝑑 ⩾ 4using tools from the
MMP [49, 50]. It is a special case of themoduli theory of log canonically polarized pairs developed
by Kollár, Shepherd-Barron, and Alexeev. Roughly speaking the parametrized elements are demi-
normal pairs (𝑋, 𝐷), where𝑋 is aℚ-Gorenstein deformation ofℙ2 and𝐷 is a degeneration of plane
curves such that the pair satisfies some natural properties that will be reviewed below. First, we

recall the normal surfaces parametrized by H𝑑 .
Definition 2.29. A Manetti surface is a klt projective surface that admits a ℚ-Gorenstein
smoothing to ℙ2.

Proposition 2.30 [50, Theorems 8.2 & 8.3]. A surface 𝑋 is a Manetti surface if and only if it is a

ℚ-Gorenstein deformation of the weighted projective plane ℙ(𝑎2, 𝑏2, 𝑐2)where 𝑎2 + 𝑏2 + 𝑐2 = 3𝑎𝑏𝑐.

Moreover, all such 𝑋 have unobstructed ℚ-Gorenstein deformations.

We now give the definition of the surface pairs parametrized by H𝑑 .
Definition 2.31. Let 𝑋 be a demi-normal surface and let 𝐷 be an effective ℚ-Cartier divisor on
𝑋. Let 𝑑 ⩾ 4 be an integer. The pair (𝑋, 𝐷) is a Hacking stable pair of degree 𝑑 if:

(1) the pair (𝑋, ( 3
𝑑
+ 𝜖)𝐷) is slc, and the divisor 𝐾𝑋 + (

3

𝑑
+ 𝜖)𝐷 is ample for any 0 < 𝜖 ≪ 1,

(2) 𝑑𝐾𝑋 + 3𝐷 ∼ 0, and
(3) there is a ℚ-Gorenstein deformation of (𝑋, 𝐷) to (ℙ2, 𝐶𝑡) where 𝐶𝑡 is a family of plane curves

of degree 𝑑.

We can now define the stack H𝑑 .
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Definition 2.32. Let𝑑 ⩾ 4 be an integer.We define theHackingmoduli stackH𝑑 to be the reduced
stack representing the following moduli pseudofunctor over a reduced base 𝑆:

H𝑑 (𝑆) = {( ,)∕𝑆 ∣ ( ,)∕𝑆 is a ℚ − Gorenstein family of Hacking stable pairs of degree 𝑑}.

Theorem 2.33 [50, Theorem 4.4, 7.2] and [9]. The stack H𝑑 is a reduced proper Deligne–Mumford
stack of finite type overℂ. Its coarse moduli space 𝑃

H

𝑑 is a reduced projective variety that compactifies

the moduli space of smooth plane curves of degree 𝑑. Furthermore, if 3 ∤ 𝑑, then

(1) the stack H𝑑 is smooth, and
(2) the underlying surface of a Hacking stable pair of degree 𝑑 is either a Manetti surface, or the slt†

union of two normal surfaces glued along a smooth rational curve.

3 CONSTRUCTION OF K-MODULI SPACES OF SMOOTHABLE LOG
FANO PAIRS

In this section, we construct K-moduli stacks and spaces of ℚ-Gorenstein smoothable log Fano
pairs (see Definition 2.21). Our construction is largely based on [92] with new input from [27,
60, 121]. Results from this section can be applied to the study of many explicit K-moduli spaces,
including theK-moduli spaces of plane curves as themain subject of this paper.Wewill investigate
other applications in forthcoming work.
The following theorems are the main results of this section. The first theorem is a natural

generalization of [92, Theorem 1.3].

Theorem 3.1. Let 𝜒0 be the Hilbert polynomial of an anticanonically polarized Fano manifold.

Fix 𝑟 ∈ ℚ>0 and a rational number 𝑐 ∈ (0,min{1, 𝑟
−1}). Then there exists a reduced Artin stack

𝜒0,𝑟,𝑐
of finite type over ℂ parametrizing all K-semistable ℚ-Gorenstein smoothable log Fano

pairs (𝑋, 𝑐𝐷) with Hilbert polynomial 𝜒(𝑋,𝑋(−𝑚𝐾𝑋)) = 𝜒0(𝑚) for sufficiently divisible 𝑚 and

𝐷 ∼ℚ −𝑟𝐾𝑋 . Moreover, the Artin stack 𝜒0,𝑟,𝑐
admits a good moduli space 𝐾𝑀𝜒0,𝑟,𝑐 as a proper

reduced scheme of finite type over ℂ.

Indeed, in Section 3.6 we show that the K-moduli stack𝜒0,𝑟,𝑐
represents the moduli pseud-

ofunctor of ℚ-Gorenstein smoothable K-semistable log Fano families with certain numerical
invariants over reduced base schemes.
The second theorem provides a wall crossing principle for these K-moduli spaces when varying

the coefficient 𝑐.

Theorem 3.2. There exist rational numbers 0 = 𝑐0 < 𝑐1 < 𝑐2 < ⋯ < 𝑐𝑘 = min{1, 𝑟
−1} such that 𝑐-

K-(poly/semi)stability conditions do not change for 𝑐 ∈ (𝑐𝑖 , 𝑐𝑖+1). For each 1 ⩽ 𝑖 ⩽ 𝑘 − 1, we have

open immersions

𝜒0,𝑟,𝑐𝑖−𝜖
↪ Φ−𝑖 𝜒0,𝑟,𝑐𝑖

↩ Φ+
𝑖
𝜒0,𝑟,𝑐𝑖+𝜖

,

which induce projective morphisms

𝐾𝑀𝜒0,𝑟,𝑐𝑖−𝜖
𝜙−
𝑖
"""→ 𝐾𝑀𝜒0,𝑟,𝑐𝑖

𝜙+
𝑖
←""" 𝐾𝑀𝜒0,𝑟,𝑐𝑖+𝜖.

†Recall that a demi-normal pair (𝑋, 𝐷) is semi-log terminal (slt) if it is slc and its normalization is plt.
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20 of 113 ASCHER et al.

Moreover, all the above wall crossing morphisms have local VGIT presentations as in [6, (1.2)], and

the CM ℚ-line bundles on 𝐾𝑀𝜒0,𝑟,𝑐𝑖±𝜖 are 𝜙
±
𝑖
-ample (see Theorems 3.33 and 3.36 for the precise

statements).

Remark 3.3. Recently, there has been tremendous progress on constructing K-moduli spaces and
stacks using purely algebraic methods. We point the reader to Remark 1.9 for a further discussion
and citations. Our construction is mostly based on the analytic works [92, 104, 115] and algebraic
works [27, 60, 93]. Since many of the works mentioned in Remark 1.9(1) appeared simultaneously
to or after the preparation of this paper, our constructions do not rely on those results, though it
is likely some of our arguments can be simplified using those results.
Meanwhile, a suitable condition for families of log pairs over nonreduced bases was discovered

in [73] as the K-flatness condition. Since we only study families of ℚ-Gorenstein smoothable log
Fano pairs, in this paper, we restrict the bases of such families to be reduced.

3.1 Foundations

We will fix an arbitrary rational number 𝜖0 ∈ (0, 1). For technical reasons, we will concentrate
on constructing the K-moduli space of ℚ-Gorenstein smoothable log Fano pairs (𝑋, 𝑐𝐷) where
𝐷 ∼ℚ −𝑟𝐾𝑋 and 𝑐 ∈ (0,min{1, (1 − 𝜖0)𝑟

−1}) a rational number. As we will see in Theorem 3.20,
the K-(poly/semi)stability conditions will not change for 𝑐 sufficiently close to 𝑟−1. Besides, all
numbers except 𝛽, 𝛽∙, and𝔅 are assumed to be rational.
The first boundedness result is a generalization of work in [92] that was a consequence of [28,

120].

Theorem 3.4. Fix 𝑛 a positive integer, 𝑟 a positive rational number, and 𝜖0 ∈ (0, 1) a rational

number. Then the following collection of ℚ-Gorenstein smoothable pairs

{(𝑋, 𝐷) ∣ dim𝑋 = 𝑛, (𝑋, 𝑐𝐷) is K-semistable for some 𝑐 ∈ (0,min{1, (1 − 𝜖0)𝑟
−1})}.

is log bounded. In particular, there exists 𝑚1 = 𝑚1(𝑛, 𝑟, 𝜖0) ∈ ℤ>0 such that 𝑚1𝐾𝑋 is Cartier

whenever (𝑋, 𝐷) belongs to the above collection.

Proof. Since 𝐷 ∼ℚ −𝑟𝐾𝑋 , it suffices to bound the variety 𝑋. From the assumption that (𝑋, 𝑐𝐷) is
K-semistable for some 𝑐 < (1 − 𝜖0)𝑟

−1, by [23, Theorem 7.2], we conclude that 𝛿(𝑋) ⩾ 𝜖0. Since
the volume of 𝑋 is a positive integer, 𝑋 belongs to a bounded family by [60]. □

Proposition 3.5. Fix 𝑛,𝑚 ∈ ℤ>0, 𝑟 ∈ ℚ>0 and 𝜖0 ∈ (0, 1). Let 𝑋 be a ℚ-Fano variety with 𝑚𝐾𝑋
Cartier. Let𝐷 ∼ℚ −𝑟𝐾𝑋 be aWeil divisor. Let 𝑐 < (1 − 𝜖0)𝑟

−1 be a rational number such that (𝑋, 𝑐𝐷)

is a log Fano pair. Then,

(1) there exists a positive integer 𝑞 = 𝑞(𝑛, 𝑟, 𝜖0, 𝑚) and a Cartier divisor Δ ∈ | − 𝑞𝐾𝑋| such that
(𝑋, lct(𝑋; 𝐷) ⋅ 𝐷 + Δ) is a log canonical pair.

(2) there exists 𝛾0 = 𝛾0(𝑛, 𝑟, 𝜖0, 𝑚) such that either 𝑐 > lct(𝑋; 𝐷) −
𝜖0𝑟
−1

𝑛+1
which implies 𝛼(𝑋, 𝑐𝐷) <

1

𝑛+1
, or (𝑋, 𝑐𝐷 +

(1−𝛽)(1−𝑐𝑟)

𝑞
Δ) is uniformly K-stable for any 𝛽 ∈ (0, 𝛾0].
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Proof.

(1) By [58], such 𝑋 form a bounded family. This follows from the Bertini theorem for bounded
families.

(2) Let us assume that 𝛼(𝑋, 𝑐𝐷) ⩾ 1

𝑛+1
. We know that 𝛼(𝑋, 𝑐𝐷;−𝐾𝑋) = (1 − 𝑐𝑟)𝛼(𝑋, 𝑐𝐷) ⩾

𝜖0
𝑛+1

.

Thus, (𝑋, 𝑐𝐷 +
𝜖0𝑟
−1

𝑛+1
𝐷) is log canonical that implies 𝑐 ⩽ lct(𝑋; 𝐷) −

𝜖0𝑟
−1

𝑛+1
. It is clear that

(𝑋, (lct(𝑋; 𝐷) −
𝜖0𝑟
−1

𝑛+1
)𝐷 + 1

𝑞
Δ) form a bounded family of klt pairs. Hence, [23] implies that

there exists 𝛼1 = 𝛼1(𝑛, 𝑟, 𝜖0, 𝑚) > 0 such that

𝛼
(
𝑋, 𝑐𝐷 + 1−𝑐𝑟

𝑞
Δ;−𝐾𝑋

)
⩾ 𝛼

(
𝑋, (lct(𝑋; 𝐷) −

𝜖0𝑟
−1

𝑛+1
)𝐷 + 1

𝑞
Δ;−𝐾𝑋

)
⩾ 𝛼1.

Hence,

𝛼
(
𝑋, 𝑐𝐷 +

(1−𝛽)(1−𝑐𝑟)

𝑞
Δ
)
=

1

𝛽(1 − 𝑐𝑟)
𝛼
(
𝑋, 𝑐𝐷 +

(1−𝛽)(1−𝑐𝑟)

𝑞
Δ;−𝐾𝑋

)

⩾
1

𝛽(1 − 𝑐𝑟)

(
𝛽𝛼(𝑋, 𝑐𝐷;−𝐾𝑋) + (1 − 𝛽)𝛼

(
𝑋, 𝑐𝐷 + 1−𝑐𝑟

𝑞
Δ;−𝐾𝑋

))

⩾ 𝛼(𝑋, 𝑐𝐷;−𝐾𝑋) + (𝛽
−1 − 1)𝛼

(
𝑋, 𝑐𝐷 + 1−𝑐𝑟

𝑞
Δ;−𝐾𝑋

)

⩾
𝜖0
𝑛 + 1

+ (𝛽−1 − 1)𝛼1.

Let us take 𝛾0 ∶=
𝛼1
1+𝛼1

, then for any 𝛽 ∈ (0, 𝛾0], we have 𝛼(𝑋, 𝑐𝐷 +
(1−𝛽)(1−𝑐𝑟)

𝑞
Δ) ⩾ 1. Thus,

[39] implies that (𝑋, 𝑐𝐷 + (1−𝛽)(1−𝑐𝑟)
𝑞

Δ) is uniformly K-stable. □

Next, we use an important result obtained in the solution of Yau–Tian–Donaldson conjecture
for log smooth log Fano pairs [121]. It plays a crucial role in proving openness and properness of
the K-moduli conjecture in our setting. We are very grateful to Feng Wang for kindly providing a
proof. For the case where 𝐷𝑖 = 0, that is, the boundary is a single smooth pluricanonical divisor,
see [16, 28, 120] or [92, Theorem 4.1].

Theorem 3.6 [121]. Fix 𝑛, 𝑞 ∈ ℤ>0, 𝑟 ∈ ℚ>0, and 𝜖0, 𝛾0 ∈ (0, 1). Let 𝑋𝑖 be a sequence of 𝑛-

dimensional Fanomanifoldswith a fixedHilbert polynomial𝜒0. Let𝐷𝑖 ∼ℚ −𝑟𝐾𝑋𝑖 be smooth divisors

on 𝑋𝑖 . Let Δ𝑖 be smooth divisors in | − 𝑞𝐾𝑋𝑖 | that are transversal to 𝐷𝑖 . Let 𝑐𝑖 and 𝛽𝑖 be a sequence
converging, respectively, to 𝑐∞ and 𝛽∞ with 𝑐∞ < min{1, (1 − 𝜖0)𝑟

−1} and 0 < 𝛾0 ⩽ 𝛽𝑖 ⩽ 1. Suppose

that each 𝑋𝑖 admits a conical Kähler–Einstein metric 𝜔(𝛽𝑖) solving:

Ric(𝜔(𝛽𝑖)) = 𝛽𝑖(1 − 𝑐𝑖𝑟)𝜔(𝛽𝑖) + 𝑐𝑖[𝐷𝑖] +
(1 − 𝛽𝑖)(1 − 𝑐𝑖𝑟)

𝑞
[Δ𝑖]. (3.1)

Then, theGromov–Hausdorff limit of any subsequence of {(𝑋𝑖 , 𝜔(𝛽𝑖))}𝑖 is homeomorphic to aℚ-Fano

variety 𝑌. Furthermore, there are unique Weil divisors 𝐸, Γ ⊂ 𝑌 such that

(1) (𝑌, 𝑐∞𝐸 +
(1−𝛽∞)(1−𝑐∞𝑟)

𝑞
Γ) is a klt log Fano pair;
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(2) 𝑌 admits a weak conical Kähler–Einstein metric 𝜔(𝛽∞) solving

Ric(𝜔(𝛽∞)) = 𝛽∞(1 − 𝑐∞𝑟)𝜔(𝛽∞) + 𝑐∞[𝐸] +
(1 − 𝛽∞)(1 − 𝑐∞𝑟)

𝑞
[Γ].

In particular,Aut(𝑌, 𝐸 + Γ) is reductive and the pair (𝑌, 𝑐∞𝐸 +
(1−𝛽∞)(1−𝑐∞𝑟)

𝑞
Γ) is K-polystable;

(3) there exists a positive integer 𝑚2 = 𝑚2(𝜒0, 𝑟, 𝑞, 𝜖0, 𝛾0), such that possibly after passing to a

subsequence, there are Tian’s embeddings 𝑇𝑖 ∶ 𝑋𝑖 → ℙ
𝑁 and 𝑇∞ ∶ 𝑌 → ℙ

𝑁 , defined by tak-

ing a suitable orthonormal basis of the complete linear system | −𝑚𝐾𝑋𝑖 | and | −𝑚𝐾𝑌| with
respect to 𝜔(𝛽𝑖) and 𝜔(𝛽∞), respectively, such that for any multiple 𝑚 of 𝑚2 and 𝑁 + 1 =

𝜒(𝑋𝑖 ,𝑋𝑖 (−𝑚𝐾𝑋𝑖 )), we have that 𝑇𝑖(𝑋𝑖) converge to 𝑇∞(𝑌) as projective varieties, and 𝑇𝑖(𝐷𝑖)
(respectively, 𝑇𝑖(Δ𝑖)) converge to 𝑇∞(𝐸) (respectively, 𝑇∞(Γ)) as algebraic cycles.

Proof. It is a combination of [121, Proposition 4.18, Corollary 4.19, and Lemma 5.4]. By taking
subsequences, we can assume that (𝑋𝑖; 𝜔(𝛽𝑖)) converges to a metric space (𝑋; 𝑑) in the Gromov–
Hausdorff topology. Since the divisors are ample, Cheeger–Colding–Tian’s theory applies. From
[121, Proposition 4.18], there exists a positive integer 𝑚2 such that the partial 𝐶0 holds for
(𝑋𝑖; 𝜔(𝛽𝑖); −𝑚𝐾𝑋𝑖 ) for any multiple 𝑚 of 𝑚2. Then, we get a sequence of Tian’s embeddings
𝑇𝑖 ∶ 𝑋𝑖 → ℙ

𝑁 using an orthonormal basis of𝐻0(𝑋𝑖 ,𝑋𝑖 (−𝑚𝐾𝑋𝑖 )). By taking subsequences again,
we can assume that 𝑇𝑖(𝑋𝑖) converges to 𝑌 as cycles. Since 𝑇𝑖 are uniform Lipschitz, we get a map
𝑇∞ from (𝑋; 𝑑) to𝑌. By [121, Corollary 4.19], 𝑇∞ is a homeomorphim and𝑌 is a normal projective
variety.Moreover, if we define theGromov–Hausdorff limit of𝐷𝑖 , Δ𝑖 as𝐷∞, Δ∞, then𝐸 = 𝑇∞(𝐷∞)

and Γ = 𝑇∞(Δ∞) are divisors on 𝑌 such that (𝑌, 𝑐∞𝐸 +
(1−𝛽∞)(1−𝑐∞𝑟)

𝑞
Γ) is a klt log Fano pair, and

it admits a weak conical Kähler–Einstein metric 𝜔(𝛽∞):

Ric(𝜔(𝛽∞)) = 𝛽∞(1 − 𝑐∞𝑟)𝜔(𝛽∞) + 𝑐∞[𝐸] +
(1 − 𝛽∞)(1 − 𝑐∞𝑟)

𝑞
[Γ].

Since both 𝐷𝑖 and Δ𝑖 are proportional to −𝐾𝑋𝑖 , we have that both 𝐸 and Γ are also proportional to
−𝐾𝑌 as cycle limits. Thus, 𝑌 is aℚ-Fano variety, and both 𝐸 and Γ areℚ-Cartier divisors on 𝑌. By

[121, Lemma 5.4], Aut0(𝑌, 𝑐∞𝐸 +
(1−𝛽∞)(1−𝑐∞𝑟)

𝑞
Γ) is reductive. □

We now introduce the relevant Hilbert schemes.

Definition 3.7. Let ℍ𝜒;𝑁 ∶= Hilb𝜒(ℙ
𝑁) denote the Hilbert scheme of closed subschemes of

ℙ𝑁 with Hilbert polynomial 𝜒. Given a closed subscheme 𝑋 ⊂ ℙ𝑁 with Hilbert polynomial
𝜒(𝑋,ℙ𝑁 (𝑘)|𝑋) = 𝜒(𝑘), let Hilb(𝑋) ∈ ℍ𝜒;𝑁 denote its Hilbert point.
Let 𝜒0 be a Hilbert polynomial of an anticanonically polarized Fano manifold. Let𝑚 be a pos-

itive integer. Denote 𝜒(𝑘) ∶= 𝜒0(𝑚𝑘), 𝜒̃(𝑘) ∶= 𝜒0(𝑚𝑘) − 𝜒0(𝑚𝑘 − 𝑟), and 𝑁 = 𝜒0(𝑚) − 1. Let
𝝌 = (𝜒, 𝜒̃) be the Hilbert polynomials of (𝑋, 𝐷) ↪ ℙ𝑁 . Denote by ℍ𝝌 ;𝑁 = ℍ𝜒;𝑁 × ℍ𝜒̃;𝑁 . We define

𝑍 ∶=

⎧
⎪⎨⎪⎩
Hilb(𝑋, 𝐷) ∈ ℍ𝝌 ;𝑁

||||||||

𝑋 is a Fano manifold, 𝐷 ∼ℚ −𝑟𝐾𝑋 is a smooth divisor,

ℙ𝑁 (1)|𝑋 ≅ 𝑋(−𝑚𝐾𝑋),
and𝐻0(ℙ𝑁 ,ℙ𝑁 (1)) ≅"→ 𝐻0(𝑋,𝑋(−𝑚𝐾𝑋)).

⎫
⎪⎬⎪⎭
.
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Then, 𝑍 is a locally closed subscheme of ℍ𝝌 ;𝑁 . Let 𝑍 be the Zariski closure of 𝑍. We also
define

𝑍klt ∶=

⎧
⎪⎨⎪⎩
Hilb(𝑋, 𝐷) ∈ 𝑍

||||||||

𝑋 is a ℚ-Fano variety, 𝐷 ∼ℚ −𝑟𝐾𝑋 is an effective Weil divisor,

−𝑚1𝐾𝑋 is Cartier, ℙ𝑁 (1)|𝑋 ≅ 𝑋(−𝑚𝐾𝑋),
and𝐻0(ℙ𝑁 ,ℙ𝑁 (1)) ≅"→ 𝐻0(𝑋,𝑋(−𝑚𝐾𝑋)),

⎫
⎪⎬⎪⎭
.

and

𝑍◦𝑐 ∶= {Hilb(𝑋, 𝐷) ∈ 𝑍
klt ∣ (𝑋, 𝑐𝐷) is K-semistable}.

It is clear that 𝑍klt is a Zariski open subset of 𝑍. We will see in Theorem 3.15 that 𝑍◦𝑐 is a Zariski
open subset of 𝑍klt. Let 𝑍red and 𝑍red𝑐 be reduced schemes supported on 𝑍 and 𝑍◦𝑐 , respectively. In

the cases when we keep track of𝑚, we use the notation 𝑍𝑚, 𝑍𝑚, 𝑍
klt
𝑚 , 𝑍◦𝑐,𝑚, 𝑍

red
𝑚 , and 𝑍red𝑐,𝑚 instead

of 𝑍, 𝑍, 𝑍klt, 𝑍◦𝑐 , 𝑍
red, and 𝑍red𝑐 , respectively.

We define the K-moduli stacks and spaces as follows.

Definition 3.8. Let 𝜒0 be a Hilbert polynomial of an anticanonically polarized Fano manifold.
Fix 𝑟 ∈ ℚ>0 and 0 < 𝜖0 ≪ 1. Let 𝑐 ∈ (0,min{1, (1 − 𝜖0)𝑟

−1}) be a rational number. We denote by
𝜒(𝑘) ∶= 𝜒0(𝑚𝑘), 𝜒̃(𝑘) ∶= 𝜒0(𝑚𝑘) − 𝜒0(𝑚𝑘 − 𝑟), and 𝑁𝑚 ∶= 𝜒0(𝑚) − 1. As we will see in The-
orem 3.24, the Artin stacks [𝑍red𝑐,𝑚∕PGL(𝑁𝑚 + 1)] stabilize for 𝑚 sufficiently divisible which we
simply denote by𝜒0,𝑟,𝑐

. Moreover, according to Theorem 3.1, the Artin stack𝜒0,𝑟,𝑐
admits

a proper reduced scheme 𝐾𝑀𝜒0,𝑟,𝑐 as its good moduli space. We define the K-moduli stack (resp.
K-moduli space) with respect to the triple (𝜒0, 𝑟, 𝑐) as the reduced Artin stack 𝜒0,𝑟,𝑐

(resp.
reduced proper scheme 𝐾𝑀𝜒0,𝑟,𝑐).

3.2 Continuity method

In this section, we will use Theorem 3.6 and the continuity method [92, Section 4.2 and 6] to prove
the following theorem.

Theorem 3.9. Fix 𝑛 ∈ ℤ>0 and 𝑟 ∈ ℚ>0. Fix 𝜖0 ∈ (0, 1). Fix a Hilbert polynomial 𝜒0 of an 𝑛-

dimensional anticanonically polarized Fano manifold. Then there exists 𝑚3 = 𝑚3(𝜒0, 𝑟, 𝜖0) such

that for any multiple 𝑚 of 𝑚3, any rational number 𝑐 ∈ (0,min{1, (1 − 𝜖0)𝑟
−1}), and any log pair

(𝑋, 𝐷) withHilb(𝑋, 𝐷) ∈ 𝑍klt𝑚 , the following holds:

(1) If (𝑋, 𝑐𝐷) is K-unstable, then either 𝑐 > lct(𝑋; 𝐷) −
𝜖0𝑟
−1

𝑛+1
or there exists a 1-PS in SL(𝑁𝑚 + 1)

that destabilizes (𝑋, 𝑐𝐷).

(2) If (𝑋, 𝑐𝐷) is K-semistable but not K-polystable, then there exists a 1-PS in SL(𝑁𝑚 + 1) that pro-
vides a special degeneration to aK-polystable log Fano pair (𝑋′, 𝑐𝐷′). In addition,Hilb(𝑋′, 𝐷′) ∈

𝑍klt𝑚 .

(3) If (𝑋, 𝑐𝐷) is K-polystable, then it admits a weak conical Kähler–Einstein metric. In particular,
Aut(𝑋, 𝐷) is reductive.

(4) If (𝑋, 𝑐𝐷) is K-stable, then it is uniformly K-stable.
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24 of 113 ASCHER et al.

Before presenting the proof of Theorem 3.9, we introduce the following notation and prove
several preliminary results.

Notation 3.10. Let us fix 𝑛 ∈ ℤ>0, 𝑟 ∈ ℚ>0, 𝜖0 ∈ (0, 1), and 𝜒0 a Hilbert polynomial of an 𝑛-
dimensional Fano manifold. Let 𝑚1 = 𝑚1(𝑛, 𝑟, 𝜖0) ∈ ℤ>0 be chosen as in Theorem 3.4. Let 𝑞 =
𝑞(𝑛, 𝑟, 𝜖0, 𝑚1) ∈ ℤ>0 and 𝛾0 = 𝛾0(𝑛, 𝑟, 𝜖0, 𝑚1) ∈ (0, 1) be chosen as in Proposition 3.5. Let 𝑚2 =
𝑚2(𝜒0, 𝑟, 𝑞, 𝜖0, 𝛾0) be chosen as in Theorem 3.6. Let us take 𝑚3 ∶= lcm(𝑚1, 𝑚2). For 𝑚 ∈ ℤ>0
a multiple of 𝑚3, let us pick an arbitrary pair (𝑋, 𝐷) with Hilb(𝑋, 𝐷) ∈ 𝑍klt𝑚 . We also fix 𝑐 ∈

(0,min{1, (1 − 𝜖0)𝑟
−1}) such that 𝑐 ⩽ lct(𝑋; 𝐷) −

𝜖0𝑟
−1

𝑛+1
. To avoid bulky notation, let 𝑎 ∶= 1−𝑐𝑟

𝑞
.

According to Proposition 3.5, let Δ ∈ | − 𝑞𝐾𝑋| be chosen such that (𝑋, 𝑐𝐷 + (1 − 𝛽)𝑎Δ) is uni-
formly K-stable for any 0 < 𝛽 ⩽ 𝛾0. Let us choose a smoothing ( , + Δ̃) → 𝐵 over a pointed
curve 0 ∈ 𝐵 such that all fibers over 𝐵 ⧵ {0} are log smooth, and (0,0, Δ̃0) ≅ (𝑋,𝐷, Δ). Denote
by

𝔅 ∶= sup{𝛽 ∈ (0, 1) ∣ (𝑋, 𝑐𝐷 + (1 − 𝛽)𝑎Δ) is uniformly K-stable}.

By [44], we know that 𝛾0 < 𝔅 ⩽ 1. Since the pair (𝑋, 𝑐𝐷 + (1 − 𝛽)𝑎Δ) is uniformly K-stable for
any 𝛽 ∈ (0,𝔅), by [23, 121], we know that there exists a Zariski neighborhood 𝐵𝛽 of 0 in 𝐵 such
that (𝑏, 𝑐𝑏 + (1 − 𝛽)𝑎Δ̃𝑏) is uniformly K-stable hence admits conical Kähler–Einstein met-
rics for any 𝑏 ∈ 𝐵◦

𝛽
∶= 𝐵𝛽 ⧵ {0}. Consider the triple Hilbert scheme ℍ

𝝌 ,𝑞;𝑁 of ℙ𝑁 with the same

Hilbert polynomials as (𝑋, 𝐷, Δ). LetHilb(𝑏, 𝑐𝑏 + (1 − 𝛽)𝑎Δ̃𝑏) ∈ ℍ𝝌 ,𝑞;𝑁 be the Hilbert point of
(𝑏, 𝑐𝑏 + (1 − 𝛽)𝑎Δ̃𝑏) via Tian’s embedding.
Proposition 3.11. WithNotation 3.10, the log Fano pair (𝑋, 𝑐𝐷 + (1 − 𝛽)𝑎Δ) admits aweak conical

Kähler–Einstein metric for any 𝛽 ∈ [𝛾0, 𝔅). Moreover, for any sequence of points 𝑏𝑖 → 0 in 𝐵
◦

𝛽
, there

exists a sequence of matrices g𝑖 ∈ U(𝑁 + 1) such that

g𝑖 ⋅Hilb(𝑏𝑖 , 𝑐𝑏𝑖 + (1 − 𝛽)𝑎Δ̃𝑏𝑖 ) → Hilb(𝑋, 𝑐𝐷 + (1 − 𝛽)𝑎Δ) ∈ ℍ𝝌 ,𝑞;𝑁 as 𝑖 → ∞.

Proof. By Theorem 3.6, we know that after choosing suitable g𝑖 ∈ U(𝑁 + 1), the Hilbert
points g𝑖 ⋅Hilb(𝑏𝑖 , 𝑐𝑏𝑖 + (1 − 𝛽)𝑎Δ̃𝑏𝑖 ) converge as 𝑖 → ∞ toHilb(𝑌, 𝑐𝐸 + (1 − 𝛽)𝑎Γ) that is the
Hilbert point of a log Fano pair (𝑌, 𝑐𝐸 + (1 − 𝛽)𝑎Γ) via Tian’s embedding of its weak conical
Kähler–Einstein metric. Then [16] (see also [82, Section 3.1]) implies that (𝑌, 𝑐𝐸 + (1 − 𝛽)𝑎Γ) is
K-polystable. By Lemma 3.12, after possibly replacing (0 ∈ 𝐵) by its quasi-finite cover (0′ ∈ 𝐵′),
the log Fano pair (𝑌, 𝑐𝐸 + (1 − 𝛽)𝑎Γ) is a K-polystable fill-in of the family ( , 𝑐 + (1 − 𝛽)𝑎Δ̃) ×𝐵
(𝐵′ ⧵ {0′}). Since a K-polystable fill-in is always unique by [27], we know that

(𝑌, 𝑐𝐸 + (1 − 𝛽)𝑎Γ) ≅ (𝑋, 𝑐𝐷 + (1 − 𝛽)𝑎Δ).

The proof is finished. □

Lemma 3.12. Let 𝐺 be an algebraic group acting on ℙ𝑀 . Let 𝑧 ∶ 𝐵 → ℙ𝑀 be a morphism from a

smooth pointed curve (0 ∈ 𝐵). Denote by 𝐵◦ ∶= 𝐵 ⧵ {0}. Suppose that 𝑧0 is a point in ℙ
𝑀 satisfying

that there exists g𝑖 ∈ 𝐺 and 𝐵
◦ ∋ 𝑏𝑖 → 0 for 𝑖 ∈ ℤ>0 such that g𝑖 ⋅ 𝑧(𝑏𝑖) → 𝑧0 as 𝑖 → ∞. Then, there

exists a quasi-finite morphism 𝜋 ∶ (0′ ∈ 𝐵′) → (0 ∈ 𝐵) from a smooth pointed curve (0′ ∈ 𝐵′) with
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{0′} = 𝜋−1({0}) and two morphisms 𝜏 ∶ 𝐵′◦ ∶= 𝐵′ ⧵ {0} → 𝐺 and 𝑧′ ∶ 𝐵′ → ℙ𝑀 such that 𝑧′(𝑏′) =

𝜏(𝑏′) ⋅ 𝑧(𝜋(𝑏′)) for any 𝑏′ ∈ 𝐵′◦ and 𝑧′(0′) = 𝑧0.

Proof. Let 𝜙 ∶ 𝐺 × 𝐵◦ → ℙ𝑀 × 𝐵 be the morphism defined as 𝜙(g , 𝑏) ∶= (g ⋅ 𝑧(𝑏), 𝑏). Let 𝐺 be a
normal proper variety that compactifies 𝐺. Let Γ be the normalized graph of the rational map
𝜙 ∶ 𝐺 × 𝐵 → ℙ𝑀 × 𝐵. Hence, we have a proper birational morphism 𝜓 ∶ Γ → 𝐺 × 𝐵 that is an
isomorphism over 𝐺 × 𝐵◦, and a proper 𝐵-morphism 𝜙̃ ∶ Γ → ℙ𝑀 × 𝐵. From the assumption,
we know that (𝑧0, 0) ∈ 𝜙(𝐺 × 𝐵◦) = 𝜙̃(Γ). Let us take a point 𝑧̃0 ∈ 𝜙̃

−1(𝑧0, 0) ⊂ Γ. Then we may
choose a smooth pointed curve (0′ ∈ 𝐵′) together with a finite morphism 𝑓 ∶ 𝐵′ → Γ such that
𝑓(0′) = 𝑧̃0 and 𝑓(𝐵

′) ∩ (𝐺 × 𝐵◦) ≠ ∅. After possibly shrinking (0′ ∈ 𝐵′), we may assume that
𝑓(𝐵′◦) ⊂ 𝐺 × 𝐵◦. Then, by defining 𝜋 ∶= pr2◦𝜓◦𝑓, 𝜏 ∶= pr1◦𝑓|𝐵′◦ , and 𝑧′ ∶= pr1◦𝜙̃◦𝑓, it is easy
to check that the conclusion is satisfied. □

A priori𝔅might only be a real number. Nevertheless, the following result shows that𝔅 has to
be rational and we can find a destabilizing test configuration in ℙ𝑁𝑚 .

Proposition 3.13. With Notation 3.10, if𝔅 < 1, then (𝑋, 𝑐𝐷 + (1 − 𝔅)𝑎Δ) does not admit a weak

conical Kähler–Einstein metric. There exists a 1-PS 𝜆 of SL(𝑁𝑚 + 1) inducing a nonproduct special

test configuration of (𝑋, 𝑐𝐷 + (1 − 𝔅)𝑎Δ) such that the central fiber (𝑋′, 𝑐𝐷′ + (1 − 𝔅)𝑎Δ′) admits

a weak conical Kähler–Einsteinmetric. Moreover, the generalized Futaki invariant of this special test

configuration vanishes. In particular,𝔅 is a rational number.

Proof. We first show that (𝑋, 𝑐𝐷 + (1 − 𝔅)𝑎Δ) does not admit a weak conical Kähler–Einstein
metric. Since (𝑋, 𝑐𝐷 + (1 − 𝛾0)𝑎Δ) is uniformly K-stable, we know that (𝑋, 𝐷, Δ) has finite
automorphism group by [27, Corollary 3.5]. Assume to the contrary that (𝑋, 𝑐𝐷 + (1 − 𝔅)𝑎Δ)
admits a weak conical Kähler–Einsteinmetric. Then, from [13, 30, 35], we know that theMabuchi
energy is proper. This indeed implies that (𝑋, 𝑐𝐷 + (1 − 𝔅)𝑎Δ) is uniformly K-stable by [14, 18].
However, by [44] we know that (𝑋, 𝑐𝐷 + (1 − 𝔅 − 𝜖)𝑎Δ) is also uniformly K-stable for 0 < 𝜖 ≪ 1
which contradicts our definition of𝔅.
Next, let us choose 𝛾0 ⩽ 𝛽𝑖 ↗ 𝔅 as 𝑖 → ∞. Then by Proposition 3.11, wemay choose 𝐵◦

𝛽𝑖
∋ 𝑏𝑖 →

0 as 𝑖 → ∞ such that both (𝑏𝑖 , 𝑐𝑏𝑖 + (1 − 𝛽𝑖)𝑎Δ̃𝑏𝑖 ) and (𝑋, 𝑐𝐷 + (1 − 𝛽𝑖)𝑎Δ) admit a (weak)
conical Kähler-Einstein metric for any 𝑖, and

lim
𝑖→∞
distℍ𝝌 ,𝑞;𝑁

(
Hilb(𝑏𝑖 , 𝑐𝑏𝑖 + (1 − 𝛽𝑖)𝑎Δ̃𝑏𝑖 ), U(𝑁 + 1) ⋅Hilb(𝑋, 𝑐𝐷 + (1 − 𝛽𝑖)𝑎Δ)

)
= 0.

By the results of Theorem 3.6, there exists a sequence of matrices g𝑖 ∈ U(𝑁 + 1) and a log Fano
pair (𝑋′, 𝑐𝐷′ + (1 − 𝔅)𝑎Δ′) admitting a weak conical Kähler–Einstein metric such that

g𝑖 ⋅Hilb(𝑏𝑖 , 𝑐𝑏𝑖 + (1 − 𝛽𝑖)𝑎Δ̃𝑏𝑖 ) → Hilb(𝑋′, 𝑐𝐷′ + (1 − 𝔅)𝑎Δ′) ∈ ℍ𝝌 ,𝑞;𝑁 as 𝑖 → ∞.

Since Hilb(𝑋, 𝑐𝐷 + (1 − 𝛽𝑖)𝑎Δ) ∈ SL(𝑁 + 1) ⋅Hilb(𝑋, 𝐷, Δ), we know that

Hilb(𝑋′, 𝑐𝐷′ + (1 − 𝔅)𝑎Δ′) ∈ SL(𝑁 + 1) ⋅Hilb(𝑋, 𝐷, Δ) ⊂ ℍ𝝌 ,𝑞;𝑁 .

On the other hand,we know that (𝑋′, 𝑐𝐷′ + (1 − 𝔅)𝑎Δ′) is not isomorphic to (𝑋, 𝑐𝐷 + (1 − 𝔅)𝑎Δ)
since the latter does not admit a conical Kähler–Einstein metric. Since (𝑋′, 𝑐𝐷′ + (1 − 𝔅)𝑎Δ′)
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admits a weak conincal Kähler–Einstein metric, its automorphism group is reductive by [13,
Theorem 5.2]. Hence, by [37, Proposition 1], there exists a 1-PS 𝜆 of SL(𝑁 + 1) that induces
a special test configuration (𝜆, 𝑐𝜆 + (1 − 𝔅)𝑎Δ𝜆) of (𝑋, 𝑐𝐷 + (1 − 𝔅)𝑎Δ) with central fiber
(𝑋′, 𝑐𝐷′ + (1 − 𝔅)𝑎Δ′). Let 𝜆 be a sufficiently divisible multiple of −(𝐾𝜆∕𝔸1 + 𝑐𝜆). It is clear
from the definition that 𝛽 ↦ Fut(𝜆, 𝑐𝜆 + (1 − 𝛽)𝑎Δ𝜆;𝜆) is a degree 1 polynomial in 𝛽 with
rational coefficients. Since (𝑋, 𝑐𝐷 + (1 − 𝛽)𝑎Δ) is uniformly K-stable when 𝛽 < 𝔅, we know that

Fut(𝜆, 𝑐𝜆 + (1 − 𝔅)𝑎Δ𝜆;𝜆) ⩾ 0.
On the other hand, the 1-PS 𝜆−1 of Aut(𝑋′, 𝐷′, Δ′) ⊂ SL(𝑁 + 1) induces a product test configura-
tion ( ′

𝜆−1
, 𝑐′

𝜆−1
+ (1 − 𝔅)𝑎Δ′

𝜆−1
) of (𝑋′, 𝑐𝐷′ + (1 − 𝔅)𝑎Δ′) such that

Fut( ′
𝜆−1
, 𝑐′

𝜆−1
+ (1 − 𝔅)𝑎Δ′

𝜆−1
;′
𝜆−1
) + Fut(𝜆, 𝑐𝜆 + (1 − 𝔅)𝑎Δ𝜆;𝜆) = 0.

Again, by [16], we know that (𝑋′, 𝑐𝐷′ + (1 − 𝔅)𝑎Δ′) is K-polystable. Hence, both general-
ized Futaki invariants in the above equation are zero. Thus, 𝛽 = 𝔅 is the solution of the
equation Fut(𝜆, 𝑐𝜆 + (1 − 𝛽)𝑎Δ𝜆;𝜆) = 0 which implies that𝔅 is a rational number. □

Now we are ready to prove Theorem 3.9.

Proof of Theorem 3.9. We follow Notation 3.10.

(1) Assume (𝑋, 𝑐𝐷) is K-unstable and 𝑐 ⩽ lct(𝑋; 𝐷) −
𝜖0𝑟
−1

𝑛+1
. Thus, we have 𝔅 < 1. Then, by

Proposition 3.13, there exists a 1-PS 𝜆 of SL(𝑁𝑚 + 1) which induces a test configuration
(𝜆, 𝑐𝜆 + (1 − 𝛽)𝑎Δ𝜆) of (𝑋, 𝑐𝐷 + (1 − 𝛽)𝑎Δ) such that

Fut(𝜆, 𝑐𝜆 + (1 − 𝛽)𝑎Δ𝜆;𝜆) ⩾ 0 if and only if 𝛽 ⩽ 𝔅.

Therefore, Fut(𝜆, 𝑐𝜆;𝜆) < 0 which implies that (𝑋, 𝑐𝐷) is destabilized by 𝜆.
(2) Assume that (𝑋, 𝑐𝐷) is K-semistable but notK-polystable. Let us choose 𝛾0 ⩽ 𝛽𝑖 ↗ 1 as 𝑖 → ∞.

Following the proof of Proposition 3.13, there exists a log Fano pair (𝑋′, 𝑐𝐷′ + 0 ⋅ Δ′) ⊂ ℙ𝑁

admitting a weak conical Kähler–Einstein metric such that

Hilb(𝑋′, 𝑐𝐷′ + 0 ⋅ Δ′) ∈ SL(𝑁 + 1) ⋅Hilb(𝑋, 𝐷, Δ) ⊂ ℍ𝝌 ,𝑞;𝑁 .

In particular, (𝑋′, 𝑐𝐷′) is K-polystable by [16] hence is not isomorphic to (𝑋, 𝑐𝐷). Then, by
[37, Proposition 1], we obtain a special degeneration from (𝑋, 𝑐𝐷) to (𝑋′, 𝑐𝐷′) induced by a 1-
PS in SL(𝑁 + 1). In addition, sinceHilb(𝑏𝑖 , 𝑐𝑏𝑖 + (1 − 𝛽𝑖)𝑎Δ̃𝑏𝑖 ) converges toHilb(𝑋′, 𝑐𝐷′ +
0 ⋅ Δ′) in ℍ𝝌 ,𝑞;𝑁 as 𝑖 → ∞, we know that Hilb(𝑏𝑖 ,𝑏𝑖 ) converges to Hilb(𝑋′, 𝐷′) in ℍ𝝌 ;𝑁 for
suitable embeddings. Hence, Hilb(𝑋′, 𝐷′) ∈ 𝑍klt𝑚 .

(3) Assume that (𝑋, 𝑐𝐷) is K-polystable. Similar to part (2), there exists a log Fano pair (𝑋′, 𝑐′ +
0 ⋅ Δ′) in ℙ𝑁 admitting a weak conical Kähler–Einstein metric such that

Hilb(𝑋′, 𝑐𝐷′ + 0 ⋅ Δ′) ∈ SL(𝑁 + 1) ⋅Hilb(𝑋, 𝐷, Δ) ⊂ ℍ𝝌 ,𝑞;𝑁 .

If Hilb(𝑋′, 𝑐𝐷′ + 0 ⋅ Δ′) ∈ SL(𝑁 + 1) ⋅Hilb(𝑋, 𝐷, Δ), then we are done. So, we may assume
Hilb(𝑋′, 𝑐𝐷′ + 0 ⋅ Δ′) ∉ SL(𝑁 + 1) ⋅Hilb(𝑋, 𝐷, Δ). Then, again, by [37, Proposition 1], we get
a special degeneration from (𝑋, 𝑐𝐷) to (𝑋′, 𝑐𝐷′) induced by a 1-PS in SL(𝑁𝑚 + 1). By a simi-
lar argument as the proof of Proposition 3.13, the generalized Futaki invariant of this special
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test configuration vanishes since both (𝑋, 𝑐𝐷) and (𝑋′, 𝑐𝐷′) are K-polystable. Hence, they are
isomorphic.

(4) Assume that (𝑋, 𝑐𝐷) is K-stable. Then it admits a weak conical Kähler–Einstein metric
and Aut(𝑋, 𝐷) is reductive by (3). Hence, K-stability of (𝑋, 𝑐𝐷) implies that Aut(𝑋, 𝐷) is a
finite group, which implies uniform K-stability of (𝑋, 𝑐𝐷) by [13, 14, 18, 30, 35]. The proof is
finished. □

3.3 K-semistable thresholds are constructible

In this section, we show that the K-semistable thresholds are constructible functions satisfying
certain semicontinuity conditions. In particular, this implies the openness of K-semistability in
our setting. Our approach is based on [92, Section 7 and A.1].

Definition 3.14. Fix a rational number 𝜖0 ∈ (0, 1). For any (𝑋, 𝐷) with Hilb(𝑋, 𝐷) ∈ 𝑍
klt, we

define the upper and lower K-semistable thresholds as follows:

kst+,𝜖0(𝑋, 𝐷) ∶= sup{𝑐 ∈ (0,min{1, (1 − 𝜖0)𝑟
−1}) ∣ (𝑋, 𝑐𝐷) is K-semistable};

kst−,𝜖0(𝑋, 𝐷) ∶= inf {𝑐 ∈ (0,min{1, (1 − 𝜖0)𝑟
−1}) ∣ (𝑋, 𝑐𝐷) is K-semistable}.

Next,wewill start the construction of theK-moduli stack𝜒0,𝑟,𝑐
. In this section,wewill focus

on showing the openness of 𝑐-K-semistability and constructibility of K-semistable thresholds.

Theorem3.15. The functions kst±,𝜖0 on𝑍
klt are constructible with rational values.Moreover, kst+,𝜖0

(resp. kst−,𝜖0) is lower (resp. upper) semicontinuous on𝑍
klt. In particular,𝑍◦𝑐 are Zariski open subsets

of 𝑍klt whenever 𝑐 ∈ (0,min{1, (1 − 𝜖0)𝑟
−1}).

Note that the semicontinuity properties of these types of functions (in relation to existence of
conical KE metrics) were observed earlier in [92, 115].
Before presenting the proof of Theorem 3.15, we recall some results from [92, Section A.1] (see

also [99, Chapter 2, Proposition 2.14] and [103, Proof of Lemma 2.11]).

Lemma 3.16 [92, Lemma A.3]. Let 𝑍 be a projective variety. Let 𝐿,𝑀 be two 𝐺-linearized ample

line bundles over 𝑍. Let 𝑇 ⊂ 𝐺 be a maximal torus. Then there is a finite set of linear functionals

𝑙𝐿
1
, … , 𝑙𝐿𝑟𝐿

, 𝑙𝑀
1
, … , 𝑙𝑀𝑟𝑀

that are rational onHomℚ(𝔾𝑚, 𝑇) with the following property:

For any 𝑧 ∈ 𝑍, there exist 𝐼(𝑧, 𝐿) ⊂ {1, … , 𝑟𝐿}, 𝐼(𝑧,𝑀) ⊂ {1, … , 𝑟𝑀} such that the 𝜆-weight of 𝑧 ∈ 𝑍

with respect to the linearization of 𝐺 on 𝐿 ⊗𝑀−1 is given by

𝜇𝐿(𝑧, 𝜆) − 𝜇𝑀(𝑧, 𝜆) = max{𝑙𝐿𝑖 (𝜆) ∣ 𝑖 ∈ 𝐼(𝑧, 𝐿)} − max{𝑙
𝑀
𝑖 (𝜆) ∣ 𝑖 ∈ 𝐼(𝑧,𝑀)}

for all 1-PS 𝜆 of 𝑇. Moreover, the function

𝜓𝐿,𝑀 ∶ 𝑍 → 2{1,…,𝑟𝐿} × 2{1,…,𝑟𝑀 }

𝑧 ↦ (𝐼(𝑧, 𝐿), 𝐼(𝑧,𝑀))

is constructible.
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We present the proof of Theorem 3.15 below which essentially follows from [92, Proposition
A.4].

Proof of Theorem 3.15. Let us consider the 𝑐-K-stability on 𝑍klt for 𝑐 ∈ (0,min{1, (1 − 𝜖0)𝑟
−1}).

Denote by 𝜋 ∶ ( ,) → 𝑍 the universal family with  representing the pull back of the line
bundle ℙ𝑁 (1). According to Definition 2.18, denote by

𝑀1 ∶= 𝜆CM,𝜋, and 𝑀2 ∶=
𝑛(𝑛−1𝑧 ⋅𝑧)
(𝑛𝑧 ) 𝜆Chow,𝜋, − (𝑛 + 1)𝜆Chow,𝜋|,| . (3.2)

Hence, from Definition 2.18, we know that 𝜆CM,𝜋,𝑐, = 𝑀1 − 𝑐𝑀2. Notice that by flatness of the
universal family, this function 𝑧 ∈ 𝑍 ↦ 𝑛(𝑛−1𝑧 ⋅𝑧)∕(𝑛𝑧 ) does not depend on the choice of 𝑧.
Let (𝑋, 𝐷) be a log pair with 𝑧 ∶= Hilb(𝑋, 𝐷) ∈ 𝑍klt. For simplicity, denote by 𝐺 ∶= SL(𝑁 + 1).
Then every 1-PS 𝜆 ∶ 𝔾𝑚 → 𝐺 naturally induces a test configuration (𝜆, 𝑐𝜆;𝜆) of (𝑋, 𝑐𝐷; 𝐿).
Moreover, Proposition 2.19 implies that

Fut(𝜆,𝜆;𝜆) = 1

(𝑛 + 1)(𝐿𝑛)

(
𝜇𝑀1(𝑧, 𝜆) − 𝑐𝜇𝑀2(𝑧, 𝜆)

)
.

Thus, Theorem 3.9 implies that (𝑋, 𝐷) is 𝑐-K-semistable if and only if 𝑐 ⩽ lct(𝑋; 𝐷) −
𝜖0
𝑛+1

and

𝜇𝑀1(𝑧, 𝜆) − 𝑐𝜇𝑀2(𝑧, 𝜆) ⩾ 0 for any 1-PS 𝜆 of 𝐺.

Pick a sufficiently divisible positive integer 𝑘 such that 𝑀⊗𝑘
1

and 𝑀⊗𝑘
2

are line bundles over 𝑍.

Let𝑀 be a sufficiently ample SL(𝑁 + 1)-line bundle on 𝑍 such that 𝐿1 ∶= 𝑀 ⊗𝑀
⊗𝑘
1

and 𝐿2 ∶=

𝑀 ⊗𝑀⊗𝑘
2

are both ample line bundles. Then we have

𝑘
(
𝜇𝑀1(𝑧, 𝜆) − 𝑐𝜇𝑀2(𝑧, 𝜆)

)
=

(
𝜇𝐿1(𝑧, 𝜆) − 𝜇𝑀(𝑧, 𝜆)

)
− 𝑐

(
𝜇𝐿2(𝑧, 𝜆) − 𝜇𝑀(𝑧, 𝜆)

)
.

We fix a maximal torus 𝑇 ⊂ 𝐺. Hence, using Lemma 3.16, we know that there exists a decom-
position 𝑍klt = ⊔𝐼𝑆

𝑇
𝐼
to constructible subsets 𝑆𝑇

𝐼
where 𝐼 belongs to some finite index set, such

that for any 𝑧 ∈ 𝑆𝑇
𝐼
, the functions 𝜇𝑀1(𝑧, ⋅) and 𝜇𝑀2(𝑧, ⋅) are rational piecewise linear functions

onHomℚ(𝔾𝑚, 𝑇) that are independent of the choice of 𝑧. We denote these two functions by 𝜇1,𝐼(⋅)
and 𝜇2,𝐼(⋅), respectively. On the other hand, since any 1-PS 𝜆 of 𝐺 is conjugate via g ∈ 𝐺 to a 1-PS
g𝜆g−1 of 𝑇, and 𝜇𝑀𝑖 (𝑧, 𝜆) = 𝜇𝑀𝑖 (g ⋅ 𝑧, g𝜆g−1) for 𝑖 = 1, 2, we know that (𝑋, 𝐷) is 𝑐-K-semistable
if and only if 𝑐 ⩽ lct(𝑋; 𝐷) −

𝜖0
𝑛+1

and

𝜇1,𝐼(𝜆) ⩾ 𝑐𝜇2,𝐼(𝜆) for any 1-PS 𝜆 of 𝑇 and any 𝐼 with 𝑧 ∈ 𝑆𝐺𝐼 .

Here 𝑆𝐺
𝐼
∶= 𝐺 ⋅ 𝑆𝑇

𝐼
is a constructible subset of 𝑍klt by Chevalley’s Lemma [51, Exercise II.3.19].

Since 𝜇𝑖,𝐼 is a rational piecewise linear function on Homℚ(𝔾𝑚, 𝑇), the union ∪𝐼𝑆
𝐺
𝐼
= 𝑍klt, and

𝑧 ∈ 𝑍klt ↦ lct(𝑋; 𝐷) is a constructible function with rational values (see, e.g., [11, Corollary 2.10]),
we know that kst±,𝜖0 are constructible with rational values as well. Their semicontinuity follows
from the very genericity of K-semistability [22, Theorem 3]. □
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Corollary 3.17. Let 𝜋 ∶ ( , 𝑐) → 𝑇 be aℚ-Gorenstein smoothable log Fano family over a normal
base 𝑇 where ∼𝜋 −𝑟𝐾∕𝑇 . Then for any 𝑐 ∈ (0,min{1, 𝑟−1}), the set

{𝑡 ∈ 𝑇 ∣ (𝑡, 𝑐𝑡) is K-semistable}
is a Zariski open subset of 𝑇.

Proof. For each 𝑐 ∈ (0,min{1, 𝑟−1}), we may choose 0 < 𝜖0 ≪ 1 such that 𝑐 < (1 − 𝜖0)𝑟
−1. Then

the result follows from Theorems 3.4 and 3.15. □

We finish this section with a useful result on K-polystability. See [90, Theorem 1.1] for a related
result in the smooth case.

Proposition 3.18. Let (𝑋, 𝑐0𝐷) be aℚ-Gorenstein smoothable K-polystable log Fano pair. Then the

set

{𝑐 ∈ (0,min{1, 𝑟−1})∶ (𝑋, 𝑐𝐷) is K-polystable}

is either {𝑐0} or an open interval containing 𝑐0.

Proof. By choosing 0 < 𝜖0 ≪ 1, we may assume that 𝑐0 < min{1, (1 − 𝜖0)𝑟
−1, lct(𝑋; 𝐷) −

𝜖0
𝑛+1
}. By

Proposition 2.13, we know that the set

𝐽 ∶= {𝑐 ∈ (0,min{1, 𝑟−1})∶ (𝑋, 𝑐𝐷) is K-polystable}

is either {𝑐0} or an interval containing 𝑐0. Hence, it suffices to show that 𝐽 contains an open neigh-
borhood of 𝑐0. Denote by 𝑧0 = Hilb(𝑋, 𝐷) ∈ 𝑍

klt. Let 𝐺 ∶= SL(𝑁 + 1) and 𝑇 be a maximal torus
of 𝐺.
Assume to the contrary that 𝐽 does not contain any neighborhood of 𝑐0 and 𝐽 ≠

{𝑐0}. Then there exists 0 < |𝜖|≪ 1 such that (𝑋, (𝑐0 + 𝜖)𝐷) is K-polystable, and (𝑋, (𝑐0 −
𝜖′)𝐷) is K-unstable whenever 0 < 𝜖′∕𝜖 ⩽ 1. From the proof of Theorem 3.15, we know
that

𝜇1,𝐼(𝜆) < (𝑐0 − 𝜖
′)𝜇2,𝐼(𝜆) for some 1-PS 𝜆 of 𝑇 and some 𝐼 with 𝑧 ∈ 𝑆𝐺𝐼 .

A priori 𝜆 and 𝐼 may depend on the choice of 𝜖′. Nevertheless, since 𝐼 belongs to a finite index
set, and 𝜇𝑖,𝐼 is a rational piecewise linear function on Homℚ(𝔾𝑚, 𝑇) for 𝑖 = 1, 2, there exist 𝜆 and
𝐼 that are independent of the choice of 𝜖′ satisfying

𝜇1,𝐼(𝜆) < (𝑐0 − 𝜖
′)𝜇2,𝐼(𝜆) whenever 0 < 𝜖′∕𝜖 ⩽ 1. (3.3)

In particular, we know that 𝜇1,𝐼(𝜆) ⩽ 𝑐0𝜇2,𝐼(𝜆). Since 𝑧0 ∈ 𝑆
𝐺
𝐼
= 𝐺 ⋅ 𝑆𝑇

𝐼
, we choose g ∈ 𝐺 such that

g ⋅ 𝑧0 ∈ 𝑆
𝑇
𝐼
. Then, since (𝑋, 𝑐0𝐷) is K-polystable, we have

𝜇1,𝐼(𝜆) = 𝜇
𝑀1(𝑧0, g

−1𝜆g) ⩾ 𝑐0𝜇
𝑀2(𝑧0, g

−1𝜆g) = 𝑐0𝜇2,𝐼(𝜆). (3.4)
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Combining (3.3) and (3.4), we have that 𝜇𝑀1(𝑧0, g
−1𝜆g) = 𝑐0𝜇

𝑀2(𝑧0, g
−1𝜆g) ≠ 0. This together

with the K-polystability of (𝑋, 𝑐0𝐷) implies that g
−1𝜆g induces an almost product test configura-

tion of (𝑋, 𝑐0𝐷). Since (𝑋, (𝑐0 + 𝜖)𝐷) is also K-polystable, we have

𝜇𝑀1(𝑧0, g
−1𝜆g) = (𝑐0 + 𝜖)𝜇

𝑀2(𝑧0, g
−1𝜆g),

which implies 𝜇𝑀𝑖 (𝑧0, g
−1𝜆g) = 0 for 𝑖 = 1, 2. However, this contradicts to (3.3). Thus, the proof

is finished. □

3.4 Properness

In this section,we prove the valuative criterion of properness of K-moduli spaces. Recall that Blum
and Xu [27] proved separatedness of K-moduli spaces (if they exist) for log Fano pairs. Hence, we
only need to show compactness of K-moduli spaces, that is, the existence of a K-semistable filling
for a K-semistable family over a punctured smooth curve.

Theorem 3.19. Let 0 ∈ 𝐵 be a smooth pointed curve. Let 𝜋◦ ∶ (◦, 𝑐◦) → 𝐵◦ be a ℚ-Gorenstein

smoothable log Fano family over 𝐵◦ ∶= 𝐵 ⧵ {0}where◦ ∼𝜋◦ −𝑟𝐾◦∕𝐵◦ and 𝑐 ∈ (0,min{1, 𝑟
−1}). If

all fibers of 𝜋◦ are K-semistable, then there exists a quasi-finite morphism (0′ ∈ 𝐵′) → (0 ∈ 𝐵) from

a smooth pointed curve 0′ ∈ 𝐵′ and aℚ-Gorenstein smoothable log Fano family𝜋′ ∶ ( ′, 𝑐′) → 𝐵′
such that ( ′,′) ×𝐵′ 𝐵′◦ ≅ (◦,◦) ×𝐵◦ 𝐵

′◦ where𝐵′◦ ∶= 𝐵′ ⧵ {0′}and ( ′
0′
, 𝑐′

0′
) is K-semistable

(even K-polystable).

Proof. By choosing 0 < 𝜖0 ≪ 1, we may assume that 𝑐 < min{1, (1 − 𝜖0)𝑟
−1}. Let 𝑏𝑖 → 0 be a

sequence of points in 𝐵◦. Denote by (𝑏𝑖 ,𝑏𝑖 ) the fiber of 𝜋◦ over 𝑏𝑖 . Let 𝜒0 be the Hilbert poly-
nomial of a smoothing of each fiber 𝑏𝑖 that certainly does not depend on the choice of 𝑖 or
smoothing. Let us choose𝑚3,𝑚, 𝛾0, 𝑞, and 𝑎 as in Notation 3.10. Since (𝑏𝑖 , 𝑐𝑏𝑖 ) is K-semistable,
we have 𝑐 ⩽ lct(𝑏𝑖 ;𝑏𝑖 ). Hence, Proposition 3.5 implies that there exists Δ𝑏𝑖 ∈ | − 𝑞𝐾𝑏𝑖 | such
that (𝑏𝑖 , 𝑐𝑏𝑖 + (1 − 𝛾0)𝑎Δ𝑏𝑖 ) is uniformly K-stable. Let us choose 𝛾0 ⩽ 𝛽𝑖 ↗ 1. Then, Proposi-
tions 2.13 and 3.11 imply that (𝑏𝑖 , 𝑐𝑏𝑖 + (1 − 𝛽𝑖)𝑎Δ𝑏𝑖 ) admits a weak conical Kähler–Einstein
metric whose Hilbert point in ℍ𝝌 ,𝑞;𝑁 is the limit of Hilbert points of conical Kähler–Einstein log
smooth log Fano pairs. In particular, there exists a conical Kähler–Einstein log smooth log Fano
pair (𝑌𝑖 , 𝑐𝐸𝑖 + (1 − 𝛽𝑖)𝑎Γ𝑖) as a smoothing of (𝑏𝑖 , 𝑐𝑏𝑖 + (1 − 𝛽𝑖)𝑎Δ𝑏𝑖 ) such that Hilb(𝑌𝑖 , 𝐸𝑖) ∈
𝑍𝑚, Γ𝑖 ∈ | − 𝑞𝐾𝑌𝑖 |, and

lim
𝑖→∞
distℍ𝝌 ,𝑞;𝑁

(
Hilb(𝑌𝑖 , 𝑐𝐸𝑖 + (1 − 𝛽𝑖)𝑎Γ𝑖), Hilb(𝑏𝑖 , 𝑐𝑏𝑖 + (1 − 𝛽𝑖)𝑎Δ𝑏𝑖 )

)
= 0. (3.5)

By Theorem 3.6, there exists a sequence of matrices g𝑖 ∈ U(𝑁 + 1) and a log Fano pair (𝑌, 𝑐𝐸 +
0 ⋅ Γ) in ℙ𝑁 admitting a weak conical Kähler–Einstein metric such that

g𝑖 ⋅Hilb(𝑌𝑖 , 𝑐𝐸𝑖 + (1 − 𝛽𝑖)𝑎Γ𝑖) → Hilb(𝑌, 𝑐𝐸 + 0 ⋅ Γ) ∈ ℍ
𝝌 ,𝑞;𝑁 as 𝑖 → ∞.

This together with (3.5) implies that

g𝑖 ⋅Hilb(𝑏𝑖 , 𝑐𝑏𝑖 + (1 − 𝛽𝑖)𝑎Δ𝑏𝑖 ) → Hilb(𝑌, 𝑐𝐸 + 0 ⋅ Γ) ∈ ℍ𝝌 ,𝑞;𝑁 as 𝑖 → ∞.
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Thus, there exists g
′
𝑖
∈ SL(𝑁 + 1) such that g ′

𝑖
⋅Hilb(𝑏𝑖 ,𝑏𝑖 ) converges to Hilb(𝑌, 𝐸) in 𝑍𝑚.

Thus, by Lemma 3.12 after a quasi-finite base change of 𝜋◦, we may fill in (𝑌, 𝑐𝐸) as the
K-polystable central fiber. The proof is finished. □

3.5 Almost log Calabi–Yau cases

Notice that Definition 3.8 depends on the choice of 𝜖0. Indeed, if 𝑟 < 1, then it suffices to choose
𝜖0 = 1 − 𝑟. When 𝑟 ⩾ 1, wewill show that there exists 𝜖0 = 𝜖0(𝑛, 𝑟) ∈ (0, 1) such that the K-moduli
spaces/stacks are the same for any 𝑐 ∈ [(1 − 𝜖0)𝑟

−1, 𝑟−1).

Theorem 3.20. For any 𝑛 ∈ ℤ>0 and any rational number 𝑟 ⩾ 1, there exists 𝜖0 = 𝜖0(𝑛, 𝑟) ∈ (0, 1)

such that for any ℚ-Gorenstein smoothable log Fano pair (𝑋, 𝑐𝐷) with 𝑐 ∈ [(1 − 𝜖0)𝑟
−1, 𝑟−1), it is

K-(poly/semi)stable if and only if (𝑋, (1 − 𝜖0)𝑟
−1𝐷) is K-(poly/semi)stable.

Proof. First, let us assume that (𝑋, (1 − 𝜖0)𝑟
−1𝐷) is K-(poly/semi)stable hence klt. By ascend-

ing chain condition (ACC) of log canonical thresholds [55], there exists 𝜖1 = 𝜖1(𝑛, 𝑟) such that
(𝑋, 𝑟−1𝐷) is log canonical whenever (𝑋, (1 − 𝜖1)𝑟

−1𝐷) is log canonical. This is guaranteed for
any 𝜖0 ∈ (0, 𝜖1] since (𝑋, (1 − 𝜖0)𝑟

−1𝐷) is klt. Thus, (𝑋, 𝑐𝐷) is K-(poly/semi)stable for any 𝑐 ∈
[(1 − 𝜖0)𝑟

−1, 𝑟−1) provided 𝜖0 ∈ (0, 𝜖1].
Next, let (𝑋, 𝑐𝐷) be a ℚ-Gorenstein smoothable log Fano pair for some 𝑐 ∈ (0, 1). We may

choose a smoothing 𝜋 ∶ ( ,) → 𝐵 over a smooth pointed curve (0 ∈ 𝐵) such that 𝜋 is smooth
over 𝐵 ⧵ {0} and (0,0) ≅ (𝑋,𝐷). By Lemma 3.21, we may choose 𝜖2 = 𝜖2(𝑛, 𝑟) ∈ (0, 1) such
that (𝑏, 𝑐′𝑏) is K-polystable for any 𝑐′ ∈ [(1 − 𝜖2)𝑟−1, 𝑟−1) and any 𝑏 ∈ 𝐵 ⧵ {0}. For simplic-
ity, let us assume 𝜖2 ⩽ 𝜖1. Then by Theorem 3.19, we know that there exists a K-polystable limit
(𝑋′, (1 − 𝜖2)𝑟

−1𝐷′) of (𝑏, (1 − 𝜖2)𝑟−1𝑏) after possibly passing to a finite cover of𝐵. Since 𝜖2 ⩽ 𝜖1,
we know that (𝑋′, 𝑟−1𝐷′) is log canonical. Then by Proposition 2.13, we know that (𝑋′, 𝑐′𝐷′)
is the K-polystable limit of (𝑏, 𝑐′𝑏) whenever 𝑐′ ∈ [(1 − 𝜖2)𝑟−1, 𝑟−1). Let us choose 𝜖0 ∶= 𝜖22 .
Assume that (𝑋, 𝑐𝐷) is K-(poly/semi)stable for some 𝑐 ∈ [(1 − 𝜖0)𝑟

−1, 𝑟−1). Then by [27] we know
that (𝑋, 𝑐𝐷) specially degenerates to the K-polystable pair (𝑋′, 𝑐𝐷′). Hence, (𝑋, (1 − 𝜖2)𝑟

−1𝐷)

specially degenerates to the K-polystable pair (𝑋, (1 − 𝜖2)𝑟
−1𝐷′). In particular, (𝑋, (1 − 𝜖2)𝑟

−1𝐷)

is K-semistable by Theorem 2.16. Again, by Proposition 2.13, we know that (𝑋, (1 − 𝜖0)𝑟
−1𝐷) is

K-(poly/semi)stable. The proof is finished. □

Lemma 3.21. Let 𝑛 ∈ ℤ>0 and 𝑟 ⩾ 1 be a rational number. Then there exists 𝜖2 ∶= 𝜖2(𝑛, 𝑟) ∈ (0, 1)

such that for any pair (𝑋, 𝐷) where 𝑋 is an 𝑛-dimensional Fano manifold, 𝐷 is a smooth prime

divisor on 𝑋 and 𝐷 ∼ℚ −𝑟𝐾𝑋 , we have that (𝑋, 𝑐𝐷) is K-polystable whenever 𝑐 ∈ [(1 − 𝜖2)𝑟
−1, 𝑟−1).

Proof. When 𝑟 > 1, this is a consequence of [92, Theorem 5.2] based on ACC of log canonical
thresholds [55]. When 𝑟 = 1, we know that 𝐷 ∼ −𝐾𝑋 since 𝑋 is a Fano manifold. By bounded-
ness of Fano manifolds, there exists a smooth proper morphism 𝜋 ∶ ( ,) → 𝑇 over a (possibly
disconnected) normal base scheme 𝑇 that parametrizes all pairs (𝑋, 𝐷) where 𝑋 is a Fano man-
ifold and 𝐷 is a smooth anticanonical divisor on 𝑋. For each 𝜖 ∈ (0, 1), let us consider the
subset

𝑇𝜖 ∶= {𝑡 ∈ 𝑇 ∣ (𝑡, (1 − 𝜖)𝑡) is K-semistable}.
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By Corollary 3.17, we know that 𝑇𝜖 is an open subset of 𝑇. Since (𝑡,𝑡) is log canonical, by Propo-
sition 2.13, we know that 𝑇𝜖 ⊂ 𝑇𝜖′ whenever 0 < 𝜖

′ < 𝜖 < 1. Therefore, the noetherian property
implies that (𝑇𝜖) stabilizes as 0 < 𝜖 ≪ 1. By [62, Corollary 1], we know that for each 𝑡 ∈ 𝑇, there
exists 𝛽𝑡 ∈ (0, 1) such that (𝑡, (1 − 𝛽𝑡)𝑡) is K-polystable. In particular, we have 𝑇𝜖 = 𝐵 for any
0 < 𝜖 ≪ 1. Then, again by interpolation, we may choose 0 < 𝜖2 ≪ 1 such that (𝑡, (1 − 𝜖2)𝑡) is
K-polystable for any 𝑡 ∈ 𝑇. The proof is finished. □

The following result on boundedness is an easy consequence of Theorems 3.4 and 3.20.

Corollary 3.22. Fix 𝑟 > 1 a positive rational number and 𝑛 a positive integer. Then the following

collection of ℚ-Gorenstein smoothable pairs

{(𝑋, 𝐷) ∣ dim𝑋 = 𝑛, (𝑋, 𝑐𝐷) is K-semistable for some 𝑐 ∈ [0, 𝑟−1)}

is log bounded.

Next, we prove finiteness of K-moduli walls.

Proposition 3.23. There exist rational numbers 0 = 𝑐0 < 𝑐1 < 𝑐2 <⋯ < 𝑐𝑘 = min{1, 𝑟
−1} such

that for any 𝑐, 𝑐′ ∈ (𝑐𝑖 , 𝑐𝑖+1) and any 0 ⩽ 𝑖 ⩽ 𝑘 − 1, we have 𝑍
red
𝑐 = 𝑍red

𝑐′
. Moreover, 𝑍red𝑐𝑖±𝜖

are Zariski

open subsets of 𝑍red𝑐𝑖
for each 1 ⩽ 𝑖 ⩽ 𝑘 − 1.

Proof. The first statement follows from combining Theorems 3.15 and 3.20. The second statement
follows from the continuity of generalized Futaki invariants with respect to coefficients. □

3.6 Stabilization of quotient stacks

Next, we study the stabilization problem for the stacks [𝑍red𝑐,𝑚∕PGL(𝑁𝑚 + 1)].

Theorem 3.24. Assume that 𝑚 is sufficiently divisible. Then for each 𝑘 ∈ ℤ>0, there exists a

canonical isomorphism

Θ𝑘 ∶ [𝑍
red
𝑐,𝑚∕PGL(𝑁𝑚 + 1)] → [𝑍

red
𝑐,𝑘𝑚
∕PGL(𝑁𝑘𝑚 + 1)]

between reduced Artin stacks.

Proof. We first construct Θ𝑘 as a morphism. For simplicity, denote by 𝑇 ∶= 𝑍
red
𝑐,𝑚, 𝑇

′ ∶= 𝑍red
𝑐,𝑘𝑚

,

𝑁 ∶= 𝑁𝑚, and 𝑁
′ ∶= 𝑁𝑘𝑚. Let ( ,) ⊂ ℙ𝑁 × 𝑇 be the pull-back family of the universal family

over the Hilbert scheme. Denote by 𝜋 ∶ ( ,) → 𝑇 the projection morphism. Then, 𝜋∗ (𝑘)
is a rank 𝑁′ + 1 vector bundle over 𝑇. Let 𝑝 ∶ 𝒫 → 𝑇 be the PGL(𝑁′ + 1)-torsor correspond-
ing to projectivized basis of the vector bundle 𝜋∗ (𝑘). Then we will define a PGL(𝑁′ +
1)-equivariant morphism 𝑓 ∶ 𝒫 → 𝑇′ as follows. Since 𝑇′ is a locally closed subscheme of the
Hilbert scheme ℍ𝝌

𝑘
; 𝑁′, we will first construct 𝑓 ∶ 𝒫 → ℍ𝝌

𝑘
; 𝑁′. Consider 𝜋𝒫 ∶ (𝒫 ,𝒫) → 𝒫

where (𝒫 ,𝒫) ∶= ( ,) ×𝑇 𝒫. Thenwe have a closed embedding (𝒫 ,𝒫) ↪ ℙ
𝑁′ ×𝒫 given

by the projectivized basis information encoded in 𝒫. This gives a morphism 𝑓 ∶ 𝒫 → ℍ𝝌𝑘 ;𝑁
′
.
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Since 𝑇 contains a Zariski dense open subset 𝑇 ∩ 𝑍𝑚 parametrizing smooth log Fano pairs, we
know that the restriction of 𝑓 on 𝑝−1(𝑇 ∩ 𝑍𝑚) factors through 𝑍𝑘𝑚. Thus, 𝑓 factors through the
scheme-theoretic closure 𝑍𝑘𝑚. It is clear that the image of 𝑓 lies inside Supp(𝑇

′), so 𝑓 factors

as 𝒫
𝑓
"→ 𝑇′ ↪ ℍ𝝌𝑘 ;𝑁

′
where the latter map is a locally closed embedding. It is clear that 𝑓 is

PGL(𝑁′ + 1)-equivariant. Thus, 𝑓 descends to a morphism g ∶ 𝑇 → [𝑇′∕PGL(𝑁′ + 1)]. On the
other hand, we may lift the PGL(𝑁 + 1)-action on 𝑇 to 𝒫 via push forward sections. It is clear
that 𝑓 is PGL(𝑁 + 1)-invariant that implies that g is also PGL(𝑁 + 1)-invariant. Thus, we obtain
Θ𝑘 as the descent of g .
From the above arguments, it is clear that the actions of PGL(𝑁 + 1) and PGL(𝑁′ + 1) on 𝒫

commute.Hence, to showΘ𝑘 is an isomorphism, it suffices to show that𝑓 ∶ 𝒫 → 𝑇′ is aPGL(𝑁 +
1)-torsor, fromwhichΘ−1

𝑘
can be constructed easily. Let us consider the pull back of the universal

family ( ′,′) ⊂ ℙ𝑁′ × 𝑇′ with 𝜋′ ∶ ( ′,′) → 𝑇′. Since all fibers of 𝜋′ are klt with the same
volume, by [72, Theorem 5.4], we know that ′ → 𝑇′ is a locally stable family, in particular,𝐾 ′∕𝑇′
is ℚ-Cartier whose Cartier index is divisible by 𝑘𝑚. Since −𝑚𝐾 ′

𝑡′
is Cartier for any fiber  ′

𝑡′
=

𝜋−1(𝑡′), we know that −𝑚𝐾 ′∕𝑇′ is also Cartier. It is also clear from the construction that 𝑡′ ↦

ℎ0( ′
𝑡′
, 𝜔[𝑚] ′

𝑡′

) is a constant function on 𝑇′. Hence, the coherent sheaf 𝜋′∗𝜔
[𝑚]

 ′∕𝑇′ is a vector bundle
of rank𝑁 + 1 on 𝑇′. Thus, we may cover 𝑇′ by Zariski open subsets 𝑇′

𝑖
which trivialize 𝜋′∗𝜔

[𝑚]
 ′∕𝑇′ .

Then over 𝑇′
𝑖
, a basis of sections of 𝜋′∗𝜔

[𝑚]
 ′∕𝑇′ gives us a Zariski local section 𝑇′𝑖 → 𝒫 of 𝑓. These

sections enable us to trivialize the map 𝑓 ∶ 𝒫 → 𝑇′ over 𝑇′
𝑖
. □

Remark 3.25. As a consequence of Theorem 3.24, we know that the K-moduli stack 𝜒0,𝑟,𝑐

represents the following moduli pseudofunctor over reduced base 𝑆:

𝜒0,𝑟,𝑐
(𝑆) =

⎧⎪⎨⎪⎩
( ,)∕𝑆

||||||||

( , 𝑐)∕𝑆 is a ℚ-Gorenstein smoothable log Fano family,
 ∼𝑆,ℚ −𝑟𝐾∕𝑆 , each fiber (𝑠, 𝑐𝑠) is K-semistable,
and 𝜒(𝑠,𝑠 (−𝑘𝐾𝑠 )) = 𝜒0(𝑘) for 𝑘 sufficiently divisible.

⎫⎪⎬⎪⎭
.

3.7 Existence of good moduli spaces and local VGIT

In this section, wewill show that the K-moduli stack𝜒0,𝑟,𝑐
admits a proper goodmoduli space

𝐾𝑀𝜒0,𝑟,𝑐 generalizing [92, Section 8]. Moreover, there are finitely many wall crossings when 𝑐
varies in the interval (0,min{1, 𝑟−1}), and each wall crossing has a local VGIT presentation in the
sense of [6, (1.2)].
We follow Notation 3.10. Throughout this section, we will assume that 𝑐 ⩽ min{1, (1 − 𝜖0)𝑟

−1}

thanks to Theorem 3.20. Let us fix two Plücker embeddings ℍ𝜒;𝑁 ↪ ℙ𝑀 and ℍ𝜒̃;𝑁 ↪ ℙ𝑀̃ . Then
we have an embedding ℍ𝝌 ;𝑁 ↪ ℙ𝑴 ∶= ℙ𝑀 × ℙ𝑀̃ . Let (𝑋, 𝑐𝐷) be a K-polystable log Fano pair
parametrized by a point in 𝑍red𝑐 . Then by Theorem 3.9, it admits a weak conical Kähler–Einstein
metric and Aut(𝑋, 𝐷) ⊂ SL(𝑁 + 1) is reductive. (Note here that in order to obtain a natural lin-
earization onℙ𝑀 (1, 1), we always treat the automorphism group as a subgroup of SL(𝑁 + 1).) Let
us pick a U(𝑁 + 1)-invariant metric on ℙ𝑴 coming from product of U(𝑁 + 1)-invariant Fubini-
Study metrics on ℙ𝑀 and ℙ𝑀̃ . Let 𝑧0 = (𝑧0,1, 𝑧0,2) ∶= Hilb(𝑋, 𝑐𝐷) ∈ ℙ

𝑴 be the Hilbert point of
(𝑋, 𝑐𝐷) via Tian’s embedding with respect to the weak conical Kähler–Einstein metric. Then we
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may decompose the tangent space as Aut(𝑋, 𝐷)-invariant subspaces

𝑇𝑧0ℙ
𝑴 = 𝑊 ⊕ 𝔞𝔲𝔱(𝑋,𝐷)⟂.

Similarly, we have ℙ𝑀 = ℙ(𝑊1 ⊕ ℂ ⋅ 𝑧0,1 ⊕ 𝔞𝔲𝔱1(𝑋, 𝐷)
⟂) and ℙ𝑀̃ = ℙ(𝑊2 ⊕ ℂ ⋅ 𝑧0,2 ⊕

𝔞𝔲𝔱2(𝑋, 𝐷)
⟂). Let us take 𝑧∗

0
∶= (𝑧∗

0,1
, 𝑧∗
0,2
) ∈ (ℙ𝑀)∗ × (ℙ𝑀̃)∗ be the dual point of 𝑧0. Then

the locus (𝑧∗
0
≠ 0) gives an open immersion 𝔸𝑴 ∶= 𝔸𝑀 × 𝔸𝑀̃ ↪ ℙ𝑴 that maps the origin to 𝑧0.

Hence, the image of 𝑊 under the exponential map is a vector subspace of 𝔸𝑴 which we also
denote by𝑊. Let𝑊 be the Zariski closure of𝑊.
It is clear that 𝑧∗

0
is an Aut(𝑋, 𝐷)-fixed point. Hence, 𝔸𝑴 and𝑊 are both Aut(𝑋, 𝐷)-invariant.

We have two induced representations

𝜌1 ∶ Aut(𝑋, 𝐷) → SL(𝑊1 ⊕ ℂ ⋅ 𝑧0,1) and 𝜌2 ∶ Aut(𝑋, 𝐷) → SL(𝑊2 ⊕ ℂ ⋅ 𝑧0,2).

Let 𝜌 ∶= 𝜌1⊠𝜌2 be the product representation that induces a linearization of 𝑊(1, 1).
Denote by 𝜌(𝑋,𝐷) ∶ Aut(𝑋) → 𝔾𝑚 the character corresponding to the Aut(𝑋, 𝐷)-linearization

of ℙ𝑴 (1, 1)|𝑧0 . Since the universal family ( ,) → 𝑍 is Aut(𝑋, 𝐷)-equivariant, it induces an
Aut(𝑋, 𝐷)-linearization on𝑀2 which we denote by 𝜌𝑀2 (see (3.2) for the definition of𝑀2).

Definition 3.26. Let 𝑧 ∈ 𝑊 ∩ 𝑍 be a point.

(1) We say that 𝑧 is 𝑐-GIT (poly/semi)stable if it is GIT (poly/semi)-stable with respect to the
Aut(𝑋, 𝐷)-action on𝑊 with linearization 𝜌 ⊗ 𝜌−1

(𝑋,𝐷)
of 𝑊(1, 1).

(2) We say that 𝑧 is (𝑐 + 𝜖)-GIT (poly/semi)stable for some 0 < |𝜖|≪ 1 if it is GIT (poly/semi)-
stable with respect to the Aut(𝑋, 𝐷)-action on𝑊 ∩ 𝑍 with linearization 𝜌 ⊗ 𝜌−1

𝑋,𝐷
⊗ 𝜌⊗−𝜖

𝑀2
of

𝑊∩𝑍(1, 1) ⊗𝑀2|⊗−𝜖𝑊∩𝑍
.

The next theorem on local GIT chart is a direct generalization of [92, Theorem 8.8].

Theorem 3.27. There is anAut(𝑋, 𝐷)-invariant saturated affine Zariski open neighborhood𝑈𝑊 of

𝑧0 = Hilb(𝑋, 𝑐𝐷) in𝑊 ∩ 𝑍 such that every point in𝑈𝑊 is 𝑐-GIT semistable whose corresponding log

pair is 𝑐-K-semistable, and for anyHilb(𝑌, 𝐸) ∈ 𝑈𝑊 , (𝑌, 𝑐𝐸) is K-polystable if and only ifHilb(𝑌, 𝐸)

is 𝑐-GIT polystable.

Moreover, for all 𝑐-GIT polystable point Hilb(𝑌, 𝐸) ∈ 𝑈𝑊 , we have Aut(𝑌, 𝐸) < Aut(𝑋, 𝐷), that

is, the local GIT presentation 𝑈𝑊

//
Aut(𝑋, 𝐷) is stabilizer preserving in the sense of [6, Definition

2.5].

Proof. By definition, 𝑧0 is 𝑐-GIT polystable. Since saturated affine open neighborhoods of 𝑧0 form
a basis of all Zariski open neighborhoods of 𝑧0, we just need to find one𝑈𝑊 that is an Aut(𝑋, 𝐷)-
invariant Zariski open neighborhood of 𝑧0. The semistable equivalence part of the statement
follows from the openness of GIT semistability and openness of K-semistability in our setting
(see Corollary 3.17). For the polystable equivalence part, the proof is the same as the proof of [92,
Theorem 8.8], except that we replace [92, Lemma 8.10] by Lemma 3.28.
Next, we prove the stabilizer preserving for polystable points. First, we recall the U(𝑁 + 1)-

invariant sliceΣ constructed in [92, Summary 8.6]. LetΣ be the subset ofℍ𝝌 ;𝑁 consisting of Hilbert
points of K-polystable log Fano pairs in 𝑍red𝑐 via Tian’s embedding with respect to their weak
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conical Kähler–Einstein metrics. By Lemma 3.28, we know that Σ satisfies [92, Assumption A.9].
Hence, we obtain stabilizer preserving for polystable points by [92, Theorem A.10]. This finishes
the proof. □

Lemma3.28. Let 𝑧𝑖 = Hilb(𝑋𝑖 , 𝐷𝑖) ∈ 𝑍
red
𝑐 be a sequence ofHilbert points of 𝑐-K-semistable log pairs

converging to 𝑧0 = Hilb(𝑋, 𝑐𝐷). Then each (𝑋𝑖 , 𝑐𝐷𝑖) specially degenerates to a K-polystable log Fano

pair (𝑌𝑖 , 𝑐𝐸𝑖) ∈ 𝑍
red
𝑐 , such that

lim
𝑖→∞
distℍ𝝌;𝑁 (Hilb(𝑌𝑖 , 𝑐𝐸𝑖), U(𝑁 + 1) ⋅ 𝑧0) = 0,

where Hilb(𝑌𝑖 , 𝑐𝐸𝑖) is the Hilbert point corresponding to Tian’s embedding of (𝑌𝑖 , 𝑐𝐸𝑖) with respect

to the weak Kähler–Einstein metric.

Proof. Assume to the contrary. After passing to a subsequence, we know that 𝑧′
𝑖
∶= Hilb(𝑌𝑖 , 𝑐𝐸𝑖)

converges to 𝑧′ ∶= Hilb(𝑌, 𝑐𝐸) by taking Gromov–Hausdorff limits as Theorem 3.6, and (𝑌, 𝑐𝐸) is

not isomorphic to (𝑋, 𝑐𝐷). Since 𝑧′
𝑖
∈ SL(𝑁 + 1) ⋅ 𝑧𝑖 , there exists a sequence g𝑖 ∈ SL(𝑁 + 1) such

that g𝑖 ⋅ 𝑧𝑖 → 𝑧
′ as 𝑖 → ∞. Thus, 𝑧′ ∈ 𝐵𝑂𝑧0 ∩ 𝑍

red
𝑐 where𝐵𝑂𝑧0 is the broken orbit of 𝑧0with respect

to the action of SL(𝑁 + 1) on 𝑍 (see [92, Section 3] for the definition). By [27] on the uniqueness
of K-polystable limit, we know that (𝑌, 𝑐𝐸) ≅ (𝑋, 𝑐𝐷), a contradiction. □

The next result gives stabilizer preserving property of semistable points near 𝑧0 as a
straightforward consequence of [92, Lemma 8.12].

Lemma 3.29. After possibly shrinking 𝑈𝑊 , we have that Aut(𝑌, 𝐸) < Aut(𝑋, 𝐷) for any point

Hilb(𝑌, 𝐸) ∈ 𝑈𝑊 .

Proof. We follow the proof of [92, Lemma 8.12]. By the proof of [92, Theorem 3.1], we know that
the connected component Aut0(𝑌, 𝐸) is a subgroup of Aut(𝑋, 𝐷). Let us pick a finite subgroup
𝐻 < Aut(𝑌, 𝐸) that meets every connected component of Aut(𝑌, 𝐸). Hence, it suffices to show
that𝐻 < Aut(𝑋, 𝐷). We also know from [92, Proof of Theorem 8.8] that the set

{Hilb(𝑌, 𝐸) ∈ 𝑊 ∩ 𝑍 ∣ Aut(𝑌, 𝐸) < Aut(𝑋, 𝐷)}

is constructible. Hence, it suffices to show that the statement for 𝑧 lies inside an analytic open
neighborhood 𝑈an

𝑊
of 𝑧0 in 𝑊 ∩ 𝑍. We may assume that 𝑧 degenerates via a 1-PS 𝜆 of Aut(𝑋)

to a 𝑐-GIT polystable point 𝑧′ = Hilb(𝑌′, 𝐸′) in 𝑈an
𝑊
. Hence, Theorem 3.27 implies that (𝑌′, 𝑐𝐸′)

is K-polystable.
Since (𝑌, 𝐸) belongs to a bounded family, we may assume that |𝐻| is uniformly bounded

from above. Since (𝑌, 𝑐𝐸) is klt and belongs to a bounded family, there exists a positive integer
𝑞1 = 𝑞1(𝑛, 𝑟, 𝜖0) > 1 and an 𝐻-invariant divisor Γ ∈ | − 𝑞1𝐾𝑌| such that (𝑌, 𝑐𝐸 + Γ) is log canon-
ical. Hence, by Proposition 2.13, we know that (𝑌, 𝑐𝐸 + (1 − 𝛽)𝑎Γ) is uniformly K-stable where
𝑎 = 1−𝑐𝑟

𝑞1
and 𝛽 ∈ (0, 1). Let us take𝑚4 ∶= lcm(𝑚2(𝜒0, 𝑟, 𝑞1, 𝜖0, 𝛾0),𝑚3)where𝑚2(𝜒0, 𝑟, 𝑞1, 𝜖0, 𝛾0)

is chosen as in Theorem 3.6. From now on we assume that𝑚 is a multiple of𝑚4. Then by Propo-
sition 3.11, for each 𝛽 ∈ [𝛾0, 1), there exists an 𝐻-invariant weak conical Kähler–Einstein metric
𝜔𝑌,𝑐𝐸(𝛽) together with a Tian embedding Hilb(𝑌, 𝑐𝐸, 𝜔𝑌,𝑐𝐸(𝛽)) ∈ ℍ

𝝌 ;𝑁 via 𝜔𝑌,𝑐𝐸(𝛽). Moreover,
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from the uniqueness of K-polystable limits [27], we have

Hilb(𝑌, 𝑐𝐸, 𝜔𝑌,𝑐𝐸(𝛽))
𝛽→1
""""→ U(𝑁 + 1) ⋅Hilb(𝑌′, 𝑐𝐸′) ⊂ ℍ𝝌 ;𝑁 .

Hence, the proof proceeds the same as [92, Proof of Lemma 8.12]. □

The following Luna slice-type result is also a straightforward consequence of [92, Lemmas 8.15
and A.15]. We omit the proof here because it is identical to the proof therein on verifying the finite
distance property.

Lemma 3.30. After possibly shrinking𝑈𝑊 , the morphism

𝜓 ∶ SL(𝑁 + 1) ×Aut(𝑋,𝐷) 𝑈𝑊 → 𝑈

is a finite strongly étale SL(𝑁 + 1)-morphism onto a Zariski open subset𝑈 of 𝑍red𝑐 .

Now we are ready to prove Theorem 3.1, the first main result of our construction of K-moduli
stacks and spaces.

Proof of Theorem 3.1. We first show that the Artin stack 𝜒0,𝑟,𝑐
admits a good moduli space

𝐾𝑀𝜒0,𝑟,𝑐 as a proper reduced algebraic space. By [6, Theorem 1.2], this boils down to proving the

following: for any closed point [𝑧0] ∈ [𝑍
red
𝑐 ∕SL(𝑁 + 1)], there is a saturated affine neighborhood

𝑧0 ∶= Hilb(𝑋, 𝑐𝐷) ∈ 𝑈𝑊 ⊂ 𝑊 ∩ 𝑍 (as in Lemma 3.30) such that

(1) The morphism 𝑓 ∶ [𝑈𝑊∕Aut(𝑋, 𝐷)] → [𝑍
red
𝑐 ∕SL(𝑁 + 1)] is a local quotient presentation in

the sense of [6, Definition 2.1]. Moreover, 𝑓 is stabilizer preserving and sends closed point to
closed point, and

(2) For any ℂ-point 𝑧 ∈ 𝑍red𝑐 specializing to 𝑧0 under the SL(𝑁 + 1)-action, the closure {[𝑧]}
admits a good moduli space.

We have shown the Aut(𝑋, 𝐷) is reductive, and 𝑧0 is a 𝑐-GIT polystable point with stabilizer
Aut(𝑋, 𝐷). Since SL(𝑁 + 1) ×Aut(𝑋,𝐷) 𝑈𝑊 is the quotient of the affine scheme SL(𝑁 + 1) × 𝑈𝑊 by
the free action of the reductive group Aut(𝑋, 𝐷), we know that SL(𝑁 + 1) ×Aut(𝑋,𝐷) 𝑈𝑊 is also
affine. Hence, Lemma 3.30 implies that 𝑓 is étale and affine, in particular𝑈 = SL(𝑁 + 1) ⋅𝑈𝑊 is
affine. Thus, 𝑓 is a local quotient presentation according to [6, Definition 2.1]. In Lemma 3.29,
we showed that 𝑓 is stabilizer preserving. By Theorem 3.9.2, we know that a closed point in
[𝑍red𝑐 ∕SL(𝑁 + 1)] corresponds to a 𝑐-K-polystable pair. Thus, 𝑓 sends closed point to closed point

by Theorem 3.27. Hence, part (1) is proved. For part (2), notice that the closure SL(𝑁 + 1) ⋅ 𝑧 in
𝑍red𝑐 is a closed subset of𝑈 since SL(𝑁 + 1) ⋅ 𝑧 = SL(𝑁 + 1) ⋅ Aut(𝑋, 𝐷) ⋅ 𝑧 and 𝜓 is finite onto𝑈.

Since 𝑈 is affine, we know that SL(𝑁 + 1) ⋅ 𝑧 is also affine. Thus, we finish the proof of part (2).

Indeed, we have shown that𝑈
//
SL(𝑁 + 1) is affine. Hence, the good moduli space 𝐾𝑀𝜒0,𝑟,𝑐 is

a reduced scheme. Its properness follows from [27] and Theorem 3.19. □

The next theorem provides a local VGIT chart of K-moduli wall crossing in the slice𝑊. Before
stating the theorem, we recall a lemma we will need.
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Lemma 3.31.

(1) ([63]) Let 𝐺 be a reductive group acting on a polarized projective scheme (𝑍, 𝐿). Let 𝑧 ∈ 𝑍 be a
closed point. Let 𝜆 ∶ 𝔾𝑚 → 𝐺 be a 1-PS. Denote by 𝑧

′ = lim𝑡→0 𝜆(𝑡) ⋅ 𝑧. If 𝑧 is GIT semistable and

𝜇𝐿(𝑧, 𝜆) = 0, then 𝑧′ is also GIT semistable.

(2) ([93, Lemma 3.1]) Let (𝑋, Δ) be a log Fano pair. Let ( , Δ̃;)∕𝔸1 be a normal test configura-
tion of (𝑋, Δ). If (𝑋, Δ) is K-semistable and Fut( , Δ̃;) = 0, then ( , Δ̃;)∕𝔸1 is a special test
configuration and (𝑋0, Δ0) is also K-semistable.

Theorem 3.32. There is an Aut(𝑋, 𝐷)-invariant saturated affine Zariski open neighborhood

𝑈𝑊 (as in Lemma 3.30) of 𝑧0 = Hilb(𝑋, 𝑐𝐷) such that for any Hilb(𝑌, 𝐸) ∈ 𝑈𝑊 and any |𝜖|≪
1, the log Fano pair (𝑌, (𝑐 + 𝜖)𝐸) is K-(poly/semi)stable if and only if Hilb(𝑌, 𝐸) is (𝑐 + 𝜖)-GIT

(poly/semi)stable.

Proof. Let (𝑌, 𝐸) be a pair with 𝑧 ∶= Hilb(𝑌, 𝐸) ∈ 𝑈𝑊 . Suppose that (𝑌, (𝑐 + 𝜖)𝐸) is K-semistable.
We will show thatHilb(𝑌, 𝐸) is (𝑐 + 𝜖)-GIT semistable. Assume to the contrary that Hilb(𝑌, 𝐸) is
(𝑐 + 𝜖)-GIT unstable, then there exists a 1-PS 𝜆 ∶ 𝔾𝑚 → Aut(𝑋, 𝐷) such that

𝜇(1,1)(𝑧, 𝜆) − 𝜖𝜇𝑀2(𝑧, 𝜆) < 0.

From the discussion in Section 3.3, we can choose 𝜆 so that 𝜇(1,1)(𝑧, 𝜆) = 0 and 𝜖𝜇𝑀2(𝑧, 𝜆) >
0. Since 𝑧 ∈ 𝑊 ∩ 𝑍 is 𝑐-GIT semistable, by Lemma 3.31.1, we know that 𝑧′ ∶= lim𝑡→0 𝜆(𝑡) ⋅ 𝑧 is
also 𝑐-GIT semistable. Since 𝑈𝑊 is saturated, we know that 𝑧′ ∈ 𝑈𝑊 . Let (𝑌

′, 𝐸′) be the pair
such thatHilb(𝑌′, 𝐸′) = 𝑧′. Then, Theorem 3.27 implies that (𝑌′, 𝑐𝐸′) is also K-semistable. Hence,
𝜇𝑀1(𝑧, 𝜆) − 𝑐𝜇𝑀2(𝑧, 𝜆) = 0 since 𝜆 induces a 𝑐-K-semistable family over𝔸1. Let (𝜆, (𝑐 + 𝜖)𝜆;𝜆)
be the test configuration of (𝑌, (𝑐 + 𝜖)𝐸) induced by 𝜆. Thus,

Fut(𝜆, (𝑐 + 𝜖)𝜆;𝜆) = 𝜇𝑀1(𝑧, 𝜆) − (𝑐 + 𝜖)𝜇𝑀2(𝑧, 𝜆) = −𝜖𝜇𝑀2(𝑧, 𝜆) < 0.
This contradicts the assumption that (𝑌, (𝑐 + 𝜖)𝐸) is K-semistable.
Next, we want to show (𝑐 + 𝜖)-GIT semistability implies (𝑐 + 𝜖)-K-semistability in 𝑈𝑊 . Sup-

pose 𝑧 = Hilb(𝑌, 𝐸) ∈ 𝑈𝑊 is (𝑐 + 𝜖)-GIT semistable. Assume to the contrary that (𝑌, (𝑐 + 𝜖)𝐸)
is K-unstable. From Theorem 3.9, we know that to test K-(poly/semi)stablility of (𝑌, (𝑐 + 𝜖)𝐸),
it suffices to test all 1-PS in SL(𝑁 + 1). Hence, there exists a 1-PS 𝜆 ∶ 𝔾𝑚 → SL(𝑁 + 1) such that
𝜇𝑀1(𝑧, 𝜆) − (𝑐 + 𝜖)𝜇𝑀2(𝑧, 𝜆) < 0. Again, from the discussion in Section 3.3, we may choose 𝜆 so
that𝜇𝑀1(𝑧, 𝜆) − 𝑐𝜇𝑀2(𝑧, 𝜆) = 0 and 𝜖𝜇𝑀2(𝑧, 𝜆) > 0. Since (𝑌, 𝑐𝐸) is K-semistable, by [94]we know
that𝜆 is normal in codimension 1 where (𝜆, 𝑐𝜆;𝜆) is the test configuration of (𝑌, 𝑐𝐸) induced
by 𝜆. If 𝜆 is not normal, then we may take its normalization and reembed it into ℙ𝑁 with-
out changing the generalized Futaki invariants. By doing so we may assume that 𝜆 induces a
normal test configuration of (𝑌, 𝑐𝐸). Denote by 𝑧′ = Hilb(𝑌′, 𝐸′) ∶= lim𝑡→0 𝜆(𝑡) ⋅ 𝑧 ∈ 𝑍. Since
(𝑌, 𝑐𝐸) is K-semistable, Lemma 3.31.2 implies that (𝑌′, 𝑐𝐸′) is also a K-semistable log Fano pair.
Let 𝑧1 ∶= Hilb(𝑌1, 𝐸1) be the 𝑐-GIT polystable degeneration of 𝑧 in 𝑈𝑊 . Hence, (𝑌1, 𝑐𝐸1) is the
K-polystable degeneration of (𝑌, 𝑐𝐸) by Theorem 3.27. From Theorem 3.9, we know that (𝑌′, 𝑐𝐸′)
specially degenerates to a K-polystable log Fano pair (𝑌′

1
, 𝑐𝐸′

1
) in ℙ𝑁 via a 1-PS 𝜆′ of SL(𝑁 + 1).

Since K-polystable degenerations of S-equivalent K-semistable log Fano pairs are isomorphic by
[93], we know that (𝑌1, 𝑐𝐸1) ≅ (𝑌

′
1
, 𝑐𝐸′

1
). Hence, there exists g ∈ SL(𝑁 + 1) such that

lim
𝑡→0
𝜆′(𝑡) ⋅ 𝑧′ = g ⋅ 𝑧1 = Hilb(𝑌

′
1, 𝑐𝐸

′
1).
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By Lemma 3.30, we know that 𝑈 = SL(𝑁 + 1) ⋅𝑈𝑊 is a Zariski open subset of 𝑍red𝑐 . Hence,
𝑧, 𝑧1, g ⋅ 𝑧1, and 𝑧

′ all belong to 𝑈. Hence,

𝜖𝜇𝜓
∗𝑀2((id, 𝑧), 𝜆) = 𝜖𝜇𝑀2(𝑧, 𝜆) > 0.

This implies that (id, 𝑧) is GIT unstable on SL(𝑁 + 1) ×Aut(𝑋,𝐷) 𝑈𝑊 with respect to the SL(𝑁 +

1)-linearized ℚ-line bundle 𝜓∗𝑀⊗−𝜖
2

. Since 𝜓∗𝑀2 is induced from the Aut(𝑋, 𝐷)-linearized ℚ-
line bundle 𝑀2|𝑈𝑊 on 𝑈𝑊 , we know that 𝑧 is (𝑐 + 𝜖)-GIT unstable in 𝑈𝑊 . Thus, we reach
a contradiction.
Finally, we show that the polystability conditions coincide. Denote by 𝑈ss

𝑊,𝜖
the (𝑐 + 𝜖)-GIT

semistable locus in 𝑈𝑊 , and 𝑈
ss
𝜖 the (𝑐 + 𝜖)-K-semistable locus in 𝑈. From Lemma 3.30 and the

discussion above, we know that 𝜓 ∶ SL(𝑁 + 1) ×Aut(𝑋,𝐷) 𝑈
ss
𝑊,𝜖
→ 𝑈ss𝜖 is a finite surjective strongly

étale SL(𝑁 + 1)-morphism. We also see that 𝑈 is a saturated affine open subset of 𝑍red𝑐 from the
proof of Theorem 3.1; hence,𝑈ss𝜖 is a saturated open subset of 𝑍

red
𝑐+𝜖. Thus, a point 𝑧 = Hilb(𝑌, 𝐸) ∈

𝑈ss
𝑊,𝜖

is (𝑐 + 𝜖)-GIT polystable if and only if its Aut(𝑋, 𝐷)-orbit is closed in 𝑈ss
𝑊,𝜖

. This is equiva-
lent to SL(𝑁 + 1) ⋅ 𝑧 is closed in 𝑈ss𝜖 that is the same as saying (𝑌, (𝑐 + 𝜖)𝐸) is K-polystable by
saturatedness of 𝑈ss𝜖 . The proof is finished. □

Theorem3.33. Given any closed point [𝑧0] in𝜒0,𝑟,𝑐
and 0 < 𝜖 ≪ 1, after possibly shrinking𝑈𝑊 ,

there exist a local quotient representation 𝑓 ∶ [𝑈𝑊∕𝐺𝑧0] → 𝜒0,𝑟,𝑐
, a 𝐺𝑧0 -linearized line bundle

𝐿𝑧0 on𝑈𝑊 , and a Cartesian diagram

such that the following are true.

(1) The quotient stacks [𝑈±
𝑊
∕𝐺𝑧0] are the VGIT chambers of [𝑈𝑊∕𝐺𝑧0] with respect to 𝐿𝑧0 (see [6,

Definition 2.4] for a definition).

(2) All vertical arrows are finite strongly étalemorphisms onto saturated open substacks of K-moduli
stacks.

In particular, we have a Cartesian diagram

(3.6)

where all vertical arrows are finite étale morphisms onto Zariski open subsets of K-moduli spaces,

and all horizontal morphisms are projective.

Proof. We first look at the K-moduli stack parts. Let 𝑈±
𝑊
be the (𝑐 ± 𝜖)-GIT semistable locus of

𝑈𝑊 . By Lemma 3.30, we know that 𝑓 is a finite strongly étale morphism onto [𝑈∕SL(𝑁 + 1)]
that is a saturated open substack of 𝜒0,𝑟,𝑐

= [𝑍red𝑐 ∕SL(𝑁 + 1)]. The diagram is Cartesian

 1
4
6
0
2
4
4
x
, 2

0
2
4
, 6

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n
d
m

ath
so

c.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
2
/p

lm
s.1

2
6

1
5

 b
y

 N
o

rth
w

estern
 U

n
iv

ersity
 L

ib
raries, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

1
/0

6
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES 39 of 113

by Theorem 3.32. Hence, 𝑓± are finite étale. From the proof of Theorem 3.32, we know that
𝑈± ∶= SL(𝑁 + 1) ⋅𝑈±

𝑊
= 𝑍red𝑐±𝜖 ∩ 𝑈. Hence their saturatedness follows from saturatedness of 𝑈.

The stabilizer preserving property of 𝑓± follows from 3.29. The morphisms 𝑓± also send closed
point to closed point by Theorem 3.32. Hence, we finish proving part (2). For part (1), we take
𝐿𝑧0 ∶= 𝑊(1, 1)|𝑈𝑊 together with the 𝐺𝑧0 -linearization 𝜌 ⊗ 𝜌

−1
(𝑋,𝐷)

(see Definition 3.26). After

shrinking 𝑈𝑊 if necessary we may assume that 𝑀2|𝑈𝑊 is trivial. Hence, the 𝐺𝑧0 -representation
𝜌−1
𝑀2

on𝑀−1
2

corresponds to a 𝐺𝑧0 -character 𝜒𝐿𝑧0
∶ 𝐺𝑧0 → 𝔾𝑚. Then the VGIT chamber statement

follows from Theorem 3.32. For the K-moduli spaces statements, the Zariski open part is clear by
definition of saturatedness, the finite part follows from the definition of good moduli spaces, and
the strongly étale part follows from descent property (see [6, Proposition 2.7]). □

Definition 3.34. Let 𝜋 ∶ ( ,) → 𝑍 be the universal family over 𝑍. Let 𝜋𝑐 ∶ (𝑐,𝑐) → 𝑍red𝑐 be
the base change of 𝜋 to 𝑍red𝑐 . Let 0 ⩽ 𝑐′ < 𝑟−1 be another rational number. Then the CM ℚ-line
bundle 𝜆CM,𝜋𝑐 ,𝑐′𝑐 on 𝑍red𝑐 descends to a ℚ-line bundle 𝜆𝑐,𝑐′ on 𝜒0,𝑟,𝑐

= [𝑍red𝑐 ∕PGL(𝑁 + 1)].
We call 𝜆𝑐,𝑐′ the CM ℚ-line bundle on 𝜒0,𝑟,𝑐

with coefficient 𝑐′. We simply denote 𝜆𝑐 ∶= 𝜆𝑐,𝑐.
We also denote 𝜆𝑐,Hodge ∶= 𝜆Hodge,𝜋𝑐 ,𝑟−1.

Proposition 3.35. With the above notation, the CMℚ-line bundle 𝜆𝑐 on𝜒0,𝑟,𝑐
descends to aℚ-

line bundleΛ𝑐 on the K-moduli space𝐾𝑀𝜒0,𝑟,𝑐 . If in addition𝑍
red
𝑐 = 𝑍red𝑐±𝜖 for any 0 < 𝜖 ≪ 1, then the

Hodgeℚ-line bundle 𝜆𝑐,Hodge and the CMℚ-line bundle 𝜆𝑐,𝑐′ on𝜒0,𝑟,𝑐
descends toℚ-line bundles

Λ𝑐,Hodge and Λ𝑐,𝑐′ on 𝐾𝑀𝜒0,𝑟,𝑐 for any 0 ⩽ 𝑐
′ < 𝑟−1, respectively. Moreover, we have the following

interpolation formula:

(1 − 𝑐′𝑟)−𝑛Λ𝑐,𝑐′ = (1 − 𝑐
′𝑟)Λ𝑐,0 + 𝑐

′𝑟(𝑛 + 1)(−𝐾𝑋)
𝑛Λ𝑐,Hodge. (3.7)

Proof. First, we show the statements on descents. Let [𝑧0] = [Hilb(𝑋, 𝐷)] be any closed point
of 𝜒0,𝑟,𝑐

. By [10, Theorem 10.3], to show that 𝜆𝑐,𝑐′ on 𝜒0,𝑟,𝑐
can descend to 𝐾𝑀𝜒0,𝑟,𝑐, it

suffices to show that the group of stabilizers Aut(𝑋, 𝐷) acts trivially on 𝜆⊗𝑘
𝑐,𝑐′

for 𝑘 sufficiently

divisible. Since Aut(𝑋, 𝐷) is reductive, it suffices to show that any 1-PS 𝜎 in Aut(𝑋, 𝐷) acting on
𝜆𝑐,𝑐′ |[𝑧0] has weight zero. By Proposition 2.19, this weight is a nonzero multiple of the generalized
Futaki invariant of the product test configuration (𝜎, 𝑐′𝜎;𝜎) of (𝑋, 𝑐′𝐷) induced by 𝜎. Since
(𝑋, 𝑐𝐷) is K-polystable, we know that the 𝜎-weight of 𝜆𝑐 at [𝑧0] always vanishes. If in addition
that (𝑋, (𝑐 ± 𝜖)𝐷) is K-semistable, then by the linearity of generalized Futaki invariants in terms
of coefficients, we know that Fut(𝜎, 𝑐′𝜎;𝜎) = 0 for any 0 ⩽ 𝑐′ < 𝑟−1. By Proposition 2.25, we
know that

(1 − 𝑐′𝑟)−𝑛𝜆𝑐,𝑐′ = (1 − 𝑐
′𝑟)𝜆𝑐,0 + 𝑐

′𝑟(𝑛 + 1)(−𝐾𝑋)
𝑛𝜆𝑐,Hodge.

Hence, 𝜆𝑐,Hodge descends to 𝐾𝑀𝜒0,𝑟,𝑐 if 𝜆𝑐,𝑐′ descends for all 𝑐
′. Thus, the interpolation formula

(3.7) is just the descent of the above equation. □

Theorem 3.36. With the above notation, the ℚ-line bundles Λ𝑐±𝜖 on 𝐾𝑀𝜒0,𝑟,𝑐±𝜖 are 𝜙
±-ample. In

addition, we have lim𝜖→0 Λ𝑐±𝜖 = Λ𝑐±𝜖,𝑐 = (𝜙
±)∗Λ𝑐.

Proof. By Theorem 3.32, it suffices to verify the statements over the local GIT chart 𝑈𝑊

//
𝐺𝑧0 for

each closed point [𝑧0] ∈ 𝜒0,𝑟,𝑐
. Recall from (3.2) that for the universal family 𝜋 ∶ ( ,) → 𝑍,
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we have a line bundle  on  as the pull back of ℙ𝑁 (1) and ℚ-line bundles 𝑀𝑖 on 𝑍 such that
𝜆CM,𝜋,𝑐′, = 𝑀1 − 𝑐𝑀2. Let 𝑐 be the pull back of  to 𝑐. Since

𝑐 ∼ℚ,𝜋𝑐 −𝑚𝐾𝑐∕𝑍red𝑐 ∼ℚ,𝜋𝑐 𝑚(1 − 𝑐𝑟)−1(−𝐾𝑐∕𝑍red𝑐 − 𝑐𝑐),
we know that

𝑚𝑛(1 − 𝑐𝑟)−𝑛𝜆CM,𝜋𝑐 ,𝑐𝑐 = 𝜆CM,𝜋,𝑐,|𝑍red𝑐 = (𝑀1 − 𝑐𝑀2)|𝑍red𝑐 .

Thus, 𝑚𝑛(1 − 𝑐𝑟)−𝑛(𝑓±)∗𝜆𝑐±𝜖 on [𝑈
±
𝑊
∕𝐺𝑧0] is the descent of (𝑀1 − (𝑐 ± 𝜖)𝑀2)|𝑈±𝑊 . By Defini-

tion 3.26, we know that the descent of ±𝑀2 on𝑈
±
𝑊

//
𝐺𝑧0 is antiample over𝑈𝑊

//
𝐺𝑧0 , henceΛ𝑐±𝜖

is 𝜙±-ample. The second statement follows directly from the above computations. □

Finally, we are able to prove Theorem 3.2 using the above results.

Proof of Theorem 3.2. The statements follow from combining Proposition 3.23 and Theorems 3.1,
3.32, and 3.36. □

4 GENERAL PROPERTIES OF K-MODULI OF PLANE CURVES

In this section, we use results from Section 3 to construct K-moduli stacks (resp. K-moduli spaces)
of plane curves parametrizing K-semistable (resp. K-polystable) log Fano pairs (𝑋, 𝑐𝐷) where 𝑋
is a ℚ-Gorenstein degeneration of ℙ2, the curve 𝐷 is a degeneration of smooth plane curves of
degree 𝑑, and 0 < 𝑐 < 3∕𝑑. We also study properties of these K-moduli stacks and spaces. We note
that similar computations and comparisons of K-moduli to GIT were carried out in [106] in the
case of low degree del Pezzo surfaces.

4.1 Definition and properties

We first recall the GIT moduli stacks and spaces of plane curves.

Definition 4.1. Let 𝑑 be a positive integer. Let 𝐏𝑑 ∶= ℙ(𝐻
0(ℙ2,ℙ2(𝑑))) be the projective space

of dimension
(𝑑+2
2

)
− 1 parametrizing all plane curves of degree 𝑑. It is clear that the natural

PGL(3)-action on ℙ2 lifts up to an action on 𝐏𝑑.

(1) The line bundle 𝐏𝑑 (1) has a unique SL(3)-linearization. Let 𝐏ss𝑑 be the GIT semistable locus
of 𝐏𝑑 with respect to the SL(3)-linearized line bundle𝐏𝑑 (1). We define the GITmoduli stack
GIT𝑑 of plane curves of degree 𝑑 to beGIT𝑑 ∶= [𝐏ss

𝑑
∕PGL(3)]. We define theGITmoduli space

of plane curves of degree 𝑑 to be 𝑃
GIT

𝑑 ∶= 𝐏ss
𝑑

//
SL(3).

(2) Let 𝐏sm
𝑑
be the Zariski open subset of 𝐏𝑑 parametrizing smooth plane curves. Then themoduli

stack 𝑑 of smooth plane curves of degree 𝑑 is defined as 𝑑 ∶= [𝐏sm𝑑 ∕PGL(3)]. When 𝑑 ⩾ 2,
it is clear from [99, Chapter 4 §2] that 𝐏sm

𝑑
is a saturated Zariski open subset of 𝐏ss

𝑑
. Hence, 𝑑

admits a good moduli space 𝑃𝑑 as a Zariski open subset of 𝑃
GIT

𝑑 . We call 𝑃𝑑 the moduli space

 1
4
6
0
2
4
4
x
, 2

0
2
4
, 6

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n
d
m

ath
so

c.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
2
/p

lm
s.1

2
6

1
5

 b
y

 N
o

rth
w

estern
 U

n
iv

ersity
 L

ib
raries, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

1
/0

6
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES 41 of 113

of smooth plane curves of degree 𝑑. Notice that when 𝑑 = 1, the GIT moduli space GIT𝑑 is
empty, and 𝑑 does not admit a good moduli space due to the nonreductivity of stabilizers;
when 𝑑 ⩾ 3, the stack 𝑑 is Deligne–Mumford.

Now we begin with the definition of K-moduli stacks and spaces of plane curves. Recall that in
Definition 3.8, we define K-moduli stacks and spaces ofℚ-Gorenstein smoothable log Fano pairs.
In what follows, we adapt this definition to define K-moduli stacks and spaces of plane curves.

Definition 4.2. Let 𝑑 and 𝑚 be positive integers. Let 𝑐 ∈ (0,min{1, 3
𝑑
}) be a rational num-

ber. Denote by 𝜒(𝑘) ∶= 𝜒(ℙ2,ℙ2(3𝑚𝑘)), 𝜒̃(𝑘) = 𝜒(ℙ2,ℙ2(3𝑚𝑘)) − 𝜒(ℙ2,ℙ2(3𝑚𝑘 − 𝑑)), 𝝌 ∶=
(𝜒, 𝜒̃), and 𝑁 = ℎ0(ℙ2,ℙ2(3𝑚)) − 1. Let ℍ𝝌 ;𝑁 be the Hilbert schemes of pairs (𝑋, 𝐷) ↪ ℙ𝑁 of
Hilbert polynomial (𝜒, 𝜒̃).
We define

𝑍 ∶=

⎧⎪⎨⎪⎩
Hilb(𝑋, 𝐷) ∈ ℍ𝝌 ;𝑁

||||||||

(𝑋, 𝐷) ≅ (ℙ2, 𝐶) where 𝐶 is a smooth plane curve of degree 𝑑,

ℙ𝑁 (1)|𝑋 ≅ 𝑋(−𝑚𝐾𝑋),
and𝐻0(ℙ𝑁 ,ℙ𝑁 (1)) ≅"→ 𝐻0(𝑋,𝑋(−𝑚𝐾𝑋)).

⎫⎪⎬⎪⎭
.

In other words, 𝑍 parametrizes Hilbert points of (3𝑚)th Veronese embedding of (ℙ2, 𝐶) into ℙ𝑁 .
Then 𝑍 is a locally closed subscheme of ℍ𝝌 ;𝑁 . Let 𝑍 be the Zariski closure of 𝑍. We also define

𝑍◦𝑐 ∶=

⎧⎪⎨⎪⎩
Hilb(𝑋, 𝐷) ∈ 𝑍

|||||||||

𝑋 is a Manetti surface, 𝐷 ∼ℚ −
𝑑

3
𝐾𝑋 is an effective Weil divisor,

(𝑋, 𝑐𝐷) is K-semistable,ℙ𝑁 (1)|𝑋 ≅ 𝑋(−𝑚𝐾𝑋),
and𝐻0(ℙ𝑁 ,ℙ𝑁 (1)) ≅"→ 𝐻0(𝑋,𝑋(−𝑚𝐾𝑋)).

⎫⎪⎬⎪⎭
.

By Corollary 3.17, we know that 𝑍◦𝑐 is a Zariski open subset of 𝑍. We denote by 𝑍
red
𝑐 the reduced

scheme supported on 𝑍◦𝑐 .

Assume𝑚 is sufficiently divisible. We define the K-moduli stack K𝑑,𝑐 of plane curves of degree
𝑑 with coefficient 𝑐 as the quotient stack

K𝑑,𝑐 ∶= [𝑍red𝑐 ∕PGL(𝑁 + 1)].

By Theorem 3.24, we know that K𝑑,𝑐 does not depend on the choice of sufficiently divisible

𝑚. By Theorem 3.1, we know that K𝑑,𝑐 admits a good moduli space 𝑃K𝑑,𝑐 as a reduced proper
scheme of finite type over ℂ. We call 𝑃

K

𝑑,𝑐 the K-moduli space of plane curves of degree 𝑑 with
coefficient 𝑐.

Indeed, if we denote by 𝜒0(𝑘) ∶= 𝜒(ℙ
2,(3𝑘)), then K𝑑,𝑐 = 𝜒0,𝑑∕3,𝑐

and 𝑃
K

𝑑,𝑐 = 𝐾𝑀𝜒0,𝑑∕3,𝑐
as in Definition 3.8 since ℙ2 is the only smooth del Pezzo surface of degree 9. From the definition,

we also know that a pair (𝑋, 𝑐𝐷) is parametrized by K𝑑,𝑐 (resp. 𝑃K𝑑,𝑐) if and only if (𝑋, 𝑐𝐷) is K-
semistable (resp. K-polystable), and it admits a ℚ-Gorenstein smoothing to (ℙ2, 𝑐𝐶𝑡) with 𝐶𝑡 a
smooth plane curve of degree 𝑑.
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42 of 113 ASCHER et al.

The following useful proposition is an easy consequence of the Paul-Tian criterion Theo-
rem 2.22.

Proposition 4.3. Let 𝐶 be a plane curve of degree 𝑑. Let 𝑐 ∈ (0,min{1, 3∕𝑑}) be a rational number.

If (ℙ2, 𝑐𝐶) is K-(poly/semi)stable, then 𝐶 is GIT (poly/semi)stable.

Proof. Consider the universal family 𝜋 ∶ (ℙ2 × 𝐏𝑑, 𝑐) → 𝐏𝑑 of plane curves of degree 𝑑. From
Theorem 2.22, it suffices to show that the CM ℚ-line bundle 𝜆CM,𝜋,𝑐 is ample on 𝐏𝑑. Here we
use the intersection formula as in Proposition 2.23. It is clear that −𝐾ℙ2×𝐏𝑑∕𝐏𝑑 ∼ ℙ2×𝐏𝑑 (3, 0)
and  ∼ ℙ2×𝐏𝑑 (𝑑, 1). Denote by 𝑝 ∶ ℙ2 × 𝐏𝑑 → ℙ2 the projection to the first component. By
computation,

𝜆CM,𝜋,𝑐 = −𝜋∗
(
(−𝐾ℙ2×𝐏𝑑∕𝐏𝑑 − 𝑐)3

)
= −𝜋∗

(ℙ2×𝐏𝑑 (3 − 𝑐𝑑, −𝑐)3
)

= −𝜋∗
(
𝑝∗(3 − 𝑐𝑑)3 + 3𝑝∗(3 − 𝑐𝑑)2 ⋅ 𝜋∗(−𝑐) + 3𝑝∗(3 − 𝑐𝑑) ⋅ 𝜋∗(−𝑐)2 + 𝜋∗(−𝑐)3)

= 3(3 − 𝑐𝑑)2𝑐𝐏𝑑 (1).

Hence, 𝜆CM,𝜋,𝑐 is ample whenever 𝑐 ∈ (0, 3𝑑 ). The proof is finished. □

The following corollary was proved by Hacking [50, Propositions 10.2 and 10.4] and Kim and
Lee [67, Theorem 2.3]. We give a proof using K-stability and CM line bundles.

Corollary 4.4. Let 𝐶 be a plane curve of degree 𝑑. If lct(ℙ2; 𝐶) ⩾ 3
𝑑
(resp. > 3

𝑑
), then 𝐶 is GIT

semistable (resp. GIT stable).

Proof. If lct(ℙ2; 𝐶) ⩾ 3
𝑑
, then the log Calabi–Yau pair (ℙ2, 3

𝑑
𝐶) is K-semistable. Hence, (ℙ2, 𝑐𝐶) is

K-semistable for any 𝑐 ∈ (0, 3
𝑑
) by Proposition 2.13. Thus, Proposition 4.3 implies that 𝐶 is GIT

semistable. If lct(ℙ2; 𝐶) > 3

𝑑
, then again by Proposition 2.13, we know that (ℙ2, 𝑐𝐶) is uniformly

K-stable for any 𝑐 ∈ (0, 3
𝑑
). Hence, 𝐶 is GIT stable by Proposition 4.3. □

Example 4.5. We summarize the description of K-moduli stacks and spaces for 𝑑 ⩽ 3.

(1) 𝑑 = 1. In this case, we know that (ℙ2, 𝑐𝐶) is K-unstable for 𝐶 a line and any 𝑐 ∈ (0, 1) by
[90, Example 3.16]. Hence, 𝑍 ∩ 𝑍◦𝑐 is empty. Since K-semistability is an open property by

Corollary 3.17, we know 𝑍◦𝑐 = ∅. Hence, both K1,𝑐 and 𝑃K1,𝑐 are empty for any 𝑐 ∈ (0, 1).
(2) 𝑑 = 2. Denote by 𝐶 a smooth plane conic curve.

(a) If 𝑐 ∈ (0, 3
4
), by [90, Theorem 1.5], we know that (ℙ2, 𝑐𝐶) is K-polystable. By Proposi-

tion 4.3, we know that (ℙ2, 𝑐𝐶′) is K-unstable for any singular plane conic curve 𝐶′. Thus,

the only K-semistable point in K2,𝑐 is [(ℙ2, 𝑐𝐶)] which is indeed K-polystable. Hence

K2,𝑐 ≅ GIT2 ≅ [Spec ℂ∕PGL(2)] and 𝑃
K

2,𝑐 ≅ 𝑃
GIT

2 ≅ Spec ℂ.

(b) If 𝑐 = 3
4
, then by [90, Proof of Theorem 1.5], we know that (ℙ2, 3

4
𝐶) is K-semistable and

admits a special degeneration to the K-polystable pair (ℙ(1, 1, 4), 3
4
𝐶0) where 𝐶0 = (𝑧 =

0) with [𝑥, 𝑦, 𝑧] the projective coordinates of ℙ(1, 1, 4). If [(𝑋, 3
4
𝐷)] is a K-semistable

point in K2,3∕4 with 𝑋 nonsmooth, then by [93] it admits a special degeneration to
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(ℙ(1, 1, 4), 3
4
𝐶0). Hence, the Gorenstein index of 𝑋 is 2 and 𝐷 is smooth which implies

that (𝑋, 𝐷) ≅ (ℙ(1, 1, 4), 𝐶0) by [50, Theorem 8.3]. Thus, there are only two K-semistable
points: [(ℙ2, 3

4
𝐶)] and [(ℙ(1, 1, 4), 3

4
𝐶0)] where the latter one is the only K-polystable

point.
(c) If 𝑐 > 3

4
, then by [90, Example 3.16], we know (ℙ2, 𝑐𝐶) is K-unstable. Hence, similarly as

in (1), both K2,𝑐 and 𝑃K2,𝑐 are empty for any 𝑐 ∈ ( 34 , 1).
(3) 𝑑 = 3. We will show K3,𝑐 ≅ GIT3 for any 𝑐 ∈ (0, 1). From [99, Page 80], we know that a plane

cubic curve 𝐶 is GIT semistable (resp. stable) if and only if it has at worst nodal singularities
(resp. smooth). Thus, we know that (ℙ2, 𝐶) is a log canonical log Calabi–Yau pair whenever
𝐶 is GIT semistable. Then, we know by Proposition 2.13 that (ℙ2, 𝑐𝐶) is K-semistable for any
𝑐 ∈ (0, 1). If 𝐶 is GIT stable, that is, smooth, then [62] implies (ℙ2, (1 − 𝜖)𝐶) is K-polystable.
Hence, (ℙ2, 𝑐𝐶) is K-stable for any 𝑐 ∈ (0, 1) by Proposition 2.13. It is well known that (𝑥𝑦𝑧 =
0) is the unique GIT polystable plane cubic curve up to a projective transformation. By [46],

we know that (ℙ2, 𝑐(𝑥𝑦𝑧 = 0)) is K-polystable for any 𝑐 ∈ (0, 1). If [(𝑋, 𝑐𝐷)] is a point in K3,𝑐,
then it is a K-semistable limit of K-semistable log Fano pairs (ℙ2, 𝑐𝐶𝑡) where {𝐶𝑡}𝑡∈𝑇⧵{0} is a
family of cubic curves over a punctured smooth curve 𝑇 ⧵ {0}. Since 𝐶𝑡 is GIT semistable by
Proposition 4.3, we know that (possibly after a finite base change of𝑇) there exists an algebraic
family g𝑡 ∈ PGL(3) and a GIT polystable plane cubic curve 𝐶0 such that g𝑡 ⋅ 𝐶𝑡 → 𝐶0 in 𝐏3.
Therefore, (ℙ2, 𝑐𝐶0) is the K-polystable limit of (ℙ

2, 𝑐𝐶𝑡). By [27] we know that (𝑋, 𝑐𝐷) admits
a special degeneration to (ℙ2, 𝑐𝐶0) which implies 𝑋 ≅ ℙ

2 and 𝐷 is GIT semistable. Hence, by

similar arguments to the last paragraph in the proof of Theorem 5.2, we have K3,𝑐 ≅ GIT3 and

hence 𝑃
K

3,𝑐 ≅ 𝑃
GIT

3 .

From now on, we will always assume 𝑑 ⩾ 4. We now mention some basic properties satisfied
by the loci 𝑍, 𝑍◦𝑐 as well as the K-moduli stacks and spaces we just defined.

Proposition 4.6. With notation as above, the following properties hold for any 𝑐 ∈ (0, 3
𝑑
):

(1) Hilb(𝑋, 𝐷) ∈ 𝑍 if and only if (𝑋, 𝐷) is isomorphic to (ℙ2, 𝐶) where 𝐶 is a smooth plane curve of
degree 𝑑. Moreover, the locus 𝑍 is a saturated open subset of 𝑍◦𝑐 .

(2) The locus 𝑍◦𝑐 is smooth for any 𝑐 ∈ (0,
3

𝑑
). In particular, 𝑍◦𝑐 = 𝑍

red
𝑐 , and K𝑑,𝑐 is a smooth Artin

stack.

(3) The open immersion 𝑑 ↪ K𝑑,𝑐 induces an open immersion between their good moduli spaces
𝑃𝑑 ↪ 𝑃

K

𝑑,𝑐 . Furthermore 𝑃
K

𝑑,𝑐 is a normal proper variety, and 𝑃𝑑 has only quotient singularities.

Proof. For part (1), it suffices to show that (ℙ2, 𝑐𝐶) is K-stable for any 𝑐 ∈ (0, 3∕𝑑) and any smooth
plane curve 𝐶 of degree 𝑑 ⩾ 4. This follows from Proposition 2.13 since (ℙ2, 3

𝑑
𝐶) is klt. Since 𝑍 lies

inside theK-stable locus of𝑍◦𝑐 , we know that𝑍 is saturated in𝑍◦𝑐 by the uniqueness of K-polystable
degeneration [93].
For part (2), recall that for any point Hilb(𝑋, 𝐷) ∈ 𝑍◦𝑐 , the surface 𝑋 is a Manetti surface.

Hence,𝑋 has unobstructedℚ-Gorenstein deformations by Proposition 2.30. Since K-semistability
is an open condition by Corollary 3.17, it suffices to show that the ℚ-Gorenstein deformations
of the pair (𝑋, 𝐷) are also unobstructed. Let 𝜋 ∶ ( ,) → 𝑇 be a ℚ-Gorenstein smoothing of
(𝑋, 𝐷) over a smooth pointed curve 0 ∈ 𝑇, that is, (0,0) ≅ (𝑋,𝐷) and 𝜋 is smooth over
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𝑇◦ ∶= 𝑇 ⧵ {0}. Denote by (◦,◦) ∶= 𝜋−1(𝑇◦). Then it is clear that 𝑑𝐾◦ + 3◦ ∼𝜋 0. By tak-
ing Zariski closure, we know that 𝑑𝐾 + 3 ∼𝜋 0 which implies 𝑑𝐾𝑋 + 3𝐷 ∼ 0 by adjunction.
In addition, if 3 ∣ 𝑑, then we get 𝑑

3
𝐾𝑋 + 𝐷 ∼ 0. Hence, the statement of [50, Lemma 3.13] holds

for (𝑋, 𝐷). Since 𝑋 is klt and 𝐷 − 𝐾𝑋 ∼ℚ −
𝑑−3

3
𝐾𝑋 is ample, Kawamata–Viehweg vanishing

implies𝐻1(𝑋,𝑋(𝐷)) = 0. Hence, the statement of [50, Lemma 3.14] also holds for (𝑋, 𝐷). There-
fore, we may apply [50, Theorem 3.12] to deduce that (𝑋, 𝐷) has unobstructed ℚ-Gorenstein
deformations.
For part (3), the first statement follows from part (1) and [10, Remark 6.2]. The normality of 𝑃

K

𝑑,𝑐
follows from part (2) and a result of Alper [10, Theorem 4.16 (viii)]. Since any smooth plane curve
of degree 𝑑 ⩾ 4 has finite automorphism group, we know that 𝑑 is a smooth Deligne–Mumford
stack. Hence, 𝑃𝑑 has only quotient singularities. □

There are certain open subsets of 𝑃
K

𝑑,𝑐 that remain unchanged under subsequential wall cross-

ings. Let 𝑃klt
𝑑,𝑐

and 𝑃lc
𝑑,𝑐

be the subsets of 𝑃
K

𝑑,𝑐 parametrizing 𝑐-K-polystable curves with lct >
3

𝑑
and

lct ⩾ 3
𝑑
, respectively. By the constructibility and lower semicontinuity of log canonical thresholds

in bounded families, we know that both 𝑃klt
𝑑,𝑐

and 𝑃lc
𝑑,𝑐

are Zariski open subsets of 𝑃
K

𝑑,𝑐. Denote by

klt
𝑑,𝑐

and  lc
𝑑,𝑐

the preimage of 𝑃klt
𝑑,𝑐

and 𝑃lc
𝑑,𝑐

under the quotient map K𝑑,𝑐 → 𝑃K𝑑,𝑐, respectively.
Proposition 4.7.

(1) There exist open immersions klt
𝑑,𝑐
↪  lc

𝑑,𝑐
↪ K𝑑,𝑐′ that descend to open immersions 𝑃klt

𝑑,𝑐
↪

𝑃lc
𝑑,𝑐
↪ 𝑃

K

𝑑,𝑐′ for any 0 < 𝑐 ⩽ 𝑐
′ < 3∕𝑑. Moreover, there exists an open immersion 𝑃klt

𝑑,𝑐
↪ 𝑃

H

𝑑 for

any 𝑐 ∈ (0, 3∕𝑑).

(2) Assume 𝑐0 ∈ (0, 3∕𝑑) satisfies the following: for any K-polystable point [(𝑋, 𝑐0𝐶)] ∈ K𝑑,𝑐0 , we
have lct(𝑋; 𝐶) ⩾ 3∕𝑑 (or equivalently, 𝑃lc

𝑑,𝑐0
= 𝑃

K

𝑑,𝑐0
). ThenK𝑑,𝑐 ≅ K𝑑,𝑐0 for any 𝑐0 < 𝑐 < 3∕𝑑. In

other words, there are no wall crossings among K-moduli spaces in the region 𝑐 ∈ (𝑐0 − 𝜖, 3∕𝑑)

for 0 < 𝜖 ≪ 1.

Proof. For part (1), if (𝑋, 𝑐𝐷) is log K-semistable and lct(𝑋; 𝐷) ⩾ 3
𝑑
, then (𝑋, 𝑐′𝐷) is K-semistable

for any 𝑐 ⩽ 𝑐′ < 3

𝑑
by Proposition 2.13. Hence, we have open immersions klt

𝑑,𝑐
↪  lc

𝑑,𝑐
↪ K𝑑,𝑐′ . To

show that they descend to open immersions among the good moduli spaces, it suffices to show

that the larger open substack  lc
𝑑,𝑐

is a saturated open substack of K𝑑,𝑐′ . Let [(𝑋, 𝑐𝐷)] ∈  lc
𝑑,𝑐

be a

point. Then (𝑋, 𝑐𝐷) admits a K-polystable degeneration (𝑋0, 𝑐𝐷0) in  lc
𝑑,𝑐

such that lct(𝑋0, 𝐷0) ⩾
3

𝑑
. Thus, by Proposition 2.13, we know that (𝑋0, 𝑐

′𝐷0) is K-polystable. Hence,  lc𝑑,𝑐 is saturated
in K𝑑,𝑐′ .
By definition, we know that 𝑃klt

𝑑,𝑐
admits an injective map to 𝑃

H

𝑑 . To show that 𝑃klt
𝑑,𝑐

admits an

open immersion to 𝑃
H

𝑑 , by [23] it suffices to show that a Hacking stable pair (𝑋, 𝐷) belongs to 𝑃klt
𝑑,𝑐

if and only if it is uniformly 𝑐-K-stable. The “if” part is clear from the definition. For the “only if”
part, if (𝑋, 𝐷) is both Hacking stable and 𝑐-K-polystable, then by Theorem 3.9, it admits a weak
conical Kähler–Einsteinmetric, and its automorphism group is finite. Hence, (𝑋, 𝑐𝐷) is uniformly
K-stable by Theorem 3.9(4). This finishes the proof of part (1).
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For part (2), notice from part (1) that  lc
𝑑,𝑐0

is a saturated open substack of K𝑑,𝑐 for 𝑐 ∈ (𝑐0, 3𝑑 )
which induces an open immersion 𝜑 ∶ 𝑃

K

𝑑,𝑐0
= 𝑃lc

𝑑,𝑐0
↪ 𝑃

K

𝑑,𝑐. Since the K-moduli spaces are nor-

mal proper varieties by Proposition 4.6, we know that 𝜑 is an isomorphism by [10, Proposition

6.4]. Hence, K𝑑,𝑐0 =  lc
𝑑,𝑐0
≅ K𝑑,𝑐 whenever 𝑐 ∈ (𝑐0, 3𝑑 ). The 𝑐 ∈ (𝑐0 − 𝜖, 𝑐0) part follows from

Proposition 3.18. □

4.2 Index bounds

In this section, we prove the following theorem on bounding local Gorenstein indices of singular
surfaces appearing in the boundary of K-moduli spaces. It is a K-stability analog of Hacking’s
result [50, Theorem 4.5] and [49, Theorem 2.22]. As in Hacking’s work, it is crucial in the study of
singular objects in K-moduli spaces of plane curves.

Theorem 4.8. Let (𝑋, 𝑐𝐷) be a K-semistable log Fano pair that admits a ℚ-Gorenstein smoothing

to (ℙ2, 𝑐𝐶𝑡)with 𝑐 ∈ (0, 3∕𝑑) and deg𝐶𝑡 = 𝑑. Let 𝑥 ∈ 𝑋 be any singular point with Gorenstein index

ind(𝑥, 𝐾𝑋), then

ind(𝑥, 𝐾𝑋) ⩽

⎧
⎪⎨⎪⎩

min
{
⌊ 3

3−𝑐𝑑
⌋, 𝑑

}
if 3 ∤ 𝑑,

min
{
⌊ 3

3−𝑐𝑑
⌋, 2𝑑
3

}
if 3 ∣ 𝑑.

Proof. Let 𝛽 ∶= 1 − 𝑐𝑑∕3 ∈ (0, 1). By [50, Propositions 6.1, 6.2, & Theorem 7.1], we know that
a Gorenstein index 𝑛 point 𝑥 ∈ 𝑋 is a cyclic quotient singularity of type 1

𝑛2
(1, 𝑎𝑛 − 1) where

gcd(𝑎, 𝑛) = 1 and 3 ∤ 𝑛.
We first show that 𝑛 ⩽ ⌊ 3

3−𝑐𝑑
⌋. By Theorem 2.15, we know that

v̂ol(𝑥, 𝑋, 𝑐𝐷) ⩾
4

9
(−𝐾𝑋 − 𝑐𝐷)

2 = 4𝛽2.

On the other hand, we have v̂ol(𝑥, 𝑋, 𝑐𝐷) ⩽ v̂ol(𝑥, 𝑋) = 4

𝑛2
by [82, Proposition 4.10]. Combining

these two inequalities, we get 𝑛 ⩽ ⌊𝛽−1⌋ = ⌊ 3

3−𝑐𝑑
⌋.

Next, we show the inequality 𝑛 ⩽ 𝑑 or 2𝑑
3
depending on divisibility of 𝑑 by 3. We know that

𝑑𝐾𝑋 + 3𝐷 ∼ 0, so if 𝑥 ∉ 𝐷, then 𝑛 ∣ 𝑑 hence 𝑛 ⩽ 𝑑 (in fact 𝑛 ⩽ 𝑑∕3 if 3 ∣ 𝑑). From now on, let us
assume 𝑥 ∈ 𝐷. Let (𝑥̃ ∈ 𝑋̃) be the smooth cover of (𝑥 ∈ 𝑋), with 𝐷̃ being the preimage of𝐷. Since
the finite degree formula for local volumes is true in dimension 2 by [96, Theorem 2.7(3)] [83,
Theorem 4.15], we have

v̂ol(𝑥̃, 𝑋̃, 𝑐𝐷̃) = 𝑛2 ⋅ v̂ol(𝑥, 𝑋, 𝑐𝐷).

On the other hand, Theorem 2.15 implies that v̂ol(𝑥, 𝑋, 𝑐𝐷) ⩾ 4𝛽2, so we have

𝑛 ⩽

√
v̂ol(𝑥̃, 𝑋̃, 𝑐𝐷̃)

2𝛽
⩽
2 − 𝑐ord𝑥̃𝐷̃

2𝛽
. (4.1)
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In particular, we have 𝑛 < 𝛽−1. We know that lct𝑥̃(𝑋̃; 𝐷̃) > 𝑐, and Skoda’s estimate [113] implies
lct𝑥̃(𝑋̃; 𝐷̃) ⩽

2

ord𝑥̃𝐷̃
, so we have ord𝑥̃𝐷̃ <

2

𝑐
. Assume 𝑥̃ ∈ 𝑋̃ has local coordinates (𝑢, 𝑣) where

the cyclic group action is scaling on each coordinate. Let 𝑢𝑖𝑣𝑗 be a monomial appeared in the
equation on 𝐷̃ with minimal 𝑖 + 𝑗 = ord𝑥̃𝐷̃. Then 𝑑𝐾𝑋 + 3𝐷 ∼ 0 implies 3(𝑖 + (𝑛𝑎 − 1)𝑗) ≡ 𝑑𝑛𝑎
mod 𝑛2, in particular 𝑖 ≡ 𝑗 mod 𝑛.
Case 1. Assume 3 ∤ 𝑑. If 𝛽 ⩾ 1

𝑑+1
, then 𝑛 < 𝛽−1 ⩽ 𝑑 + 1. Thus, we may assume 𝛽 < 1

𝑑+1
. Then

𝑖 + 𝑗 = ord𝑥̃𝐷̃ <
2

𝑐
< 2(𝑑+1)

3
. Assume to the contrary that 𝑛 ⩾ 𝑑 + 1. Then 𝑖 ≡ 𝑗 mod 𝑛 and 𝑖 +

𝑗 < 𝑛 implies that 𝑖 = 𝑗. Hence, 3(𝑖 + (𝑛𝑎 − 1)𝑗) ≡ 𝑑𝑛𝑎 mod 𝑛2 implies 3𝑖 ≡ 𝑑 mod 𝑛. But since
𝑖 < 𝑑+1

3
, we know that 3𝑖 = 𝑑 which is a contradiction.

Case 2. Assume 3 ∣ 𝑑. If 𝛽 ⩾ 3

2𝑑+3
, then 𝑛 < 𝛽−1 ⩽ 2𝑑

3
+ 1. Thus, we may assume 𝛽 < 3

2𝑑+3
. Then

𝑖 + 𝑗 = ord𝑥̃𝐷̃ <
2

𝑐
< 2𝑑
3
+ 1. Assume to the contrary that 𝑛 ⩾ 2𝑑

3
+ 1. Then 𝑖 ≡ 𝑗 mod 𝑛 and 𝑖 +

𝑗 < 𝑛 implies 𝑖 = 𝑗. Hence, 3(𝑖 + (𝑛𝑎 − 1)𝑗) ≡ 𝑑𝑛𝑎 mod 𝑛2 implies 3𝑖 ≡ 𝑑 mod 𝑛. Hence, 𝑖 =
𝑗 = 𝑑

3
and ord𝑥̃𝐷̃ =

2𝑑

3
. Then (4.1) implies

𝑛 ⩽
2 − 𝑐 ⋅ 2𝑑

3

2𝛽
=
2 − 2(1 − 𝛽)

2𝛽
= 1,

a contradiction! □

5 THE FIRSTWALL CROSSING

The goal of this section is to prove Theorem 1.3, which completely describes the first wall crossing
of K-moduli spaces of plane curves for all degrees. We show that K-moduli and GIT coincide for
small weights (see Theorems 5.2 and 5.5) and describe the explicit birational modification on the
GIT moduli space occurring while crossing the first wall (see Theorem 5.6).

5.1 Before the first wall

In this section, we will show that the K-moduli space for small coefficient is isomorphic to the
GIT moduli space. We prove two results, Theorems 5.2 and 5.5, which correspond to parts (1) and
(2) of Theorem 1.3.
Before we start, let us fix some notation for the discussion of the first wall crossing.

Notation 5.1. Let 𝑑 ⩾ 4 be an integer. Let 𝑐 ∈ (0, 3
𝑑
) be a rational number. Let𝑄 be a smooth conic

in ℙ2, let 𝐿 be a line in ℙ2 transverse to 𝑄, and let 𝑥, 𝑦, 𝑧 be coordinates of ℙ(1, 1, 4). Let

𝑐1 =

{
3

2𝑑
𝑑 is even

3

2𝑑−3
𝑑 is odd

𝑄𝑑 =

{
𝑑

2
𝑄 𝑑 is even
𝑑−1

2
𝑄 + 𝐿 𝑑 is odd

𝑄′
𝑑
=

{
𝑧𝑑∕2 = 0 𝑑 is even

𝑥𝑦𝑧(𝑑−1)∕2 = 0 𝑑 is odd

We are ready to prove part (1) of Theorem 1.3.
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Theorem 5.2 (First wall crossing 1). We follow Notation 5.1. For any 0 < 𝑐 < 𝑐1, a plane curve 𝐶

of degree 𝑑 is GIT (poly/semi)stable if and only if the log Fano pair (ℙ2, 𝑐𝐶) is K-(poly/semi)stable.

Moreover, there is an isomorphism of Artin stacks K𝑑,𝑐 ≅ GIT𝑑 .

Proof. We first show that if (𝑋, 𝑐𝐷) is a K-semistable point in K𝑑,𝑐 for 0 < 𝑐 < 𝑐1, then 𝑋 ≅ ℙ2.
From Theorem 4.8, we know that the local Gorenstein indices of 𝑋 are at most ⌊𝛽−1⌋ where
𝛽 = 1 − 𝑐𝑑

3
. If 𝑐 < 3

2𝑑
, then we have 𝛽 > 1

2
. This implies that 𝑋 is a Gorenstein Manetti surface

so 𝑋 ≅ ℙ2. Hence, we may assume that 𝑑 ⩾ 5 is odd and 3

2𝑑
⩽ 𝑐 < 3

2𝑑−3
. By the same argument as

above, the local Gorenstein indices of𝑋 are at most ⌊𝛽−1⌋ < 2𝑑−3
𝑑−3

⩽
7

2
. Hence,𝑋 has local Goren-

stein index at most 3, which implies 𝑋 ≅ ℙ2 or ℙ(1, 1, 4). We shall show that the ℙ(1, 1, 4) case is
impossible under the assumption 𝑐 < 3

2𝑑−3
.

Assume to the contrary that (𝑋 = ℙ(1, 1, 4), 𝑐𝐷) is a K-semistable point in K𝑑,𝑐. Then 𝐷 is of
degree 2𝑑 in ℙ(1, 1, 4). Write 𝑑 = 2𝑙 + 1, then the equation of 𝐷 is

𝑧𝑙𝑓2(𝑥, 𝑦) + 𝑧
𝑙−1𝑓6(𝑥, 𝑦) +⋯ + 𝑓4𝑙+2(𝑥, 𝑦) = 0,

where 𝑓𝑖 is a homogeneous polynomial of degree 𝑖 in (𝑥, 𝑦). Let 𝐸 be the (−4)-curve over the
singular point [0,0,1] of type 1

4
(1, 1). Then, from the defining equation of𝐷, we see that ord𝐸(𝐷) ⩾

1

2
. Thus,

𝐴(𝑋,𝑐𝐷)(ord𝐸) = 𝐴𝑋(ord𝐸) − 𝑐 ord𝐸(𝐷) ⩽
1 − 𝑐

2
.

On the other hand, −𝐾𝑋 − 𝑐𝐷 ∼ℚ (6 − 2𝑑𝑐), and vol𝑋((1) − 𝑡𝐸) = max{ 14 − 4𝑡2, 0}. Hence,

𝑆(𝑋,𝑐𝐷)(ord𝐸) =
(6 − 2𝑑𝑐)

vol𝑋((1)) ∫
∞

0
vol𝑋((1) − 𝑡𝐸)𝑑𝑡 = 1 − 𝑑𝑐3 .

Since 𝑐 < 3

2𝑑−3
, we know that 𝐴(𝑋,𝑐𝐷)(ord𝐸) ⩽

1−𝑐

2
< 1 − 𝑑𝑐

3
= 𝑆(𝑋,𝑐𝐷)(ord𝐸). Hence, (𝑋, 𝑐𝐷) is K-

unstable by the valuative criterion (Theorem 2.9).

So far we have shown that any K-semistable point (𝑋, 𝑐𝐷) in K𝑑,𝑐 is isomorphic to (ℙ2, 𝑐𝐶)
where 𝐶 is a plane curve of degree 𝑑. By Proposition 4.3, we know that K-(poly/semi)stability
of (ℙ2, 𝑐𝐶) implies GIT (poly/semi)stability of 𝐶. Hence, we just need to show the converse to
deduce the equivalence between K-stability and GIT stability. Suppose that 𝐶 is a GIT semistable
plane curve. Take {𝐶𝑡}𝑡∈𝑇 a family of plane curves over a smooth pointed curve (0 ∈ 𝑇) such that
𝐶0 = 𝐶 and 𝐶𝑡 is smooth for 𝑡 ∈ 𝑇 ⧵ {0}. Then by properness of K-moduli spaces (Theorem 3.19),
we have a K-polystable limit (𝑋, 𝑐𝐷) of (ℙ2, 𝑐𝐶𝑡) as 𝑡 → 0 after a possible finite base change of 𝑇.
Hence, (𝑋, 𝑐𝐷) ≅ (ℙ2, 𝐶′

0
) where 𝐶′

0
is a GIT polystable plane curve. By the separatedness of GIT

quotients, we know that 𝐶 specially degenerates to g ⋅ 𝐶0 for some g ∈ PGL(3). Thus, (ℙ2, 𝑐𝐶)
is K-semistable by Theorem 2.16. If in addition that 𝐶 is GIT polystable, then (ℙ2, 𝑐𝐶) has a K-
polystable limit (ℙ2, 𝑐𝐶′

0
). In particular, by Proposition 4.3, we know that 𝐶′

0
is a GIT polystable

point S-equivalent to 𝐶. Hence, 𝐶 = g ⋅ 𝐶0 for some g ∈ PGL(3) and (ℙ
2, 𝑐𝐶) is K-polystable.

From the equivalence between 𝑐-K-semistability and GIT semistability, we obtain a morphism

of Artin stacks 𝜑 ∶ GIT𝑑 → K𝑑,𝑐. It suffices to show that 𝜑 is an isomorphism of stacks. Con-

sider the morphism of Artin stacks 𝜓 ∶ K𝑑,𝑐 → 𝐵PGL(3) sending [( ,) → 𝑆] to [ → 𝑆], where
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𝐵PGL(3) is the classifying stack of ℙ2-bundles. Clearly, 𝜓 is representable as the group homomor-

phismAut(𝑋, 𝐷) → Aut(𝑋) is injective for [(𝑋, 𝐷)] ∈ K𝑑,𝑐. We look at the base change of 𝜑 under
the natural quotientmap Spec ℂ→ 𝐵PGL(3), inwhichwe obtain aPGL(3)-equivariantmorphism

of algebraic spaces 𝜑̃ ∶ 𝐏ss
𝑑
→ 𝑍 where 𝑍 = K𝑑,𝑐 ×𝐵PGL(3) Spec ℂ. Thus, for any reduced scheme

𝑆 of finite type over ℂ, the set 𝑍(𝑆) is given by {( ,; 𝑓)}∕ ≅ where [( , 𝑐) → 𝑆] ∈ K𝑑,𝑐 and
𝑓 ∶  → ℙ2

𝑆
is an isomorphism. From the equivalence between K-semistability and GIT semista-

bility, we know that 𝜑̃(𝑆) is a bijection for every reduced 𝑆, which implies that𝜑 is an isomorphism
between reduced algebraic spaces.Hence,𝜑 is an isomorphismbetweenArtin stacks. This finishes
the proof. □

Next, we discuss the K-moduli stack and space when 𝑐 = 𝑐1.

Lemma 5.3. We follow Notation 5.1. Then the log Fano pair (ℙ2, 𝑐1𝑄𝑑) is K-semistable with K-

polystable degeneration (ℙ(1, 1, 4), 𝑐1𝑄
′
𝑑
). Moreover, the only 𝑐1-K-polystable curve on ℙ(1, 1, 4) of

degree 2𝑑 is 𝑄′
𝑑
.

Proof. By taking the degeneration of ℙ2 to the normal cone of 𝑄, the pair (ℙ2, 𝑄) specially degen-
erates to (ℙ(1, 1, 4), (𝑧 = 0)). Since 𝐿 intersects 𝑄 transversally, it degenerates to the union of two
distinct rulings of ℙ(1, 1, 4). Hence, a suitable choice of projective coordinates of ℙ(1, 1, 4) yields
that (ℙ2, 𝑄, 𝐿) specially degenerates to (ℙ(1, 1, 4), (𝑧 = 0), (𝑥𝑦 = 0)).
Next, we show that (ℙ(1, 1, 4), 𝑐1𝑄

′
𝑑
) is K-polystable. When 𝑑 is even, we have 𝑐1𝑄

′
𝑑
= 3
4
(𝑧 = 0).

Hence, by [90, Proof of Theorem 1.5], we know that (ℙ(1, 1, 4), 3
4
(𝑧 = 0)) is K-polystable. When

𝑑 is odd, we have 𝑐1𝑄
′
𝑑
= 3

2𝑑−3
(𝑥𝑦 = 0) + 3(𝑑−1)

2(2𝑑−3)
(𝑧 = 0). Hence, (ℙ(1, 1, 4), 𝑐1𝑄

′
𝑑
) is a projec-

tive cone over (ℙ1, 3

2𝑑−3
([0] + [∞])) with polarization ℙ1(4) ∼ℚ 2𝑑−3𝑑−3

(−𝐾ℙ1 −
3

2𝑑−3
([0] + [∞])).

Since 3(𝑑−1)

2(2𝑑−3)
= 1 − 1

2
⋅ ( 2𝑑−3
𝑑−3
)−1 and (ℙ1, 3

2𝑑−3
([0] + [∞])) admits a conical Kähler–Einstein

metric, by [82, Proposition 3.3], we know that (ℙ(1, 1, 4), 𝑐1𝑄
′
𝑑
) is conical Kähler–Einstein

hence K-polystable.
Finally, we show that 𝑄′

𝑑
is the only 𝑐1-K-polystable curve on ℙ(1, 1, 4) of degree 2𝑑. Suppose

(𝑋 ∶= ℙ(1, 1, 4), 𝑐1𝐷) is K-polystable with deg𝐷 = 2𝑑. Let 𝐸 be the (−4)-curve over the singular
point 𝑥 ∶= [0, 0, 1] of type 1

4
(1, 1). Then, by Theorem 2.15, we have

4(𝐾𝑋 + 𝑐1𝐷)
2 ⩽ 9𝐴(𝑋,𝑐1𝐷)(ord𝐸)

2vol𝑋,𝑥(ord𝐸). (5.1)

By computation, we know that

𝐴(𝑋,𝑐1𝐷)(ord𝐸) = 𝐴𝑋(ord𝐸) − 𝑐1ord𝐸(𝐷) =
1

2
− 𝑐1ord𝐸(𝐷), vol𝑋,𝑥(ord𝐸) = 4.

When 𝑑 is even, we know that (𝐾𝑋 + 𝑐1𝐷)
2 = 9

4
. Hence, (5.1) implies that 9 ⩽ 9(1 − 2𝑐1ord𝐸(𝐷))

2,
that is, 𝐷 does not pass through 𝑥. Thus, the equation of 𝐷 is given by

𝑧𝑑∕2 + 𝑓4(𝑥, 𝑦)𝑧
(𝑑−2)∕2 +⋯ + 𝑓2𝑑(𝑥, 𝑦) = 0.

By taking the 1-PS 𝜆 ∶ 𝔾𝑚 → Aut(𝑋) as 𝜆(𝑡)([𝑥, 𝑦, 𝑧]) = [𝑥, 𝑦, 𝑡𝑧] for 𝑡 ∈ 𝔾𝑚, we see that
lim𝑡→0 𝜆(𝑡) ⋅ 𝐷 = 𝑄

′
𝑑
. Thus, (𝑋, 𝑐1𝐷) ≅ (ℙ(1, 1, 4), 𝑐1𝑄

′
𝑑
) since they are both K-polystable. When
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𝑑 is odd, we know that (𝐾𝑋 + 𝑐1𝐷)
2 = 9(𝑑−3)

2

(2𝑑−3)2
. Hence, (5.1) implies that 36(𝑑−3)

2

(2𝑑−3)2
⩽ 9(1 −

6

2𝑑−3
ord𝐸(𝐷))

2, that is, ord𝐸(𝐷) ⩽
1

2
. Since the equation of 𝐷 is given by

𝑧𝑙𝑓2(𝑥, 𝑦) + 𝑧
𝑙−1𝑓6(𝑥, 𝑦) +⋯ + 𝑓4𝑙+2(𝑥, 𝑦) = 0,

where 𝑙 ∶= 𝑑−1
2
, we have ord𝐸(𝐷) ⩾

1

2
with equality holds if and only if 𝑓2 ≠ 0. Hence, ord𝐸(𝐷) =

1

2
, 𝑓2 ≠ 0 and the equality of (5.1) holds. Then by [81, Lemma 33], we know that 𝐸 minimizes

the normalized volume function at the singularity 𝑥 ∈ (𝑋, 𝑐1𝐷). So, [97, Theorem 1.2] implies
that (𝐸, Δ𝐸) ≅ (ℙ

1
[𝑥,𝑦]
, 𝑐1(𝑓2(𝑥, 𝑦) = 0)) is a K-semistable Kollár component. Thus, 𝑓2 is a non-

degenerate quadratic form in (𝑥, 𝑦), and after a suitable choice of projective coordinates of
ℙ(1, 1, 4), we may assume that 𝑓2(𝑥, 𝑦) = 𝑥𝑦. By taking the same 1-PS 𝜆 as before, we see (𝑋, 𝑐1𝐷)
specially degenerates to (ℙ(1, 1, 4), 𝑐1𝑄

′
𝑑
). Thus, (𝑋, 𝑐1𝐷) ≅ (ℙ(1, 1, 4), 𝑐1𝑄

′
𝑑
) since they are both

K-polystable. We finish the proof. □

Corollary 5.4. The plane curve 𝑄𝑑 is GIT polystable.

Proof. If 𝑑 is even, we know that (ℙ2, 𝜖𝑄𝑑 =
𝑑𝜖

2
𝑄) is K-polystable by [90, Theorem 1.5]. Thus,

𝑄𝑑 is GIT polystable by Proposition 4.3. If 𝑑 is odd, we know that (ℙ2, 𝑐1𝑄𝑑) is K-semistable by
Lemma 5.3. Hence, 𝑄𝑑 is GIT semistable by Proposition 4.3. Assume to the contrary that 𝑄𝑑 is
not GIT polystable. Denote by 𝐶0 the GIT polystable plane curve that is S-equivalent to 𝑄𝑑. If
Supp(𝐶0) contains a smooth conic 𝑄, then 𝐶0 =

𝑑−1

2
𝑄 + 𝐿′ where 𝐿′ is a tangent line of 𝑄. But

then Aut(ℙ2, 𝐶0) ≅ Aut(ℙ
1, [0]) is nonreductive, a contradiction. Hence, Supp(𝐶0) is a union of

lines. By Theorem 5.2, we know that (ℙ2, 𝜖𝐶0) is K-polystable. This implies that (ℙ
2, 3
𝑑
𝐶0) is log

canonical by [46, Theorem 1.5]. But 3
𝑑
⋅
𝑑−1

2
> 1 since 𝑑 ⩾ 5, so (ℙ2, 3

𝑑
𝐶0) cannot be log canonical,

a contradiction. The proof is finished. □

We present the proof of part (2) of Theorem 1.3 as follows.

Theorem 5.5 (First wall crossing 2). We follow Notation 5.1. A log Fano pair (𝑋, 𝑐1𝐷) is a K-

polystable point of 𝑃
K

𝑑,𝑐1
if and only if either 𝑋 ≅ ℙ2 and 𝐷 is a GIT polystable plane curve not

projectively equivalent to𝑄𝑑, or (𝑋, 𝐷) ≅ (ℙ(1, 1, 4), 𝑄
′
𝑑
). Moreover, there is an open immersionΦ− ∶

GIT𝑑 = K𝑑,𝑐1−𝜖 ↪ K𝑑,𝑐1 which descends to an isomorphism of good moduli spaces 𝜙− ∶ 𝑃
GIT

𝑑 =

𝑃
K

𝑑,𝑐1−𝜖

≅
"→ 𝑃

K

𝑑,𝑐1
.

Proof. We first show that 𝜙− is an isomorphism. It is clear that 𝜙− is a birational morphism

between normal proper varieties since 𝑃𝑑 is a common open subset of 𝑃
GIT

𝑑 and 𝑃
K

𝑑,𝑐1
by Proposi-

tion 4.6. Indeed, wewill show that the Picard number 𝜌(𝑃
GIT

𝑑 ) is one. Since SL(3) has no nontrivial
characters, there are injections

Pic(𝐏ss
𝑑

//
SL(3)) ↪ PicSL(3)(𝐏

ss
𝑑
) ↪ Pic(𝐏ss

𝑑
)

by [66, Proposition 4.2 and §2.1]). Since we have a surjection from Pic(𝐏𝑑) ≅ ℤ to Pic(𝐏ss
𝑑
), we

know that 𝜌(𝑃
GIT

𝑑 ) = 1. Thus, 𝜙
− is an isomorphism between good moduli spaces.
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Let 𝐶 be a GIT polystable plane curve not projectively equivalent to 𝑄𝑑. Let (𝑋, 𝑐𝐷) be the K-
polystable degeneration of (ℙ2, 𝑐𝐶). From the index estimate in the proof of Theorem 5.2, we know
that 𝑋 is isomorphic to either ℙ2 or ℙ(1, 1, 4). If 𝑋 is isomorphic to ℙ(1, 1, 4), then 𝐷 has to be 𝑄′

𝑑
by Lemma 5.3. Thus, 𝜙−([𝐶]) = 𝜙−([𝑄𝑑])which contradicts to the injectivity of 𝜙

−. Thus, 𝑋 ≅ ℙ2

hence (𝑋, 𝑐𝐷) ≅ (ℙ2, 𝑐𝐶) by GIT polystability of 𝐶. The proof is finished by Lemma 5.3. □

5.2 After the first wall

In this section, we will show that the K-moduli stack K𝑑,𝑐1+𝜖 is isomorphic to a Kirwan-type
weighted blow-up of the GIT moduli stack.

Theorem 5.6 (First wall crossing 3). Let Φ+ ∶ K𝑑,𝑐1+𝜖 → K𝑑,𝑐1 be the latter morphism in the first

wall crossing. Then there exists a stacky weighted blow-up morphism 𝜌 ∶ K𝑑,𝑐1+𝜖 → K𝑑,𝑐1−𝜖 = GIT𝑑
along {[𝑄𝑑]} (see Definition 5.10) such that Φ

+ = Φ−◦𝜌. In particular, we have

(1) The descent morphism 𝜚 = (𝜙−)−1◦𝜙+ ∶ 𝑃
K

𝑑,𝑐1+𝜖
→ 𝑃

K

𝑑,𝑐1−𝜖
= 𝑃

GIT

𝑑 of 𝜌 between good moduli

spaces is a weighted blow-up of the point [𝑄𝑑].

(2) If 𝑑 is even, then 𝜚 is a partial desingularization of Kirwan type.

The proof of this theoremwill be split up into a few parts. Before we analyze the stack structure

of K𝑑,𝑐1+𝜖, we first give a complete description of its closed points.
Definition 5.7. We define GIT stability for certain curves on ℙ(1, 1, 4).

(1) Assume 𝑑 is even. Given a curve 𝐷 in ℙ(1, 1, 4) of degree 2𝑑 with equation

𝑧𝑑∕2 + 𝑓8(𝑥, 𝑦)𝑧
(𝑑−4)∕2 + 𝑓12(𝑥, 𝑦)𝑧

(𝑑−6)∕2 +⋯ + 𝑓2𝑑(𝑥, 𝑦) = 0, (5.2)

we identify 𝐷 to a point (𝑓8, 𝑓12, … , 𝑓2𝑑) in the vector space 𝐀′
𝑑
≅ ⊕

𝑑∕2
𝑗=2
𝐻0(ℙ1,ℙ1(4𝑗)).

Consider the 𝔾𝑚-action 𝜎 on 𝐀
′
𝑑
with weight 𝑗 in each direct summand 𝐻0(ℙ1,ℙ1(4𝑗)).

Let 𝐏′
𝑑
be the weighted projective space as the coarse moduli space of the quotient stack

[(𝐀′
𝑑
⧵ {0})∕𝔾𝑚]. There is a natural SL(2)-action on 𝐀

′
𝑑
induced by the usual SL(2)-action on

𝐻0(ℙ1,ℙ1(1)) = ℂ𝑥 ⊕ ℂ𝑦. Since this SL(2)-action commutes with the previous𝔾𝑚-action, it
descends to an SL(2)-action on (𝐏′

𝑑
,𝐏′

𝑑
(1)). We say [𝐷] ∈ 𝐏′

𝑑
is GIT (poly/semi)stable if it is

GIT (poly/semi)stable with respect to this SL(2)-action on (𝐏′
𝑑
,𝐏′

𝑑
(1)).

(2) Assume that 𝑑 is odd. Suppose that 𝐷 is a curve in ℙ(1, 1, 4) of degree 2𝑑 with equation

𝑥𝑦𝑧(𝑑−1)∕2 + 𝑓6(𝑥, 𝑦)𝑧
(𝑑−3)∕2 + 𝑓10(𝑥, 𝑦)𝑧

(𝑑−5)∕2 +⋯ + 𝑓2𝑑(𝑥, 𝑦) = 0,

where 𝑓6(𝑥, 𝑦) contains no monomial divisible by 𝑥𝑦. Then, we identify 𝐷 to a point
(𝑓6, 𝑓10, … , 𝑓2𝑑) in the vector space

𝐀′
𝑑
∶= 𝑉1 ⊕⊕

(𝑑−1)∕2
𝑗=2

𝐻0(ℙ1,ℙ1(4𝑗 + 2)),
where𝑉1 ∶= ℂ𝑥

6 ⊕ ℂ𝑦6 is a sub vector space of𝐻0(ℙ1,ℙ1(6)). Consider the 𝔾𝑚-action 𝜎 on
𝐀′
𝑑
with weight 1 on 𝑉1 and weight 𝑗 on each direct summand 𝐻

0(ℙ1,ℙ1(4𝑗 + 2)). Let 𝐏′𝑑
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be the weighted projective space that is the coarse moduli space of the quotient stack [(𝐀′
𝑑
⧵

{0})∕𝔾𝑚]. Consider another 𝔾𝑚-action 𝜎
′ on 𝐀′

𝑑
induced by

𝜎′(𝑡) ⋅ 𝑓4𝑗+2(𝑥, 𝑦) = 𝑓4𝑗+2(𝑡𝑥, 𝑡
−1𝑦)

for 𝑡 ∈ 𝔾𝑚 and 1 ⩽ 𝑗 ⩽ 𝑑−1
2
. Since 𝜎′ commutes with 𝜎, it descends to a 𝔾𝑚-action on

(𝐏′
𝑑
,𝐏′

𝑑
(1)) which we also denote by 𝜎′. We say [𝐷] ∈ 𝐏′

𝑑
is GIT (poly/semi)stable if it is GIT

(poly/semi)stable with respect to the 𝔾𝑚-action 𝜎
′ on (𝐏′

𝑑
,𝐏′

𝑑
(1)).

Care is taken in the above definition to define GIT stability for curves on ℙ(1, 1, 4) because the
automorphism groups of weighted projective spaces are in general nonreductive. Recently, the
theory of nonreductive GIT and variation of nonreductive GIT has been developed (see, e.g., [21,
34]) which may be useful in similar endeavors.

Theorem 5.8. Let 𝐷 be a curve on ℙ(1, 1, 4) of degree 2𝑑 such that [𝐷] ∈ 𝐏′
𝑑
. Then the pair

(ℙ(1, 1, 4), (𝑐1 + 𝜖)𝐷) is K-(poly/semi)stable if and only if [𝐷] is GIT (poly/semi)stable in the sense of

Definition 5.7.

Proof. We first prove the “only if” part. Let 𝜋 ∶ (ℙ(1, 1, 4) × 𝐀′
𝑑
,) → 𝐀′

𝑑
be the universal family

of pairs over 𝐀′
𝑑
where the fiber of 𝜋 over each point 𝐷 of 𝐀′

𝑑
is (ℙ(1, 1, 4), 𝐷). Then the 𝔾𝑚-

action 𝜎 on 𝐀′
𝑑
has a natural lifting to the universal family, which we also denote by 𝜎, namely,

𝜎(𝑡) ⋅ ([𝑥, 𝑦, 𝑧], 𝐷) = ([𝑥, 𝑦, 𝑡𝑧], 𝜎(𝑡) ⋅ 𝐷). Hence, by quotienting out 𝜎, we obtain a ℚ-Gorenstein
family of log Fano pairs over the Deligne–Mumford stack [(𝐀′

𝑑
⧵ {0})∕𝔾𝑚]. The CMℚ-line bundle

𝜆CM,𝜋,𝑐 on 𝐀′
𝑑
also descends to a ℚ-line bundle on 𝐏′

𝑑
which we denote by Λ𝑐. By Theorem 2.22,

it suffices to show thatΛ𝑐1+𝜖 is ample. Since 𝜆CM,𝜋,𝑐 is a trivialℚ-line bundle over𝐀′
𝑑
, the degree

of Λ𝑐 is equal to the 𝜎-weight of the central fiber 𝜆CM,𝜋,𝑐 ⊗ ℂ(0). By Proposition 2.19, we know
that

degΛ𝑐 = Fut((ℙ(1, 1, 4), 𝑐𝑄𝑑;ℙ(1,1,4)(4)) × 𝔸1),
where the product test configuration (ℙ(1, 1, 4), 𝑐𝑄𝑑;ℙ(1,1,4)(4)) × 𝔸1 is induced from the 𝔾𝑚-
action 𝜎. From the definition, easy computation, and K-polystability of (ℙ(1, 1, 4), 𝑐1𝑄𝑑)we know
thatFut((ℙ(1, 1, 4), 𝑐𝑄𝑑;ℙ(1,1,4)(4)) × 𝔸1) is linear in 𝑐, is negativewhen 𝑐 = 0, and zerowhen 𝑐 =
𝑐1. Hence, it is positive when 𝑐 = 𝑐1 + 𝜖. As a result, the CM ℚ-line bundle Λ𝑐1+𝜖 is ample on 𝐏

′
𝑑
.

Note that when 𝑑 is odd, the action 𝜎′ on𝐀′
𝑑
has zero weight on the central fiber 𝜆CM,𝜋,𝑐 ⊗ ℂ(0)

by a straightforward computation of the generalized Futaki invariant. Thus, the 𝔾𝑚-linearization
of a suitable positive power of Λ𝑐1+𝜖 coincides with the 𝔾𝑚-linearization on 𝐏′

𝑑
(1) of 𝜎′. This

completes the proof of the “only if” part.
Next, we prove the “if” part. Since each curve [𝐷] ∈ 𝐏′

𝑑
admits a special degeneration to𝑄𝑑, we

know (ℙ(1, 1, 4), 𝑐1𝐷) is K-semistable by Lemma 5.3 and Theorem 2.16. By Bertini’s theorem, it is
clear that a general curve 𝐷 in 𝐏′

𝑑
has at worst a nodal point at the unique singularity of ℙ(1, 1, 4)

and smooth elsewhere. Thus, for a general curve 𝐷, we know that (ℙ(1, 1, 4), 3
𝑑
𝐷) is klt. This

implies that (ℙ(1, 1, 4), (𝑐1 + 𝜖)𝐷) is K-stable by Proposition 2.13. Let [𝐷0] ∈ 𝐏
′
𝑑
be aGIT polystable

point. From the above argument, we can find a family of curves [𝐷𝑡] ∈ 𝐏
′
𝑑
parametrized by a punc-

tured smooth curve 𝑡 ∈ 𝑇 ⧵ {0} such that (ℙ(1, 1, 4), (𝑐1 + 𝜖)𝐷𝑡) is K-stable and lim𝑡→0[𝐷𝑡] = [𝐷0].
Then by properness ofK-moduli spaces (i.e., Theorem3.19), after a possible finite base change of𝑇,

 1
4
6
0
2
4
4
x
, 2

0
2
4
, 6

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n
d
m

ath
so

c.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
2
/p

lm
s.1

2
6

1
5

 b
y

 N
o

rth
w

estern
 U

n
iv

ersity
 L

ib
raries, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

1
/0

6
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



52 of 113 ASCHER et al.

we obtain a K-polystable limit (𝑋, (𝑐1 + 𝜖)𝐷
′) of (ℙ(1, 1, 4), (𝑐1 + 𝜖)𝐷𝑡) as 𝑡 goes to 0. By the index

estimate Theorem 4.8, we know that 𝑋 ≅ ℙ(1, 1, 4). From the continuity of generalized Futaki
invariants in 𝑐, we know (ℙ(1, 1, 4), 𝑐1𝐷

′) is K-semistable. Thus, 𝐷′ specially degenerates to𝑄𝑑 by
Lemma 5.3. After a suitable change of coordinates of ℙ(1, 1, 4), we may assume [𝐷′] ∈ 𝐏′

𝑑
. Thus,

the “only if” part implies that [𝐷′] is a GIT polystable limit of g𝑡 ⋅ [𝐷𝑡] for g𝑡 ∈ SL(2) (for even 𝑑)
or 𝔾𝑚 (for odd 𝑑). By separatedness of the GIT quotient, we know that [𝐷′] and [𝐷0] lie in the
same orbit. Thus, (ℙ(1, 1, 4), (𝑐1 + 𝜖)𝐷0) is K-polystable. The proof regarding K-semistability and
K-stability follows from similar arguments as in the proof of Theorem 5.2. □

Theorem 5.9. Let [(𝑋, (𝑐1 + 𝜖)𝐷)] be a K-polystable point in 𝑃
K

𝑑,𝑐1+𝜖
. Then either (𝑋, 𝐷) ≅ (ℙ2, 𝐶)

where 𝐶 is a GIT polystable plane curve not projectively equivalent to𝑄𝑑, or (𝑋, 𝐷) ≅ (ℙ(1, 1, 4), 𝐷
′)

where [𝐷′] ∈ 𝐏′
𝑑
is GIT polystable. Conversely, any such pair (ℙ2, 𝐶) or (ℙ(1, 1, 4), 𝐷′) is (𝑐1 + 𝜖)-K-

polystable.

Proof. We first prove that K-polystability implies GIT polystability. Let [(𝑋, (𝑐1 + 𝜖)𝐷)] be a point

in 𝑃
K

𝑑,𝑐1+𝜖
. Then from the index estimate in the proof of Theorem 5.2, we know that 𝑋 is isomor-

phic to either ℙ2 or ℙ(1, 1, 4). If (𝑋, 𝐷) ≅ (ℙ2, 𝐶), then 𝐶 is GIT polystable by Proposition 4.3. It
suffices to show that (ℙ2, (𝑐1 + 𝜖)𝑄𝑑) is K-unstable. In fact, if (ℙ

2, (𝑐1 + 𝜖)𝑄𝑑) were K-semistable,
then Proposition 2.13 together with K-polystability of (ℙ2, 𝜖𝑄𝑑) (see Theorem 5.2) implies that
(ℙ2, 𝑐1𝑄𝑑) is K-polystable aswell. But this contradicts Lemma5.3, so (ℙ

2, (𝑐1 + 𝜖)𝑄𝑑) is K-unstable.
If 𝑋 ≅ ℙ(1, 1, 4), then the statement follows from Theorem 5.8.
Next, we prove that GIT polystability implies K-polystability. If𝐶 ⊂ ℙ2 is a GIT polystable plane

curve not projectively equivalent to 𝑄𝑑, then Theorem 5.5 implies that (ℙ2, 𝑐𝐶) is K-polystable for
any 𝑐 ∈ (0, 𝑐1]. Hence, (ℙ

2, (𝑐1 + 𝜖)𝐶) is also K-polystable by Proposition 3.18. The ℙ(1, 1, 4) case
follows from Theorem 5.8. □

So far we have shown that 𝑃
GIT

𝑑 ⧵ {[𝑄𝑑]} ↪ 𝑃
K

𝑑,𝑐1+𝜖
is an open immersion. Before proving

Theorem 5.6, we set up some notation.

Definition 5.10. Let 𝑍 ⊂ 𝑋 be a smooth closed subvariety of a smooth quasi-projective variety𝑋.
We define 𝑙𝐰,𝑍𝑋, the stacky weighted blow-up of 𝑍 in 𝑋 with weight𝐰 (see also [12, Section 3]).
The standard weighted blow-up 𝐵𝑙𝐰,𝑍𝑋 will be the coarse space of 𝑙𝐰,𝑍𝑋.
Let 𝑍∕𝑋 be the normal bundle of 𝑍 ⊂ 𝑋 and consider a group 𝐺 acting on 𝑋. Suppose that

𝑍∕𝑋 has a decomposition with respect to representations of 𝐺
𝑍∕𝑋 =1 ⊕2 ⊕⋯⊕𝑘.

Let𝐰 = (𝑤1, 𝑤2, … , 𝑤𝑘) be a weight vector with 𝑤𝑖 ∈ ℤ>0. This gives a monomial valuation 𝑣 of
ℂ(𝑋) centered at 𝑍 of weights (𝑤1, 𝑤2, … , 𝑤𝑘) with respect to the decomposition of the normal
bundle𝑍∕𝑋 .
Define 𝑅 ∶= ⊕∞

𝑚=0
𝔞𝑚(𝑣)𝑡

𝑚, where 𝔞𝑚(𝑣) = {𝑠 ∈ 𝑋 ∶ 𝑣(𝑠) ⩾ 𝑚}. The standard weighted blow-
up of 𝑍 in 𝑋 is defined by 𝐵𝑙𝐰,𝑍𝑋 ∶= Proj𝑋𝑅. Define 𝑌 ∶= Spec𝑋𝑅. Then, we have the zero
section 𝑋 ↪ 𝑌 whose defining ideal is given by 𝐼 = ⊕∞

𝑚=1
𝔞𝑚(𝑣)𝑡

𝑚. We define the stacky weighted
blow-up of 𝑍 in 𝑋 to be

𝑙𝐰,𝑍𝑋 = [(𝑌 ⧵ 𝑋)∕𝔾𝑚],
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where 𝔾𝑚 acts as 𝑡 ↦ 𝜆𝑡, for 𝜆 ∈ 𝔾𝑚.

Remark 5.11. The stack 𝑙𝐰,𝑍𝑋 is a smooth Deligne–Mumford stack, its coarse space is indeed
𝐵𝑙𝐰,𝑍𝑋, and the exceptional divisor 𝐸 has weighted projective stacks as fibers over 𝑍.

We now proceed with our construction of the partial desingularization of Kirwan type. First,
let us recall some representation theory of SL(2). Consider the standard action of SL(2) on ℙ1 =
ℙ(𝑉∨). Thenwehave the dual SL(2)-action on𝑉 = 𝐻0(ℙ1,ℙ1(1)).Wehave a natural SL(2)-action
on 𝐕 ∶= 𝐻0(ℙ1,ℙ1(2)) = Sym2𝑉 so that the second Veronese embedding ℙ1 ↪ ℙ2 = ℙ(𝐕∨) is
SL(2)-equivariant. Denote by 𝑄 = (𝑞 = 0) the image of this Veronese embedding. Then we have

Sym𝑑𝐕 = Sym𝑑(Sym2𝑉) ≅

⎧
⎪⎨⎪⎩

⊕
𝑑∕2
𝑖=0
Sym4𝑖𝑉 if 𝑑 is even,

⊕
(𝑑−1)∕2
𝑖=0

Sym4𝑖+2𝑉 if 𝑑 is odd.
(5.3)

Since 𝑞 is SL(2)-invariant, we have an injection between SL(2)-representations Sym𝑑−2𝐕 ↪
Sym𝑑𝐕 by multiplying with 𝑞. Let𝐕𝑑 be the cokernel of this injection. Then from (5.3), we know
that the restriction map 𝐻0(ℙ2,ℙ2(𝑑)) → 𝐻0(𝑄,𝑄(𝑑)) induces an isomorphism between 𝐕𝑑
and Sym2𝑑𝑉. As a summary, we have

𝐻0(ℙ2,ℙ2(𝑑)) = ⊕⌊𝑑∕2⌋
𝑗=0

𝑞𝑗 ⋅ 𝐕𝑑−2𝑗 ≅ ⊕
⌊𝑑∕2⌋
𝑗=0

Sym2𝑑−4𝑗𝑉. (5.4)

Lemma 5.12. Let 𝑑 be even and let 𝑄𝑑 denote the nonreduced curve defined by (𝑞
𝑑∕2 = 0) where

(𝑞 = 0) is a smooth plane conic. Then a Luna slice to SL(3) ⋅ [𝑄𝑑] ⊂ 𝐏
ss
𝑑
at [𝑄𝑑] is given by the locally

closed subset

𝑊 ∶=
{
(𝑞𝑑∕2 + 𝑓4𝑞

𝑑∕2−2 + 𝑓6𝑞
𝑑∕2−3 +⋯ + 𝑓𝑑 = 0)

}
,

where 𝑓2𝑖 ∈ 𝐕2𝑖 ⊂ 𝐻
0(ℙ2,ℙ2(2𝑖)) for 2 ⩽ 𝑖 ⩽ 𝑑∕2.

Proof. Denote by 𝐺 ∶= SL(3). Since 𝑄𝑑 is GIT polystable by Corollary 5.4, we know that the orbit
𝐺[𝑄𝑑] is closed in 𝐏

ss
𝑑
. The tangent space of 𝐏ss

𝑑
at [𝑄𝑑] is given by 𝐏ss

𝑑
,[𝑄𝑑]

= (Sym𝑑𝐕)∕ℂ𝑞𝑑∕2. If

𝑞𝑡 is a small deformation of 𝑞0 = 𝑞 in Sym
2𝐕, then we have 𝑑

𝑑𝑡
(𝑞
𝑑∕2
𝑡 )|𝑡=0 = 𝑑2𝑞𝑑∕2−1

𝑑𝑞𝑡
𝑑𝑡

|𝑡=0. Thus,
the tangent space of 𝐺[𝑄𝑑] at [𝑄𝑑] is given by 𝑇𝐺[𝑄𝑑],[𝑄𝑑] = (𝑞

𝑑∕2−1 ⋅ Sym2𝐕)∕ℂ𝑞𝑑∕2. Hence, by
(5.4), the normal space of 𝐺[𝑄𝑑]∕𝐏

ss
𝑑
at the point [𝑄𝑑] satisfies

𝐺[𝑄𝑑]∕𝐏ss𝑑 ,[𝑄𝑑] = 𝐏ss
𝑑
,[𝑄𝑑]
∕𝐺[𝑄𝑑],[𝑄𝑑] ≅ Sym𝑑𝐕∕(𝑞𝑑∕2−1 ⋅ Sym2𝐕) ≅ ⊕𝑑∕2𝑖=2𝐕2𝑖 . (5.5)

Therefore, taking the exponential map of the normal space yields a Luna slice

𝑊 ∶=
{
(𝑞𝑑∕2 + 𝑓4𝑞

𝑑∕2−2 + 𝑓6𝑞
𝑑∕2−3 +⋯ + 𝑓𝑑 = 0)

}
,

where 𝑓2𝑖 ∈ 𝐕2𝑖 for 2 ⩽ 𝑖 ⩽ 𝑑∕2. □

Lemma 5.13. Let 𝑑 be odd and let 𝑄𝑑 denote the curve (𝑙𝑞
(𝑑−1)∕2 = 0), where (𝑞 = 0) is a smooth

plane conic and (𝑙 = 0) is a line transverse to 𝑞. Then a Luna slice to SL(3) ⋅ [𝑄𝑑] ∈ 𝐏
ss
𝑑
at [𝑄𝑑] is
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given by the locally closed set

𝑊 ∶= {(𝑙𝑞(𝑑−1)∕2 + 𝑓3𝑞
(𝑑−3)∕2 + 𝑓5𝑞

(𝑑−5)∕2 +⋯ + 𝑓𝑑 = 0)},

where𝑓3 ∈ 𝐕
◦
3
and𝑓2𝑖+1 ∈ 𝐕2𝑖+1 for any 2 ⩽ 𝑖 ⩽ (𝑑 − 1)∕2. Here,𝐕

◦
3
is a subspace of𝐕3 such that it

pulls back to ℂ𝑢6 + ℂ𝑣6 ⊂ 𝐻0(ℙ1
[𝑢,𝑣]
,(6)) under the isomorphism from (ℙ1

[𝑢,𝑣]
, (𝑢𝑣 = 0)) to ((𝑞 =

0), (𝑙 = 𝑞 = 0)).

Proof. Again, we consider the orbit 𝐺[𝑄𝑑] under the action of 𝐺 ∶= SL(3). It is clear that
𝐏ss
𝑑
,[𝑄𝑑]

= Sym𝑑𝐕∕ℂ𝑙𝑞(𝑑−1)∕2. If 𝑙𝑡 and 𝑞𝑡 are small deformations of 𝑙0 = 𝑙 and 𝑞0 = 𝑞 in 𝐕

and Sym2𝐕, respectively, then we have 𝑑
𝑑𝑡
(𝑙𝑡𝑞

(𝑑−1)∕2
𝑡 )|𝑡=0 = 𝑑−12 𝑙𝑞(𝑑−3)∕2

𝑑𝑞𝑡
𝑑𝑡

|𝑡=0 + 𝑞(𝑑−1)∕2 𝑑𝑙𝑡𝑑𝑡 |𝑡=0.
Thus, the tangent space of 𝐺[𝑄𝑑] at [𝑄𝑑] is given by 𝑇𝐺[𝑄𝑑],[𝑄𝑑] = (𝑙𝑞

(𝑑−3)∕2 ⋅ Sym2𝐕 + 𝑞(𝑑−1)∕2 ⋅

𝐕)∕ℂ𝑙𝑞(𝑑−1)∕2. Hence, the normal space of 𝐺[𝑄𝑑]∕𝐏
ss
𝑑
at the point [𝑄𝑑] satisfies

𝐺[𝑄𝑑]∕𝐏ss𝑑 ,[𝑄𝑑] = 𝐏ss
𝑑
,[𝑄𝑑]
∕𝐺[𝑄𝑑],[𝑄𝑑] ≅ Sym𝑑𝐕∕(𝑙𝑞(𝑑−3)∕2 ⋅ Sym2𝐕 + 𝑞(𝑑−1)∕2 ⋅ 𝐕).

It is clear that 𝑙 ⋅ Sym2𝐕 and 𝑞 ⋅ 𝐕 are both contained in Sym3𝐕. Let 𝐺1 ≅ 𝔾𝑚 ⋊ ℤ∕2 be the sub-
group of SL(2) preserving both 𝑙 and 𝑞. Then both 𝑙 ⋅ Sym2𝐕 and 𝑞 ⋅𝐕 are sub 𝐺1-representation
of Sym3𝐕. Since Sym3𝐕∕(𝑞 ⋅𝐕) ≅ 𝐕3 by (5.4), we denote by 𝐕

◦
3
the sub 𝐺1-representation of 𝐕3

complementary to (𝑙 ⋅ Sym2𝐕 + 𝑞 ⋅ 𝐕)∕(𝑞 ⋅𝐕).
By (5.4), we have

𝐺[𝑄𝑑]∕𝐏ss𝑑 ,[𝑄𝑑] ≅ Sym3𝐕∕(𝑙 ⋅ Sym2𝐕 + 𝑞 ⋅ 𝐕) ⊕ Sym𝑑𝐕∕(𝑞(𝑑−3)∕2Sym3𝐕)
≅ 𝐕◦

3 ⊕⊕
(𝑑−1)∕2
𝑖=2

𝐕2𝑖+1. (5.6)

Therefore, taking the exponential map of the normal space yields a Luna slice

𝑊 ∶= {(𝑙𝑞(𝑑−1)∕2 + 𝑓3𝑞
(𝑑−3)∕2 + 𝑓5𝑞

(𝑑−5)∕2 +⋯ + 𝑓𝑑 = 0)},

where 𝑓3 ∈ 𝐕
◦
3
and 𝑓2𝑖+1 ∈ 𝐕2𝑖 for 2 ⩽ 𝑖 ⩽ (𝑑 − 1)∕2.

Finally, we verify that 𝐕◦
3
corresponds to ℂ𝑢6 + ℂ𝑣6 under the pull back to ℙ1. Since the pull-

back of 𝑙 on ℙ1 is 𝑢𝑣, we know that 𝐕◦
3
is complementary to 𝑢𝑣 ⋅𝐻0(ℙ1,(4)) in 𝐻0(ℙ1,(6)).

Since the identity component of 𝐺1 acts on𝐻
0(ℙ1,(1)) = ℂ𝑢 + ℂ𝑣 diagonally, we know that𝐕◦

3
corresponds to ℂ𝑢6 + ℂ𝑣6 under the pull back to ℙ1. This finishes the proof. □

We now proceed to the proof of Theorem 5.6.

Theorem 5.14. Let 𝑈 = 𝐏ss
𝑑
, and consider the universal family (ℙ2

𝑈
,𝑈) → 𝑈, where each fiber is

𝑐-K-polystable for 𝑐 ∈ (0, 𝑐1). After base change to a stacky weighted blow-up ̂ → 𝑈 along the orbit

𝐺[𝑄𝑑]with stacky exceptional divisor  where𝐺 = SL(3), a blow-up along the conic component over , and a divisorial contraction, there exists a family ( , ) → ̂ which:

(1) is isomorphic to (ℙ2
𝑈⧵𝐺[𝑄𝑑]

,𝑈⧵𝐺[𝑄𝑑]) → 𝑈 ⧵ 𝐺[𝑄𝑑] over the complement of  ,
(2) and whose fibers over  are curves on ℙ(1, 1, 4).
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(3) Let 𝑊 be the exceptional divisor of the stacky weighted blow-up ̂ ∶= ̂ ×𝑈 𝑊 →𝑊 over the

Luna slice𝑊 as in Lemmas 5.12 and 5.13. Then the family ( , ) ×̂ 𝑊 over 𝑊 is isomorphic

to the universal family over [(𝐀′
𝑑
⧵ {0})∕𝔾𝑚] as in Definition 5.7.

Proof. By (5.5) and (5.6), we have an Aut(𝑄𝑑)-equivariant decomposition of the normal space

𝐺[𝑄𝑑]∕𝑈,[𝑄𝑑] ≅
{
⊕
𝑑∕2
𝑖=2
𝐕2𝑖 if 𝑑 is even,

𝐕◦
3
⊕⊕

(𝑑−1)∕2
𝑖=2

𝐕2𝑖+1 if 𝑑 is odd.

Thus, by translating the above decomposition via the𝐺-action, we obtain a 𝐺-equivariant decom-

position of the normal bundle𝐺[𝑄𝑑]∕𝑈 which we denote by⊕𝑑∕2𝑖=2𝑖 and⊕(𝑑−1)∕2𝑖=1
𝑖 when 𝑑 is

even and odd, respectively. Let ̂ → 𝑈 be the weighted stacky blow-up along the 𝐺-orbit of 𝑄𝑑
as in Definition 5.10 given by weight 𝑖 on𝑖 . Let  denote the corresponding stacky exceptional
divisor, and let 𝑈 and 𝐸 denote the weighted projective blow-up coarse space and corresponding
exceptional divisor, respectively. Note that  is a smooth Cartier divisor in ̂ as we are doing a
stacky weighted blow-up.
We note that this blow-up is SL(3)-equivariant. Let (ℙ2

𝑈
,𝑈) → 𝑈 denote the pullback of this

universal family via the blow-up, and denote by the pullback of the universal family to the stack
by (ℙ2̂ ,̂ ) → ̂ .

Consider the blow-up 𝜙 ∶ ( , ) → (ℙ2̂ ,̂ ) of the universal family at the conic compo-
nent  of ̂ |ℙ2 over the exceptional divisor  ⊂ ̂ , where  is the strict transform of ̂ .
Let  denote the 𝜙-exceptional divisor. Since  is smooth of codimension 2 in ℙ2̂ , and  is a

smooth Cartier divisor of ̂ , we know that 𝜋 = pr2◦𝜙 ∶  → ̂ is a projective equidimensional
morphism between smooth Deligne–Mumford stacks, which implies that  is flat over ̂ by
miracle flatness. Furthermore, the codimension two locus  we blow-up is SL(3)-equivariant.
In particular, we obtain the following diagram:

Note that fibers of ( , ) → ̂ over ̂ ⧵  are unchanged, and the fibers over  are simple
normal crossing surfaces of the form ℙ2 ∪ 𝔽4, where 𝔽4 denotes the fourth Hirzebruch surface,
and they are glued along the conic component in ℙ2 and the negative section in 𝔽4. Let denote
the strict transform of ℙ2 under 𝜙.
We claim that there is a divisorial contraction 𝜓 ∶  →  over ̂ that contracts  to a sec-

tion over  . Indeed, let  ∶= 𝜙∗ℙ2̂ (1) +
1

2
 be a ℚ-Cartier ℚ-divisor on  . Then we know that

2 = 𝜙∗ℙ2̂ (2) + is a Cartier divisor on . First, we show that 2 is nef and big over ̂ . Clearly,

2 is ample over ̂ ⧵  where 𝜙 is isomorphic. Now, let us restrict to a fiber 𝑒 over a geometric
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point 𝑒 ∈ ||. Since  + = 𝜋∗ , we have 2 ∼̂ 𝜙∗ℙ2̂ (2) −  . Denote by 𝑒 = ℙ2𝑒 ∪ 𝔽4,𝑒. Let
𝐻2 be an element of ℙ2(2). Then 𝜙∗𝐻2 − 𝐹 is 0 over ℙ2𝑒 and big and nef on 𝔽4,𝑒, where 𝐹 is the
restriction of  to the fiber 𝑒. Indeed, if 𝑙 is a line in ℙ2𝑒 , then (𝜙∗𝐻2 ⋅ 𝑙) = 2 = (𝐹 ⋅ 𝑙), since 𝐹
came from blowing up a conic. Therefore, ((𝜙∗𝐻2 − 𝐹) ⋅ 𝑙) = 0 for any line in ℙ

2
𝑒 . An adjunction

calculation shows that (𝜙∗𝐻2 − 𝐹)|𝔽4,𝑒 = 4𝑓 + 𝑠, where 𝑓 is a fiber of the ruled surface 𝔽4,𝑒 and 𝑠
is the negative section. Therefore, ((𝜙∗𝐻2 − 𝐹) ⋅ 𝑓) = 1 and ((𝜙

∗𝐻2 − 𝐹) ⋅ 𝑠) = 0 and 𝜙
∗𝐻2 − 𝐹 is

big and nef on 𝔽4,𝑒.

In particular, we see that 2 is a big and nef line bundle over ̂ that is 0 on over  . In order
to show that 2 defines a divisorial contraction, we use cohomology and base change. In fact,
since  → ̂ is a ℚ-Gorenstein flat family of slc Fano varieties (this can be checked fiberwise,
as both ℙ2 and ℙ2 ∪ 𝔽4 are slc with ample anticanonical divisors), by Fujino’s vanishing theorem
[42, Theorem 1.7], we know that 𝑅𝑖𝜋∗ (2𝑚) = 0 and 𝜋∗ (2𝑚) is locally free for every 𝑖 > 0
and 𝑚 > 0. Moreover, both sheaves commute with base change. Note that this argument can be
applied over the smooth Deligne–Mumford stack ̂ as we can first pass to an étale cover of ̂
by smooth schemes, apply Fujino’s vanishing theorem there, then descend to ̂ . See also [26] for
cohomology and base change for Deligne–Mumford stacks. Therefore, since 2 is basepoint free
on every geometric fiber, we know that 2 is relatively basepoint free, and we obtain a divisorial
contraction 𝜓 ∶  →  where

 ∶= Proj̂ ⊕∞𝑚=0 𝜋∗ (2𝑚).
Let ∶= 𝜓∗ . Since the line bundle 2has a natural SL(3) linearization, this contraction is also
SL(3)-equivariant. Thus, we obtain an SL(3)-equivariant ℚ-Gorenstein flat family ( , ) → ̂ .
Next, we verify conditions (1) and (2). Since 2 is ample over ̂ ⧵  , (1) follows directly from the

construction. For (2), note that 2|𝑒 is trivial onℙ2𝑒 and has class 4𝑓 + 𝑠 on 𝔽4,𝑒 for 𝑒 ∈ ||. There-
fore, the linear system |2|𝑒 | is basepoint free and contracts ℙ2𝑒 ∪ 𝔽4,𝑒 to ℙ(1, 1, 4). In particular,
we know that the algebra ⊕∞

𝑚=0
𝐻0(𝑒, 2𝑚|𝑒 ) is generated in degree 1. Thus, by cohomology

and base change, we know that the fiber 𝑒 is isomorphic to ℙ(1, 1, 4).
Finally, we discuss what happens to the family of curves over the Luna slice 𝑊. Let 𝜌𝑊 ∶̂ →𝑊 be the base change of the stacky weighted blow-up ̂ → 𝑈. Denote by (𝑊 ,𝑊 ) ∶=

( , ) ×̂ ̂ and (𝑊 ,𝑊 ) ∶= ( , ) ×̂ ̂ . Let 𝜙𝑊 ∶ 𝑊 → ℙ2̂ be the pullback of 𝜙 under

the base change ̂ → ̂ . Let 𝜋𝑊 ∶ 𝑊 → ̂ be the projection. Then, we know that 𝜙𝑊 is the
blow-up of the smooth conic component 𝑊 ⊂ ℙ2𝑊 . Let 𝑊 ∶= (𝜙𝑊)−1∗ ℙ2𝑊 . Denote by 𝑊 ∶=
𝜙∗
𝑊
ℙ2̂ (1) +

1

2
𝑊 . Then from the above discussion, we know that 2𝑊 is relatively basepoint

free over ̂ . We shall define a morphism from 𝑊 to a ℙ(13, 2)-bundle ℙ over ̂ that induces a
closed embedding 𝑊 ↪ ℙ .
Since ⌊𝑊⌋ = 𝜙∗

𝑊
ℙ2̂ (1), we know that (𝜋𝑊)∗𝑊 (⌊𝑊⌋) = 𝐕 ⊗ ̂ =∶ 1 where 𝐕 =

𝐻0(ℙ2,(1)). Moreover, we have
(𝜋𝑊)∗𝑊 (2𝑊) = (𝜋𝑊)∗(𝜙∗𝑊ℙ2̂ (2) ⊗ 𝑊 (𝑊)).

Recall that  denotes the exceptional divisor of 𝜙. We know that 𝑄 = (𝑞 = 0) where 𝑞 ∈
𝐻0(ℙ2,(2)) defines a divisor (𝜙𝑊)−1∗ (𝑄 × ̂) − 𝑊 which corresponds to a section

𝑞𝑊 ∈ 𝐻
0(̂ , (𝜋𝑊)∗(𝜙∗𝑊ℙ2̂ (2) ⊗ 𝑊 (−𝑊))).
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Let 2 ∶= ̂ (𝑊). Then there is a surjection
(Sym21) ⊕ 2 ↠ (𝜋𝑊)∗𝑊 (2𝑊),

whose first component is given by the usual embedding 𝜙∗
𝑊
ℙ2̂ (2) ↪ 𝜙

∗
𝑊
ℙ2̂ (2) ⊗ 𝑊 (𝑊),

and whose second component is given by multiplying with 𝑞𝑊 as𝑊 = 𝜋∗𝑊𝑊 − 𝑊 . We define ∶= 1 ⊕ 2 and define ℙ ∶= Proj̂ ⊕∞𝑚=0 Sym𝑚 where 𝑖 has degree 𝑖. Since the ample
model of 2 is defined by |2| on each fiber, by cohomology and base change from earlier, we
know that the above surjection gives a closed embedding 𝑊 ↪ ℙ .
Next, we work out the defining equations of 𝑊 and its family of curves 𝑊 . We focus on the

𝑑 even case as the 𝑑 odd case is similar. Let 𝑥0, 𝑥1, 𝑥2 be a basis of 1 induced by the standard
basis of 𝐕 = 𝐻0(ℙ2,(1)). Let 𝑥3 be a nonzero constant section of 2 ⊗ ̂ (−𝑊) = ̂ . Then
the equation of 𝑊 is given by

𝑊 = (𝑠𝑥3 − 𝑞(𝑥0, 𝑥1, 𝑥2) = 0) ⊂ ℙ ,
where 𝑠 ∈ 𝐻0(̂ ,̂ (𝑊)) is some defining section of 𝑊 . Since 𝑑 is even, 𝑊 has affine
coordinates (𝑓4, 𝑓6, … , 𝑓𝑑−2, 𝑓𝑑) where each 𝑓2𝑖 ∈ 𝐕2𝑖 ⊂ 𝐻

0(ℙ2,ℙ2(2𝑖)). Since each 𝑓2𝑖 is the
coordinate of 𝑖 with weight 𝑖 under the stacky weighted blow-up 𝜌𝑊 , we know that 𝑓2𝑖 ∶=
𝑠−𝑖𝜌∗

𝑊
𝑓2𝑖 is a global section of ̂ (−𝑖𝑊). Therefore, we have

𝑊 =
⎛⎜⎜⎝
𝑥
𝑑∕2
3
+

𝑑∕2∑
𝑖=2

𝑓2𝑖(𝑥0, 𝑥1, 𝑥2)𝑥
𝑑∕2−𝑖
3

= 0
⎞⎟⎟⎠
|𝑊 .

Next, we pullback𝑊 ↪ ℙ under the quotient map𝐀′
𝑑
⧵ {0} → 𝑊 = [(𝐀′𝑑 ⧵ {0})∕𝔾𝑚]. Since 1

is a trivial vector bundle and 2 =  (𝑊), we know that the pull-back ℙ ×̂ (𝐀′𝑑 ⧵ {0} is 𝔾𝑚-
equivariantly isomorphic to the product ℙ(13, 2)[𝑥0,𝑥1,𝑥2,𝑥3] × (𝐀

′
𝑑
⧵ {0})where 𝔾𝑚 acts on ℙ(1

3, 2)

as 𝑡 ⋅ [𝑥0, 𝑥1, 𝑥2, 𝑥3] = [𝑥0, 𝑥1, 𝑥2, 𝑡𝑥3]. Under an isomorphism ℙ1 → 𝑄 = (𝑞 = 0) ⊂ ℙ2, we may
identify𝑊 ×̂ (𝐀′𝑑 ⧵ {0})withℙ(1, 1, 4)[𝑥,𝑦,𝑧] × (𝐀′𝑑 ⧵ {0})where 𝑥0, 𝑥1, 𝑥2 are a basis of quadratic
forms in 𝑥, 𝑦 such that 𝑞(𝑥0, 𝑥1, 𝑥2) = 0, and 𝑥3 = 𝑧. Clearly, the 𝔾𝑚-action on ℙ(1, 1, 4) × (𝐀

′
𝑑
⧵

{0}) is 𝑡 ⋅ [𝑥, 𝑦, 𝑧] = [𝑥, 𝑦, 𝑡𝑧]. Then the equation of 𝑊 ×̂ (𝐀′𝑑 ⧵ {0}) becomes
⎛⎜⎜⎝
𝑧𝑑∕2 +

𝑑∕2∑
𝑖=2

g4𝑖(𝑥, 𝑦)𝑧
𝑑∕2−𝑖 = 0

⎞⎟⎟⎠
⊂ ℙ(1, 1, 4) × (𝐀′

𝑑
⧵ {0}),

where g4𝑖(𝑥, 𝑦) ∶= 𝑓2𝑖(𝑥0, 𝑥1, 𝑥2) ∈ 𝐕2𝑖 = 𝐻
0(ℙ1,(4𝑖)). Thus, the pullback of the family

( , ) → ̂ to 𝑊 is isomorphic to the universal family over [(𝐀′
𝑑
⧵ {0})∕𝔾𝑚]. This verifies

(3). □

Let us choose an ideal sheaf  ⊂ 𝑈 such that𝑈 ≅ 𝐵𝑙𝑈. Let  ⊂ 𝐏𝑑 be an SL(3)-equivariant
extension ideal sheaf of  that is cosupported on the Zariski closure of 𝐺[𝑄𝑑] in 𝐏𝑑. Let 𝐏̂𝑑 be
the normalization of 𝐵𝑙𝐏𝑑 with 𝜋𝐏𝑑 ∶ 𝐏̂𝑑 → 𝐏𝑑 the projection morphism. Let 𝐸 be the 𝜋𝐏𝑑 -

exceptional divisor on 𝐏̂𝑑 such that 𝐏̂𝑑 (−𝐸) =  ⋅ 𝐏̂𝑑 . Then, for 𝑘 ≫ 1, the line bundle 𝐿𝑘 ∶=
𝜋∗
𝐏𝑑
𝐏𝑑 (𝑘) ⊗ 𝐏̂𝑑 (−𝐸) is an SL(3)-linearized ample line bundle on 𝐏̂𝑑. By [64] we know that the
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GIT stability of (𝐏̂𝑑, 𝐿𝑘) is independent of the choice of 𝑘 ≫ 1, and the GIT semistable locus 𝐏̂
ss
𝑑

is contained in 𝑈 = 𝜋−1
𝐏𝑑
(𝐏ss
𝑑
). Denote by 𝑈ss ∶= 𝐏̂ss

𝑑
and ̂ ss ∶= ̂ ×𝑈 𝑈ss.

Theorem 5.15. There is an isomorphism 𝜓 ∶ [̂ ss∕PGL(3)] → K𝑑,𝑐1+𝜖.

Proof. We start from the construction of amorphism𝜓 ∶ [̂ ss∕PGL(3)] → K𝑑,𝑐1+𝜖. Denote by𝑈ps
and𝑈ps the GIT polystable locus in 𝐏̂𝑑 and 𝐏𝑑, respectively. Let ̂ ps be the preimage of𝑈ps under
the coarse moduli space morphism ̂ → 𝑈. For simplicity, denote 𝐺 ∶= SL(3). Then by [64] we
know that

𝑈ps = 𝜋−1𝐏𝑑
(𝑈ps ⧵ 𝐺[𝑄𝑑]) ∪ 𝐺 ⋅ 𝐸

ps
𝑊
,

where 𝐸ps
𝑊
is the GIT polystable locus in the exceptional divisor 𝐸𝑊 of the weighted blow-up𝑊 →

𝑊. Then by Theorems 5.8, 5.9, and 5.14, we know that the fibers of ( , (𝑐1 + 𝜖) ) → ̂ over
̂ ps are all K-polystable. Hence, by Theorem 2.16, we know that the fibers over ̂ ss are all K-
semistable. Then 𝜓 is constructed by the universality of the K-moduli stacks (see Section 3.6).
Next, we show that 𝜓 is an isomorphism between Artin stacks. By Theorem 5.2, it is clear that

𝜓 is birational. Since K𝑑,𝑐1+𝜖 is normal, by Zariski’s Main Theorem, it suffices to show that the
above morphism is finite. To do so, we use [10, Proposition 6.4]. To use Alper’s result, we must
check that the morphism on the level of good moduli spaces is finite, and that the morphism 𝜓 is
representable, separated, quasi-finite, and sends closed points to closed points.
First, we note that the good moduli spaces are isomorphic since GIT-polystability and K-

polystability coincide by the above argument and Theorem 5.9. In particular, we also see that
the morphism 𝜓 sends closed points to closed points, as the closed points are the same. Hence, it
suffices to show that 𝜓 is representable, separated, and quasi-finite. □

Lemma5.16. There exists amorphism𝜑 ∶ K𝑑,𝑐1+𝜖 → [𝑈∕PGL(3)] such that the composition𝜑◦𝜓 ∶
[̂ ss∕PGL(3)] → [𝑈∕PGL(3)] is induced from the stacky weighted blow-up ̂ → 𝑈.
Proof of the lemma. Recall from Section 3.1 that 𝑍◦𝑚,𝑐1+𝜖

is a locally closed subscheme of the rel-

ative Hilbert scheme ℍ𝜒;𝑁 × ℍ𝜒̃;𝑁 . For simplicity, denote by 𝑇 ∶= 𝑍◦𝑚,𝑐1+𝜖
. Let 𝜋 ∶ ( ,) → 𝑇

be the universal family. Let 𝑇′ ∶= pr1(𝑇) be the projection in the Hilbert scheme ℍ𝜒;𝑁 . Let
𝜋′ ∶  ′ → 𝑇′ be the universal family such that 𝜋 = 𝜋′ ×𝑇′ 𝑇. Let 𝐻′ ⊂ 𝑇′ (resp. 𝐻 ⊂ 𝑇) be the
divisor parametrizing ℙ(1, 1, 4). By the proof of Proposition 4.6(2), we know that 𝑇 and 𝑇′ are
both smooth, and pr1 ∶ 𝑇 → 𝑇

′ is a smooth morphism. Moreover, since𝐻′ is a PGL(𝑁 + 1)-orbit
in ℍ𝜒;𝑁 , we know that𝐻′ and𝐻 are smooth prime divisors in 𝑇′ and 𝑇, respectively.
Since 𝜋′ is a ℙ2-fibration over 𝑇′ ⧵ 𝐻′, there exists a dominant étale morphism 𝑇◦ → 𝑇′ ⧵ 𝐻′

such that 𝜋′ ×𝑇′ 𝑇
◦ is a trivial ℙ2-bundle over 𝑇◦. By Zariski’s main theorem, there exists an open

immersion 𝑇◦ ↪ 𝑇 to a smooth variety 𝑇 together with a quasi-finite morphism 𝑇 → 𝑇′ étale
away from 𝐻′ whose image contains the generic point of 𝐻′. In particular, 𝑇 is flat over 𝑇′ by
miracle flatness. Since both 𝑇′ ⧵ 𝐻′ and 𝐻′ are PGL(𝑁 + 1)-orbits, there exists 𝑇′

𝑖
= g𝑖 ⋅ 𝑇 where

g𝑖 ∈ PGL(𝑁 + 1) such that ⊔𝑖𝑇
′
𝑖
→ 𝑇′ is a fppf covering. Denote by 𝐻′

𝑖
the preimage of 𝐻′ in 𝑇′

𝑖
.

Then from the above discussion, we see that 𝜋′ ×𝑇′ (𝑇
′
𝑖
⧵ 𝐻′

𝑖
) ∶  ′

𝑇′
𝑖
⧵𝐻′
𝑖

→ 𝑇′
𝑖
⧵ 𝐻′

𝑖
is a trivial ℙ2-

bundle. Let ′
𝑖
be the Weil divisorial sheaf on  ′

𝑇′
𝑖

as the Zariski closure of (1) on  ′
𝑇′
𝑖
⧵𝐻′
𝑖

. Since
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the families here areℚ-Gorenstein with integral fibers, we know that′[−3]
𝑖

is the same as 𝜔 ′
𝑇′
𝑖

∕𝑇′
𝑖

twisted by the pull-back of some line bundle on the base 𝑇′
𝑖
. After replacing 𝑇′

𝑖
by its Zariski

covering, we may assume that ′[−3]
𝑖

≅ 𝜔 ′
𝑇′
𝑖

∕𝑇′
𝑖
. By Kawamata–Viehweg vanishing, we know that

(𝜋′
𝑇′
𝑖

)∗′𝑖 is a rank 3 vector bundle over 𝑇′𝑖 .
We claim that the PGL(3)-torsors {𝒫′

𝑖
∕𝑇′
𝑖
}𝑖 , by taking a projectivized basis of (𝜋

′
𝑇′
𝑖

)∗′𝑖 , is a
descent datum. Indeed, from the above construction, we know that the cocycle condition of ′

𝑖
is off by a third root of unity. Hence, the cocycle condition of (𝜋′

𝑇′
𝑖

)∗′𝑖 is off by a scalar, which
implies that a projectivized basis of (𝜋′

𝑇′
𝑖

)∗′𝑖 satisfies the cocycle condition. Hence, by the fppf
descent of 𝐺-torsors [116, Tag 04U1], the PGL(3)-torsors {𝒫′

𝑖
∕𝑇′
𝑖
}𝑖 descend to a PGL(3)-torsor

𝒫′∕𝑇′. Pulling back to 𝑇, we get a PGL(3)-torsor 𝒫∕𝑇 where over 𝑇 ⧵ 𝐻 it is obtained by
taking projectivized basis of 𝜋 ×𝑇 (𝑇 ⧵ 𝐻). It is clear that 𝒫 → 𝑇 is PGL(𝑁 + 1)-equivariant.
Hence, the morphism 𝜑 is induced by the PGL(3)-equivariant morphism 𝒫 → 𝑈 where
(𝑡, [𝑠0, 𝑠1, 𝑠2]) ↦ [𝑠0, 𝑠1, 𝑠2](𝑡) ⊂ ℙ2. □

FromLemma 5.16 and the separatedness of ̂ ss → 𝑈, we know that to check𝜓 is representable,
separated, and quasi-finite, it suffices to show that the restriction of 𝜓 on [ ss∕PGL(3)] maps
isomorphically onto [𝐻∕PGL(𝑁 + 1)] where  ss ∶=  ∩ ̂ ss. To prove this, we will construct an
inverse morphism 𝜓−1 ∶ [𝐻∕PGL(𝑁 + 1)] → [ ss∕PGL(3)]. We will focus on the case when 𝑑 is
even, as the strategy for 𝑑 odd is similar. By Theorem 5.14, we know that  ≅ 𝑊 ×PGL(2) PGL(3)
where PGL(2) is identified with Aut(ℙ2, 𝑄𝑑) as a subgroup of PGL(3). Hence, we know that
[ ss∕PGL(3)] ≅ [ ss

𝑊
∕PGL(2)]. From Theorem 5.14, we know that 𝑊 ≅ [(𝐀′𝑑 ⧵ {0})∕𝔾𝑚] is the

weighted projective stack. Let us consider the action of GL(2) × 𝔾𝑚 on 𝐀′
𝑑
where GL(2) acts on

𝐻0(ℙ1,ℙ1(4𝑗)) as the symmetric power of the standard GL(2)-action on (ℙ1,(1)), and 𝔾𝑚 acts
as 𝜎. Consider a 1-PS 𝜏 ∶ 𝔾𝑚 → GL(2) × 𝔾𝑚 defined as 𝜏(𝑡) = (diag(𝑡, 𝑡), 𝑡

4), then it is clear that 𝜏
acts as identity on 𝐀′

𝑑
. Consider the group  ∶= GL(2) × 𝔾𝑚∕𝜏𝔾𝑚. It is clear that the quotient 𝜎̄

of 𝜎 gives a 1-PS in  and ∕𝜎̄𝔾𝑚 ≅ PGL(2). Hence, we know that [𝑊∕PGL(2)] ≅ [(𝐀′𝑑 ⧵ {0})∕].
Next, we will construct a morphism [𝐻∕PGL(𝑁 + 1)] → [(𝐀′

𝑑
⧵ {0})∕]which directly induces

𝜓−1. Indeed, this reduces to construct a PGL(𝑁 + 1)-equivariant -torsor𝒫𝐻∕𝐻 and a PGL(𝑁 +
1)-invariant morphism 𝒫𝐻 → 𝐀

′
𝑑
⧵ {0}. Let 𝜋𝐻 ∶ (𝐻 ,𝐻) → 𝐻 be the universal family where

each fiber is isomorphic to ℙ(1, 1, 4) with a degree 2𝑑 curve. By similar argument to the proof of
Lemma 5.16, there exists an étale covering ⊔𝑖𝐻𝑖 → 𝐻 and a Weil divisorial sheaf 𝐻𝑖 on 𝐻𝑖 (as
fiberwise(1) on ℙ(1, 1, 4)) such that [−6]

𝐻𝑖
≅ 𝜔𝐻𝑖 ∕𝐻𝑖 . Let 𝑖 ∶= (𝜋𝐻𝑖 )∗𝑖 as a rank 2 vector bun-

dle on𝐻𝑖 . Define ′𝑖 ∶= (𝜋𝐻𝑖 )∗[4]𝑖 ∕Sym4𝑖 as a line bundle on𝐻𝑖 . Then taking basis (𝑠0, 𝑠1) and 𝑠2
of 𝑖 and  ′𝑖 resp. gives a GL(2) × 𝔾𝑚-torsor𝒫𝐻𝑖∕𝐻𝑖 . By projectivizing (𝑠0, 𝑠1, 𝑠2) ↦ (𝑡𝑠0, 𝑡𝑠1, 𝑡4𝑠2)
under 𝜏, we get a -torsor𝒫𝐻𝑖∕𝐻𝑖 . Since the descent datumof {𝑖} is off by a sixth root of unity, it is
easy to see that {𝒫𝐻𝑖∕𝐻𝑖}𝑖 form an étale descent datum hence descend to a -torsor𝒫𝐻∕𝐻. As the
⊔𝑖𝐻𝑖 and 𝐻𝑖 can be chosen PGL(𝑁 + 1)-equivariantly, we know that𝒫𝐻∕𝐻 is also PGL(𝑁 + 1)-
equivariant. Notice that a projectivized basis [𝑠0, 𝑠1, 𝑠2] in𝒫𝐻 is the same as an equivalent class of
projective coordinates [𝑥, 𝑦, 𝑧] for ℙ(1, 1, 4) under the equivalence relation 𝑧 ∼ 𝑧 + g(𝑥, 𝑦). For a
point 𝑡 ∈ 𝐻 and a projectivized basis [𝑠0, 𝑠1, 𝑠2] lying over 𝑡, there is a unique projective coordinates
[𝑥, 𝑦, 𝑧] in the equivalent class such that𝑡 has the form (5.2). This gives thePGL(𝑁 + 1)-invariant
morphism𝒫𝐻 → 𝐀

′
𝑑
⧵ {0} whose image is contained in the GIT semistable locus by Theorem 5.8.

Thus, the proof is finished.
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Proof of Theorem 5.6. The theorem follows from Theorems 5.8, 5.14, and 5.15. □

We have thus completed the proof of Theorem 1.3.

Proof of Theorem 1.3. The proof follows from Theorems 5.2, 5.5, and 5.6. □

6 K-MODULI SPACES OF PLANE QUARTICS AND SEXTICS AND K3
SURFACES

In the first section, we show that the wall crossing discussed in Section 5 is the only wall crossing
in the log Fano region for 𝑑 = 4 and 6. Using that, we relate the K-moduli spaces to certainmoduli
spaces of K3 surfaces.

6.1 K-moduli wall crossings

The goal of this section is to prove the following theorem.

Theorem6.1. Assume 𝑑 = 4 or 6. Then for any 3
2𝑑
< 𝑐 < 3

𝑑
, we haveK𝑑,𝑐 ≅ K𝑑, 3

2𝑑
+𝜖 as Artin stacks.

In other words, there is only one wall crossing in the log Fano region.

Remark 6.2. Note that the K-moduli space 𝑃
K

4, 1
2
was previously described by Odaka, Spotti, and

Sun [106] in their study of K-moduli spaces of del Pezzo surfaces of degree 2.

Recall in Theorem 1.3, we constructedK𝑑,𝑐1+𝜖 as the partial Kirwan blow-up of
GIT

𝑑 . Therefore,
by Proposition 4.7, to prove the above theorem it suffices to show that lct(𝑋; 𝐶) ⩾ 3∕𝑑 for any K-

polystable point [(𝑋, (𝑐1 + 𝜖)𝐶)] ∈ 𝑃
K

𝑑,𝑐1+𝜖
for 𝑑 = 4 or 6. Using an explicit description of such GIT

polystable points, we will verify the lct inequality as follows. Here, we consider GIT of curves on
ℙ(1, 1, 4) in the sense of Definition 5.7.

Proposition 6.3 (Degree 𝑑 = 4).

(1) Any GIT polystable plane curve of degree 4 that is not the double conic has lct ⩾ 3∕4.
(2) Any GIT polystable curve of degree 8 in ℙ(1, 1, 4) has lct ⩾ 3∕4.

Proof.

(1) Recall that a plane quartic curve is GIT stable if and only if it has type 𝐴1 or 𝐴2 singularities.
Moreover, the only reduced strictly GIT polystable quartic curves are the “cat-eye” and “ox”
which have type singularities of type 𝐴3 and possibly 𝐴1 (see [99, Table on Page 80] and [54,
Proposition 7]).

(2) Any GIT semistable curve 𝐶 of degree 8 in ℙ(1, 1, 4) is given by the equation 𝑧2 = 𝑓(𝑥, 𝑦)
where 𝑓 ≠ 0 is a degree 8 polynomial whose roots have multiplicities at most 4. Therefore, 𝐶
has at worst singularities of type 𝐴3.

□

Proposition 6.4 (Degree 𝑑 = 6).

(1) Any GIT polystable plane curve of degree 6 that is not the triple conic has lct ⩾ 1∕2.
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(2) Any GIT polystable curve of degree 12 in ℙ(1, 1, 4) has lct ⩾ 1∕2.

Proof.

(1) The GIT polystable plane sextics are classified in [112, Theorem 2.4]. In Shah’s terminology,
we only need to check that all curves in Group I, II, or III have lct ⩾ 1∕2. Group I are ADE
singularities, so they have lct > 1∕2. Group II and III both have lct = 1∕2.

(2) This follows from [112, Theorem 4.3]. In Shah’s terminology, Case 1(i) corresponds to ADE
singularities so lct > 1∕2. Case 1(ii) has equations (𝑧3 + 𝑎(𝑥𝑦)4𝑧 + 𝑏(𝑥𝑦)6 = 0)where 𝑎, 𝑏 are
not simultaneously zero, and the lct = 1∕2 in this case. Case 2 is similar. □

Proof of Theorem 6.1. As mentioned above, the proof follows from Theorem 1.3, Proposition 4.7,
Theorem 5.9, and the two above propositions explicitly calculating the lct of the GIT polystable
curves. □

6.2 Relating degree 4 and 6 plane curves to K3 surfaces

In this section, we describe a relation between K-moduli spaces of plane curves of degree 4 and 6
and certain Baily–Borel compactifications of moduli spaces of K3 surfaces that already appear in
the literature. In the case of quartics, we use work of Hyeon and Lee [54] and Kondō [74]. In the
case of sextics, we use work of Shah [112] and Looijenga [89] (see also Laza [76]).

6.2.1 Plane quartics

We recall that the GIT quotient 𝑃
GIT

4 generically parametrizes curves in ℙ2 with at worst cuspidal
singularities. There is a curve parametrizing plane curves with a tacnode (locally (𝑥2 + 𝑦4 = 0)),
and there is a point on this curve parametrizing the double conic. In [54], the authors construct

two GIT moduli spaces that do not coincide with the standard GIT quotient 𝑃
GIT

4 . In particular,

they construct𝑀
hs

3 ∶= Hilb3,2∕∕SL(6) and𝑀
cs

3 ∶= Chow3,2 ∕∕SL(6), whereHilb3,2 (resp. Chow3,2)
denotes the closure of the locus of bicanonical curves of genus three in the Hilbert scheme (resp.
Chow scheme). They then show the existence of the following diagram (see [54, Theorem 1 and
Page 4]):

𝑀
cs

3

Ψ+

←""""" 𝑀
hs

3

Θ
""""→ 𝑃

GIT

4

where Θ is a divisorial contraction corresponding to the blow-up of the point parametrizing the

double conic in 𝑃
GIT

4 and Ψ+ is a small contraction identifying all tacnodal curves in 𝑀
hs

3 to the

same point in 𝑀
cs

3 . By Theorems 1.3 and 6.1, we have 𝑀
hs

3 ≅ 𝑃
K

4, 3
4
−𝜖. By construction, the space

𝑃
K

4, 3
4
−𝜖 has a divisor parametrizing curves on ℙ(1, 1, 4) (the exceptional divisor of the weighted

blow-up of the double conic), along with a curve that still parametrizes the tacnodal curves. This
is the curve that is contracted via Ψ+ to a point in𝑀

cs

3 .
In [74], Kondō constructs a moduli space of K3 surfaces by considering ℤ∕4ℤ-cover of ℙ2

branched along a quartic curve. Kondō’s moduli space 𝑃
∗

4 is a Baily–Borel compactification of
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the moduli space𝑀 of ADE K3 surfaces of degree 4 with ℤ∕4ℤ-symmetry. The boundary 𝑃
∗

4 ⧵ 𝑀

is a single point. Hyeon and Lee prove (see [54, Proposition 21]) that 𝑃
∗

4 ≅ 𝑀
cs

3 and identify the

point in the boundary of𝑃
∗

4 with the locus of tacnodal curves (i.e., the image of the tacnodal curves

in 𝑀
hs

3 under the small contraction 𝜓+). We now prove that the moduli space 𝑃
∗

4 of K3 surfaces

is the ample model of the Hodge line bundle (see Proposition 3.35) on 𝑃
K

4,3∕4−𝜖, thus relating our
K-moduli to a moduli space of K3 surfaces.

Theorem 6.5. The moduli space 𝑃
∗

4 is the ample model of the Hodge line bundle on 𝑃
K

4,3∕4−𝜖.

Proof. For simplicity, denote by 𝜆Hodge the Hodge line bundle on 𝑃
K

4,3∕4−𝜖. Let𝑀 be the open sub-

set of 𝑃
∗

4 parametrizing ADE K3 surfaces. Then by taking ℤ∕4ℤ-quotient, it is clear that 𝑀 also
parametrizes quartic curves on ℙ2 and degree 8 curves on ℙ(1, 1, 4)with at worst𝐴2-singularities.
Indeed, the moduli stack associated to𝑀 is a (ℤ∕4ℤ)-gerbe over klt

4, 3
4
−𝜖
. Thus,𝑀 can be iden-

tified with the open subset 𝑃klt
4, 3
4
−𝜖

of 𝑃
K

4, 3
4
−𝜖 whose complement has codimension ⩾ 2. By [57,

Section 6.2], 𝜆Hodge|𝑀 is pulled back from the Hodge line bundle on the relevant period domain

𝔻∕Γ, which is the descent of(−1), and thus ample. Since 𝑃∗4 is the Baily–Borel compactification
of 𝑀, we know that 𝜆Hodge|𝑀 extends to an ample ℚ-line bundle on 𝑃

∗

4 . By [29] we know that

𝜆Hodge is nef on 𝑃
K

4, 3
4
−𝜖. Since𝑀 are big open subsets in both 𝑃

K

4, 3
4
−𝜖 and 𝑃

∗

4 , we know that 𝜆Hodge

is big and semiample, and 𝑃
∗

4 ≅ Proj(
⨁∞
𝑘=0𝐻

0(𝑃
K

4, 3
4
−𝜖, 𝜆

⊗𝑘
Hodge

)) is the ample model of 𝜆Hodge. This

finishes the proof.
Finally, we remark here that an alternative proof can be obtained using [41, Theorem 1.2] and

functoriality of the Hodge line bundle. □

We note that Hyeon–Lee’s paper also studies the spaces𝑀
cs

3 ,𝑀
hs

3 , 𝑃
∗

4 , and 𝑃
GIT

4 in the context of

the log MMP on𝑀3 (i.e., the Deligne–Mumford compactification) as well as their relations with

Hacking’s 𝑃
H

4 . We postpone discussing this viewpoint until Section 9.3.

6.2.2 Plane sextic curves

For sextic curves, we recall that Shah constructed a partial Kirwan desingularization of the GIT
quotient of plane sextic curves [112]. In particular, as above there is a divisorial contraction

𝑃GIT
6
→ 𝑃

GIT

6 corresponding to a weighted blow-up of the triple conic. Shah also constructed a set-

theoretic morphism 𝑃GIT
6
→ 𝑃

∗

6 , where 𝑃
∗

6 denotes the Baily–Borel compactification of the space
of polarized K3 surfaces of degree two. This map was shown to be algebraic by Looijenga [88, 89]
(see also [76, Theorem 1.9]). In particular, we have a similar diagram in the sextic case.

𝑃
∗

6⟵𝑃GIT6 ⟶𝑃
GIT

6 .

Again using Theorems 1.3 and 6.1, we can identify 𝑃GIT
6
≅ 𝑃

K

6, 1
2
−𝜖. The proof of Theorem 6.5 gives

the following, noting that the codimension of the klt locus inside 𝑃
K

6, 1
2
−𝜖 is ⩾ 2.
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Theorem 6.6. The moduli space 𝑃
∗

6 is the ample model of the Hodge line bundle on 𝑃
K

6, 1
2
−𝜖.

As in the case of quartics, we will discuss the relation of the above picture with Hacking’s 𝑃
H

6

and 𝑃
∗

6 in Section 9.3.

7 THE SECONDWALL CROSSING FOR PLANE QUINTICS

In this section, we discuss the second wall crossing for K-moduli spaces of plane quintics. For

simplicity, we abbreviate K5,𝑐 and 𝑃K5,𝑐 to K𝑐 and 𝑃
K

𝑐 , respectively. The main result goes as
follows.

Theorem 7.1 (Second wall crossing for plane quintics). Let 𝐶0 be a plane quintic curve with a
singular point of type 𝐴12. Denote by 𝑋26 ∶= (𝑥𝑤 − 𝑦

13 − 𝑧2 = 0) ⊂ ℙ(1, 2, 13, 25). Let 𝐶′
0
be the

curve (𝑤 = 0) on 𝑋26.

(1) There is no wall crossing for K-moduli stacks K𝑐 when 𝑐 ∈ ( 37 , 815 ).
(2) There is an isomorphismof goodmoduli spaces𝜙−

2
∶ 𝑃
K
8
15
−𝜖 → 𝑃

K
8
15
which only replaces [(ℙ2, 𝐶0)]

by [(𝑋26, 𝐶
′
0
)].

(3) There is a weighted blow-up morphism 𝜙+
2
∶ 𝑃
K
8
15
+𝜖 → 𝑃

K
8
15
at the point [(𝑋26, 𝐶

′
0
)]. The excep-

tional divisor of 𝜙+
2
parametrizes curves on 𝑋26 of the form (𝑤 = g(𝑥, 𝑦)) where g ≠ 0 and g

does not contain the term 𝑥𝑦12.

In particular, the second wall for K-moduli spaces of plane quintics is 𝑐2 =
8

15
.

We will split the proof of Theorem 7.1 into several steps.

7.1 K-polystable replacement of 𝑨𝟏𝟐-quintic curve

Let 𝐶0 be a plane quintic curve with a singular point of type𝐴12. Then by [122, 127], we know that
up to a projective transformation, the equation of 𝐶0 is

𝐶0 =
(
(𝑦2 − 𝑥𝑧)2

(
1

4
𝑥 + 𝑦 + 𝑧

)
− 𝑥2(𝑦2 − 𝑥𝑧)(𝑥 + 2𝑦) + 𝑥5 = 0

)
.

In the affine patch [𝑥, 𝑦, 1], there is a unique 6-jet 𝑥′ = 𝑥 − 𝑦2 + 𝑦5 − 1
2
𝑦6 so that the equation of

𝐶 in the coordinates (𝑥′, 𝑦) becomes

𝑥′2 = 𝑎𝑦13 + higher order terms, where 𝑎 ≠ 0.
Here, we assign weights 13 and 2 to 𝑥′ and 𝑦, respectively. Since 𝐶0 has only one singularity that
is a double point, we know that it is a GIT stable plane quintic curve by [99, Table on Page 80].
In this section, we will show that 8

15
is the upper K-semistable threshold of (ℙ2, 𝐶0) by

constructing its K-polystable degeneration. The goal is to prove the following.
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Theorem 7.2. The log Fano pair (ℙ2, 𝑐𝐶0) is K-semistable if and only if 0 < 𝑐 ⩽
8

15
. Moreover,

(𝑋26,
8

15
𝐶′
0
) is the K-polystable degeneration of (ℙ2, 8

15
𝐶0).

We prove this in steps.

Proposition 7.3. If the log Fano pair (ℙ2, 𝑐𝐶0) is K-semistable, then 0 < 𝑐 ⩽
8

15
.

Proof. Suppose (ℙ2, 𝑐𝐶0) is K-semistable. Let us perform the (13,2)-weighted blow-up in
the coordinates (𝑥′, 𝑦), and denote the resulting surface and exceptional divisor by (𝑋, 𝐸).
Let 𝜋 ∶ 𝑋 → ℙ2 be the weighted blow-up morphism. Straightforward computation shows
that

𝐴(ℙ2,𝑐𝐶0)(𝐸) = 15 − 26𝑐, −𝐾ℙ2 − 𝑐𝐶0 ∼ℚ (3 − 5𝑐)𝐻,

where 𝐻 ∼ (1) is the hyperplane divisor on ℙ2. If 𝐶0 ∶= 𝜋−1∗ 𝐶0 ⊂ 𝑋, then we know that 𝐶0
is a smooth rational curve in the smooth locus of 𝑋. It is easy to see that (𝐸2) = − 1

26
, the

curve 𝐶0 ∼ 5𝜋
∗𝐻 − 26𝐸, and (𝐶

2

0) = −1. Thus, the Mori cone of 𝑋 is generated by 𝐸 and 𝐶0.

Hence, 𝜋∗𝐻 − 𝑡𝐸 is ample if and only if 0 < 𝑡 < 5, and big if and only if 0 ⩽ 𝑡 < 26
5
. Then, by

computations,

vol𝑋(𝜋
∗𝐻 − 𝑡𝐸) =

⎧
⎪⎨⎪⎩

1 − 𝑡
2

26
if 0 ⩽ 𝑡 ⩽ 5;

(26−5𝑡)2

26
if 5 ⩽ 𝑡 ⩽ 26

5
.

Hence, 𝑆(ℙ2,𝑐𝐶0)(𝐸) = ∫ ∞0 vol𝑋(𝜋∗𝐻 − 𝑡𝐸)𝑑𝑡 = 175 (3 − 5𝑐). Since (ℙ2, 𝑐𝐶0) is K-semistable, by the
valuative criterion (Theorem 2.9), we know that

15 − 26𝑐 = 𝐴(ℙ2,𝑐𝐶0)(𝐸) ⩾ 𝑆(ℙ2,𝑐𝐶0)(𝐸) =
17

5
(3 − 5𝑐).

This is equivalent to 𝑐 ⩽ 8

15
. □

Now we construct a special degeneration.

Proposition 7.4. The log Fano pair (ℙ2, 𝑐𝐶0) admits a special degeneration to (𝑋26, 𝑐𝐶
′
0
)

where 𝐶′
0
is given by the equation (𝑤 = 0) with [𝑥, 𝑦, 𝑧, 𝑤] being the projective coordinates

of 𝑋26.

Proof. We construct the special degeneration. Consider the family (ℙ2, 𝐶0) × 𝔸
1 and perform the

following birational transformations,
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where in the central fiber, we have

(1) 𝜋 is the (13,2,1)-weighted blow-up of ℙ2 × 𝔸1 in the coordinates (𝑥′, 𝑦, 𝑡) where 𝑡 is the
parameter of 𝔸1,

(2) the surface 𝑆 = ℙ(1, 2, 13) is the exceptional divisor of 𝜋,
(3) the map g is the contraction of 𝐶0 in 𝑋 ⊂ 0 where 𝐶0 is the strict transform of 𝐶0 in 𝑋,
(4) themap𝑓 is theAtiyah flop of the curve𝐶0 in0 (by computation the normal bundle𝐶0∕ ≅

𝐶0
(−1) ⊕ 

𝐶0
(−1)), and

(5) 𝜓 is the divisorial contraction that contracts 𝑋′ to a point.

Let us analyze the geometry of these birational maps. Suppose that 𝑆 has projective coordi-
nates [𝑥1, 𝑥2, 𝑥3] of weights (1,2,13), respectively. Then 𝑆 ∩ 𝑋 = 𝐸 = (𝑥1 = 0), and 𝐶0 ∩ 𝐸 = {𝑝} is
a smooth point of 𝑆 and 𝑋. So, ℎ ∶ 𝑆 = 𝐵𝑙𝑝𝑆 → 𝑆, the map g ∶ 𝑋 → 𝑋′ contracts the (−1)-curve

𝐶0, and 𝜓 ∶ 𝑆 → 𝑆
′ contracts ℎ−1∗ (𝐸). A simple analysis of the singularity of 𝑆′ shows that 𝑆′ has

only one singularity of type 1
25
(1, 4).

Let 𝐹 be the exceptional divisor of ℎ ∶ 𝑆 → 𝑆 = ℙ(1, 2, 13). We may look at the ℚ-divisor 𝐷 ∶=
𝐹 + 26

25
ℎ−1∗ 𝐸. It is clear that the ample model of𝐷 on 𝑆 is exactly 𝑆

′. The projective coordinate ring

⊕𝑚⩾0𝐻
0(𝑆,𝑆(⌊𝑚𝐷⌋)) has four distinguished generators in degree 1, 2, 13, and 25, corresponding

to𝑥1,𝑥2,𝑥3, and𝑥
2
3
+ 𝑥13

2
on 𝑆. If we denote𝑥, 𝑦, 𝑧, 𝑤 as these four generators, then their relation is

𝑥𝑤 = 𝑧2 + 𝑦13 which shows 𝑆′ ≅ 𝑋26. It is clear that 𝜋
−1
∗ 𝐶0 × 𝔸

1 ∩ 𝑆 has the equation 𝑥13
2
+ 𝑥2

3
=

0. Hence, the degeneration of 𝐶0 on 𝑋26 is the strict transform of the curve (𝑥13
2
+ 𝑥2

3
= 0) which

is exactly (𝑤 = 0). This finishes the proof. □

In the Appendix, we use techniques of Ilten and Süß [59] to show that (𝑋26,
8

15
𝐶′
0
) is indeed

K-polystable (see Proposition A.2). We now prove Theorem 7.2.

Proof of Theorem 7.2. By Proposition 7.4, the log Fano pair (ℙ2, 8
15
𝐶0) admits a special degener-

ation to (𝑋26,
8

15
𝐶′
0
), which is K-polystable by Proposition A.2. Therefore, the pair (ℙ2, 8

15
𝐶0) is

K-semistable by Theorem 2.16. We then conclude that (ℙ2, 𝑐𝐶0) is K-semistable for any 𝑐 ∈ (0,
8

15
)

using Propositions 2.13 and 7.3. □

7.2 Proof of second wall crossing

In this section, we prove Theorem 7.1. Before presenting its proof, we provide several results that
are needed. First, we limit the surfaces that can appear.

Lemma 7.5. If [(𝑋, 𝑐𝐷)] ∈ K𝑐 for some 𝑐 ∈ (0, 35 ), then 𝑋 is isomorphic to one of the following

surfaces: ℙ2, ℙ(1, 1, 4), 𝑋26, or ℙ(1, 4, 25).
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Proof. By the index estimate (Theorem 4.8), we know that the Gorenstein index of any singular
point on𝑋 is at most 5. Thus, from the classification of Manetti surfaces, we know that𝑋 is either
isomorphic toℙ2,ℙ(1, 1, 4),ℙ(1, 4, 25) or isomorphic to some of their partial smoothings. It is clear
(e.g., from [50]) that 𝑋26 is the only new surface appearing which is a partial smoothing. □

Next, we discuss K-stability of curves on 𝑋26.

Proposition 7.6. Let 𝐶 be a curve on 𝑋26 of degree 25. If (𝑋26, 𝑐𝐶) is K-semistable, then 𝑐 ⩾
8

15
.

If in addition that 𝐶 passes through the singular point of 𝑋26, then (𝑋26, 𝑐𝐶) is K-unstable for any

𝑐 ∈ (0, 3
5
).

Proof. For simplicity, we denote by 𝑋 ∶= 𝑋26. Let us consider the unique singular point [0,0,0,1]
on 𝑋. Denote by [𝑥, 𝑦, 𝑧, 𝑤] the projective coordinates where 𝑋 is defined by 𝑥𝑤 = 𝑦13 + 𝑧2. If
we set 𝑤 = 1, then we have a cyclic quotient map 𝜋 ∶ 𝔸2

(𝑦,𝑧)
→ 𝑋 defined by 𝜋(𝑦, 𝑧) = [𝑦13 +

𝑧2, 𝑦, 𝑧, 1]. Let𝐹 be the exceptional divisor on𝔸2
(𝑦,𝑧)

given by the (2,13)-weighted blow-up. Let𝐸 be

the quotient of 𝐹 over 𝑋. Then it is clear that ord𝐸 = 𝜋∗ord𝐹∕25, (𝐹
2) = − 1

26
and (𝐸2) = − 25

26
. Let

Γ be the curve 𝑥 = 0 on 𝑋. Then ord𝐸(Γ) = ord𝐹(Γ)∕25 =
26

25
. Hence, on the blow-up 𝜇 ∶ 𝑌 → 𝑋

extracting𝐸, the proper transform Γ of Γ satisfies Γ = 𝜇∗Γ − 26
25
𝐸 and (Γ

2
) = −1. So, theMori cone

of 𝑌 is generated by 𝐸 and Γ. Computation shows

vol𝑋((1) − 𝑡𝐸) =
⎧
⎪⎨⎪⎩

1

25
− 25
26
𝑡2 if 0 ⩽ 𝑡 ⩽ 1

25

1

26

(
26

25
− 𝑡

)2
if 1
25
⩽ 𝑡 ⩽ 26

25
.

Thus,

𝑆(𝑋,𝑐𝐶)(ord𝐸) =
15 − 25𝑐

vol𝑋((1)) ∫
∞

0
vol𝑋((1) − 𝑡𝐸)𝑑𝑡 = 925(15 − 25𝑐).

Since 𝐴𝑋(ord𝐸) = 𝐴𝔸2(ord𝐹)∕25 = 15∕25 = 3∕5 and (𝑋, 𝑐𝐶) is K-semistable, the valuative cri-
terion (Theorem 2.9) yields 3

5
⩾ 𝐴(𝑋,𝑐𝐶)(ord𝐸) ⩾ 𝑆(𝑋,𝑐𝐶)(ord𝐸) =

9

25
(15 − 25𝑐) which implies 𝑐 ⩾

8

15
.
If 𝐶 passes through [0,0,0,1], then its equation is given by (𝑓(𝑥, 𝑦)𝑧 + g(𝑥, 𝑦) = 0) where

deg 𝑓 = 12 and deg g = 25. Let 𝐶 be the preimage of 𝐶 under 𝜋. Then, 𝐶 has equation

𝑓(𝑦13 + 𝑧2, 𝑦)𝑧 + g(𝑦13 + 𝑧2, 𝑦) = 0.

Then, by simple calculation, we see that ord𝐸(𝐶) = ord𝐹(𝐶)∕25 ⩾ 1. Thus, we have

𝐴(𝑋,𝑐𝐶)(ord𝐸) ⩽
1

5
(3 − 5𝑐) <

9

25
(15 − 25𝑐) = 𝑆(𝑋,𝑐𝐶)(ord𝐸).

This implies that (𝑋, 𝑐𝐶) is always K-unstable for 𝑐 ∈ (0, 3
5
) by the valuative criterion (Theo-

rem 2.9). The proof is finished. □
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Proposition 7.7. Let 𝐶 be a curve on 𝑋26 of degree 25. Then (𝑋26,
8

15
𝐶) is K-semistable if and only

if 𝐶 does not pass through the unique singular point of 𝑋26. Moreover, (𝑋26,
8

15
𝐶) is K-polystable if

and only if 𝐶 ≅ 𝐶′
0
under an automorphism of 𝑋26.

Proof. We first look at the K-semistable statement. The “only if” part holds by Proposition 7.6. For
the “if” part, suppose that 𝐶 does not pass through [0,0,0,1]. Hence, the equation of 𝐶 is given by
𝑤 = 𝑓(𝑥, 𝑦)𝑧 + g(𝑥, 𝑦). Consider the 1-PS inAut(𝑋26) defined by [𝑥, 𝑦, 𝑧, 𝑤] ↦ [𝑡

26𝑥, 𝑡2𝑦, 𝑡13𝑧, 𝑤].
It is clear that 𝐶 specially degenerates to 𝐶′

0
= (𝑤 = 0) via this 1-PS as 𝑡 → ∞. Hence, (𝑋26,

8

15
𝐶)

is K-semistable by Theorem 2.16 and the K-polystability of (𝑋26,
8

15
𝐶′
0
) (see Proposition A.2). The

K-polystable statement follows by uniqueness of K-polystable degenerations [93]. □

Now we are ready to prove Theorem 7.1.

Proof of Theorem 7.1.

(1) Assume to the contrary that there arewall crossingswithin the interval ( 3
7
, 8
15
). Let 𝑐2 ∈ (

3

7
, 8
15
)

be the second wall. Then there exists a new K-polystable pair (𝑋, 𝑐2𝐷) such that (𝑋, 𝑐𝐷) is K-
unstable for any 𝑐 ≠ 𝑐2 by Proposition 3.18. Thus, 𝑋 is not isomorphic to 𝑋26 or ℙ(1, 4, 25) by
Propositions 7.6 and A.14 (the valuative criterion for curves on ℙ(1, 4, 25)) since 𝑐2 <

8

15
. By

Lemma 7.5, we are left with two possibilities, that is, 𝑋 is isomorphic to ℙ2 or ℙ(1, 1, 4). If
𝑋 ≅ ℙ2, then Proposition 2.13 implies that (𝑋, 𝜖𝐷) is also K-polystable that is a contradiction.
Hence, we may assume (𝑋, 𝐷) ≅ (ℙ(1, 1, 4), 𝐶).
Assume that the equation of 𝐶 is given by 𝑓(𝑥, 𝑦)𝑧2 + g(𝑥, 𝑦)𝑧 + ℎ(𝑥, 𝑦) = 0. If 𝑓(𝑥, 𝑦) is

a nondegenerate quadratic form, then it is clear that 𝐶 specially degenerates to 𝑄′5. Since

(ℙ(1, 1, 4), 3
7
𝑄′5) is K-polystable by Lemma 5.3, we know that (ℙ(1, 1, 4), 3

7
𝐶) is K-semistable by

Theorem 2.16. But this is a contradiction since (𝑋, 3
7
𝐷) is K-unstable. Thus, 𝑓(𝑥, 𝑦) is a degen-

erate quadratic form. By Proposition A.13 (the valuative criterion for curves on ℙ(1, 1, 4)), we
know that 𝑐2 ⩾

6

11
> 8

15
, a contradiction. This finishes the proof of part (1).

(2) From Theorem 7.2, we know that 𝜙−
2
replaces [(ℙ2, 𝐶0)] with [(𝑋26, 𝐶

′
0
)]. By Proposition 7.7,

we know that (𝑋26,
8

15
𝐶′
0
) is the only new K-polystable pair appearing in 𝑃

K
8
15
. Hence, to

show 𝜙−
2
is an isomorphism, it suffices to show that the preimage of [(𝑋26, 𝐶

′
0
)] under 𝜙−

2
is exactly [(ℙ2, 𝐶0)]. Denote by 𝐸

±
2
the preimage of [(𝑋26, 𝐶

′
0
)] under the morphisms 𝜙±

2
.

Assume to the contrary that 𝐸−
2
contains at least two points. Since all K-moduli spaces of

plane curves are normal by Proposition 4.6, we know that 𝐸−
2
is connected hence has pos-

itive dimension. It is clear that Aut0(𝑋26, 𝐶
′
0
) ≅ 𝔾𝑚. Let 𝑈𝑊 be the Luna slice at the point

𝑧0 = Hilb(𝑋26,
8

15
𝐶′
0
) ∈ 𝑍◦8

15

satisfying Theorem 3.33. Hence, we know that 𝑧0 is the only 𝔾𝑚-

invariant point in𝑈𝑊 . The smoothness of𝑍
◦
𝑐 (Proposition 4.6) implies that𝑈𝑊 is also smooth.

Applying [32, Theorem 0.2.5] or [117, Corollary 1.13] to the local VGIT presentation (3.6) near
𝑧0 implies that

dim(𝐸−2 ) + dim(𝐸
+
2
) + 1 = dim

(
𝑃
K
8
15

)
= 12.

In particular, we know that the locus 𝐸+
2
has codimension at least two in the K-moduli space.

However, we will show that this is not true.
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Let 𝐶 be a curve on 𝑋26 of the form (𝑤 = g(𝑥, 𝑦)) where g ≠ 0 and g does not contain the
term 𝑥𝑦12. Hence, 𝐶 does not pass through the singular point [0,0,0,1] of 𝑋26. It is clear that
𝐶 is a smooth curve on 𝑋26 for a general choice of g . Hence, (𝑋26,

3

5
𝐶) is klt for a general

choice of g . Since (𝑋26,
8

15
𝐶) is K-semistable by Proposition 7.7, we know that (𝑋26, (

8

15
+ 𝜖)𝐶)

is K-stable for a general g . In the affine chart 𝑥 = 1, the equation of 𝐶 becomes

𝑧2 = −𝑦13 + 𝑎11𝑦
11 + 𝑎10𝑦

10 +⋯ + 𝑎0. (7.1)

Hence, 𝐶 is a hyperelliptic curve of arithmetic genus six. Indeed, from the above discus-
sion, we see that any smooth hyperelliptic curve 𝐶 of genus six produces a K-stable pair

(𝑋26, (
8

15
+ 𝜖)𝐶) in the K-moduli space 𝑃

K
8
15
+𝜖. Since the moduli space of smooth hyperellip-

tic curves of genus six has dimension 11, we know that 𝐸+
2
has dimension at least 11 that

contradicts to the assumption that 𝜙−
2
is not an isomorphism. This finishes the proof of

part (2).
(3) From the local VGIT argument in part (2), we know that 𝜙+

2
is a weighted blow-up since 𝜙−

2
is an isomorphism (see [32, Theorem 0.2.5] or [117, Corollary 1.13]). If [(𝑋, 𝐷)] is a point in
𝐸+
2
, then it admits a special degeneration to (𝑋26, 𝐶

′
0
). Thus, 𝑋 is either ℙ2 or 𝑋26. However,

if 𝑋 ≅ ℙ2, then (𝑋, 8
15
𝐷) is K-polystable as well by Proposition 2.13, a contradiction. Hence,

𝑋 ≅ 𝑋26 and𝐷 does not pass through the singular point on𝑋 by Proposition 7.6. Thus, after a
suitable change of coordinates, we can put 𝐷 into the form in the statement. Note that g ≠ 0
is because otherwise (𝑋, 𝐷) ≅ (𝑋26, 𝐶

′
0
) is ( 8

15
+ 𝜖)-K-unstable.

To prove the rest of part (3), it suffices to show that (𝑋26, (
8

15
+ 𝜖)𝐶) is K-polystable for

any curve 𝐶 on 𝑋26 described in the statement. Given such a curve 𝐶, we may find a family of
smooth hyperelliptic curves𝐷𝑡 on𝑋26 of the same form over a punctured smooth curve𝑇 ⧵ {0}
such that lim𝑡→0 𝐷𝑡 = 𝐶. Let (𝑋, (

8

15
+ 𝜖)𝐷) be theK-polystable limit of (𝑋26, (

8

15
+ 𝜖)𝐷𝑡) using

Theorem 3.19. Since the Gorenstein index of𝑋 is a multiple of𝑋26 which is 5, we know that𝑋
can only be𝑋26 orℙ(1, 4, 25). Butℙ(1, 4, 25) is impossible by PropositionA.14. Hence,𝑋 ≅ 𝑋26
and𝐷 is a curve not passing through the singular point [0,0,0,1]. By an automorphism of 𝑋26,
we may assume that 𝐷 has the equation (𝑤 = ℎ(𝑥, 𝑦))where ℎ is a homogeneous polynomial
of degree 25. Since (𝑋26, (

8

15
+ 𝜖)𝐶′

0
) is K-unstable by Proposition 3.18, after a further change

of coordinates, we may assume that ℎ ≠ 0 and ℎ does not contain the term 𝑥𝑦12. Thus, we
conclude that (𝑋, 𝐷) ≅ (𝑋26, 𝐶). The proof is finished.

□

The following result follows easily from the proof of Theorem 7.1 (see, e.g., (7.1)).

Corollary 7.8. The moduli stack of smooth hyperelliptic curves 𝐶 of genus six with a markedWeier-

strass point 𝑝 admits a locally closed embedding into the K-moduli stack K8
15
+𝜖. Moreover, this

embedding is stabilizer preserving and sends closed points to closed points. In particular, the coarse

moduli space of such pairs (𝐶, 𝑝) admits a locally closed embedding into the K-moduli space 𝑃
K
8
15
+𝜖

whose image closure is the exceptional divisor of 𝜙+
2
.

Corollary 7.8 is a strengthening of an earlier result of [48]. Although not explicitly stated, it is
a consequence of [48, Theorem 1, Theorem 1.A] that a smooth hyperelliptic curve 𝐶 of genus six
admits an embedding into 𝑋26 coming from the marked Weierstrass point 𝑝. Indeed, the author
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computes an embedding 𝐶 ↪ ℙ(1, 1, 1, 2, 3, 3) by

𝐶 ≅ Proj(𝑅(𝐶,(5𝑝)) ≅ Proj ℂ[𝑥1, 𝑥2, 𝑥3, 𝑦, 𝑧1, 𝑧2]∕𝐼,
where 𝑥𝑖 has weight 1, 𝑦 weight 2, and 𝑧𝑖 weight 3 and 𝐼 depends on a uniquely determined degree
5 polynomial 𝑄. One can show that 𝑋26 admits an embedding into ℙ(1, 1, 1, 2, 3, 3, 5) such that, if
𝑡 is the variable of weight 5, the curve 𝐶 ⊂ 𝑋26 is cut out by the equation 𝑡 = 𝑄.

7.3 Applications to higher degree

It is natural to ask what can be said about wall crossing beyond the first wall in higher degree, and
we address that now. The key observation is the following proposition (see Definition 2.10 for the
definition of 𝛿).

Proposition 7.9. We have 𝛿(𝑋26) =
1

9
.

Proof. For simplicity, denote by 𝑋 ∶= 𝑋26. We follow notation from Proposition 7.6. Consider
the valuation ord𝐸 centered over the unique singular point of 𝑋. Since −𝐾𝑋 ∼ℚ 𝑋(15), by
Proposition 7.6, we have

𝐴𝑋(ord𝐸) =
3

5
, 𝑆𝑋(ord𝐸) =

15

vol𝑋((1)) ∫
∞

0
vol𝑋((1) − 𝑡𝐸)𝑑𝑡 = 275 .

Hence, we have 𝛿(𝑋) ⩽ 𝐴𝑋(ord𝐸)∕𝑆(ord𝐸) =
1

9
. Assume to the contrary that 𝛿(𝑋) < 1

9
. From

Proposition A.2, we know that (𝑋, 8
15
𝐶′
0
) is K-polystable where 𝐶′

0
= (𝑤 = 0). On the other hand,

[23, Theorem 7.2] implies that (𝑋, 8
15
𝐶′
0
) is K-unstable by taking 𝛽 = 1

9
and 𝐷 = 3

5
𝐶′
0
. This is a

contradiction. Therefore, 𝛿(𝑋) = 1
9
. □

Using the above proposition, we can prove the following.

Theorem 7.10. Let 𝑑 ⩾ 4 be an integer.

(1) For any 𝑐 < 8

3𝑑
, the only surfaces appearing in the K-moduli stack K𝑑,𝑐 are ℙ2 or ℙ(1, 1, 4).

(2) Suppose 5 ∣ 𝑑, then we have the following wall crossing at 𝑐 = 8

3𝑑
:

𝑃
K

𝑑, 8
3𝑑
−𝜖

𝜙−

"""→ 𝑃
K

𝑑, 8
3𝑑

𝜙+

←""" 𝑃
K

𝑑, 8
3𝑑
+𝜖,

where 𝜙− is an isomorphism near (ℙ2, 𝑑
5
𝐶) whose replacement is (𝑋26,

𝑑

5
𝐶′
0
), and 𝜙+ is a

weighted blow-up at (𝑋26,
𝑑

5
𝐶′
0
). In particular, 8

3𝑑
is the second smallest wall extracting a divisor.

Proof.

(1) Let (𝑋, 𝑐𝐷) be aK-semistable pair appearing inK𝑑,𝑐 for some 𝑐 < 8

3𝑑
. ByTheorem4.8,we know

that any local Gorenstein index of 𝑋 is at most 9. Then from the classification of Manetti sur-
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faces, we know that𝑋 is isomorphic to one ofℙ2,ℙ(1, 1, 4),ℙ(1, 4, 25) or𝑋26. If𝑋 ≅ ℙ(1, 4, 25),
then 𝛿(𝑋) = 1

10
by [20, Section 7]. Since 1 − 𝑐𝑑

3
> 1

10
, by [23, Theorem 7.2], the pair (𝑋, 𝑐𝐷) is

K-unstable by taking 𝛽 = 1 − 𝑐𝑑
3
. This is a contradiction. If 𝑋 ≅ 𝑋26, then 𝛿(𝑋) =

1

9
by Propo-

sition 7.9. Hence, the same argument implies that (𝑋, 𝑐𝐷) is K-unstable whenever 𝑐 < 8

3𝑑
,

again a contradiction.
(2) The statement essentially follows from the proof of Theorem 7.1. Indeed, if 𝐶 is a general

curve on 𝑋26 of degree 5𝑑, then 𝐶 does not pass through the singular point [0,0,0,1] on 𝑋26.
Thus, the same argument as the proof of Proposition 7.7 implies that (𝑋, 8

3𝑑
𝐶) is K-semistable.

Since a general 𝐶 is smooth, by Proposition 2.13, we know that (𝑋26, 𝑐𝐶) is K-stable for any
𝑐 ∈ ( 8

3𝑑
, 3
𝑑
). It is clear that dimAut(𝑋26) = dimAut(ℙ

2) − 1, hence such pairs (𝑋26, 𝐶) form

a divisor in the K-moduli space 𝑃
K

𝑑, 8
3𝑑
+𝜖 (see Section 9.2). Hence, the proof is finished by [32,

Theorem 0.2.5] or [117, Corollary 1.13]. □

8 LOG FANOWALL CROSSINGS FOR K-MODULI SPACES OF
PLANE QUINTICS

In this section, we discuss all wall crossings of K-moduli spaces of plane quintics in the log Fano

region 𝑐 ∈ (0, 3
5
). For simplicity, we again abbreviate 𝑃

GIT

5 , K5,𝑐, and 𝑃K5,𝑐 to 𝑃GIT, K𝑐 , and 𝑃K𝑐 ,
respectively. Thanks to Sections 5 and 7, we have detailed descriptions of the first two wall cross-
ings. The main results of this section, namely, Theorems 8.2–8.5 will show that there are three

more wall crossings after the first two walls. We begin by a description of 𝑃
GIT

.

8.1 GIT of plane quintics

By Theorem 1.3, we know that the K-moduli space 𝑃
K

𝜖 is isomorphic to the GIT quotient for plane

quintics, so we begin with a description of the (classical) GIT quotient 𝑃
GIT

for plane quintics.
This was calculated by Mumford [99, Chapter 4, Section 5]. A detailed description also appears in

[75]. Under the identification of 𝑃
K

𝜖 and 𝑃
GIT

, Proposition 4.7 provides open embeddings

𝑃klt𝜖 ↪ 𝑃
lc
𝜖 ↪ 𝑃

GIT
,

where 𝑃klt𝜖 and 𝑃lc𝜖 denote the loci in 𝑃
GIT

parametrizing GIT polystable plane quintics with lct

> 3
5
and ⩾ 3

5
, respectively.

Lemma 8.1. The boundary 𝑃
GIT
⧵ 𝑃klt𝜖 is a disjoint union of the following locally closed strata:

Zero-dimensional loci

∙ Σ1 = {[𝑄5]}, and
∙ Σ2 parametrizing a plane quintic curve with an 𝐴12 singularity.

One-dimensional loci

∙ Σ3 parametrizing a reducible plane quintic curve with an 𝐴11 singularity,
∙ Σ4 parametrizing an irreducible plane quintic curve with an 𝐴11 singularity, and
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∙ Σ6 parametrizing the union of two conics tangent at two distinct points and a line through them

(two 𝐷6 singularities), that is,

(
𝑧
(
𝑥𝑦 − 𝑧2

)(
𝑥𝑦 − 𝑎𝑧2

)
= 0

)
where 𝑎 ≠ 1.

Two-dimensional locus

∙ Σ5 parametrizing a plane quintic curve with an 𝐴10 singularity.

Three-dimensional locus

∙ Σ7 parametrizing a plane quintic curve with an 𝐴9 singularity.

Moreover, the incidence of such strata is as follows:

Here, Σ𝑖 → Σ𝑗 means that Σ𝑖 is contained in the Zariski closure of Σ𝑗 in 𝑃
GIT

. The closure of the

stratumΣ6 = Σ6 ⊔ Σ1 is isomorphic toℙ
1, and is the only strictly semistable stratum. The other strata

are contained in the stable locus. In addition, 𝑃
GIT
⧵ 𝑃lc𝜖 =

⨆5
𝑖=1 Σ𝑖 .

Proof. By the GIT analysis in [75], we know that if 𝐶 is a plane curve of degree 5, then

∙ 𝐶 is GIT stable if and only 𝐶 is either smooth or has singularities of type 𝐴𝑘 with 1 ⩽ 𝑘 ⩽ 12,
𝐷4 and 𝐷5.

∙ 𝐶 is GIT strictly semistable (i.e., semistable but not stable) if and only if it has a singularity of
type 𝐷𝑘 with 6 ⩽ 𝑘 ⩽ 12 such that if 𝑘 = 9, then 𝐶 is not the union of a nodal quartic and line.

∙ 𝐶 is GIT strictly polystable (i.e., polystable but not stable) if and only 𝐶 is the union of double
conic and a transverse line or the union of two tangent conics and a line passing through their
tangent points.

Therefore, the GIT quotient 𝑃
GIT

is the union of the GIT stable locus and a smooth rational curve
parametrizing the GIT strictly polystable plane quintics. The statement follows by considering the
log canonical thresholds of these singularities and the jet computations (see Proposition A.1). □

8.2 Explicit wall crossings

As we saw in Theorem 1.3, the GIT quotient 𝑃
GIT

of plane quintics can be identified with the

K-moduli space K𝑐 where 0 < 𝑐 < 3∕7. In this section, we discuss the subsequent wall crossings
among the K-moduli spaces of plane quintic curves. The following diagram gives an overview of
the K-moduli spaces for plane quintics based on results from Sections 5, 7 and this section (see
Table 1 for a summary).
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F IGURE 1 Log Fano wall crossings for K-moduli spaces of plane quintics.

The following results describe the remaining three walls that occur after the first two walls for
K-moduli spaces of plane quintics. Their proofs will be presented in Section 8.3 with ingredients

from calculations of Section A. If the birational map 𝑃
GIT
⤏ 𝑃

K

𝑐 is isomorphic at the generic point

of a locus Σ𝑖 , then we denote by Σ𝑐,𝑖 the Zariski closure of the proper transform of Σ𝑖 in 𝑃
K

𝑐 .

Theorem 8.2 (Third wall crossing). The third wall is 𝑐3 =
6

11
.

(1) The birational morphism 𝜙−
3
∶ 𝑃
K
6
11
−𝜖 → 𝑃

K
6
11
is an isomorphism away from the locus Σ 6

11
−𝜖,3

.

Moreover, 𝜙−
3
contracts Σ 6

11
−𝜖,3

to a point [(ℙ(1, 1, 4), 6
11
(𝑥2𝑧2 + 𝑦6𝑧 = 0))].

(2) The birational morphism 𝜙+
3
∶ 𝑃
K
6
11
+𝜖 → 𝑃

K
6
11

is an isomorphism away from the point

[(ℙ(1, 1, 4), 6
11
(𝑥2𝑧2 + 𝑦6𝑧 = 0))]. Moreover, the exceptional locus 𝐸+

3
of 𝜙+

3
is of codimension

2 and parametrizes curves on ℙ(1, 1, 4) of the form (𝑥2𝑧2 + 𝑦6𝑧 + g(𝑥, 𝑦) = 0) with g ≠ 0.
Theorem 8.3 (Fourth wall crossing). The fourth wall is 𝑐4 =

63

115
.

(1) The birational morphism 𝜙−
4
∶ 𝑃
K
63
115
−𝜖 → 𝑃

K
63
115

is an isomorphism away from the locus Σ 63
115
−𝜖,4

.

Moreover, 𝜙−
4
contracts Σ 63

115
−𝜖,4

to a point [(ℙ(1, 4, 25), 63
115
(𝑧2 + 𝑥2𝑦12 = 0))].

(2) The birational morphism 𝜙+
4
∶ 𝑃
K
63
115
+𝜖 → 𝑃

K
63
115

is an isomorphism away from the point

[(ℙ(1, 4, 25), 63
115
(𝑧2 + 𝑥2𝑦12 = 0))]. Moreover, the exceptional locus 𝐸+

4
of 𝜙+

4
is of codimension

2 and parametrizes curves on ℙ(1, 4, 25) of the form (𝑧2 + 𝑥2𝑦12 + 𝑥10g(𝑥, 𝑦) = 0) with g ≠ 0.
Theorem 8.4 (Fifth wall crossing). The fifth wall is 𝑐5 =

54

95
.

(1) The birational morphism 𝜙−5 ∶ 𝑃
K
54
95
−𝜖 → 𝑃

K
54
95
is an isomorphism away from the locus Σ 54

95
−𝜖,5

.

Moreover, 𝜙−5 contracts Σ 54
95
−𝜖,5

to a point [(ℙ(1, 4, 25), 54
95
(𝑧2 + 𝑥6𝑦11 = 0))].

(2) The birational morphism 𝜙+5 ∶ 𝑃
K
54
95
+𝜖 → 𝑃

K
54
95

is an isomorphism away from the point

[(ℙ(1, 4, 25), 54
95
(𝑧2 + 𝑥6𝑦11 = 0))]. Moreover, the exceptional locus 𝐸+5 of 𝜙+5 is of
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codimension 3 and parametrizes curves on ℙ(1, 4, 25) of the form (𝑧2 + 𝑥6𝑦11 + 𝑥14g(𝑥, 𝑦) = 0)

with g ≠ 0.
Theorem 8.5 (No other walls). The five walls above are all walls occurring for K-moduli spaces
of plane quintics in the log Fano region 0 < 𝑐 < 3

5
. In other words, for any 54

95
< 𝑐 < 3

5
, we have an

isomorphism K𝑐 ≅ K54
95
+𝜖 between Artin stacks.

8.3 Proofs

In this section, we present proofs of Theorems 8.2–8.5. Our strategy is quite similar to the proof of
Theorem 7.1.

Proof of Theorem 8.2.

(1) We first show that there is no wall crossing when 𝑐 ∈ ( 8
15
, 6
11
). Assume to the contrary that the

third wall 𝑐3 ∈ (
8

15
, 6
11
). Then there exists a newK-polystable pair (𝑋, 𝑐3𝐷) such that (𝑋, 𝑐𝐷) is

K-unstable for any 𝑐 ≠ 𝑐3 by Proposition 3.18. Thus,𝑋 is not isomorphic to ℙ2 or ℙ(1, 4, 25) by
Propositions 2.13 andA.14. Hence, by Lemma 7.5, we are left with two possibilities, that is,𝑋 is
isomorphic to ℙ(1, 1, 4) or𝑋26. If𝑋 ≅ 𝑋26, then𝐷 does not pass through the singular point on
𝑋 by Proposition 7.6. Hence, (𝑋, 8

15
𝐷) is K-semistable by Proposition 7.7, but this is a contra-

diction since 𝑐3 ≠ 8

15
. Thus, wemay assume (𝑋, 𝐷) ≅ (ℙ(1, 1, 4), 𝐶)where the equation of 𝐶 is

given by 𝑓(𝑥, 𝑦)𝑧2 + g(𝑥, 𝑦)𝑧 + ℎ(𝑥, 𝑦) = 0. If 𝑓(𝑥, 𝑦) is nondegenerate, then (ℙ(1, 1, 4), 3
7
𝐶) is

K-semistable since 𝐶 specially degenerates to 𝑄′5 which is a contradiction. If 𝑓(𝑥, 𝑦) is degen-

erate, then Proposition A.13 implies that (ℙ(1, 1, 4), 𝑐3𝐶) is K-unstable since 𝑐3 <
6

11
. Thus, we

have shown that no walls can appear in the interval ( 8
15
, 6
11
).

Next, we show that (ℙ(1, 1, 4), 6
11
(𝑥2𝑧2 + 𝑦6𝑧 = 0)) is the only new K-polystable pair in

𝑃
K
6
11
. Clearly, this pair is K-polystable by Proposition A.6. If (𝑋, 6

11
𝐷) is a new K-polystable

pair, then from the argument above, we see that (𝑋, 𝐷) ≅ (ℙ(1, 1, 4), 𝐶) and the defining
equation of 𝐶 has a degenerate quadratic form in (𝑥, 𝑦) as the 𝑧2-term coefficient. Then,
by Proposition A.13, we know that after a coordinate change, the equation of 𝐶 has the
form 𝑥2𝑧2 + 𝑦6𝑧 + g(𝑥, 𝑦) = 0. Consider the 1-PS in Aut(ℙ(1, 1, 4)) defined by [𝑥, 𝑦, 𝑧] ↦
[𝑡3𝑥, 𝑡𝑦, 𝑧]. It is clear that 𝐶 specially degenerates to the curve 𝐶1 ∶= (𝑥

2𝑧2 + 𝑦6𝑧 = 0) via this
1-PS as 𝑡 → 0. Since (ℙ(1, 1, 4), 6

11
𝐶1) is K-polystable, it follows that (𝑋, 𝐷) ≅ (ℙ(1, 1, 4), 𝐶1)

by [93].
So far we have shown that 𝑐3 =

6

11
. Next, we analyze the wall crossing morphisms 𝜙±

3
.

Since (ℙ(1, 1, 4), 6
11
𝐶1) is the only new K-polystable pair in 𝑃

K
6
11
, we know by Proposi-

tion 3.18 that 𝜙±
3
are isomorphic over 𝑃

K
6
11
⧵ {[(ℙ(1, 1, 4), 6

11
𝐶1)]}. Denote by 𝐸

±
3
the preimage of

[(ℙ(1, 1, 4), 6
11
𝐶1)] under the morphisms 𝜙

±
3
. It is clear that Aut0(ℙ(1, 1, 4), 𝐶1) ≅ 𝔾𝑚. Using

the local VGIT presentation (3.6) and applying [32, Theorem 0.2.5] or [117, Corollary 1.13], we
have

dim(𝐸−3 ) + dim(𝐸
+
3
) + 1 = dim

(
𝑃
K
6
11

)
. (8.1)
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Moreover, 𝐸±
3
are weighted projective spaces quotient out some finite group action, so they

are irreducible. By Theorem A.4, we know that Σ 6
11
−𝜖,3
⊂ 𝐸−

3
which implies dim𝐸−

3
⩾ 1. Let

𝐶 be a general curve on ℙ(1, 1, 4) of the form 𝑥2𝑧2 + 𝑦6𝑧 + g(𝑥, 𝑦) = 0. Then, it is clear that
lct(ℙ(1, 1, 4); 𝐶) ⩾ 2

3
> 3
5
. Hence, (ℙ(1, 1, 4), ( 6

11
+ 𝜖)𝐶) is K-stable by Proposition 2.13. It is

easy to see that such pairs (ℙ(1, 1, 4), 𝐶) form a locally closed subset in the K-moduli space

𝑃
K
6
11
+𝜖 of codimension two. Hence, dim(𝑃

K
6
11
) − dim(𝐸+

3
) ⩽ 2 which implies dim(𝐸−

3
) ⩽ 1 by

(8.1). Therefore, we know dim(𝐸−
3
) = 1 and hence Σ 6

11
−𝜖,3
= 𝐸−

3
by irreducibility of 𝐸−

3
. This

finishes the proof of part (1).
(2) The proof of this part is basically the same as the proof of Theorem 7.1(3). First, if [(𝑋, 𝐷)]

is a point in 𝐸+
3
, then (𝑋, 𝐷) specially degenerates to (ℙ(1, 1, 4), 𝐶1). Hence, 𝑋 is either ℙ2

or ℙ(1, 1, 4). If 𝑋 ≅ ℙ2, then (𝑋, 6
11
𝐷) is K-polystable by Proposition 2.13, a contradiction.

Hence, (𝑋, 𝐷) ≅ (ℙ(1, 1, 4), 𝐶). If𝐶 has the form 𝑥𝑦𝑧2 + 𝑓(𝑥, 𝑦)𝑧 + ℎ(𝑥, 𝑦) = 0 after a suitable
change of coordinates, then it admits a special degeneration to𝑄5 which implies that (𝑋,

3

7
𝐷)

is K-semistable by Theorem 2.16 and Lemma 5.3. Hence, (𝑋, 6
11
𝐷) is K-polystable by Propo-

sition 2.13, again a contradiction. Then by Proposition A.13, we know that 𝐶 must have the
form 𝑥2𝑧2 + 𝑦6𝑧 + g(𝑥, 𝑦) = 0 after a suitable change of coordinates. Note that g ≠ 0 because
otherwise (𝑋, 𝐷) ≅ (ℙ(1, 1, 4), 𝐶1) is (

6

11
+ 𝜖)-K-unstable.

To prove the rest of part (2), it suffices to show that (ℙ(1, 1, 4), ( 6
11
+ 𝜖)𝐶) is K-polystable

for any curve 𝐶 on ℙ(1, 1, 4) described in the statement. We omit the rest of the proof here
since it is the same as the proof of Theorem 7.1(3) by using properness of K-moduli spaces
(Theorem 3.19). □

Proof of Theorem 8.3.

(1) We first show that there is nowall crossingwhen 𝑐 ∈ ( 6
11
, 63
115
). Assume to the contrary that the

fourth wall 𝑐4 ∈ (
6

11
, 63
115
). Then there exists a newK-polystable pair (𝑋, 𝑐4𝐷) such that (𝑋, 𝑐𝐷)

is K-unstable for any 𝑐 ≠ 𝑐4 by Proposition 3.18. Thus, similar argument to the proof of Theo-
rem 8.2(1) implies that (𝑋, 𝐷) has to be isomorphic to (ℙ(1, 1, 4), 𝐶)where the equation of 𝐶 is
given by 𝑓(𝑥, 𝑦)𝑧2 + g(𝑥, 𝑦)𝑧 + ℎ(𝑥, 𝑦) = 0 with 𝑓 degenerate. Then Proposition A.13 implies
that the equation of 𝐶 has to have the form 𝑥2𝑧2 + 𝑦6𝑧 + ℎ(𝑥, 𝑦) = 0, so 𝐶 admits a special
degeneration to the curve𝐶1 = (𝑥

2𝑧2 + 𝑦6𝑧 = 0). Thus, by Proposition A.6 and Theorem 2.16,
we know that (ℙ(1, 1, 4), 6

11
𝐶) is K-semistable, but this is a contradiction as 𝑐4 ≠ 6

11
. Thus, we

have shown that no walls can appear in the interval ( 6
11
, 63
115
).

Next, we show that (ℙ(1, 4, 25), 63
115
(𝑧2 + 𝑥2𝑦12 = 0)) is the only new K-polystable pair in

𝑃
K
63
115
. Clearly this pair is K-polystable by Proposition A.9. If (𝑋, 63

115
𝐷) is a new K-polystable

pair, then from the argument above, we see that (𝑋, 𝐷) ≅ (ℙ(1, 4, 25), 𝐶). By Proposition A.14,
the defining equation of 𝐶 has the form 𝑧2 + 𝑥2𝑦12 + 𝑥6g(𝑥, 𝑦) = 0. Consider the 1-PS in
Aut(ℙ(1, 4, 25)) defined by [𝑥, 𝑦, 𝑧] ↦ [𝑥, 𝑡𝑦, 𝑡6𝑧]. It is clear that𝐶 specially degenerates to the
curve 𝐶2 ∶= (𝑧

2 + 𝑥2𝑦12 = 0) via this 1-PS as 𝑡 → 0. Since (ℙ(1, 4, 25), 63
115
𝐶2) is K-polystable,

it follows that (𝑋, 𝐷) ≅ (ℙ(1, 4, 25), 𝐶2) by [93].
So far we have shown that 𝑐4 =

63

115
. Next, we analyze the wall crossing morphisms 𝜙±

4
.

Since (ℙ(1, 4, 25), 63
115
𝐶2) is the only new K-polystable pair in 𝑃

K
63
115
, we know by Proposi-

tion 3.18 that𝜙±
4
are isomorphic over𝑃

K
63
115
⧵ {[(ℙ(1, 4, 25), 63

115
𝐶2)]}. Denote by𝐸

±
4
the preimage
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of [(ℙ(1, 4, 25), 63
115
𝐶2)] under themorphisms 𝜙

±
4
. It is clear thatAut0(ℙ(1, 4, 25), 𝐶2) ≅ 𝔾𝑚. By

Theorem A.7, we know that Σ 63
115
−𝜖,4
⊂ 𝐸−

4
which implies dim(𝐸−

4
) ⩾ 1. Using a similar argu-

ment to the proof of Theorem 8.2(1), it suffices to show that 𝐸+
4
has codimension at most

2 in the K-moduli space. Let 𝐶 be a general curve on ℙ(1, 4, 25) of the form 𝑧2 + 𝑥2𝑦12 +
𝑥10g(𝑥, 𝑦) = 0. Then it is clear that lct(ℙ(1, 4, 25); 𝐶) ⩾ 1 > 3

5
. Hence, (ℙ(1, 4, 25), ( 63

115
+ 𝜖)𝐶)

is K-stable by Proposition 2.13. It is easy to see that such pairs (ℙ(1, 4, 25), 𝐶) form a locally

closed subset in the K-moduli space 𝑃
K
63
115
+𝜖 of codimension 2. Hence, Σ 63

115
−𝜖,4
= 𝐸−

4
by

irreducibility of 𝐸−
4
and local VGIT presentation. This finishes the proof of part (1).

(2) The proof of this part is basically the same as the proof of Theorem 7.1(3). First, if [(𝑋, 𝐷)]
is a point in 𝐸+

4
, then (𝑋, 𝐷) specially degenerates to (ℙ(1, 4, 25), 𝐶2). If 𝑋 is isomorphic to

ℙ2 or 𝑋26, then (𝑋,
63

115
𝐷) is K-polystable by Proposition 2.13, a contradiction. If (𝑋, 𝐷) ≅

(ℙ(1, 1, 4), 𝐶), then by Proposition A.13, we know that the equation of 𝐶 has the form 𝑥𝑦𝑧2 +
𝑓(𝑥, 𝑦)𝑧 + g(𝑥, 𝑦) = 0 or 𝑥2𝑧2 + 𝑦6𝑧 + ℎ(𝑥, 𝑦). From the proof of Theorem 8.2, we know that
the former curve is 3

7
-K-semistable, while the latter curve is 6

11
-K-semistable.Hence, (𝑋, 63

115
𝐷)

is K-polystable by Proposition 2.13, again a contradiction. Therefore, (𝑋, 𝐷) ≅ (ℙ(1, 4, 25), 𝐶).
By Proposition A.14, we know that the equation of 𝐶 must be of the form 𝑧2 + 𝑥2𝑦12 +
𝑥6ℎ(𝑥, 𝑦) = 0. After a suitable change of coordinates, the equation of𝐶 can be even simplified
to 𝑧2 + 𝑥2𝑦12 + 𝑥10g(𝑥, 𝑦) = 0. Note that g ≠ 0 because otherwise (𝑋, 𝐷) ≅ (ℙ(1, 4, 25), 𝐶2)
is ( 63

115
+ 𝜖)-K-unstable. The rest of part (2) also follows from similar argument to proof of

Theorem 7.1(3) by using properness of K-moduli spaces (Theorem 3.19). □

Proof of Theorem 8.4.

(1) We first show that there is no wall crossing when 𝑐 ∈ ( 63
115
, 54
95
). Assume to the contrary that

the fifth wall 𝑐5 ∈ (
63

115
, 54
95
). Then there exists a new K-polystable pair (𝑋, 𝑐5𝐷) such that

(𝑋, 𝑐𝐷) is K-unstable for any 𝑐 ≠ 𝑐5 by Proposition 3.18. Thus, similar argument to the proof
of Theorems 8.2(1) and 8.3(1) implies that (𝑋, 𝐷) has to be isomorphic to (ℙ(1, 4, 25), 𝐶). By
Proposition A.14, the equation of 𝐶 must have the form 𝑧2 + 𝑥2𝑦12 + 𝑥6g(𝑥, 𝑦) = 0 since
𝑐5 <

54

95
. So, 𝐶 admits a special degeneration to the curve 𝐶2 = (𝑧

2 + 𝑥2𝑦12 = 0). Thus, by

Proposition A.6 and Theorem 2.16, we know that (ℙ(1, 4, 25), 63
115
𝐶) is K-semistable, but this

is a contradiction as 𝑐5 ≠ 63

115
. Thus, we have shown that no walls can appear in the interval

( 63
115
, 54
95
).

Next, we show that (ℙ(1, 4, 25), 54
95
(𝑧2 + 𝑥6𝑦11 = 0)) is the only new K-polystable pair in

𝑃
K
54
95
. Clearly, this pair is K-polystable by Proposition A.12. If (𝑋, 54

95
𝐷) is a new K-polystable

pair, then from the argument above, we see that (𝑋, 𝐷) ≅ (ℙ(1, 4, 25), 𝐶) such that 𝐶 admits
no special degeneration to 𝐶2. Thus, Proposition A.14 implies that the defining equation of
𝐶 has the form 𝑧2 + 𝑥6𝑦11 + 𝑥10g(𝑥, 𝑦) = 0. Consider the 1-PS in Aut(ℙ(1, 4, 25)) defined
by [𝑥, 𝑦, 𝑧] ↦ [𝑥, 𝑡2𝑦, 𝑡11𝑧]. It is clear that 𝐶 specially degenerates to the curve 𝐶3 ∶= (𝑧

2 +

𝑥6𝑦11 = 0) via this 1-PS as 𝑡 → 0. Since (ℙ(1, 4, 25), 54
95
𝐶3) is K-polystable, it follows that

(𝑋, 𝐷) ≅ (ℙ(1, 4, 25), 𝐶3) by [93].
So far we have shown that 𝑐5 =

54

95
. Next, we analyze the wall crossing morphisms 𝜙±5 .

Since (ℙ(1, 4, 25), 54
95
𝐶3) is the only new K-polystable pair in 𝑃

K
54
95
, we know by Proposi-

tion 3.18 that 𝜙±5 are isomorphic over 𝑃
K
54
95
⧵ {[(ℙ(1, 4, 25), 54

95
𝐶3)]}. Denote by 𝐸

±
5 the preimage

of [(ℙ(1, 4, 25), 54
95
𝐶3)] under the morphisms 𝜙

±
5 . It is clear that Aut0(ℙ(1, 4, 25), 𝐶3) ≅ 𝔾𝑚. By
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Theorem A.10, we know that Σ 54
95
−𝜖,5
⊂ 𝐸−5 which implies dim(𝐸

−
5 ) ⩾ 2. Using a similar argu-

ment to the proof of Theorem 8.2(1), it suffices to show that 𝐸+5 has codimension at most
3 in the K-moduli space. Let 𝐶 be a general curve on ℙ(1, 4, 25) of the form 𝑧2 + 𝑥6𝑦11 +
𝑥14g(𝑥, 𝑦) = 0. Then it is clear that lct(ℙ(1, 4, 25); 𝐶) ⩾ 2

3
> 3
5
. Hence, (ℙ(1, 4, 25), ( 54

95
+ 𝜖)𝐶) is

K-stable by Proposition 2.13. It is easy to see that such pairs (ℙ(1, 4, 25), 𝐶) form a locally closed

subset in the K-moduli space 𝑃
K
54
95
+𝜖 of codimension 3. Hence, Σ 54

95
−𝜖,5
= 𝐸−5 by irreducibility

of 𝐸−5 and local VGIT presentation. This finishes the proof of part (1).
(2) The proof of this part is basically the same as proofs of Theorems 7.1(3) and 8.3(2). First,

if [(𝑋, 𝐷)] is a point in 𝐸+5 , then (𝑋, 𝐷) specially degenerates to (ℙ(1, 4, 25), 𝐶3). By simi-
lar argument to the proof of Theorem 8.3(2), we know that (𝑋, 𝐷) ≅ (ℙ(1, 4, 25), 𝐶). If the
equation of 𝐶 has the form 𝑧2 + 𝑥2𝑦12 + 𝑥6g(𝑥, 𝑦) = 0, then it is 63

115
-K-semistable since it

specially degenerates to 𝐶2. Hence, (𝑋,
54

95
𝐷) is K-polystable by Proposition 2.13, a contradic-

tion. Hence, Proposition A.14 implies that the equation of 𝐶must be of the form 𝑧2 + 𝑥6𝑦11 +
𝑥10ℎ(𝑥, 𝑦) = 0. After a suitable change of coordinates, the equation of𝐶 can be even simplified
to 𝑧2 + 𝑥6𝑦11 + 𝑥14g(𝑥, 𝑦) = 0. Note that g ≠ 0 because otherwise (𝑋, 𝐷) ≅ (ℙ(1, 4, 25), 𝐶3)
is ( 54

95
+ 𝜖)-K-unstable. The rest of part (2) also follows from similar argument to proof of

Theorem 7.1(3) by using properness of K-moduli spaces (Theorem 3.19). □

Proof of Theorem 8.5. Assume to the contrary that the sixth wall 𝑐6 ∈ (
54

95
, 3
5
) exists. Then there

exists a K-polystable log Fano pair (𝑋, 𝑐6𝐷) in 𝑃
K

𝑐6
such that (𝑋, 𝑐𝐷) is K-unstable for any 𝑐 ≠ 𝑐6.

Then 𝑋 is isomorphic to ℙ2, ℙ(1, 1, 4), 𝑋26, or ℙ(1, 4, 25) by Lemma 7.5. If 𝑋 ≅ ℙ
2, then (𝑋, 𝜖𝐷) is

K-semistable by Proposition 2.13, a contradiction. If 𝑋 ≅ ℙ(1, 1, 4), then Proposition A.13 implies
that the equation of 𝐷 has the form 𝑥𝑦𝑧2 + 𝑓(𝑥, 𝑦)𝑧 + g(𝑥, 𝑦) = 0 or 𝑥2𝑧2 + 𝑦6𝑧 + ℎ(𝑥, 𝑦) = 0
after a suitable change of coordinates. Hence, 𝐷 admits a special degeneration to either 𝑄′5
or 𝐶1 = (𝑥

2𝑧2 + 𝑦6𝑧 = 0). Thus, Lemma 5.3 and Proposition A.6 combined with Theorem 2.16
imply that either (𝑋, 3

7
𝐷) or (𝑋, 6

11
𝐷) is K-semistable, a contradiction. If 𝑋 ≅ 𝑋26, then Propo-

sition 7.6 implies that 𝐷 does not pass through the singular point of 𝑋. Hence, (𝑋, 8
15
𝐷) is

K-semistable by Proposition 7.7, a contradiction. If 𝑋 ≅ ℙ(1, 4, 25), then Proposition A.14 implies
that 𝐷 admits a special degeneration to either 𝐶2 = (𝑧

2 + 𝑥2𝑦12 = 0) or 𝐶3 = (𝑧
2 + 𝑥6𝑦11 = 0).

Thus, Propositions A.9 and A.12 combined with Theorem 2.16 imply that either (𝑋, 63
115
𝐷) or

(𝑋, 54
95
𝐷) is K-semistable, again a contradiction. Since we rule out all four possibilities, the proof

is finished. □

9 PROJECTIVITY, BIRATIONAL CONTRACTIONS, AND THE LOG
CALABI–YAUWALL CROSSING

In this final section, we discuss some questions with incomplete answers that are interesting for
future study.

9.1 Projectivity

In this section, we will show that the for any 𝑑 ∈ {4, 5, 6} and any 𝑐 ∈ (0, 3
𝑑
), the CMℚ-line bundle

Λ𝑐 (see Proposition 3.35) on the K-moduli space 𝑃
K

𝑑,𝑐 is ample, which, in particular, implies the
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projectivity of 𝑃
K

𝑑,𝑐. Our main tools are the work of Codogni and Patakfalvi [29] and its generaliza-
tion by Posva [107], as well as the relative ampleness of CM line bundles under wall crossing (see
Theorem 3.36).

Theorem 9.1. When 𝑑 ∈ {4, 5, 6}, the CM ℚ-line bundle Λ𝑐 on 𝑃
K

𝑑,𝑐 is ample for any 𝑐 ∈ (0,
3

𝑑
).

Proof. We first treat the cases when 𝑑 = 4 or 6. When 𝑐 < 3

2𝑑
, Theorem 5.2 implies that K𝑑,𝑐 ≅

GIT𝑑 . Moreover, Proposition 4.3 implies that Λ𝑐 is the descent of 3(3 − 𝑐𝑑)
2𝑐𝐏ss

𝑑
(1). Hence, Λ𝑐

is ample when 𝑐 < 3

2𝑑
. By Theorem 5.5, we know that 𝜙− ∶ 𝑃

K

𝑑,3∕(2𝑑) → 𝑃
GIT

𝑑 is an isomorphism.

Hence, Theorem 3.36 implies thatΛ3∕(2𝑑) is the𝜙
+-pull back of the descent of 3(3 − 𝑐1𝑑)

2𝑐1𝐏ss
𝑑
(1)

with 𝑐1 = 3∕(2𝑑). Hence, Λ3∕(2𝑑) is ample. By Theorem 3.36, we know that Λ3∕(2𝑑)+𝜖 is ample for

0 < 𝜖 ≪ 1. We know that K𝑑,𝑐 is independent of the choice of 𝑐 ∈ ( 32𝑑 , 3𝑑 ) by Theorem 6.1. Hence,

the ampleness ofΛ𝑐 for
3

2𝑑
< 𝑐 < 3

𝑑
follows from the ampleness ofΛ3∕(2𝑑)+𝜖, the nefness ofΛ𝑐,Hodge

(see Theorems 6.5 and 6.6), and the interpolation formula (3.7).
Next, we consider the case when 𝑑 = 5. For simplicity, we omit 𝑑 in the subscript of K-moduli

stacks and spaces. Similar to the above arguments, we know that Λ𝑐 is ample for 𝑐 ⩽
3

7
+ 𝜖 with

0 < 𝜖 ≪ 1. Hence, we will assume 𝑐 ∈ ( 3
7
, 3
5
) in the rest of the proof. By [29, Theorem 1.13], we

know that Λ𝑐 is nef on 𝑃
K

𝑐 . Denote by𝑈𝑐 the Zariski open subset of 𝑃
K

𝑐 that parametrizes K-stable

pairs. Denote by 𝑆𝑐 ∶= 𝑃
K

𝑐 ⧵ 𝑈𝑐. Then by the Nakai–Moishezon criterion, it suffices to show the
following statements:

(i) Λ𝑐|𝑆𝑐 is ample.
(ii) For any generically finite morphism 𝑓 ∶ 𝑉 → 𝑃

K

𝑐 from a normal proper variety 𝑉, the pull-
back 𝑓∗Λ𝑐 is big on 𝑉 whenever 𝑓(𝑉) intersects 𝑈𝑐.

For (i), from the description of𝑃
K

𝑐 in Sections 7 and 8, we know that 𝑆𝑐 is eitherΣ𝑐,6 (when 𝑐 does

not lie on a wall) or Σ𝑐,6 union an isolated point as the exceptional locus of a wall crossing (when 𝑐

lies on awall). Recall fromSection 8 thatΣ𝑐,6 is a rational curve precisely parametrizing 2𝐷6-curves

{(ℙ2, (𝑧(𝑥𝑦 − 𝑧2)(𝑥𝑦 − 𝑎𝑧2) = 0))}𝑎≠1 and {(ℙ(1, 1, 4), (𝑥𝑦(𝑧2 − 𝑥4𝑦4) = 0))}. In particular, Σ𝑐,6 is
not changed under every wall crossing for 𝑐 ∈ ( 3

7
, 3
5
). Hence, by the nefness of Λ𝑐, the ampleness

of Λ3∕7+𝜖, and the interpolation formula (3.7), we know that Λ𝑐|𝑆𝑐 is ample for any 𝑐 ∈ ( 37 ,
3

5
).

The proof of (ii) is more involved. By Theorem 3.9(4), we know that 𝑈𝑐 also parametrizes uni-

formly K-stable pairs in 𝑃
K

𝑐 . Let𝑐 be the preimage of 𝑈𝑐 as a saturated open substack of K𝑐 . By
[38], there exists a birational morphism ̃𝑐 → K𝑐 from a smooth proper Deligne-Mumford stack
̃𝑐 that is an isomorphism over 𝑐. By [84, Chapter 16], there exists a finite surjective morphism
𝑃′𝑐 → ̃𝑐 from a normal proper variety 𝑃′𝑐. Let 𝑉 be a projective resolution of the main component

of 𝑉 ×
𝑃
K

𝑐

𝑃′𝑐. Denote by 𝜏 ∶ 𝑉 → 𝑉 and 𝜎 ∶ 𝑉 → K𝑐 . Then from the above construction, we see

that 𝜏 is generically finite, and 𝜏∗(𝑓∗Λ𝑐) = 𝜎
∗𝜆𝑐. Since the 𝜎-pull-back of the universal family over

𝑉 has K-semistable fibers where a general fiber is uniformly K-stable, and is of maximal variation,
by [107] as a generalization of [29, Theorem 1.2(c)] to log Fano pairs, we know that 𝜎∗𝜆𝑐 is nef and
big on 𝑉. This implies that 𝑓∗Λ𝑐 is big on 𝑉. The proof is finished. □
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We expect Λ𝑐 to be ample in any degree that is a special case of the projectivity part of the
Fano K-moduli conjecture (see, e.g., [29, Conjecture 1.1(c)] and [27, (VI) on page 611]). During the
review process, this expectation was proved in [98, 125] as part of the proof of the Fano K-moduli
conjecture (see Remark 1.9).

Theorem 9.2 cf. [98, 126]. The CM ℚ-line bundle Λ𝑐 on 𝑃
K

𝑑,𝑐 is ample for any 𝑐 ∈ (0,
3

𝑑
) and any

𝑑 ⩾ 3.†

9.2 Birational contractions along wall crossings

As we saw in Sections 6 and 8, the birational map 𝑃
K

𝑑,𝑐′ ⤏ 𝑃
K

𝑑,𝑐 is always a birational contraction

for 𝑑 ∈ {4, 5, 6} and 0 < 𝑐 < 𝑐′ < 3

𝑑
. It is natural to ask whether this holds true for all degrees.

Question 9.3. Is 𝑃
K

𝑑,𝑐′ ⤏ 𝑃
K

𝑑,𝑐 a birational contraction for all 0 < 𝑐 < 𝑐
′ < 3

𝑑
and all 𝑑 ⩾ 4?

As the CM line bundles are always ample by Theorem 9.2, an affirmative answer to the above
question would imply that the wall crossing of K-moduli spaces have similar behavior to the
Hassett–Keel program for Deligne–Mumford moduli spaces𝑀

g
.

Theorem 9.4. Assume that Question 9.3 is true for some 𝑑 ⩾ 4. Then for any 𝑐 ∈ (0, 3
𝑑
) and a

sufficiently divisible 𝑙 ∈ ℤ>0, we have

𝑃
K

𝑑,𝑐 = Proj

∞⨁
𝑗=0

𝐻0
(
𝑃
K

𝑑, 3
𝑑
−𝜖, 𝑙𝑗

(
Λ 3
𝑑
−𝜖,Hodge

+ 3−𝑐𝑑
27𝑐𝑑
Λ 3
𝑑
−𝜖,0

))
.

Proof. By Proposition 3.35, we know thatΛ 3
𝑑
−𝜖,𝑐

is a positive multiple ofΛ 3
𝑑
−𝜖,Hodge

+ 3−𝑐𝑑
27𝑐𝑑
Λ 3
𝑑
−𝜖,0

.

Denote by 𝜑 ∶ 𝑃
K

𝑑, 3
𝑑
−𝜖 ⤏ 𝑃

K

𝑑,𝑐 the birational contraction. By the functoriality of CM line bundles,

we know thatΛ𝑐 = 𝜑∗Λ 3
𝑑
−𝜖,𝑐

as cycles. SinceΛ𝑐 is ample on𝑃
K

𝑑,𝑐 byTheorem9.2, it suffices to show

that for a common resolution (𝑝, 𝑞) ∶ 𝑃𝑑 → 𝑃
K

𝑑, 3
𝑑
−𝜖 × 𝑃

K

𝑑,𝑐, we have 𝑝
∗Λ 3

𝑑
−𝜖,𝑐
− 𝑞∗Λ𝑐 ⩾ 0 (see [65,

Definition 2.3 and Remark 2.4]).

Let 0 = 𝑐0 < 𝑐1 <⋯ < 𝑐𝑘 =
3

𝑑
be the walls of K-moduli spaces 𝑃

K

𝑑,∙. By passing to a higher

birational model, we may assume that 𝑃𝑑 is a resolution of 𝑃
K

𝑑,𝑐𝑖±𝜖
for any 1 ⩽ 𝑖 ⩽ 𝑘 − 1 with bira-

tional morphisms 𝜓𝑖 ∶ 𝑃𝑑 → 𝑃
K

𝑑,𝑐𝑖
and 𝜓±

𝑖
∶ 𝑃𝑑 → 𝑃

K

𝑑,𝑐𝑖±𝜖
. Since Λ𝑐𝑖+𝜖 is ample by assumption,

we know that (𝜓+
𝑖
)∗Λ𝑐𝑖+𝜖 − (𝜓

−
𝑖
)∗Λ𝑐𝑖−𝜖,𝑐𝑖+𝜖 is 𝜓

−
𝑖
-nef and 𝜓−

𝑖
-exceptional. Hence, by negativ-

ity lemma, we know that (𝜓+
𝑖
)∗Λ𝑐𝑖+𝜖 ⩽ (𝜓

−
𝑖
)∗Λ𝑐𝑖−𝜖,𝑐𝑖+𝜖 is effective. By Theorem 3.36, we know

that (𝜓+
𝑖
)∗Λ𝑐𝑖+𝜖,𝑐𝑖 = (𝜓

−
𝑖
)∗Λ𝑐𝑖−𝜖,𝑐𝑖 . Since a positive rescaling of Λ𝑐,𝑐′ is linear in 𝑐

′, we know that

(𝜓+
𝑖
)∗Λ𝑐𝑖+𝜖,𝑐 ⩾ (𝜓

−
𝑖
)∗Λ𝑐𝑖−𝜖,𝑐 whenever 𝑐𝑖 ⩾ 𝑐. Hence, by the reverse induction on 𝑖 for 𝑐𝑖 ∈ [𝑐,

3

𝑑
),

we conclude that 𝑝∗Λ 3
𝑑
−𝜖,𝑐
− 𝑞∗Λ𝑐 ⩾ 0. The proof is finished. □

† If 𝑑 = 2 and 𝑐 ∈ (0, 3
4
], then the theorem is also true for trivial reasons as 𝑃

K

𝑑,𝑐 is a point (see Example 4.5).
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The goal of this section is to verify Question 9.3 when either 𝑑 is divisible by 3 or 𝑑 is small.

Theorem 9.5. Question 9.3 is true when either 3 ∣ 𝑑, or 3 ∤ 𝑑 and 𝑑 < 13.

First, we rephrase the question in a form that is easier to verify.

Question 9.6. Suppose that 𝑋 is a Manetti surface with the following properties:

(1) dimAut(𝑋) = dimAut(ℙ2) + 1 = 9, and
(2) (𝑋, 𝑐𝐷) is K-stable for some 0 < 𝑐 < 3

𝑑
and a general 𝐷 ∈ | − 𝑑

3
𝐾𝑋| (in particular, 𝐶 has local

indices ⩽ 𝑑 when 3 ∤ 𝑑 or ⩽ 2𝑑
3
when 3 ∣ 𝑑).

Then, is lct(𝑋; 𝐷) ⩾ 3
𝑑
?

Lemma 9.7. Let 𝑋 be a singular Manetti surface. Then we have ℎ0(𝑋,𝑋(−𝑑3𝐾𝑋)) = ℎ0(ℙ2,(𝑑))
for any 𝑑 ∈ ℤ>0 and dimAut(𝑋) > dimAut(ℙ

2) = 8.

Proof. Let  → 𝐵 over a smooth pointed curve 0 ∈ 𝐵 be a ℚ-Gorenstein smoothing of 𝑋 ≅ 0.
Let  be the ℚ-Cartier Weil divisor on  such that 3 ∼𝐵 −𝑑𝐾∕𝐵. Since  has klt singulari-
ties, we know that  () ⊗ 0 ≅ 0(0). By Kawamata–Viehweg vanishing, we know that

𝐻𝑖(0,0) = 𝐻𝑖(𝑋,𝑋(−𝑑3𝐾𝑋)) = 0 for any 𝑖 > 0. Hence, the equation of ℎ0 follows from the flat-
ness of over 𝐵. For the automorphism part, let 𝑝 be a sufficiently large positive integer such that
| − 𝑝𝐾𝑋| is base point free. Then for a general curve 𝐷 ∈ | − 𝑝𝐾𝑋|, we know that (𝑋, 1

𝑝
𝐷) is a

klt log Calabi–Yau pair. By [92, Theorem 5.2] and Theorem 3.20, we know that (𝑋, ( 1
𝑝
− 𝜖)𝐷) is

uniformly K-stable for 0 < 𝜖 ≪ 1. Let 𝑈 ⊂ | − 𝑝𝐾𝑋| be the Zariski open locus parametrizing 𝐷
such that (𝑋, ( 1

𝑝
− 𝜖)𝐷) is uniformly K-stable for some (or any) 0 < 𝜖 ≪ 1. Then [𝑈∕Aut(𝑋)] is a

Deligne–Mumford stack whose coarse moduli space 𝑈∕Aut(𝑋) admits an injection into 𝑃
K

3𝑝, 1
𝑝
−𝜖.

Since a general point in theK-moduli space parametrize a smooth plane curve onℙ2, we know that
dim(𝑈∕Aut(𝑋)) < dim𝑃3𝑝 = dim(𝐏

sm
3𝑝
∕Aut(ℙ2)) that implies dimAut(𝑋) > dimAut(ℙ2). □

Proposition 9.8. Questions 9.3 and 9.6 are equivalent to each other.

Proof. For the “⇒” direction, let 𝑋 be a Manetti surface satisfying (1) and (2) of Question 9.6.
Assume to the contrary that lct(𝑋; 𝐷) < 3

𝑑
for a general 𝐷 ∈ | − 𝑑

3
𝐾𝑋|. Then (𝑋, ( 3𝑑 − 𝜖)𝐷) is K-

unstable for 0 < 𝜖 ≪ 1. Let 𝑐𝑖 be the K-semistable threshold of (𝑋, 𝐷). Let𝑈 be the open subset of
| − 𝑑

3
𝐾𝑋| parametrizing 𝐷 with (𝑋, (𝑐𝑖 − 𝜖)𝐷) K-stable. Then [𝑈∕Aut(𝑋)] is a Deligne–Mumford

stack whose coarse space 𝑈∕Aut(𝑋) injects into 𝑃
K

𝑑,𝑐𝑖−𝜖
whose image closure 𝐸 is a divisor by

Lemma 9.7. Thus, the wall-crossing morphism 𝜙−
𝑖
∶ 𝑃
K

𝑑,𝑐𝑖−𝜖
→ 𝑃

K

𝑑,𝑐𝑖
contracts 𝐸 to a codimension

⩾ 2 locus since the 𝑐𝑖-K-polystable pairs replacing (𝑋, 𝐷) have continuous automorphisms. This
contradicts the assumption on birational contractions.

For the “⇐” direction, assume to the contrary that a wall-crossing morphism 𝜙−
𝑖
∶ 𝑃
K

𝑑,𝑐𝑖−𝜖
→

𝑃
K

𝑑,𝑐𝑖
contracts a divisor 𝐸. Since Manetti surfaces have no continuous moduli, a general point on

𝐸 parametrizes (𝑋, 𝐷) for the same Manetti surface 𝑋. For the same 𝑈 as above, we know that

𝑈∕Aut(𝑋) injects into 𝑃
K

𝑑,𝑐𝑖−𝜖
with image closure 𝐸. Hence, dimAut(𝑋) = dimAut(ℙ2) + 1 by
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Lemma 9.7. Then lct(𝑋; 𝐷) ⩾ 3
𝑑
for a general 𝐷 ∈ | − 𝑑

3
𝐾𝑋|which implies that (𝑋, 𝑐𝐷) is K-stable

for any 𝑐𝑖 < 𝑐 <
3

𝑑
by Proposition 2.13. This contradicts to the assumption that 𝐸 is contracted

under 𝜙−
𝑖
. The proof is finished. □

Thanks to Proposition 9.8, we only need to verify Question 9.6 for either 3 ∣ 𝑑 or 𝑑 ⩽ 13. The
following lemma proves the case when 3 ∣ 𝑑.

Lemma 9.9. If 3 ∣ 𝑑, then lct(𝑋; 𝐷) ⩾ 3
𝑑
for 𝑋 and 𝐷 satisfying conditions in Question 9.6.

Proof. When 3 ∣ 𝑑, we can degenerate (𝑋, 𝐷) to a weighted projective plane and the (𝑑∕3)th mul-
tiple of the toric boundary divisor. Hence, the inequality lct(𝑋; 𝐷) ⩾ 3∕𝑑 is obtained by lower
semicontinuity of lct (see, e.g., [33]). □

Next, we turn to the case 𝑑 < 13 and 3 ∤ 𝑑 that will be confirmed by careful study of theManetti
surfaces appearing in our K-moduli spaces. First, note that by Theorem 4.8 and Proposition 2.30,

for 𝑑 < 13 the only Manetti surfaces satisfying the conditions in Question 9.6 appearing in 𝑃
K

𝑑,𝑐

for 0 < 𝑐 < 3

𝑑
are ℙ(1, 1, 4) and 𝑋26. For 𝑋 = ℙ(1, 1, 4), the canonical 𝑋(𝐾𝑋) = 𝑋(−6), so the

linear system | − 𝑑
3
𝐾𝑋| parametrizes elements of 𝑋(2𝑑), hence we are interested in answering

Question 9.6 only for curves of even degree on ℙ(1, 1, 4).
As we can degenerate 𝑋26 to ℙ(1, 4, 25), by semicontinuity of lct, we can study curves on

ℙ(1, 4, 25). Provided that the general curve on ℙ(1, 4, 25) has the appropriate lct, we can reach
the same conclusion for 𝑋26. If 𝑋 = ℙ(1, 4, 25), then 𝑋(𝐾𝑋) = 𝑋(−30), so the linear system
| − 𝑑

3
𝐾𝑋| parametrizes elements of 𝑋(10𝑑), hence we are interested in answering Question 9.6

only for curves of degree a multiple of 10 on ℙ(1, 4, 25).

Lemma 9.10. For a general curve 𝐶 of even degree on ℙ(1, 1, 4), we have lct(ℙ(1, 1, 4), 𝐶) = 1.

Proof. If the degree 𝑑 of the curve satisfies 𝑑 ≡ 0 mod 4, then the general curve 𝐶𝑑 is smooth and
contained in the smooth locus of ℙ(1, 1, 4), hence lct(ℙ(1, 1, 4); 𝐶𝑑) = 1. Next, consider the case
when 𝑑 ≡ 2 mod 4. If 𝑑 = 2, the general curve 𝐶2 ∶= (𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 = 0) passes through the
singular point ofℙ(1, 1, 4) and is nodal at that point. A computation shows that lct(ℙ(1, 1, 4); 𝐶2) =
1. For any 𝑑 such that 𝑑 ≡ 2 mod 4, the curve𝐶𝑑−2 ∪ 𝐶2 is in the linear system |(𝑑)|, where𝐶𝑑−2
is a general curve of degree 𝑑 − 2. As the general 𝐶𝑑−2 is smooth, contained in the smooth locus
of ℙ(1, 1, 4), and intersects 𝐶2 transversally away from the singular point of the surface, we have
lct(ℙ(1, 1, 4); 𝐶𝑑−2 ∪ 𝐶2) = 1. Therefore, by semicontinuity of lct, the general curve 𝐶𝑑 of degree
𝑑 also has lct(ℙ(1, 1, 4); 𝐶𝑑) = 1. □

Remark 9.11. The previous statement is false without the assumption on even degree. If 𝐶
is a general curve of degree 3 (or, more generally, degree 𝑑 such that 𝑑 ≡ 3 mod 4), then
lct(ℙ(1, 1, 4); 𝐶) = 2

3
.

Now, we mimic the previous argument for curves of degree 10 on ℙ(1, 4, 25).

Lemma 9.12. For a general curve 𝐷 of degree 𝑑 such that 𝑑 ≡ 0, 30 mod 50 on 𝑋 = ℙ(1, 4, 25),
lct(ℙ(1, 4, 25), 𝐶′) = 1. If 𝑑 ≡ 10 mod 50, lct(𝑋; 𝐷) = 1

2
. If 𝑑 ≡ 20 mod 50, lct(𝑋; 𝐷) = 1

4
, and if

𝑑 ≡ 40 mod 50, lct(𝑋; 𝐷) = 1
3
.
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Proof. If the degree 𝑑 of the curve is a multiple of 100, then the general curve 𝐶𝑑 is smooth and
contained in the smooth locus of ℙ(1, 4, 25), hence lct(ℙ(1, 4, 25); 𝐶𝑑) = 1. If the degree is a mul-
tiple of 50, the general curve 𝐶𝑑 has a nonzero 𝑧

2 term, so misses the 1
25
(1, 4) singularity, and so

the previous lemma implies the result.
For 𝑑 = 10, consider the general curve 𝐶 = (𝑎𝑥10 + 𝑏𝑥6𝑦 + 𝑐𝑥2𝑦2 = 0). This has even degree

through the 1
4
(1, 1) singular point, so the lct in a neighborhood of that point is 1. In a neighborhood

of the 1

25
(1, 4) singular point, we compute the lct under the finite morphism 𝜋 ∶ 𝔸2 → 1

25
(1, 4)

where 𝜋∗𝐶 is defined by the same equation. By [70, Lemma 8.12], lct( 1
25
(1, 4); 𝐶) = lct(𝔸2; 𝜋∗𝐶),

and we compute lct(𝔸2, 𝜋∗𝐶) = 1
2
using [56, Example 4, 5]. For a general curve of degree 𝑑 ≡

10 mod 50, there are nonzero terms of the form 𝑧𝑛𝑓10(𝑥, 𝑦), where 𝑓10(𝑥, 𝑦) is a degree 10
polynomial, so for 𝐶𝑑 a general curve of degree 𝑑 ≡ 10 mod 50, we have lct( 125 (1, 4); 𝐶) = 12 .
For 𝑑 ≡ 20 mod 50, consider a general curve 𝐶𝑑 of degree 𝑑. Because this passes through the

1

25
(1, 4) singular point with high multiplicity, we do not expect that lct( 1

25
(1, 4); 𝐶𝑑) = 1. Indeed,

using the same method as above, we can compute lct( 1
25
(1, 4), 𝐶𝑑) =

1

4
.

For 𝑑 = 30, the general curve has an 𝑥𝑦𝑧 term, so is at worst nodal at each singular point of the
surface, so actually has lct equal to 1. For 𝑑 ≡ 30 mod 50, the general curve has an 𝑥𝑦𝑧2𝑘+1 term,
so is nodal in a neighborhood of the 1

25
(1, 4) singularity and has even degree in a neighborhood

of the 1
4
(1, 1) singularity, so still has lct equal to 1.

For 𝑑 = 40, the general curve has a 𝑦10 term, and so, it misses the 1
4
(1, 1) singular point. The

general curve has a nonzero 𝑥3𝑦3𝑧 term, so in a neighborhood of the 1
25
(1, 4) singularity, a compu-

tation similar to that above shows that lct( 1
25
(1, 4); 𝐶𝑑) =

1

3
. For 𝑑 ≡ 40 mod 50, the general curve

could be nodal through the 1
4
(1, 1) singular point, but still has lct equal to 1 in a neighborhood of

that point.
Finally, for 𝑑 = 50, the general curve has a 𝑧2 term, and so, it misses the 1

25
(1, 4) singular point

and passes through the 1
4
(1, 1) singular pointwith even degree, so the discussion ofℙ(1, 1, 4) above

shows lct(ℙ(1, 4, 25); 𝐶50) = 1. □

Although the previous computation was done for 𝑋 = ℙ(1, 4, 25), the lct computation is local,
so the same result holds for curves of the appropriate degree on𝑋 = 𝑋26. The computation shows
that, for 𝑑 = 4, 5, 8, 10, and 11, the answer to Question 9.6 is yes. For curves on ℙ(1, 1, 4), by
Lemma 9.10, we have that lct(𝑋; 𝐷) = 1 > 3

𝑑
.

For curves on 𝑋26, we need a finer analysis. No curves on 𝑋26 appear for degree 𝑑 = 4, but
for 𝑑 = 5, 8, and 10, Lemma 9.12 shows lct(𝑋; 𝐷) = 1 > 3

𝑑
, and for 𝑑 = 11, Lemma 9.10 shows

lct(𝑋; 𝐷) = 1
2
> 3

11
. This leaves four exceptional cases: 𝑑 = 6, 7, 9, and 12. For degrees 6, 9, and

12, we have 3 ∣ 𝑑, so Lemma 9.9 implies lct(𝑋; 𝐷) ⩾ 3
𝑑
. Therefore, we have contraction morphisms

𝑃
K

𝑑,𝑐′ ⤏ 𝑃
K

𝑑,𝑐 for all 0 < 𝑐 < 𝑐
′ < 3

𝑑
.

This leaves only the case 𝑑 = 7. The desired result (an affirmative answer to Question 9.6) will
follow from the next surprising proposition.

Proposition 9.13. For 𝑑 = 7, curves on 𝑋26 or ℙ(1, 4, 25) are K-unstable in K7,𝑐 for all 𝑐 ∈ (0, 37 ).
In other words, the only surfaces appearing in K7,𝑐 for some 𝑐 ∈ (0, 37 ) are ℙ2 and ℙ(1, 1, 4).
Proof. Let 𝑋 be either 𝑋26 or ℙ(1, 4, 25). Assume to the contrary that (𝑋, 𝑐𝐷) is K-semistable
for some curve 𝐷 ∈ | − 7

3
𝐾𝑋| and some 𝑐 ∈ (0, 3

7
). From the above discussion, we know that
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lct(𝑋; 𝐷) ⩽ 1
4
which implies 𝑐 < 1

4
. Since 𝑋 has a singularity of local Gorenstein index 5, by

Theorem 4.8, we know that 5 ⩽ 3∕(3 − 7𝑐) hence 𝑐 ⩾ 12
35
. This contradicts 𝑐 < 1

4
. □

Proof of Theorem 9.5. The result follows from Lemmas 9.9, 9.10, and 9.12 and Proposition 9.13. □

Remark 9.14. For 𝑑 = 9 or 12, a valuative criterion computation shows that 𝑋26 cannot appear in

the K-moduli spaces 𝑃
K

𝑑,𝑐 for 0 < 𝑐 <
3

𝑑
.

9.3 Quartics and sextics revisited

Recall from Section 6, we interpreted the K-moduli spaces of quartic and sextic plane curves via
K3 surfaces. In this section, we revisit these moduli spaces and study them via their relation to

Hacking’s moduli space H𝑑 , and give a log Calabi–Yau interpretation.

9.3.1 Quartics

Recall thatHacking’s space𝑃
H

4 generically parametrizes plane curveswith atworst cuspidal singu-
larities. There is a divisor parametrizing curves inℙ(1, 1, 4)which are atworst nodal at the singular
point, and at worst cuspidal elsewhere. Finally, there is a codimension two locus parametrizing
curves on the nonnormal surface ℙ(1, 1, 2) ∪ ℙ(1, 1, 2)— the curves are snc at the double locus,
and at worst cuspidal elsewhere.
Hyeon–Lee’s original motivation was to complete the log MMP on 𝑀3. Let 𝑀3(𝛼) denotes

Proj ⊕𝑚⩾0 Γ(𝑀3, 𝑚(𝐾𝑀3
+ 𝛼𝛿)), where 𝛿 is the boundary divisor of𝑀3. Hyeon–Lee produce the

following diagram:

The main results of their work can be summarized in the following.

Theorem 9.15 (Birational geometry of the moduli space of genus three curves [54]).

∙ There is a contraction morphism 𝑇 ∶ 𝑀3 → 𝑀3(
9

11
) ≅ 𝑀

ps

3 to Schubert’s moduli space of

pseudostable curves, given by contracting the locus of elliptic tails.
∙ There is a small contractionΨ ∶ 𝑀

ps

3 →𝑀
cs

3 , to theGITquotient of theChowvariety of bicanonical

curves Chow3,2∕∕SL(6) given by contracting the locus of elliptic bridges.

∙ There is a flip Ψ+ ∶ 𝑀3(𝛼) → 𝑀3(
7

10
) for 17∕28 < 𝛼 < 7∕10, where 𝑀3(𝛼) ≅ 𝑀

hs

3 , the GIT

quotient of the Hilbert scheme of bicanonical curvesHilb3,2∕∕SL(6).

∙ There is a divisorial contraction Θ ∶ 𝑀
hs

3 → 𝑃
GIT

4 to the GIT quotient of plane quartics given by

ℙ(Γ(ℙ2(4)))∕∕SL(3).
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Furthermore,𝑀
ps

3 can be identified with 𝑃
H

4 , Hacking’s moduli space of plane quartics.

Remark 9.16.

(1) The contraction at 𝛼 = 9∕11 was originally discovered by Hassett–Hyeon [53].
(2) In the case of degree 𝑑 = 4, the space of Hacking was independently constructed by Hassett

(see [52]).

(3) As we saw in Section 6, we have an isomorphism𝑀
hs

3 ≅ 𝑃
K

4, 3
4
−𝜖.

The flip 𝜗 can be realized as flipping the codimension 2 locus in 𝑃
H

4 parametrizing the curves

on ℙ(1, 1, 2) ∪ ℙ(1, 1, 2) to the curve in 𝑃
K

4, 3
4
−𝜖 parametrizing tacnodal curves. These flipping and

flipped loci of 𝜗 are contracted (viaΨ orΨ+) to a point as the unique 0-cusp in 𝑃
∗

4 . It is thus natural

to expect that 𝑃
∗

4 serves as the conjectural (good) moduli space 𝑃
CY

4 that parametrizes certain

log canonical log Calabi–Yau pairs that are ℚ-Gorenstein degenerations of (ℙ2, 3
4
𝐶4). Recall from

Section 6 we showed that there was a large open set𝑀 ⊂ 𝑃
∗

4 whose codimension inside 𝑃
K

4, 3
4
−𝜖 is

⩾ 2. Using this, we proved (see Theorem 6.5) that themoduli space 𝑃
∗

4 was the ample model of the

Hodge line bundle on 𝑃
K

4, 3
4
−𝜖. Noting that the codimension of 𝑀 inside 𝑃

H

4 is also ⩾ 2, the same

proof gives the following.

Theorem 9.17. The moduli space 𝑃
∗

4 is the ample model of the Hodge line bundle on 𝑃
H

4 .

9.3.2 Sextics

Recall from Section 6, we discussed the Kirwan desingularization of the GIT quotient of sextic
curves (constructed by Shah), as well as the morphism from this moduli space to the Baily–Borel

compactification of degree 2 K3 surfaces. By the work of [5], there is also a morphism 𝑃
H

6 → 𝑃
∗

6 ,
and so, we obtain the following diagram.

Again, we argue that it is natural to believe that the candidate for 𝑃
CY

6 is 𝑃
∗

6 . The locus con-

tracted from 𝑃
H

6 → 𝑃
∗

6 is divisorial, so the proof of Theorem 6.6 does not imply the same result on
the Hacking side as immediately as it did for degree four. In fact, [5] shows that there are actually
several divisors contracted — these divisors parametrize pairs whose double covers give K3 sur-
faces of Type II or Type III, in the sense of Kulikov degenerations. Valery Alexeev has suggested
to us that the result is still true and can be proven by looking at the Kulikov degenerations of the
relevant K3 surfaces.
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9.3.3 Log Calabi–Yau wall crossing

In general, we can say the following.

Theorem 9.18. Let 𝑃
H,◦

𝑑 denote the complement of the locus of nonnormal pairs in 𝑃
H

𝑑 . Let 𝑃
K,◦

𝑑, 3
𝑑
−𝜖

denote the complement of the locus of pairs with lct = 3

𝑑
inside 𝑃

K

𝑑, 3
𝑑
−𝜖. Then 𝑃

H,◦

𝑑 ≅ 𝑃
K,◦

𝑑, 3
𝑑
−𝜖
.

Proof. We first show that 𝑃
K,◦

𝑑, 3
𝑑
−𝜖
⊆ 𝑃

H,◦

𝑑 . If (𝑋, 𝐷) is a pair parametrized by 𝑃
K,◦

𝑑, 3
𝑑
−𝜖
, then lct > 3

𝑑

and so by definition (𝑋, 𝐷) is a pair parametrized by 𝑃
H,◦

𝑑 . Conversely, by [92, Theorem 5.2], if

(𝑋, 𝐷) is parametrized by 𝑃
H,◦

𝑑 , then (𝑋, 𝐷) is parametrized by 𝑃
K,◦

𝑑, 3
𝑑
−𝜖
. □

In particular, the above result says that if one looks at the K-moduli space for coefficient
3

𝑑
− 𝜖, then the only difference between this space and the Hacking moduli space are the

maximally lct pairs in the K-moduli space and the nonnormal pairs in the Hacking moduli
space. In particular, we conjecture that there is a proper good moduli space of log Calabi–Yau
pairs which relates to the K-moduli and Hacking moduli spaces via the following conjectural
picture.

Conjecture 9.19 (Log Calabi–Yau wall crossings). There exists a proper good moduli space

𝑃
CY

𝑑 that parametrizes S-equivalence classes of semistable log Calabi–Yau pairs (𝑋, 3
𝑑
𝐷) where

𝑋 admits a ℚ-Gorenstein smoothing to ℙ2. Moreover, we have a log Calabi–Yau wall crossing

diagram

𝑃
K

𝑑, 3
𝑑
−𝜖

𝜙CY−
""""→ 𝑃

CY

𝑑

𝜙CY+
←"""" 𝑃

H

𝑑 ,

where 𝑃
CY

𝑑 is the common ample model of the Hodge line bundles on 𝑃
K

𝑑, 3
𝑑
−𝜖 and 𝑃

H

𝑑 .

9.4 Log Calabi–Yau quintics

Recall that Hacking’s moduli space 𝑃
H

5 parametrizes ℚ-Gorenstein deformations of pairs (ℙ
2, 𝑐𝐶)

where 𝑐 = 3
5
+ 𝜖 for 𝜖 sufficiently small and deg(𝐶) = 5. From Theorem 9.18, we know that there

is a birational map

𝑃
H

5 ⤏ 𝑃
K

𝑐 ,

where 𝑐 ∈ ( 54
95
, 3
5
), which is an isomorphism over the locus of pairs (𝑋, 𝐷) where 𝑋 is normal and

lct(𝑋, 𝐷) > 3
5
. Here we omit the degree 5 in the subscript of K-moduli spaces and stacks. In other

words, the pairs that will become unstable when increasing the weight from 3

5
− 𝜖 to 3

5
+ 𝜖 are

precisely the pairs with lct = 3
5
—that is,𝐴9 and𝐷6 singularities. Note that the𝐴9 singularity can
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occur either at a smooth point of the surface 𝑋 or at a 1
4
(1, 1) singularity. In this setting, we have

the following results:

(1) the stable replacement in 𝑃
H

5 of a curve 𝐶 ⊂ 𝑋 with 𝐴9 singularity is either a curve on
ℙ(1, 1, 5) ∪ 𝑋6 or a curve on ℙ(1, 1, 5) ∪ ℙ(1, 4, 5), and

(2) the stable replacement in 𝑃
H

5 of a curve 𝐶 ⊂ 𝑋 with a 𝐷6 singularity is a curve on ℙ(1, 1, 2) ∪
ℙ(1, 1, 2).

These are precisely the nonnormal pairs that appear in 𝑃
H

5 . We conjecture that there is a

projective variety 𝑃
CY

5 parametrizing S-equivalence classes of slc log Calabi–Yau pairs (𝑋, 3
5
𝐷).

Conjecture 9.20. The ample models of the Hodge line bundles on 𝑃
H

5 and 𝑃
K
3
5
−𝜖 exist and coincide.

We denote this common ample model by 𝑃
CY

5 . It parametrizes S-equivalence classes of slc log Calabi–

Yau pairs that are ℚ-Gorenstein deformations of (ℙ2, 3
5
𝐶).

In particular, 𝑃
CY

5 should serve as the base of a flip

which realizes the rational map 𝑃
H

5 ⤏ 𝑃
K

3∕5−𝜖.

In the following section, we provide some evidence for Conjecture 9.20.

9.4.1 Evidence for the log Calabi–Yau conjecture

First, we verify that any curve with an 𝐴9 singularity admits a common degeneration to a unique
curve onℙ(1, 1, 5) ∪ ℙ(1, 4, 5)with an𝐴9 singularity in each component. Similarly, any curvewith
a 𝐷6 singularity admits a common degeneration to a unique curve on ℙ(1, 1, 2) ∪ ℙ(1, 1, 2) with a
𝐷6 singularity in each component.

Proposition 9.21. All curves in𝑃
K

3∕5−𝜖 with an𝐴9 singularity and all curves in𝑃
H

5 on𝑋6 ∪ ℙ(1, 1, 5)

or ℙ(1, 1, 5) ∪ ℙ(1, 4, 5) admit a common degeneration to a unique curve on ℙ(1, 1, 5) ∪ ℙ(1, 4, 5)

with log canonical threshold exactly 3
5
.

Proof. By Proposition A.1, a plane quintic curve 𝐶 with an 𝐴9 singularity has the equation

(𝑥 − 𝑦2)((𝑥 − 𝑦2)(1 + 𝑠𝑥) − 𝑥2(2𝑝𝑦 + 𝑟𝑥)) + 𝑢𝑥5 = 0

in the affine coordinates [𝑥, 𝑦, 1] for some choice of (𝑠, 𝑟, 𝑝, 𝑢) ∈ 𝔸4 satisfying 𝑝2 ≠ 𝑢. We will first
construct a weakly special degeneration of (ℙ2, 3

5
𝐶) to a pair (𝑋6 ∪ ℙ(1, 1, 5),

3

5
𝐶0).
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Take our family (ℙ2, 𝐶) × 𝔸1. We perform the following birational transformations:

ℙ2 × 𝔸1
𝜋
←""""  g

""""→  ,
where in the central fiber, we have

ℙ2
𝜋
←"""" 𝑆 ∪ 𝑋

g

""""→ 𝑆 ∪ 𝑋′

Here, 𝜋 is the (5,1,1)-weighted blow-up of ℙ2 × 𝔸1 in the local coordinates (𝑥′, 𝑦, 𝑡) with 𝑥′ ∶=
𝑥 − 𝑦2 − 𝑝𝑦5, and 𝑆 = ℙ(1, 1, 5) is the exceptional divisor of 𝜋. Let 𝑄 = (𝑥 − 𝑦2 = 0) be a smooth
conic inℙ2. Then it is clear that𝜋∗𝑄 = 𝑄 + 5𝐸where𝐸 is the exceptional curve of𝜋 ∶ 𝑋 → ℙ2 and

𝑄 ∶= 𝜋−1∗ 𝑄. Since (𝐸
2) = − 1

5
, we know that (𝑄

2
) = −1 and𝑄 is a smooth rational curve contained

in the smooth locus of 𝑋. By computation, we know that
𝑄∕ ≅ 

𝑄
(−1) ⊕ 

𝑄
(−1). Hence, g ∶

 →  is the small flopping contraction of 𝑄.
Next, we show that (𝑋′, 𝜋∗𝐸) ≅ (𝑋6, (𝑥1 = 0)) where 𝑋6 = (𝑥0𝑥3 = 𝑥

3
1
+ 𝑥2

2
) is a weighted

hypersurface in ℙ(1, 2, 3, 5)𝑥0,𝑥1,𝑥2,𝑥3 . Let 𝐿 ∶= 𝜋
∗(1) − 2𝐸 be a divisor on 𝑋. Then 𝐿 induces

a morphism g
′ ∶ 𝑋 → ℙ(1, 2, 3, 5) defined by

𝑥0 = 𝜋
∗𝑥 − 2𝐸 ∈ 𝐻0(𝑋, 𝐿), 𝑥1 = 𝜋

∗(𝑥𝑧 − 𝑦2) − 4𝐸 ∈ 𝐻0(𝑋, 2𝐿),

𝑥2 = 𝜋
∗(𝑦(𝑥𝑧 − 𝑦2)) − 6𝐸 ∈ 𝐻0(𝑋, 3𝐿), 𝑥3 = 𝜋

∗(𝑧(𝑥𝑧 − 𝑦2)2) − 10𝐸 ∈ 𝐻0(𝑋, 5𝐿).

It is easy to show that g ′ is a birational map that only contracts 𝑄, and the image of g ′ is exactly
𝑋6. Thus, g

′ = g and 𝜋∗𝐸 = 𝜋∗(𝑄 + 𝐸) = (𝑥1 = 0). Let [𝑦0, 𝑦1, 𝑦2] be the projective coordinates of
ℙ(1, 1, 5) as the projectivization of (𝑡, 𝑦, 𝑥′). Thus, 𝑆 ∪ 𝑋 ≅ ℙ(1, 1, 5) ∪ 𝑋6 where the double locus
𝜋∗𝐸 is (𝑦0 = 0) ⊂ ℙ(1, 1, 5) and (𝑥1 = 0) ⊂ 𝑋6. The degeneration 𝐶0 of 𝐶 has equations

(𝑦22 = (𝑝
2 − 𝑢)𝑦101 ) ⊂ ℙ(1, 1, 5) and (𝑥3 + 𝑥0𝑥

2
1 − 2𝑝𝑥

2
0𝑥2 − 𝑟𝑥

3
0𝑥1 + 𝑢𝑥

5
0 = 0) ⊂ 𝑋6.

Next, we show that (ℙ(1, 1, 5) ∪ 𝑋6,
3

5
𝐶0) admits a weakly special degeneration to an slc log

Calabi–Yau pair (ℙ(1, 1, 5) ∪ ℙ(1, 4, 5), 3
5
𝐶′
0
) that is unique up to isomorphism. Consider the

1-PS 𝜎 ∶ 𝔾𝑚 → Aut(ℙ(1, 2, 3, 5)) defined as 𝜎(𝑡) ⋅ [𝑥0, 𝑥1, 𝑥2, 𝑥3] = [𝑥0, 𝑡
−1𝑥1, 𝑥2, 𝑥3]. Then we

know that 𝜎(𝑡) ⋅ 𝑋6 has the equation (𝑥0𝑥3 = 𝑡
3𝑥3
1
+ 𝑥2

2
) in ℙ(1, 2, 3, 5). Hence, lim𝑡→0 𝜎(𝑡) ⋅ 𝑋6 =

(𝑥0𝑥3 = 𝑥
2
2
). Indeed, we have an embedding from ℙ(1, 4, 5)𝑧0,𝑧1,𝑧2 to ℙ(1, 2, 3, 5) as [𝑧0, 𝑧1, 𝑧2] ↦

[𝑧2
0
, 𝑧1, 𝑧0𝑧2, 𝑧

2
2
]whose image has equation 𝑥0𝑥3 = 𝑥

2
2
. Hence, lim𝑡→0 𝜎(𝑡) ⋅ 𝑋6 ≅ ℙ(1, 4, 5). By tak-

ing limit of the equation of 𝐶0 ∩ 𝑋6 under the action of 𝜎, we know that 𝐶′
0
∩ ℙ(1, 4, 5) has

equation (𝑧2
2
− 2𝑝𝑧5

0
𝑧2 + 𝑢𝑧

10
0
= 0). Since 𝑝2 ≠ 𝑢, after a suitable projective coordinate change,

the equation of𝐶′
0
becomes (𝑦2

2
= 𝑦10

1
) and (𝑧2

2
= 𝑧10

0
) inℙ(1, 1, 5) ∪ ℙ(1, 4, 5). It is clear that𝐶′

0
has

an 𝐴9-singularity in the smooth locus of ℙ(1, 1, 5) and an 𝐴3-singularity at the
1

4
(1, 1)-singularity

of ℙ(1, 4, 5). Thus, lct(ℙ(1, 1, 5) ∪ ℙ(1, 4, 5); 𝐶′
0
) = 3

5
. Since 𝜎 fixes 𝜋∗𝐸 pointwisely, we may com-

pose the two degenerations as in [93, Proof of Lemma 3.1] to obtain a weakly special degeneration
of (ℙ2, 3

5
𝐶0) to (ℙ(1, 1, 5) ∪ ℙ(1, 4, 5),

3

5
𝐶′
0
).

The computation above can be extended to include the case of curves with 𝐴9-singularities

on ℙ(1, 1, 4), ℙ(1, 4, 25) and 𝑋26 in 𝑃
K
3
5
−𝜖. For the Hacking moduli space, the construction is sim-
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ilar to the second step in the above degenerations with minor difference to consider 1-PS in
Aut(ℙ(1, 1, 5)) and Aut(ℙ(1, 4, 5)) as well. Thus, the proof is finished. □

Proposition 9.22. All curves in𝑃
K

3∕5−𝜖 with a𝐷6 singularity and all curves in𝑃
H

5 lying onℙ(1, 1, 2) ∪

ℙ(1, 1, 2)admit a commondegeneration to aunique curve onℙ(1, 1, 2) ∪ ℙ(1, 1, 2)with log canonical

threshold exactly 3
5
.

Proof. Consider the family 𝜋 ∶  → 𝔸2 given by
 ∶= (𝑥0𝑥2 = 𝑟𝑥21 + 𝑠𝑥3) ⊂ ℙ(1, 1, 1, 2)𝑥0,𝑥1,𝑥2,𝑥3 × 𝔸2𝑟,𝑠.

The fiber of 𝜋 above 𝑟 = 0, 𝑠 = 0 is isomorphic to ℙ(1, 1, 2) ∪ ℙ(1, 1, 2) with projective coordi-
nates [𝑥0, 𝑥1, 𝑥3] and [𝑥1, 𝑥2, 𝑥3], respectively. For 𝑠 = 0 but 𝑟 ≠ 0, the fiber of 𝜋 is isomorphic to
ℙ(1, 1, 4)𝑦0,𝑦1,𝑦2 where the isomorphism is given by [𝑦0, 𝑦1, 𝑦2] ↦ [𝑟𝑦

2
0
, 𝑦0𝑦1, 𝑦

2
1
, 𝑦2]. For 𝑠 ≠ 0, the

fiber of 𝜋 is isomorphic to ℙ2𝑥,𝑦,𝑧 where the isomorphism is given by [𝑥, 𝑦, 𝑧] ↦ [𝑥, 𝑦, 𝑧, 𝑠−1(𝑥𝑧 −

𝑟𝑦2)]. Let 𝜎 ∶ 𝔾𝑚 → Aut() be a 1-PS defined as
𝜎(𝑡) ⋅ ([𝑥0, 𝑥1, 𝑥2, 𝑥3], (𝑟, 𝑠)) ∶= ([𝑡𝑥0, 𝑥1, 𝑥2, 𝑥3], (𝑡𝑟, 𝑡𝑠)).

Then 𝜋 is 𝔾𝑚-equivariant with respect to 𝜎 and the 𝔾𝑚-action (𝑟, 𝑠) ↦ (𝑡𝑟, 𝑡𝑠) on 𝔸
2. Consider a

divisor on  defined by

 ∶= (
𝑥1

(
𝑥3 − 𝑥

2
1

) (
𝑥3 + 𝑥

2
1

)
= 0

)
.

It is clear that  is 𝔾𝑚-invariant under the action of 𝜎. We will show that suitable restrictions of

the family𝜋 ∶ ( , 3
5
) → 𝔸2 give the desired weakly special degenerations of curves in 𝑃K3

5
−𝜖 with

𝐷6-singularities.

From Section 8, we know that the locus of curves with 𝐷6-singularities in 𝑃
K
3
5
−𝜖 is Σ6, 3

5
−𝜖
that is

isomorphic to ℙ1. The pairs parametrized by Σ
6, 3
5
−𝜖
consist of the following form:

(ℙ2, (𝑦(𝑥𝑧 − (1 + 𝑎)𝑦2)(𝑥𝑧 + (1 − 𝑎)𝑦2) = 0)) where 𝑎 ∈ 𝔸1, and (ℙ(1, 1, 4), (𝑦0𝑦1(𝑦
2
2 − 𝑦

4
0𝑦
4
1) = 0)).

Then one can check that the restriction of 𝜋 ∶ ( , 3
5
) → 𝔸2 to the affine line {(𝑎𝑠, 𝑠) ∣ 𝑠 ∈ 𝔸1}

(resp. {(𝑟, 0) ∣ 𝑟 ∈ 𝔸1}) gives weakly special degeneration of 𝐷6-curves on ℙ
2 (resp. ℙ(1, 1, 4)).

A similar computation can be done for curves on ℙ(1, 1, 2) ∪ ℙ(1, 1, 2) in the Hacking mod-
uli space. Note that the common degeneration has equation (𝑥1(𝑥

2
3
− 𝑥4

1
) = 0) in ℙ(1, 1, 2) ∪

ℙ(1, 1, 2). □

These two propositions essentially show that if the log Calabi–Yau moduli space 𝑃
CY

5 exists,

then there must be two distinct points in 𝑃
CY

5 of S-equivalence classes of slc log Calabi–Yau

degenerations of pairs (ℙ2, 3
5
𝐶) parametrizing curves with 𝐴9 or 𝐷6 singularities, respectively.

In other words, the conjectural map 𝑃
K
3
5
−𝜖 → 𝑃 must contract the disjoint loci Σ

6, 3
5
−𝜖

and

Σ
7, 3
5
−𝜖

to two distinct points. Denote by Σ
H

6 (resp. Σ
H

7 ) the disjoint loci in 𝑃
H

5 parametrizing
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curves on ℙ(1, 1, 2) ∪ ℙ(1, 1, 2) (resp. ℙ(1, 1, 5) ∪ 𝑋6 or ℙ(1, 1, 5) ∪ ℙ(1, 4, 5)). Then similarly the

conjectural map 𝑃
H

5 → 𝑃 must contract the disjoint loci Σ
H

6 and Σ
H

7 to the same set of two
points.

To form the projective variety 𝑃
CY

5 , we expect that the Hodge line bundles are semiample on

𝑃
K
3
5
−𝜖 and 𝑃

H

5 and ℚ-trivial exactly on these contracted loci. Indeed, the Hodge line bundle is the

limit of the CM line bundle by Proposition 3.35. Moreover, the CM line bundle is known to be

ample on 𝑃
H

5 by [111] and big and nef (and conjecturally ample) on 𝑃
K

𝑐 by [29, 93, 107]. Therefore,
we expect some positivity properties of the Hodge line bundle.

As further evidence, we verify that the Hodge line bundle is trivial on the locus Σ
H

6 ⊔ Σ
H

7

parametrizing curves on nonnormal surfaces in 𝑃
H

5 . Denote by 𝐿+ and 𝐿− the Hodge ℚ-line

bundles over 𝑃
𝐻

5 and 𝑃
K
3
5
−𝜖, respectively.

Proposition 9.23. The restriction 𝐿+|ΣH𝑖 is ℚ-linearly trivial for 𝑖 = 6, 7.

Proof. We first look at the case of Σ
H

7 . Each Hacking stable pair in Σ
H

7 is uniquely determined by

gluing two plt pairs (ℙ(1, 1, 5), (𝑦 = 0) + 3
5
𝐶1) and (𝑋, 𝐷) where

∙ 𝐶1 has the equation 𝑧
2 = 𝑥10 + 𝑎2𝑥

8𝑦2 + 𝑎3𝑥
7𝑦3 +⋯ + 𝑎10𝑦

10 where (𝑎2, 𝑎3, … , 𝑎10) ∈ 𝔸
9 ⧵

{0};
∙ 𝑋 is a weighted hypersurface in ℙ(1, 2, 3, 5) defined by the equation (𝑥𝑤 = 𝑡𝑦3 + 𝑧2);
∙ 𝐷 = (𝑦 = 0) + 3

5
𝐶2 where 𝐶2 has the equation 𝑤 = 𝑥

5 + 𝑏1𝑥
3𝑦 + 𝑏2𝑥𝑦

2 such that (𝑏1, 𝑏2, 𝑡) ∈

𝔸3 ⧵ {0}.

The double locus on both components is a ℙ1 with three marked points: one of them is the index
5 singularity and the other two are intersections with curve 𝐶𝑖 . Hence, the gluing is unique up to

a 𝜇2-action, and so, we have Σ
H

7 ≅ (ℙ(2, 3, … , 10) × ℙ(1, 2, 3))∕𝐺 where 𝐺 is a finite group acting
on the weighted biprojective space identifying isomorphic fibers. Therefore, to show that 𝐿+|ΣH7
isℚ-linearly trivial, it suffices to show that theℚ-line bundle 𝐿 on each weighted projective space
is ℚ-linearly trivial.
Let us start with the weighted projective space ℙ ∶= ℙ(2, 3, … , 10). Denote 𝑇 ∶= 𝔸9 ⧵ {0}. Con-

sider the family 𝜋𝑇 ∶ (𝑇 ,𝑇) → 𝑇 where 𝑇 = ℙ(1, 1, 5) × 𝑇 and𝑇 = (𝑦 = 0) + 351 with 1 =
(𝑧2 = 𝑥10 + 𝑎2𝑥

8𝑦2 + 𝑎3𝑥
7𝑦3 +⋯ + 𝑎10𝑦

10). We have a 𝔾𝑚 action on 𝑇 given by (𝑎𝑖) ↦ (𝜆
𝑖𝑎𝑖).

This action lifts to 𝑇 as ([𝑥, 𝑦, 𝑧], (𝑎𝑖)) ↦ ([𝑥, 𝜆−1𝑦, 𝑧], (𝜆𝑖𝑎𝑖)) so that 𝜋𝑇 is 𝔾𝑚-equivariant. It is
clear that 𝜋𝑇 descends to a universal family of plt log CY pairs over [𝑇∕𝔾𝑚] whose coarse space
is ℙ. Hence, it suffices to show that the 𝔾𝑚-linearized line bundle ⊗5𝑇 ∶= (𝜋𝑇)∗𝑇 (5(𝐾𝑇∕𝑇 +𝑇)) on 𝑇 descends to a trivial line bundle on ℙ. We pick a nowhere zero section 𝜏 of ⊗5𝑇 that

has the expression 𝜏(𝑎2, … , 𝑎10) = 𝑦
−5(1 −

∑10
𝑖=2 𝑎𝑖𝑥

10−𝑖𝑦𝑖)−3(𝑑𝑥 ∧ 𝑑𝑦)⊗5 in the affine chart 𝑧 = 1.
Hence, for any 𝜆 ∈ 𝔾𝑚, we have

(𝜆∗𝜏)(𝜆
𝑖𝑎𝑖) = (𝜆𝑦)

−5

(
1 −

10∑
𝑖=2

𝑎𝑖𝑥
10−𝑖(𝜆𝑦)𝑖

)−3
(𝑑𝑥 ∧ 𝜆𝑑𝑦)⊗5 = 𝜏(𝜆𝑖𝑎𝑖).

Thus, the 𝔾𝑚-linearization on ⊗5
𝑇

is trivial.
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Next,we analyze theweighted projective spaceℙ(1, 2, 3). Since it has Picard number 1, it suffices
to show that 𝐿+ restricting to the curve ℙ(1, 2) is ℚ-linearly trivial where ℙ(1, 2) corresponds to
𝑡 = 0, that is, the surface component being ℙ(1, 4, 5). Using the projective coordinates [𝑥, 𝑦, 𝑧] of
ℙ(1, 4, 5), the divisor 𝐷 = (𝑦 = 0) + 3

5
𝐶2 where 𝐶2 = (𝑧

2 = 𝑥10 + 𝑏1𝑥
6𝑦 + 𝑏2𝑥

2𝑦2). Then similar
computations as in the case of ℙ(1, 1, 5) imply that 𝐿+|ℙ(1,2) is ℚ-linearly trivial. This finishes the
proof of ℚ-linear triviality of 𝐿+|ΣH7 .
The case of Σ

H

6 is similar to Σ
H

7 . Since each surface component is ℙ(1, 1, 2), we may just

consider one component given by the plt pair (ℙ(1, 1, 2), (𝑦 = 0) + 3
5
𝐶) where 𝐶 has the equa-

tion (𝑥𝑧2 − 𝑥5 = 𝑎𝑦3𝑧 + 𝑏1𝑥
4𝑦 + 𝑏2𝑥

3𝑦2 +⋯ + 𝑏5𝑦
5) for (𝑎, 𝑏1, … , 𝑏5) ∈ 𝔸

6 ⧵ {0} =∶ 𝑇. Then the
𝔾𝑚-action on 𝑇 = ℙ(1, 1, 2) × 𝑇 is given by ([𝑥, 𝑦, 𝑧], 𝑎, 𝑏𝑖) ↦ ([𝑥, 𝜆−1𝑦, 𝑧], 𝜆3𝑎, 𝜆𝑖𝑏𝑖). Hence, the
moduli space parametrizing (ℙ(1, 1, 2), (𝑦 = 0) + 3

5
𝐶) is given by ℙ ∶= ℙ(1, 2, 3, 3, 4, 5) and Σ

H

6 ≅

(ℙ × ℙ)∕𝐺 for some finite group 𝐺. Then similar computations show that the 𝔾𝑚-linearization on⊗5
𝑇

is trivial, hence 𝐿+|ΣH6 is ℚ-linearly trivial. □

To verify Conjecture 9.20, one must first show that the analogous statement of Proposition 9.23

holds for 𝐿− and that 𝐿± is, in fact, ample away from the loci Σ
H

7 and Σ
H

6 . If this holds, the ample

models of the Hodge line bundles on 𝑃
H

5 and 𝑃
K
3
5
−𝜖 would coincide set-theoretically with our

notion of S-equivalence classes. However, putting a naturalmodular structure from theK-stability
viewpoint on the log Calabi–Yau space and determining the right class of objects to parameterize
prevent us from defining a moduli stack of these pairs in this paper. We will pursue that this is
forthcoming work.

9.5 Higher dimensional applications

In this section, we give some applications of our machinery developed in Sections 2 and 3. The
following result improves [47, Theorem 1.2] by removing their assumption on the Gap Conjecture
and allowing small degree.

Theorem9.24. Let𝑛 and𝑑 ⩾ 2 be positive integers. Then there exists a positive rational number 𝑐1 =

𝑐1(𝑛, 𝑑) such that for any fixed 0 < 𝑐 < 𝑐1, a hypersurface 𝑆 ⊂ ℙ
𝑛 of degree 𝑑 is GIT (poly/semi)stable

if and only if the log Fano pair (ℙ𝑛, 𝑐𝑆) is K-(poly/semi)stable.

Proof. Let 𝜒0 be the Hilbert polynomial of (ℙ
𝑛,(𝑛 + 1)). Let 𝑟 ∶= 𝑑

𝑛+1
. We consider the K-

moduli stack𝜒0,𝑟,𝑐
as inDefinition 3.8. By Theorem 3.2, there exists a positive rational number

𝑐1 = 𝑐1(𝑛, 𝑑) such that 𝜒0,𝑟,𝑐
remains constant for any 𝑐 ∈ (0, 𝑐1). Thus, for any K-semistable

pair [(𝑋, 𝑐𝐷)] ∈ 𝜒0,𝑟,𝑐
, we have that 𝑋 is K-semistable and (−𝐾𝑋)

𝑛 = (−𝐾ℙ𝑛 )
𝑛 = (𝑛 + 1)𝑛.

Hence, by [81, Theorem 36], we know that𝑋 ≅ ℙ𝑛 and𝐷 ⊂ 𝑋 is a hypersurface of degree 𝑑. By the
Paul–Tian criterion Theorem 2.22 and computations on CM line bundles similar to the proof of
Proposition 4.3, we know that K-(poly/semi)stability of (ℙ𝑛, 𝑐𝑆) implies GIT (poly/semi)stability
of 𝑆.
We first show that there is amorphism of Artin stacks𝜑 ∶ 𝜒0,𝑟,𝑐

→ 𝑛
𝑑
where𝑛

𝑑
is the GIT

quotient stack [ℙ(𝐻0(ℙ𝑛,(𝑑)))ss∕PGL(𝑛 + 1)] of degree 𝑑 hypersurfaces in ℙ𝑛. Indeed, the K-
moduli stack𝜒0,𝑟,𝑐

is defined to be the quotient [𝑍red𝑐,𝑚∕PGL(𝑁𝑚 + 1)] for every𝑚 sufficiently
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divisible. Let

𝑍GIT𝑚 ∶= {(𝑋, 𝐷) ∈ 𝑍klt𝑚 ∣ (𝑋, 𝐷) ≅ (ℙ
𝑛, 𝐷′) where [𝐷′] ∈ ℙ(𝐻0(ℙ𝑛,(𝑑)))ss}.

Since fiber being ℙ𝑛 and GIT semistability are both Zariski open conditions, we know that 𝑍GIT𝑚
is a Zariski open subset of 𝑍klt𝑚 . We equip 𝑍GIT𝑚 with the reduced scheme structure. Thus, there
is a morphism 𝜑𝑚 from the K-moduli stack to the GIT stack 𝑛

𝑑,𝑚
∶= [𝑍GIT𝑚 ∕PGL(𝑁𝑚 + 1)]. By

Theorem 3.24, the K-moduli stacks stabilize. By a similar argument to the last paragraph
of the proof of Theorem 5.2, the morphisms 𝜑𝑚 stabilize to 𝜑 ∶ 𝜒0,𝑟,𝑐

→ 𝑛
𝑑
for 𝑚

sufficiently divisible.
To show that the morphism 𝜑 is representable, we just need to show that the fiber product of

a scheme and the K-moduli stack over the GIT stack is a scheme. For simplicity, denote by 𝐺 ∶=
PGL(𝑁𝑚 + 1). A map 𝑇 → 𝑛

𝑑,𝑚
from a scheme 𝑇 to the GIT stack is equivalent to the data of a𝐺-

torsor𝜓 ∶ 𝑃𝑇 → 𝑇 together with a𝐺-equivariantmorphism 𝑃𝑇 → 𝑍
GIT
𝑚 . Since 𝑍red𝑐,𝑚 ↪ 𝑍

GIT
𝑚 is a𝐺-

equivariant open immersion, we know that 𝑃′ ∶= 𝑃𝑇 ×𝑍GIT𝑚 𝑍red𝑐,𝑚 is a 𝐺-invariant open subscheme

of 𝑃𝑇 . Since 𝜓 ∶ 𝑃𝑇 → 𝑇 is flat, we know that 𝑇′ ∶= 𝜓(𝑃′) is an open subscheme of 𝑇. Thus, 𝑃′ →
𝑇′ is a 𝐺-torsor as 𝑃′ admits a 𝐺-action and this map is surjective. As a result, we have 𝑇′ ≅
𝑇 ×𝑛

𝑑,𝑚
𝜒0,𝑟,𝑐

, which implies that 𝜑 is representable and an open immersion of Artin stacks.

So, now it suffices to show that 𝜑 is an isomorphism.
Next, we verify that 𝜒0,𝑟,𝑐

is nonempty. If 𝑑 ⩾ 𝑛 + 1, then any smooth hypersurface 𝑆 sat-

isfies (ℙ𝑛, 𝑛+1
𝑑
𝑆) is a log canonical log Calabi–Yau pair that implies [(ℙ𝑛, 𝑐𝑆)] ∈ 𝜒0,𝑟,𝑐

by
Proposition 2.13. If 𝑑 ⩽ 𝑛, then we know that there exists a smooth hypersurface 𝑆 that admits
Kähler–Einstein metrics (see, e.g., [119, Page 85-87] or [7]). By degeneration to normal cone of 𝑆,
we know that (ℙ𝑛, 𝑐𝑆) special degenerates to (𝑋0, 𝑐𝑆∞) where 𝑋0 = 𝐶𝑝(𝑆,𝑆(𝑑)) is the projective
cone (see [71, Section 3.1] for a definition) and 𝑆∞ is the section at infinity. By [82, Proposi-

tion 3.3], we know that (𝑋0, (1 −
𝑟−1−1

𝑛
)𝑆∞) admits a conical Kähler–Einstein metric. Hence,

(ℙ𝑛, (1 − 𝑟
−1−1

𝑛
)𝑆) is K-semistable by Theorem 2.16. Since 1 − 𝑟

−1−1

𝑛
= (𝑑−1)(𝑛+1)

𝑑𝑛
> 0, we know

that (ℙ𝑛, 𝜖𝑆) is K-polystable for 0 < 𝜖 ≪ 1 by Proposition 2.13. Hence, (ℙ𝑛, 𝑐𝑆) is K-polystable for
any 0 < 𝑐 < 𝑐1.
Finally, we show that 𝜑 is an isomorphism. By taking good moduli spaces, let 𝜑′ ∶ 𝐾𝑀𝜒0,𝑟,𝑐 →

𝐻𝑛
𝑑
be the descent of 𝜑where𝐻𝑛

𝑑
∶= ℙ(𝐻0(ℙ𝑛,(𝑑)))ss∕∕PGL(𝑛 + 1). It follows that 𝜑′ is an injec-

tive proper morphism that implies that 𝜑′ is finite. Hence, 𝜑 is finite by [10, Proposition 6.4]. This
together with 𝜑 being an open immersion implies that 𝜑 is an isomorphism by Zariski’s main
theorem. □

APPENDIX A: CALCULATIONS OF K-SEMISTABLE THRESHOLDS AND

K-POLYSTABLE REPLACEMENTS

In this appendix, we calculate the K-semistable thresholds and K-polystable replacements of K-
semistable pairs to determine the location of the walls for 𝑑 = 5. By Proposition 4.7, to understand
the wall crossings occurring after the first wall, we must understand the curves parametrized

by 𝑃
GIT

5 ⧵ 𝑃klt. In Section 8.1, we showed that the curves parametrized by this space (aside from
the nonreduced conic that was discussed at length in Section 5) have 𝐴12, 𝐴11, 𝐴10, 𝐴9, and 𝐷6
singularities. Therefore, this section contains the relevant calculations used in Section 8.2, and
the subsections are organized by the singularity type.
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Before proceeding, we state a result that will be used throughout. A standard jet computation
shows that if a quintic curve has a double point of type𝐴𝑘 with 𝑘 ⩾ 9 (not including∞), then after
a suitable projective coordinate change, we obtain the following equation in the affine coordinate:

(𝑥 − 𝑦2)
(
(𝑥 − 𝑦2)(1 + 𝑠𝑥) − 𝑥2(2𝑝𝑦 + 𝑟𝑥)

)
+ 𝑢𝑥5 = 0. (A.1)

Here the double point is (0,0) for any parameters (𝑠, 𝑟, 𝑝, 𝑢) ∈ 𝔸1 × (𝔸3 ⧵ {0}). Indeed, in the
analytic coordinates (𝑥′, 𝑦) where 𝑥′ ∶= 𝑥 − 𝑦2 − 𝑝𝑦5, the above equation (A.1) becomes

𝑥′2 = (𝑝2 − 𝑢)𝑦10 + higher order terms,

where (𝑥′, 𝑦) has weight (5,1). When 𝑟, 𝑝, 𝑢 all vanish, we recover the curve 𝑄5. If we
rescale the coordinates as (𝑥, 𝑦) ↦ (𝜆−2𝑥, 𝜆−1𝑦), then the coordinates change as (𝑠, 𝑟, 𝑝, 𝑢) ↦
(𝜆2𝑠, 𝜆4𝑟, 𝜆3𝑝, 𝜆6𝑢). Note that the two curves defined by (𝑠, 𝑟, ±𝑝, 𝑢) are projectively equivalent
by 𝑦 ↦ −𝑦. Therefore, we may take the parameter space 𝔸4 ⧵ {0} and quotient out by projective
equivalence to describe the locus of curves with an 𝐴𝑘 singularity (𝑘 ⩾ 9) including 𝑄5.
Similarly, a standard computation shows that GIT polystable quintics with a 𝐷6 singularity, up

to a projective coordinate change, can be written as

𝑦(𝑥 − 𝑡1𝑦
2)(𝑥 − 𝑡2𝑦

2) = 0,

where 𝑡1 ≠ 𝑡2. Since 𝑡1 and 𝑡2 are symmetric, we may take the coordinate change given
by (𝑠1, 𝑠2) ∶= (𝑡1 + 𝑡2, (𝑡1 − 𝑡2)

2). Then Σ6 corresponds to 𝑠2 ≠ 0. The 𝔾𝑚-action scales the
coordinates as (𝑡1, 𝑡2) ↦ (𝜆𝑡1, 𝜆𝑡2) and (𝑠1, 𝑠2) ↦ (𝜆𝑠1, 𝜆

2𝑠2). It is clear that two curves with 𝐷6-
singularities are projectively equivalent if and only if their (𝑠1, 𝑠2) belong to the same 𝔾𝑚-orbit.
Thus, we may take the parameter space 𝔸2𝑠1,𝑠2

⧵ {0} and quotient by this projective equivalence.
Combining the previous statements, following the notation of Lemma 8.1, we obtain the

following description of the loci Σ𝑖 in 𝑃
GIT

5 .

Proposition A.1. The Zariski closure Σ7 of the 𝐴9 locus in 𝑃
GIT

5 is isomorphic to ℙ(1, 2, 3, 3) with

projective coordinates [𝑠, 𝑟, ℎ, 𝑢] where ℎ ∶= 𝑝2 − 𝑢. Moreover,

∙ Σ1 corresponds to the point [1,0,0,0];
∙ Σ2 corresponds to the point [0,0,0,1];
∙ Σ3 corresponds to ℎ = 𝑢 = 0;
∙ Σ4 corresponds to 𝑟 = 0 and ℎ = 0;
∙ Σ5 corresponds to ℎ = 0.

The Zariski closureΣ6 of the𝐷6 locus in𝑃
GIT

5 is isomorphic toℙ(1, 2) ≅ ℙ1 with projective coordinates

[𝑠1, 𝑠2]. Moreover,

∙ Σ1 corresponds to the point [1,0] and
∙ Σ6 and Σ7 intersect only at the point Σ1.

A.1 𝐴12
Recall that 𝑋26 is given by (𝑥𝑤 − 𝑦

13 − 𝑧2 = 0) ⊂ ℙ(1, 2, 13, 25). In this section, we verify the K-
polystability of (𝑋26,

8

15
𝐶′
0
), where 𝐶′

0
= (𝑤 = 0), using techniques of Ilten and Süß [59].

Proposition A.2. The log Fano pair (𝑋26,
8

15
𝐶′
0
) is K-polystable where 𝐶′

0
= (𝑤 = 0).
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Proof. Consider the projective coordinate ring 𝐴 of 𝑋26, where

𝐴 = ℂ[𝑥, 𝑦, 𝑧, 𝑤]∕(𝑥𝑤 − 𝑦13 − 𝑧2).

Consider the action of 𝔾2𝑚 on 𝑌 ∶= Spec 𝐴 given by (𝑥, 𝑦, 𝑧, 𝑤) ↦ (𝜆
26𝜇𝑥, 𝜆2𝜇2𝑦, 𝜆13𝜇13𝑧, 𝜇25𝑤).

It is clear that this action descends to a 𝔾𝑚-action on (𝑋26,
8

15
𝐶′
0
). Thus, by [93, Theorem 1.4], it

suffices to show 𝔾𝑚-equivariant K-polystability of (𝑋26,
8

15
𝐶′
0
).

Denote by 𝑅 ∶= ℂ[𝑥, 𝑦, 𝑧, 𝑤], and 𝐹 = 𝑥𝑤 − 𝑦13 − 𝑧2, so𝐴 = 𝑅∕(𝐹). The character lattice𝑀 =
ℤ⟨(26, 1), (1, 1)⟩ ⊂ ℤ2, and for every (𝛼, 𝛽) ∈ 𝑀, we know

𝑅(𝛼,𝛽) = ⟨𝑥𝑎𝑦𝑏𝑧𝑐𝑤𝑑 ∣ 𝑎(26, 1) + 𝑏(2, 2) + 𝑐(13, 13) + 𝑑(0, 25) = (𝛼, 𝛽)⟩.
In the ring 𝐴, if we want to determine 𝐴(𝛼,𝛽), it suffices to assume 𝑐 ∈ {0, 1}. We also notice that
the parities of 𝑐 and 𝛼 are the same, so if we assume 𝛼 even, then we only need to take 𝑐 = 0. Then
the equation becomes

𝐴(𝛼,𝛽) = ⟨𝑥𝑎𝑦𝑏𝑤𝑑 ∣ 𝑎(26, 1) + 𝑏(2, 2) + 𝑑(0, 25) = (𝛼, 𝛽)⟩.
By passing to an even larger multiple, we may assume that (𝛼, 𝛽) = 𝑒(26, 1) + 𝑓(0, 25). Then
𝑎(26, 1) + 𝑏(2, 2) + 𝑑(0, 25) = 𝑒(26, 1) + 𝑓(0, 25) implies

𝑎 = 𝑒 − g , 𝑑 = 𝑓 − g , 𝑏 = 13g where 0 ⩽ g ⩽ min{𝑒, 𝑓}.

The weight cone 𝜔 ⊂ 𝑀ℚ is generated by (26,1) and (0,25).
Next, we follow the setup by Altmann and Hausen on polyhedral divisors [8]. Recall that𝑀 ⊂

ℤ2 is the sublattice generated by (25,0) and (1,1). Let𝑁 ⊃ ℤ2 be the dual lattice of𝑀 generated by
1

25
(1, −1) and (0,1). For each 𝑢 = (𝛼, 𝛽) ∈ 𝜔 ∩𝑀, we decompose it as 𝑢 = 𝑒(26, 1) + 𝑓(0, 25). Here

𝑒, 𝑓 ∈ 1

26
ℤ⩾0 and 𝑒 − 𝑓 ∈ ℤ. Then the polyhedral divisor𝔇 on ℙ1 is given by

𝔇(𝑢) =

{
13𝑓[1] − 12𝑓[0] if 𝑒 ⩾ 𝑓 ⩾ 0

13𝑓[1] − 12𝑓[0] + (𝑒 − 𝑓)[∞] if 𝑓 ⩾ 𝑒 ⩾ 0.

The polyhedrals are given by

𝔇[0] =
6

325
(1, −26) + 𝜎, 𝔇[1] =

1

50
(−1, 26) + 𝜎, 𝔇[∞] = conv

(
(0, 0),

1

25
(1, −1)

)
+ 𝜎.

Here, 𝜎 = 𝜔∨ ⊂ 𝑁ℚ is spanned by (1,0) and (−1, 26). Denote the four vertices by 𝑥0 =
6

325
(1, −26),

𝑥1 =
1

50
(−1, 26), 𝑥2 = (0, 0), and 𝑥3 = (

1

25
(1, −1)). Then these vertical divisors correspond to

𝐷[0],𝑥0 = (𝑦 = 0), 𝐷[1],𝑥1 = (𝑧 = 0), 𝐷[∞],𝑥2 = (𝑤 = 0), 𝐷[∞],𝑥3 = (𝑥 = 0).

We also denote the extremal ray by 𝜌1 = ⟨(1, 0)⟩ and 𝜌2 = ⟨(−1, 26)⟩. Notice that

𝜇(𝑥0) = 13, 𝜇(𝑥1) = 2, 𝜇(𝑥2) = 1, 𝜇(𝑥3) = 1.

Then, for any presentation 𝐾ℙ1 = 𝑎0[0] + 𝑎1[1] + 𝑎2[∞], we have

𝐾𝑌 = (13𝑎0 + 12)𝐷[0],𝑥0 + (2𝑎1 + 1)𝐷[1],𝑥1 + 𝑎2
(
𝐷[∞],𝑥2 + 𝐷[∞],𝑥3

)
.
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For simplicity, let us choose 𝑎0 = 𝑎1 = −1, 𝑎2 = 0. Then 𝐾𝑌 = −𝐷[0],𝑥0 − 𝐷[1],𝑥1 . Hence,

−
(
𝐾𝑌 + 𝑐𝐷[∞],𝑥3

)
= 𝐷[0],𝑥0 + 𝐷[1],𝑥1 − 𝑐𝐷[∞],𝑥2 .

Next, we will try to use 𝑇-varieties to study test configurations. We follow the notation of [59].
Let us choose a point 𝑄 ∈ ℙ1, a natural number 𝑚 ∈ ℤ>0, and a vector 𝑣 ∈

1

𝑚
𝑁. Consider the

lattices 𝑀̃ ∶= 𝑀 × ℤ and 𝑁̃ ∶= 𝑁 × ℤ. Define 𝜎̃ ⊂ 𝑁̃ℚ as

𝜎̃ ∶=

⟨(
𝑣 +

∑
𝑃∈ℙ1⧵{𝑄}

𝔇𝑃,
1

𝑚

)
,

( ∑
𝑃∈ℙ1

𝔇𝑃, 0

)⟩
.

Define the polyhedral divisor 𝔇̃ by

𝔇̃ ∶=
(
conv

((
𝑣,
1

𝑚

)
, (𝔇𝑄, 0)

)
+ 𝜎̃

)
⊗𝑄 +

∑
𝑃∈ℙ1⧵{𝑄}

((𝔇𝑃, 0) + 𝜎̃) ⊗ 𝑃.

Then, we have a 𝑀̃-graded algebra

 ∶= ⨁
𝑢̃∈𝜎̃∨∩𝑀̃

𝐻0(ℙ1,(⌊𝔇̃(𝑢̃)⌋)).

Let (𝑄, 𝑣,𝑚) ∶= Spec . Then we see 𝔇̃(0, 𝑘) = 0, so we have a subring 0 of  that consists
of (0, 𝑘)-graded pieces. Moreover,0 = ℂ[𝑡]where 𝑡 is the canonical section of(⌊𝔇̃(0, 1)⌋) = .
Thus, we get a 𝑇 × 𝔾𝑚-equivariant morphism  → 𝔸1. It is clear that

𝔇̃(𝑢, 𝑘) = min

{
(𝑣, 𝑢) +

𝑘

𝑚
,𝔇𝑄(𝑢)

}
⋅ 𝑄 +

∑
𝑃∈ℙ1⧵{𝑄}

𝔇𝑃(𝑢) ⋅ 𝑃.

Hence, when 𝑘 ≫ 0, we see 𝔇̃(𝑢, 𝑘) = 𝔇(𝑢). Thus, the localization𝑡 = 𝐴⊗ ℂ[𝑡, 𝑡−1].
Next, we analyze the central fiber 0(𝑄, 𝑣,𝑚) = Spec ∕(𝑡). It is clear that

0(𝑄, 𝑣,𝑚) = Spec
⨁

(𝑢,𝑘)∈𝜎∨∩𝑀̃

𝐻0(ℙ1,(⌊𝔇̃(𝑢, 𝑘)⌋))∕𝐻0(ℙ1,(⌊𝔇̃(𝑢, 𝑘 − 1)⌋)).

For computational purposes, consider the lattice automorphism 𝜙 ∶ 𝑁̃ → 𝑁̃ given by

𝜙(𝑣′, 𝑚′) ∶= (𝑣′ −𝑚′𝑚𝑣,𝑚′).

The dual automorphism 𝜙∨ ∶ 𝑀̃ → 𝑀̃ is given by 𝜙∨(𝑢, 𝑘) = (𝑢, 𝑘 − 𝑚(𝑣, 𝑢)). Hence,

𝜙∗𝔇̃(𝑢, 𝑘) = 𝔇̃(𝜙
∨(𝑢, 𝑘)) = min

{
𝑘

𝑚
,𝔇𝑄(𝑢)

}
⋅ 𝑄 +

∑
𝑃∈ℙ1⧵{𝑄}

𝔇𝑃(𝑢) ⋅ 𝑃.

In order for the 𝜙∨(𝑢, 𝑘)-graded piece of 0 to be nonzero, we require two conditions:
(1) ⌊min{ 𝑘

𝑚
,𝔇𝑄(𝑢)}⌋ > ⌊min{𝑘−1

𝑚
,𝔇𝑄(𝑢)}⌋;

(2) deg⌊𝜙∗𝔇̃(𝑢, 𝑘)⌋ ⩾ 0.
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94 of 113 ASCHER et al.

Conditions (1) and (2) together are equivalent to 𝑘 ∈ 𝑚ℤ and𝔇𝑄(𝑢) ⩾
𝑘

𝑚
, and

∑
𝑃∈ℙ1⧵{𝑄}

⌊𝔇𝑃(𝑢)⌋ + 𝑘𝑚 ⩾ 0.

Denote by 𝜏 ⊂ 𝑁̃ℚ the cone generated by (𝔇𝑄, −
1

𝑚
) and (

∑
𝑃∈ℙ1⧵{𝑄}𝔇𝑃,

1

𝑚
). Consider the

sublattice of 𝑀̃ of index𝑚, namely, 𝑀̃𝑚 ∶= 𝑀 ×𝑚ℤ ⊂ 𝑀̃. Consider the semigroup

𝑆 ∶=

⎧
⎪⎨⎪⎩
(𝑢, 𝑘) ∈ 𝜏∨ ∩ 𝑀̃𝑚 ∣

∑
𝑃∈ℙ1⧵{𝑄}

⌊𝔇𝑃(𝑢)⌋ + 𝑘𝑚 ⩾ 0
⎫
⎪⎬⎪⎭
.

Then, we have

(1) The central fiber 0 is isomorphic to the affine toric variety Spec ℂ[𝑆];
(2) The normalization of 0 is isomorphic to the affine toric variety Spec ℂ[𝜏∨ ∩ 𝑀̃𝑚].
Hence, 0 is normal if and only if 𝑆 = 𝜏∨ ∩ 𝑀̃𝑚, which is equivalent of saying that the collection
{𝔇𝑃}𝑃≠𝑄 is admissible.
Next, we want to study the limit of boundary divisor (𝑤 = 0) in the central fiber 0. We first

realize (𝑤 = 0) in 𝑌 as a Cartier divisor. Let 𝑓 be a rational function on ℙ1 such that div(𝑓) =
12[0] − 13[1] + [∞]. Then we can check by [108, Proposition 3.14] that

div(𝑓 ⋅ 𝜒(0,25)) = 𝐷[∞],𝑥2 = (𝑤 = 0).

By the admissibility condition, the only choice of 𝑄 will be 𝑄 = [0] or [1].
Case 1:𝑄 = [0]. For simplicity, we also set 𝑣 = 0 at themoment. Then, in our test configuration

([0], 0,𝑚), we can compute similarly that
div(𝑓 ⋅ 𝜒(0,25,𝑘)) = (12𝑚 + 𝑘)𝐷

[0],
(
0, 1
𝑚

) + 𝐷[∞],(𝑥2,0).

Also, div(𝜒(0,0,1)) = 𝐷
[0],(0, 1

𝑚
)
= 0. Hence, we know that 𝐷[∞],(𝑥2,0) = div(𝑓 ⋅ 𝜒

(0,25,−12𝑚)). By

carefully checking the quotient map→ ∕(𝑡), we find out that the restriction of 𝑓 ⋅ 𝜒(0,25,−12𝑚)
is exactly the function 𝜒(0,25,−12𝑚) on 0. Hence, we have (𝑤 = 0)|0 = div(𝜒(0,25,−12𝑚)). So, the
computations are about the toric variety0 and its boundary divisorΔ0 ∶= 𝑐 ⋅ (𝑤 = 0)|0 . For sim-
plicity, we may assume 𝑚 = 1. Then 0 = Spec ℂ[𝜏∨ ∩ 𝑀̃]. The primitive vectors of 𝜏 in 𝑁̃ are
given by 𝑛1 = (

6

25
(1, −26), −13), 𝑛2 = (

1

25
(−1, 26), 2), and 𝑛3 = (

1

25
(1, 24), 2). Let 𝑢̃0 be the vector

in 𝑀̃ℚ representing the anticanonical divisor −𝐾0 , then (𝑢̃0, 𝑛𝑖) = 1. Let 𝑢̃1 be the vector in 𝑀̃ℚ
representing the divisor (𝑤 = 0)|0 . Then computation shows

𝑢̃0 = (15, 15, −7), 𝑢̃1 = (0, 25, −12).

Thus, for any toric valuation 𝑣𝜉 of ℂ(0) with 𝜉 ∈ 𝜏, we have
𝐴(0,Δ0)(𝑣𝜉) = (𝑢̃0 − 𝑐𝑢̃1, 𝜉), vol0,𝑜(𝑣𝜉) = 6vol(𝜏∨ ∩ (𝜉 ⩽ 1)).
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From [95], we know that

Fut( , Δ, 𝜉0; 𝜂) = 𝑑𝑑𝑡
||||𝑡=0v̂ol(0,Δ0),𝑜(𝑣𝜉0−𝑡𝜂).

In our setting, 𝜉0 = (0, 1, 0) is induced by the quotient map 𝑌 ⧵ {𝑜} → 𝑋26, and 𝜂 = (−𝑚𝑣,𝑚). We
know that all such 𝜂 satisfy (𝜂, 𝜂∗

0
) > 0where 𝜂∗

0
= (0, 0, 1) ∈ 𝑀̃. We always have (𝜉0, 𝜂

∗
0
) = 0. □

Proposition A.3. Under the above notation, we have Fut( , Δ, 𝜉0; 𝜂) > 0 for any 𝜂 satisfying
(𝜂, 𝜂∗

0
) > 0 if and only if the centroid 𝑢̃2 of 𝜏

∨ ∩ (𝜉0 = 1) satisfies

𝑢̃2 = 𝑎(𝑢̃0 − 𝑐𝑢̃1) + 𝑏𝜂
∗
0

for some 𝑎, 𝑏 > 0.

Proof. We first determine 𝑎 by (𝑢̃2, 𝜉0) = 𝑎(𝑢̃0 − 𝑐𝑢̃1, 𝜉0). Then the vector 𝑎(𝑢̃0 − 𝑐𝑢̃1) ∈ (𝜉0 = 1).
Then we may choose 𝜂 in a way such that (𝑢̃0 − 𝑐𝑢̃1, 𝜂) = 0 and (𝜂, 𝜂

∗
0
) > 0 since v̂ol is invariant

under rescaling. Then 𝐴(0,Δ0)(𝑣𝜉0−𝑡𝜂) = 𝑎−1 > 0. Moreover, computation shows

𝑑

𝑑𝑡

||||𝑡=0vol(𝜏
∨ ∩ ((𝜉0 − 𝑡𝜂) ⩽ 1)) = vol(𝜏

∨ ∩ (𝜉0 = 1)) ⋅ (𝑎(𝑢̃0 − 𝑐𝑢̃1) − 𝑢̃2, 𝜂).

Hence, Fut( , Δ, 𝜉0; 𝜂) > 0 is equivalent to (𝑎(𝑢̃0 − 𝑐𝑢̃1) − 𝑢̃2, 𝜂) > 0 for any 𝜂 satisfying (𝑢̃0 −
𝑐𝑢̃1, 𝜂) = 0 and (𝜂, 𝜂

∗
0
) > 0. This is equivalent to 𝑎(𝑢̃0 − 𝑐𝑢̃1) − 𝑢̃2 = 𝑎

′(𝑢̃0 − 𝑐𝑢̃1) + 𝑏𝜂
∗
0
for some

𝑎′ ∈ ℝ and 𝑏 > 0. Since (𝜉, 𝜂∗
0
) = 0, we get 𝑎′ = 0. Hence, the proof is finished. □

By computation, we have

𝑢̃2 =
(
9, 1, −

49

150

)
, 𝑢̃0 − 𝑐𝑢̃1 = (15, 15 − 25𝑐, −7 + 12𝑐), 𝜂

∗
0 = (0, 0, 1).

Hence, the only 𝑐 satisfying the condition of Proposition A.3 is 𝑐 = 8

15
.

Case 2: 𝑄 = [1]. As always, we want to first determine the polyhedral divisors. We know that

𝔇[0] +𝔇[∞] = conv
(
6

325
(1, −26),

1

325
(19, −169)

)
+ 𝜎,

𝔇[0] +𝔇[1] +𝔇[∞] = conv
(
1

650
(−1, 26),

1

26
(1, 0)

)
+ 𝜎.

It is clear that ([1], 0,𝑚) has five distinguished vertical divisors:
𝐷[0],(𝑥0,0), 𝐷[1],(𝑥1,0), 𝐷[1],

(
0, 1
𝑚

), 𝐷[∞],(𝑥2,0), 𝐷[∞],(𝑥3,0).

We can compute that

div(𝑓 ⋅ 𝜒(0,25,𝑘)) = (−13𝑚 + 𝑘)𝐷
[1],

(
0, 1
𝑚

) + 𝐷[∞],(𝑥2,0).
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We also have div(𝜒(0,0,1)) = 𝐷
[1],(0, 1

𝑚
)
= 0. Hence, we have𝐷[∞],(𝑥2,0) = div(𝑓 ⋅ 𝜒(0,25,13𝑚)). Next,

we will analyze the cone 𝜏 ⊂ 𝑁̃ℚ. Assume𝑚 = 1 for simplicity. Then, the primitive vectors of 𝜏 in
𝑁̃ are 𝑛1 = (

1

25
(−1, 26), −2), 𝑛2 = (

6

25
(1, −26), 13), and 𝑛3 = (

1

25
(19, −169), 13). Let 𝑢̃0 and 𝑢̃1 be

vectors in 𝑀̃ℚ representing −𝐾0 and (𝑤 = 0)|0 , respectively. Then

𝑢̃0 = (15, 15, 7), 𝑢̃1 = (0, 25, 13).

We still have 𝜉0 = (0, 1, 0) and 𝜂
∗
0
= (0, 0, 1). Hence,

𝑢̃2 =
(
9, 1,

319

975

)
, 𝑢̃0 − 𝑐𝑢̃1 = (15, 15 − 25𝑐, 7 − 13𝑐), 𝜂

∗
0 = (0, 0, 1).

Hence, the only 𝑐 satisfying the condition of Proposition A.3 is 𝑐 = 8

15
.

A.2 𝐴11
For plane quintic curves with 𝐴11-singularities, we have two cases: reducible and irreducible
curves. We begin with the reducible case.

𝐴11 reducible
Let 𝐶 be a reducible plane quintic curve with an 𝐴11-singularity. Then after a projective
transformation, in the affine coordinates [𝑥, 𝑦, 1], we can write the equation of 𝐶 as (see
Proposition A.1)

𝐶 =
(
(𝑥 − 𝑦2)((𝑥 − 𝑦2)(1 + 𝑠𝑥) − 𝑥3) = 0

)
.

In other words, we have 𝑝 = 0, 𝑢 = 0, and 𝑟 = 1 in (A.1). Let us choose a 6-jet (𝑥′, 𝑦) at the origin
by 𝑥′ ∶= 𝑥 − 𝑦2 − 1

2
𝑦6. Then, the equation of 𝐶 in (𝑥′, 𝑦) becomes

𝑥′2 = 1
4
𝑦12 + higher order terms,

where (𝑥′, 𝑦) has weight (6,1). The only parameter of 𝐶 here is 𝑠 ∈ 𝔸1. All these curves are GIT
stable.When 𝑠 goes to infinity, the unique GIT polystable limit will be𝑄5, that is, the double conic
union a transversal line.

Theorem A.4. Suppose 𝐶 ⊂ ℙ2 is a reducible quintic curve with an 𝐴11 singularity. Then the log

Fano pair (ℙ2, 𝑐𝐶) is K-semistable if and only if 0 < 𝑐 ⩽ 6

11
. Moreover, (ℙ(1, 1, 4), 6

11
𝐶0) is the K-

polystable degeneration of (ℙ2, 6
11
𝐶) where 𝐶0 = (𝑥

2𝑧2 + 𝑦6𝑧 = 0).

Proof. We first prove the “only if” part. Suppose that (ℙ2, 𝑐𝐶) is K-semistable, andwewant to show
𝑐 ⩽ 6

11
. Let us perform the (6,1)-weighted blow-up of ℙ2 in the coordinates (𝑥′, 𝑦), and denote

the resulting surface and exceptional divisor by (𝑋, 𝐸), with 𝜋 ∶ 𝑋 → ℙ2 the weighted blow-up
morphism. Let 𝑄 = (𝑥 = 𝑦2) be a smooth conic in ℙ2. We know that the weight of 𝑥 − 𝑦2 = 𝑥′ +
1

2
𝑦6 is 6, hence 𝑄 ∶= 𝜋−1∗ 𝑄 ∼ 2𝜋

∗𝐻 − 6𝐸 is effective on 𝑋. It is easy to see (𝐸2) = − 1
6
and (𝑄

2
) =

−2, hence the Mori cone of 𝑋 is generated by 𝐸 and 𝑄. It is clear that

𝐴(ℙ2,𝑐𝐶)(𝐸) = 7 − 12𝑐, −𝐾ℙ2 − 𝑐𝐶 ∼ℚ (3 − 5𝑐)𝐻.
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WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES 97 of 113

We also have 𝜋∗𝐻 − 𝑡𝐸 is ample if and only if 0 < 𝑡 < 2, and big if and only if 0 ⩽ 𝑡 < 3. Then, by
computation, we have

vol𝑋(𝜋
∗𝐻 − 𝑡𝐸) =

⎧⎪⎪⎨⎪⎪⎩

1 −
𝑡2

6
if 0 ⩽ 𝑡 ⩽ 2;

(3 − 𝑡)2

3
if 2 ⩽ 𝑡 ⩽ 3.

Hence, 𝑆(ℙ2,𝑐𝐶)(𝐸) = (3 − 5𝑐) ∫ ∞0 vol𝑋(𝜋∗𝐻 − 𝑡𝐸) = (3 − 5𝑐) 53 . So, the valuative criterion (Theo-
rem 2.9) implies

7 − 12𝑐 = 𝐴(ℙ2,𝑐𝐶)(𝐸) ⩾ 𝑆(ℙ2,𝑐𝐶)(𝐸) = (3 − 5𝑐)
5

3
,

which implies 𝑐 ⩽ 6

11
.

We now begin showing the “if” part. Similar to the proof of Theorem 7.2, we construct a special
degeneration then later on use techniques of Ilten and Süß [59] to show K-polystability of the
degeneration. □

PropositionA.5. The log Fano pair (ℙ2, 𝑐𝐶) admits a special degeneration to (ℙ(1, 1, 4), 𝑐𝐶0)where

𝐶0 is given by the equation 𝑥
2𝑧2 + 𝑦6𝑧 = 0.

Proof. Here is the construction of the special degeneration. Take our family (ℙ2, 𝐶) × 𝔸1. We
perform the following birational transformations:

where in the central fiber, we have

Here 𝜋 is the (6,1,1)-weighted blow-up of ℙ2 × 𝔸1 in the local coordinates (𝑥′, 𝑦, 𝑡), 𝑆 = ℙ(1, 1, 6)
is the exceptional divisor of 𝜋, g is the contraction of 𝑄 in 𝑋 ⊂ 0, 𝑓 is the flip of the curve 𝑄 in0 (since by computation the normal bundle𝑄∕ ≅ 

𝑄
(−2) ⊕ 

𝑄
(−1)), and 𝜓 is the divisorial

contraction that contracts 𝑋′ to a point.
Let us analyze the geometry of these birational maps. Suppose that 𝑆 has projective coordi-

nates [𝑥1, 𝑥2, 𝑥3] of weights (1,1,6), respectively. Then 𝑆 ∩ 𝑋 = 𝐸 = (𝑥1 = 0), and 𝑄 ∩ 𝐸 = {𝑝} is a
smooth point of 𝑆 and𝑋. Since𝑄 has normal bundle(−2) ⊕ (−1) in , the surface 𝑆 is a (2,1)-
weighted blow-up of 𝑆 at 𝑝. Let 𝑄

+
be the flipped curve in 𝑆, then 𝑆 has an 𝐴1-singularity at the
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98 of 113 ASCHER et al.

unique intersection of ℎ−1∗ 𝐸 and 𝑄
+
. Then 𝜓 ∶ 𝑆 → 𝑆′ contracts ℎ−1∗ 𝐸 and creates a singularity of

type 1
4
(1, 1). Thus, 𝑆′ is ℙ(1, 1, 4).

For the degeneration 𝐶0 of 𝐶 in 𝑆
′, note that 𝜋−1∗ (𝐶 × 𝔸

1) ∩ 𝑆 is the curve 𝐶′
0
= (𝑥2

3
= 1
4
𝑥12
2
).

In addition, we know that 𝑝 has coordinate [0, 1, − 1
2
] which is contained in 𝐶′

0
. It is clear that

𝐶′
0
has an 𝐴11-singularity at [1,0,0] near where the birational map 𝑆 ⤏ 𝑆

′ is an isomorphism.
Thus, 𝐶0 has an 𝐴11-singularity at a smooth point of 𝑆

′ as well. Since 𝑄 is contained in 𝐶, we

know that𝑄
′
∶= 𝜓∗𝑄

+
is contained in the degeneration𝐶0 of𝐶. By a toric computation, we know

that 𝑄
′
= (𝑧 = 0) in 𝑆′ = ℙ(1, 1, 4). This implies that up to a projective transformation 𝐶0 has the

equation (𝑥2𝑧2 + 𝑦6𝑧 = 0) in ℙ(1, 1, 4). □

Now we return to the proof of the theorem. By Propositions A.5 and A.6 and Theorem 2.16, we
know that (ℙ2, 6

11
𝐶) is K-semistable. Hence, the proof is finished by Proposition 2.13.

We verify K-polystability of (ℙ(1, 1, 4), 6
11
𝐶0) below.

PropositionA.6. The log Fano pair (ℙ(1, 1, 4), 6
11
𝐶0) is K-polystable where𝐶0 = (𝑥

2𝑧2 + 𝑦6𝑧 = 0).

Proof. It is clear that the pair (ℙ(1, 1, 4), 6
11
𝐶0) admits a 𝔾𝑚-action, which can be lifted to a 𝔾

2
𝑚-

action on 𝑌 ∶= 𝐶(ℙ(1, 1, 4),ℙ(1,1,4)(1)) ≅ 𝔸3(𝑥,𝑦,𝑧) as

(𝑥, 𝑦, 𝑧) ↦ (𝜇𝑥, 𝜆𝜇𝑦, 𝜆6𝜇4𝑧).

Thus, by [93, Theorem 1.4], it suffices to show 𝔾𝑚-equivariant K-polystability of (ℙ(1, 1, 4),
6

11
𝐶0).

Denote by 𝑁 the lattice of 1-PS’s in 𝔾2𝑚. Since 𝑌 is a toric variety with the standard 𝔾
3
𝑚-action,

we denote by 𝑁𝑌 the lattice of 1-PS’s in 𝔾
3
𝑚. By [8, Section 11], we have an embedding of lattices

𝐹 ∶ 𝑁 → 𝑁𝑌 and a (noncanonical) surjective map 𝑠 ∶ 𝑁𝑌 → 𝑁 with 𝑠◦𝐹 = id. Then the maps 𝐹
and 𝑠 can be chosen as

𝐹 =
⎡⎢⎢⎣

0 1

1 1

6 4

⎤⎥⎥⎦
, 𝑠 =

[
−1 1 0

1 0 0

]
.

Computation shows 𝜎 ⊂ 𝑁ℚ is spanned by (−2, 3) and (1,0). The nontrivial polyhedral divisors
are

𝔇[0] = conv
(
(0, 0),

(
−
1

2
,
1

2

))
+ 𝜎, 𝔇[∞] =

(
1

6
, 0

)
+ 𝜎.

Denote by 𝑥0 = (0, 0), 𝑥1 = (−
1

2
, 1
2
), 𝑥2 = (

1

6
, 0). Then computation shows

div(𝜒(0,1)) = 𝐷[0],𝑥1 = (𝑥 = 0),

div(𝜒(1,1)) = 𝐷[∞],𝑥2 = (𝑦 = 0),

div(𝑓 ⋅ 𝜒(6,4))) = 𝐷[0],𝑥0 = (𝑧 = 0).
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WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES 99 of 113

Here, 𝑓 is a rational function on ℙ1 with div(𝑓) = [0] − [∞]. Let us choose a rational function g

on ℙ1 such that div(g) = [1] − [∞]. Then in a suitable coordinate of ℙ1, we have

div
(
g ⋅ 𝜒(6,6)

)
= (𝑥2𝑧 = 𝑦6) = 𝐷[1],0.

Hence, the boundary divisor is given by Δ = 𝑐 ⋅ div(𝑓g ⋅ 𝜒(12,10)) = 𝑐(𝐷[0],𝑥0 + 𝐷[1],0).
Next, we will look at the test configuration picture.
Case 1: 𝑄 = [0]. Computation shows that there are four distinguished vertical divisors on  :

𝐷[0],(𝑥1,0) = (𝑥 = 0), 𝐷[∞],(𝑥2,0) = (𝑦 = 0), 𝐷[0],(𝑥0,0) = (𝑧 = 0), 𝐷[0],(0,1) = 0.
By computation, we have

div(𝑓g ⋅ 𝜒(12,10,𝑘)) = 𝐷[0],(𝑥0,0) + 𝐷[1],(0,0) + (𝑘 + 1)𝐷[0],(0,1).

Hence, (𝐷[0],(𝑥0,0) + 𝐷[1],(0,0))|0 = div(𝜒(12,10,−1)). We know that 𝜏 is spanned by 𝑛1 = (0, 0, −1),
𝑛2 = (−1, 1, −2), and 𝑛3 = (1, 0, 6). We still have 𝜉0 = (0, 1, 0) and 𝜂

∗
0
= (0, 0, 1). Hence,

𝑢̃0 = (7, 6, −1), 𝑢̃1 = (12, 10, −1), 𝑢̃2 =
1

12
(10, 12, −1).

To satisfy the condition of Proposition A.3, the only 𝑐 is 𝑐 = 6

11
.

Case 2: 𝑄 = [∞]. Computation shows that there are four distinguished vertical divisors on  :
𝐷[0],(𝑥1,0) = (𝑥 = 0), 𝐷[∞],(𝑥2,0) = (𝑦 = 0), 𝐷[0],(𝑥0,0) = (𝑧 = 0), 𝐷[∞],(0,1) = 0.

By computation, we have

div(𝑓g ⋅ 𝜒(12,10,𝑘)) = 𝐷[0],(𝑥0,0) + 𝐷[1],(0,0) + (𝑘 − 2)𝐷[0],(0,1).

Hence, (𝐷[0],(𝑥0,0) + 𝐷[1],(0,0))|0 = div(𝜒(12,10,2)).We know that 𝜏 is spanned by𝑛1 = (0, 0, 1),𝑛2 =
(−1, 1, 2), and 𝑛3 = (1, 0, −6). We still have 𝜉0 = (0, 1, 0) and 𝜂

∗
0
= (0, 0, 1). Hence,

𝑢̃0 = (7, 6, 1), 𝑢̃1 = (12, 10, 2), 𝑢̃2 =
1

12
(10, 12, 1).

To satisfy the condition of Proposition A.3, the only 𝑐 is 𝑐 = 6

11
. □

𝐴11 irreducible
Let 𝐶 be an irreducible plane quintic curve with an 𝐴11-singularity. Then after a projec-
tive transformation, in the affine coordinate [𝑥, 𝑦, 1], we can write the equation of 𝐶 as (see
Proposition A.1)

𝐶 =
(
(𝑥 − 𝑦2)((𝑥 − 𝑦2)(1 + 𝑠𝑥) + 2𝑥2𝑦) + 𝑥5 = 0

)
.

In other words, we have 𝑝 = −1, 𝑢 = 1, and 𝑟 = 0 in (A.1). Let us choose a 6-jet (𝑥′, 𝑦) at the origin
by 𝑥′ ∶= 𝑥 − 𝑦2 + 𝑦5. Then the equation of 𝐶 in (𝑥′, 𝑦) becomes

𝑥′2 = −𝑠𝑦12 + higher order terms,
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where (𝑥′, 𝑦) has weight (6,1). The only parameter here is 𝑠 ∈ 𝔸1 ⧵ {0}. All these curves are GIT
stable. If 𝑠 = 0, we recover the GIT stable 𝐴12 quintic curve discussed earlier. When 𝑠 goes to
infinity, the unique GIT polystable limit will be 𝑄5, that is, the double conic union a transversal
line.

Theorem A.7. Suppose 𝐶 ⊂ ℙ2 is an irreducible quintic curve with an 𝐴11 singularity. Then the

log Fano pair (ℙ2, 𝑐𝐶) is K-semistable if and only if 0 < 𝑐 ⩽ 63

115
. Moreover, (ℙ(1, 4, 25), 63

115
𝐶0) is the

K-polystable degeneration of (ℙ2, 63
115
𝐶) where 𝐶0 = (𝑧

2 + 𝑥2𝑦12 = 0).

Proof. We first prove the “only if” part. Suppose that (ℙ2, 𝑐𝐶) is K-semistable, andwewant to show
𝑐 ⩽ 63

115
. Let us perform the (6,1)-weighted blow-up of ℙ2 in the coordinates (𝑥′, 𝑦), and denote

the resulting surface and exceptional divisor by (𝑋, 𝐸), with 𝜋 ∶ 𝑋 → ℙ2 the weighted blow-up
morphism. Let𝑄 = (𝑥 = 𝑦2) be a smooth conic inℙ2.We know that theweight of𝑥 − 𝑦2 = 𝑥′ − 𝑦5

is 5, hence 𝑄 ∶= 𝜋−1∗ 𝑄 ∼ 2𝜋
∗𝐻 − 5𝐸 is effective on 𝑋. It is easy to see (𝐸2) = (𝑄

2
) = − 1

6
; hence,

theMori cone of𝑋 is generated by 𝐸 and𝑄. We again use the valuative criterion of K-semistability
by Fujita and Li (Theorem 2.9), then

𝐴(ℙ2,𝑐𝐶)(𝐸) = 7 − 12𝑐, −𝐾ℙ2 − 𝑐𝐶 ∼ℚ (3 − 5𝑐)𝐻.

We also have 𝜋∗𝐻 − 𝑡𝐸 is ample if and only if 0 < 𝑡 < 12
5
, and big if and only if 0 ⩽ 𝑡 < 5

2
. Then

by computation, we have

vol𝑋(𝜋
∗𝐻 − 𝑡𝐸) =

{
1 − 𝑡

2

6
if 0 ⩽ 𝑡 ⩽ 12

5
;

(5 − 2𝑡)2 if 12
5
⩽ 𝑡 ⩽ 5

2
.

Hence, 𝑆(ℙ2,𝑐𝐶)(𝐸) = (3 − 5𝑐) ∫ ∞0 vol𝑋(𝜋∗𝐻 − 𝑡𝐸) = (3 − 5𝑐) 4930 . Since (ℙ2, 𝑐𝐶) is K-semistable,
the valuative criterion (Theorem 2.9) implies

7 − 12𝑐 = 𝐴(ℙ2,𝑐𝐶)(𝐸) ⩾ 𝑆(ℙ2,𝑐𝐶)(𝐸) = (3 − 5𝑐)
49

30
,

which implies 𝑐 ⩽ 63

115
.

We now begin showing the “if” part. Similar to the proof of Theorems 7.2 and A.4, we construct
a special degeneration then later on use techniques of Ilten and Süß [59] to show K-polystability
of the degeneration. □

Proposition A.8. The log Fano pair (ℙ2, 𝑐𝐶) admits a special degeneration to (ℙ(1, 4, 25), 𝑐𝐶0)

where 𝐶0 is given by the equation 𝑧
2 + 𝑥2𝑦12 = 0.

Proof. We follow notation from the first two diagrams of the proof of Proposition A.5. Here, 𝜋
is the (6,1,1)-weighted blow-up of ℙ2 × 𝔸1 in the local coordinates (𝑥′, 𝑦, 𝑡), 𝑆 = ℙ(1, 1, 6) is the
exceptional divisor of 𝜋, g is the contraction of 𝑄 in 𝑋 ⊂ 0, 𝑓 is the flip of the curve 𝑄 in 0, and
𝜓 is the divisorial contraction that contracts 𝑋′ to a point.
Let us analyze the geometry of these birational maps. Suppose that 𝑆 has projective coordi-

nates [𝑥1, 𝑥2, 𝑥3] of weights (1,1,6), respectively. Then, 𝑆 ∩ 𝑋 = 𝐸 = (𝑥1 = 0), and 𝑄 ∩ 𝐸 = {𝑝} is
the unique singular point of 𝑆 (type 1

6
(1, 1)) and 𝑋 (type 𝐴5). Inside the surface 𝑋, we have two
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WALL CROSSING FOR K-MODULI SPACES OF PLANE CURVES 101 of 113

smooth rational curves 𝐸 and𝑄 intersecting at 𝑝, such that (𝐸2) = (𝑄
2
) = − 1

6
. Hence, contracting

𝑄 in 𝑋 yields a smooth surface 𝑋′ that has to be ℙ2 by degree computation. On the other hand, 𝑆
and𝑋′ intersect along the proper transform 𝐸 of 𝐸 that becomes a conic curve in𝑋′ ≅ ℙ2. Hence,
(𝐸2) = −4 in 𝑆. Moreover, ℎ ∶ 𝑆 → 𝑆 ≅ ℙ(1, 1, 6) is a partial resolution of 𝑝 that only extracts the

flipped curve 𝑄
+
. By some combinatorial computation, we know that 𝑆 is a toric blow-up of 𝑆 at

𝑝 that creates a singularity of type 1
25
(1, 4) away from 𝐸. Hence, 𝑆′ is a toric surface carrying two

singularities of types 1
25
(1, 4) and 1

4
(1, 1). Thus, 𝑆′ ≅ ℙ(1, 4, 25).

For the degeneration 𝐶0 of 𝐶 on 𝑆
′, note that 𝜋∗(𝐶 × 𝔸

1) ∩ 𝑆 is the curve 𝐶′
0
= (𝑥2

3
+ 𝑠𝑥12

2
= 0).

In addition, we know that 𝑝 has coordinate [0,0,1] which is not contained in 𝐶′
0
. It is clear that

𝐶′
0
has an 𝐴11-singularity at the point [1,0,0] which is not 𝑝 and does not lie on 𝐸. Since 𝑆 ⤏ 𝑆

′ is
isomorphic around [1,0,0], we know that𝐶′

0
has an𝐴11-singularity at a smooth point ofℙ(1, 4, 25).

Since the 1
25
(1, 4) singularity on 𝑆 does not lie on 𝐸, we know that 𝐶0 does not pass through [0,0,1]

on 𝑆′ ≅ ℙ(1, 4, 25). Hence, after a projective coordinates change,wemaywrite𝐶0 = (𝑧
2 + 𝑥2𝑦12 =

0). □

Now we return to the proof of the theorem. By Propositions A.8 and A.9 and Theorem 2.16, we
know that (ℙ2, 63

115
𝐶) is K-semistable. Hence, the proof is finished by Proposition 2.13.

We verify K-polystability of (ℙ(1, 4, 25), 63
115
𝐶0) below.

Proposition A.9. The log Fano pair (ℙ(1, 4, 25), 63
115
𝐶0) is K-polystable where 𝐶0 = (𝑧

2 + 𝑥2𝑦12 =

0).

Proof. It is clear that the pair (ℙ(1, 4, 25), 63
115
𝐶0) admits a 𝔾𝑚-action, which can be lifted to a

𝔾2𝑚-action on 𝑌 ∶= 𝐶(ℙ(1, 4, 25),ℙ(1,4,25)(1)) ≅ 𝔸3(𝑥,𝑦,𝑧) as

(𝑥, 𝑦, 𝑧) ↦ (𝜇𝑥, 𝜆𝜇4𝑦, 𝜆6𝜇25𝑧).

Thus, by [93, Theorem 1.4], it suffices to show 𝔾𝑚-equivariant K-polystability of
(ℙ(1, 4, 25), 63

115
𝐶0).

Denote by 𝑁 the lattice of 1-PS’s in 𝔾2𝑚. Since 𝑌 is a toric variety with the standard 𝔾
3
𝑚-action,

we denote by 𝑁𝑌 the lattice of 1-PS’s in 𝔾
3
𝑚. By [8, Section 11], we have an embedding of lattices

𝐹 ∶ 𝑁 → 𝑁𝑌 and a (noncanonical) surjective map 𝑠 ∶ 𝑁𝑌 → 𝑁 with 𝑠◦𝐹 = id. Then the maps 𝐹
and 𝑠 can be chosen as

𝐹 =
⎡⎢⎢⎣

0 1

1 4

6 25

⎤⎥⎥⎦
, 𝑠 =

[
−4 1 0

1 0 0

]
.

Computation shows𝜎 ⊂ 𝑁ℚ is spanned by (−4, 1) and (1,0). The only nontrivial polyhedral divisor
is

𝔇[∞] = conv
(
(−4, 1),

(
1

6
, 0

))
+ 𝜎.

Denote by 𝑥0 = (
1

6
, 0) and 𝑥1 = (−4, 1). Then, we have

(𝑥 = 0) = div(𝜒(0,1)) = 𝐷[∞],𝑥0 , (𝑦 = 0) = div(𝜒
(1,4)) = 𝐷[∞],𝑥1 .
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Moreover, for any 𝑃 ≠ [∞], we may take the function 𝑓𝑃 on ℙ1 such that div(𝑓) = 𝑃 − [∞]. Then,
we may compute out that

div(𝑓𝑃 ⋅ 𝜒
(6,25)) = 𝐷𝑃,0 ∼ 𝐷[∞],𝑥0 + 6𝐷[∞],𝑥1 .

This implies that the curve 𝐶 induces a divisor on 𝑌 which corresponding to div(𝑓𝑃1𝑓𝑃2 ⋅ 𝜒
(12,50))

for some 𝑃1 ≠ 𝑃2 ∈ ℙ1 ⧵ {∞}.
Next, we will look at the test configuration picture.
Case 1: 𝑄 = [∞]. Computation shows that on there are three distinguished vertical divisors:

𝐷[∞],(𝑥0,0) = (𝑥 = 0), 𝐷[∞],(𝑥1,0) = (𝑦 = 0), 𝐷[∞],(0,1) = 0.
Again, by computation, we have

div(𝑓𝑃 ⋅ 𝜒
(6,25,𝑘)) = 𝐷𝑃,(0,0) + (𝑘 − 1)𝐷[∞],(0,1).

Hence, we need to take 𝑘 = 1, and we get 𝐷𝑃,(0,0)|0 = div(𝜒(6,25,1)). This implies that Δ0 = 𝑐 ⋅
div(𝜒(12,50,2)). The central fiber 0 = Spec ℂ[𝜏∨ ∩ 𝑀̃], where 𝜏 is spanned by 𝑛1 = (−4, 1, −1),
𝑛2 = (1, 0, −6), and 𝑛3 = (0, 0, 1). We still have 𝜉0 = (0, 1, 0) and 𝜂

∗
0
= (0, 0, 1). Hence, we have

𝑢̃0 = (7, 30, 1), 𝑢̃1 = (12, 50, 2), 𝑢̃2 =
1

300
(49, 300, 4).

To satisfy the condition of Proposition A.3, the only 𝑐 is 𝑐 = 63

115
.

Case 2: 𝑄 ≠ [∞]. Computation shows that on there are three distinguished vertical divisors:

𝐷[∞],(𝑥0,0) = (𝑥 = 0), 𝐷[∞],(𝑥1,0) = (𝑦 = 0), 𝐷𝑄,(0,1) = 0.
Again, by computation, we have

div(𝑓𝑃 ⋅ 𝜒
(6,25,𝑘)) =

{
𝐷𝑃,(0,0) + 𝑘𝐷𝑄,(0,1) if 𝑃 ≠ 𝑄
𝐷𝑄,(0,0) + (𝑘 + 1)𝐷𝑄,(0,1) if 𝑃 = 𝑄.

Hence, we have

𝐷𝑃,(0,0)|0 =
{
div(𝜒(6,25,0)) if 𝑃 ≠ 𝑄
div(𝜒(6,25,−1)) if 𝑃 = 𝑄.

This implies that Δ0 = 𝑐 ⋅ div(𝜒
12,50,𝛿) where 𝛿 = −1 if 𝑄 ∈ {𝑃1, 𝑃2} and 𝛿 = 0 otherwise. The

central fiber 0 = Spec ℂ[𝜏∨ ∩ 𝑀̃], where 𝜏 is spanned by 𝑛1 = (−4, 1, 1), 𝑛2 = (1, 0, 6), and
𝑛3 = (0, 0, −1). We still have 𝜉0 = (0, 1, 0) and 𝜂

∗
0
= (0, 0, 1). Hence, we have

𝑢̃0 = (7, 30, −1), 𝑢̃1 = (12, 50, 𝛿), 𝑢̃2 =
1

300
(49, 300, −4).

To satisfy the condition of Proposition A.3, the only 𝑐 is 𝑐 = 63

115
. □
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A.3 𝐴10
Let 𝐶 be an irreducible plane quintic curve with an 𝐴10-singularity. Then after a projective trans-
formation, in the affine coordinate [𝑥, 𝑦, 1], we canwrite the equation of𝐶 as (see PropositionA.1)

𝐶 =
(
(𝑥 − 𝑦2)((𝑥 − 𝑦2)(1 + 𝑠𝑥) + 2𝑥2𝑦 − 𝑟𝑥3) + 𝑥5 = 0

)
.

In other words, we have 𝑝 = −1 and 𝑢 = 1 in (A.1). Let us choose a 5-jet (𝑥′, 𝑦) at the origin by
𝑥′ ∶= 𝑥 − 𝑦2 + 𝑦5. Then the equation of 𝐶 in (𝑥′, 𝑦) becomes

𝑥′2 = −𝑟𝑦11 + higher order terms,

where (𝑥′, 𝑦) has weight (11,2). The parameter here is (𝑠, 𝑟) ∈ 𝔸1 × (𝔸1 ⧵ {0}). All these curves are
GIT stable. If 𝑟 = 0, we recover the GIT stable irreducible 𝐴11 quintic curve discussed earlier.

Theorem A.10. Suppose 𝐶 ⊂ ℙ2 is a quintic curve with an 𝐴10 singularity. Then the log Fano pair

(ℙ2, 𝑐𝐶) is K-semistable if and only if 0 < 𝑐 ⩽ 54
95
. Moreover, (ℙ(1, 4, 25), 54

95
𝐶0) is the K-polystable

degeneration of (ℙ2, 54
95
𝐶) where 𝐶0 = (𝑧

2 + 𝑥6𝑦11 = 0).

Proof. We first prove the “only if” part. Suppose that (ℙ2, 𝑐𝐶) is K-semistable, andwewant to show
𝑐 ⩽ 54

95
. Let us perform the (11,2)-weighted blow-up of ℙ2 in the coordinates (𝑥′, 𝑦), and denote

the resulting surface and exceptional divisor by (𝑋, 𝐸), with 𝜋 ∶ 𝑋 → ℙ2 the weighted blow-up
morphism. Let𝑄 = (𝑥 = 𝑦2) be a smooth conic inℙ2.We know that theweight of𝑥 − 𝑦2 = 𝑥′ − 𝑦5

is 10, hence 𝑄 ∶= 𝜋−1∗ 𝑄 ∼ 2𝜋
∗𝐻 − 10𝐸 is effective on 𝑋. It is easy to see (𝐸2) = − 1

22
and (𝑄

2
) =

− 6
11
, hence the Mori cone of 𝑋 is generated by 𝐸 and 𝑄. It is clear that𝐴(ℙ2,𝑐𝐶)(𝐸) = 13 − 22𝑐 and

−𝐾ℙ2 − 𝑐𝐶 ∼ℚ (3 − 5𝑐)𝐻. We also have 𝜋
∗𝐻 − 𝑡𝐸 is ample if and only if 0 < 𝑡 < 22

5
, and big if and

only if 22
5
⩽ 𝑡 < 5. Then, by computation, we have

vol𝑋(𝜋
∗𝐻 − 𝑡𝐸) =

⎧⎪⎨⎪⎩

1 − 𝑡2

22
if 0 ⩽ 𝑡 ⩽ 22

5
;

(10 − 2𝑡)2

12
if 22
5
⩽ 𝑡 < 5.

Hence, 𝑆(ℙ2,𝑐𝐶))(𝐸) = (3 − 5𝑐) ∫ ∞0 vol𝑋(𝜋∗𝐻 − 𝑡𝐸) = (3 − 5𝑐) 4715 . Since (ℙ2, 𝑐𝐶) is K-semistable,
the valuative criterion (Theorem 2.9) implies

13 − 22𝑐 = 𝐴(ℙ2,𝑐𝐶))(𝐸) ⩾ 𝑆(ℙ2,𝑐𝐶))(𝐸) = (3 − 5𝑐)
47

15
,

which implies 𝑐 ⩽ 54
95
.

We now begin showing the “if” part. Similar to the proof of Theorems 7.2, A.4, and A.7, we
construct a special degeneration then later on use techniques of Ilten and Süß [59] to show K-
polystability of the degeneration. □

Proposition A.11. The log Fano pair (ℙ2, 𝑐𝐶) admits a special degeneration to (ℙ(1, 4, 25), 𝑐𝐶0)

where 𝐶0 is given by the equation (𝑧
2 + 𝑥6𝑦11 = 0).
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Proof. We follow notation from the first two diagrams of the proof of Proposition A.5. Here, 𝜋
is the (11,2,1)-weighted blow-up of ℙ2 × 𝔸1 in the local coordinates (𝑥′, 𝑦, 𝑡), 𝑆 = ℙ(1, 2, 11) is the
exceptional divisor of 𝜋, g is the contraction of 𝑄 in 𝑋 ⊂ 0, 𝑓 is the flip of the curve 𝑄 in 0, and
𝜓 is the divisorial contraction that contracts 𝑋′ to a point.
Let us analyze the geometry of these birational maps. Suppose that 𝑆 has projective coordinates

[𝑥1, 𝑥2, 𝑥3] of weights (1,2,11), respectively. Then 𝑆 ∩ 𝑋 = 𝐸 = (𝑥1 = 0), and 𝑄 ∩ 𝐸 = {𝑝} is a sin-
gular point of 𝑆 (type 1

11
(1, 2)) and 𝑋 (type 1

11
(1, 9)). Inside the surface 𝑋, we have two smooth

rational curves 𝐸 and 𝑄 intersecting at 𝑝, such that (𝐸2) = − 1
22
and (𝑄

2
) = − 6

11
. Hence, contract-

ing 𝑄 in 𝑋 yields a surface 𝑋′ with two singularities of types 𝐴1 and
1

6
(1, 5). On the other hand, 𝑆

and 𝑋′ intersect along the proper transform 𝐸 of 𝐸 with (𝐸2) = 1
3
. Hence, (𝐸2) = − 1

3
in 𝑆. More-

over, ℎ ∶ 𝑆 → 𝑆 ≅ ℙ(1, 2, 11) is a partial resolution of 𝑝 = [0, 0, 1] which only extracts the flipped

curve 𝑄
+
. By some combinatorial computation, we know that 𝑆 is a toric blow-up of 𝑆 at 𝑝 that

creates a singularity of type 1

25
(1, 4) away from 𝐸. Moreover, 𝐸 passes through two singularities

of 𝑆 of types 𝐴1 and
1

6
(1, 1). Hence, 𝑆′ is a toric surface carrying two singularities of types 1

25
(1, 4)

and 1
4
(1, 1) (coming from contracting 𝐸). Thus, 𝑆′ ≅ ℙ(1, 4, 25).

For the degeneration 𝐶0 of 𝐶 on 𝑆
′, note that 𝜋∗(𝐶 × 𝔸

1) ∩ 𝑆 is the curve 𝐶′
0
= (𝑥2

3
+ 𝑟𝑥11

2
= 0).

In addition, we know that 𝑝 has coordinate [0,0,1] that is not contained in 𝐶′
0
. It is clear that

𝐶′
0
has an 𝐴10-singularity at the point [1,0,0] that is not 𝑝 and does not lie on 𝐸. Since 𝑆 ⤏ 𝑆

′ is
isomorphic around [1,0,0], we know that𝐶′

0
has an𝐴10-singularity at a smooth point ofℙ(1, 4, 25).

Since the 1
25
(1, 4) singularity on 𝑆 does not lie on 𝐸, we know that 𝐶0 does not pass through [0,0,1]

on 𝑆′ ≅ ℙ(1, 4, 25). Hence, after a projective coordinates change, wemaywrite𝐶0 = (𝑧
2 + 𝑥2(𝑥4 −

𝑎𝑦)𝑦11 = 0). Since Aut(ℙ(1, 4, 25), 𝐶0) is not discrete, we conclude that 𝑎 = 0 which finishes the
proof. □

Now we return to the proof of the theorem. By Propositions A.11, A.12, and Theorem 2.16, we
know that (ℙ2, 54

95
𝐶) is K-semistable. Hence, the proof is finished by Proposition 2.13.

We verify K-polystability of (ℙ(1, 4, 25), 54
95
𝐶0) below.

Proposition A.12. The log Fano pair (ℙ(1, 4, 25), 54
95
𝐶0) is K-polystable where 𝐶0 = (𝑧

2 + 𝑥6𝑦11 =

0).

Proof. It is clear that the pair (ℙ(1, 4, 25), 54
95
𝐶0) admits a 𝔾𝑚-action, which can be lifted to a 𝔾

2
𝑚-

action on 𝑌 ∶= 𝐶(ℙ(1, 4, 25),ℙ(1,4,25)(1)) ≅ 𝔸3(𝑥,𝑦,𝑧) as
(𝑥, 𝑦, 𝑧) ↦ (𝜇𝑥, 𝜆2𝜇4𝑦, 𝜆11𝜇25𝑧).

Thus, by [93, Theorem 1.4], it suffices to show𝔾𝑚-equivariant K-polystability of (ℙ(1, 4, 25),
54

95
𝐶0).

Denote by 𝑁 the lattice of 1-PS’s in 𝔾2𝑚. Since 𝑌 is a toric variety with the standard 𝔾
3
𝑚-action,

we denote by 𝑁𝑌 the lattice of 1-PS’s in 𝔾
3
𝑚. By [8, Section 11], we have an embedding of lattices

𝐹 ∶ 𝑁 → 𝑁𝑌 and a (noncanonical) surjective map 𝑠 ∶ 𝑁𝑌 → 𝑁 with 𝑠◦𝐹 = id. Then the maps 𝐹
and 𝑠 can be chosen as

𝐹 =
⎡
⎢⎢⎣

0 1

2 4

11 25

⎤
⎥⎥⎦
, 𝑠 =

[
1 6 −1

1 0 0

]
.
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Computation shows 𝜎 ⊂ 𝑁ℚ is spanned by (−2, 1) and (1,0). The polyhedral divisor is

𝔇[0] =
(
−
1

2
, 0

)
+ 𝜎, 𝔇[∞] = conv

(
1

6
(1, 1),

(
6

11
, 0

))
+ 𝜎.

Denote by 𝑥0 = (−
1

2
, 0), 𝑥1 =

1

6
(1, 1), and 𝑥2 = (

6

11
, 0). Then computation shows

div(𝜒(0,1)) = 𝐷[∞],𝑥1 = (𝑥 = 0),

div(𝑓 ⋅ 𝜒(2,4)) = 𝐷[∞],𝑥2 = (𝑦 = 0),

div(𝑓6 ⋅ 𝜒(11,25)) = 𝐷[0],𝑥0 = (𝑧 = 0).

Here, 𝑓 is a rational function onℙ1 such that div(𝑓) = [0] − [∞]. Let us choose a rational function
g on ℙ1 such that div(g) = [1] − [∞]. Then in a suitable coordinate of ℙ1, we have

div(𝑓11g ⋅ 𝜒(22,50)) = (𝑧2 − 𝑥6𝑦11 = 0) = 𝐷[1],0.

Next we will look at the test configuration picture.
Case 1: 𝑄 = [0]. Computation shows that there are four distinguished vertical divisors on  :
𝐷[∞],(𝑥1,0) = (𝑥 = 0), 𝐷[∞],(𝑥2,0) = (𝑦 = 0), 𝐷[0],(𝑥0,0) = (𝑧 = 0), 𝐷[0],(0,1) = 0.

By computation, we have

div(𝑓11g ⋅ 𝜒(22,50,𝑘)) = 𝐷[1],(0,0) + (𝑘 + 11)𝐷[0],(0,1).

Hence, 𝐷[1],(0,0)|0 = div(𝜒(22,50,−11)). We know that 𝜏 is spanned by 𝑛1 = (−1, 0, −2), 𝑛2 =
(1, 1, 6), and 𝑛3 = (6, 0, 11). We still have 𝜉0 = (0, 1, 0) and 𝜂

∗
0
= (0, 0, 1). Hence,

𝑢̃0 = (13, 30, −7), 𝑢̃1 = (22, 50, −11), 𝑢̃2 =
1

300
(94, 300, −49).

To satisfy the condition of Proposition A.3, the only 𝑐 is 𝑐 = 54
95
.

Case 2: 𝑄 = [∞]. Computation shows that there are four distinguished vertical divisors on  :
𝐷[∞],(𝑥1,0) = (𝑥 = 0), 𝐷[∞],(𝑥2,0) = (𝑦 = 0), 𝐷[0],(𝑥0,0) = (𝑧 = 0), 𝐷[∞],(0,1) = 0.

By computation, we have

div(𝑓11g ⋅ 𝜒(22,50,𝑘)) = 𝐷[1],(0,0) + (𝑘 − 12)𝐷[∞],(0,1).

Hence,𝐷[1],(0,0)|0 = div(𝜒(22,50,12)). We know that 𝜏 is spanned by 𝑛1 = (−1, 0, 2), 𝑛2 = (1, 1, −6),
and 𝑛3 = (6, 0, −11). We still have 𝜉0 = (0, 1, 0) and 𝜂

∗
0
= (0, 0, 1). Hence,

𝑢̃0 = (13, 30, 7), 𝑢̃1 = (22, 50, 12), 𝑢̃2 =
1

300
(94, 300, 49).

To satisfy the condition of Proposition A.3, the only 𝑐 is 𝑐 = 54
95
. □
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A.4 Valuative criterion computations

In this section, we provide several consequences of the valuative criterion (Theorem 2.9). These
results will be useful in proving wall crossings for K-moduli spaces of plane quintics.

Proposition A.13. Let 𝐶 be a curve on ℙ(1, 1, 4) of degree 10.

(1) Assume that the equation of 𝐶 has the form 𝑥2𝑧2 + 𝑦6𝑧 + g(𝑥, 𝑦) = 0. If (ℙ(1, 1, 4), 𝑐𝐶) is K-

semistable, then 𝑐 ⩾ 6

11
.

(2) Assume that the equation of𝐶 has the form 𝑥2𝑧2 + 𝑎𝑥𝑦5𝑧 + g(𝑥, 𝑦) = 0 or 𝑓(𝑥, 𝑦)𝑧 + g(𝑥, 𝑦) =

0. Then (ℙ(1, 1, 4), 𝑐𝐶) is K-unstable for any 𝑐 ∈ (0, 3
5
).

Proof. For simplicity, we denote by 𝑋 ∶= ℙ(1, 1, 4).

(1) Let us consider the point [0,0,1] on 𝑋. If we set 𝑧 = 1, then we have a cyclic quotient map
𝜋 ∶ 𝔸2

(𝑥,𝑦)
→ 𝑋 defined by𝜋(𝑥, 𝑦) = [𝑥, 𝑦, 1]. Let 𝑣 ∶= 𝜋∗𝑣where 𝑣 is themonomial valuation

on𝔸2
(𝑥,𝑦)

of weights (3,1). Since the equation of𝐶 is given by 𝑎𝑥2 + g(𝑥, 𝑦) + ℎ(𝑥, 𝑦) = 0where

deg g = 6 and deg ℎ = 10, we have 𝑣(𝐶) ⩾ 6. Since 𝑣 is a toric valuation, computation shows
that

vol𝑋((1) − 𝑡𝑣) =
⎧⎪⎨⎪⎩

1

4

(
1 − 𝑡

2

3

)
if 0 ⩽ 𝑡 ⩽ 1

1

24
(3 − 𝑡)2 if 1 ⩽ 𝑡 ⩽ 3.

Hence, 𝑆(𝑋,𝑐𝐶)(𝑣) =
6−10𝑐

vol𝑋((1)) ∫
∞
0 vol𝑋((1) − 𝑡𝑣)𝑑𝑡 = 43 (6 − 10𝑐). Since (𝑋, 𝑐𝐶) is

K-semistable, by valuative criterion (Theorem 2.9), we have

4 − 6𝑐 ⩾ 𝐴(𝑋,𝑐𝐶)(𝑣) ⩾ 𝑆(𝑋,𝑐𝐶)(𝑣) =
4

3
(6 − 10𝑐),

which implies 𝑐 ⩾ 6

11
.

(2) First, we assume that the equation of 𝐶 has the form 𝑥2𝑧2 + 𝑦6𝑧 + g(𝑥, 𝑦) = 0. We again con-
sider the affine chart 𝑧 = 1 and the cyclic quotient map 𝜋. Let 𝑣′ ∶= 𝜋∗𝑣

′ where 𝑣′ is the
monomial valuation on𝔸2

(𝑥,𝑦)
of weights (5,1). By the equation of 𝐶, we have 𝑣′(𝐶) ⩾ 10. Since

𝑣′ is also a toric valuation, computation shows that

vol𝑋((1) − 𝑡𝑣′) =
⎧
⎪⎨⎪⎩

1

4

(
1 − 𝑡

2

5

)
if 0 ⩽ 𝑡 ⩽ 1

1

80
(5 − 𝑡)2 if 1 ⩽ 𝑡 ⩽ 5.

Hence, 𝑆(𝑋,𝑐𝐶)(𝑣
′) = 6−10𝑐

vol𝑋((1)) ∫
∞
0 vol𝑋((1) − 𝑡𝑣′)𝑑𝑡 = 2(6 − 10𝑐). Since (𝑋, 𝑐𝐶) is

K-semistable, valuative criterion (Theorem 2.9) implies that

6 − 10𝑐 ⩾ 𝐴(𝑋,𝑐𝐶)(𝑣
′) ⩾ 𝑆(𝑋,𝑐𝐶)(𝑣

′) = 2(6 − 10𝑐).

Thus, 𝑐 ⩾ 3
5
but this is a contradiction. So, (𝑋, 𝑐𝐶) is always K-unstable for any 𝑐 ∈ (0, 3

5
).
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Finally, we treat the case where 𝐶 has equation 𝑓(𝑥, 𝑦)𝑧 + g(𝑥, 𝑦) = 0. It is clear that the
log canonical threshold of (𝑋; 𝐶) at [0,0,1] is at least 1

3
since deg 𝑓 = 6 and deg g = 10. Thus,

(𝑋, 𝑐𝐶) is K-unstable whenever 𝑐 ⩾ 1
3
. On the other hand, by Theorem 5.2, we know that the

surface 𝑋 = ℙ(1, 1, 4) never appears in the K-moduli stack K5,𝑐 when 𝑐 < 37 . Thus, (𝑋, 𝑐𝐶) is
always K-unstable for any 𝑐 ∈ (0, 3

5
). This finishes the proof. □

Next, we will state results about curves on ℙ(1, 4, 25).

Proposition A.14. Let 𝐶 be a curve on ℙ(1, 4, 25) of degree 50.

(1) Suppose that𝐶 is defined by 𝑧2 + 𝑥2𝑦12 + 𝑥6g(𝑥, 𝑦) = 0. If (ℙ(1, 4, 25), 𝑐𝐶) is K-semistable, then
𝑐 ⩾ 63

115
.

(2) Suppose that 𝐶 is defined by 𝑧2 + 𝑥6𝑦11 + 𝑥10g(𝑥, 𝑦) = 0. If (ℙ(1, 4, 25), 𝑐𝐶) is K-semistable,

then 𝑐 ⩾ 54
95
.

(3) Suppose that𝐶 is defined by 𝑧2 + 𝑥10g(𝑥, 𝑦) = 0 or𝑓(𝑥, 𝑦)𝑧 + g(𝑥, 𝑦) = 0. Then (ℙ(1, 4, 25), 𝑐𝐶)

is K-unstable for any 0 < 𝑐 < 3∕5.

Proof. For simplicity, we denote by 𝑋 ∶= ℙ(1, 4, 25).

(1) Let us consider the point [0,1,0] corresponding to the 1
4
(1, 1) singularity in ℙ(1, 4, 25). If we

set 𝑦 = 1, then we have a cyclic quotient map 𝜋 ∶ 𝔸2
(𝑥,𝑧)
→ 𝑋 defined by 𝜋(𝑥, 𝑧) = [𝑥, 1, 𝑧].

Let 𝑣 ∶= 𝜋∗ord0, then 𝐴𝑋(𝑣) = 2, and

vol𝑋((1) − 𝑡𝑣) =
{

1

100
(1 − 25𝑡2) if 0 ⩽ 𝑡 ⩽ 1

25
1

96
(1 − 𝑡)2 if 1

25
⩽ 𝑡 ⩽ 1.

Hence, computation shows 𝑆(𝑋,𝑐𝐶)(𝑣) =
30−50𝑐

vol𝑋((1)) ∫
∞
0 vol𝑋((1) − 𝑡𝑣)𝑑𝑡 = 2675 (30 − 50𝑐).

Since 𝐶 is of degree 50, we have 𝑣(𝐶) ⩾ 2 because the lowest degree terms of 𝐶 at [0,1,0] are
𝑥2𝑦12, 𝑥𝑧𝑦6, and 𝑧2. Since (𝑋, 𝑐𝐶) is K-semistable, by valuative criterion (Theorem 2.9), we
have

2 − 2𝑐 ⩾ 𝐴(𝑋,𝑐𝐶)(𝑣) ⩾ 𝑆(𝑋,𝑐𝐶)(𝑣) =
26

75
(30 − 50𝑐),

which implies 𝑐 ⩾ 63

115
.

(2) We follow the similar setup as (1), except that we consider the valuation 𝑣′ = 𝜋∗𝑣
′ where 𝑣′

is the monomial valuation of weights (1,3) in coordinates (𝑥, 𝑧). Thus, 𝐴𝑋(𝑣
′) = 4, and

vol𝑋((1) − 𝑡𝑣′) =
{

1

100
− 𝑡

2

12
if 0 ⩽ 𝑡 ⩽ 3

25
1

88
(1 − 𝑡)2 if 3

25
⩽ 𝑡 ⩽ 1.

Hence, computation shows 𝑆(𝑋,𝑐𝐶)(𝑣
′) = 30−50𝑐

vol𝑋((1)) ∫
∞
0 vol𝑋((1) − 𝑡𝑣′)𝑑𝑡 = 2875 (30 − 50𝑐).

From the equation of 𝐶, it is clear that 𝑣′(𝐶) ⩾ 6. Since (𝑋, 𝑐𝐶) is K-semistable, by valua-
tive criterion (Theorem 2.9), we have 4 − 6𝑐 ⩾ 𝐴(𝑋,𝑐𝐶)(𝑣

′) ⩾ 𝑆(𝑋,𝑐𝐶)(𝑣
′) = 28

75
(30 − 50𝑐), which

implies 𝑐 ⩾ 54
95
.
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(3) First, we consider the case where 𝐶 has equation 𝑧2 + 𝑥10g(𝑥, 𝑦) = 0. We follow the simi-
lar setup as (1), except that we consider the valuation 𝑣′′ = 𝜋∗𝑣

′′ where 𝑣′′ is the monomial
valuation of weights (1,5) in coordinates (𝑥, 𝑧). Thus, 𝐴𝑋(𝑣

′′) = 6, and

vol𝑋((1) − 𝑡𝑣′′) =
{

1

100
(1 − 5𝑡2) if 0 ⩽ 𝑡 ⩽ 1

5
1

80
(1 − 𝑡)2 if 1

5
⩽ 𝑡 ⩽ 1.

Hence, computation shows 𝑆(𝑋,𝑐𝐶)(𝑣
′′) = 30−50𝑐

vol𝑋((1)) ∫
∞
0 vol𝑋((1) − 𝑡𝑣′′)𝑑𝑡 = 25 (30 − 50𝑐).

From the equation of 𝐶, it is clear that 𝑣′′(𝐶) ⩾ 10. If (𝑋, 𝑐𝐶) is K-semistable, then by val-
uative criterion (Theorem 2.9), we have 6 − 10𝑐 ⩾ 𝐴(𝑋,𝑐𝐶)(𝑣

′′) ⩾ 𝑆(𝑋,𝑐𝐶)(𝑣
′′) = 2

5
(30 − 50𝑐),

which implies 𝑐 ⩾ 3
5
. Hence, (𝑋, 𝑐𝐶) is always K-unstable for any 𝑐 ∈ (0, 3

5
).

Finally, we consider the case where 𝐶 has equation 𝑓(𝑥, 𝑦)𝑧 + g(𝑥, 𝑦) = 0. We consider the
singular point [0,0,1] of type 1

25
(1, 4). Let 𝜋′ ∶ 𝔸2

(𝑥,𝑦)
→ 𝑋 be the cyclic quotient map. Denote

by 𝐶′ the preimage of 𝐶 under 𝜋′. Then it is easy to see that ord0𝐶
′ ⩾ 7, hence lct(𝑋; 𝐶) ⩽

lct(𝔸2; 𝐶̃) ⩽ 2
7
. Hence, we have 𝑐 < 2

7
if (𝑋, 𝑐𝐶) is K-semistable. However, by Theorem 5.2, we

know that ℙ(1, 4, 25) never occurs in the K-moduli stack K𝑐 when 𝑐 < 37 . Hence, (𝑋, 𝑐𝐶) is
always K-unstable for any 𝑐 ∈ (0, 3

5
). The proof is finished. □
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