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The standard quantum limit bounds the precision of measurements that can be
achieved by ensembles of uncorrelated particles. Fundamentally, this limit arises
from the non-commuting nature of quantum mechanics, leading to the presence

of fluctuations often referred to as quantum projection noise. Quantum metrology
relies on the use of non-classical states of many-body systems to enhance the
precision of measurements beyond the standard quantum limit*% To do so, one can
reshape the quantum projection noise—a strategy known as squeezing®*. In the
context of many-body spin systems, one typically uses all-to-all interactions (for
example, the one-axis twisting model*) between the constituents to generate the
structured entanglement characteristic of spin squeezing’. Here we explore the
prediction, motivated by recent theoretical work®™°, that short-range interactions—
and in particular, the two-dimensional dipolar XY model—can also enable the
realization of scalable spin squeezing. Working with a dipolar Rydberg quantum
simulator of up to N=100 atoms, we demonstrate that quench dynamics froma
polarized initial state lead to spin squeezing that improves with increasing system size
up toamaximum of -3.5 + 0.3 dB (before correcting for detection errors, or roughly
-5+ 0.3 dB after correction). Finally, we present two independent refinements: first,
using amultistep spin-squeezing protocol allows us to further enhance the squeezing
by roughly1dB, and second, leveraging Floquet engineering to realize Heisenberg
interactions, we demonstrate the ability to extend the lifetime of the squeezed state

by freezingits dynamics.

The past decade has witnessed the use of squeezed states of light and
spin ensembles to improve on a multitude of applications, ranging
fromgravitational wave detectors" and atominterferometers™to opti-
cal atomic clocks™™. The realization of spin squeezing by means of
globalinteractions has been demonstrated using a variety of platforms,
including atomic vapours coupled to light, trapped ions, ultracold
gases and cavity quantum electrodynamics?®. Whether short-range
interaction (decaying as a power of the distance larger than the dimen-
sionality) canyield scalable spin squeezing has remained an essential
open question®, Recent theoretical advances point to an affirmative
answer® %Y proposingadeep connection between spin squeezing and
continuous symmetry breaking (CSB)”*'°'8, This connection to CSB
order broadens the landscape of systems expected to show scalable
spin squeezing, and suggests that both power-law interactions and
nearest-neighbour couplings canlead to sensitivity beyond the stand-
ard quantum limit (SQL)**°. Of particular relevance s the ferromagnetic,
dipolar XY model; indeed, this model is naturally realized in several
quantum simulation platforms ranging from ultracold molecules®
and solid-state spin defects® to Rydberg atom arrays*%,

Inthis work, we demonstrate the generation of spin-squeezed states
using asquarelattice of up to N =100 Rydberg atoms. Our main results
are threefold. First, we explore the quench dynamics of an initially
polarized spin state evolving under the dipolar XY model, using a
procedure analogous to the one introduced for the case of all-to-all
interactions®*. We show that the resulting state shows spin squeezing
and characterize the generation of multipartite entanglement as a
function of time. Moreover, the squeezing improves with increasing
system size, providing evidence for the existence of scalable spin
squeezing. Second, we introduce a multistep approach to squeezing,
where the quench dynamics are interspersed with microwave rota-
tions. We demonstrate that this technique leads to an improvement
in the amount of spin squeezing and also enables the squeezing to
persist to longer time scales. Finally, motivated by metrological appli-
cations, we show that it is possible to freeze the squeezing dynamics
(for example, when accumulating a signal) by performing Floquet
engineering. In particular, we transform the dipolar XY model into a
dipolar Heisenberg model**¥, so that the squeezing remains constant
intime.
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Fig.1|Generation of spin-squeezed statesinadipolar Rydbergatom

array. a, Fluorescence image of afully assembled 10 x 10 ¥Rb array. b, Spin
fluctuations represented through the Husimi Q distributions (coloured area)?
oftheinitial coherent-spinstate |>-.->) (left panel) and of asqueezed state
obtained during the dynamics (right panel), depicted onageneralized Bloch
sphere. The angle 8*(¢) corresponds to the direction of the narrowest noise
distribution. The squeezed state is schematically depicted by asuperposition
of coherent states (red arrows). ¢, The sequence of microwave pulses
corresponding to the spin-squeezing protocol. A first /2 pulse initializes all
the spinsalong y. By tuning the duration and phase of asecond (analysis)
microwave pulse before readout, one canrotate the spin distributionaround y
tomeasure the variance Var(J,) along any direction 6, or around X to measure
thespinlength (/)]

Our experimental setup® consists of atwo-dimensional (2D) square
array of Rb atoms trapped in optical tweezers (Fig.1a). Toimplement
thedipolar XY model®, werely onresonant dipole-dipole interactions
between two Rydberg states of opposite parities. In particular, weencode
aneffective spin-1/2 degree of freedomas | 1) = |60S, ,, m;= +1/2) and

V) =160P;,, m; = -1/2), leading to aninteraction Hamiltonian:
Z Y+ata)), o
l<j i'

where g{¥# are Pauli matrices, r; is the distance between spins i and

J,J/h=0.25MHzis the dipolarinteractionstrengthand a =15 pmisthe
lattice spacing. A magnetic field perpendicular to the lattice plane
defines the quantization axis and ensures that the dipolar interactions
areisotropic.

Webegin by investigating the squeezing dynamics generated by Hyy.
The atoms are initially excited from the ground state to the Rydberg
state | 1), using stimulated Raman adiabatic passage (Methods). Using
amicrowave /2 pulse tuned to the transition between the spin states,
we prepare aninitial coherent-spin state along theyaxis, |(0)) = |>--->)
(Fig. 1b). Next, we allow the system to evolve under Hyy and measure
the squeezing as a function of time.

As squeezing manifests as achange in the shape of the noise distribu-
tion, one must measure the variance of the collective-spin operatorin
the plane perpendicular to the mean-spin direction; to this end,
wedef”nej‘9 =cos(0)/, + sin(@)jx,wherejxy ,= 1 3 2i o arecollective-
spinoperators. We characterlze theamount ofspm squeezing through

the parameter>*°,

N ming(Var(J,))

200\ _
WOy

, )]

which quantifies the metrological gain in a Ramsey interferometry
experiment. To measure [(/,)|, we simply rotate the state |((t)) back

to the zaxis using asecond 77/2 pulse around x. To measure Var(J,), we
instead perform a microwave rotation around the y axis, where the
angle @is tuned by the duration of the pulse. Finally, we read out the
state of each atom with a detection efficiency of 97.5% for | ) and 99%
for |[¥) (Methods). Operationally, each experimental sequence is
repeated roughly 200 times, and from this series of snapshots, we
calculate the average and variance of all collective-spin operators. For
agiveninteractiontime, ¢, the noise distribution has aspecific direction
of smallest uncertainty, corresponding to the angle 6*(¢) that minimizes
the variance of J, (Fig. 1b). Beginning with a 6 x 6 array, we measure
Var (Jp)asafunction of @for¢=0.3 ps. Asshownin Fig. 2a, the variance
shows asinusoidal shape that reveals the underlying elliptical distribu-
tion of the spin fluctuations and allows us to determine 6*. We then
investigate the time evolution of both [(/,}| and Var (/,.). As the system
evolves, the initial coherent-spin state expands into a superposition
of states (fan of red arrows, Fig. 1b), which causes the mean-spin length,
[{J,»| (red circles, Fig. 2b), to decay towards zero®*?”. At the same time,
thevariance of J, (blue circles, Fig. 2b) initially decreases belowits t = 0
value, reaches aminimum and thenincreases, exceedingits ¢ = O value
at late times®.

Taken together |<Jland Var(jg*) allowustoreconstruct thesqueez-
ing parameter fR (or IOloglo(ER) when expressed in dB) as a function
of time. As illustrated in Fig. 2b, the dynamics of the squeezmg para-
meter are qualitatively similar to those of the variance: fR initially
decreases below the SQL, reaches an optimum fR attime ¢t*and then
increases, exceeding the SQL at late times. The system remainsina
squeezed state (thatis, é‘; <1)forroughly 0.5 pus and shows an optimal
squeezing parameter of -2.7 + 0.3 dB. The optimal squeezing is highly
sensitive to detections errors, and analytically correcting for these
errors (diamond markers, Fig. 2 and Methods) leads to a minimum
squeezing parameter of =3.9 + 0.3 dB. However, even this corrected
value does not reach the optimum (roughly -6.7 dB) predicted for the
dipolar XY model. We attribute this to two other types of experimental
imperfection, which also degrade the squeezing parameter: errorsin
theinitial state preparation and imperfections in our microwave pulses.
Incontrast to detection errors, theseimperfections directly affect the
many-body squeezing dynamics (Methods); accounting for these fur-
thererrorsleads tosignificantly better agreement between theory and
experiment (Fig. 2¢).

At a fundamental level, a squeezing parameter é‘; <1necessarily
indicates the presence of entanglement in our system*"*2, We quantify
the entanglement depthasafunction oftime; an entanglement depth
of k means that the many-body state cannot be written as a statistical
mixture of states factorized into clusters containing up to (k- 1) par-
ticles: that s, at least one k-particle subsystem is entangled®*>*. For a
particular spin length, [</,)|, the minimum attainable variance of the
quantum state gives alower bound on the entanglement depth. Fixed
contours of this bound for different values of k are shown in Fig. 2d: if
adatapoint fallsbelow the line labelled by k, the entanglement depth
isthus atleast k + 1. The many-body dynamics of our systemleadstoa
state whose entanglement depthincreases rapidly at early times. Near
the optimal squeezing time, ¢*, the entanglement depth reaches a
maximum of k = 3 (for the measurement-corrected data, we find k = 5)
for our 36-atom system.

One of the distinguishing features of spin squeezing in all-to-all
interacting modelsisthatitis scalable—the optimal squeezing param-
eter, 6;*, scales non-trivially with system sizeas V" with v=2/3 (ref. 4).
Whether this is the case for power-law interacting systems is signifi-
cantly more subtle. A heuristic way to understand the emergence of
early time squeezing dynamics in the dipolar XY model consists
of rewriting theinteractionas: (00’ + 0/0})/r}; = (0; 6;~ 0{0%)/r}; for
ourinitial coherent- spin state, the Heisenberg term ylelds no dynam-
ics, whereas the o} oz/r term approximates the squeezing dynamics
generated by the all to all coupled, one-axis twisting (OAT) model
Hoar = Y; j 070% < J2, atshort times"*. However, this description breaks
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Fig.2|Dynamical evolution of spinsqueezinginanN = 6 x 6 array.

a, Determination of the angle 8* that minimizes the spin fluctuations for a
fixedinteractiontime, t= 0.3 ps. The inset shows 6*(¢) determined for different
times, t. Thedashedlineinaandb corresponds totheuncorrelated case
4Var(Jy)/N=1.b,Measurements of the spinlength (/)| (red circles) and of the
minimum varianceVar(je*)(blue circles). The diamond markers are the data
corrected for the detectionerrors, as described in the Methods. The shaded
regionsrepresent the results of the unitary spindynamics, without any free
parameter,including 97.5+1% (99 +1%) detection efficiency for | ) (|V)).

down on an O(h//) time scale (that is, as soon as the state is no longer
fully polarized) and thus cannot explain the emergence of scalable spin
squeezing. Going beyond this heuristic rewriting, more rigorous argu-
ments can be made for the emergence of scalable spin squeezing in
the dipolar XY Hamiltonian (Methods).

Inparticular, in power-law interacting systems, scalable spin squeez-
ing has been recently conjectured to be closely related to CSB (ferro-
magnetic XY) order®”®!°, The mean-spin direction is the order
parameter of such a system, and thus, in the ordered phase, it should
equilibrate to some non-zero value; this is clearly a prerequisite for
scalable squeezing, because the denominator of the squeezing para-
meter, 5;, isprecisely the square of the mean-spinlength, (jy)2 (equa-
tion (2)). More subtly, the low-energy spectrum associated with
ferromagnetic XY order is expected to consist of so-called Anderson
towers, wherein the energy is proportional to jﬁ (Methods)®¢%".
Crucially, this leads to the emergence and persistence of OAT-like
dynamics even until late times, t ~ O(Nh/J); these dynamics twist the
initial quantum fluctuations, shrinking the minimum variance in
the yz plane (equation (2)), thus leading to scalable spin squeezing.
Finally, let us emphasize that even this picture is only approximate:
the eventual thermalization of the dipolar XY model implies that
its dynamics (even at low energies) cannot be perfectly captured
by OAT™.

For the dipolar XY interactions that we investigate here, CSB, and
thus scalable squeezing, is expected in d =2 (refs. 6,7,9,10) but not in
d=1(refs.7,10). To this end, we measure the squeezing dynamics in
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¢, Squeezing parameter £3(¢)as a function of time. The solid curves are
parabolic fits used to determine the optimal squeezing parameter £2* and the
optimal squeezingtime t*. Asinc, the shaded area shows simulations including
+1%uncertainty in the detection efficiencies. d, Parametric plot of the variance
asafunctionofthe spinlength. The coloured area, delimited by the black solid
curve £3=1, depicts the region where entanglement exists in the system. The
grey dashed curves correspond to entanglement depths of kand the dashed
black curve to amaximal entanglement depth of k=36. The black arrow shows
thedirection of increasinginteraction time.

systemsranging fromN =2 x2t010 x 10 atoms. In principle, determin-
ing the minimum squeezing parameter requires optimizing over both
time and 6 for each system size; as Nincreases, the optimal time, ¢*, is
expected to increase while the optimal 6* is expected to decrease.
Analogous to our previous procedure, we begin by extracting 6* at a
fixed time ¢, and measuring the time evolution of |(/,)| and Var(J,.);
thetime at which the variance is minimized provides a self-consistent
way toexperimentally verify that we are working near the two-parameter
optimum.

AsdepictedinFig.3a, the dynamics of (/)| at short times (< 0.25 ps)
collapse (thatis, show asize-independent decay) for all Nowing to rapid
local relaxation of the magnetization (which can be analysed using
spin-wave theory, Methods and ref. 38). At later times, |[(/,)| decreases
more slowly for increasing system size, indicative of CSB order. The
dynamics of the variance also depend on N (Fig. 3b): the minimum
varianceimproves and occurs at later times as the system size increases.
Fromthese measurements, for each systemsize, we compute the squeez-
ing dynamics and extract both the optimal squeezing parameter, 6;*,
and the corresponding optimal interaction time, ¢*.

As previously mentioned, in the all-to-all interacting case, both
optima are expected to scale with system size**. Recent theoretical
work predicts that scalable squeezing can also arise in our 2D dipolar
XY model®8, This expectation is indeed borne out by our data. As
showninFig.3c,d, wefind thatE;* ~N7and t* =~ N withv=0.18(2) and
1 =0.32(3); when correcting for detection errors, we find that
v=0.25(5), whereas u does not change. The exponent that we observe
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Fig.3|Scalablespinsqueezingin the 2D, ferromagnetic, dipolar XY model.
a,b,Measurementofthe spinlength (/)| (a) and measurement ofVar(je*) (b) as
afunction of time for various system sizes. The dashed lines correspond to the
results of matrix-product state simulations without any adjustable parameters,
whichare limited to systemsizes of 8 x 8 (Methods). ¢,d, Minimum squeezing

for the optimal squeezing time is in agreement with that observed in
theall-to-all coupled case, where t* = N (ref.4). However, the scaling
of the optimal squeezing parameter is significantly weaker than that
predicted for both all-to-all interactions, as well as the dipolar XY
model®®, Again, we attribute this to a combination of experimental
imperfections, which, when accounted for, leads to a relatively good
agreement between theory and experiment as shown in Fig. 3b,c. We
note that this difference in agreement for t* and Eé* is perhaps not
unexpected; for example, measurement errors decrease the amount
of achievable spin squeezing but do not change the optimal squeez-
ing time.

Asschematically depicted inFig.1b, the fact that squeezing shows an
optimumin time arises from acompetition between the generation of
entanglementand the curvature of the Bloch sphere. Microscopically,
the squeezing dynamics causes the coherent superposition of states
towrap around the Bloch sphere, but squeezing (equation (2)) is meas-
ured by means of the variance projected in the plane perpendicular
to the mean-spin direction. Thus, the curvature of the Bloch sphere
leads to a noise distribution that deviates from an elliptical shape?
and manifests as additional variance (Methods). This suggests that
one can improve the optimum squeezing by using a time-dependent
protocol. In particular, by rotating the elliptical noise distribution
towards the equator, one can minimize the impact of the projection
on the measured variance***,

To this end, working with a 6 x 6 array, we implement a discretized,
single-step version of this protocol. Weinitialize the systemin the same
initial state, [p(0)) = |>--->),and let the squeezing dynamics proceed
for t=0.13 ps. Then, we perform a 25° rotation around the y axis to
almost align the noise distribution’s major axis parallel to the equator
(Methods). The subsequent dynamics of the squeezing parameter are
showninFig. 4 (green data). Three effects are observed. First, the opti-
mal squeezing occurs at a later time, t* =~ 0.45 ps. Second, consistent
withtheintuition above, the system remains near its optimal squeezing
value for roughly twice as long. Third, the value of the optimal squeez-
ing parameter is improved by roughly 1dB, reaching a value of
-3.6 £+ 0.3dB.

parameter SZR* (c) and associated optimalinteraction time ¢* (d), as afunction
of N. Thecircles and diamonds correspond to the raw and detection-error
corrected data, respectively. The solid lines are power-law fits. The shaded
regionsare the results of the simulations for values of the detection efficiency
of |1) (]¥)),97.5+1% (99 +£1%), between their lower and upper limits.

To perform sensing, it is desirable to freeze the squeezing dynamics
while acquiring the signal of interest. The simplest way to do so is to
turn offthe Hamiltonian. However, it is challenging to directly turn off
the dipolar exchange interaction between the Rydberg atoms.
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Fig. 4 |Multistep spin-squeezing protocol. Measurements of the squeezing
parameter obtained with two different spin-squeezing protocolsfora6 x 6
array. Thefirstone (purple dots) is the original sequenceillustrated in Fig. 1c.
Thesecond one (dark green dots) isamultistep sequence depictedintheinset,
where anextra25°rotation pulseisused torotate theelliptical noise distribution
towards the equator. The solid curves are parabolic fits to guide the eye.
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Fig.5|Floquetengineering to freeze spinsqueezing. a, Experimental
WAHUHA sequence using Floquet engineering to realize an effective dipolar
HeisenberginteractioninaN =6 x 6 array. The systemis periodically driven
using nFloquet cycles, each composed of four 7/2 Gaussian microwave pulses
(of half-width 6.5 ns at1/./€), whose phases are chosen to realize rotations
around the (x,y, -y, —x) axes. b-d, Spin length [(/,)| (b), minimal variance
Var(/,+) (c) and squeezing parameter £2(d)asafunction of the total interaction
time tfor different numbers, n, of applied Floquet cycles. The grey dashed line
inbisaguidetotheeyetohighlight the spinlength measured immediately
after each Floquet cycle.

To this end, we use an alternate approach, in which Floquet
driving®®?” engineers an effective dipolar Heisenberg interaction,
Hyjeis = —23—1 zi<j %‘7[‘ o from our original XY model. Crucially, the
Heisenberg interaction commutes with all collective-spin operators,
ensuringthat: (1) it does not change the spin squeezing and (2) it does
not affect the sensing signal associated, for example, to the presence
of auniform external field. (The Floquet sequence that generates the
Heisenberginteractionleadstoarescaling of the strength of an external
field by a factor of 1/3.)

To explore this behaviour, we let our system evolve to the optimal
squeezing time and then attempt to freeze the dynamics by means of
the Floquet WAHUHA sequence shownin Fig. 5a (ref. 42). Afull Floquet
cyclelastst; = 0.36 psand for rapid driving, Jt; < 2m, the time-averaged
Hamiltonian is roughly H,,.;, (ref. 27). We repeat this experiment for
differentnumbers of Floquet cycles ranging fromn=0to 3. The Floquet
dynamics of [(J,)| and Var(J,.) areillustrated in Fig. 5b,c. For perfectly
frozen dynamics, each set of curves (with different n) would simply be
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off-setintime from one another. This expectationisingood agreement
withthe data.Indeed, as depicted in Fig. 5b, we observe that the dynam-
ics of [(J,)| are translated in time, except for a small downwards drift
(indicated by the grey dashed line). We note that this downwards drift
issignificantly weaker than theintrinsic dynamics of (J,)|. Comparable
behaviour is observed for Var(/,.) (Fig. 5¢). Finally, as illustrated by
the squeezing parameter in Fig. 5d, the Floquet sequence prolongsthe
time scale over which squeezing remains below the SQL by nearly a
factor three.

To conclude, our work represents the first observation, to our
knowledge, of scalable spin squeezing in a many-body system with
short-range, power-law interactions. Itiscomplementary to the recent
results obtained with Rydberg-dressed atoms**** and long-range inter-
actions in anion string®. Our findings and methods are applicable to
any quantum systems implementing the dipolar XY Hamiltonian, such
as molecules®? or solid-state spin defects®. Within the context of
tweezer arrays, our work lays the foundation for several research direc-
tions. First, by generalizing our approach to alkaline-earth Rydberg
tweezer arrays*®™*8, it may be possible to map the spinsqueezing from
the Rydberg manifold to the so-called clock transition, to improve
tweezer-based atomic clocks**°. Second, by investigating squeez-
ing as a function of the initial polarization, for example, by introduc-
ing disorder in the initial state preparation, it may be possible to test
theoretical predictions that spin squeezing in short-range interact-
ing systems is fundamentally distinct from that achieved in all-to-all
coupled systems®. Finally, by implementing a continuous version of
the multistep squeezing protocol, it may be possible to improve the
scaling of the observed spin squeezing towards the Heisenberg limit.
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Methods

Experimental methods

The realization of the dipolar XY Hamiltonian relies on the ¥Rb
Rydberg atom tweezer array platform described in previous works*,
We encode our pseudo spin states as |1) =|60S,,, m;=+1/2) and
(V) =160P;5, my=-1/2), and couple them by using microwaves at
17.2 GHz (Extended DataFig. 1a). The microwave field is emitted by an
antenna placed outside the vacuum chamber, leading to poor control
over the polarization, due to the presence of metallic parts surround-
ingtheatoms. Toisolatethe | 1) — |V) transition fromirrelevantZeeman
sublevels we apply aroughly 45-G quantization magnetic field perpen-
dicular to the array.

Experimental sequence. Extended Data Fig. 1b shows the details of
the full experimental sequence. After randomly loading atoms into
1-mK deep optical tweezers (with a typical filling fraction of 60%), the
array is assembled one atom at a time®'. The atoms are then cooled to
atemperature of 10 pK using Raman sideband cooling and optically
pumped to |g) = |5S,,,, F=2, mg =2).Following this, the power of the
trappinglightis adiabatically ramped down reducing the tweezer depth
by afactor of roughly 50. Then, the tweezers are switched off and the
atomsare excited to the Rydbergstate |1). The excitationis performed
by applying a two-photon stimulated Raman adiabatic passage with
421-and 1,013-nm lasers. To generate |(0)) = |> --->), wefirstapply a
global resonant microwave /2 pulse around x, with a Rabi frequency
0 =2mx22.2MHz. After an interaction time ¢, an analysis microwave
pulse is applied to change the measurement basis. When measuring
thej,variance, the Rabifrequency of the analysis pulse is reduced down
to2m x 4.1 MHz to perform rotations with a higher angular resolution.
Wenotethatthe |*) — |¥) transition frequency changes slightly when
varying the microwave Rabifrequency. We attribute this to alight shift
induced by couplings between the other components of the microwave
polarization and the Zeeman sublevels of the 60S,,, and 60P;;, mani-
folds. We experimentally compensate for this effect by detuning the
microwave (for example, for Q =2m x 22.2 MHz, the corresponding
detuningis2m x 3.5 MHz).

The experimental sequence (including detection, detailed below)
is typically repeated for roughly 200 defect-free assembled arrays.
This allows us to calculate the magnetization, spin correlations and
variance by averaging over these realizations.

State-detection procedure. The detection protocol comprises three
steps. Inthefirststep,a7.5 GHz microwave pulse (thatis, the ‘freezing
pulse’in Extended Data Fig. 1) is used to transfer the spin population
from |V) to the n =58 hydrogenic manifold through a three-photon
transition. Atoms in the hydrogenic states (Iabelled |A;) in Extended
Data Fig. 1b) are essentially decoupled from those remaining in | 1),
thus avoiding detrimental effects of interactions during the remainder
of the read-out sequence. In the second step, a de-excitation pulse is
performed by applyinga2.5 pslaser pulse onresonance with the tran-
sition between |1) and the short-lived intermediate state 6P/, from
which the atoms decay back to 5S,,. The final step consists of switching
the tweezers back on to recapture and image (through fluorescence)
only the atomsin 5S,, (while the others are lost). Thus we map the | 1)
(respectively |V)) state to the presence (resp. absence) of the corre-
sponding atom.

Experimental imperfections
Several sources of state preparation and measurement error contribute
toincreasing (that is, worsening) the observed squeezing parameter.

State preparation errors. The preparation sequence is composed of
two steps: the Rydberg excitation (stimulated Raman adiabatic passage)
and the preparation of |¢(0)) by a microwave 1/2 pulse. We estimate

thatthe Rydbergexcitation processis 98% efficient: on average, afraction
n=2%oftheatomsremainsinthestate |g) after excitationand hence do
not participatein the dynamics. At the end of the sequence, these unini-
tialized atoms areimaged asaspin | ). The 7/2-microwave pulseis also
imperfect due to the unavoidable influence of the dipolar interactions
between the atoms during its application. Including them in numerical
simulations (Numerical simulations methods), we find that the
collective-spinstate undergoes aslight squeezing dynamics duringthe
preparation pulse, which reduces the initial polarization by roughly 1%.

Measurement errors. Owing to the finite efficiency of each stepin the
read-out sequence (Extended Data Fig. 1b), an atomin | 1) (resp. [¥))
has a non-zero probability €, (resp. €,) to be detected in the wrong
state®. The main contributions to €, are the finite efficiency 1 - 74, of
the de-excitation pulse and the probability of loss € due to collisions
with the background gas. As for €,, the main physical originis the |V)
Rydberg state radiative lifetime. We use aset of independent measure-
ments and simulations to estimate these imperfections. We find to first
ordere, = ng +€=1.5%+1.0%=2.5%and e, =1.0%.

The finite detection errors impose a lower bound on the observed
minimum variance. More specifically, the experimental magnetizations
{J,¢» and variance Var(J,) are related to the same quantities (7'0) and
Var(jNQ) without detection errors by the following equations (valid to
firstorderine, ,):

Uy,H): %(QL - €1~) + (1 —€ - 61\)(-7}},0)
var(J,) = (1- 2¢, - 2¢,Var(J,) + €,(N/2 - ) (3)
e, (N/2+ ().

Byinvertingthe above equations, we calculate the mean-spinlength
and minimal variance free from detection errors (experimentally, the
magnetization along the faxis, not shown, verifies | /)| <« N/2,leading
to anegligible contribution to the correction). The data corrected in
thisway are shown as diamond symbolsin the figures of the main text.

Numerical simulations methods

Inthis section, we provide asummary of the numerical methods used
tosimulate the experimental system and compare experimental find-
ings and theoretical predictions.

Krylov simulations. For system sizes 2 x 2, 3 x 3 and 4 x 4, numerical
simulations were performed with Krylov methods using Dynamite™.
Krylov methods are extremely accurate over the short time scales
relevantto the experiment, so the numerical error associated with this
methodis negligible. Moreover, itis straightforward toimplement the
aforementioned experimental imperfections in these simulations,
including missing atoms, finite-duration pulses, measurementerrors,
positional disorder and van der Waals interactions (the last two sources
of error were described in ref. 25 and have a negligible effect on the
squeezing). We note that simulating missing atoms and positional disor-
derrequires significant sampling, which we find converges after rough-
ly 100 samples. Plugging the experimental parameters (interaction
strengths, nand detection errors) into the numerics yields reasonable
agreement with the data as shown, for example, in Figs. 2c and 3c. We
attribute the remaining discrepancy to unaccounted for experimental
imperfections: for example, the effects of other atomic levels outside
the {7, ¥, empty} manifold, decoherence or microwave control errors
(resulting inroughly 3° of over or under rotation for Q = 2ir x 4.1 MHz).

Matrix-product operator evolution. For systemssizes 6 x 6and 8 x 8,
we perform numerical simulations using exponential of matrix-product
operators (MPO) asimplemented in TenPy*. In this method, each step
oftime evolutionisimplemented asa MPO acting on the matrix-product



state, which increases the dimension of the matrices. Then, a trun-
cation is implemented to approximate the quantum state in a new
matrix-product formwith areduced matrix dimension. Typically, the
accuracy of the method is controlled by the so-called bond dimen-
sion y, that is, the maximum allowable dimension of the matrices in
the simulation. As the entanglement increases during the quantum
dynamics, alarger bond dimensionis required to achieve the same level
ofaccuracy. Inthe spin-squeezing dynamics at experimentally relevant
system sizes, the optimal squeezing occurs at early times. As aresult,
we find good convergence for bond dimensions ranging from x = 64
to x = 128. We again implement the various imperfections discussed
aboveto obtainreasonable agreement with the experimental results.

A larger bond dimension would be required to simulate the
10 x 10-atom system compared to the 8 x 8 one. Whereas the result-
ing increase in computational memory is affordable, the associated
increase in computation timeis severe. Specifically, going from simu-
lating an 8 x 8 systemwithy =64 toa9 x 9 systemwith y =128 increases
the computation time from 2-3to 8 days. Thisincrease is partly dueto
thelargery, and partly due to the fact that optimal squeezing occurs at
alater time. For a10 x 10 system, we estimate a required bond dimen-
sionof atleast y =198, leading to a simulation time of roughly 30 days.
This correspondstothetimerequired for simulating asingle disorder
realization of the Hamiltonian; to simulate the experimental error tree,
we must sample roughly 100 realizations, making matrix product state
numerics on the 10 x 10 system impractical.

Time-dependent variational Monte Carlo. Making use of the time-
dependent variational principle, we time-evolve a pair-product state
(orspin-Jastrow state’), proved to be extremely accurate in describing
the dynamics of the dipolar XY model®. For all system sizes, we simulate
the dynamics with open boundary conditions, inthe ideal case: that s,
we consider the evolution starting fromthe perfect coherent-spin state,
and driven exactly by the XY dipolar spin Hamiltonian.

Comparison between experimental results and numerical
simulations

The results from all simulations are summarized in Extended Data
Fig. 2, including various degrees of experimental imperfections. The
good agreement between the data and the Krylov and MPO simula-
tions including the state preparation and measurement errors shows
that we understand most of the deviations between the experiment
and the perfect dipolar XY dynamics. The simulations also highlight
that even without detection errors, the imperfect state preparation
contributes to the reduction of the squeezing parameter with respect
to the perfect model.

As mentioned inthe maintext, although the experiment shows scal-
able squeezing, the observed scaling exponentis smaller than expected
from the dipolar XY model. However, the results of the simulations
for the perfect model indicates that the number of atoms used in the
experiment (N <100) only allows usto reach the onset of the predicted
asymptotic scaling.

Emergence of OAT-like squeezing dynamicsin the dipolar

XY model

Inthissection, we elaborate onthe approximation of the d = 2dipolar XY
model by the OAT model plus ‘spin-wave’ corrections (described below).

Projective approximation. The basis of this approximation is that
the dynamics generated by the dipolar XY model, starting from a
coherent-spin state is, projectively equivalent to that of the OAT
model at short times. Indeed the initial coherent-spin state lives in
the sector of Hilbert space possessing the maximal collective-spin of
modulusJ?=J(J +1) with/= N/2, which contains only permutat-
ionally symmetric states, that is, superpositions of Dicke states.
Projecting onto this subspace, individual spin operators reduce to

collective-spin operators, for example, P;_y .0 P)_y = 2J,/N where
u=x,y,zand P,_y ), is the projector on the Dicke-state manifold.
Under the same projection, the dipolar XY Hamiltonian becomes
equivalent to the OAT model: P,_y ,,Hyy P/, =J2/(21) + const, where
1/2N =2/ INN-D]! Yicj (a/rij)3 (refs.18,38). This is nothing but an
isolated Anderson tower®*¥, or, equivalently, a quantum rotor with
macroscopic spin length N/2 and moment of inertia / (henceforth,
‘rotor model’).

The projective equivalence only holds under the assumption that
the dipolar dynamics initialized in the Dicke-state manifold remains
confined to it. This is clearly not the case, as the dipolar Hamilto-
nian (unlike the OAT) does not conserve J°. Nonetheless, CSB at the
temperature corresponding to the initial coherent-spin state guar-
antees that the collective-spin modulus remains of O(N?), because
the dynamics develops long-range spin-spin correlations. This
suggests, therefore, that the evolved state may retain a large over-
lap with the Dicke manifold. Corrections to the projective equiva-
lence picture can be added in the form of spin-wave excitations,
which describe the component of the wavefunction leaking into
sectors with /< N/2. Such corrections are addressed in the next
subsection.

Spin-wave corrections. Here, we provide further insight on the
demagnetization dynamics and its scaling properties with the atom
number N, as observed in Fig. 3a. It relies on the rotor and spin-wave
(RSW) theory'®3®, which allows one to write the magnetization as
(jy y= (jy R+ (jy Ysw- Here, (jy ) is the magnetization of the macro-
scopic spin of length N/2 (the rotor) introduced in the above. It obeys
the dynamics of the OAT model (J, )2/ @21); Uy dsw is a (negative) spin-
wave (SW) contribution, coming from linear excitations at finite
momentum that are triggered by the quantum quench dynamics.
RSW theory quantitatively accounts for the magnetization dynam-
ics of systems with periodic boundary conditions, as shown by the
excellentagreement with the time-dependent variational Monte Carlo
results (Extended Data Fig. 3a)'®. Owing to the very low density of
spin-wave excitations triggered by the dipolar XY dynamicsinitialized
in the coherent-spin state, the validity of RSW theory stretches to
rather long times, well beyond those explored in our experiment. In
particular, RSW theory explains the scaling properties of the mag-
netization dynamics at shorttimes. As shownin the experimental data
of Fig. 3a, as well as in the simulations in Extended Data Fig. 3a, the
magnetization per spin shows aninitial decay independent of system
sizeuptoatimescale t = 1/(4/). Onthe contrary, the later dynamics
acquireastrong system-size dependence. RSW theory indicates that
the initial size-independent decay comes from the proliferation of
spin-wave excitations (appearing in counter-propagating pairs) at a
time scale ¢, indicated by the first local minimum in Extended Data
Fig.3b, marking the saturation of the spin-wave population toiits first
maximum. By contrast, the later, size-dependent dynamics is domi-
nated by the rotor variable, which depolarizes as in the OAT model,
namely over time scales growing as +/N. The longer persistence of
magnetization for larger system sizes is the finite-size precursor of
spontaneous symmetry breaking of the U(1) symmetry, which appears
inthe thermodynamic limit for both the OAT and dipolar XY models.

Multistep squeezing

In the main text, we implement the multistep squeezing protocol and
demonstrate thatitimproves the optimal squeezing. Here, we provide
further analysis from atheoretical perspective, as well as comparison
between numerical simulation and experiments.

Physical intuition. The squeezing dynamics can be understood with-
in a semiclassical picture': treating the total spin as an ensemble of
classical points, the initial state |¢(0)) is represented by a Gaussian
distribution with the same variance /N along the zand x axes (that is,
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adiscinthexzplane); in the dynamics, each point rotates around the
zaxis with an angular velocity proportional to its z polarization. The
corresponding classical equations of motion are:

x(t) =x(0) + Nm,,, sin [jN—Zt} @)

2(t) =2(0),

where J and m,, are the effective coupling strength and the effective
total spin length. Consequently, the circle roughly deforms into an
ellipse in the xz plane. However, the ellipse is perfect only for small 2
andshorttimes, thatis, J zt < N andthus Nsin(J zt/N) = zt (Extended
DataFig. 4b). If such a condition were always satisfied, the squeezing
parameter would keep improving for all time. Instead, the optimal
squeezing is achieved when the deviation from a perfect ellipse (which
happens at earlier times for larger z) becomes larger than the minor
axis of the ellipse (Extended Data Fig. 4c). Therefore, a natural way to
improve squeezing is to delay the time when such a deviation happens:
before the deviation becomes the bottleneck, one canrotate the major
axis of the ellipse towards the x axis (Extended Data Fig. 4d), so that
the typical zvalue of the classical ensemble becomes smaller, delaying
the non-elliptical deviation to later times (Extended Data Fig. 4e).

Comparison between numerics and experimental data. Similar
to the single-step squeezing, we also performed time-evolving block
decimation simulation for multistep squeezing dynamics, taking all
experimental imperfections into account. The results are shown in
Extended Data Fig. 5, where we observe a relatively good agreement
between the numerics and the experimental data.

Data availability

The data are available from the corresponding author on reasonable
request.
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toscale) used for all the experiments reported in Figs.1,2 and 3 of the main text.
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Extended DataFig.2 | Minimum squeezing parameter as a function of
atomnumber N. The circles and diamonds correspond to raw and corrected
data, respectively. Thesolid coloured lines are power-law fits. The purple
shaded region shows the simulationsincluding 97.5 +1% (resp. 99 +1%)
detection efficiency of |1) (resp. |¥)). The dashed curves represent the
results of simulations of the XY dipolar model without state preparation and
measurement errors (grey) and without detection errors only (pink). The
dashedblack curverepresents the exactresults for the OAT model. The
inaccessible region corresponds to values of the squeezing parameter

smallerthan2/(2 + N)2.
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Extended DataFig.3|Magnetization dynamics and its contributions.

a, Dynamics of the magnetization per spin for the dipolar XY modelona
periodic square lattice. Results from tVMC calculations and RSW theory for
various systemsizes (N=16,...,144). We also show the rotor contribution to
the magnetization, corresponding to an effective one-axis-twisting model
(seetext). b, Spin-wave (SW) contribution to the magnetization.
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Extended DataFig. 4 | Schematic depicting the multi-step squeezing protocol. a, Semi-classical description of ay-polarized initial state. b, ¢, Normal spin
squeezing dynamics. d, e, Multi-step squeezing dynamics enabled by an extrarotation along the mean spindirection.
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Extended DataFig. 5| Multistep squeezing, comparison betweendataand
simulation. Measurements of the squeezing parameter obtained with two
different procedures. The first one (purple dots) is the original sequence
illustrated in Fig.1(c). The second one (dark green dots) is the multistep
sequence. The shaded regions show the simulationsincluding 97.5 +1%
(resp.99 +1%) detection efficiency of | 1) (resp. [V)). These datacorrespond
toa6 x 6array.
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