
Abstract 1 

Bat-borne pathogens are a threat to global health and in recent history have had major impacts 2 

on human morbidity and mortality. Examples include diseases such as rabies, Nipah virus 3 

encephalitis, and severe acute respiratory syndrome (SARS). Climate change may exacerbate 4 

the emergence of bat-borne pathogens by affecting the ecology of bats in tropical ecosystems. 5 

Here, we report the impacts of climate change on the distributional ecology of the common 6 

vampire bat (Desmodus rotundus) across the last century. Our retrospective analysis revealed a 7 

positive relationship between changes in climate and the northern expansion of the distribution of 8 

D. rotundus in North America. Furthermore, we also found a reduction in the standard deviation 9 

of temperatures at D. rotundus capture locations during the last century, expressed as more 10 

consistent, less-seasonal climate in recent years. These results elucidate an association between 11 

D. rotundus range expansion and a continental-level rise in rabies virus spillover transmission 12 

from D. rotundus to cattle in the last 50 years of the study period. This correlative study, based 13 

on field observations, offers empirical evidence supporting previous statistical and mathematical 14 

simulation-based studies reporting a likely increase of bat-borne diseases in response to climate 15 

change. We conclude that the D. rotundus rabies system exemplifies the consequences of climate 16 

change augmentation at the human-wildlife-ecosystem interface, demonstrating how global 17 

change acts upon these complex and interconnected systems to drive increased disease 18 

emergence.  19 
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 22 

Introduction  23 

Human disturbance of ecosystems can modify wildlife-pathogens dynamics, which can result in 24 

the emergence of infectious diseases (Morens et al., 2004). Interactions among humans, 25 

livestock, and wildlife populations associated with ecosystem disturbance can facilitate pathogen 26 
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spillover (i.e., cross-species pathogen transmission) (Plowright et al., 2017). A series of factors 27 

have been proposed as facilitators of pathogen spillover from wildlife to humans; specifically land 28 

use change (Gibb et al., 2020). Nevertheless, one area of scientific uncertainty and concern is 29 

the potential impact of global climate change on wildlife pathogen spillover (Carlson et al., 2022). 30 

Climate change can have comprehensive impacts across human, animal, and ecosystem health, 31 

potentially acting as a key driver of host-pathogen interaction frequency (Arthur et al., 2017; 32 

Carlson et al., 2022; Cohen et al., 2019). Nevertheless, many climate-change studies on spillover 33 

risk have been based on future climate change simulations, rather than retrospective empirical 34 

data (e.g., Carlson et al. 2022). Furthermore, little climate-change research has been conducted 35 

on directly-transmitted diseases of wildlife origin. Many infectious agents such as Hendra virus, 36 

Middle East respiratory syndrome coronavirus (MERS-CoV), and Nipah virus have emerged to 37 

cause pathogenic outbreaks in humans  from spillover transmission from bats to intermediate 38 

animal hosts (Letko et al., 2020). The mechanisms of spillover transmission, successful 39 

establishment in new species, and how posterior spread continues on to cause epidemics are 40 

vital components of the broader disease emergence continuum. As such, understanding the 41 

extent to which climate change influences bat ecology is of critical importance for the 42 

understanding and prediction of emerging bat-borne diseases.  43 

Rabies virus (RABV) belongs to the genus Lyssavirus (Rhabdoviridae), which causes 44 

rabies disease. Bat-borne RABV has been reported to only occur in the Western Hemisphere 45 

(Velasco-Villa, Mauldin, et al., 2017). Rabies is one of the oldest directly transmitted infectious 46 

diseases to affect humans in recorded history and the most lethal of all zoonotic diseases, with 47 

fatality rates at nearly 100% (Meske et al., 2021). Approximately 50,000 recorded human deaths 48 

due to rabies are reported annually despite vaccination efforts, with many of these deaths 49 

occurring in at-risk populations (Hampson et al., 2015). Rabies also has precipitous impacts to 50 

livestock, domesticated pets, and wildlife as well (Meske et al., 2021). Bat-borne RABV spillover 51 

from wildlife to domesticated species is frequent and widespread in the Americas (Pan American 52 
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Health Organization, 2022). The common vampire bat (Desmodus rotundus), one of three 53 

sanguivorous species in the Phyllostomidae family, is considered to be the main wildlife species 54 

responsible for transmitting RABV to other domestic animals and humans in Latin America 55 

(Meske et al., 2021).  56 

Desmodus rotundus transmitted RABV is a well understood and documented directly-57 

transmitted pathogen of wildlife origin in tropical and sub-tropical regions in Latin America, where 58 

RABV is commonly transmitted from D. rotundus to cattle (Pan American Health Organization, 59 

2022). Recent years have seen an increase in rabies transmission in Latin America, with over 60 

1,500 animal cases being reported in 2021 alone (Pan American Health Organization, 2022). 61 

Temperature limitations on D. rotundus occurrence have been recorded in previous literature, 62 

owing to the species’ physiology (Arellano-Sota, 1988b; Flores-Crespo & Arellano-Sota, 1991; 63 

Lyman & Wimsatt, 1966; McNab, 1973). Desmodus rotundus is a homeothermic species which 64 

has demonstrated a varied response to extreme temperatures in laboratory settings (Lyman & 65 

Wimsatt, 1966). It is hypothesized that D. rotundus individuals have poor thermoregulation at 66 

temperatures outside of its optimal tolerances (average temperatures between 21-28 °C) 67 

(Arellano-Sota, 1988a; Flores-Crespo & Arellano-Sota, 1991; McNab, 1973). As such, climatic 68 

changes could contribute to changes in D. rotundus distribution across time.  69 

Debate still exists within the literature regarding the potential response of D. rotundus to 70 

climate change, including whether or not the species could extend its range into currently 71 

temperate regions in the future. Previous assessments concluded that a range expansion of D. 72 

rotundus into the United States (US) was unlikely, owing to elevated temperature seasonality in 73 

temperate areas (Lee et al., 2012). Nevertheless, another study found that D. rotundus could very 74 

likely expand its range northward through routes in southern Texas (Hayes & Piaggio, 2018). 75 

Desmodus rotundus range expansion could contribute to the invasion of the species into the 76 

southern US, thereby bringing with it an increased risk of  rabies emergence in new regions. The 77 

disagreements between previous modeling efforts have shown that further study is still warranted 78 
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within this disease system. We assessed D. rotundus annual distributions following climatic 79 

variation from the last century using data-driven ecological niche modeling. We also assessed 80 

the current scope and temporal pattern of rabies outbreaks in cattle across Latin America to 81 

identify if D. rotundus distribution is related to spillover frequency in this system.  82 

 83 

Materials and Methods  84 

To assess the impact of retrospective climate change on the distribution of D. rotundus we utilized 85 

ecological niche modeling methods to develop a multidimensional timeseries analysis of the 86 

species geographic range across the last century. Ecological niche models were done using a 87 

presence-background modeling approach, which does not require absence data and therefore 88 

more logically abides by the available occurrence data for this species. The ecological niche 89 

modeling methods used contrasts the environmental conditions associated with species’ 90 

presences points (i.e., occurrence points) with randomly selected background points from the 91 

available environmental space where the species could potentially occur (i.e., study area extent).  92 

Climate Data 93 

To summarize retrospective climatic variability we used six representative climate variables from 94 

the Climatic Research Unit gridded Time Series (CRU TS) version 4.04 database at 0.5 ° latitude 95 

by 0.5 ° longitude resolution from 1901-2019 (Harris et al., 2020). To reduce dimensionality in the 96 

final modeling effort and to summarize annual climatic variability we collated the available monthly 97 

bioclimatic variables from CRU TS into annual level rasters. Representative climate variable 98 

included: average temperature, temperature standard deviation, average diurnal temperature 99 

range, average cloud cover, cloud cover standard deviation, and potential evapotranspiration 100 

standard deviation. These variables were converted to ASCII format and were used at the annual 101 

level for the occurrence data filtering, model calibration, and model projection process.  102 

Desmodus rotundus Occurrence Data and Filtering 103 
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Occurrence records were sourced from a previously curated D. rotundus occurrence dataset, 104 

which contains comprehensive data from a variety of sources (Van de Vuurst et al., 2021). These 105 

include publicly available resources and databases in the scientific literature, natural history 106 

museums across North, Central, and South America, and official records from ministries of 107 

agriculture and health  (Van de Vuurst et al., 2021). To address possible sample selection bias 108 

and spatial autocorrelation, we resampled D. rotundus occurrences to one per pixel of the 109 

environmental layers. We then utilized the environmental background data to identify and remove 110 

outliers in environmental space (Peterson et al., 2011). The values of each climatic variable were 111 

first extracted from the location and year of each occurrence to create a cloud of data points 112 

representing the species distribution in environmental space (Peterson et al., 2011). For 113 

occurrence records which had age or life stage metadata, we extracted the variable values from 114 

multiple years based upon the age of the individual to account for persistent occupancy at that 115 

location. For juvenile individuals, only the singular year of occurrence was extracted from the 116 

corresponding annual raster. For individuals that were classified as adults, we extracted the year 117 

the occurrence was recorded and the four years prior (five years total). Age delineations were 118 

based on previous D. rotundus capture data (Lord et al., 1976), which indicates that most captured 119 

adult D. rotundus individuals are less than six years of age. We then developed a principal 120 

component analysis of the six climatic variables to obtain principal component axes which 121 

summarized the variance of the data. Principal components one, two, and three (summarizing 122 

82.9% of the data variance) were then used as axes (i.e., X, Y, and Z axes) to plot the species 123 

occurrence records in three environmental dimensions. We fit a minimum volume ellipsoid to the 124 

distribution of points within the principal component space using quantiles of the spatially filtered 125 

points (one per pixel of the study extent) with a precision factor of one (i.e., interval of 0.99). We 126 

then calculated the Mahalanobis distance between occurrence points in the principal component 127 

environmental space and used a Chi-squared test to identify environmental outliers (i.e., those 128 

points which fell outside of the ellipsoid) from the cloud of extracted values, which were removed 129 
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from the analysis (Supplementary Information). The remaining filtered occurrences were 130 

randomly split into 50% training 50% testing subsets from the thinned dataset for each model 131 

calibration and evaluation replicate.  132 

Model Calibration and Evaluation  133 

For this modeling effort we used a presence-background ecological niche modeling algorithm 134 

based on maximum entropy (Maxent v3.4.4) (Phillips et al., 2019; Warren & Seifert, 2011) within 135 

the kuenm package in R software (Cobos et al., 2019). kuenm is an R package designed to make 136 

the process of model calibration and final model creation more reproducible and robust (Cobos 137 

et al., 2019). Using kuenm, we created suites of candidate models with various parameterizations 138 

including diverse feature and regularization combinations. Model overfitting is minimized in 139 

Maxent by the use of functions derived from the environmental variables (i.e. feature classes) and 140 

regularization parameters which impose penalties on the model for over-complexity (Morales et 141 

al., 2017; Phillips & Dudík, 2008). We tested a suite of regularization parameters (0.1-1.0 by 142 

increasing values of 0.1, 2-6 by values of 1, 8, and 10) and all twenty-nine possible combinations 143 

of five feature classes (linear=l, quadratic=q, product=p, threshold=t, and hinge=h) to ensure all 144 

possible models were considered. After redundant model combinations were removed, this 145 

resulted in 1054 candidate models for each replication. The candidate model formation, 146 

evaluation, and best model selection process was repeated 100 times (for a total of 105,400 147 

models) to increase confidence in the resulting best model features validity via statistical 148 

replication. The best model from each replicate was reported and its regularization multipliers and 149 

feature classes were recorded. The best candidate model regularization multiplier and feature 150 

classes that appeared most often from the 100 replicates were then selected for the final model 151 

projection process. 152 

Candidate models were evaluated using the kuenm_ceval function. Candidate model 153 

performance evaluation was based on significance (partial ROC, with 100 iterations and 80 154 
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percent of data for K-fold validation), omission rates (E=5%), and model complexity and fit to the 155 

calibration data (i.e., Akaike information criterion) (Hobbs & Hilborn, 2006). Both partial ROC and 156 

omission rate were used as preliminary measures to identify models which were significantly 157 

better than random. AICc was used as the delineating value of best model selection, with all 158 

models of delta AICc>2 being excluded, as AICc is a more meaningful measure of model 159 

performance (Lobo et al., 2008; Peterson et al., 2008; Warren & Seifert, 2011). This model 160 

selection process also allowed us to identify the best parameterization (i.e., combination of feature 161 

classes and regularization multipliers) for our model projections. The final model was then used 162 

to project D. rotundus range across the entire temporal extent of the study (1901-2019). 163 

Distributional Shift and Rabies Outbreak Assessment 164 

The minimum training presence value from the final model was used as a threshold to reclassify 165 

the projected range maps into annual binary maps. Based on the assumption that the least 166 

suitable environment at which the species is known to occur is the minimum suitability value 167 

recorded in the calibration dataset, this threshold can be used to delineate areas of possible 168 

species range from areas where it is unlikely for the species to occur. The resulting binary maps 169 

were used to assess how the projected suitable range for D. rotundus has changed across time. 170 

We used the cellStats function of the raster package (Etten et al., 2021) in R to quantify the total 171 

range area from each binary map. We then isolated the 100 highest (most northern) and lowest 172 

(most southern) latitudes predicted by the projected range models, which allowed us to assess 173 

whether or not the projected suitable range for D. rotundus was moving northward or southward 174 

across time based upon our model (Figure 1). We also assessed modeled range expansion using 175 

a Generalized Additive Model (GAM) to determine if nonlinear trends were present 176 

(Supplementary Information).  We also identified the 100 highest projected suitable elevations 177 

from each annual binary map and averaged these values across time to determine the extent to 178 

which D. rotundus’ suitable range varied in elevation. Elevation data was collected from the 179 
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WorldClim bioclimatic variable database at five arc minute resolution (approximately 10km) in raw 180 

agreement with the climate data (Fick & Hijmans, 2017). We used linear models to assess the 181 

relationships between time as measured by year and the three resulting suitability characteristics 182 

(i.e., area, elevation, and latitude of observed and predicted distribution).  183 

To identify range shift rates of observed D. rotundus occurrence across time (i.e., from 184 

recorded occurrence points and not from modeled range projections) we identified the 20 most 185 

northern occurrence points of the species for the occurrence database (Van de Vuurst et al., 186 

2021) for each year using the dplyr package in R (Wickham et al., 2020). This allowed us to 187 

ascertain the average most northern and most southern extent of recorded species occurrence 188 

for each year. We then calculated the average change in latitude by decimal degrees per year 189 

using the dplyr package (Wickham et al., 2020), and converted this metric to kilometers using the 190 

assumption that one decimal degree is approximately 111 km. We used this metric to identify how 191 

long it may take D. rotundus to appear in the US by dividing the distance between the US-Mexico 192 

border and the most northern recorded occurrence of the species by the range shift rate. We also 193 

subset the original occurrence dataset to isolate D. rotundus occurrences from Mexico. We 194 

identified the temperature standard deviation of each occurrence from Mexico correspond to the 195 

year of the capture location from the CRU database, and utilized a linear model to identify how 196 

temperature standard deviation has changed across the study period (Figure 2).  197 

Data on the presence of bovine rabies cases transmitted by D. rotundus were collected 198 

from the Regional Information System for the Epidemiological Surveillance of Rabies (SIRVERA) 199 

(PANAFTOSA, 2021). SIRVERA is a database for the prevention of rabies in the Americas, where 200 

the countries of the American continents report the presence of rabies on a monthly basis (Belotto 201 

et al., 2005; Benavides et al., 2019; Del Rio Vilas et al., 2017; Freire de Carvalho et al., 2018; 202 

Rysava et al., 2020; Seneschall & Luna-Farro, 2013; Velasco-Villa, Escobar, et al., 2017; Vigilato 203 

et al., 2013). SIRVERA is made up of more than 54,000 records, most of which are bovine in 204 
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origin. Of 29 countries in the Americas in the system, the largest number of reports originate from 205 

Brazil, Mexico and Peru. The data was filtered according to the following criteria: 1) types of cases: 206 

animal cases, 2) date of notification: January 1970 to December 2020, 3) variant: genetic variant 207 

three of the rabies virus (specific to D. rotundus), 4) species: bovine (species of domestic animal 208 

most affected), and 5) aggressor species: sanguivorous bat (refers to the common vampire bat 209 

or D. rotundus).  210 

Effect of D. rotundus range change on RABV spillover transmission was assessed based 211 

on data availability for RABV records between the 1970s and 2010s. The dplyr, sp, rgdal and 212 

ggplot2 packages of the software R (version 4.1.0) and RStudio (version 2022.02.3) were used 213 

(Wickham et al., 2020). We also used the SIRVERA database to isolate rabies cases in 214 

domesticated livestock and companion animals from 1970-2019 and used the aggregate function 215 

in R software to identify the number of rabies outbreak per year from all countries in Latin America. 216 

We then assessed the relationship between the number of rabies outbreaks per year and the 217 

projected northern range expansion per year from our ecological niche model. We assessed this 218 

relationship using a linear model and displayed the resultant model using ggplot2 (Figure 2).  219 

 220 

Results  221 

Of the 100 replications of the model calibration and evaluation process, the most selected 222 

feature class combination was linear, product, quadratic, and hinge, and the most selected 223 

regularization parameter was 0.2. These features and parameter were used for the final model 224 

and projection efforts. Of the six environmental variables used, standard deviation of temperature 225 

contributed the most to the final Maxent model (72.7%), followed by average temperature (17%) 226 

and cloud cover mean (6.3%). The remaining variables (cloud cover standard deviation, potential 227 

evapotranspiration standard deviation, and average daily temperature range) combined 228 

contributed less than 10% to the final model. We found no significant change in the total area of 229 
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D. rotundus distribution during the 120-year period assessed (slope=0.39, R2=0.03 x 10-2, 230 

p=0.31). We also found no significant trend of elevational shift for the species’ range (slope=0.03, 231 

R2=-5.74 x 10-5, p=0.57). Nevertheless, we did find that D. rotundus’ geographic range has 232 

significantly shifted its distribution northward (slope=0.04, R2=0.06, p<0.001) (Figure 1), which 233 

represents a natural invasion into northern Mexico at an average rate of 9.76 km per year 234 

(standard error=1.03 km). At this speed, D. rotundus could extend its range into the continental 235 

US in the next 27 years.  These results were echoed in our GAM of range expansion northward 236 

(R2=0.21, p<0.01) (Supplementary Information). We did not identify any significant trend of range 237 

expansion to the south within D. rotundus’ range (slope=-0.04, R2=0.03, p=0.12). We found areas 238 

of model uncertainty along highlands in the Andes Mountains and in temperate portions of the US 239 

(Figure 1).  240 

The climatic variable that most influenced the range shift in D. rotundus distribution was 241 

historical temperature seasonality (i.e., standard deviation), a variable closely linked with changes 242 

in climate. At the northern most extent of D. rotundus’ range (Mexico), we found that temperature 243 

seasonality of D. rotundus capture sites have significantly decreased across time (slope=-0.01, 244 

R2=0.07, p<0.001; Figure 2). We also detected a linear positive increase in the number of rabies 245 

outbreaks in the last 40 years (slope=23.25, R2=0.49, p<0.001), and D. rotundus range expansion 246 

(slope=0.15, R2=0.38, p<0.001) (Supplementary Information). The respective increases in rabies 247 

outbreaks and D. rotundus range expansion were significantly positively associated (slope=86.61, 248 

R2=0.36, p<0.001) (Figure 2). By the 2010’s decade the number of rabies outbreaks in cattle 249 

increased in most Latin American countries from 1000% to 12500% compared to a 1970’s decade 250 

baseline. The largest increases in the number of rabies outbreaks across time occurred in Peru, 251 

Mexico, Ecuador, and Brazil (Figure 2).  252 

 253 

Discussion 254 
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Results revealed an increase in bat-borne RABV spillover transmission in the last 40 years. 255 

Similarly, the century-long D. rotundus occurrence data assessment shows a relationship 256 

between climate change and the distribution of the RABV reservoir across time. Based on this 257 

evidence, ongoing climate change is linked to distributional shifts of D. rotundus in tandem with 258 

continental-level changes in the risk of RABV spillover from wildlife to domestic animals. As such, 259 

this analysis provides a prime example of retrospective climate-change-driven range shifts of a 260 

bat reservoir, and the pathogen it transmits, which until now has been more commonly associated 261 

to future-climate simulation-based models. The range shift signals detected echo current expert 262 

opinion anticipating D. rotundus invasion in the southern US within the next five to 20 years. 263 

(Davis & Chipman, 2020). Interestingly, we did not detect a significant southern extension of the 264 

range of D. rotundus into new areas of Chile and Argentina, potentially due to the model 265 

uncertainty identified in this region (Figure 1). An imperceptible range expansion or contraction in 266 

the southern range of the species range could be linked to less marked climatic variation 267 

compared to the northern part of the continent. Additionally, our lack of signal in the southern part 268 

of D. rotundus’ range could be due to a low density of occupancy in the south, which could reduce 269 

their probability of detection, limiting the tractability of changes in the species distribution across 270 

the Southern Hemisphere. Alternatively, there may not be continuous and abundant cattle 271 

populations across the southern region of the species’ range (i.e., resources) to facilitate climate-272 

driven range expansion. Nevertheless, our findings clarify previous inconclusive future-climate 273 

forecasts of D. rotundus distributional changes in response to climate change (e.g., Lee et al. 274 

2012, Zarza et al. 2017, Hayes and Piaggio 2018).  275 

Previous explorations on D. rotundus distribution conducted with more modest datasets 276 

and modeling effort (Lee et al., 2012; Zarza et al., 2017), also found that minimum temperatures 277 

and seasonality (i.e., differences between coldest and warmest seasons) are among the major 278 

drivers of D. rotundus distribution. Previous research has suggested that D. rotundus may not 279 

survive well in environments with temperatures below 15 °C (Arellano-Sota, 1988b). For example, 280 
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it is assumed that D. rotundus individuals cannot consume enough blood nightly to effectively 281 

thermoregulate below 15 °C (Lyman & Wimsatt, 1966; McNab, 1973). It is worth noting, however, 282 

that the cited survival assessment was based on a smaller sample size in a laboratory, and a 283 

large degree of variation in the tolerance of cold has been observed among D. rotundus 284 

individuals in other assessments (Lyman & Wimsatt, 1966; Wimsatt, 1962). Desmodus rotundus 285 

has also been recorded in cooler environments in more recent studies (Luna-Jorquera & Culik, 286 

1995). Temperature related limitations could have also contributed to the uncertainty observed in 287 

high elevation landscapes such as the Andes (Figure 1). A more in-depth assessment of the true 288 

minimum temperature limitation for D. rotundus occupancy in the wild could elucidate the 289 

uncertainties identified in this study, and could present an avenue for future research efforts. 290 

Furthermore, climate change not only leads to an increases in temperature, but also alterations 291 

in annual seasonality (Steltzer & Post, 2009; Wang et al., 2021). As such, the reduction in 292 

temperature monthly variation at sites with D. rotundus records in the most northern extents of it 293 

range (Figure 2) supports the postulation that climate change may be driving range extension by 294 

making temperature more stable across the year.  295 

One limitation to our analysis is the use of aggregated country level RABV data, which innately 296 

limits the ecological applicability of our assessment to broader spatial and ecological scales. 297 

Future studies could utilize finer scale data at the locality scale to identify local factors that 298 

contribute to D. rotundus range expansion and spillover transmission. An important caveat of our 299 

modeling effort is the inclusion of only abiotic climatic variables. While abiotic variables were 300 

sufficient to answer our biogeographic question as to the role of climate in driving the 301 

spatiotemporal distribution of D. rotundus, it is possible that biotic variables, such as local 302 

anthropogenic disturbance, may have contributed to the range expansion of D. rotundus (Soberón 303 

& Nakamura, 2009; Streicker et al., 2012). For example, an increase in cattle density, associated 304 

landscape changes, or biodiversity loss may drive greater contact between livestock and D. 305 
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rotundus individuals in Latin America (Domenici et al., 2023; Streicker et al., 2012). Future 306 

research could assess the effects of biotic variables, such as prey availability and composition 307 

(Brown & Escobar, 2023), on the ecology of D. rotundus at finer scales. Additionally, we assumed 308 

a linear relationship between time and distributional trends of D. rotundus to mitigate overfit of 309 

more complex models. Nevertheless, patterns identified utilizing non-linear models were also 310 

significant (Supplementary Information). The bulk of climate change and disease research is 311 

influenced by future climate simulation modeling studies and biased towards vector-borne 312 

diseases (Van de Vuurst & Escobar, 2023). As such, this study is among the first data-driven 313 

evidences of climate change effects on the risk of spillover transmission of a zoonotic pathogen 314 

of bat origin. Species range shifts may modify species assemblages (Bertrand et al., 2011; Pecl 315 

et al., 2017), which in turn could increase the risk of sharing pathogens and parasites between 316 

native and invasive species (Carlson et al., 2022). Although species’ range shifts are considered 317 

a major response of biodiversity to climate change (Sunday et al., 2012; Williams & Blois, 2018), 318 

we are in the infancy of understanding how climate change-induced range shift will affect the 319 

burden of bat-borne infectious disease. Early empirical evidence of climate change, species range 320 

shifts, and zoonotic diseases include the increase in transmission of vector-borne diseases in 321 

historically cold regions, which are now becoming suitable for vectors (Ryan et al., 2018; Siraj et 322 

al., 2014). For instance, malaria has been recently linked to temperature change in the highlands 323 

of Colombia and Ethiopia (Siraj et al., 2014). Nevertheless, effects of climate change on directly-324 

transmitted (not vector-borne) diseases are less studied. Future research is warranted to assess 325 

the retrospective impact of climate change on other wildlife pathogens of pandemic potential. 326 

Desmodus rotundus RABV at the US-Mexico border threatens both public health and the 327 

livestock industry in the southern US (Bodenchuk & Bergman, 2020; Davis & Chipman, 2020). 328 

For instance, in Latin America, most rabies cases in humans and domestic animals originate from 329 

bites by D. rotundus, which feeds on the blood of vertebrate animals (Velasco-Villa, Escobar, et 330 

al., 2017; Velasco-Villa, Mauldin, et al., 2017). RABV transmission from D. rotundus is endemic 331 
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in Latin America, where it generates considerable and widespread death of livestock and humans 332 

(Benavides et al., 2020). This study reveals that D. rotundus is expanding its distribution to higher 333 

latitudes, which shows the potential of the species to become invasive in novel areas and new 334 

countries. In 2016, the USDA documented the first occurrence of D. rotundus near the US-Mexico 335 

border (Hayes & Piaggio, 2018; Keirn, 2016; Piaggio et al., 2017). Furthermore, genetic 336 

assessments have demonstrated that D. rotundus from Mexico is expanding its range northward 337 

rapidly (Piaggio et al., 2017), but the likely drivers of such geographic expansion were unknown, 338 

until now. Range shift of D. rotundus is considered the cause of the increased geographic 339 

distribution and incidence of D. rotundus RABV transmission in most of Latin America (Benavides 340 

et al., 2016, 2020; Botto Nuñez et al., 2019; Piaggio et al., 2017). In 2020, the US Department of 341 

Agriculture (USDA) released notes of concern regarding the risks of D. rotundus RABV spread to 342 

the US (Bodenchuk & Bergman, 2020; Davis & Chipman, 2020). 343 

The ongoing spread of D. rotundus RABV to new countries, including the US, is 344 

problematic for livestock production and public health. If not treated promptly, RABV infections in 345 

humans are 100% fatal (Rupprecht et al., 2002). In the Americas, rabies is a zoonosis with a 346 

complex epidemiology, involving the virus circulating in wildlife, including bats. In the US, more 347 

than 90% of rabies cases originate in wildlife (Blanton et al., 2010). Bats that feed on insects have 348 

the highest RABV incidence in wildlife in the US (33% of all animal cases in 2018), followed by 349 

raccoons (30.3%), skunks (20.3%), and foxes (7.2%) (Ma et al., 2020). RABV is endemic in 350 

wildlife in the US, where every year at least 55,000 individuals are exposed to the virus from 351 

wildlife, mainly bats (70%) (Pieracci et al., 2019). Exposed individuals typically receive immediate 352 

post-exposure vaccination and in some cases immunoglobulin treatment, which is expensive 353 

(often thousands of dollars per treatment) but which has significantly reduced human mortality 354 

(Pieracci et al., 2019; Rupprecht et al., 2002). Nevertheless, bat-borne rabies has been on the 355 

rise in recent years (Gross, 2022; Kunkel et al., 2022; Ma et al., 2020). Expenditures for RABV 356 
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diagnostics, prevention, and control in the US is $245-510 million annually (CDC, 2019) and is 357 

expected to increase if wildlife RABV from Latin America spreads to the US (Anderson & Shwiff, 358 

2014). Indeed, arrival of D. rotundus to the southern US (e.g., Texas and Arizona) would result in 359 

an estimated annual economic cost of $7-9 million just in terms of the death of livestock from 360 

rabies in south Texas (Anderson & Shwiff, 2014).  361 

Our results highlight the potential impacts of climate change on the ecology of domestic-362 

wildlife diseases in tropical ecosystems. Tropical ecosystems have been poorly studied in terms 363 

of global change effects on biodiversity (Barlow et al., 2018). By documenting how D. rotundus is 364 

expanding its range annually, this article can help guide strategies to prevent D. rotundus RABV 365 

spillover to humans and domestic animals and help prevent the potential spread of D. rotundus 366 

rabies from Latin America into the US (Piaggio et al., 2017). This disease-biogeography study 367 

integrated epidemiological, climatological, and ecological data to enrich the understanding of 368 

wildlife RABV spillover across the Americas. Climate change acts as a key driver of the spatial 369 

and temporal variation of host-pathogen interaction in Latin America, which could continue under 370 

future climate change scenarios. Continued RABV transmission into novel geographic areas 371 

could impact human health and economic prospects if the speed and direction of the range 372 

expansion are not considered to prevent rabies transmission in currently unaffected areas. In 373 

conclusion, the D. rotundus RABV system exemplifies the consequences of climate change in the 374 

augmentation of disease-spillover risk at the wildlife-livestock-human interface. 375 

 376 

Significance Statement: Bat-borne viruses are a threat to global health and may be impacted 377 
by climate change. This article highlights empirical data demonstrating a range expansion of 378 
vampire bats in tandem with bat-borne rabies spillover transmission in Latin America. Raw 379 
observation and computational models show a relationship between climate change, a northern 380 
distributional shift of vampire bats, and rabies emergence across space and time. As such, this 381 
article provides an empirical, 100-year retrospective case of climate change-driven range-shifts 382 
of a bat reservoir which, until now, has been limited to future-climate simulation-based studies. 383 
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Figures 649 

 650 

Figure 1. Range shift of Desmodus rotundus due to climate change. (A) Predicted northward 651 

trend (based on ecological niche models) of D. rotundus range (slope=0.04, R2=0.06, p<0.001) 652 

(B) Estimates of relative percent contributions of the environmental variables on the distribution 653 

of D. rotundus. (C) Model ensemble of D. rotundus distributions from 1901 to 2019. (Darker colors 654 

indicate higher agreement in models regarding D. rotundus distributions). (D) Uncertainty map 655 

revealing areas with higher uncertainty (darker colors of blue) with regard with the potential areas 656 

of D. rotundus expansion.   657 
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 658 
Figure 2. Bat-borne rabies outbreak increase in Latin America (A) Percentage change in 659 

rabies outbreaks in cattle for Latin American countries between 1970’s and 2010’s. (B) 660 

Regression relationship between northern range expansion of D. rotundus and outbreaks of 661 

rabies in Latin America s (1970-2019). (slope=86.61, R2=0.36, p<0.001) (C) Reduction in 662 

temperature seasonality (standard deviation) in D. rotundus capture locations across time. 663 

(slope=-0.01, R2=0.07, p<0.001). Black points and lines: distribution of temperature standard 664 

deviations of all D. rotundus occurrence locations from each corresponding year.   665 
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Supplementary Information  666 

 667 

Supplementary Figure 1: Regression relationship between disease emergence of rabies in Latin 668 

America and projected northern expansion of D. rotundus. Blue: Linear model of rabies outbreaks 669 

across time from 1970-2019 (slope=0.49, R2=0.49, p<0.001). Red: Linear model of maximum 670 

projected latitude of D. rotundus range across time from 1970-2019 (slope=0.38, R2=0.38, 671 

p<0.001).  672 
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 673 

Supplementary Figure 2: Relationship between projected northern range expansion (latitude) of 674 

Desmodus rotundus and time. Dots: median estimated distribution of estimated most northern 675 

latitude of D. rotundus from each corresponding year. Vertical lines: standard deviation of 676 

estimated most northern latitude of D. rotundus. Red line: Generalized additive model revealing 677 

significant non-linear association between range expansion and year from 1901-2019 (R2=0.21, 678 

p<0.01).  679 
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 680 

Supplementary Figure 3: Principal components one (PC1) and two (PC2) of the environmental 681 

variables are used to display original unfiltered Desmodus rotundus occurrence points (A) and 682 

filtered occurrence points (B) in environmental space. Occurrence points identified as 683 

environmental outliers (red) were excluded from training and testing data subsets while non-684 

outliers (blue) were retained.  685 


