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Abstract

We present a discrete basis of solutions of the massless Klein-Gordon equation in 3+1 Minkowski

space which transform as sl(2,C) Lorentz/conformal primaries and descendants, and whose ele-

ments all have integer conformal dimension. We show that the basis is complete in the sense that

the Wightman function can be expressed as a quadratic sum over the basis elements.

1

http://arxiv.org/abs/2302.04905v2


Contents

1 Introduction 2

2 Candidate integer basis 4

3 The RSW inner product 6

4 RSW adjoints 7

5 Decomposition of the Wightman function 8

6 Discussion 9

A Descendants as representations of Lorentz and Poincaré groups 10
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1 Introduction

Celestial amplitudes are ordinary quantum field theory or quantum gravity scattering amplitudes

re-expressed in a basis of sl(2,C) Lorentz/conformal primary scattering states, which can be viewed

as operators on the celestial sphere. The set of all conformal primary wavefunctions is vastly

overcomplete. Finding an optimal complete basis is a central problem in celestial holography. It
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is similar to the now-solved problem [1, 2] of finding a complete basis of operators in 2D Liouville

theory. Because CCFTs are not unitary, it is not obvious what properties an optimal basis should

have. Some natural ones are:

• Forming irreducible representations of the Poincaré group;

• Instantiating closure, locality and associativity of the celestial OPE;

• Providing a factorization of scattering amplitudes onto associated 2D conformal blocks; and

• Providing a solution of the celestial conformal bootstrap equation.

One frequently considered basis is the unitary principal series [3]. This is complete on the space

of square normalizable wavefunctions, but does not appear to satisfy all of the above constraints.

Other possibilities involve restricting the conformal weights to integer values. This was put forth

in [4] based on periodicity conditions on the celestial torus. Other works have also studied integer

conformal dimensions in the context of large gauge symmetry in the spin-1 and spin-2 cases [5–11],

twisted holography [12], as well as more broadly [13–25].

In this paper we construct a complete integer basis employing irreducible integer representations

of the Poincaré group. As our work was nearing completion, a complete integer basis for the

Schwartz space of solutions of the massless scalar wave equation was found in [26]. These results

contain overlap with ours, although the details and methods are quite different.

Our approach was inspired by earlier work on the completeness of quasinormal mode bases [27–

31]. We draw particular attention to [31], in which it is shown that there exists an integer basis of

quasinormal modes for de Sitter space which are complete in the sense that the Wightman function

can be represented as a sum over such modes. In the flat limit of de Sitter, the quasinormal

modes decompose as tower of integer conformal primaries transforming irreducibly under Poincaré.

This suggests a similar integer basis of conformal primaries should exist for Minkowski space, as is

demonstrated herein.1

Following [31], our strategy is to find a mode decomposition of the Wightman function G+(X,Y )

in terms of an integer basis of solutions to the massless Klein-Gordon equation (i.e. the wave equa-

tion). Reproducing the Wightman function is sufficient to establish that our basis can propagate

arbitrary initial data to solutions of the the massless Klein-Gordon equation, as we explain in the

Appendices. Along the way, we discover a novel modification of the Klein-Gordon inner product

which emulates that of BPZ [32], and has had recent manifestations in celestial holography [33].

The remainder of the paper is organized as follows. In Section 2 we define our integer basis. In

Sections 3 and 4 we discuss a modification to the Klein-Gordon inner product which manifests our

basis. In Section 5 we give our main result, namely a decomposition of the Wightman function into

our integer basis. We conclude with a brief discussion in Section 6. Following this are numerous

Appendices; of particular note is Appendix A which explains how to organize our integer basis into

finite-dimensional representations of the Lorentz group.

1Although we do not herein attempt to make the limiting connection with de Sitter precise.
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2 Candidate integer basis

In this section we present an ‘integer basis’ of solutions to the massless Klein-Gordon equation, in

which each element has integer conformal weight. The basis is composed of a shadow pair of two

irreducible representations of the Poincaré group, both of which decompose into towers of finite-

dimensional representations of the sl(2,C) Lorentz/conformal group. In subsequent sections we

will show that our integer bases are complete in the sense that they provide a mode expansion for

the Wightman function. We use the (−+++) metric convention in this work.

Defining the Poincaré generators as

Ji = −ǫijkX
j∂k , Ki = −X0 ∂i −Xi ∂0 , Pµ = −∂µ , (2.1)

where i = 1, 2, 3, we have the non-zero commutators

[Ji, Jj ] = ǫijk Jk , [Ji,Kj ] = ǫijk Kk , [Ki,Kj ] = −ǫijk Jk , (2.2)

[Ki,P0] = Pj , [Ki,Pi] = P0 , [Ji,Pj ] = ǫijk Pk .

We recall that the Lorentz algebra so(1, 3) is isomorphic to the 2D global conformal transformations

sl(2,C). The identification can be made explicit via

L0 =
1

2
(−K3 − iJ3) ,

L1 =
1

2
(−K1 + J2 − i(K2 + J1)) ,

L−1 =
1

2
(K1 + J2 − i(K2 − J1)) ,

L̄0 =
1

2
(−K3 + iJ3) ,

L̄1 =
1

2
(−K1 + J2 + i(K2 + J1)) ,

L̄−1 =
1

2
(K1 + J2 + i(K2 − J1)) ,

(2.3)

which satisfy the usual commutation relations

[Lm, Ln] = (m− n)Lm+n , [L̄m, L̄n] = (m− n)L̄m+n , [Lm, L̄n] = 0 . (2.4)

To construct a basis of solutions to the massless Klein-Gordon equation, we start by identifying

solutions which transform as 2D conformal primaries. There are two kinds of such solutions, given

by [3, 34]

ψ∆,q(X) =
1

(−q ·X)∆
, ψ̃∆,q(X) =

(−XµXµ)
1−∆

(−q ·X)2−∆
, (2.5)

where qµ is a null vector satisfying q2 = 0. For our purposes, we will always take ∆ to be an

integer. To verify that these functions transform as primaries, we parameterize the null vector with

a complex number z as

qµ(z, z̄) = (1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) (2.6)

and directly compute

Lnψ∆,q(z,z̄) =

(
∆

2
(n+ 1)zn + zn+1∂z

)
ψ∆,q(z,z̄) (2.7)
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L̄nψ∆,q(z,z̄) =

(
∆

2
(n+ 1)z̄n + z̄n+1∂z̄

)
ψ∆,q(z,z̄) (2.8)

Ln
˜ψ∆,q(z,z̄) =

(
(2−∆)

2
(n+ 1)zn + zn+1∂z

)
˜ψ∆,q(z,z̄) (2.9)

L̄n
˜ψ∆,q(z,z̄) =

(
(2−∆)

2
(n+ 1)z̄n + z̄n+1∂z̄

)
˜ψ∆,q(z,z̄) (2.10)

for n = −1, 0, 1. From the above, we see that each ψ∆,q(z,z̄) transforms as conformal primary of

weight ∆ and (h, h̄) = (∆2 ,
∆
2 ), and similarly each ˜ψ∆,q(z,z̄) transforms as a conformal primary of

weight 2−∆ and (h, h̄) = (2−∆
2 , 2−∆

2 ).

To formulate a candidate basis of solutions to the massless Klein-Gordon equation, we would

like to find solutions which are highest weight with respect to the sl(2,C) algebra so that we can

fill out our basis by taking descendants. For this purpose, let us note a convenient choice of qµ,

namely a null vector which points towards the north pole:

Nµ := qµ(0, 0) = (1, 0, 0, 1) . (2.11)

From (2.7), (2.8), (2.9), (2.10), we have

L1ψ∆,N = L̄1ψ∆,N = 0 (2.12)

L0ψ∆,N = L̄0ψ∆,N =
∆

2
ψ∆,N (2.13)

L1ψ̃∆,N = L̄1ψ̃∆,N = 0 (2.14)

L0ψ̃∆,N = L̄0ψ̃∆,N =
2−∆

2
ψ̃∆,N , (2.15)

thus establishing that ψ∆,N and ψ̃∆,N are highest weight states for any (integer) ∆. We can then

form sl(2,C) descendants given by Ln−1L̄
n̄
−1ψ∆,N and Ln−1L̄

n̄
−1ψ̃∆,N , for n and n̄ distinct non-negative

integers. A similar analysis shows that ψ∆,S and ψ̃∆,S are lowest-weight states, where

Sµ := (1, 0, 0,−1) (2.16)

is a null vector which points towards the south pole.

With the above ingredients at hand, we are almost prepared to propose a candidate basis. Let

us define the positive (+) and negative (−) frequency wavefunctions [3]

ψ±
∆,N (X) := ψ∆,N (X±) , ψ̃±

∆,N (X) := ψ̃∆,N (X±) , (2.17)

where

Xµ
± := (X0 ∓ iǫ,X1,X2,X3) . (2.18)

We further define the reflection operator R which takes

R : (X0,X1,X2,X3) 7−→ (X0,X1,X2,−X3) , (2.19)
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and use Rf(X) to denote f(RX). The operator is useful since it interchanges highest-weight and

lowest-weight states:

Rψ±
∆,N = ψ±

∆,S , Rψ̃±
∆,N = ψ̃±

∆,S . (2.20)

Defining the sets

C :=
{
L
n
−1L̄

n̄
−1ψ∆,N (X+)

}
n,n̄=0,1,...,−∆
∆=0,−1,−2,...

(2.21)

Ĉ :=
{
L
n
1 L̄

n̄
1 ψ̃2−∆,S(X−)

}
n,n̄=0,1,...,−∆
∆=0,−1,−2,...

, (2.22)

we are now fully equipped to propose the integer basis

B := C ∪ Ĉ . (2.23)

Notice that if B is an integer basis, then the complex conjugate of B, namely B∗ = C∗ ∪ Ĉ∗, is

likewise an integer basis.

3 The RSW inner product

There is a useful relationship between the sets C and Ĉ defined above: they are related by an “RSW”

transformation, where R, S, and W are independent linear operators. Having already defined R, we

define the shadow operator S which acts on the function ψ±
∆,q(z,z̄) with conformal dimension ∆ by2

Sψ±
∆,q(z,z̄)

:=
∆− 1

π

∫
d2w

1

|z − w|2(2−∆)
ψ±
∆,q(w,w̄) . (3.1)

The shadow operator relates our two kinds of primary states in (2.5) by [3, 35]

Sψ±
∆,q(z,z̄) =

˜ψ±
∆,q(z,z̄) . (3.2)

We also define the W operator by

Wψ±
∆,q := ψ±

2−∆,q , (3.3)

which simply replaces the conformal weight ∆ by 2−∆.

Having defined R, S, and W individually, we now define the RSW inner product. Recall that the

Klein-Gordon inner product is

(f, g)KG := i

∫

Σ
d3X (f∗∂0g − g ∂0f

∗) , (3.4)

where Σ is a Cauchy slice at fixed X0. If f(X) and g(X) satisfy the free Klein-Gordon equation

(i.e. the ordinary wave equation) �f = �g = 0, then (3.4) is independent of the Cauchy slice Σ on

which the integral is evaluated. Then the RSW inner product is defined as

(
f, g

)
RSW

:=
(
f, (RSW)g

)
KG

. (3.5)

2Setting z = x+ iy we use the conventions d2z := dx dy and δ2(z) := δ(x)δ(y).
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This is closely related to the shadow product at opposite poles introduced in [33]. It should be

noted that RSW inner products of our integer bases are finite numbers. For instance, in Appendix

F we compute the inner product of two primary states ψ±
∆,q(z,z̄) and find it to be

(
ψ±
∆1,q(z1,z̄1)

, ψ±
∆2,q(z2,z̄2)

)
RSW

= ∓(2π)2|1− z1z̄2|
−2∆1δ∆1,∆2

. (3.6)

We can further define the ‘RSW-adjoint’ of wave functions, denoted †RSW, via

f †RSW := (RSW)f∗ ,
(
f, g

)
RSW

=
(
(g∗)†RSW , (f∗)†RSW

)∗
RSW

. (3.7)

It can be readily shown that R2 = 1, (SW)2 = 1, and [R,SW] = 0. These imply that

(RSW)2 = 1 (3.8)

so (f †RSW)†RSW = f . In fact, the RSW adjoint takes wave functions from C into Ĉ, and vice versa:

(
L
n
−1L̄

n̄
−1ψ∆,N (X+)

)†RSW
= L

n
1 L̄

n̄
1 ψ̃2−∆,S(X−). (3.9)

This relation will be proven in the following section.

4 RSW adjoints

The Klein-Gordon adjoint † of a linear operator O is defined by (f,O†g)KG = (Of, g)KG. Likewise,

we can define the RSW adjoint †RSW by

O†RSW := (RSW)O†(RSW) ,
(
f,O†RSWg

)
RSW

=
(
Of, g

)
RSW

. (4.1)

Let us investigate the RSW adjoint properties of the sl(2,C) generators. Note that our Poincaré

generators (2.1) are skew adjoint under the KG adjoint, satisfying

J
†
i = −Ji, K

†
i = −Ki, P

†
µ = −Pµ. (4.2)

From this, the sl(2,C) generators (2.3) then inherit the Klein-Gordon adjoint property

L
†
n = −L̄n, L̄

†
n = −Ln (4.3)

which are not the usual adjoint equations familiar from 2D CFT. We will now show that this is

remedied by the RSW adjoint.

From the action of R on the Lorentz generators ,

RJ1R = −J1 ,

RK1R = +K1 ,

RJ2R = −J2 ,

RK2R = +K2 ,

RJ3R = +J3 ,

RK3R = −K3 ,
(4.4)

we have the equations

RLnR = −L̄−n , RL̄nR = −L−n . (4.5)
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Moreover, from the equations (2.7), (2.8), (2.9), (2.10), it is simple to verify that (SW)Ln(SW) = Ln

and (SW)L̄n(SW) = L̄n.
3 This implies that

L
†RSW
n = L−n , L̄

†RSW
n = L̄−n , (4.6)

which are the usual adjoint equations familiar from 2D CFT. Note the above formula provides a

proof for equation (3.9).

The adjoint equations (4.6) are highly useful: they completely determine RSW inner products

of all descendants in C and Ĉ. In addition, the momentum operators Pµ can be used to create

a recursion relation between inner products of states with fixed conformal weights, e.g. between

(ψ+
∆,N , ψ+

∆,N )RSW and (ψ+
∆+1,N , ψ+

∆+1,N )RSW. This computation is done in Appendix D.

The resulting inner products are given by
(
L
n1

−1L̄
n̄1

−1ψ
±
∆1,N

, Ln2

−1L̄
n̄2

−1ψ
±
∆2,N

)
RSW

= ±δn1,n2
δn̄1,n̄2

δ∆1,∆2
M−∆1,n1,n̄1

(4.7)
(
L
n1

−1L̄
n̄1

−1ψ
±
∆1,N

, Ln2

−1L̄
n̄2

−1ψ
∓
∆2,N

)
RSW

= 0 (4.8)

where

Mℓ,n,n̄ = −(2π)2(−1)n+n̄ n! ℓ!

(ℓ− n)!

n̄! ℓ!

(ℓ− n̄)!
. (4.9)

These Mℓ,n,n̄ coefficients will appear in the following section where we provide our decomposition

of the Wightman function.

5 Decomposition of the Wightman function

Now we show how to decompose the Wightman function G+(X,Y ) into elements of our basis B

defined in (2.21), (2.22), (2.23). Writing the Wightman function as

G+(X,Y ) =
1

4π2

1

(X+ − Y−)2
, (5.1)

we have

1

4π2

1

(X+ − Y−)2
=

∑

∆∈Z≤0

−∆∑

n,n̄=0

Ln−1L̄
n̄
−1ψ∆,N (X+) L

n
1 L̄

n̄
1 ψ̃2−∆,S(Y−)

M−∆,n,n̄
(5.2)

This formula is the main result of this paper. It establishes that B is complete in the sense we can

use the basis to construct a kernel which evolves initial data of the massless Klein-Gordon equation

to arbitrary times anywhere in the bulk. The formula (5.2) is a flat-space analog of the quasinormal

mode de Sitter analysis in [31].

To prove equation (5.2), we first observe that the right-hand side is Poincaré invariant (see

Appendix C for a proof). As such, it is sufficient to check that (5.2) holds for two points of the

3The combined operator SW can be expressed as an integral transform in spacetime. See Appendix G.

8



form Xµ = (X0, 0, 0,X3) and Y µ = (Y 0, 0, 0, Y 3). Temporarily deferring our application of the iǫ

prescription for clarity, we can use the identities

L
n
−1L̄

n̄
−1ψ∆,N (X0, 0, 0,X3) =





n! (−∆)!

(−∆− n)!
(X0 −X3)−∆−n(X0 +X3)n for n = n̄

0 for n 6= n̄

(5.3)

L
n
1 L̄

n̄
1 ψ̃2−∆,S(Y

0, 0, 0, Y 3) =





n! (−∆)!

(−∆− n)!
(Y 0 + Y 3)−n−1(Y 0 − Y 3)n+∆−1 for n = n̄

0 for n 6= n̄

, (5.4)

which are proven in Appendix E, to find

∑

∆∈Z≤0

−∆∑

n,n̄=0

Ln−1L̄
n̄
−1ψ∆,N (X0, 0, 0,X3) Ln1 L̄

n̄
1 ψ̃2−∆,S(Y

0, 0, 0, Y 3)

M−∆,n,n̄

= −
1

4π2

∑

∆∈Z≤0

−∆∑

n=0

(Y 0 − Y 3)−1(Y 0 + Y 3)−1

(
X0 −X3

Y 0 − Y 3

)−∆−n(
X0 +X3

Y 0 + Y 3

)n

(5.5)

=
1

4π2

1

−(X0 − Y 0)2 + (X3 − Y 3)2
. (5.6)

Upon implementing the iǫ prescription by sending X0 7→ X0 − iǫ and Y 0 7→ Y 0 + iǫ, our argument

is completed. Strictly speaking, the sum in (5.5) does not converge for all values of X0,X3, Y 0, Y 3,

but can be extended to all values via analytic continuation.

6 Discussion

We have provided a basis expansion for solutions to the massless Klein-Gordon equation where

each element of the basis has integer conformal dimension with respect to sl(2,C). Along the way,

we have discovered the utility of the RSW inner product, which is best viewed as a modification

to the Klein-Gordon inner product. This inner product is highly reminiscent of the BPZ inner

product from 2D CFT where the conformal dimensions are non-negative integers. Although in this

paper we have focused on massless scalars, it should be possible to treat massive fields in a similar

fashion, although the structure of the solution space is rather different (see e.g. [3]). We anticipate

that our analysis should most readily generalize to massless spin-1 and spin-2 fields, which may

clarify certain features of soft photon and soft graviton theorems and resonate with [26].

Perhaps most intriguing are the implications of our work to the program of celestial hologra-

phy. Quantizing the massless scalar field with respect to our mode expansions and accompanying

RSW inner product should provide a useful template for the structure of celestial CFTs. We note

that inner products similar to the RSW one have already appeared in the celestial holography

literature [33], and our work may help to elucidate the meaning of the inner product.
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A Descendants as representations of Lorentz and Poincaré groups

A.1 Descendants at fixed ∆ as a finite dimensional irrep of the Lorentz group

At fixed conformal dimensional ∆ = −ℓ for ℓ ∈ {0, 1, 2, . . .}, there are (ℓ + 1)2 descendants of the

form Ln−1L̄
n̄
−1ψ

+
−ℓ,N with n and n̄ ranging from 0 to ℓ. (If n > ℓ of n̄ > ℓ, the descendant is 0.)

In fact, these descendants can be understood as being built from two spin-ℓ/2 representations of

so(3), which is also known as the finite dimensional ( ℓ2 ,
ℓ
2) representation of the Lorentz group. The

purpose of this Appendix is to explicitly give the correspondence and illustrate how the RSW inner

product relates to the standard inner product on so(3) representations.

The so(3) generators ji for i = 1, 2, 3 have the commutation relations [ji, jj ] = i ǫijkjk. Defining

the raising and lowering operators j± = j1 ± i j2, we have

[j3, j±] = ±j±, [j+, j−] = 2j3. (A.1)

In the spin j representation of so(3), the generators act on the state vectors |m, j〉 via

j3 |m, j〉 = m |m, j〉 (A.2)

j± |m, j〉 =
√

(j ∓m)(j ±m+ 1) |m± 1, j〉 (A.3)

where m = j, . . . ,−j. Here we use the standard inner product 〈m1, j1|m2, j2〉 = δm1,m2
δj1,j2 . From

(A.3), the norm of the states jn− |j, j〉 and jn+ |−j, j〉 can be computed to be

〈j, j| jn+j
n
− |j, j〉 =

n!(2j)!

(2j − n)!
, 〈−j, j| jn−j

n
+ |−j, j〉 =

n!(2j)!

(2j − n)!
. (A.4)

If we define a second, independent set of so(3) generators denoted j̃± and j̃3, we can reproduce

the sl(2,C) commutation relations (2.4) via the identifications

j+ ↔ −L1 ,

j̃+ ↔ L̄−1 ,

j− ↔ L−1 ,

j̃− ↔ −L̄+1 ,

j3 ↔ −L0 ,

j̃3 ↔ L̄0 .
(A.5)

In fact, using (2.3), the above identifications (A.5) are are equivalent to

ji ↔
1

2
(Ki + iJi) ,

j̃i ↔
1

2
(−Ki + iJi).

(A.6)
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This means that if ji and j̃i generate the j and j̃ representations of so(3), then the states can also be

understood as transforming in the (j, j̃) representation of the Lorentz group, which has dimension

(2j +1)× (2j̃ +1). Clearly, to make contact with the (ℓ+1)× (ℓ+1) dimensional space of sl(2,C)

descendants, we must set

j = j̃ =
ℓ

2
. (A.7)

Under this correspondence, the north and south pole primaries are the states

ψ+
−ℓ,N ↔

∣∣ ℓ
2 ,

ℓ
2

〉
⊗

∣∣− ℓ
2 ,

ℓ
2

〉
,

ψ+
−ℓ,S ↔

∣∣− ℓ
2 ,

ℓ
2

〉
⊗

∣∣ ℓ
2 ,

ℓ
2

〉
.

(A.8)

If we define the “descendants” of our tensored spin-ℓ/2 Hilbert spaces via

|n; n̄〉 := (j−)
n(̃j+)

n̄
∣∣ ℓ
2 ,

ℓ
2

〉
⊗

∣∣− ℓ
2 ,

ℓ
2

〉
, (A.9)

then these correspond directly to our sl(2,C) descendants via

L
n
−1L̄

n̄
−1ψ

+
−ℓ,N ↔ |n; n̄〉 . (A.10)

In fact, from equations (4.7), (4.9), and (A.4), we can see that the RSW inner product is equal

to the standard inner product of our so(3) representations with the operator (−1)j3+j3 inserted in

between:

(
L
n1

−1L̄
n̄1

−1ψ
+
−ℓ,N , Ln2

−1L̄
n̄2

−1ψ
+
−ℓ,N

)
RSW

= (−4π2) 〈n1, n̄1| (−1)j3+̃j3 |n2, n̄2〉 . (A.11)

Because the tensored so(3) representation decomposes as

ℓ
2 ⊗ ℓ

2 = ℓ⊕ (ℓ− 1)⊕ . . .⊕ 1⊕ 0 , (A.12)

our states are in correspondence with the set of spherical harmonics with j ≤ ℓ, namely

{Yjm(θ, φ)} j=0,...,ℓ
m=j,...,−j

. (A.13)

Interestingly, this is the exact same construction one encounters in the BFSS matrix model for

matrices of size (ℓ+ 1) via matrix regularization of functions on the sphere [36,37].

A.2 Discrete irreducible representations of the Poincaré group

The role of the momentum operators in the Poincaré algebra is to interlace the ( ℓ2 ,
ℓ
2) representations

of the Lorentz group for different ℓ. Interestingly, the Poincaré representations formed from the

shadowed and unshadowed primaries are quite different. While one could replace ψ+
−ℓ,N → ψ̃−

2+ℓ,S

in the previous Subsection and the essential representation theory of the Lorentz group would not

change, this is not true when translations are brought into the mix.
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Using the south pole pointing null vector Sµ = (1, 0, 0,−1), it is straightforward to compute

(Sµ
Pµ)ψ

+
−ℓ,N = −2ℓ ψ+

−(ℓ−1),N (A.14)

(Sµ
Pµ)ψ̃

−
2+ℓ,S = 2(ℓ+ 1) ˜ψ−

2+(ℓ+1),S . (A.15)

Therefore, while the momentum operator sends ℓ → ℓ− 1 for the primary basis, it sends ℓ → ℓ+ 1

for the shadow basis. Schematically, this can be represented as

C : ∅
Pµ
←− (0, 0)

Pµ
←− (12 ,

1
2)

Pµ
←− (1, 1)

Pµ
←− (32 ,

3
2)

Pµ
←− (2, 2)

Pµ
←− · · ·

Ĉ : (0, 0)
Pµ
−→ (12 ,

1
2 )

Pµ
−→ (1, 1)

Pµ
−→ (32 ,

3
2)

Pµ
−→ (2, 2)

Pµ
−→ · · ·

(A.16)

At a conceptual level, we can imagine C as being generated by acting the Poincaré algebra on a

wavefunction with ℓ = ∞ (or perhaps more precisely, we can generate more of C by acting the

Poincaré algebra on wave functions with progressively large ℓ), whereas Ĉ can be generated by

instead using the wavefunction with ℓ = 0.

B Wightman function review

For pedagogical purposes, in this Appendix we review fundamental properties of the Wightman

function. We begin with a purely classical approach, and then comment on its manifestation in

quantum field theory with modified inner products.

B.1 Classical perspective

Suppose we are given initial conditions φ(X0, ~X), ∂0φ(X
0, ~X) to the massless Klein-Gordon equa-

tion on a time slice with fixed X0 and would like to evolve to some other time slice Y 0. Then the

kernel

K(X,Y ) :=
i

4π

1

| ~X − ~Y |

(
δ(| ~X − ~Y | − (X0 − Y 0))− δ(| ~X − ~Y |+ (X0 − Y 0))

)
(B.1)

allows us to evolve our initial conditions by

φ(Y ) =
(
K(X,Y ) , φ(X)

)
KG,X

(B.2)

where the X subscript on the Klein-Gordon inner product indicates an integration over ~X on a

surface of constant X0. As such, if we can reproduce the kernel K(X,Y ) with our desired mode

expansion, then we can fully solve the massless Klein-Gordon equation as a classical PDE.

The kernel K(X,Y ) can also be split up into its positive and negative frequency parts, as the

so-called Wightman Green’s functions G+(X,Y ) and G−(X,Y ),

G±(X,Y ) =
1

(2π)2
1

−(X0 − Y 0 ∓ iǫ)2 + ( ~X − ~Y )2
=

1

(2π)2
1

(X − Y )2 ± iǫ sgn(X0 − Y 0)
. (B.3)

It can be readily checked that

K(X,Y ) = G+(X,Y )−G−(X,Y ). (B.4)
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B.2 Quantum perspective

While K(X,Y ) and G±(X,Y ) can be understood as purely classical objects, it is also worthwhile

to understand how they are instantiated within quantum field theory.

Recall that the quantum creation and annihilation operators are defined via

â(f) := (f, φ̂)KG (B.5)

â†(f) = −(f∗, φ̂)KG (B.6)

[â(f), â†(g)] = (f, g)KG . (B.7)

If f is a positive frequency wave function, meaning it is a linear combination of plane waves like eik·X

for k0 > 0, then â(f) |0〉 = 0 and we say â†(f) |0〉 is a single particle state with wave function f . If

one has two such positive frequency wave functions, then the Klein-Gordon inner product coincides

with the standard QFT inner product because 〈0| a(f1)â
†(f2) |0〉 = (f1, f2)KG. Furthermore, it is

straightforward to check that the Klein-Gordon inner product of a postive frequency wave function

with a negative frequency wave function is always 0.

In some contexts (such as this paper), it is advantageous to make use of other norms besides the

Klein-Gordon norm. Say one uses an invertible linear operator O to define the inner product

(f, g)O := (f,Og)KG (B.8)

and suppose a basis of positive frequency wave functions fi diagonalizes this inner product via

(fi, fj)O = δijMi,

(f∗
i , f

∗
j )O = −δij(Mi)

∗,

(fi, f
∗
j )O = 0,

(B.9)

for some constants Mi. (Of course, in this particular paper, O = RSW and the fi are given by the

Ln−1L̄
n̄
−1ψ

+
∆,N ∈ C, but let us keep our discussion more general here.)

If fi is a complete basis of positive frequency wave functions, and (Ofi)
∗ is a complete basis of

negative frequency wave functions, then using (B.5) and (B.6) we can decompose the field operator

φ̂(X) as

φ̂(X) =
∑

i

1

M∗
i

(
fi(X)â(Ofi) + (Ofi)

∗(X)â†(fi)
)
. (B.10)

Returning to the Green’s functions, one can show via explicit computation that they are given

by the non-time-ordered two point functions

K(X,Y ) = 〈0| [ φ̂(X), φ̂(Y ) ] |0〉 ,

G+(X,Y ) = 〈0| φ̂(X)φ̂(Y ) |0〉 ,

G−(X,Y ) = 〈0| φ̂(Y )φ̂(X) |0〉 .

(B.11)
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In particular, we can now expand the two point function 〈0| φ̂(X)φ̂(Y ) |0〉 using the mode expansion

(B.10). The result is

G+(X,Y ) =
∑

i

fi(X)(Ofi)
∗(Y )

M∗
i

. (B.12)

(Note that (5.2) in the main text is exactly this equation.) Equation (B.12) is useful for the

following reason: if one is not sure whether or not the bases fi and (Ofi)
∗ are complete bases of

positive and negative frequency wave functions respectively, one can simply evaluate the right-hand

side of the above equation and see if it matches the left-hand side given in (B.3). If they match,

the proposed bases are indeed complete.

It turns out that the Wightman function G+(X,Y ) can also be thought of as a decomposition of

the identity operator for positive frequency wave functions, analogous to the expression I =
∑

i
|i〉〈i|
〈i|i〉 .

To see this, one must simply take the Klein-Gordon inner product of G+(X,Y ) and the initial data

by integrating X over a time slice and treating Y as a constant. This is easiest to see by acting it

on the function Ofj(X) and getting Ofj(Y ) back out:

(
G+(X,Y ),Ofj(X)

)
KG,X

=
∑

i

Ofi(Y )

Mi
(fi(X),Ofj(X))KG,X

= Ofj(Y ).

(B.13)

Viewing a full positive frequency solution in spacetime as a single state in our Hilbert space, we

see that G+(X,Y ) is precisely the identity operator on positive frequency wave functions when it

is convolved in the Klein-Gordon inner product.

C Proving Poincaré invariance of Wightman function decomposi-

tion

In this Appendix we will prove that the sum on the right-hand side of (5.2) is Poincaré invariant.

The proof is essentially symbol pushing. We say a function F (X,Y ) is Poincaré invariant if

F (ΛX + v,ΛY + v) = F (X,Y ) (C.1)

for all Lorentz transformations Λ and four-vectors v. If we define an arbitrary element A of the

Poincaré algebra in terms of basis elements (2.1) as

A = θiJi + φi
Ki + vµPµ , (C.2)

then the infinitesimal version of (C.1) is

AXF (X,Y ) + AY F (X,Y ) = 0 , (C.3)

where the subscripts in AX and AY denote the differential operator A acting on the variable X and

Y respectively.
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Say we have a function F which is defined by

F (X,Y ) :=
∑

i

fi(X)g∗i (Y )

M∗
i

, (C.4)

where gi = (RSW)fi and (fi, gj)KG = δijMi. We further define the matrices a i′
i and bj

′

j via the

equations

Afi =
∑

k

a k
i fk, Agj =

∑

k

gkb
k
j . (C.5)

Here we require that Afi and Agj can both be written as linear combinations of fi’s and gj ’s

respectively, (i.e., that the sets fi and gj are closed under the Poincaré algebra) but crucially we

do not need to assume that the combined set of fi’s and gj ’s are complete.

The Poincaré invariance of the Klein-Gordon inner product can be written as

(Afi, gj)KG + (fi,Agj)KG = 0 (C.6)

where we have used A† = −A. The above equation is equivalent to

(a j
i )

∗Mj +Mib
i
j = 0. (C.7)

Complex conjugating the above equation and dividing by M∗
i M

∗
j gives

1

M∗
i

a j
i +

1

M∗
j

(bij)
∗ = 0. (C.8)

Finally, we compute

AXF (X,Y ) + AY F (X,Y ) =
∑

i

1

M∗
i

((Afi)(X)g∗i (X) + fi(X)(Agi)
∗(Y )) (C.9)

=
∑

i,j

1

M∗
i

(a j
i fj(X)g∗i (Y ) + fi(X)g∗j (Y )(bji)

∗) (C.10)

=
∑

i,j

(
1

M∗
i

a j
i +

1

M∗
j

(bij)
∗

)
fj(X)g∗i (Y ) (C.11)

= 0 (C.12)

which concludes the proof that F (X,Y ) is Poincaré invariant.

D Computing Mℓ,n,n̄ from Poincaré symmetry

We will now show how the Mℓ,n,n̄ coefficients of (4.9) can be determined from Poincaré symmetry

up to an overall multiplicative constant.

Before doing so, it is worth explaining why the the RSW inner product between Ln−1L̄
n̄
−1ψ

±
−ℓ,N

and Ln
′

−1L̄
n̄′

−1ψ
±
−ℓ′,N is only non-zero if n = n′, n̄ = n̄′, and ℓ = ℓ′, as indicated in (4.7). First, note
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that L±1 and L̄±1 are raising and lowering operators with respect to L0 and L̄0. This implies that

Ln−1L̄
n̄
−1ψ

±
−ℓ,N is an eigenstate of L0 and L̄0 with eigenvalues −ℓ/2 + n and −ℓ/2 + n̄, respectively.

Because L
†RSW
0 = L0 and L̄

†RSW
0 = L̄0, we have that L0 and L̄0 are self-adjoint with respect to the

RSW inner product. By basic linear algebra, this means that wave functions which are eigenstates

of L0 and L̄0 with different eigenvalues must have an inner product of 0.

Let us now compute the recursion relation between Mℓ,n,n̄ and Mℓ,n−1,n̄. We have

Mℓ,n,n̄ =
(
L
n
−1L̄

n̄
−1ψ

+
−ℓ,N , Ln−1L̄

n̄
−1ψ

+
−ℓ,N

)
RSW

(D.1)

=
(
L
n−1
−1 L̄

n̄
−1ψ

+
−ℓ,N , L1L

n
−1L̄

n̄
−1ψ

+
−ℓ,N

)
RSW

= 2
(
(−ℓ/2 + n− 1) + (−ℓ/2 + n− 2) + . . .+ (−ℓ/2)

) (
L
n−1
−1 L̄

n̄
−1ψ

+
−ℓ,N , Ln−1

−1 L̄
n̄
−1ψ

+
−ℓ,N

)
RSW

= n(n− ℓ− 1)Mℓ,n−1,n̄ ,

where in the second line we used L
†RSW
−1 = L1, in the third line we commuted L1 past each instance

of L−1 using [L1, L−1] = 2L0 until L1 annihilated L̄n̄−1ψ
+
−ℓ,N at the end, and along the way used that

Ln−1L̄
n̄
−1ψ

+
−ℓ,N is an eigenstate of L0 with eigenvalue −ℓ/2 + n.

Likewise, we also have the recursion relation

Mℓ,n,n̄ = n̄(n̄− ℓ− 1)Mℓ,n,n̄−1. (D.2)

Solving the recursion relations (D.1) and (D.2), we have

Mℓ,n,n̄ = (−1)n+n̄ n! ℓ!

(ℓ− n)!

n̄! ℓ!

(ℓ− n̄)!
Mℓ,0,0. (D.3)

Having made full use of Lorentz symmetry, we must use the momentum operators Pµ to create a

recursion relation between Mℓ,0,0 and Mℓ−1,0,0. (Actually, one can compute Mℓ,0,0 for all ℓ directly

from (3.6) (just set z1 = z2 = 0) finding Mℓ,0,0 = −(2π)2, but it is nice give a symmetry argument

as well.)

We need to use a translation operator which changes ℓ. For simplicity, we use the specific

translation operator SµPµ, where Sµ = (1, 0, 0,−1) is the south pointing null vector

On the primary states, we can directly compute

(Sµ
Pµ)ψ

±
−ℓ,N = −2ℓ ψ±

−ℓ+1,N . (D.4)

On the shadowed states (RSW)ψ±
−ℓ+1,N = ψ̃±

ℓ+1,S , we can also directly compute

(Sµ
Pµ)(RSW)ψ±

−ℓ+1,N = 2ℓ (RSW)ψ±
−ℓ,N . (D.5)

Using (SµPµ)
† = −SµPµ, we find

((Sµ
Pµ)ψ

+
−ℓ,N , (RSW)ψ+

−ℓ+1,N )KG = −(ψ+
−ℓ,N , (Sµ

Pµ)(RSW)ψ+
−ℓ+1,N )KG (D.6)
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which upon using (D.4) and (D.5) becomes4

M(ℓ+1),0,0 = Mℓ,0,0 . (D.7)

This is our new recursion relation. Combining (D.3) and (D.7), we have

Mℓ,n,n̄ = (−1)n+n̄ n! ℓ!

(ℓ− n)!

n̄! ℓ!

(ℓ− n̄)!
M0,0,0 (D.8)

which determines Mℓ,n,n̄ up to a multiplicative constant which turns out to be M0,0,0 = −(2π)2.

E Expression for descendants on the X
1 = X

2 = 0 plane

We set ∆ = −ℓ where ℓ ∈ {0, 1, 2, . . .}. We begin by considering which wave functions Ln−1L̄
n̄
−1ψ−ℓ,N(X)

are nonzero when X1 = X2 = 0. Noting that ψ−ℓ,N (X) = (X0 −X3)ℓ, all we must do is study the

repeated action of L−1 and L̄−1 on (X0 −X3). It is straightforward to compute

L−1(X
0 −X3) = −X1 + iX2,

L̄−1(X
0 −X3) = −X1 − iX2,

(L−1)
2(X0 −X3) = 0,

(L̄−1)
2(X0 −X3) = 0,

(E.1)

L−1L̄−1(X
0 −X3) = X0 +X3. (E.2)

The above equations imply that, if one is to compute Ln−1L̄
n̄
−1(X

0 −X3)ℓ using the product rule of

differentiation, the only terms which will be non-zero when X1 = X2 = 0 will be terms where each

factor of (X0 −X3) which was acted on by one L̄−1 was then subsequently acted on by one L−1.

(Note that this can only hold when n = n̄.) By a combinatorial argument, the number of such

terms will be n! ℓ!/(ℓ− n)!, so we have

(Ln−1L̄
n̄
−1ψ−ℓ,N )(X0, 0, 0,X3) =





n! ℓ!

(ℓ− n)!
(X0 −X3)ℓ−n(X0 +X3)n n = n̄

0 n 6= n̄

. (E.3)

Let us now do the analogous computation for the shadowed modes. We can once again compute

L1(X
0 +X3) = X1 + iX2,

L̄1(X
0 +X3) = X1 − iX2,

(L1)
2(X0 +X3) = 0,

(L̄1)
2(X0 +X3) = 0,

(E.4)

L1L̄1(X
0 +X3) = X0 −X3. (E.5)

Using the equation ψ̃2+ℓ,S = (−XµXµ)
−ℓ−1(X0+X3)ℓ and noting that L1(X

µXµ) = L̄1(X
µXµ) = 0,

we can repeat our previous analysis to obtain

(Ln1 L̄
n̄
1 ψ̃2+ℓ,S)(X

0, 0, 0,X3) =





n! ℓ!

(ℓ− n)!
(X0 +X3)−n−1(X0 −X3)n−ℓ−1 n = n̄

0 n 6= n̄

. (E.6)

4More precisely, the recursion relation is ℓMℓ+1,0,0 = ℓMℓ,0,0. In order to divide by ℓ in the ℓ = 0 case, we must
take the limit ℓ → 0 and not plug in ℓ = 0 directly.
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We conclude with the interesting observation that if we take n = n̄ = ℓ, our north pole primaries

are sent to the south pole and vice versa:

L
ℓ
−1L̄

ℓ
−1ψ−ℓ,N = (ℓ!)2ψ−ℓ,S L

ℓ
1 L̄

ℓ
1 ψ̃2+ℓ,S = (ℓ!)2ψ̃2+ℓ,N . (E.7)

F Inner product integrals

F.1 Klein-Gordon inner product of primaries

In this Appendix we will derive the formula for the Klein-Gordon inner product of two conformal

primary modes

(
ψ±
−n,q(z1,z̄1)

, ψ±
−m,q(z2,z̄2)

)
KG

= ∓
(2π)3

|n−m|
δ2(z1 − z2)δn+m,−2 (F.1)

(
ψ±
−n,q(z1,z̄1)

, ψ∓
−m,q(z2,z̄2)

)
KG

= 0 (F.2)

for n ∈ {0, 1, 2, . . .}, m ∈ {−2,−3,−4, . . .} or m ∈ {0, 1, 2, . . .}, n ∈ {−2,−3,−4, . . .}. Strictly

speaking, these inner products involve integrals that must be computed using a regularization

which shall be given, and whichever of n or m is in the set {0, 1, 2, . . .} must be evaluated in the

limit that it approaches said integer.

F.1.1 ±± case

We start with the ++ case. The Klein-Gordon inner product can be written as
(
ψ+
−n,q(z1,z̄1)

, ψ+
−m,q(z2,z̄2)

)
KG

= im q0(z2, z̄2) I
++(n,m− 1)− i n q0(z1, z̄1) I

++(n− 1,m) (F.3)

where the integrals I±±(n,m) are defined on the X0 = 0 slice via

I++(n,m) =

∫
d3X(−~q(z1, z̄1) · ~X + iǫ)n(−~q(z2, z̄2) · ~X − iǫ)m (F.4)

I−−(n,m) =

∫
d3X(−~q(z1, z̄1) · ~X − iǫ)n(−~q(z2, z̄2) · ~X + iǫ)m (F.5)

I+−(n,m) =

∫
d3X(−~q(z1, z̄1) · ~X + iǫ)n(−~q(z2, z̄2) · ~X + iǫ)m (F.6)

I−+(n,m) =

∫
d3X(−~q(z1, z̄1) · ~X − iǫ)n(−~q(z2, z̄2) · ~X − iǫ)m (F.7)

where the four integrals have different combinations of signs of the iǫ’s.

In order to compute these integrals, we will employ the use of the Riemann-Liouville fractional

derivative

λD
p
αf(α) =





(
d

dα

)k 1

Γ(k − p)

∫ α

λ
(α− α′)k−p−1f(α′)dα′ if p > 0, p /∈ Z

1

Γ(|p|)

∫ α

λ
(α− α′)|p|−1f(α′)dα′ if p < 0

(F.8)
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where k ∈ Z≥0. This operator mimics both differentiation and integration depending on the sign of

p. The reader should be aware that λD
p
α is ill-defined when p is a non-negative integer p = 0, 1, 2, . . ..

If we ever wish to calculate λD
p
αf(α) when p is one of these integers, we must do so with a limit

limp′→p(λD
p′
α f(α)). This observation will become important later on.

An important property the operator λD
p
α satisfies is

lim
α→0+

[
+∞Dp

α(e
iAα)

]
= (iA)p if Im{A} > 0 for all p ∈ R \ {0, 1, 2, . . .}

lim
β→0−

[
−∞Dp

β(e
iAβ)

]
= (iA)p if Im{A} < 0 for all p ∈ R \ {0, 1, 2, . . .}.

(F.9)

The prescribed direction of the limits α → 0+ and β → 0− in the above equations, which depend on

the sign of Im{A}, is needed in the forthcoming steps so that +∞Dp
α and −∞Dp

β reproduce expected

derivative properties when the real part of A is integrated over.5

We now use the Riemann-Liouville fractional derivative and (F.9) to express I++(n,m) via

I++(n,m) = (−i)n+m lim
α→0+

(+∞Dn
α) lim

β→0−
(−∞Dm

β )

∫
d3Xeiα(−~q(z1,z̄1)· ~X+iǫ)eiβ(−~q(z2,z̄2)· ~X−iǫ)

(F.10)

where the integral on the right-hand side of the above equation evaluates to
∫

d3Xeiα(−~q(z1,z̄1)· ~X+iǫ)eiβ(−~q(z2,z̄2)· ~X−iǫ) = (2π)3δ3(α~q(z1, z̄1) + β~q(z2, z̄2))e
ǫ(β−α) (F.11)

= −
(2π)3

4αβ

δ2(z1 − z2)

q0(z1, z̄1)
δ(α + β)eǫ(β−α). (F.12)

Plugging (F.12) into (F.10) gives

I++(n,m) = −(−i)n+m (2π)3

4

δ2(z1 − z2)

q0(z1, z̄1)
lim

α→0+
(+∞Dn

α) lim
β→0−

(−∞Dm
β )

eǫ(β−α)

αβ
δ(α + β). (F.13)

One may then compute

lim
α→0+

(+∞Dn
α) lim

β→0−
(−∞Dm

β )
eǫ(β−α)

αβ
δ(α + β) = lim

α→0+
(+∞Dn

α)
−1

Γ(−m)
α−m−3e−2ǫαΘ(α) (F.14)

=
Γ(−3− n−m)

Γ(−n)Γ(−m)
(−1)n+1(2ǫ)3+n+m. (F.15)

Plugging (F.15) into (F.13) gives

I++(n,m) = in−m (2π)3

4

δ2(z1 − z2)

q0(z1, z̄1)

Γ(−3− n−m)

Γ(−n)Γ(−m)
(2ǫ)3+n+m (F.16)

5Here we elaborate on the direction of the limit of α → 0. Without loss of generality, take Im{A} = ǫ > 0 where ǫ

is small. Consider the integral I(α) =
∫ +∞+iǫ

−∞+iǫ

dA
2π

eiAα = δ(α). We want +∞Dp
αI(α) to mimic the expected behavior

of ∂p
αδ(α) for p > 0, in particular that limα→0 ∂

p
αδ(α) = 0. So, which direction for the limit of α → 0 should we

take for +∞Dp
αI(α) to be guaranteed to be zero, for p /∈ Z? Inspecting +∞Dp

αI(α) =
∫ +∞+iǫ

−∞+iǫ

dA
2π

(iA)peiAα, we have
a branch cut from the fractional exponent Ap for A on the negative real axis. This branch cut is avoided by the
contour of integration which runs from −∞ + iǫ to +∞ + iǫ. In order to close the contour of the A integral in the
upper half plane and show the integral is zero, we need for α > 0. Therefore, the correct direction of the α → 0 limit
is α → 0+ for Im{A} > 0. Likewise, we require α → 0− for Im{A} < 0.
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and plugging (F.16) this into (F.3) we get

(
ψ+
−n,q(z1,z̄1)

, ψ+
−m,q(z2,z̄2)

)
KG

=
(2π)3

2
δ2(z1 − z2)i

n−mΓ(−2− n−m)

Γ(−n)Γ(−m)
(2ǫ)2+n+m. (F.17)

In this final step, we must recall that the Riemann-Liouville fractional derivative is not defined

at positive integer values, and a limit must be taken. Let us first assume that n ∈ {0, 1, 2, . . .} and

m ∈ {−2,−3,−4, . . .}. While we can plug m directly into the above formula, n must be taken as

a limit approaching an integer. If we then take the ǫ → 0+ limit afterwards, we get

lim
ǫ→0+

lim
n′→n

in
′−mΓ(−2− n′ −m)

Γ(−n′)Γ(−m)
(2ǫ)2+n′+m =

−1

n+ 1
δn+m,−2 for n∈{0,1,2,...}

m∈{−2,−3,−4,...}. (F.18)

Likewise, if we instead take n ∈ {−2,−3,−4, . . .} and m ∈ {0, 1, 2, . . .}, we get

lim
ǫ→0+

lim
m′→m

in−m′ Γ(−2− n−m′)

Γ(−n)Γ(−m′)
(2ǫ)2+n+m′

=
−1

m+ 1
δn+m,−2 for n∈{−2,−3,−4,...}

m∈{0,1,2,...} . (F.19)

Plugging the above two equations into (F.17), we can write the combined result as

(
ψ+
−n,q(z1,z̄1)

, ψ+
−m,q(z2,z̄2)

)
KG

= −
(2π)3

|n−m|
δ2(z1 − z2)δn+m,−2 (F.20)

as desired, which holds for both the case n ∈ {0, 1, 2, . . .}, m ∈ {−2,−3,−4, . . .} as well as the case

n ∈ {−2,−3,−4, . . .}, m ∈ {0, 1, 2, . . .}. This completes the computation of the ++ case of (F.1).

Note that from the identity (f∗, g∗)KG = −(f, g)∗KG we obtain the −− case of (F.1) as well.

F.1.2 ±∓ case

We start with the +− case of (F.2). The Klein-Gordon inner product can be written as
(
ψ+
−n,q(z1,z̄1)

, ψ−
−m,q(z2,z̄2)

)
KG

= im q0(z2, z̄2) I
+−(n,m− 1)− i n q0(z1, z̄1) I

+−(n − 1,m) (F.21)

and following a similar logic as the last section, the integral I+−(n,m) is given by

I+−(n,m) = −(−i)n+m (2π)3

4

δ2(z1 − z2)

q0(z1, z̄1)
lim

α→0+
(+∞Dn

α) lim
β→0+

(+∞Dm
β )

eǫ(−α−β)

αβ
δ(α + β). (F.22)

One may then compute

lim
α→0+

(+∞Dn
α) lim

β→0+
(+∞Dm

β )
eǫ(−α−β)

αβ
δ(α + β) = lim

α→0+
(+∞Dn

α)
1

Γ(−m)
α−m−3Θ(−α) = 0 . (F.23)

which implies

I+−(n,m) = 0. (F.24)

Accordingly, we have
(
ψ+
−n,q(z1,z̄1)

, ψ−
−m,q(z2,z̄2)

)
KG

= 0 . (F.25)

which completes the proof of the +− case of (F.2). Once again, from the identity (f∗, g∗)KG =

−(f, g)∗KG we obtain the −+ case of (F.2) as well.
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F.2 RSW inner product

In this Appendix we will compute the RSW inner products of the conformal primary wave func-

tions using the previously calculated Klein-Gordon inner products (F.1) and (F.2). For n,m ∈

{0, 1, 2, . . .}, we will find that the RSW inner products are
(
ψ±
−n,q(z1,z̄1)

, (RSW)ψ±
−m,q(z2,z̄2)

)
KG

= ∓(2π)2|1− z1z̄2|
2nδn,m (F.26)

(
ψ±
−n,q(z1,z̄1)

, (RSW)ψ∓
−m,q(z2,z̄2)

)
KG

= 0 . (F.27)

Equation (F.27) follows directly from (F.2). We now carry out the computation of (F.26) by acting

W, S, and R successively on the second term in the Klein-Gordon inner product, using (F.1) as our

starting point. Applying W to (F.1) just sends m → −2−m and we get

(
ψ±
−n,q(z1,z̄1)

, (W)ψ±
−m,q(z2,z̄2)

)
KG

= ∓
(2π)3

2(n + 1)
δ2(z1 − z2)δn,m. (F.28)

We then insert the shadow operator S into the above equation. Using the definition of S given in

(3.1), it is straightforward to compute
(
ψ±
−n,q(z1,z̄1)

, (SW)ψ±
−m,q(z2,z̄2)

)
KG

= ∓(2π)2|z1 − z2|
2nδn,m. (F.29)

Now we must finally act with R. Here we note the identity

Rq(z, z̄) = |z|2 q(1/z̄, 1/z) (F.30)

from which we compute

(R)ψ̃2+m,q(z,z̄) =
(−(Rq(z, z̄)) ·X)m

(−XµXµ)1+m
= |z|2mψ̃±

2+m,q(1/z̄,1/z). (F.31)

If we insert R into (F.29) and use (F.31), we then get
(
ψ±
−n,q(z1,z̄1)

, (RSW)ψ±
−m,q(z2,z̄2)

)
KG

= ∓(2π)2|z2|
2m|z1 − 1/z̄2|

2nδn,m

= ∓(2π)2|1− z1z̄2|
2nδn,m

(F.32)

which completes the proof of (F.26).

F.3 Relation to previous literature

Previous literature [3] has used another normalization convention for the conformal primary states

ψ±
∆,q defined in (2.5), differing by a factor of (∓i)∆Γ(∆). The Klein-Gordon inner product of such

states is proportional to the Dirac delta distribution δ(i(2 −∆∗
1 −∆2)).

We stripped the (∓i)∆Γ(∆) prefactor off of our definition because we are studying integer modes

and Γ(∆) diverges at ∆ ∈ {0,−1,−2, . . .}. This is why we had to re-compute the Klein-Gordon

inner products from scratch using different integration techniques. However, if we näıvely divide

the Klein-Gordon inner product in [3] by these divergent Γ(∆) factors, we can reproduce our KG

equations (F.1) and (F.2) if we use the ad-hoc replacement rules δ(i(2 + n +m)) 7→ δ(0)δn+m,−2

and δ(0)
Γ(0) 7→

1
2π .
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G SW as a spacetime integral transform

The shadow operator S is defined as an integral over the momentum coordinate q(z, z̄) in (3.1).

However, the combined operator SW is actually a well-known integral transform over the spacetime

coordinate X on the null cone. This integral transform is known among mathematicians and is

used to construct the inner product for the discrete series representation of the Lorentz group, see

for instance Vol. 2, Sections 9.2.7 and 9.2.8 of [38].

We define S̃ via the position integral over a 2D slice of the null cone (denoted
∫
d2Y , see [35] for

a review of these kinds of embedding space integrals) via

S̃(−q ·X)−∆ :=
1−∆

π

∫
d2Y (−2X · Y )∆−2 1

(−q · Y )∆
(G.1)

Using the Feynman parameterization trick and the fundamental integral
∫
d2Y (−2Y · Z)−2 =

π/(−ZµZµ), one can compute

S̃(−q ·X)−∆ =
(−XµXµ)

∆−1

(−q ·X)∆
(G.2)

which demonstrates that S̃ = SW. It should also be noted that S̃ is also equal to the so-called

“Kelvin transform” K, which acts on functions f∆(X) of scaling dimension ∆ as

(Kf∆)(X) = (−XµXµ)
(∆−2)/2f∆

(
X

(−XµXµ)1/2

)
. (G.3)
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