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Abstract

We present a discrete basis of solutions of the massless Klein-Gordon equation in 3+ 1 Minkowski
space which transform as s[(2,C) Lorentz/conformal primaries and descendants, and whose ele-
ments all have integer conformal dimension. We show that the basis is complete in the sense that
the Wightman function can be expressed as a quadratic sum over the basis elements.
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1 Introduction

Celestial amplitudes are ordinary quantum field theory or quantum gravity scattering amplitudes
re-expressed in a basis of s[(2, C) Lorentz/conformal primary scattering states, which can be viewed
as operators on the celestial sphere. The set of all conformal primary wavefunctions is vastly
overcomplete. Finding an optimal complete basis is a central problem in celestial holography. It



is similar to the now-solved problem [1,2] of finding a complete basis of operators in 2D Liouville
theory. Because CCFTs are not unitary, it is not obvious what properties an optimal basis should
have. Some natural ones are:

e Forming irreducible representations of the Poincaré group;

e Instantiating closure, locality and associativity of the celestial OPE;

e Providing a factorization of scattering amplitudes onto associated 2D conformal blocks; and
e Providing a solution of the celestial conformal bootstrap equation.

One frequently considered basis is the unitary principal series [3]. This is complete on the space
of square normalizable wavefunctions, but does not appear to satisfy all of the above constraints.
Other possibilities involve restricting the conformal weights to integer values. This was put forth
in [4] based on periodicity conditions on the celestial torus. Other works have also studied integer
conformal dimensions in the context of large gauge symmetry in the spin-1 and spin-2 cases [5-11],
twisted holography [12], as well as more broadly [13-25].

In this paper we construct a complete integer basis employing irreducible integer representations
of the Poincaré group. As our work was nearing completion, a complete integer basis for the
Schwartz space of solutions of the massless scalar wave equation was found in [26]. These results
contain overlap with ours, although the details and methods are quite different.

Our approach was inspired by earlier work on the completeness of quasinormal mode bases [27—
31]. We draw particular attention to [31], in which it is shown that there exists an integer basis of
quasinormal modes for de Sitter space which are complete in the sense that the Wightman function
can be represented as a sum over such modes. In the flat limit of de Sitter, the quasinormal
modes decompose as tower of integer conformal primaries transforming irreducibly under Poincaré.
This suggests a similar integer basis of conformal primaries should exist for Minkowski space, as is

demonstrated herein.!

Following [31], our strategy is to find a mode decomposition of the Wightman function G4 (X,Y")
in terms of an integer basis of solutions to the massless Klein-Gordon equation (i.e. the wave equa-
tion). Reproducing the Wightman function is sufficient to establish that our basis can propagate
arbitrary initial data to solutions of the the massless Klein-Gordon equation, as we explain in the
Appendices. Along the way, we discover a novel modification of the Klein-Gordon inner product
which emulates that of BPZ [32], and has had recent manifestations in celestial holography [33].

The remainder of the paper is organized as follows. In Section 2 we define our integer basis. In
Sections 3 and 4 we discuss a modification to the Klein-Gordon inner product which manifests our
basis. In Section 5 we give our main result, namely a decomposition of the Wightman function into
our integer basis. We conclude with a brief discussion in Section 6. Following this are numerous
Appendices; of particular note is Appendix A which explains how to organize our integer basis into
finite-dimensional representations of the Lorentz group.

! Although we do not herein attempt to make the limiting connection with de Sitter precise.



2 Candidate integer basis

In this section we present an ‘integer basis’ of solutions to the massless Klein-Gordon equation, in
which each element has integer conformal weight. The basis is composed of a shadow pair of two
irreducible representations of the Poincaré group, both of which decompose into towers of finite-
dimensional representations of the sl(2,C) Lorentz/conformal group. In subsequent sections we
will show that our integer bases are complete in the sense that they provide a mode expansion for
the Wightman function. We use the (—+++) metric convention in this work.

Defining the Poincaré generators as
Ji = € X7 0, Ki=-X"0,— X" 0, P,=—0,, (2.1)
where ¢ = 1,2, 3, we have the non-zero commutators
i J5] = € e i, Kj] = €ijn Ky, [Ki, Kj] = —e€ijn I » (2.2)
[Ki,Po] =P, [K;, Pi] = Pog, [Ji, Pj] = €ijk Pi -

We recall that the Lorentz algebra so(1, 3) is isomorphic to the 2D global conformal transformations
5[(2,C). The identification can be made explicit via

1 ) = 1 .
1 ‘ _ 1 .
L = 5(—K1 +J2 —i(K2 + J1)), L = 5(_K1 +J2 +i(Ke + 1)), (2:3)
1 . = 1 )
L= §(K1 +J2 —i(Ke = J1)), Ly = §(K1 +J2 +i(Ke = 1)),

which satisfy the usual commutation relations

Ly, L] = (m — n)Linsn Lo, Ln] = (m — 1) Lyngn Ly, L] = 0. (2.4)

To construct a basis of solutions to the massless Klein-Gordon equation, we start by identifying
solutions which transform as 2D conformal primaries. There are two kinds of such solutions, given
by [3,34]

(X012

Yag(X) = g XA (2.5)

X)=——+
¢A7q( ) (_q . X)A )
where ¢ is a null vector satisfying ¢> = 0. For our purposes, we will always take A to be an
integer. To verify that these functions transform as primaries, we parameterize the null vector with
a complex number z as

" (z,2) =(1+2z,24+z,—i(z2 — 2),1 — 22) (2.6)

and directly compute
L _ (2 1)2" + 2"t19 2.7
nwA,q(z,E) - E(n + )Z +z z ¢A,q(z,2) ( . )



LA g(z2) = (%(n +1)2" + z”+165> VA q(=3) (2.8)
Lta g(ez) = <(2 - 2) (n+1)z" + z“+1az> Vages) (2.9)
Lot g(zz) = (@(n +1)z" + z"+162> z/zZ;(;) (2.10)
for n = —1,0,1. From the above, we see that each /T,Z)_é"i(zj) transforms as conformal primary of

weight A and (h,h) = (%, %), and similarly each ¢ 4. z) transforms as a conformal primary of

weight 2 — A and (h, h) = (352, 252).

To formulate a candidate basis of solutions to the massless Klein-Gordon equation, we would
like to find solutions which are highest weight with respect to the s[(2,C) algebra so that we can
fill out our basis by taking descendants. For this purpose, let us note a convenient choice of g*,

namely a null vector which points towards the north pole:
NH = ¢"(0,0) = (1,0,0,1). (2.11)

From (2.7), (2.8), (2.9), (2.10), we have

Livan = Ligany =0 (2.12)
- A
Lova,n = Loan = 5 Ya,N (2.13)
Lidan = Liay =0 (2.14)
e 9 A ——
Lova,n = Loan = —5 YaN (2.15)

thus establishing that YA n and m are highest weight states for any (integer) A. We can then
form s((2, C) descendants given by L" [ilﬂ)A, ~ and L’_’1[§1¢A7 ~, for n and 7 distinct non-negative
integers. A similar analysis shows that 1A s and 1A s are lowest-weight states, where

S* = (1,0,0,—1) (2.16)

is a null vector which points towards the south pole.

With the above ingredients at hand, we are almost prepared to propose a candidate basis. Let
us define the positive (+) and negative (—) frequency wavefunctions [3]

—~—

VE (X)) =dan(Xe), vk p(X) = dan(Xy), (2.17)

where

XU = (X" Fie, X', X2 X3). (2.18)

We further define the reflection operator R which takes

R: (X% XY X2 X% — (X0 X1 X2 —X3), (2.19)



and use Rf(X) to denote f(RX). The operator is useful since it interchanges highest-weight and
lowest-weight states:

Rwi,N = wi,sv Rwi,]\/ = wi’g . (2.20)

Defining the sets

€= {Lﬁl[ﬁ1¢AvN(X+)}n,ﬁ:o,l,.,.,—A (2.21)
A=0,—1,-2,...
C:= {L? LY ¢2—A7S(X—)}n’ﬁ: T A (2.22)
A=0,—-1,-2,...
we are now fully equipped to propose the integer basis
B:=CuUC. (2.93)

Notice that if B is an integer basis, then the complex conjugate of B, namely B* = C* U (?*, is
likewise an integer basis.

3 The RSW inner product

There is a useful relationship between the sets C and C defined above: they are related by an “RSW”
transformation, where R, S, and W are independent linear operators. Having already defined R, we

define the shadow operator S which acts on the function T,Z)X 4(2,) with conformal dimension A by?
A-1 1
+ ._ 2 +
Sq/}A,q(z,Z) T /d w |z — w‘2(2—A) wA,q(w,ﬁ)) : (3.1)

s

The shadow operator relates our two kinds of primary states in (2.5) by [3, 35]

Swi,q(z,i) - wi,q(z,i) : (3.2)
We also define the W operator by
WK, = V5 pg (3.3)
which simply replaces the conformal weight A by 2 — A.

Having defined R, S, and W individually, we now define the RSW inner product. Recall that the
Klein-Gordon inner product is

(f.9)kG =i /E X (f*A0g — 900f"). (3.4)

where ¥ is a Cauchy slice at fixed X°. If f(X) and g(X) satisfy the free Klein-Gordon equation
(i.e. the ordinary wave equation) [0f = Og = 0, then (3.4) is independent of the Cauchy slice ¥ on
which the integral is evaluated. Then the RSW inner product is defined as

(f.9) RSW "= (f, (RSW)Q)KG : (3.5)

2Setting z = x + iy we use the conventions dz := dx dy and §%(z) = 6(x)d(y).




This is closely related to the shadow product at opposite poles introduced in [33]. It should be
noted that RSW inner products of our integer bases are finite numbers. For instance, in Appendix

F we compute the inner product of two primary states wi o and find it to be

2,%)
(V31 aerzy Va ) gy = FETIL = 212202200, 00 (3.6)
We can further define the ‘RSW-adjoint’ of wave functions, denoted frsw, via
fimv = (RSW)S*. (£.9)gew = (671, (F)™")ggy - (3.7)
It can be readily shown that R? =1, (SW)? = 1, and [R,SW] = 0. These imply that

(RSW)? =1 (3.8)

so (firsw)frsw — f Tn fact, the RSW adjoint takes wave functions from C into 5, and vice versa:
(L7 on (X)) ™ = LT a5 (). (39)

This relation will be proven in the following section.

4 RSW adjoints

The Klein-Gordon adjoint 1 of a linear operator O is defined by (f, OTg)xa = (Of, 9)kc. Likewise,
we can define the RSW adjoint frsw by

OTrRW .= (RSW)OT(RSW) , (£.0"Wg) oy = (OF . 9) pow- (4.1)

Let us investigate the RSW adjoint properties of the sl(2,C) generators. Note that our Poincaré
generators (2.1) are skew adjoint under the KG adjoint, satisfying

e Kl = —Ki, Pl =—P,. (4.2)

7

From this, the s[(2,C) generators (2.3) then inherit the Klein-Gordon adjoint property
LI = —L,, Ll =—L, (4.3)

which are not the usual adjoint equations familiar from 2D CFT. We will now show that this is
remedied by the RSW adjoint.

From the action of R on the Lorentz generators,

RJIR= -1, RJR=—Jo, RJsR = +J3, (4.4)
RKiR = +K; , RKyR = +Ks, RK5R = —Kj, '
we have the equations
RL,R=—-L_,, RL,R=—-L_,. (4.5)



Moreover, from the equations (2.7), (2.8), (2.9), (2.10), it is simple to verify that (SW)L,(SW) =
and (SW)L,(SW) = L,,.> This implies that

LLRSW =L_,, [LRSW =L_,, (4.6)

which are the usual adjoint equations familiar from 2D CFT. Note the above formula provides a
proof for equation (3.9).

The adjoint equations (4.6) are highly useful: they completely determine RSW inner products
of all descendants in C and C. In addition, the momentum operators P, can be used to create
a recursion relation between inner products of states with fixed conformal weights, e.g. between
(QbX’N, wZ7N)RSW and (¢Z+17N, ¢X+1,N)RSW' This computation is done in Appendix D.

The resulting inner products are given by

(Lm Ln11¢A1 N> LT—L21 Lnlqu)Ag, )RSW = iéﬂl,nzéﬁhfnéﬁl,AzM—Al,nlfll (4-7)
(Lm0, o AT, ), =0 (1)
where
I VIR 1Y
Mé,n,ﬁ = _(27T)2(_1) " (e _ n)| (e — ﬁ)' : (49)

These My, » coefficients will appear in the following section where we provide our decomposition
of the Wightman function.

5 Decomposition of the Wightman function

Now we show how to decompose the Wightman function G4(X,Y’) into elements of our basis B
defined in (2.21), (2.22), (2.23). Writing the Wightman function as

1 1
G.(X,Y)=————— 5.1
+( ) ) 472 (X+—Y_)2’ ( )
we have
1 Z iA: Lﬁl[ilwﬁ,N(X-‘r) L? [? ¢2—A,S(Y—) (5 2)
(X+ - M_pnn '
A€Z<g n,i=0 e

This formula is the main result of this paper. It establishes that B is complete in the sense we can
use the basis to construct a kernel which evolves initial data of the massless Klein-Gordon equation
to arbitrary times anywhere in the bulk. The formula (5.2) is a flat-space analog of the quasinormal
mode de Sitter analysis in [31].

To prove equation (5.2), we first observe that the right-hand side is Poincaré invariant (see
Appendix C for a proof). As such, it is sufficient to check that (5.2) holds for two points of the

3The combined operator SW can be expressed as an integral transform in spacetime. See Appendix G.



form X* = (X°,0,0,X3) and Y* = (Y°,0,0,Y3). Temporarily deferring our application of the ie
prescription for clarity, we can use the identities

n! (-A)! 0 3\—A-n/y0 3 -
__ — (X" - X)X+ XO)" forn=mn
L21L21¢A,N(X07 0707X3) = (_A - Tl)' (53)
0 for n #n
n! (—A)! 0 3\—n—1/y/0 3\nt+A-1 =
o~ (YO YT (Y0 — vt forn=n
LT LT ¢2-a,5(Y?,0,0,Y%) = { (-A —n)! . (5.4)
0 forn #n

which are proven in Appendix E, to find

Z _ZA Lﬁl[ﬁ1¢A,N(X070707X3) L? [?¢;:_A/,S(YO70707Y3)
AEZc n,n=0 M—A,n,ﬁ
1 - 0 3v—1/1,0 31 (X0 - X7 IO CED A
=-13 DY WO -vH Y04+ v?) (71/0—1/3) <7Y0+Y3> (5.5)

AGZSO n=0
_ b 1
T 42 —(XO _ Y0)2 4 (X3 _ Y3)2 :

(5.6)

Upon implementing the ie prescription by sending X° — X0 —je and Y° — Y + ie, our argument
is completed. Strictly speaking, the sum in (5.5) does not converge for all values of X°, X3 Y9 Y3
but can be extended to all values via analytic continuation.

6 Discussion

We have provided a basis expansion for solutions to the massless Klein-Gordon equation where
each element of the basis has integer conformal dimension with respect to sl(2,C). Along the way,
we have discovered the utility of the RSW inner product, which is best viewed as a modification
to the Klein-Gordon inner product. This inner product is highly reminiscent of the BPZ inner
product from 2D CFT where the conformal dimensions are non-negative integers. Although in this
paper we have focused on massless scalars, it should be possible to treat massive fields in a similar
fashion, although the structure of the solution space is rather different (see e.g. [3]). We anticipate
that our analysis should most readily generalize to massless spin-1 and spin-2 fields, which may
clarify certain features of soft photon and soft graviton theorems and resonate with [26].

Perhaps most intriguing are the implications of our work to the program of celestial hologra-
phy. Quantizing the massless scalar field with respect to our mode expansions and accompanying
RSW inner product should provide a useful template for the structure of celestial CFTs. We note
that inner products similar to the RSW one have already appeared in the celestial holography
literature [33], and our work may help to elucidate the meaning of the inner product.
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A Descendants as representations of Lorentz and Poincaré groups

A.1 Descendants at fixed A as a finite dimensional irrep of the Lorentz group

At fixed conformal dimensional A = —¢ for £ € {0,1,2,...}, there are (£ + 1)? descendants of the
form L’jlfﬁlq/)f“v with n and 7 ranging from 0 to ¢. (If n > ¢ of 7 > ¢, the descendant is 0.)
In fact, these descendants can be understood as being built from two spin-£/2 representations of
50(3), which is also known as the finite dimensional (%, é) representation of the Lorentz group. The
purpose of this Appendix is to explicitly give the correspondence and illustrate how the RSW inner
product relates to the standard inner product on s0(3) representations.

The so0(3) generators j; for i = 1,2,3 have the commutation relations [j;,j;] = @ €;jxjr. Defining

the raising and lowering operators j+ = j; &1 j2, we have
[j37j:|:] = :l:j:b [j+7j—] = 2]3 (Al)

In the spin j representation of s0(3), the generators act on the state vectors |m, j) via

i Im, 3) = V(G Fm)(G £ m+ 1) [m £ 1, 5) (A-3)
where m = j,...,—j. Here we use the standard inner product (m1, ji|m2, j2) = 6m,; ms0j, jo- From

(A.3), the norm of the states j” |7, j) and j’ |7, j) can be computed to be

nl(27)! n!(27)!
:% <—j,jmji\—j,j>=%. (Ad)

3 g1 15,3

If we define a second, independent set of s0(3) generators denoted ?i and ?3, we can reproduce
the s[(2,C) commutation relations (2.4) via the identifications

j <_>_|—17 j—<_>|——17 j3<_>_|-07
7+ = = = T = (A.5)
]+HL—17 ]—H_L+l7 ]3HL0'
In fact, using (2.3), the above identifications (A.5) are are equivalent to
. 1 .
i & §(Kz +1iJ;),
N 1 (A.6)

10



This means that if j; andi generate the j and ; representations of s0(3), then the states can also be
understood as transforming in the ( j,}) representation of the Lorentz group, which has dimension
(2j +1) x (2] +1). Clearly, to make contact with the (£+1) x (¢4 1) dimensional space of sl(2, C)
descendants, we must set

R 4
j=i=g3 (A7)

Under this correspondence, the north and south pole primaries are the states

iy < |55 @l-5.9)

Wi o |5 Hel) o
If we define the “descendants” of our tensored spin-£/2 Hilbert spaces via
s 7) = ()" ()" [5:5) © =5, 5) » (A.9)
then these correspond directly to our s[(2,C) descendants via
L’ilt’ilew < |n;n). (A.10)

In fact, from equations (4.7), (4.9), and (A.4), we can see that the RSW inner product is equal
to the standard inner product of our s0(3) representations with the operator (—1)373 inserted in

between:
(L LM, s LY L 907, v ) pew = (—477) (na, | (=1)277% [ng, ma) . (A.11)

Because the tensored so(3) representation decomposes as

N[

i=teo(l-o..o180, (A.12)
our states are in correspondence with the set of spherical harmonics with j < ¢, namely

{Yim(0, )} j=o0,..0 - (A.13)

m:jv"'v_j

Interestingly, this is the exact same construction one encounters in the BFSS matrix model for
matrices of size (¢ + 1) via matrix regularization of functions on the sphere [36,37].

A.2 Discrete irreducible representations of the Poincaré group

The role of the momentum operators in the Poincaré algebra is to interlace the (é, %) representations

of the Lorentz group for different ¢. Interestingly, the Poincaré representations formed from the

. . . . . + -
shadowed and unshadowed primaries are quite different. While one could replace ¢~ oN ™ Vares
in the previous Subsection and the essential representation theory of the Lorentz group would not
change, this is not true when translations are brought into the mix.

11



Using the south pole pointing null vector S¥* = (1,0,0,—1), it is straightforward to compute
(S“Pu)wi_&]\[ = -2/ ¢J_r(g_1)7N (A.14)

(S"Pu)ipes = 200+ 1y, gyry s (A.15)

Therefore, while the momentum operator sends £ — £ — 1 for the primary basis, it sends £ — ¢+ 1

for the shadow basis. Schematically, this can be represented as

C: 0RO GH ML) G S
C: (0.0) =5 (3,3) =5 (1,1) = (1.4) =5 (2.2) = -

At a conceptual level, we can imagine C as being generated by acting the Poincaré algebra on a
wavefunction with ¢ = oo (or perhaps more precisely, we can generate more of C by acting the
Poincaré algebra on wave functions with progressively large £), whereas C can be generated by
instead using the wavefunction with ¢ = 0.

B Wightman function review

For pedagogical purposes, in this Appendix we review fundamental properties of the Wightman
function. We begin with a purely classical approach, and then comment on its manifestation in
quantum field theory with modified inner products.

B.1 Classical perspective

Suppose we are given initial conditions ¢(X©, X ), Oop(X©, X ) to the massless Klein-Gordon equa-
tion on a time slice with fixed X9 and would like to evolve to some other time slice Y°. Then the

kernel
i 1 = o S o
KX, Y):=——5—(6(X Y| - (X"~ Y%) - §(|X - Y|+ (X° - Y? B.1
(4Y) 1= g (B0 - V1= ) = (X =¥+ n) By
allows us to evolve our initial conditions by
¢(Y) = (K(X,Y),0(X)) q x (B.2)

where the X subscript on the Klein-Gordon inner product indicates an integration over X on a
surface of constant XY. As such, if we can reproduce the kernel K(X,Y) with our desired mode
expansion, then we can fully solve the massless Klein-Gordon equation as a classical PDE.

The kernel K(X,Y) can also be split up into its positive and negative frequency parts, as the
so-called Wightman Green’s functions G*(X,Y) and G~ (X,Y),

1 1 1 1
G=(X,Y) = = , . (B3
oY) = G X0 vozipr (R_T2 P (X VP Ticsan(x0—vo) (Y

It can be readily checked that

K(X,)Y)=G"(X,Y) -G (X,Y). (B.4)

12



B.2 Quantum perspective

While K(X,Y) and GF(X,Y) can be understood as purely classical objects, it is also worthwhile
to understand how they are instantiated within quantum field theory.

Recall that the quantum creation and annihilation operators are defined via

a(f) = (f,9)ka (B.5)
a'(f) = —(f*, d)xa (B.6)
[a(f),a'(9)] = (f,9)ka - (B.7)

If f is a positive frequency wave function, meaning it is a linear combination of plane waves like e***X

for k% > 0, then a(f) |0) = 0 and we say a(f)|0) is a single particle state with wave function f. If
one has two such positive frequency wave functions, then the Klein-Gordon inner product coincides
with the standard QFT inner product because (0| a(f1)a’(f2)|0) = (f1, f2)kg. Furthermore, it is
straightforward to check that the Klein-Gordon inner product of a postive frequency wave function
with a negative frequency wave function is always 0.

In some contexts (such as this paper), it is advantageous to make use of other norms besides the
Klein-Gordon norm. Say one uses an invertible linear operator O to define the inner product

(f)g)o = (fv OQ)KG (B8)
and suppose a basis of positive frequency wave functions f; diagonalizes this inner product via

(fis fi)o = 0ij M;,
(fi5 f])o = —6i; (M), (B.9)
(fi» f)o =0,
for some constants M;. (Of course, in this particular paper, O = RSW and the f; are given by the
L’il[’zllbz’ ~ € C, but let us keep our discussion more general here.)

If f; is a complete basis of positive frequency wave functions, and (Of;)* is a complete basis of
negative frequency wave functions, then using (B.5) and (B.6) we can decompose the field operator

$(X) as
$X) =Y (RGO + (O (X! (1) (8.10)

Returning to the Green’s functions, one can show via explicit computation that they are given
by the non-time-ordered two point functions

K(X,Y) = (0][$(X), $(Y)]0),
GH(X,Y) = (0] 9(X)(Y) |0) (B.11)
G7(X,Y) = (0] ¢(Y)



In particular, we can now expand the two point function (0] $(X)¢(Y) |0) using the mode expansion
(B.10). The result is

_ N [ilX)(0fi)*(Y)
GH(X,Y) = Z A : (B.12)

(Note that (5.2) in the main text is exactly this equation.) Equation (B.12) is useful for the
following reason: if one is not sure whether or not the bases f; and (Of;)* are complete bases of
positive and negative frequency wave functions respectively, one can simply evaluate the right-hand
side of the above equation and see if it matches the left-hand side given in (B.3). If they match,
the proposed bases are indeed complete.

It turns out that the Wightman function G (X,Y) can also be thought of as a decomposition of

the identity operator for positive frequency wave functions, analogous to the expression I =), ‘a%‘ .

To see this, one must simply take the Klein-Gordon inner product of GT(X,Y") and the initial data
by integrating X over a time slice and treating Y as a constant. This is easiest to see by acting it
on the function Of;(X) and getting Of;(Y) back out:

Of;(Y
(6" (XY).05(X))ko.x = 3 % (F(X), OF5(X )k x (B.13)

= Of;(Y).

Viewing a full positive frequency solution in spacetime as a single state in our Hilbert space, we
see that GT(X,Y) is precisely the identity operator on positive frequency wave functions when it
is convolved in the Klein-Gordon inner product.

C Proving Poincaré invariance of Wightman function decomposi-
tion

In this Appendix we will prove that the sum on the right-hand side of (5.2) is Poincaré invariant.
The proof is essentially symbol pushing. We say a function F'(X,Y’) is Poincaré invariant if

F(AX +v,AY +v) = F(X,Y) (C.1)

for all Lorentz transformations A and four-vectors v. If we define an arbitrary element A of the
Poincaré algebra in terms of basis elements (2.1) as

A =0 + ¢'K; + Py, (C.2)
then the infinitesimal version of (C.1) is
AxF(X,Y)+AyF(X,Y) =0, (C.3)

where the subscripts in Ax and Ay denote the differential operator A acting on the variable X and
Y respectively.
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Say we have a function F' which is defined by

F(X,Y):= Z 7fi(XA);ff(Y) : (CA)

where g; = (RSW)f; and (fi,g;)kc = 0ijM;. We further define the matrices a; and bj;» via the
equations

Afi=>_alfi, Agi = gib¥. (C.5)
k k

Here we require that Af; and Ag; can both be written as linear combinations of f;’s and g;’s
respectively, (i.e., that the sets f; and g; are closed under the Poincaré algebra) but crucially we
do not need to assume that the combined set of f;’s and g;’s are complete.

The Poincaré invariance of the Klein-Gordon inner product can be written as

(Afi,g5)xc + (fi,Agj)ka =0 (C.6)
where we have used AT = —A. The above equation is equivalent to
(af)"M; + M;b'; = 0. (C.7)

Complex conjugating the above equation and dividing by M; M ;-‘ gives

i) =0 (C.8)
Finally, we compute
AXF(XY) + AyF(X,Y) =} ]\; (M) (X)gi (X) + fi(X)(Agi)*(Y)) (C.9)
=2 ]\; (a] £;(X)g; (V) + fi(X)g; (V) (V))") (C.10)
i.j (
- ; <]Vz* aij + Mij*(sz)*) fi(X)gi (Y) (C.11)
=0 (C.12)

which concludes the proof that F'(X,Y") is Poincaré invariant.

D Computing M;, ; from Poincaré symmetry

We will now show how the M, ,, 5 coeflicients of (4.9) can be determined from Poincaré symmetry
up to an overall multiplicative constant.

Before doing so, it is worth explaining why the the RSW inner product between Lﬁl[fjlwi N
and L™, [i/1¢f£/ y is only non-zero if n =n/, n =7/, and £ = /', as indicated in (4.7). First, note
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that Ly, and Ly are raising and lowering operators with respect to Ly and Ly. This implies that
L™, [77_‘11/)1—}7 N is an eigenstate of Lo and Lo with eigenvalues —¢/2 +n and —¢/2 + 7, respectively.
Because LJ[)RSW = Lo and [J[)RSW = Lo, we have that Ly and Ly are self-adjoint with respect to the
RSW inner product. By basic linear algebra, this means that wave functions which are eigenstates
of Ly and Lo with different eigenvalues must have an inner product of 0.

Let us now compute the recursion relation between My, » and My ,_1 5. We have

= (Lt Ll et )
= 2((=/2+n— 1)+ (~£/24+n—=2) + ...+ (=4/2)) (LT, 0, LT L0 0F, )
= n(n— €= )Myp17,

RSW

where in the second line we used LT_RlSW = L4, in the third line we commuted L; past each instance
of L using [Ly,L_1] = 2L¢ until Ly annihilated [fjll/}fé n at the end, and along the way used that
L™, [7_‘11[)3 y is an eigenstate of Ly with eigenvalue —¢/2 + n.

Likewise, we also have the recursion relation
Mypp=n(n—L—=1)Mpns1. (D.2)

Solving the recursion relations (D.1) and (D.2), we have

ntl!  nll

M= (=1)""" (C=n) ({—n)

My opo- (D.3)

Having made full use of Lorentz symmetry, we must use the momentum operators P* to create a
recursion relation between My and M;_; . (Actually, one can compute My for all £ directly
from (3.6) (just set z; = zo = 0) finding My o0 = —(27)?, but it is nice give a symmetry argument
as well.)

We need to use a translation operator which changes ¢. For simplicity, we use the specific
translation operator S#P,, where S* = (1,0,0,—1) is the south pointing null vector

On the primary states, we can directly compute

(S”Pu)zﬁf&N = _Zwag+17N- (D.4)

On the shadowed states (RSW)wj_EZ HIN T d’il, g» We can also directly compute
(S*Pu)(RSW)oZ, 4 v = 20 (RSW)9Z, . (D.5)
Using (S*P,)! = —S*P,, we find

((S“Pu)qpi‘&N, (RSW)¢tz+1,N)KG = _(T/Ji_mv, (SHPM)(RSW)ZZ)L_’_LN)KG (D.6)
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which upon using (D.4) and (D.5) becomes®

Me11),00 = Mo - (D.7)

This is our new recursion relation. Combining (D.3) and (D.7), we have
nlll alel
M,
(C—n) (C—n) 00

which determines Mp ,, » up to a multiplicative constant which turns out to be Mygo = —(27)2.

Mé,n,ﬁ = (_1)n+ﬁ

(D.8)

E Expression for descendants on the X' = X? = ( plane

We set A = —¢ where ¢ € {0,1,2,...}. We begin by considering which wave functions L" [ﬁlq/)_ng(X)
are nonzero when X! = X2 = 0. Noting that 1_, y(X) = (X° — X?)*, all we must do is study the
repeated action of L_1 and L_; on (X? — X3). It is straightforward to compute

Lo (X% — Xx3) = —X! +iX2, (L)X = X3 =0, 1)
Loa(X0 - X%) = —x"' —ix?, (L-1)*(X? - X%) =0, '
L Loy (X0 — X3 = X0+ X3 (E.2)

The above equations imply that, if one is to compute Lﬁl[fjl(X 0_X 3)5 using the product rule of
differentiation, the only terms which will be non-zero when X' = X2 = 0 will be terms where each
factor of (X — X3) which was acted on by one L_; was then subsequently acted on by one L_;.
(Note that this can only hold when n = 7.) By a combinatorial argument, the number of such
terms will be n!#!/(£ —n)!, so we have

n! !
(L™ L™ n)(X°,0,0, X3) = < (£ —n)! (X7 = XX+ X = : (E.3)
0 n#n
Let us now do the analogous computation for the shadowed modes. We can once again compute
(X% + Xx3) = X! +iX?, (L)3(X°+ Xx3) =0, (5.4
Li(X0+ x3%) = X! —ix?, L)*(X°+X?) =0, '
Ll (X0 + X3) = X0 — X3 (E.5)

Using the equation 'lb/g:__l:g = (—X*X,) "1 (X°+X3)" and noting that L1 (X#X,,) = L (X*X,) =0,

we can repeat our previous analysis to obtain

n! !
L (XO +X3)—n—l(X0 _ X3)n—é—l n=m
(Lrll L? ¢2+€,S)(X070707X3) = (e_n)' . (EG)

0 n#n

“More precisely, the recursion relation is M1 1,00 = £My,0,0. In order to divide by £ in the £ = 0 case, we must
take the limit £ — 0 and not plug in ¢ = 0 directly.
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We conclude with the interesting observation that if we take n = n = £, our north pole primaries
are sent to the south pole and vice versa:

LE L ey = ()2 Yy s LT L ¥ares = (€)oo N- (E.7)

F Inner product integrals

F.1 Klein-Gordon inner product of primaries

In this Appendix we will derive the formula for the Klein-Gordon inner product of two conformal
primary modes

- + @)
(w_ng(zhgl)? ¢_m74(z2722)>KG =+ n—m| 0%(21 — 22)0nm,—2 (F.1)

+ F _
<1’Z)—n7Q(z1,E1)’ ¢—m,q(zg,22)> KG =0 (FQ)

for n € {0,1,2,...}, m € {-2,-3,-4,...} or m € {0,1,2,...}, n € {—2,-3,—4,...}. Strictly
speaking, these inner products involve integrals that must be computed using a regularization

which shall be given, and whichever of n or m is in the set {0,1,2,...} must be evaluated in the
limit that it approaches said integer.

F.1.1 ==+ case

We start with the ++ case. The Klein-Gordon inner product can be written as
(wi_mq(zhﬁ)’ wi_m’q(z%b))KG = imqo(z2, Z2) I—H—(n, m—1)— ian(Z1, Z1) I++(n —1,m) (F.3)

where the integrals Z¥*(n,m) are defined on the X% = 0 slice via

T+ (n,m) = / EX(~q(1,71) - K + i) (— (2, 5) - X — ie)™ (F.4)
T (n,m) /d3 e, 51) - X — i) (=429, %) - X + i)™ (F.5)
T+ (n,m) = / BX (=21, 51) - X + i€ (— (22, 52) - X + i)™ (F.6)

(n,m) /d3 e, 51) - X — ie) (= (29, %) - X — i)™ (F.7)

where the four integrals have different combinations of signs of the ie’s.

In order to compute these integrals, we will employ the use of the Riemann-Liouville fractional

derivative
d >k 1 ¢ Nk—p—1 ! / .
— ] == (a — )P f(a)da ifp>0,p¢Z
\DLf(a) = <d1a T —7) / (F.5
W/)\ (a — a')|p|_1f(o/)do/ ifp<0
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where k € Z>(. This operator mimics both differentiation and integration depending on the sign of
p. The reader should be aware that y D% is ill-defined when p is a non-negative integer p = 0,1,2, .. ..
If we ever wish to calculate D} f(a) when p is one of these integers, we must do so with a limit
limy, 0 ( \DY f (). This observation will become important later on.

An important property the operator y D} satisfies is

lim [+Ong(eiAo‘)] = (iA)P if Im{A} >0 forall pe R\ {0,1,2,...}

a—0t

51351 [—ong(eiAﬁ)] = (1A if Im{A} <0 forall pe R\ {0,1,2,...}.

(F.9)

The prescribed direction of the limits o — 07 and 3 — 0~ in the above equations, which depend on

the sign of Im{ A}, is needed in the forthcoming steps so that ;. DA and _Ong reproduce expected

derivative properties when the real part of A is integrated over.’

We now use the Riemann-Liouville fractional derivative and (F.9) to express Z71(n,m) via

I++(n,m) _ (_Z-)n—l—m lim (1ooD?) lim (_OODE”L) /d3Xeia(—5(21751)-X+i6)eiﬁ(—d’(zz,iz)')?—iﬁ)
a—07t B—0—
(F.10)

where the integral on the right-hand side of the above equation evaluates to
/d3Xeia(—¢T(z1,21)XHE)eiﬁ(—ri(Zz,Eg)-)?—ie) = (2m)30% (aq(z1, 21) + B(22, 52))66(6—00 (F.11)

(27‘(’)3 52(21 — 2’2)

_ e(8—a)
107 P D S(a+ Be : (F.12)

Plugging (F.12) into (F.10) gives

(27)3 0% (21 — 22) .. . ec(B—a)
1 D) 1 —ec D
I Pz o (reeDa) lim (o D5)—25

T+ (n,m) = —(—i)"*+m S(a+B). (F.13)

One may then compute

e(B—a) _
lim (4D2) Jim (o DF) “=ba+ 8) = lim (o0D) F(_;)a—m-%—?w@(a) (F.14)
_F(—3—n—m)_ n+1 3+n+m
= T ) (—1)"*1(2¢) T, (F.15)

Plugging (F.15) into (F.13) gives

27)3 62(21 — 20) (=3 — n — m)
4 @z, 7)) T(=n)I'(-m)

T+t (n7 m) — in—m( (26)3+n+m (F16)

®Here we elaborate on the direction of the limit of @ — 0. Without loss of generality, take Im{A} =€ > 0 where €
is small. Consider the integral (o) = f+°°+“ dAgide — §(a). We want 4o DEI(a) to mimic the expected behavior

of 986(ar) for p > 0, in particular that 1&?102556(04) = 0. So, which direction for the limit of @ — 0 should we
take for 4o D5 I(cr) to be guaranteed to be zero, for p ¢ Z? Inspecting 4 DEI(a) = jzj:: %(1}4)”(3"‘4"‘7 we have
a branch cut from the fractional exponent AP for A on the negative real axis. This branch cut is avoided by the
contour of integration which runs from —oo + i€ to +00 + ie. In order to close the contour of the A integral in the
upper half plane and show the integral is zero, we need for a > 0. Therefore, the correct direction of the a — 0 limit

is a — 07 for Im{A} > 0. Likewise, we require o — 0~ for Im{A} < 0.
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and plugging (F.16) this into (F.3) we get

+ + _ (27T)3 2 o n—mr(_2_n_m) 2+n+m
(Ptnatenmr Phmateam ) = g0 1 = ) DCmr(m) C D

In this final step, we must recall that the Riemann-Liouville fractional derivative is not defined
at positive integer values, and a limit must be taken. Let us first assume that n € {0,1,2,...} and
m € {—2,-3,—4,...}. While we can plug m directly into the above formula, n must be taken as
a limit approaching an integer. If we then take the ¢ — 0T limit afterwards, we get

. e D(—2 =1 —m) om! -1
n'—m +n'+m ne{0,1,2,...}
6hr(r)l+ nl’lng EED) (2¢) == 15n+m,—2 for e{-2.-3—4,.} (F.18)

Likewise, if we instead take n € {—2,—3,—4,...} and m € {0,1,2,...}, we get

o L(=2=n—m/)
o T
ot mism | T(—n)D(—m)

' -1 —2,-3.4,..
(2¢)2+mtm’ = —Onm2  for 32}07112“;} =t (F.19)

Plugging the above two equations into (F.17), we can write the combined result as

+ + _ (2m)? 20,
<¢_n7q(zl751)a w_m’q(z2’22)>KG = ’n — m‘ 0 (2’1 22)5n+m,—2 (F.QO)

as desired, which holds for both the case n € {0,1,2,...}, m € {—2,—-3,—4,...} as well as the case
ne{-2,-3,-4,...}, me {0,1,2,...}. This completes the computation of the ++ case of (F.1).

Note that from the identity (f*,¢*)xc = —(f,9)kc We obtain the —— case of (F.1) as well.

F.1.2 4+ case

We start with the +— case of (F.2). The Klein-Gordon inner product can be written as
<¢jn7q(21721)7¢:m7q(22722)>m —imq®(z0, %) I (n,m—1) —ing®(z1,2) T (n —1,m) (F.21)

and following a similar logic as the last section, the integral Z*~(n,m) is given by

2 (—a—
It (n,m) = —(—i)"t™ (21)3 5q§217—2j§) QE}I&(JFOODZ) Bin&+(+oopg1)e(76m5(a +5). (F.22)
One may then compute
ec(—a=p) 1
Jim, (eoeDR) Jim (4o D) o—0(a+ 8) = m (1ooD) a7 O(-a) =0, (F23)
which implies
It (n,m)=0. (F.24)
Accordingly, we have
<¢fn,q(21721), vaq(zm))m ~0. (F.25)

which completes the proof of the +— case of (F.2). Once again, from the identity (f*,¢")xa =
—(f, 9)kq we obtain the —+ case of (F.2) as well.
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F.2 RSW inner product

In this Appendix we will compute the RSW inner products of the conformal primary wave func-
tions using the previously calculated Klein-Gordon inner products (F.1) and (F.2). For n,m €
{0,1,2,...}, we will find that the RSW inner products are

<1/}f" q(z1,71)’ (RSW)w—m ,q(z2, zg))KG = :':(271—)2‘1 - 2122’2n5n7m (F26)

:l: J—
<¢—n,q (21,21) (RSW)TZJ m q(zg,zg))KG =0. (F27)

Equation (F.27) follows directly from (F.2). We now carry out the computation of (F.26) by acting
W, S, and R successively on the second term in the Klein-Gordon inner product, using (F.1) as our
starting point. Applying W to (F.1) just sends m — —2 — m and we get

+ + _ (2]
<¢—"vq (21,21)? (W)w_m’q(ZQ’ZZ))KG N $Q(n +1)

We then insert the shadow operator S into the above equation. Using the definition of S given in

52(Z1 — 22)5n,m- (F.28)

(3.1), it is straightforward to compute

(V2 SWIVE, ) = F T = 220 (F.29)
Now we must finally act with R. Here we note the identity
Ra(z2) = |21* a(1/2,1/>2) (F.30)

from which we compute

- _ (ERe(z,2) - X)™ o g
(R)¢2+m,q(z72) - (—XMXu)l+m - |Z| T,Z)i2+m,q(1/5,1/z)- (F31)

If we insert R into (F.29) and use (F.31), we then get

<¢fn,q(zl721) ( SW)TIZ)— m,q(z2 22))KG :F( ) |Z2|2Tn|z1 - 1/Z2|2n5nm
= 7211 — 2122 6nm

(F.32)

which completes the proof of (F.26).

F.3 Relation to previous literature

Previous literature [3] has used another normalization convention for the conformal primary states
U , defined in (2.5), differing by a factor of (F4)2T(A). The Klein-Gordon inner product of such
states is proportional to the Dirac delta distribution §(i(2 — AT — Ag)).

We stripped the (Fi)*T'(A) prefactor off of our definition because we are studying integer modes
and T'(A) diverges at A € {0,—1,—2,...}. This is why we had to re-compute the Klein-Gordon
inner products from scratch using different integration techniques. However, if we naively divide
the Klein-Gordon inner product in [3] by these divergent I'(A) factors, we can reproduce our KG
equations (F. 1) and (F.2) if we use the ad-hoc replacement rules §(i(2 +n + m)) — 6(0)6p4m,—2
and (( )) = 5
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G SW as a spacetime integral transform

The shadow operator S is defined as an integral over the momentum coordinate ¢(z,z) in (3.1).
However, the combined operator SW is actually a well-known integral transform over the spacetime
coordinate X on the null cone. This integral transform is known among mathematicians and is
used to construct the inner product for the discrete series representation of the Lorentz group, see
for instance Vol. 2, Sections 9.2.7 and 9.2.8 of [38].

We define S via the position integral over a 2D slice of the null cone (denoted [ d*Y, see [35] for
a review of these kinds of embedding space integrals) via

1

g 1) (G.1)

~ 1-A
S(—q-X)™2 = —/d2Y(—2X Y)A2
T
Using the Feynman parameterization trick and the fundamental integral [d?Y(-2Y - Z)72 =
7/(—Z*Z,), one can compute

< A (_XuXu)A_l

S(—q- X) S on (G.2)

which demonstrates that S = SW. It should also be noted that S is also equal to the so-called
“Kelvin transform” K, which acts on functions fa(X) of scaling dimension A as

(ICfA)(X) = (_XMX;L)(A_2)/2]CA <ﬁ> . (G3)
n
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