
Explainable deep neural network for in-plain
defect detection during additive manufacturing

Deepak Kumar
Aerospace Engineering Department, Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA

Yongxin Liu
Mathematics Department, Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA

Houbing Song
Department of Computer Science, University of Maryland, Baltomore, Maryland, USA, and

Sirish Namilae
Aerospace Engineering Department, Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA

Abstract
Purpose – The purpose of this study is to develop a deep learning framework for additive manufacturing (AM), that can detect different defect types
without being trained on specific defect data sets and can be applied for real-time process control.
Design/methodology/approach – This study develops an explainable artificial intelligence (AI) framework, a zero-bias deep neural network (DNN)
model for real-time defect detection during the AM process. In this method, the last dense layer of the DNN is replaced by two consecutive parts, a
regular dense layer denoted (L1) for dimensional reduction, and a similarity matching layer (L2) for equal weight and non-biased cosine similarity
matching. Grayscale images of 3D printed samples acquired during printing were used as the input to the zero-bias DNN.
Findings – This study demonstrates that the approach is capable of successfully detecting multiple types of defects such as cracks, stringing and
warping with high accuracy without any prior training on defective data sets, with an accuracy of 99.5%.
Practical implications – Once the model is set up, the computational time for anomaly detection is lower than the speed of image acquisition
indicating the potential for real-time process control. It can also be used to minimize manual processing in AI-enabled AM.
Originality/value – To the best of the authors’ knowledge, this is the first study to use zero-bias DNN, an explainable AI approach for defect
detection in AM.
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1. Introduction

The exponential increase in additive manufacturing (AM) over
the past decade is apparent in a wide variety of applications
such as automobile parts (Leal et al., 2017), fine arts (Colorado
et al., 2021), aerospace components (Angrish, 2014), artificial
medical organs (Melchels et al., 2012). AM has several benefits
over conventional manufacturing such as lowering material
waste (Mani et al., 2014), streamlining the manufacturing
process (Despeisse and Ford, 2015), increasing productivity
using cyber manufacturing (Rawat et al., 2017) and reaching
higher geometrical complexity (Vaezi et al., 2013).
Extrusion-based AM processes including fused deposition

modeling (FDM) and direct ink writing, have been heavily used
in meso- and micro-scale fabrication of novel functional
materials (Lewis, 2006; Turner et al., 2014; Turner and
Gold, 2015). For example, continuous carbon fiber-reinforced

composites for high-strength structural components have been
fabricated using FDM (Liu et al., 2021a). Significant difficulties
remain in understanding and controlling defect development
in extrusion-based AM techniques, considering recent
improvements in sophisticated process control and application to
a wide range of material options. The most frequent flaws in
these methods include bubbles and bulges, overfilling and
underfilling, scarring, stringing, warping and geometric flaws
resulting from an improper head position (Oleff et al., 2021).
Most of these flaws can be observed by in-situ surface or profile
imaging of the filament (bulges, stringing) or the entire layer
(overfill, underfill, scars, warping, geometric defects). For
real-world applications and next-generation cyber-physical
manufacturing systems, in-situ characterization approaches are
crucial. Several studies have attempted in-situ processmonitoring
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to enable defect mitigation. For instance, the application of a
charged-coupled device camera, high-speed camera and infrared
camera for various AM processes have been examined (Chua
et al., 2017). Researchers were able to identify the emergence of
geometrical defects (Zhang et al., 2019), changes in the
conditions of solidification (Tapia and Elwany, 2014) and
unanticipated residual stress (Spencer et al., 2021) throughout
the printing process using the data from in-situmethods.
In-situmethods produce data that can be used for AI training. AI

and data-intensive methods provide valuable tools to reveal the
complicated correlation between defect formation, material
properties and process control in current and future AM processes.
Compared with traditional pattern recognition methods, deep
learning provides a generic and unified data-processing paradigm.
Developers do not need to define domain-specific features because
deep neural networks (DNNs) can automatically learn the required
feature extractors or convolutional filters during training,DNNs are
capable of dealingwith highly complicated and heterogeneous input
data that integrate information from different sources to make
accurate predictions or classifications. Consequently, a few studies
have usedDNNs and othermachine-learning approaches for defect
identification during AM (Caggiano et al., 2019; Delli and Chang,
2018; Grasso et al., 2018; Paraskevoudis et al., 2020; Scime and
Beuth, 2019; Ye et al., 2018; Zhang et al., 2018). For selective laser
melting (SLM), researchers have used supervised learningmethods,
such as support vector machines (SVM), to detect unstable melting
and keyhole defects (Grasso et al., 2018; Scime and Beuth, 2019;
Zhang et al., 2018)(Grasso et al., 2018; Scime and Beuth, 2019;
Zhang et al., 2018). SVM and k-nearest neighbor methods have
been used with optical images obtained during the FDMprocess to
detect defective parts at different checkpoints (Delli and Chang,
2018). Researchers have also used convolutional neural networks
and DNN methods with 2D images to classify between five
different melting states using plume and spatter images (Ye et al.,
2018) and detect process-related nonconformities (Caggiano et al.,
2019) for SLM. DNN has also been used to identify stringing in a
filament in the fused filament process using the LabelImg tool
(Paraskevoudis et al., 2020). Liu et al.(2019) proposed an image
analysis-based closed-loop feedback method for defect detection
and mitigation using textural analysis-based image diagnosis. A
machine vision method based on optical imaging is also used for
defect detection by comparing the optical imaging and cad design
for each layer (Fang et al., 1998). A similarmachine vision approach
based on signature analysis differences between system-generated
images and the original image of each layer is used to detect surface
defects for ceramics sensors and actuators (Fang et al., 2003).
Cheng and Jafari(2008) proposed an image intensity-based
machine vision method to defect surface pattern anomalies using a
3D image processing parametric model and Gaussian function in
layeredmanufacturing.
Despite having high accuracy and accurate prediction,

most DNNs models are often trained on specific defects and
or stages to classify the input as normal or abnormal.
Furthermore, conventional DNNs use dedicated abnormality
detection models to identify abnormal inputs. These
classifiers lack the capability of detecting inputs from
unknown classes. They need a large number of abnormal
datasets for each defect category. For example, to detect a
defect of a particular type, e.g. crack, the models need to be
trained with the data pertaining to the specific defect. It is

extremely data-intensive and time-consuming to train a
DNNmodel on all possible defect types in AM.
To address these problems in anomaly detection, we propose

to use a unique methodology in deep learning, the zero-bias
neural network. In this method, the last dense layer of the DNN
is replaced by two consecutive parts, a regular dense layer
denoted (L1) for dimensional reduction, and a similarity
matching layer (L2) for equal weight and non-biased cosine
similarity matching (Liu et al., 2021b). This approach only
needs to be trained on normal data and uses feature vectors in
latent space to detect possible anomalies in the sample input. An
abnormal sample is identified based on its feature vector and
Mahalanobis distance from the centroid of the distributions
feature vectors of existing classes from trained data. This
approach works for all defect types and additionally provides a
metric of the abnormality. Advanced AI-enabled AM is only
possible with explainable AI that delivers accompanying
evidence or reasons for the outcomes and predictions (Phillips
et al., 2020). The objective of this study is to formulate the
zero-bias DNN approach for an AM problem and use it to
demonstrate generic processing defect detection.

2. Methodology

2.1 Experimental
TheCreality Ender 5 Plus 3D printer and a greyscale camera setup
were used to generate data sets with and without printing defects.
This printer has an over-the-top open printing bed whichmade the
camera setup easy for image capturing. A marble polylactic acid
(PLA) filament with a speckle pattern was used as a printing
material for all samples. All tests were performed at the
recommended temperature of 200°C–230°C for print and 60°C–
80°C for the platform. A digital grey-scaled camera is positioned
perpendicular to the sample and printing platform, as seen in
Figure 1(a). A laser sensor and outside lights were used tomaintain
the sample heights, locations and quality same for all the tests. The
printer’s g-codewasmodified so the extruder could bemoved away
from the camera frame while the picture was taken. The extruder
was programmed to travel away and stop for 5 s after printing a
section of any layer. During this time, the camera was configured to
capture two images per second. This approach allowed us to
analyze the printing process more frequently and generate data sets
with normal data andwith different types of defects.
For printing, we took into consideration three distinct

temperatures of 185°C, 200°C and 215°C and three different

Figure 1 (a) Printer and camera setup, (b) sample layout
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layer thicknesses (H) of 0.15, 2.0 and 0.25mm. For the objective
of collecting the data set for each setup, each test is carried out
three times. The execution of a total of 27 tests resulted in the
production of the training data set for this research. Three layers
and three sections within each layer, measuring 96� 60�H, are
printed using Marble PLA for each test, as seen in Figure 1(b).
The updated g-code enables the extruder to return to its original
position after printing the first segment, at which point the digital
camera will automatically snap 10 photographs of each section
using the VIC 3D software tool.
At this stage, all the images are saved in a single folder

which is later processed and classified among classes and
abnormalities. Additional details of image capture are provided
in Jani et al.(2022).

2.2 Data processing
For effective training and evaluation, DNNs require a significant
volume of high-quality image data. To accommodate the specific
requirements of the model, this data must be correctly pre-
processed and structured. This involves normalizing the color
and brightness levels, as well as resizing, cropping and other
image modifications. Prior to using the data in the model, it
should also be categorized and divided into training, validation
and test sets. Three main phases were engaged in the data
processing for this study: sample cropping, distribution of the
sample among classes and construction of an image database for
the model input. A rectangular frame of the sample size was used
for all data sets to crop the sample out of the entire picture using
the im-crop tool inMATLAB as illustrated in Figure 2. To create
clear images focusing on the area of interest for each class, we
eliminated the surrounding print-bed and other common parts
that the camera captured in all images.
For image class distribution we used each section of a sample

as a different class. The sample layout in Figure 1(b) shows
three sections in each layer. Further, each sample has three
layers, therefore the total normal data set was divided into nine
different classes. All the images with an abnormality are
combined from all sections and saved as class 10.
The normal and abnormal sample data sets were imported as

a 4D array with height, breadth, number of channels and image
as its columns, respectively. The folder name was used as the
class label for various classes, and the data is sorted as normal
and abnormal data. The normal data set is stored in 9 different
classes as shown in Figure 3, while the abnormal data set is
saved as Class 10. Only normal data is used to train and validate

the DNN model, which is then used to derive the boundaries
and fingerprints of each known class. A total of 70% of normal
data is used to train and the remaining 30% is used as test data.
In this study, we considered multiple types of defects such as
cracks, warping, stringing, filament missing. Warping is caused
by uneven cooling of the printing sample and bad attachment
between the printing bed and sample edge. Due to the warping
sample edge curl away from the printing bed as can be seen in
Figure 4(a). Cracks are another most common defect type in
3D printing, caused by low glass transition temperatures shown
in Figure 4(b). The abnormal samples exhibit visible cracks,
warping and stringing. The different types of abnormalities are
shown in Figure 4.

2.3 Zero-bias deep neural networkmodel
DNNmodels can learn complex patterns from large numbers of
structured image data sets and can make accurate predictions
based on training variables. These models are typically trained
using a large data set of labeled images. The first layer of neurons
extracts the features from the image and passes them to the next
layer. The higher layers of neurons then identify the patterns in
the extracted features and gradually learn to recognize the
presence of a defect in the image shown in Figure 4. However,
these conventional techniques require extensive model training
using both normal samples and defective samples. A further
drawback of this approach is that one can only identify the defect
on which theDNNmodel was trained.
In this study, we used a zero-bias DNN to avoid these

drawbacks in training and limitations in the detection of untrained
defects. The zero-bias model and its relationship with traditional
neural networks are shown schematically in Figure 5(a) and 5(b).
A traditional neural network processes its input data through
several convolutional layers to extract latent information before
using several dense layers (completely connected layers) to
eliminate redundant information and produce the final output, as
shown in Figure 5(a). In the zero-bias schematically shown in
Figure 5(b), the final dense layer is replaced by two subsequent
layers, one regular (L1 for dimensional reduction) and another
dense layer L2without bias:

Last dense layer Lð Þ ¼ regular denst layer L1ð Þ

1Similarity Matching layer L2ð Þ

In previous work (Liu et al., 2022), it was proved that this
transformation could be trained with mathematically
equivalent behavior as the original form, and therefore would
maintain a similar performance as the untransformed DNN.
The newly introduced cosine similarity-matching layer L2
significantly simplifies the decision latent space. As we have
removed the bias neurons in the final decision process of the
network, for each input, the neural network outputs a vector of
cosine similarity scores against templates of all classes in the
latent space. This can be used in abnormality detection.
Abnormality detection with zero-bias DNN model involves

several steps. First, we trained the zero-bias model using only
structured normal data and cross-validated the accuracy using
a minibatch size of 32 images. An accuracy threshold was used
to end the training process once the model achieved 99%
accuracy. Multiple tools, such as cross-validation accuracy, loss

Figure 2 Image captured (left), cropped image used in the analysis (right)
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function and confusion matrix were used to validate the
model’s performance against the test data.
In the next step, we used layer L2 of the zero-bias DNN

model to extract the feature vector of each image input before
matching it to the fingerprint. For an ordinary DNNmodel, we
know that for known inputXi:

Y1 Xi½ � ¼ W1 Xi½ �1 b (1)

Where Y1 is a compressed feature vector before fingerprint
matching, W1 is a matrix to store fingerprints and b is a bias
matrix. For the zero-bias model, we divided the last dense layer
into two subsequent layers so equation (1) will become:

Figure 3 Representative images for the nine classes of normal data

Figure 4 Representative images of anomalies or defects
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Y2 Xi½ � ¼ I W2ð Þ :Y1 Xi½ � (2)

Suppose that Y1[Xi] is a column vector, and then I(·)denotes a
function that converts each row vector in W2 into its unit or
direction vector. Therefore, all row vectors after I(W2) have a
magnitude of 1.
Feature vectors of the known dataset are used to estimate the

boundaries and fingerprints of each class using equation (2).
Once we have the compressed feature vector of all known data
sets, the centroid for each class was calculated by using
equation (3). For each known data set, a covariance matrix was
calculated using equation (4):

C Xi½ � ¼ Mean Y2 Xi½ �½ � (3)

Cov Xi½ � ¼ Y2 Xi½ �;Y2 Xi½ �½ � (4)

Mahalanobis distance (MD) is a measure of the
multivariate separation of a point from a distribution. It is
commonly used to determine the degree of similarity based
on the covariance of the data points (De Maesschalck et al.,
2000):

MD ¼ pð Y2 Xi½ � � Cð ÞT :Cov�1: Y2 Xi½ � � Cð ÞÞ (5)

A cutoff measure is formulated based on the MD between the
centroid of a given class and the feature vector of the farthest
normal input sample using equation (5), (6):

Cutoff distanceðCODÞ ¼
Max

�p�
ðY2½Xi� � CÞT :Cov�1 : ðY2½Xi � � CÞ

��
(6)

As shown in Figure 6, an abnormal sample is identified using a
cutoff distance between the centroid of any class and the
compressed feature vector of an input data set. Any input that is
mapped outside the cutoff distance of all classes is considered
abnormal:

Anomaly ¼
0 if Max

p
Y2 Xi½ � � Cð ÞT :Cov�1: Y2 Xi½ � � Cð Þ

� �� �
� COD

1 if Max
p

Y2 Xi½ � � Cð ÞT :Cov�1: Y2 Xi½ � � Cð Þ
� �� �

� COD

8><
>:

It is uncommon for an abnormal image to have a feature vector
identical to the known class data. Once we had decided on the
sample category, we predicted the abnormality class using the
trained DNN model illustrated in Figure 5(c). The trained
model was able to assign each image to its class because all
abnormal examples were drawn from the known classes. we
used this prediction to label the abnormality class.
If we consider an input sample that has an abnormality, such

as cracks, it is mixed with normal datasets. To detect an
abnormal sample, we first processed the data through a trained
DNN model [Figure 5(b)] and extracted the feature vector
according to the process shown in Figure 5(c) using blue boxes.

Figure 5 (a) Generic DNN model framework, (b) schematic of the zero-bias DNN mod, (c) schematic of abnormality detection process using the zero-
bias model

Figure 6 Abnormality detection based on Mahalanobis distance
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Once we have the feature vector of the individual data input, we
calculate the MD and compare it with the cut-off distance of
each class. The feature vector of the abnormal sample will have
a greater MD from the centroid of the classes than the cutoff
distance of all known classes. In Figure 5(c), the additional
procedure for abnormality identification is shown using red
boxes.

3. Results

Abnormality detection with a zero-bias DNN model mainly
consists of two steps as described above. The first step is the
model training to its optimum accuracy using only normal
datasets and extracting the feature vector from the trained
model’s last dense layer (L2). For training, we used 1,870 normal
image datasets with themodel characteristics shown inTable 1.
We used a K-fold cross-validation approach with an accuracy

threshold value for accurate measurements to achieve the
highest accuracy. The accuracy of each training iteration is
plotted using a mini-batch of 32 samples. The small batch size
at the beginning of the training caused minor fluctuations in
accuracy. Figure 7 shows that the model achieves a cross-
validation accuracy of 99.99%. We used the loss function to
adjust the weights and parameters of the model to reduce the
difference between the model output and the experimental
data. Figure 8 shows how the loss function decreased as the
accuracy increased. Once the model exceeded the accuracy
threshold, a confusion matrix was used for visual validation. As

shown in Figure 9, the model accurately classified 100% of the
normal data input into corresponding classes.
The trained zero-bias DNNmodel is then converted into an

abnormality detector schematically described in Figure 5(c). In
this second step, we extracted the feature vectors of each known
data set and the boundary of each known class.
The cutoff distance for each class is calculated based on the

MD between the centroid of the class and its furthermost
feature vector. The cutoff metric for the nine classes considered
here is tabulated in Table 2. All input data sets were then
compared with respect to the cutoff distance, and abnormality
detection was performed based on the value of the MD of the
input.
As shown in Table 2, for all normal sample inputs, the MD

between the feature vector and centroid of the corresponding
class was less than the cutoff distance. Consider the normal
image shown in Figure 10(a). The correspondingMD value for
class 1 is 3.4e-6 (third-row second column), and this is less than

Figure 7 Cross-validation accuracy vs iterations

Figure 8 Loss function vs iterations

Table 1 Zero-bias DNN model training parameters

Model characteristics Value

Input size 600� 600� 1
Layers 13
Number of epochs 25
Minibatch size 32
Momentums – SGD 0.9
Initial learning rate 0.01
Decay 0.01

Figure 9 Confusion matrix for the test data for the nine classes
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the corresponding cutoff metric for class 1. The MD values
for the same image corresponding to the other classes are listed
in the third row, and these values are higher than the cutoff
metrics for the remaining eight classes. Therefore, the image in
Figure 10(a) is classified as a Class 1 normal image.
Consider a defective sample with a crack as shown in

Figure 10(b). For this sample, the MD was greater than the
cutoff distance for all classes. However, the MD is lowest for
Class 1, therefore this image is an abnormal (defective) Class 1
image. Similarly, the warping defect shown in Figure 10(f) has
a MD value greater than the cutoff for all classes, but the value
corresponding to Class 4 is the lowest, therefore this image is
classified as an abnormality in Class 4.
Note that the model is trained using a normal data set only.

Despite this, the model was able to detect multiple types of defects
such as cracks [Figure 10(b)], missing filaments [Figure 10(d)],

stringing [Figure 10(e)] and warping [Figure 10(f)]. Furthermore,
themodel identifies the parent class for each of these defects.
We considered weights in the zero-bias similarity layer as class

fingerprints. This allowed us to graphically prove that the feature
vector of the known data set is closer to its class fingerprints and
that input sample with abnormality have their feature vector away
from all known class fingerprints. The Voronoi diagram allows a
graphical representation of the decision boundary between
different classes of data points in the latent decision space. Each
region represents a class and points in the same region belonged
to the same class. In this study, we used two different types of data
batches to visualize the normal and abnormal data using Voronoi
diagrams. The first batch contained only the normal test data
from the model training. The extracted feature vectors were
further processed using a nonlinear dimensional reduction
method called t-distributed stochastic neighbor embedding

Table 2 Comparison of cutoff metrics for different classes and Mahalanobis distance for selected normal and abnormal samples

Class 1 2 3 4 5 6 7 8 9

Cutoff metric 10.08 13.90 13.02 18.83 26.59 25.31 24.82 23.14 22.37
Class 1 (*e06) Figure 10(a) 3.4e-6 293.64 1.44 101.71 1.40 63.77 31.36 103 31.3
Class1 cracks(*e06) fig-10(b) 0.0055 1.60 5.62 2.06 0.29 1.77 2.41 9.59 1.38
Class 2 (*e06) Figure 10(c) 328.28 11.6e-6 9.11 4.00 0.06 2.41 4.21 3.13 1.53
Class 2 filament Missing(*e06) Figure 10(d) 511.31 0.01 7.08 3.16 0.02 2.01 5.11 3.25 2.23
Class3 sample(*e06) 544.49 3.45 5.6e-6 2.74 0.14 1.08 4.41 3.05 1.71
Class3 stringing(*e06) Figure 10(e) 599.65 3.24 0.26 1.65 0.47 0.49 4.63 5.05 2.94
Class4 sample(*e06) 273.23 3.45 5.19 6.3e-6 0.06 2.12 1.31 5.68 4.37
Class4 warping(*e06) Figure 10(f) 120.37 3.18 4.36 0.14 0.21 3.26 1.13 5.29 2.39

Source: Table by authors

Figure 10 (a) Normal sample from Class 1, (b) Abnormal sample from Class 1 with a crack, (c) Normal sample from Class 2, (d) Abnormal sample from
Class 2 with a missing filament, (e) Abnormal sample from Class 3 with stringing, (f) Abnormal sample from Class 4 with warping
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(T-sne)(Van Der Maaten and Hinton, 2008). T-Sne remapped
high-dimensional extracted data into a 2D space vector while
maintaining the same distribution for the data points. For
remapping the high dimensional data, we consider Euclidean
distance with an exact algorithm. For the normal data set, the
Voronoi graphical representation visually shows the model
performance by distributing all the known data samples into their
respective regions and boundaries. As shown in Figure 11, all the
extracted feature vectors were distributed closer to class
fingerprints in the latent decision space.
The second batch combines normal and abnormal pictures

from all the classes. As shown in Figure 12, the abnormal
sample feature vectors were distributed farther away from the
fingerprints than the normal data.
The True Positive Rate (TPR), True Negative Rate (TNR),

False Positive Rate (FPR) and False Negative Rate (FNR) are
important evaluation metrics for assessing the performance of a
DNN model. TPR measures the percentage of abnormal
samples correctly identified as abnormal, whereas TNR
measures the percentage of the normal sample correctly
identified as normal. FPR and FNR are measures of incorrectly
measured samples. To calculate the values of all performance
functions, we used two sets of data batches containing normal
and abnormal samples individually. Initially, we passed all 108

abnormal images through our zero-bias DNN abnormality
detection module. We recorded the accurate prediction
(abnormal) as TP and false prediction (normal) as FP. Next,
we imported 560 normal sample images and repeated this
procedure. The correct prediction (normal) was registered as
TN, and the incorrect prediction (abnormal) was recognized as
FN. A cutoff threshold was used to characterize the delta
between cutoff distance and MD. The model performance
rates based on TPR, TNR, FPR and FNR as a function of the
cutoff threshold is plotted in Figure 13. Table 3 lists the
accuracy based on these measures. We find that the model
accuracy based on thesemeasures is more than 99%.
We compared the model performance on a standalone CPU

which has 2.40GHz dual-core processor, 64 GB RAM and an
Intel i9 processor with a single Nvidia RTX3090 GPU
computer. The GPU-basedmachine was able to train in 48min
and performed all tasks in less time than the CPU-based
machine. The same input data were used three times for each
sort of performance test, and the aggregated data were utilized
to plot the results with the error bar. Figure 14 shows the
performance of both machines for test data prediction,
the trained model reload time for abnormality detection and the
time taken for abnormality detection of a single input image.
In our experiment, we captured two images per second and

Figure 11 Voronoi for the normal data set

Figure 12 Voronoi for the mixed data set
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GPU-based machine was able to detect abnormal samples
within 0.62 s, whereas CPU-based machine took 2.83 s. The
computational performance is expected to significantly improve
using high-performance parallel computing. These timing data
suggest the potential of using this approach for real-time defect
detection and process control.

4. Discussion

In this study, we used a zero-bias DNNmodel trained on normal
data to detect different types of printing defects including cracks,
warping and stringing. The approach is based on replacing the
last dense layer with two consecutive parts, a regular dense layer
for dimensional reduction and a similarity-matching layer. This
modification significantly simplifies the decision latent space. As
we have removed the bias neurons in the final decision process of
the network, for each input, the neural network outputs a vector
of cosine similarity scores against templates of all classes in the
latent space. The theoretical basis for anomaly detection with
zero-bias neural networks is that inputs with unexpected defects
or abnormal patterns will generate low similarity scores that are
detectable by a global threshold.
This approach overcomes some of the major requirements of

conventional anomaly detection approaches. First, while the
decision processes of many DNN models are unclear, there is
evidence that DNNs can unintentionally learn biases (Chen
et al., 2018; Chow et al., 2020; Dhar and Shamir, 2022;
Rahaman et al., 2019). This can adversely affect defect detection
and is particularly critical if the related data are to be used for
process modification. One needs to understand the DNNs’
decision processes to eliminate unreasonable biases. Current
solutions (Alvi et al., 2019; Tao et al., 2016) either improve the
quality of the training data set or use data augmentation
methods, which encourage DNNs to learn robust features rather
than address the root problem. The second problem is that
conventional neural network classifiers lack the capability of
detecting inputs from unknown classes. In manufacturing
applications, this translates to the inability to detect new types of
defects other than the specific defect the model is trained on.
The approach presented here provides makes the decision
process for defect detection transparent. Additionally, the
approach eliminates the need for training on individual defects.
The transparency in the DNN model’s decision-making is

the basis for explainability and trustworthiness. Compared with
some existing work such asGradCAM (Ahmed et al., 2022)and
LIME that reveal the pixels or regions that contribute positively

Figure 14 Computational timing performance for training and testing using CPU and GPU computers

Table 3 Model performance characteristic

Characteristic Formula Efficiency (%)

True Positive Rate (TPR) TP/(TP1FN) 99.08
True Negative Rate (TNR) TN/(TN1FP) 100
False Positive Rate (FPR) FP/(TN1FP) 0
False Negative Rate (FNR) FN/(TP1FN) 0.92
Accuracy TP1TN/(TP1TN1FP1FN) 99.54

Source: Table by authors

Figure 13 Model performance characteristics
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or negatively to the classification score of each class, zero-bias
neural network reveals why the decision is made by providing
only the most relevant and vital information. Therefore, we
believe the zero-bias neural network can be categorized as
explainable AI but with a newer andmore compact perspective.
The application of zero-bias DNN to AM shows promise for

several further extensions. The proof of concept in this study
was performed using FDM polymer printing. One limitation
of interrupting the printing process is that it leads to a
different consolidation process compared to an uninterrupted
process, and has some drawbacks related to print quality, print
alignment and calibration. We minimize these effects using
small interruption time, accurate interruption points and
appropriate pause-resume techniques supported by the
3D printer. Interrupting the printing process for in-situ
characterization provides us with a normal data set at more
stages of printing than without interrupting. This allowed us to
analyze the printing process more frequently and provide early
visible information on defects. Despite limitations, we used the
interrupted characterization approach because it allowed us to
analyze the printing process more frequently and provide early
visible information on defects, and data sets for testing a new
computational method.
Defects are ubiquitous in the AM of metallic and composite

materials because of the higher thermal gradients and dissimilar
properties of constituent materials. Extension of this approach
to these materials is currently in progress and will provide an
effective route for process improvement. Additionally, this
approach lends itself to data fusion with inputs from multiple
image data streams, such as grayscale images, thermal
maps and deformation maps. Different data streams provide
different perspectives with respect to defect identification and
integrating them can significantly improve overall performance.
Themodel accuracy can be improved and extended to complex
printed shapes with enhancements such as image segmentation
and localization of defects.

5. Conclusions

In this study, we implemented an explainable DNN framework
for detecting processing defects during FDMAM.The last dense
layer of the DNN is split into a regular dense layer (L1) for
dimensional reduction, and a similaritymatching layer (L2). This
modification enables the output of a vector of cosine similarity
scores against templates of all classes in the latent space which is
used for defect detection. The data for the DNN modeling was
acquired by in-situ imaging of an FDM printing process.
The model was trained using a data set of normal images. The
zero-bias DNNmodel was able to detect multiple defects such as
cracks, warping and stringing without individual training on
any defective sample images. The true positive, true negative,
false positive and false negative rates for defect detection
are 99.08%, 100%, 0% and 0.92%, respectively, with an
abnormality detection accuracy of 99.54%. The computational
performance of the model on GPUs suggests that the time
required for defect detection is faster than the image acquisition
rate, therefore the approach can potentially be used for process
correction.
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