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Efficient allocation of tasks to workers is a central problem in crowdsourcing. In this article, we consider a
setting inspired by spatial crowdsourcing platforms, where both workers and tasks arrive at different times,
and each worker-task assignment yields a given reward. The key challenge is to address the uncertainty in
the stochastic arrivals from both workers and the tasks. In this work, we consider a ubiquitous scenario where
the arrival patterns of worker “types” and task “types” are not erratic but can be predicted from historical data.
Specifically, we consider a finite time horizon T and assume that in each time-step the arrival of a worker
and a task can be seen as an independent sample from two (different) distributions.

Our model, calledOnline Task Assignment with Two-sided Arrival (OTA-TSA), is a significant generalization
of the classical online task assignment problem when all the tasks are statically available. For the general
case of OTA-TSA, we present an optimal non-adaptive algorithm (NADAP), which achieves a competitive
ratio (CR) of at least 0.295. For a special case of OTA-TSA when the reward depends only on the worker
type, we present two adaptive algorithms, which achieve CRs of at least 0.343 and 0.355, respectively. On the
hardness side, we show that (1) no non-adaptive can achieve a CR larger than that ofNADAP, establishing the
optimality of NADAP among all non-adaptive algorithms; and (2) no (adaptive) algorithm can achieve a CR
better than 0.581 (unconditionally) or 0.423 (conditionally on the benchmark linear program), respectively.
All aforementioned negative results apply to even unweighted OTA-TSA when every assignment yields a
uniform reward. At the heart of our analysis is a new technical tool, called two-stage birth-death process,
which is a refined notion of the classical birth-death process. We believe it may be of independent interest.
Finally, we perform extensive numerical experiments on a real-world rideshare dataset collected in Chicago
and a synthetic dataset, and results demonstrate the effectiveness of our proposed algorithms in practice.
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1 INTRODUCTION

Assigning workers to tasks is a central challenge in various crowdsourcing platforms. For exam-
ple, in mobile crowd-sensing [50, 51], a central platform allocates mobile users to complex data
collection and analysis tasks; in joint crowdsourcing [8, 29], workers answer small questions with
varying difficulties; and in spatial crowdsourcing [44, 45], workers and tasks are matched in the
context of a spatial metric space. Another type of such assignment, motivated by the COVID-19
pandemic, involves matching medical volunteers and workers to patients and medical tasks during
an emergency.
More recently, a special class of worker-task assignment, called online task assignment (OTA),

became popular in the literature. The basic setting is as follows: We have a set of offline tasks
(known to us beforehand) and a set of online worker types. Each time a worker of a certain type
arrives, an immediate and irrevocable decision is required: either reject the worker or assign her a
task she shows interest in. Each assignment yields a known profit (uniform across all assignments
or non-uniform); the goal is to design an allocation policy such that the (expected) total profit
is maximized subject to various practical constraints such as the total budget for payments for
workers, deadlines of tasks, and so on (see, e.g., Assadi et al. [6]). There are three common arriving
assumptions for the online workers; see the list below.

—Adversarial Order (AO): the arrival sequence is completely unknown but fixed by an
adversary;

—RandomArrival Order (RAO): the arrival sequence is sampled uniformly at random from
the set of all permutations over the unknown set of workers;

—Known Independent Identical distributions (KIID): a random worker is chosen with
replacement, from a known distribution each time.

Ho and Vaughan [21] considered OTA under RAO, where they assume the profit for each as-
signment has to be learnt. Assadi et al. [6] studied a budgeted version of OTA under AO and RAO;
in the budgeted version, we have a global total budget and each assignment incurs a cost, which
is the amount we need to pay the worker (this is equal to the bid the worker submitted for the
task after arrival). The budgeted version of OTA and its generalizations have been systematically
studied in the context of truthful mechanism design, where the goal is to elicit truthful bids from
the online workers (see, e.g., References [17, 18, 40–42, 53]). In particular, Singer and Mittal [41]
and Singla and Krause [42] considered the KIID setting, while Zhang et al. [53] and Subramanian
et al. [43] considered the RAO setting.
In OTA, the main limiting assumption is that tasks are static (known in advance). This fails to

capture various applications where the tasks are not all available at once but come at different
times. Hassan and Curry [20] considered a variant of the worker-task assignment problem un-
der the converse setting to that of the OTA, where the spatial tasks arrive dynamically over time
while the workers are all available beforehand: the worker has to travel to the specific location of
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the task to finish it. Tong et al. [45] studied a generalized setting where both workers and tasks ar-
rive dynamically: This was motivated by a spatial crowdsourcing platform on university campuses,
where anyone on campus can both post micro-tasks (e.g., buying drinks or collecting a package),
and perform tasks as a worker. They assumed that the arrival sequence of workers and tasks form
a random permutation over the set of all possible workers and tasks, which is unknown to the algo-
rithm (i.e., RAO). They tested their algorithms on two real-world crowdsourcing datasets, namely,
gMission [11] and EverySender.

Inspired by the above works, we propose a model, calledOnline Task Assignment with Two-

sided Arrival (OTA-TSA), where both workers and tasks arrive online each from the KIID arrival
setting. A known bipartite graphG = (U ,V ,E) is given as input (this graph is also called the com-
patibility graph throughout this article), where U and V represent the respective sets of worker-
types and task-types and each type has a specific location attribute, and E represents whether a
worker-type has expertise in a task-type or not. We have a finite time horizon T , in which ver-
tices in U and V both arrive sequentially in each time-step. We make the common distributional
assumptions on the arrival sequence. in each round (for a total of T rounds), a worker of type u
is sampled from a known distribution over U , while simultaneously a task of type v is sampled
from another known distribution over V independently. Once a task arrives, it has to be instanta-
neously and irrevocably be matched to one of the workers (from among the neighbors of the task
in G) who have arrived before this time instance; we assume that once a worker joins the system
they do not leave until matched to a task or the end of the time-horizon, whichever occurs first.
Every assignment f = (u,v) yields a given profitwf , and our goal is to design an allocation policy
such that the expected total profit is maximized (the expectation is over both the random online
arrivals of workers and tasks and any internal randomization of the algorithm).
We now motivate the key assumptions in OTA-TSA.

Known independent and identical arrival distributions (KIID). In many crowdsourcing plat-
forms, one collects meta-data about the tasks and workers. This data is used to predict both the
performance and the arrival patterns of workers and tasks (e.g., References [13, 37, 39, 52, 54]).
Hence the underlying compatibility graph G and the arrival sequence of tasks and workers is far
from being adversarial. We can exploit the rich historical data to predict both the compatibility
graph and the arrival distributions of workers and tasks. This motivates us to consider the KIID
model, in which we assume the arrivals of tasks and workers follow two separate distributions
that are known, identical and independent across the online phase. The KIID arrival setting has
been adopted in many previous works (e.g., References [41, 42, 46]).

Retention in the system: workers versus tasks. In our model OTA-TSA, we assume that
(a) once a task arrives, it has to be instantaneously and irrevocably assigned to one of the neighbor-
ing workers who has arrived so far or get rejected; and (b) once a worker arrives, it will stay in the
system until being assigned. OTA-TSA is inspired by applications in market-based recommender
systems where the two sides of the market are lopsided with more tasks than workers. One exam-
ple is ride-hailing during peak hours, where drivers (workers) can be far outnumbered by riders
(tasks) [38]. Any time a worker joins the system, they have an incentive to stay, since the lopsided
numbers of workers and tasks imply that eventually a worker will be assigned to some task.

Adaptive versus non-adaptive algorithms.Non-adaptive algorithms are thosewhose strategies
do not adapt to the (random) outcomes observed during previous rounds such as arrivals of online
agents and realizations of random seeds used in algorithms. Otherwise, they are adaptive. Thus, a
non-adaptive algorithm is a functionmapping the time-step to an action, while adaptive algorithms
map the history at the given time-step to an action.
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Table 1. Summary of Lower and Upper Bounds on Competitive Ratios

for OTA-TSA Presented in this Article

Un-weighted LHS Vertex-weighted Edge-weighted

NADAP (Section 4) ≥0.295 ≥0.295 ≈0.295

GREEDY (Section 6.1) ≥0.250 — —
ADAP (Section 6.2) ≥0.343 ≥0.343 —

SCALED (Section 6.4) ≥0.355 ≥0.355 —

Hardness among Non-Adaptive (Section 4) ≤0.295
Hardness among Adaptive w.r.t. LP Equation (6) (Section 7.1) ≤0.423

Hardness among Adaptive (Section 7.2) ≤0.581

Competitive ratio. Consider an input instance of OTA-TSA, denoted by I = {G = (U ,V ,
E),Pu ,Qv , {wf | f ∈ E}}, where Pu and Pv represent arrival distributions of workers and tasks,
respectively. Note that all information in I is accessible to any algorithm in advance. Consider
an offline optimal (OPT), also known as “clairvoyant optimal,” which has the privilege of optimiz-
ing matching decisions after observing the full arrival sequence of online workers and tasks. In
contrast, any (online) algorithm ALG must adhere to the instantaneous and irrevocable decision
requirement upon the arrival of each task. Let E[OPT(I)] and E[ALG(I)] denote the expected
performance of an offline optimal OPT and any given algorithm ALG on instance I, respectively,
where both expectation is taken over randomness in the arrival sequences of workers and tasks
and possible random bits in OPT or ALG itself. The competitive ratio of a maximization program,

as studied in this article, is defined as infI
E[ALG(I)
E[OPT(I)] [7]. Thus, when we say ALG achieves a ratio at

least α ∈ [0, 1], it means that for any instance of the problem, the expected profit obtained by ALG
is at least an α fraction of the offline optimal. Note that in our definition, the offline optimal can
always get a profit we with e = (u,v) when matching worker u to task v , irrespective of whether
u comes before or after v . This is in sharp contrast with the definition in Reference [47], where
they assume both the offline and the online algorithm adopt the same weight functionw(u,v, t , s),
which denotes the profit obtained when matching a supply agent u arriving at time t to a demand
agentv arriving at time s . They setw(u,v, t , s) = 0 for all s < t , which ensures that the benchmark
(i.e., offline optimal) and the online algorithm have the same set of available actions. This, however,
makes the offline optimal defined in Reference [47] weaker (less powerful) than ours.

Our contributions. First, we propose a theoretical model, OTA-TSA, where both workers and
tasks arrive online. We consider the arrival setting of KIID and assume that the distributions can
be learned from historical data.
Second, we present a non-adaptive algorithm (NADAP) for the OTA-TSA, which is optimal

among all possible non-adaptive algorithms (Section 4). We show that NADAP achieves a ratio of
almost 0.3, which is larger than the 1/4 achieved by an adaptive algorithm shown in Reference [45]
for the same problem but under the arrival setting of RAO. This is theoretical evidence showing
the advantage of using historical data to predict the arrival distributions. Our main approach is to
construct and solve an appropriate linear program (LP) and use that LP solution to guide online
actions.
Third, we propose a few adaptive algorithms (see Section 6). The first one is a warmup algo-

rithm, GREEDY. We show that it achieves a competitive ratio of at least 0.25 for the unweighted
OTA-TSA; however the analysis is not tight.We conjecture thatGREEDY obtains a ratio larger than
0.25, which is supported in part by the experimental analysis of Section 8. The second is an adap-

tive algorithm (ADAP) for OTA-TSA when all the edges incident to each worker—representing
the set of all acceptable tasks for that worker—have the same weight, which is referred to as left-
hand-side (LHS) vertex-weighted OTA-TSA. We show that ADAP achieves an improved ratio
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of nearly 0.34. To accomplish this, we construct and solve a stronger LP than the one used for
the non-adaptive algorithm and combine this with ideas previously used for other online match-
ing problems. The last algorithm is called SCALED, which can be viewed as a boosted version of
NADAP: it samples an available worker for each arriving task following a strengthened distribu-
tion extracted from the LP. We show that SCALED achieves a competitive ratio of at least 0.355
for LHS vertex-weighted OTA-TSA.
Fourth, we show conditional and unconditional negative results for OTA-TSA: no (adaptive) al-

gorithm can achieve a ratio better than 0.423 using the benchmark LP and 0.581 unconditionally,
even for the unweighted case (Section 7). Note that Brubach et al. [9] gave an adaptive algorithm,
which yields a ratio of 0.729 for the classical online matching on an unweighted bipartite graph
under KIID but with only one-sided arrival. This formally corroborates our intuition that the com-
plexity increases significantly from one-sided arrival to two-sided arrival. Table 1 summarizes the
main theoretical findings in this article.
Finally, we run numerical experiments to illustrate the various aspects of our algorithm. First,

we run simulated experiments to show the behavior of the algorithm on various ranges of the in-
put space. We illustrate when the proposed algorithm ADAP is better than GREEDY and when an
algorithm like GREEDY suffices. Second, we use two real-world crowdsourcing datasets, namely,
gMission [11] and EverySender [45] to show how to use this algorithm in practice. We find that
despite having provable guarantees, we are able to obtain much better performance by using the
GREEDY algorithm. Our experimental analysis also generalizes this model, where we assume that
at each time-step a batch of workers and a batch of tasks arrive, respectively. Third, we use the
Amazon product review dataset to simulate a modern recommender system and report the perfor-
mance of our algorithm on this dataset.
In the analysis, we define and use a new technical tool, called two-stage birth-death process,

which abstracts the random process into a general framework. This technical tool might be of
independent interest to prove competitive ratios in other settings.

Closely-related works. Tong et al. [46] considered a similar online task assignment problem in
spatial platforms, called Flexible Two-sided Online task Assignment (FTOA). The two models
are incomparable. The work of Reference [46] posits that in each round a single vertex, either a
worker or a task, is sampled from a known distribution; in contrast, we assume both a worker
and a task are sampled according to two respective distributions independently in each round.
Additionally, thework of Reference [46] assumes: (1) unit weights on all assignments (unweighted);
(2) the worker and task stay in the system until the deadline (known as input) after arrival; and
(3) any available task-worker pair in the system can be matched (thus, a decision for the arriving
vertex is not required to be immediate).

Recently, Truong and Wang [47] introduced a more general online bipartite matching model
with two-sided arrival where the two sides are the supply and demand agents. Similar to our work,
they assume that the supply and demand agents arrive in each time-step sampled independently
from two known distributions. Also, they assume that once a demand agent arrives, it should
either be immediately and irrevocably matched to an available supply agent or discarded. In their
model, the arrival distributions of supply and demand agents can differ over time. Additionally,
they assume that the supply agent departs from the system after a certain finite number of rounds.
Finally, when matching a demand agent v arriving at time t to a supply agent u arriving at time s ,
they assume that the resulting (known) profit is jointly determined by the twomatching agents and
the difference in their arrival times. Under this general setting, they get lower and upper bounds
on the competitive ratio of 1/4 and 1/2, respectively. Apart from the model, their work differs
from ours in the benchmark as well. In particular, they have a weaker offline optimal benchmark
compared to our work (see further discussion in the definition of competitive ratio).
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Table 2. Summary of Related Works

Un-

weighted

LHS

Vertex-

weighted

Edge-

weighted

One-

sided

Arrivals

Two-

sided

Arrivals
Adversarial

Random

Order

Known

Distributions

Feldman et al. [15] � � �
Tong et al. [46] � � �
Huang et al. [22] � � �
Truong and Wang [47] � �
Huang et al. [23] � � �
Collina et al. [12] � � �
Aouad and Saritaç [2] � � �
Huang and Zhang [25] � � �
Huang et al. [24] � � �
MacRury and Ma [32] � � �
Our Work � � � � �

Collina et al. [12] considered a problem of two-sided arrival in a non-bipartite setting. They
assumed both the arrival and departure of vertices are specified by a (specific) Poisson process
and presented an online-matching algorithm that achieves a competitive ratio of 1/8. Recently,
Aouad and Saritaç [2] considered a two-sided dynamic matching problem for both cost minimiza-
tion and reward maximization. The key difference from our work is that in Reference [2], the
performance of a policy is evaluated against an optimal online policy instead of an optimal offline

as used here, where the former ratio is called approximation ratio, while the latter is called com-

petitive ratio. The authors acknowledged that the benchmark LP there could have an arbitrarily
large gap from the optimal offline performance. They cited that fact to justify their benchmark
choice of an online optimal. A series of recent works ([22, 24, 25] have considered the two-sided
arrival model (called fully online matching) in the adversarial and random order arrival for un-
weighted graphs. Since the arrival settings there are more general than the one considered in this
article, while the unweighted-graph assumption is stronger than those considered in this article,
the results are not directly comparable.

Other related works.We now briefly overview related research for the classical online matching
problem; for a more in-depth review, we direct readers to the survey by Mehta [35]. Ever since
the seminal work [28], online matching and related models have received significant attention
during the last two decades, partly fueled by Internet advertising businesses such as Google and
Meta. In the basic model, we are given a bipartite graph G = (U ,V ,E) where U and V represent,
respectively, the offline advertisers and online keywords (impressions). Each time a vertex v ∈ V
arrives, we have to make an instant and irrevocable decision: either reject it, or assign it to an
unmatched neighbor u ∈ U and obtain a profitwe for the match e = (u,v). The central problem is
to design an online allocation policy such that the expected profit is maximized. Assumptions on
the online arrival process leads to a landscape of different problems. Common arrival assumptions
include adversarial order, random arrival order [23], and KIID [9, 15, 19, 26, 33]. Online (bipartite)
matchingmodels have wide applications beyond online advertising, e.g., online advance admission
scheduling [48], kidney exchange and organ matching [3, 5, 34], social welfare maximization [1],
efficient parking allocation [36], and dynamic recommendations [10, 30].
Departing from the traditional one-sided arrival setting on a bipartite graph, there are several

theoretical models that consider a full arrival setting on general graphs. Wang and Wong [49]
introduced a full arrival setting on general graphs with fractional matching. The basic setting is as
follows: in each round a single vertex arrives (in an adversarial order) and all its incident edges to
previously arrived vertices are revealed; once a vertexv arrives, an online action of either rejecting
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v or (fractionally) matching it to its neighbors has to be chosen. Dutta and Sholley [14] considered
a similar full arrival setting but assumed that each arriving vertex can be matched to only one of
the d preceding vertices. Ashlagi et al. [4] studied another interesting variant of the full arrival
setting where every agent stays in the system for at most d rounds after arrival and in any round
we canmatch arbitrary pairs of agents currently present in the system. Huang et al. [22] considered
a full arrival setting where an online action is required only at the deadline of the vertex. Table 2
provides an overview of the related works.

Roadmap. The rest of this article is organized as follows. We give a general statement of our prob-
lem in Section 2. We show our key technical tool, a two-stage birth-death process (TS-BDP), in
Section 3 and the benchmark linear program in Section 4. We present one non-adaptive and three
adaptive algorithms and related online-competitive analysis in Sections 5 and 6 and offer condi-
tional and unconditional negative results in Section 7. We describe our experimental results in Sec-
tion 8, offer detailed proofs involved in TS-BDP in Section 9, and conclude our article in Section 10.

2 PROBLEM STATEMENT

Before describing our OTA-TSA model, we define the following terminologies. We group a set of
similar tasks and call them “task types.” Similarly, we group similar workers and call them “worker
types.” For example, in the context of spatial crowdsourcing, all workers present around a particular
location belong to a single worker type.
Our model is as follows. We have a bipartite graph (known to the algorithm) G = (U ,V ,E),

where U and V represent the set of worker-types and task-types, respectively, and E represents
the set of worker-task pairs that are “compatible,” i.e., (u,v) ∈ E iff any worker of type u shows
interest toward tasks of type v . We have a finite time horizonT (known beforehand) and for each
time t ∈ [T ] � {1, 2, . . . ,T }, a worker u fromU and a task v fromV is sampled (we also say u or v
arrives or comes interchangeably) independently from known probability distributions Pu = {pu }
and Qv = {qv }, respectively, with

∑
u pu = 1 and

∑
v qv = 1. The sampling process is independent

across the whole online T time-steps (or rounds). Note that under the current setting, the total
number of arrivals of workers is equal to that of tasks, and both are equal to T .
At each time t ∈ [T ], we first observe the online arrivals fromU andV (in that order), say u and

v . We then need to make an instantaneous and irrevocable decision to either reject v or assign v
to one of its available compatible workers in U . For each u ∈ U , once it arrives, it will stay in the
system until being assigned to some task.1 In our model, we assume that each u has an integral
arrival rate,2 i.e., T · pu is an integer for every u, and thus, we can further assume w.l.o.g. this
integer to be 1 (by splitting each u into T · pu copies).3 Hence, we have that |U | = T and pu = 1/T
for all u. Similar to most of the theoretical works in online matching [9, 19, 26, 33], we assume
T � 1 and some of our results are obtained when assumingT approaches infinity. Note that these
two assumptions (i.e., T � 1 and T · pu being an integer) are mild. When T is small, we can use a
dynamic programming-based solution at each time-step to solve it to near optimality. And when
T → ∞, the quantity T · pu is arbitrarily close to an integer. We associate a non-negative profit
wf with each assignment f = (u,v). Let rv = T · qv denote the expected number of arrivals of v

1Here, we assume that each worker has the capacity to perform only one task. This is w.l.o.g., since if a worker type u can

perform multiple tasks, we can split u into multiple copies each with a capacity to perform one task. This establishes the

matching constraint for each worker.
2This is a common assumption in the classical online bipartite matching under known distributions, see Reference [15] for

a discussion on the motivation and technical reasons for this assumption.
3This is without loss of generality for theoretical competitive-ratio analysis, though it may increase computational com-

plexity when applied in practice.
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Table 3. Glossary of Notation and Acronyms Used

[T ] Set of times that is equal to {1, 2, . . . ,T } with T being the whole time horizon.
G = (U ,V ,E) Input compatibility graph whereU and V are sets of worker and task types, respectively.
Eu (Ev ) Set of edges incident to u (v).
pu Arrival probability of worker (of type) u ∈ U in each round.
qv Arrival probability of task (of type) v ∈ V in each round.
rv Expected number of arrivals of task v with rv = T · qv .
f = (u,v) Edge f ∈ E that also refers to the match of u and v .
wf Non-negative profit on edge e .
e (Non-italic) Natural base taking the value around 2.718.
KIID Known independent and identical arrival distributions.
AO/ RAO Adversarial Order/Random Arrival Order.
OTA Online Task Assignment.
OTA-TSA Online Task Assignment with Two-sided Arrival (our main problem); see Section 2.
TS-BDP Two-Stage Birth-Death Process; see Definition 3.1 in Section 3.
κ(q) Expected number of total deaths in TS-BDP(1,q); see the paragraph below Definition 3.1 in Section 3.
NADAP A non-adaptive; see Algorithm 1 in Section 4.
GREEDY Greedy; see Algorithm 2 in Section 6.1.
ADAP An adaptive; see Algorithm 3 in Section 6.2.
SCALED An adaptive; see Algorithm 4 in Section 6.4.
UR A heuristic that samples an available worker uniformly at random for each arriving task.

during the T rounds, which is referred to as the arrival rate of v . We assume this rate to be any
number between [0, 1] (upper bounding it by 1 is again w.l.o.g. via simple scaling). Our goal is to
design an online-assignment policy such that the total expected profit of all assignments made is
maximized.
Throughout this article, we use edge f = (u,v) and the assignment of v to u interchangeably.

Additionally, when we say at time t ∈ [T ], we mean we are at the beginning of time t either before
or after observing the arrivals from U and/or V (clarified in the context) but definitely before the
algorithm has made any online action. Table 3 offers a glossary of notation and acronyms used in
this article.

3 TWO-STAGE BIRTH-DEATH PROCESS

We propose a new stochastic process, TS-BDP, and use it as a main technical tool to analyze our
algorithms and derive negative results. Readers may wish to skip this section temporarily to get a
coherent picture of how we design and analyze our algorithms: the technical tools presented here
are solely for theoretical analysis purposes.
The process (described on random variables {Xt ,Yt } and parameterized by values p and q) is

described as follows. Consider a stochastic process with a time horizonT such that, (1) the process
starts at t = 1withX1 = 0; (2) at every round t , first there is a birth event followed by an independent
death event. For the birth event, we have Yt = Xt + 1 with probability p/T and Yt = Xt with
probability 1 − p/T . For the death event, it has a left boundary point at 0; i.e., if Yt = 0, then
Xt+1 = Yt , else when Yt ≥ 1, we have Xt+1 = Yt − 1 with probability q/T and Xt+1 = Yt with
probability 1−q/T . We refer top andq as the birth and death rates of TS-BDP, respectively. TS-BDP
differs from the classical birth-death process (BDP), since in BDP we have that in every round,
either a (random) birth or a death event occurs while in TS-BDP the two events occur independently
in a sequential manner (the birth event is followed by the death event). Thus, TS-BDP is a special
case of non-uniform BDP. (TS-BDP is a BDP with a time-horizon 2T where every odd step is a
birth event and every even step is a death event.)

Definition 3.1. A two-stage birth-death process parameterized by (T ,p,q) (time horizon, birth
rate, death rate) refers to a sequence of random variables {Xt ,Yt |t ∈ [T ]}∪ {XT+1}, which satisfies
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Fig. 1. The random process in a single round of the two-stage birth-death process (TS-BDP) parameterized

by (T ,p,q). TS-BDP starts with X1 = 0 and consists of T rounds; in each round, it first goes through a birth

process of rate p ≥ 0 and then followed by another independent death process of rate q ≥ 0.

(1) X1 = 0 with probability 1; (2) For every t ∈ [T ], Yt = Xt + 1 with probability p/T and Yt = Xt

otherwise; (3) For every t ∈ [T ] after the completion of Step (2), if Yt = 0, then Xt+1 = Yt with
probability 1; if Yt ≥ 1, then Xt+1 = Yt − 1 with probability q/T and Xt+1 = Yt otherwise. Figure 1
offers a depiction of the random process in a single round.

In this article, we are particularly interested in the case when p = 1, q ≥ 0 is a constant for
a sufficiently large T (T → ∞). We denote this specialization with TS-BDP(1,q) (or TS-BDP(q)
when the context is clear). For every t ∈ [T ], let Δ(t ,T ) := Yt − Xt+1 and Δ(T ) :=

∑
t ∈[T ] Δ(t ,T ),

the latter can be interpreted as the total number of death events in which Yt gets decreased by 1.
Let κ(q) := limT→∞ E[Δ(T )]. We now state some useful lemmas that we will use later. The detailed
proofs are deferred to Section 9 and they involve computer-aided computations that were done on
Mathematica 10. All numerical results are precise up to the third decimal place.

Lemma 1. (1) κ(0) = 0, (2) κ ′(0) = 1/e, where κ ′(0) is the first (right) derivative of κ(q) at q = 0.

Lemma 2. (1) 0.295 ≤ κ(1) ≤ 0.302; (2) κ(1 + 1
e(e−1) ) ≥ 0.343; and (3) κ(1 + 1

e−1 ) ≤ 0.423.

Lemma 3. κ(q) is non-decreasing and concave over q ∈ [0,∞].

4 BENCHMARK LINEAR PROGRAM (LP)

As is common in this line of work, our algorithms use optimal solutions to LP constructed on
the offline (expected) graph as a guide to the online algorithm. Additionally, this benchmark LP is
used to upper bound the expected value of the optimal solution on a particular (offline) instance.
Hence to compute a lower bound on the competitive ratio, it suffices to compute the ratio of the
reward obtained by the algorithm to the optimal solution of this benchmark LP. We now describe
the benchmark LP we use for our non-adaptive algorithm. Later, we show that this can further be
strengthened based on some observations, which is used in our adaptive algorithm.
We associate a variable with every edge f in the graph. For each edge f , xf denotes the expected

number of matches in any offline optimal matching. For each u (resp.v), let Eu (resp Ev ) be the set
of its neighboring edges. Consider the following LP:

max
{xf :f ∈E }

∑
f ∈E

wf xf , (1)
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6:10 J. P. Dickerson et al.∑
f ∈Ev

xf ≤ rv ∀v ∈ V , (2)

∑
f ∈Eu

xf ≤ 1 ∀u ∈ U , (3)

xf ≥ 0 ∀f ∈ E. (4)

Lemma 4.1. The optimal value to LP Equation (1) is a valid upper bound for the offline optimal.

Proof. Let x := (xf ) denote the optimal distribution over the edges for the offline optimal. We
now argue that x is feasible for this linear program, which yields the lemma above. Constraint
Equation (2) captures the fact that the expected total number of matches incident to a task v is
no more than the expected number of arrivals of v . The same reasoning applies to Constraint
Equation (3) but for workers. Constraint Equation (4) follows from the fact that the expected num-
ber of matches is non-negative. The objective function computes the expected reward obtained in
the optimal offline solution. Thus, we claim that for any offline optimal, (xf ) should be feasible
to the LP above. We therefore have that LP Equation (1) is a valid benchmark LP, i.e., its optimal
value is an upper bound on the offline optimal. �

Throughout the article, we use (x∗
f
) to denote an optimal solution of benchmark LP (or the

stronger LP we define later, as appropriate).

5 NADAP: A BEST POSSIBLE NON-ADAPTIVE ALGORITHM

In this section, we present a non-adaptive algorithm, denoted by NADAP, which is optimal

among all possible non-adaptive algorithms. Algorithm 1 describes our algorithm formally.

ALGORITHM 1: An optimal non-adaptive algorithm (NADAP)

1 Let v be the task arriving at time t ∈ [T ]. Recall that Ev be the set of edges incident to v in the input

graph.

2 Sample an edge f = (u,v) ∈ Ev with probability x∗
f
/rv . If worker u is available, then assign v to u;

otherwise, skip v .

Constraint
∑

f ∈Ev x
∗
f
/rv ≤ 1 in LP Equation (2) implies that line 2 in NADAP always forms a

distribution.

Theorem 5.1. The non-adaptive algorithm NADAP achieves a competitive ratio of κ(1) ≥ 0.295
for the OTA-TSA.

Proof. Consider a given u. Let Xt and Yt be the number of copies of u before and after the
arrival process for U at time t , respectively. From the assumption that u arrives with probability
1/T in each round, we have Yt = Xt + 1 with probability 1/T and Yt = Xt with probability

1 − 1/T . From NADAP, we have that if Yt ≥ 1, then it decreases by 1 with probability
x ∗
u

T
�∑

f ∈Eu

x ∗
f

rv

rv
T

≤ 1
T
and it remains unchanged with the remaining probability (here x∗u =

∑
f ∈Eu x

∗
f
).

From the definition of TS-BDP in 3.1, we have that {Xt ,Yt } is a TS-BDP(1,x
∗
u )with a time horizon

of T .
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Let Af be the (random) number of matches for f = (u,v) in NADAP across theT online rounds.
Thus, we have

E[Af ] =
∑
t ∈[T ]

rv
T

x∗
f

rv
Pr[Yt ≥ 1] =

∑
t ∈[T ]

x∗
f

T
Pr[Yt ≥ 1] =

x∗
f

x∗u

∑
t ∈[T ]

x∗u
T

Pr[Yt ≥ 1]

=
x∗
f

x∗u
·

∑
t ∈[T ]

E[Δt ] (by the definition of Δt )

= x∗f ·
κ(x∗u )

x∗u
(by taking T → ∞ and by definition, κ(x∗u ) = limT→∞

∑
t ∈[T ] E[Δt ]).

From Lemma 3, we have that κ is non-decreasing and concave over [0, 1]. Thus, κ(x )−κ(0)
x−0 should

be non-increasing over x ∈ [0, 1]. We also have that κ(0) = 0. Therefore,

κ(x∗u )

x∗u
=
κ(x∗u ) − κ(0)

x∗u − 0
≥

κ(1) − κ(0)

1 − 0
= κ(1).

This implies that we have that E[Af ] ≥ x∗
f
·κ(1). Since LP Equation (1) is a valid upper bound on

the performance of an optimal offline, by linearity of expectation, we have that NADAP achieves
a competitive ratio of κ(1). �

Negative results for non-adaptive algorithms. We now show that any algorithm that is non-
adaptive, cannot achieve a ratio better than κ(1). In particular, we prove the following lemma.

Theorem 5.2. No non-adaptive algorithm can achieve a competitive ratio better than κ(1) even for
the unweighted OTA-TSA.

Proof. Consider an unweighted complete bipartite graphG = (U ,V ,E)where |U | = T , |V | = T 2.
Set pu = 1/T for each u and pv = 1/T 2 for each v . In other words, each u has an integral arrival
rate of 1 while each v has an arrival rate of rv = 1/T .
Let OPT-A and OPT-B be the offline optimal algorithm and online optimal non-adaptive algo-

rithm, respectively. With a slight abuse of notation, we use OPT-A and OPT-B to denote the cor-
responding performance as well. Observe that OPT-A = T for every offline instance. Now, we
analyze OPT-B. Since the probability that any v comes at least twice across the T rounds is arbi-
trarily small (whenT → ∞), hence it suffices for OPT-B to specify the online matching policy only
for the case when v comes for the first time. Let the policy in OPT-B be {xu,v |u ∈ U ,v ∈ V } such
that xv �

∑
u ∈U xu,v ≤ 1. Let xu �

∑
v ∈V xu,v for each u. Notice that

∑
u xu =

∑
v xv ≤ T 2.

Consider a givenu. Let Zu be the expected number of matches ofu in OPT-B across theT online
rounds. The number of copies of u at t before and after an arrival from U can be captured by a
TS-BDPwith a birth rate of 1 and a death rate of xu/T , i.e., the corresponding probabilities of a birth
and death events are 1/T and xu/T

2, respectively. Thus, by definition, we have E[Zu ] = κ(xu/T ).
The performance of OPT-B is

∑
u E[Zu ] =

∑
u κ(xu/T ). Define αu := xu/T . We have

∑
u αu ≤ T due

to the fact that
∑
u xu ≤ T 2. Consequently, The (optimal) performance of OPT-B can be obtained

by solving a maximization program as follows:{
max

{αu :u ∈U }

∑
u ∈U

κ(αu ) :
∑
u ∈U

αu ≤ T , 0 ≤ αu , ∀u ∈ U

}
. (5)

From Lemma 3, we have that κ(q) is non-decreasing and concave when q ∈ [0,∞]. This implies
that themaximization Program (5) is maximizedwhenαu = 1 for everyu, and the resulting optimal
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6:12 J. P. Dickerson et al.

value is T · κ(1). Thus, we have that OPT-B achieves an online competitive ratio of κ(1) on this
example. �

6 ADAPTIVE ALGORITHMS

6.1 Warmup: Greedy

Our greedy algorithm is formally stated in Algorithm 2 as follows.

ALGORITHM 2: Greedy Algorithm (GREEDY)

1 Let v be the task arriving at time t ∈ [T ].

2 Choose an assignment f = (u,v) such that f has the largest weight among all available assignments
(i.e., u is available) at time t and assign v to u (break ties arbitrarily). Skip v if none is available.

Note that for the unweighted case (i.e., when all assignments have unit weights), GREEDY will
choose an arbitrary available worker u when a taskv arrives. We show that for the unweight case,
GREEDY achieves an online competitive ratio at least 1/4.

Theorem 6.1. GREEDY achieves a competitive ratio of at least 0.25 for the unweighted OTA-TSA.

Proof. The arrival setting of random arrival order (RAO) is stricter than that of KIID as stud-
ied here. In the RAO, an adversary (with no information of the algorithm) selects two independent
uniform random permutations overU andV , σ and π , respectively. At each time-step t ∈ [T ], the
algorithm observes a worker σ (t) and a task π (t). As shown in Reference [27], a lower bound on
the competitive ratio of any algorithm under RAO is also one for the KIID model. Thus, it suffices
to show that GREEDY achieves a competitive ratio of at least 0.25 for the unweighted OTA-TSA
under RAO.
Consider a graph G = (U ,V ,E) and assume w.l.o.g. that |U | = |V | = T . At time t , the al-

gorithm sees a neighbor u of π (t) such that σ−1(u) ≤ t . Let G(σ ,π ) be the graph of G under
(σ ,π ) such that all vertices in U and V are re-ordered under σ and π , respectively, and where
an edge f = (u,v) ∈ E exists iff σ−1(u) ≤ π−1(v). Note that GREEDY computes a maximal
matching for G(σ ,π ). Let GREEDY(σ ,π ) be the total number of matched edges and OPT(σ ,π )
be the size of the maximum matching. Since GREEDY computes a maximal matching, this implies
GREEDY(σ ,π ) ≥ OPT(σ ,π )/2.

GREEDY = Eσ ,π [GREEDY(σ ,π )] ≥ Eσ ,π [OPT(σ ,π )]/2 ≥ OPT/4,

where OPT refers to the size of the maximum matching onG.
The last inequality is obtained as follows. LetM be a maximummatching ofG with OPT = |M|.

For each edge f ∈ M, we have Pr[f ∈ G(σ ,π )] = Pr[σ−1(u) ≤ π−1(v)] ≥ 1/2. LetM(σ ,π ) ⊆ M be
the set of edges inM∩G(σ ,π ). We have E[OPT(σ ,π )] ≥ E[|M(σ ,π )|] =

∑
f ∈M Pr[f ∈ G(σ ,π )] ≥

|M|/2 = OPT/2. �

6.2 Adaptive Algorithm ADAP for the LHS Vertex-weighted Case

In this section, we consider a relaxed version of the problem where for any u ∈ U , all edges
in Eu have the same weight wu ≥ 0. We refer to this relaxed version as OTA-TSA with LHS
vertex-weighted. For this relaxation, one can strengthen the benchmark LP Equation (1) due to the
following observation: the probability that an edge can be matched is at most that both the worker
and the task is present at least once in the arrival sequence. This boils down to computing the
expected value of the minimum of two i.i.d. Poisson random variables with mean upper bounded
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by 1. We later show that this expected value is at most (1−1/e) ·rv and hence adding this stronger
constraint, we obtain the following stronger LP Equation (6). As a side note, this constraint is also
valid for the general version of edge-weighted OTA-TSA, but the simpler LP Equation (1) suffices
for an optimal non-adaptive algorithm.

max
(xf :f ∈E)

∑
u ∈U

wu

∑
f ∈Eu

xf , (6)∑
f ∈Ev

xf ≤ rv ∀v ∈ V , (7)∑
f ∈Eu

xf ≤ 1 ∀u ∈ U , (8)

0 ≤ xf ≤
(
1 −

1

e

)
· rv ∀f ∈ Ev ,∀v ∈ V . (9)

Lemma 6.2. The optimal value to LP Equation (6) is an upper bound of the offline optimal for the

OTA-TSA with LHS vertex-weighted.

Proof. Consider a given edge f = (u,v). For any offline instance, letXu andXv be the respective
number of arrivals of u and v and Xf be the corresponding number of matches for edge e in an
offline optimal. We have that Xf ≤ min(Xu ,Xv ), which implies xf = E[Xf ] ≤ E[min(Xu ,Xv )].
From our arrival assumption, we have that Xu is the sum of T i.i.d. Bernoulli random variables
each with mean 1/T . Thus, Xu ∼ Pois(1) when T → ∞. Similarly, we have that Xv ∼ Pois(rv ).
Hence, we have the following:

E[min(Xu ,Xv )] =

∞∑
k=1

Pr[Xu ≥ k] · Pr[Xv ≥ k] =
∞∑
k=1

Pr[Pois(1) ≥ k] · Pr[Pois(rv ) ≥ k] (10)

≤

(
1 −

1

e

) ∞∑
k=1

Pr[Pois(rv ) ≥ k] =

(
1 −

1

e

)
· rv . (11)

The inequality Equation (11) on the second line is due to the following fact: for any given integral
k ≥ 1, we have Pr[Pois(1) ≥ k] ≤ 1 − 1/e. The inequality Equation (11) becomes tight when
rv ∼ 0. �

Our adaptive algorithm is inspired by the work [33]. Let {x∗
f
} be an optimal solution to LP

Equation (6). Every time when a taskv arrives, we generate a random ordered listL of two choices
from Ev such that it satisfies the below two properties.

(P1): Pr[L(1) = f ] =
x ∗
f

rv
for each f ∈ Ev ,

(P2): Pr[L(2) = f ∧ L(1) � f ] ≥
x ∗
f

rv
1

e−1 for each f ∈ Ev ,

where L(1) and L(2) denote the first and second choices on this list L, respectively.
Later in this section, we will describe how to efficiently generate a random list satisfying Prop-

erties (P1) and (P2). Note that Property (P2) relies critically on the new constraint Equation (9)
added into LP Equation (6). The main idea of ADAP is as follows: Upon the arrival of an online
task v at time t , we first generate random list L with respect to v , and then check the availability
of the first choice L(1) and the second choice L(2) sequentially; make it if it is available. Com-
pared withNADAP, ADAP gives every edge f a second chance to be potentially matched. Property
(P1) ensures that the marginal distribution is same as that of the optimal LP solution for the first
choice; Property (P2) gives a lower bound on the event that every f is tried as a second choice—a

ACM Trans. Econ. Comput., Vol. 12, No. 2, Article 6. Publication date: June 2024.



6:14 J. P. Dickerson et al.

high-enough lower bound ensured by Property (P2) is the reason we have an improvement on the
final ratio over the NADAP. Algorithm 3 formally describes ADAP.

ALGORITHM 3: An adaptive algorithm (ADAP)

1 Let v be a task arriving at time t ∈ [T ].

2 Generate a random list L satisfying Properties (P1) and (P2).

3 If the first choice L(1) is available, then assign v to L(1); else, if the second choice L(2) is available,

then assign v to L(2); otherwise, skip v .

Theorem 6.3. The adaptive algorithmADAP achieves a competitive ratio of at leastκ
(
1+ 1

e(e−1)

)
≥

0.343 for the OTA-TSA with LHS vertex-weighted.

Proof. Consider a worker u. Let Xt and Yt be the number of copies of u at time t before and
after observing an arrival from U . From the problem assumption u arrives with probability 1/T
in each round and thus we have Yt = Xt + 1 with probability 1/T and Yt = Xt with probability
1 − 1/T .

Consider the case when Yt ≥ 1 and a compatible task v of u arrives at t . Let L be the random
list that is generated for v at t . From ADAP, we have that Yt decreases by 1 iff either (1) the
assignment f = (u,v) is made as a first choice (L(1) = f ) or (2) the assignment f = (u,v) is
made as a second choice (L(2) = f ) and the first choice L(1) is unavailable. Thus, we have the
following:

Pr[Xt+1 = Yt − 1|v comes at t ]

= Pr[L(1) = f ] + Pr[L(2) = f ∧ L(1) � f ] · Pr[L(1) is not available]

≥
x∗
f

rv
+
x∗
f

rv

1

e − 1
Pr[L(1) is not available]

≥
x∗
f

rv
+
x∗
f

rv

1

e − 1

1

e
=

x∗
f

rv

(
1 +

1

e − 1

1

e

)
.

The inequality on the second line follows from Properties (P1) and (P2). The inequality on the
third line is due to the fact that any given L(1) = (u ′,v) will be unavailable with probability at
least (1 − 1/T )t ≥ 1/e (this refers to the probability that u ′ never comes in the first t time-steps).
Thus, summing over all the neighbors of u, we have

Pr[Xt+1 = Yt − 1] ≥
∑

f =(u,v)∈Eu

rv
T

x∗
f

rv

(
1 +

1

e − 1

1

e

)
=

∑
f ∈Eu x

∗
f

T

(
1 +

1

e − 1

1

e

)
.

We have that {Xt ,Yt } is a TS-BDP with death rate at least x∗u · q, where x∗u =
∑

f ∈Eu x
∗
f
and

q = (1+ 1
e−1

1
e
). From the definition of the function κ, we have that κ(x∗u ·q) is equal to the expected

number of matches for worker u. Note that x∗u is the expected number of matches for u in the
benchmark LP Equation (6). Thus, the resultant ratio is at least

κ(x∗u · q)

x∗u
= q ·

κ(x∗u · q) − κ(0)

x∗uq − 0
≥ q ·

κ(q)

q
= κ(q) = κ

(
1 +

1

e − 1

1

e

)
.

The inequality above is due to the fact that κ(q) is a concave function when q ∈ [0,∞], and that
x∗u ≤ 1 due to Constraint on u in LP Equation (6). �
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6.3 Generating a Random List L Satisfying Properties (P1) and (P2)

The list satisfying the two properties is primarily generated via a randomized procedure that intro-
duces negative correlations. In what follows, we describe two different approaches, both satisfying
the required properties.

The first approach. This idea is due to Manshadi et al. [33]. For every f ∈ Ev , let yf = x∗
f
/rv ;

we have that
∑

f ∈Ev yf ≤ 1. Add a dummy edge f ′ = (u ′,v) with yf ′ = 1 −
∑

f ∈Ev yf (the edge
f ′ = (u ′,v) has the meaning that we do nothing when v comes). Create two unit intervals, I1
and I2 as follows: (1) Sort {yf | f ∈ Ev } ∪ {yf ′ } in an increasing order; let yf1 ≤ yf2 ≤ . . . ≤ yfn
be this order; (2) Let Si be a segment of length yfi with a label fi for each i ∈ [n]. Let I1 be the
unit interval formed by ordered segements (S1,S2,S3, . . . ,Sn) and let I2 be another unit interval
formed by (Sn ,S1,S2, . . . ,Sn−1). The random listL based on (I1,I2) as follows: (1) Choose a value
x ∈ [0, 1] uniformly at random; (2) Let I1(x) and I2(x) be the labels of the segments where x falls
in on the two unit intervals I1 and I2, respectively; Set L(1) = I1(x) and L(2) = I2(x).

Lemma 6.4. The random list L generated by the above procedure satisfies Properties (P1) and (P2).

Proof. To prove Property (P1), notice that x takes a value in [0, 1] uniformly at random. Thus
each f ∈ Ev , x falls in the segment labelled by f in I1 with probability yf = x∗

f
/rv . This suggests

that Pr[L(1) = f ] = yf = x∗
f
/rv .

Observe that for any f ∈ Ev with yf ≤ 1/2, we have Pr[L(1) = L(2) = f ] = 0. Thus, Pr[L(2) =
f ∧ L(1) � f ] = Pr[L(2) = f ] = yf > (x∗

f
/rv ) · (1/(e − 1)). Consider the other case yf > 1/2. The

event (L(2) = f ∧ L(1) � f ) occurs only when the random value x falls in the segment labelled
by f in I2 and x does not fall in the segment labelled by f in I1. Therefore,

Pr[L(2) = f ∧ L(1) � f ] = yf − (2yf − 1) = yf ·

(
1

yf
− 1

)
≥ yf ·

(
1

1 − 1/e
− 1

)
=

yf

e − 1
.

The last inequality follows from yf = x∗
f
/rv ≤ 1 − 1/e for every f ∈ Ev that is due to Con-

straint Equation (9). �

A second approach. This idea is based on a modified version of dependent rounding (DR) [16]
as shown in Reference [9], which accepts a more efficient implementation in practice. First, create
a star graph with edge set Ev ∪ { f ′ = (u ′,v)} where yf = x∗

f
/rv for each f ∈ Ev and yf ′ =

1 −
∑

f ∈Ev x
∗
f
. Second, multiply each value yf by 2 and apply the dependent rounding technique

[16] to this modified vector y = (2yf | f ∈ Ev ∪{ f ′}). We will get a random integral vector Y = (Yf )
withYf ∈ {0, 1, 2} such that (i) E[Yf ] = 2 ·yf and (ii) with probability 1, we have

∑
f ∈Ev Yf +Yf ′ = 2.

Let { fa , fb } be the two edges rounded, i.e., Yfa = Yfb = 1 (in the case when some Yf = 2, we set
fa = fb = f ). Set L = (fa , fb ) and L = (fb , fa) with the respective probabilities of 1/2 and 1/2.
We justify that L satisfies Properties (P1) and (P2) as follows.

Lemma 6.5. The random listL generated by the above DR-based procedure satisfies Properties (P1)

and (P2).

Proof. We prove Property (P1) first. Consider a given edge f ∈ Ev with yf ≤ 1/2. In this case,
we have Yf ∈ {0, 1}. Since marginal distribution is maintained in DR [16], we see that Pr[L(1) =

f ] = 1
2 · Pr[Yf = 1] = yf = x∗

f
/rv . For the other case yf > 1/2, we see that Yf = 1 with probability

2 − 2yf and Yf = 2 with probability 2yf − 1. Thus,

Pr[L(1) = f ] = Pr[Yf = 2] +
1

2
Pr[Yf = 1] = 2yf − 1 + (2 − 2yf ) ·

1

2
= yf = x∗f /rv .
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Now, we show Property (P2). Consider a given edge f ∈ Ev with yf ≤ 1/2. Observe that in this
case Yf ∈ {0, 1} and thus, Pr[L(1) � f |L(2) = f ] = 1. Therefore,

Pr[L(2) = f ∧ L(1) � f ] = Pr[L(2) = f ] · Pr[L(1) � f |L(2) = f ] =
1

2
· (2yf ) =

x∗
f

rv
≥

x∗
f

rv
·

1

e − 1
.

As for the case yf > 1/2: We see that with probability 2 − 2yf , Yf = 1. Thus,

Pr[L(2) = f ∧ L(1) � f ] =
1

2
· Pr[Yf = 1] = 1 − yf = yf ·

(
1

yf
− 1

)
≥

yf

e − 1
=

x∗
f

rv
·

1

e − 1
.

The above analysis is similar to that in the proof of Lemma 6.4. �

6.4 Another Adaptive Algorithm SCALED for the LHS Vertex-weighted OTA-TSA

Recall that LP Equation (6) is a valid benchmark LP for the LHS vertex-weighted OTA-TSA. Let
(x∗

f
| f ∈ E) be an optimal solution to LP Equation (6). The adaptive algorithm SCALED presented

below can be viewed as a boosted version of NADAP. The main idea is as follows. Suppose a
task v arrives at some time t ∈ [T ], and let Ev,t be the set of available edges incident to v
at time t after observing the arrival from U . If Ev,t is empty, then do nothing; otherwise, sam-
ple an edge f ∈ Ev,t with probability x∗

f
/
∑

f ∈Ev,t . Note that (1) Ev,t is not a multi-set: some

neighbor u of v may have multiple copies at time t after the arrival from U , and in this case,
we add only one copy f = (u,v) into Ev,t ; (2) Ev is deterministic (specified by the input com-
patible bipartite graph G), while Ev,t is stochastic, whose outcome is determined jointly by the
arrival sequences from the two sides and the random actions chosen by the algorithm up to
time t .

ALGORITHM 4: An adaptive algorithm for OTA-TSA: SCALED.

1 Let v be a task arriving at time t ∈ [T ] and Ev,t be the set of available assignments with respect to v at

t after observing the arrival fromU .

2 If Ev,t = ∅, then skip v ; otherwise, sample an edge f = (u,v) ∈ Ev,t with probability x∗
f
/
∑
f ′ ∈Ev,t x

∗
f ′
.

Theorem 6.6. Algorithm 4, SCALED, achieves a competitive ratio at least 0.355 for the LHS vertex-

weighted OTA-TSA.

Proof. Consider a given worker u. For each given t ∈ [T ], let At = 1 indicate that worker u
arrives at time t and gets matched at some later time t ′ ≥ t , t ′ ≤ T . Thus, E[A] withA =

∑
t ∈[T ]At

denotes the expected number of times that u gets matched. In the following, we lower bound
E[A]/τ that yields a competitive ratio for SCALED.
Assumeu arrives at some time t ∈ [T ]with probability 1/T (denoted byXu,t = 1). For each given

t ′ ∈ {t , t + 1, . . . ,T }, let αt ′ be the probability that u gets matched at time t ′ assuming ū remains
unmatched at t ′. For each u ′ ∈ U and t ≤ t ′ ≤ T , let χu′,t ′ = 1 indicate that u ′ is available at time
t ′ (after the arrival of U and before any actions of the algorithm). Observe the following chain
of reasoning, where the first inequality follows from Jensen’s inequality applied to the function
z �→ 1/z: specifically, we use the fact that if the λi ’s are non-negative constants and the Zi ’s are
non-negative random variables, then

E

[
1

λ0 +
∑�

i=1 λiZi

�� Z0 = 1

]
≥

1

λ0 +
∑�

i=1 λiE[Zi | Z0 = 1]
.
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αt ′ = E

⎡⎢⎢⎢⎢⎣
∑

f =(u,v)∈Eu

rv
T

·
x∗
f

x∗
f
+

∑
f ′=(u′,v)∈Ev ,f ′�f xf ′ · χu′,t ′

�� Xu,t = 1

⎤⎥⎥⎥⎥⎦
≥

∑
f =(u,v)∈Eu

rv
T

·
x∗
f

x∗
f
+

∑
f ′=(u′,v)∈Ev ,f ′�f xf ′ · E[χu′,t ′

�� Xu,t = 1]

≥
∑

f =(u,v)∈Eu

rv
T

·
x∗
f

x∗
f
+

∑
f ′=(u′,v)∈Ev ,f ′�f xf ′ ·

(
1 − (1 − 1/T )t ′−1

) , since E[χu′,t ′ |Xu,t = 1]

≤ 1 −

(
1 −

1

T

)t ′−1
≥

∑
f =(u,v)∈Eu

rv
T

·
x∗
f

x∗
f
+ (rv − x∗

f
) · (1 − e−t

′/T+o(t ′/T ))
from Constraint Equation (7):∑

f ∈Ev

x∗f ≤ rv

=
∑

f =(u,v)∈Eu

1

T
·

x∗
f

x∗
f
/rv + (1 − x∗

f
/rv ) · (1 − e−t

′/T+o(t ′/T ))

≥
∑

f =(u,v)∈Eu

1

T
·

x∗
f

(1 − 1/e) + (1/e) ·
(
1 − e−t

′/T+o(t ′/T )
) from Constraint Equation (9):

x∗f ≤ rv · (1 − 1/e)

=
1

T
·

x∗u
(1 − 1/e) + (1/e) ·

(
1 − e−t

′/T+o(t ′/T )
) .

Thus, the probability that an arrival of u at time t gets matched should be

E[At ] =
1

T

(
1 −

T∏
t ′=t

(1 − αt ′ )

)
=
1

T

(
1 − exp

[
T∑
t ′=t

ln(1 − αt ′ )

])
=
1

T

(
1 − exp

[(
−

T∑
t ′=t

αt ′

)
· (1 + o(1))

])
,

where the “o(1)” is a vanishing term when T → ∞. Summarizing the analysis thus far, we have

E[A] =
T∑
t=1

E[At ] =

T∑
t=1

1

T

(
1 − exp

[(
−

T∑
t ′=t

αt ′

)
· (1 + o(1))

])
≥

T∑
t=1

1

T

(
1 − exp

[(
−

T∑
t ′=t

1

T
·

x∗u
(1 − 1/e) + (1/e) ·

(
1 − e−t

′/T+o(t ′/T )
) ) · (1 + o(1))])

=

∫ 1

0
dμ

∫ 1

μ

dν
���1 − exp

⎡⎢⎢⎢⎢⎣���−
x∗u

(1 − 1/e) + (1/e) ·
(
1 − e−ν

) ���
⎤⎥⎥⎥⎥⎦��� := д(x∗u ), by taking T → ∞.

ACM Trans. Econ. Comput., Vol. 12, No. 2, Article 6. Publication date: June 2024.



6:18 J. P. Dickerson et al.

We can numerically verify that д(x∗u )/x
∗
u is decreasing over x∗u ∈ [0, 1] with д(x∗u )/x

∗
u ≥ д(1) ∼

0.355. We thus establish a lower bound on the competitive ratio of SCALED for the LHS vertex-
weighted case. �

7 NEGATIVE RESULTS

We now show some negative results, i.e., upper bounds on the competitive ratio that any algorithm
can achieve. All our results hold even in the simpler case of unweighted OTA-TSA when all edges
take a uniform weight.

7.1 Conditional Negative Results

Theorem 7.1. No algorithm can achieve a competitive ratio better than κ(1 + 1/(e − 1)) ∼ 0.423
based on LP Equation (6) even for the unweighted OTA-TSA.

Proof. Consider an unweighted star graph, where we have one single worker u with pu = 1/T ,
which is connected to T tasks each having rv = (1/T )/(1 − 1/e). We can verify LP Equation (6)
has an optimal solution such that x∗

f
= 1/T for all the T edges and an optimal LP value equal

to 1. Now consider an optimal online algorithm, denoted by OPT. We see that every time upon
the arrival of any v , OPT will match it to u as long as there is one copy of u available then. Note
that in each round,u arrives with probability 1/T , while one of theT tasks arrives with probability∑
v rv/T = (1/T )/(1 − 1/e). By the definition of TS-BDP in 3.1, OPT has an expected number of

matches equal to κ(1/(1 − e)). Thus, we claim that on this example, OPT achieves a competitive
ratio no more than κ(1/(1 − e)) ∼ 0.423 by Lemma 2. �

7.2 Unconditional Negative Results

We now present an unconditional negative result that is independent of the choice of the bench-
mark LP. The result stems implicitly from the nature of the online process and can be viewed as
the online-offline stochastic gap. In particular, we have the following theorem:

Theorem 7.2. No algorithm can achieve a competitive ratio better than
κ′(0)
1−1/e =

1
e−1 ∼ 0.581 even

for the unweighted OTA-TSA.

Proof. Consider an unweighted bipartite graph G = (U ,V ,E), where |U | = |V | = T and
|E | = T , which consists of a perfect matching. Let the arrival rates for every u be 1 with
pu = 1/T and let every v have an arrival rate of ϵ (where ϵ is arbitrarily close to 0) with
pv = ϵ/T . We assume that there exists a dummy node v ′ such that pv ′ = 1 − ϵ with v ′ having no
neighbors.
Consider a given f = (u,v). Let OPT-A and OPT-B be the respective offline and online optimal

algorithms. Let Xf be the number of matches of f in OPT-A after the T rounds. Let Xu and Xv be
the respective number of arrivals ofu andv in an offline instance. We have thatXf = min(Xu ,Xv ).
Observe that Xu ∼ Pois(1) and Xv ∼ Pois(ϵ). Thus, we have

E[min(Xu ,Xv )] =

∞∑
k=1

Pr[Xu ≥ k] · Pr[Xv ≥ k] =
∞∑
k=1

Pr[Pois(1) ≥ k] · Pr[Pois(ϵ) ≥ k]

=

(
1 −

1

e

)
(1 − e−ϵ ) +

(
1 −

2

e

)
(1 − e−ϵ − ϵe−ϵ ) + · · · =

(
1 −

1

e

)
· ϵ + o(ϵ).

Hence, we have that E[Xf ] = (1 − 1
e
) · ϵ + o(ϵ).
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Let Yf be the number of matches of f in OPT-B. Similar to the proof in Theorem 5.1, we have
E[Yf ] = κ(ϵ). Thus, the ratio on the above instance is

E[Yf ]

E[Xf ]
=

κ(ϵ)(
1 − 1

e

)
· ϵ + o(ϵ)

.

Taking ϵ → 0, we have that the above value is

lim
ϵ→0

κ(ϵ)(
1 − 1

e

)
· ϵ + o(ϵ)

= lim
ϵ→0

κ(ϵ)

ϵ

1

1 − 1/e
=

κ ′(0)

1 − 1/e
.

From Lemma 1, κ ′(0) = 1/e; thus, we get our claim. �

8 EXPERIMENTS

In this section, we describe the experimental results in this article. We implement the adaptive and
non-adaptive algorithms on both a simulated setup and a public ridesharing dataset collected in
the city of Chicago.4

Preprocessing of a real-world dataset.The dataset hasmore than 169million trips since Novem-
ber 2018. Each trip record includes the following information: departure and arrival timestamps,
pick-up and drop-off locations, and some other information like the total fare. Following the idea
in Reference [31], we use the community area to divide the Chicago into 77 regions and categorize
all trips according to the predefined community areas. In the context of ridesharing, we assume that
driver-types and request-types represent the worker-types and task-types in the OTA-TSA model,
respectively. We group the drivers into a “type” if they share the same community area. Similarly,
we group the requests into a “type” if they share the same starting and ending community areas.
In this way, we end up with 77 driver-types and 77 × 77 = 5929 request-types.
To precisely construct the compatibility graph between the drivers and requests, we focus on

the rush hour from 18:00 to 19:00 between August 1 and August 5 in 2022, and we have 36,907
trips in total. By categorizing these trips according to the 77 predefined community areas, we
have 2,661 trip types, each associated a capacity of c . Inspired by the setting in Reference [38],
we continue to filter out those trip types with capacities no larger than 10 and sample 200 trip
types randomly, and thus, we get the set of driver-types U with |U | = 52 and the set of request-
types V with |V | = 200. Here, we construct the arriving distribution among requests by setting
qv = cv/

∑
v ∈V cv with

∑
v qv = 1. Similarly, the arriving probability for each driver-type u ∈ U

is computed as pu = cu/
∑
u ∈U cu . We add an edge between a driver and a request type if the

community area of driver type is the same as the starting community area of request type. In the
edge-weighted case, for each edge f = (u,v), we use the averaged total fare of request-type v as
the final weight of wf ; while in the LHS vertex-weighted case, we use the averaged total fare of
driver-type u instead. The detailed setting of all other parameters can be found in Table 4.

A synthetic dataset. We generate the bipartite graph by setting the parameters of |U |, |V | and
T as shown in Table 4. Note that we set the number of copy for each driver-type as 1, such that
the total number of drivers arriving is the same as |U |. We further assume that all driver-types
have the same arriving probability pu = 1/T for every u ∈ U . Hence, with probability 1 − |U |/T ,
no drivers will arrive in each round t ∈ [T ]. We generate the request-type arrival probabilities by
choosing a random vector {qv } such that each qv is uniformly distributed over [0, 1] conditioning
on

∑
v qv = 1. For each pair of u and v , we add an edge between them with probability 0.2. In the

edge-weighted case, for each edge f = (u,v), we choose a value from [0, 1] uniformly at random

4https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips/m6dm-c72p
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Table 4. Setting of Parameters in the Experiments, Where Default Values Are Marked as Bold

Dataset Real-world ridesharing dataset Synthetic dataset

OTA-TSA version edge-weighted LHS vertex-weighted edge-weighted LHS vertex-weighted

# of driver-types |U| 52
{20, 40, . . . ,
100, . . . , 140}

{10, 50, 100,
150, 200}

# of request-types |V| 200 100

# of arriving drivers
{50, 100, . . . ,
200, . . . , 350}

{10, 50, 100,
200, 300}

{20, 40, . . . ,
100, . . . , 140}

{10, 50, 100,
150, 200}

# of rounds (T )
{250, 500, . . . ,

1,000, . . . , 2,000}
{200, 500,1,000,
1,500, 2,000}

{100, 200, . . . ,
500, . . . , 900}

{100, 500,1,000,
1,500, 2,000}

and set it as wf . While in the LHS vertex-weighted case, for each driver-type u, we generate wu

from [0, 1] uniformly at random, and then setwf = wu for all edge incident to u.

Algorithms.We implement all the algorithms analyzed in the article, namely, NADAP, GREEDY,
ADAP, and SCALED. Additionally, we test one heuristic, denoted by UR, which selects one of the
available drivers uniformly at random upon every arrival of rider. Observe that both GREEDY and
UR are agnostic to the underlying LP.

Results and discussion. We run two types of experiments by varying either the total number
of rounds T (i.e., the total number of requests’ arrivals) or the total number of drivers’s arrivals,
while keep all other parameters fixed, as shown in Table 4. For each instance, we run all algorithms
100 independent trials and take the average as the final performance. The competitive ratios are
computed as the ratio of the averaged performance to the optimal value of the corresponding LPs.5

We also report the 95% confidence intervals to keep track of the robustness.
Figure 2 shows that the proposed NADAP algorithm always stays above its theoretical lower

bound of 0.295, as suggested in Theorem 5.1. This suggests the tightness of our theoretical analysis.
Additionally, we see that SCALED is the clear winner in almost all the instances for the edge-
weighted case except when T is extremely small, as shown in Figures 2(a) and 2(c). Observe that
when the total number of rounds (T ) is small, each arriving request has a limited number of drivers
to choose from, since the number of drivers who have arrived and are compatible is small. In this
case, the advantage of greedily matching an available driver outweighs the potential loss from
a mismatch. However, when T increases and each arriving request has more options to choose
from, the guidance from the LP becomes increasingly crucial, since it takes the future arrivals into
consideration (in expectation). This also explains why ADAP beats GREEDY as T increases in the
synthetic dataset. Figure 2(b) shows that as the total number of drivers increases, the competitive
ratios of GREEDY and UR (the lines for these two algorithms are overlapped) both increase. This
is because more available drivers make it less necessary to optimize the matching process. Note
that ADAP outperforms GREEDY in the synthetic dataset, but not the real one. This is partially
due to that we have less driver-types in the real dataset compared with the synthetic. Thus, we
have lower density for the driver arrivals and less need to reserve drivers as ADAP does.
Figure 3 shows that, for all tested instances, the competitive ratios achieved by ADAP and

SCALED always stay above their corresponding theoretical lower bounds, i.e., 0.343 (Theorem 6.3)
and 0.355 (Theorem 6.6), respectively. We notice that the three algorithms, GREEDY, SCALED and
UR, all have a similar performance and outperform the rest two. This is expected, since the LHS
vertex-weighted setting reduces variations among edge weights, which gives favor to LP-agnostic
algorithms.

5 LP Equation (1) for the edge weighted case and LP Equation (6) for the LHS vertex-weighted case.
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Fig. 2. Experiments results on the synthetic and real datasets for the edge-weighted case.

9 PROOFS OF KEY LEMMAS IN THE BIRTH-DEATH PROCESS

Consider a two-stage birth-death process {Xt ,Yt |t ∈ [T ]} ∪ {XT+1} with a birth rate of 1, a death
rate of q ≥ 0, and a finite-time horizonT (denoted by TS-BDP(q)). Recall that Δ(T ) is the (random)
number of death events (i.e., Yt gets decreased by 1) in the T rounds, and κ(q) = limT→∞ E[Δ(T )].
The random process of TS-BDP(q) can be viewed equivalently as follows. First, we generate a
random binary string S of length T such that each S(t) ∼ Ber(1/T ) with t ∈ [T ], i.e., each S(t)
is an independent Bernoulli random variable with mean 1/T . We call S the “birth” string. Second,
we apply a “death” process to the random birth string S = S ∈ {0, 1}T as follows. Set two counters
C = D = 0. At each time t = 1, 2, . . . ,T : (1) set C ← C + S(t); (2) If C ≥ 1, then update C ←

C − 1,D ← D + 1 with probability q/T ; else, do nothing. Let ΔS (T ) = E[D |S] be the expected value
of D after T rounds given S = S . Then, we have the following:

E[Δ(T )] =
∑

S ∈{0,1}T

Pr[S = S]ΔS (T ) = ES

[
ΔS(T )

]
.

For a given T and S = S , we refer to the above death process applied to S with death rate q as
DP(T , S,q).

9.1 Proof of Lemma 1

Lemma 1. (1) κ(0) = 0, (2) κ ′(0) = 1/e, where κ ′(0) is the first (right) derivative of κ(q) at q = 0.
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Fig. 3. Experiments results on the synthetic and real datasets for the LHS vertex-weighted case.

Proof. This Lemma is proved via the following two observations.

—When q = 0, for any given S = S ∈ {0, 1}T , we have ΔS (T ) = 0, since Δ(T ) = 0 and thus
κ(q) = 0.

— First, note that we haveκ ′(0) = limq→0
κ(q)

q
. Additionally, whenT → ∞, and S is the all-ones

string, we have D ∼ Pois(q). This implies that

lim
T→∞

Pr[Δ(T ) ≥ 2] ≤ Pr[Pois(q) ≥ 2] = 1 − e−q(1 + q) = o(q).

Moreover, we have that

lim
T→∞

∑
k≥2

Pr[Δ(T ) ≥ k] ≤
∑
k≥2

Pr[Pois(q) ≥ k] = q − (1 − e−q) = o(q).

Thus, we have

κ(q) = lim
T→∞

E[Δ(T )] = lim
T→∞

∑
k≥1

Pr[Δ(T ) ≥ k] = lim
T→∞

Pr[Δ(T ) ≥ 1] + o(q). (12)

Thus, it remains to consider the quantity Pr[Δ(T ) ≥ 1]. Notice that Δ(T ) ≥ 1 occurs iff (1)
S = S where |S | ≥ 1 (the number of ones in S is at least 1) and (2) a death event occurs at
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least once in the time-steps t = k,k + 1, . . . ,T , where k ∈ [T ] is the position of the first 1 in
S . Putting these together, we have

Pr[Δ(T ) ≥ 1] =
n∑

k=1

1

T

(
1 −

1

T

)k−1 (
1 −

(
1 −

q

T

)n−k+1) � F1(T ,q).

Plugging the above expression back into Equation (12), we have

lim
q→0

κ(q)

q
= lim

q→0
lim
T→∞

F1(T ,q)

q
=

1

e
.

�

9.2 Proof of Lemma 2

Lemma 2. (1) 0.295 ≤ κ(1) ≤ 0.302; (2) κ(1 + 1
e(e−1) ) ≥ 0.343; and (3) κ(1 + 1

e−1 ) ≤ 0.423.

Proof. We prove a stronger version of the Lemma, where we consider an arbitrary given
q ≥ 0. Recall that Δ(T ) is the expected number of “death” events (i.e., Yt decreases by 1) in the
TS-BDP(1,q). Hence,

κ(q) = lim
T→∞

E[Δ(T )] =
∑
k≥1

lim
T→∞

Pr[Δ(T ) ≥ k]. (13)

Consider the term limT→∞ Pr[Δ(T ) ≥ 1]. Notice that in the proof of Lemma 1, we have Pr[Δ(T ) ≥
1] = F1(T ,q) and, thus,

lim
T→∞

Pr[Δ(T ) ≥ 1] = lim
T→∞

F1(T ,q) = 1 −
1

e
−
1

e

e1−q − 1

1 − q
:= F1(q).

Now consider the term limT→∞ Pr[Δ(T ) ≥ 2]. Notice that Δ(T ) ≥ 2 occurs iff (1) S = S where S
has at least two 1s with �1, �2 being the positions of the first and second 1s, respectively. (2) Two
death events occur with either both occurring in the interval [�2,T ] � {�2, �2 + 1, . . . ,T } or one
death event occurring in {�1, . . . , �2 − 1} and the other one in [k2,T ]. Therefore, we have that

F2(T ,q) � Pr[Δ(T ) ≥ 2]

=

T∑
�1=1

∑
�1<�2≤T

1

T 2

(
1 −

1

T

)�2−2
·

{
�2−1∑
t=�1

(
1 −

q

T

)t−�1 q
T

T∑
t ′=�2

q

T

(
1 −

q

T

)t ′−�2
+

∑
t=�2+1

( q
T

)2 (
1 −

q

T

)t−�1−1
(t − �2)

}
.

Using computer-aided proof, we have that

F2(q) � lim
T→∞

F2(T ,q) =
e−q−1

(
eq(1 − 2q) + eq+1(q − 1) + q + e − 1

)
q − 1

.

Finally, we have that∑
k≥3

lim
T→∞

Pr[Δ(T ) ≥ k] ≤
∑
k≥3

Pr[Pois(1) ≥ k] · Pr[Pois(q) ≥ k].

Thus, from Equation (13), we have

F1(q) + F2(q) ≤ κ(q) ≤ F1(q) + F2(q) +
∑
k≥3

Pr[Pois(1) ≥ k] · Pr[Pois(q) ≥ k]. (14)
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The two statements in the Lemma follow from the above Inequality Equation (14) when q = 1
and q = 1 + 1

e(e−1) , respectively. �

9.3 Proof of Lemma 3

Lemma 3. κ(q) is non-decreasing and concave over q ∈ [0,∞].

We split it into the following two Claims.

Claim 1. κ(q) is non-decreasing when q ∈ [0,∞].

Claim 2. κ(q) is concave when q ∈ [0,∞].

Proof of Claim 1. Recall that κ(q) = limT→∞ E[Δ(T )] = limT→∞ ES[ΔS(T )]. It would suffice
to show that ΔS (T ) is non-decreasing for any given S and T .
Consider a given birth string S of lengthT . The random death process, DP(T , S,q), is as follows.

First, we generate a random bit-string of length T (called death string), say S∗, such that S∗(t) ∼
Ber(q/T ). Second, (i) initialize C = D = 0; (ii) at each time t = 1, 2, . . . ,T : set C ← C + S(t); if
S∗(t) = 0, then proceed to t + 1; otherwise, if C ≥ 1, update C ← C − 1 and D ← D + 1. In
other words, time-steps t with S∗(t) = 1 can be viewed as points at which we invoke a “checking”
operation (called “check points”). Let ΔS,S∗ (T ) be the value of D after T steps, given S , S∗, and T .
We have that ΔS (T ) = ES∗ [ΔS,S∗ (T )] for any given S and T .

Consider two different death ratesp,qwith 0 ≤ p < q. Let S∗p and S
∗
q be the random sequenceswe

need to generate in the two processes, respectively. From the analysis above, we have that for each
t ∈ [T ], S∗p (t) ∼ Ber(p/T ) and S∗q(T ) ∼ Ber(q/T ). Thus, the random variable S∗p (t) = S∗q(t) ·Ber(p/q).
For any given S andT , the generating process of S∗p and S

∗
q can be viewed as follows. First, generate

S∗q such that S∗q(t) ∼ Ber(q/T ) for each t . Then, generate S∗p by flipping every 1 in S∗q to 0 with
probability 1−p/q independently. This implies that the set of ones in S∗p will be a subset (or equal)
of S∗q , which further suggests that ΔS,S∗

p
(T ) ≤ ΔS,S∗

q
(T ) for each given S∗q . Notice that ΔS (T ) is the

expected value of ΔS,S∗ (T ) over all possible S∗ and thus, we claim that ΔS (T ) is non-decreasing for
any given S and T . �

Proof of Claim 2. Consider a given birth string S with a fixed length T . Let p = q/T ∈ [0, 1].
Note that ΔS (T ) is a function of p in [0, 1]. It will suffice to show that ΔS (T ) is concave when
p ∈ [0, 1] for any given T and any given S ∈ {0, 1}T .

Consider the following generalized death process on S . Initialize two counts C = a ≥ 0 and
D = 0, where a is a fixed nonnegative integer. Run the random process as before. Let fa,S (p)
denote the expected value of D after T rounds. We prove the following statements via induction
on the length of t = |S | with t = 1, 2, . . . ,T .

(P1) For all a ≥ 0 and all S ∈ {0, 1}t , f ′′a,S (p) ≤ 0.

(P2) For all a ≥ 1 and all S ∈ {0, 1}t , f ′a,S (p) ≥ f ′a−1,S (p).

Note that ΔS (T ) = f0,S . Thus, the above two properties will imply the Claim 2. It is verify that
Properties (P1) and (P2) hold when t = 1. Now, we show the inductive step from t −1 to t . Assume
S[1] = 0 and let S ′ = S[2, t] that denotes the subsequence of S after removing the first entry. We
have that

fa,S (p) = (1 − p)fa,S ′ (p) + p
(
1 + fa−1,S ′ (p)

)
if a ≥ 1

= f0,S ′ (p) if a = 0.
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Thus, we have

f ′a,S = (1 − p)f ′a,S ′ − fa,S ′ +
(
1 + fa−1,S ′

)
+ p f ′a−1,S ′ if a ≥ 1

= f ′0,S ′ if a = 0.

and

f ′′a,S = f ′′a,S ′ (1 − p) + f ′′a−1,S ′p + 2
(
f ′a−1,S ′ − f ′a,S ′

)
if a ≥ 1

= f ′′0,S ′ if a = 0.

Notice that |S ′ | = t −1 and therefore from induction, we have that f ′′a,S ≤ 0 for all a and S ∈ {0, 1}t .

Therefore, we claim that Property (P1) holds for the case of t . Now, we show that Property (P2)

holds for the case of t as well. We split the proof into two cases.

— Case 1: a ≥ 2. In this case, we have that

f ′a,S − f ′a−1,S = (1 − p)
(
f ′a,S ′ − f ′a−1,S ′

)
+ p

(
f ′a−1,S ′ − f ′a−2,S ′

)
+ fa−1,S ′ − fa−2,S ′ − (fa,S ′ − fa−1,S ′ )

From the inductive hypothesis for Property (P2) and Claim 3, we have that f ′a,S ≥ f ′a−1,S .
— Case 2: a = 1. In this case, we have

f ′1,S − f ′0,S = (1 − p)
(
f ′1,S ′ − f ′0,S ′

)
+ 1 − (f1,S ′ − f0,S ′ ).

From the inductive hypothesis for Property (P2) and Claim 3, we have that f ′1,S ≥ f ′0,S .

Following a similar analysis to above, we can show the case when S[0] = 1. Therefore, we establish
our claim. �

Claim 3. For any S and a ≥ 2, we have that (1) fa−1,S − fa−2,S − (fa,S − fa−1,S ) ≥ 0 and (2)

1 − (f1,S − f0,S ) ≥ 0.

Proof of Claim 3. Recall that fa,S with |S | = T denotes the expected number of death events
during the generalized death process with a initial count set as a ≥ 0 and a fixed birth string
S ∈ {0, 1}T . Consider a given death string S∗ ∈ {0, 1}T , where S∗(t) = 1 indicates a checking point.
The two-stage birth-death process with an initial count a ≥ 0, a given birth string S , and a given
death string S∗, denoted by TS-BDP(a, S, S∗), goes as follows: (i) Set C = a and D = 0 at t = 0.
(ii) For each time t = 1, 2, . . . ,T : (ii-a) Update C ← C + S(t); (ii-b) If S∗(t) = o, then continue to
t + 1 (if t < T ) or stop (if t = T ); otherwise, update C ← C − 1 and D ← 1, provided that C ≥ 1.
Let fa,S,S∗ be the value of D (the number of death event) at the end. It will suffice to show that the
two inequalities hold for fa,S,S∗ on any fixed S∗ ∈ {0, 1}T .

Consider the process TS-BDP(a, S, S∗). Let ta ∈ [T ] be the first checking point such that C +
S(ta) = 0 and S∗(ta) = 1 and thus, we have no death event at ta in TS-BDP(a, S, S∗). Set ta = T +1 if
such ta doesnot exist in TS-BDP(a, S, S

∗). When ta ≤ T : We have in TS-BDP(a+1, S, S∗),C+S(ta) =
1, and thus, we have have one extra death event at ta and there will be only one, since the two
processes TS-BDP(a, S, S∗) and TS-BDP(a+1, S, S∗)will be the same when t < ta and t > ta . When
ta = T + 1 (ta does not exist), the two process will have the same set of updates all the time. This
analysis suggests that fa+1,S,S∗ ≤ fa,S,S∗ + 1 for all a ≥ 0. Thus, we prove the second inequality
(which is a = 0). Note that fa−1,S,S∗ − fa−2,S,S∗ = 1 iff ta−2 ≤ T and fa,S,S∗ − fa−1,S,S∗ = 1 iff ta−1 ≤ T .
Since ta−1 > ta−2, we have that fa−1,S,S∗ − fa−2,S,S∗ ≥ fa,S,S∗ − fa−1,S,S∗ . Thus, we are done. �
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10 CONCLUSION AND FUTURE DIRECTIONS

In this article, we present a mathematical model for crowdsourcing platforms where the number
of workers is far fewer than the number of tasks (e.g., UberEats delivering food to customers). We
propose an LP-based non-adaptive algorithm for the edge-weighted case, and GREEDY and two
LP-based adaptive algorithms for the unweighted and vertex-weighted cases, respectively. These
algorithms, as demonstrated in this article, can be theoretically analyzed to prove lower bounds on
their competitive ratios. On the hardness side, we establish both conditional (based on benchmark
LP) and unconditional hardness results. Finally, we implement all the algorithms on two datasets
(a real-world and a synthetic) and evaluate their practical performance numerically.

Our work suggests several future directions. The primary open question is to formally analyze
the performance of GREEDY for both the edge-weighted and vertex-weighted cases. In particular,
it would be interesting to prove that GREEDY is optimal for the vertex-weighted case, as observed
in the experiments. Another open direction is to propose an improved benchmark LP that closely
approximates the best offline (expected) solution.
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