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Recent advances in single-cell technologies have enabled high-

resolution characterization of tissue and cancer compositions.

Although numerous tools for dimension reduction and cluster-

ing are available for single-cell data analyses, these methods of-

ten fail to simultaneously preserve local cluster structure and

global data geometry. To address these challenges, we developed

a novel analyses framework, Single-Cell Path Metrics Profiling

(scPMP), using power-weighted path metrics, which measure

distances between cells in a data-driven way. Unlike Euclidean

distance and other commonly used distance metrics, path met-

rics are density sensitive and respect the underlying data geom-

etry. By combining path metrics with multidimensional scaling,

a low dimensional embedding of the data is obtained which pre-

serves both the global data geometry and cluster structure. We

evaluate the method both for clustering quality and geometric

fidelity, and it outperforms current scRNAseq clustering algo-

rithms on a wide range of benchmarking data sets.
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Introduction
The advance in single-cell RNA-seq (scRNA-seq) technolo-
gies in recent years has enabled the simultaneous measure-
ment of gene expression at the single-cell level (1–3). This
opens up new possibilities to detect previously unknown cell
populations, study cellular development and dynamics, and
characterize cell composition within bulk tissues. Despite its
similarity with bulk RNAseq data, scRNAseq data tends to
have larger variation and larger amounts of missing values
due to the low abundance of initial mRNA per cell. To ad-
dress these challenges, numerous computational algorithms
have been proposed focusing on different aspects. Given a
collection of single cell transcriptomes from scRNAseq, one
of the most common applications is to identify and char-
acterize subpopulations, e.g., cell types or cell states. Nu-
merous clustering approaches have been developed such as
k-means based methods SC3 (4), SIMLR (5), and RaceID
(6); hierarchical clustering based methods CIDR (7), Back-
SPIN (8), and pcaReduce (9); graph based methods Rpheno-
graph (10), SNN-Cliq (11), Seurat (12), SSNN-Louvain (13),
and scanpy (14); and deep-learning based methods scGNN
(15), scVI (16), ScDeepCluster (17), DANCE (18), graph-sc
(19), GraphSCC (20), scDCC (21), DESC (22),scDHA (23),
scziDesk (24),scDSC (25), CELLPLM (26), scDiff (27), sc-
MoGNN (28), scMoFormer (29) and scTAG (30) as summer-
ized in (31).

To visualize and characterize relationships between cell
types, it is important to represent it in a low-dimensional
space. Many low-dimensional embedding methods have
been proposed including UMAP (32), t-SNE (33), PHATE
(34), and LargeVis (35). However, a key challenge for em-
bedding methods is to simultaneously reduce cluster variance
and preserve the global geometry, including the distances
between clusters and cluster shapes. For example, Figure
4 illustrates the typical situation on a cell mixture dataset
(36): the PCA embedding preserves the global geometry but
clusters have high variance; clusters are better separated in
the UMAP and t-SNE embeddings, but the global geometric
structure of the clusters is lost.

When choosing a clustering algorithm, there is always an un-
derlying tension between respecting data density and data ge-
ometry. Density based methods such as DBSCAN (37, 38)
cluster data by connecting together high density regions, re-
gardless of cluster geometry. More traditional approaches
such as k-means require that clusters are convex and geo-
metrically well separated. However, in many real data, clus-
ters tend to have both nonconvex/elongated geometry and
a lack of robust density separation as shown in Figure ??

which consists of three elongated Gaussian distributions and
a bridge connecting two of the distributions. The data set
is challenging because it exhibits elongated geometry, but
methods relying only on density will fail due to the bridge.
Such characteristics are commonly observed in scRNA-seq
data, especially for cells sampled from a developmental pro-
cess, as cell types often trace out elongated structures and
frequently lack robust density separation. This elongated ge-
ometry phenomena is due to the fact that all the cell types
originate from stem cells through a trajectory-like differen-
tiation process, and the bridge structures are created by the
cells in the transition states. For example, circulating mono-
cytes in the Tabula Muris (TM) lung data set (39) have an
elongated cluster structure as illustrated by the PCA plot in
Figure 2a, as do the ductal cells in the TM pancreatic data
set (see Figure 2c). The UMAP plots of these same data sets
illustrate the lack of robust density separation: for TM lung,
there is a bridge connecting the alveolar and lung cell types,
and also an overlap/bridge between the circulating and invad-
ing monocytes (see Figure 2b); for TM pancreatic, the pan-
creatic A and pancreatic PP cells are not well separated. The
combination of elongation and poor density separation make
clustering scRNA-seq data sets a challenging task.
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Fig. 1. Toy Data Sets: (A) Balls; (B) elongated with bridge; (C) swiss roll; and (D) GL manifold. (A) and (B) show the 2-dimensional data sets. (C) plots the first two coordinates
of the Swiss roll. (D) shows the 2-dimensional PCA plot of the SO(3) manifolds.

We propose an embedding method based on the power
weighted path metric which is well suited to this difficult
regime. These metrics balance density and geometry con-
siderations in the data via computation of a density-weighted
geodesic distance, making them useful for many machine
learning tasks such as clustering and semi-supervised learn-
ing (40–48). They have performed well in applications such
as imaging (46, 47, 49, 50), but their usefulness for the anal-
ysis of scRNAseq data remains unexplored.
Because these metrics are density-sensitive, they reduce clus-
ter variance; in addition, these metrics also capture global
distance information, and thus preserve global geometry; see
Figure 4b. Using the path metric embedding to cluster the
data thus yields a clustering method which balances density-
based and geometric information.

Materials and Methods
We first introduce our theoretical framework in Section Path
Metrics; The Algorithm Section then describes the details of
the proposed scPMP algorithm, and the Assesment Section
describes metrics for assessment.

Table 1. Notations

Notation Definition

ARI Adjusted Rand Index
ECP Entropy of Cluster Purity
ECA Entropy of Cluster Accuracy

UMAP Uniform Manifold Approximation and Projection
t-SNE t-distributed Stochastic Neighbor Embedding
PCA Principal Component Analysis
MDS Mutlidimensional Scaling

scPMP Single-Cell Path Metrics Profiling
PM Path Metrics
p Parameter of power weighted path metrics

PMp scPMP clustering with path metric parameter p

NN Nearest Neighbors
K1 Number of NN in local averaging
K2 Number of NN for path metric distance
k Number of clusters
d Number of features of data set
n Number of samples
f Density function of samples
fi Geometric pertrubations

Path Metrics. We first define a family of power weighted
path metrics parametrized by 1 Æ p < Œ.
Definition 1: Given a discrete data set X , the discrete p-
power weighted path metric between a,b œ X is defined as

¸p(a,b) := inf
(x0,...,xs)

A
s≠1ÿ

i=0

..xi+1 ≠xi

..p

2

B 1
p

,

where the infimum is taken over all sequences of points
x0, . . . ,xs in X with x0 = a and xs = b.
Note as p æ Œ, ¸p converges to the “bottleneck edge" dis-
tance

¸Œ(a,b) := inf
(x0,...,xs)

max
i

Îxi+1 ≠xiÎ2 ,

which is well studied in the computer science literature (51–
54). Two points are close in ¸Œ if they are connected by
a high-density path through the data, regardless of how far
apart the points are. On the other hand, when p = 1, ¸1 re-
duces to Euclidean distance. If path edges are furthermore
restricted to lie in a nearest neighbor graph, ¸1 approximates
the geodesic distance between the points, i.e. the length of the
shortest path lying on the underlying data structure, which is
a highly useful metric for manifold learning (55). The pa-
rameter p governs a trade-off between these two extremes,
i.e. it determines how to balance density and geometry con-
siderations when determining which data points should be
considered close.
The relationship between ¸p and density can be made precise.
Assume n independent samples from a continuous, nonzero
density function f supported on a d-dimensional, compact
Riemannian manifold M (a manifold is a smooth, locally
linear surface; see (56)). Then for p > 1, ¸p(a,b) converges
(after appropriate normalization) to

Lp(a,b) := inf
“

3⁄
f(“(t))≠ (p≠1)

d |“Õ(t)| dt

4 1
p

, (1)

as n æ Œ, where the infimum is taken over all smooth curves
“ : [0,1] æ M connecting a,b (57–59). Note |“Õ(t)| is sim-
ply the arclength element on M, so L1 reduces to the stan-
dard geodesic distance. When p ”= 1, one obtains a density-
weighted geodesic distance. The optimal Lp path is not nec-
essarily the most direct: a detour may be worth it if it allows
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(a) PCA TM Lung (b) UMAP TM Lung (c) PCA TM Pancreatic (d) UMAP TM Pancreatic

Fig. 2. Tabula Muris data sets have elongated clusters in the PCA embedding and clusters connected with a bridge of points in the UMAP embedding. For both PCA and
UMAP embeddings, certain clusters are not well-separated and connected by high density regions.

the path to stay in a high-density region; see Figure 3. Thus
the metric is density-sensitive, in that distances across high-
density regions are smaller than distances across low-density
regions; this is a desirable property for many machine learn-
ing tasks (60), including trajectory estimation for develop-
mental cells and cancer cells. However the metric is also ge-
ometry preserving, since it is computed by path integrals on
M. The parameter p controls the balance of these two prop-
erties: when p is small, Lp depends mainly on the geometry
of the data, while for large p, Lp is primarily determined by
data density.

(a) p = 1.1 (b) p = 2

Fig. 3. Optimal ¸p path between two points in a moon data set.

Although path metrics are defined in a complete graph, i.e.
Definition 1 considers every path in the data connecting a,b,
recent work (46, 61–63) has established that it is sufficient to
only consider paths in a K-nearest neighbors (KNN) graph,
as long as K Ø C logn for a constant C depending on p, d, f ,
and the geometry of the data. By restricting to a KNN graph,
all pairwise path distances can be computed in O(Kn

2) with
Dijkstra’s algorithm (64).

Algorithm. We consider a noisy data set of n data points
Âx1, . . . , Âxn œ Rd, which form the rows of noisy data matrix
ÂX œ Rn◊d. We first denoise the data with a local averag-

ing procedure, which has been shown to be advantageous for
manifold plus noise data models (65) and contributes to the
improvement of clustering performance on scRNAseq data
sets as explored in Supplementary Note 1. More specifically,
we replace Âxi with its local average:

xi := 1
K1

ÿ

jœNi,K1

Âxj , Ni,K1 = {j : Âxj is a K1NN of Âxi} ,

and let X œ Rn◊d denote the denoised data matrix.

Algorithm 1 scPMP

1: Input: noisy data ÂX œ Rn◊d, parameter p, number of
clusters k

2: Optional input: K1,K2, rmin, rmax,·

3: (Defaults: 12,n·500, 3, 39, 0.01)
4: Output: scPMP embedding Y œ Rn◊r, label vector ˆ̧œ

[k]n
5:
6: % Denoise data:
7: xi Ω 1

K1

q
jœNi,K1

Âxi

8:
9: % Compute path metrics:

10: Gp

K2
Ω K2NN graph on X with edge weights Îxi ≠xjÎp

11: D
p

ij
Ω length of shortest path connecting xi,xj in Gp

K2

12: (DPM)ij Ω (Dp

ij
)

1
p

13:
14: % Compute MDS embedding of path metrics:
15: B Ω ≠1

2JD
(2)
PMJ

16: � = diag(⁄1, . . . ,⁄n) Ω eigenvalues of B in descending
order

17: V = (v1, . . . ,vn) Ω corresponding eigenvectors of B

18: r Ω index maximizing ⁄i/⁄i+1 for i satisfying rmin Æ
i Æ rmax, ⁄i/⁄1 Ø ·

19: Y Ω (
Ô

⁄1v1, . . . ,
Ô

⁄rvr) œ Rn◊r

20:
21: % Cluster the data:
22: ˆ̧Ω constrained k-means(Y,k)

We then fix p and compute the p-power weighted path dis-
tance between all points in X to obtain pairwise distance ma-
trix DPM œ Rn◊n. More precisely, we let Gp

K2
= (X,E)

be the graph on X where xi,xj are connected with edge
weight Eij = Îxi ≠ xjÎp

2 if xi is a K2NN of xj or xj is a
K2NN of xi. We then compute D

p

ij
as the total length of the

shortest path connecting xi,xj in Gp

K2
, and define DPM by

(DPM)ij = (Dp

ij
)

1
p .

We next apply classical multidimensional scaling (66) to ob-
tain a low-dimensional embedding which preserves the path
metrics. Specifically, we define the path metric MDS ma-
trix B = ≠1

2JD
(2)
PMJ where J = In ≠ 1

n
11T is the center-

ing matrix, 1 œ Rn is a vector of all 1’s, and D
(2)
PM is ob-

tained from DPM by squaring all entries. We let the spec-

Manousidaki et al. | Clustering and visualization of single-cell RNA-seq data using path metrics bioR‰iv | 3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2021.12.14.472627doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472627


tral decomposition of B be denoted by B = V �V
T , where

� = diag(⁄1, . . . ,⁄n), V = (v1, . . . ,vn) œ Rn◊n contain the
eigenvalues and eigenvectors of B in descending order. The
embedding dimension r is then chosen as the index i which
maximizes the eigenratio ⁄i/⁄i+1 (67), with the following
restrictions: we constrain 3 Æ i Æ 39 and only consider ra-
tios ⁄i+1/⁄i between “large" eigenvalues, i.e. we require
⁄i/⁄1 Ø 0.01. The scPMP embedding is then defined by
Y = (

Ô
⁄1v1, . . . ,

Ô
⁄rvr) œ Rn◊r.

Finally, we apply k-means to the scPMP embedding to obtain
cluster labels. Specifically, we let ˆ̧

i œ [k] = {1, . . . ,k} be the
cluster label of xi returned by running k-means on Y with k

clusters and 20 replicates. Since k-means may return highly
imbalanced clusters, cluster sample sizes were constrained to
be at least

Ô
n/2. Specifically, if k-means returned a tiny

cluster, k was increased to k + 1, and the tiny cluster merged
with the closest non-trivial cluster. This entire procedure is
summarized in the pseudocode in Algorithm 1.
We note that the computational bottleneck for scPMP is the
computation and storage of all pairwise path distances, which
has complexity O(n2 logn) when K2 = O(logn). However
this quadratic cost can be avoided by utilizing a low rank
approximation of the squared distance matrix via the Nys-
trom method (68–72). For example, (73) propose a fast,
quasi-linear implementation of MDS which only requires the
computation of path distances from a set of q landmarks, so
that the complexity of computing path distances is reduced
to O(qn logn). Our implementation of scPMP includes the
option to use this landmark-based approximation and is thus
highly scalable.
We also note that an important consideration in the fully un-
supervised setting is how to select the number of clusters k.
This is a rather ill-posed question with multiple reasonable
answers due to hierarchical cluster structure. We do not focus
on this in the current article, and scPMP assumes the num-
ber of clusters is given. However we emphasize that when
k is unknown, the scPMP embedding offers a useful tool for
selecting a reasonable number of clusters. For example, Line
21 of Algorithm 1 can be repeated for a range of candidate
k values to obtain candidate clusterings ‚̧

k; ‚k can then be
chosen so that ‚̧

k optimizes a cluster validity criterion such
as the silhouette criterion (74, 75). Alternatively, one could
build a graph with distances computed in the scPMP embed-
ding, and estimate k as the number of small eigenvalues of a
corresponding graph Laplacian (47, 76).

Assessment. We evaluate the performance of scPMP with
respect to (1) cluster quality and (2) geometric fidelity on
a collection of labeled benchmarking data sets with ground
truth labels ¸. There are many helpful metrics for the qual-
ity of the estimated cluster labels ˆ̧, and we compute the ad-
justed rand index (ARI), entropy of cluster accuracy (ECA),
and entropy of cluster purity (ECP). Definitions of ECA and
ECP can be found in Supplementary Note 2. We compare
our clustering results with the output of k-means, DBSCAN
(37, 38), k-means on t-SNE embedding (33), DBSCAN on
UMAP embedding (32) and for scRNAseq data sets addition-

ally with the following scRNAseq clustering methods: SC3
(4), scanpy (14), RaceID3 (77), SIMRL (5) and Seurat (12).
Assessing the geometric fidelity of the low-dimensional em-
bedding Y is more delicate; we want to assess whether
the embedding procedure preserves the global relative dis-
tances between clusters. We first compute the mean of
each cluster as in (33) using the ground truth labels, i.e.
µj(X) = 1

|Ij |
q

iœIj
xi where Ij = {i : ¸i = j}; we then de-

fine Dµ,X(i, j) = Îµ¸i(X) ≠ µ¸j (X)Î2. Similarly, we com-
pute the means µj(Y ) in the scPMP embedding, and define
Dµ,Y (i, j) = Îµ¸i(Y ) ≠ µ¸j (Y )Î2; we then compare Dµ,X

and Dµ,Y . Specifically, we define the geometric perturbation
fi by:

fi(X,Y,¸) = min
c

..Dµ,X ≠ cDµ,Y

..2
F..Dµ,X

..2
F

,

where Î ·ÎF is the Frobenius norm. The c achieving the min-
imum is easy to compute, and one obtains

fi(X,Y,¸) =
..Dµ,X ≠ c

ú
Dµ,Y

..2
F..Dµ,X

..2
F

, cú = ÈDµ,X ,Dµ,Y Í
..Dµ,Y

..2
F

.

We compare fi(X,Y,¸) with the geometric perturbation of
other embedding schemes for X , i.e. with fi(X,U,¸) for U

equal to the UMAP (32) and t-SNE (33) embeddings. Note
that fi is not always a useful measure: for example if X

consisted of concentric spheres sharing the same center, the
metric would be meaningless, as the distance between clus-
ter means would be zero. Nevertheless, in most cases fi is a
helpful metric for quantifying the preservation of global clus-
ter geometry.

Results
We apply scPMP to both a collection of toy manifold data
sets and a collection of scRNAseq data sets. Results are re-
ported in Sections and respectively. The default parameter
values reported in scPMP were used on all data sets.

Manifold Data. We apply scPMP for p = 1.5,2,4 to the fol-
lowing four manifold data sets:

• Balls (n = 1200, d = 2, k = 3): Clusters were created
by uniform sampling of 3 overlapping balls in R2; see
Figure 1A.

• Elongated with bridge (denoted EWB, n = 620, d =
2, k = 3): Clusters were created by sampling from 3
elongated Gaussian distributions. A bridge was added
connecting two of the Gaussians; see Figure 1B.

• Swiss roll (n = 1275, d = 3, k = 3): Clusters were
created by uniform sampling from three distinct re-
gions of a Swiss roll; 3-dimensional isotropic Gaussian
noise (‡ = 0.75) was then added to the data. Figure 1C
shows the first two data coordinates.
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• SO(3) manifolds (n = 3000, d = 1000, k = 3): For
1 Æ i Æ 3, the 3-dimensional manifold Mi ™ R9 is de-
fined by fixing three eigenvalues Di = diag(⁄1,⁄2,⁄3)
and then defining Mi = fiV œSO(3)V DiV

T , where
SO(3) is the special orthogonal group. After fixing Di,
we randomly sample from Mi by taking random or-
thonormal bases V of R3. A noisy, high-dimensional
embedding was then obtained by adding uniform ran-
dom noise with standard deviation ‡ = 0.0075 in 1000
dimensions. Figure 1D shows the first two principal
components of the data, which exhibits no cluster sep-
aration.

The data sets were chosen to illustrate various cluster sepa-
rability characteristics. For the balls, the clusters have good
geometric separation but are not separable by density. For
the Swiss roll and SO(3), the clusters have a complex and
inter-twined geometry but are well separated in terms of den-
sity. For EWB, clusters are both elongated and lack robust
density separability due to the bridge, and one expects that
methods which rely too heavily on either geometry or den-
sity will fail. The ARIs achieved by scPMP , k-means based
methods, DBSCAN based methods, and Seurat are reported
in Table 2. See Tables 3 and 4 in Supplementary Note 2
for ECP and ECA. As expected, k-means out performs all
methods on the balls but performs very poorly on all other
data sets. DBSCAN and Seurat achieve perfect accuracy on
the Swiss roll and SO(3) but perform rather poorly on the
balls and EWB, although Seurat does noticeably better than
DBSCAN. scPMP with p = 2 (PM2), is the only method
which achieves a high ARI (> 90%) and a low ECP and ECA
(< 0.15) on all data sets.

Table 2. The results of clustering accuracy (ARI) for manifold data

Method Balls EWB Swiss SO(3)
k-means 0.955 -0.001 0.373 0.010

DBSCAN 0.055 0.550 1 1

UMAP+DBSCAN 0.600 0.645 1 1

t-SNE+k-means 0.895 0.359 1 0.532
Seurat 0.777 0.837 1 1

PM1.5 0.921 0.489 1 0.501
PM2 0.907 0.990 1 1

PM4 0.781 0.584 1 1

Table 3 reports the geometric perturbation of the embedding
produced by scPMP and compares with UMAP and t-SNE.
Since scPMP generally selects an embedding dimension
r > 2, to ensure a fair comparison the geometric perturbation
was computed in both the 2d and r-dimensional (rd) embed-
dings for all methods, where for UMAP r is the dimension
selected by Algorithm 1 and for t-SNE r = 3 (note r Æ 3 was
required in Rtsne implementation). Overall PM1.5 achieved
the lowest geometric perturbation, although all methods had
small perturbation on the Balls data set and t-SNE had the
lowest perturbation on EWB. We point out however that for
both the Swiss roll and SO(3), the metric may not be mean-
ingful due to the complicated cluster geometry.

Table 3. Geometric perturbation for manifold data. The rd UMAP embeddings were
computed with an embedding dimension of r = 5 for the balls, EWB, Swiss roll and
r = 7 for SO(3), which corresponded to the estimated dimension for both PM1.5
and PM2. For t-SNE, r = 3 for all data sets.

Method Balls EWB Swiss SO(3)
2d UMAP 0.001 0.006 0.305 0.071
rd UMAP 0 0.033 0.339 0.054

2d t-SNE 0 0.004 0.187 0.171
rd t-SNE 0 0.042 0.074 0.157
2d PM1.5 0 0.033 0.002 0.103
rd PM1.5 0 0.023 0.011 0.154
2d PM2 0 0.146 0.025 0.156
rd PM2 0 0.068 0.025 0.179
2d PM4 0.003 0.191 0.056 0.194
rd PM4 0.004 0.157 0.056 0.194

scRNAseq Data. We apply scPMP for p = 1.5,2,4 to the
following synthetic scRNAseq data sets:

• RNA mixture: Benchmarking scRNAseq data set
from (36). RNAmix1 was processed with CEL-seq2
and has n = 296 cells and d = 14687 genes. RNAmix2
was processed with Sort-seq and has n = 340 cells and
d = 14224 genes. For the creation of the two data sets,
RNA was extracted in bulk for each of the following
cell lines: H2228, H1975, HCC827. Then the RNA
was mixed in k = 7 different proportions (each defin-
ing a ground truth cluster label), diluted to single cell
equivalent amounts ranging from 3.75pg to 30pg, and
processed using CEL-seq2 and SORT-seq. See here
for Supplemental info including ground truth geomet-
ric structure.

• Simulated beta: Simulated data set of n = 473 beta
cells and d = 2279 genes, created based on SAVER
(78) and scImpute (79). First, we subset the Baron’s
Pancreatic data set (80) to include only Beta cells. As
in (79), we randomly choose 10% of the genes to op-
erate as marker genes. Then, we split the cells to k = 3
clusters and each cluster is assigned a different group
of marker genes. For each cluster we scale up the mean
expression of its marker genes. Lastly, to simulate the
drop out effect, as in (78), we multiply each cell by
an efficiency loss constant drawn by Gamma(10, 100).
Using S to refer to the data matrix resulting from the
above steps, the final simulated data X is obtained by
letting Xij be drawn from Poisson(Sij).

In addition to the synthetic data, we evaluate the performance
of scPMP on the following real scRNAseq data sets:

• Cell mixture data set: Another benchmarking data set
from (36) consisting of a mixture of k = 5 cell lines
created with 10x sequencing platform. The cell line
identity of a cell is also its true cluster label. The data
set consists of n = 3822 cells and d = 11786 genes;
we removed multiplets, based on the provided meta-
data file and kept 3000 most variable genes after SCT
tranformation (81, 82).
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• Baron’s pancreatic: Human pancreatic data set gener-
ated by (80). After quality control and SAVER imputa-
tion, there are d = 14738 genes and n = 1844 cells. For
analysis purposes cells that belong in a group with less
than 70 members were filtered out to reduce to k = 8
cell types. Also, we kept only the 3000 most variable
genes after SCT tranformation (81, 82). The cell types
associated with each cell were obtained by an itera-
tive hierarchical clustering method that restricts genes
enriched in one cell type from being used to separate
other cell types. The enriched markers in every clus-
ter defined the cell type of the cells that belong in that
cluster.

• Tabula Muris data sets: Mouse scRNAseq data for
different tissues and organs (39). We select the pancre-
atic data (TM Panc) with n = 1444 cells and d = 23433
genes and the lung data (TM Lung) with n = 453 cells
and d = 23433 genes. Both data sets have k = 7 differ-
ent cell types which were characterized by an FACS-
based full length transcript analysis.

• PBMC4k data set: This data set includes the gene
expression of Peripheral Blood Mononuclear Cells.
The raw data are available from 10X Genomics
at https://support.10xgenomics.com/single-cell-gene-
expression/datasets/2.1.0/pbmc4k. After quality con-
trol, saver imputation, and removing the two smallest
cell types, there are d = 16655 genes and n = 4316
cells in the dataset. Also, we merge CD8+ T-cells and
CD4+ T-cells in one type named T-cells resulting in
k = 4 cell types. The ground truth cell types are pro-
vided by SingleR annotation after marker gene verifi-
cation in github.com/SingleR.

Details about the pre-processing of data sets can be found
in Supplementary Note 1. For the following UMAP and
t-SNE results, Linnorm normalization was applied without
denoising, as this normalization gave the best results. Note
Seurat_def refers to the results of the entire Seurat pipeline,
whereas Seurat refers to the result of using Seurat clustering
on data with the same processing and normalization as for
PM. The embedding dimension r selected by scPMP ranged
from 3 to 7 for PM1.5 and PM2, and from 3 to 11 for PM4.

Table 4. The results of clustering accuracy (ARI) for scRNAseq data

Method RNA1 RNA2 TMLung Beta TMPanc BaronPanc PBMC4K CellMix
SC3 0.637 0.827 0.798 0.969 0.894 0.767 0.889 1

scanpy 0.620 0.825 0.796 0.910 0.615 0.966 0.977 1

RaceID3 0.730 0.520 0.900 0.714 0.751 0.651 0.763 1

SIMLR 0.878 0.792 0.727 0.975 0.599 0.698 0.705 1

Seurat 0.792 0.667 0.843 0.891 0.547 0.941 0.889 0.993
Seurat_def 0.714 0.785 0.764 0.919 0.798 0.971 0.975 1

k-means 0.921 0.786 0.848 0.969 0.840 0.662 0.747 1

DBSCAN 0.952 0.826 0.587 0.568 0.734 0.724 0.889 1

UMAP+DBSCAN 0.926 0.892 0.619 0.565 0.893 0.848 0.974 1

t-SNE+k-means 0.943 0.915 0.753 0.969 0.620 0.641 0.596 0.878
PM1.5 0.939 0.924 0.888 0.969 0.626 0.804 0.754 1

PM2 0.939 0.973 0.808 0.969 0.918 0.969 0.757 1

PM4 0.939 0.939 0.731 0.921 0.775 0.853 0.978 1

Table 4 reports the clustering accuracy regarding ARI
achieved by scPMP and other methods; see Tables 5 and
7 in Supplementary Note 2 for ECP and ECA. The path met-
ric methods perform equally well or better than the rest of

Table 5. Geometric perturbation for RNA data. For rd UMAP r =
7,6,5,3,5,9,3,4 for the various data sets, which was the maximum of the PM1.5
dimension and the PM2 dimension. For rd t-SNE r = 3.

Method RNA1 RNA2 TMLung Beta TMPanc BaronPanc PBMC4k CellMix
2d UMAP 0.122 0.142 0.057 0.025 0.064 0.115 0.015 0.090
rd UMAP 0.160 0.131 0.092 0.026 0.036 0.129 0.027 0.050
2d t-SNE 0.059 0.054 0.042 0.024 0.048 0.206 0.038 0.061
rd t-SNE 0.035 0.054 0.027 0.016 0.040 0.229 0.050 0.033
2d PM1.5 0.010 0.013 0.046 0.002 0.076 0.067 0.028 0.098
rd PM1.5 0.017 0.009 0.006 0 0.019 0.006 0.007 0.007

2d PM2 0.040 0.040 0.085 0.003 0.150 0.103 0.050 0.101
rd PM2 0.048 0.036 0.029 0.003 0.051 0.010 0.013 0.008
2d PM4 0.108 0.135 0.246 0.016 0.265 0.193 0.069 0.107
rd PM4 0.100 0.082 0.083 0.015 0.099 0.027 0.029 0.008

the methods. Once again PM2 exhibits the best overall per-
formance, with a high ARI (Ø 90%) on all data sets except
TM lung and PBMC4K; the next best method is PM4, which
achieves a high ARI on all but 3 data sets. Seurat_def and
PM1.5 had a low ARI for 4 of 8 data sets; scanpy, k-means,
UMAP+DBSCAN and t-SNE+k-means had a low ARI on
5 of the 8 data sets; SC3, RaceId3, SIMLR and Seurat had
a low ARI (< 90%) on 6 of the 8 data sets. These results
indicate that incorporating both density-based and geomet-
ric information when determining similarity generally leads
to more robust results for scRNA-seq data. Moreover, PM2
achieves the best median ECP and median ECA values across
all RNA data sets. Although the optimal balance depends on
the data set (for example PBMC4K does best with p = 4,
while TMLung does best with p = 1.5), path metrics with a
moderate p exhibit the best performance across a wide range
of data sets.
For BaronPanc, we observe that Seurat_def achieves a
slightly higher ARI than all the reported path metric methods
(p = 1.5,2,4). However, a significant advantage of scPMP
over Seurat is the high clustering performance on a wide
range of sample sizes. To demonstrate our claim we com-
pare the ARI results in different down-sampled versions of
BaronsPanc. We selected a stratified sample of 50%, 25%
and 10% of the cells of the BaronPanc data set. The results
can be found in Table 8 of Supplementary Note 2. We ob-
served no ARI deterioration for scPMP for the 50% and 25%
down-sampled data set and only a moderate decrease for the
10% down-sampled dataset (ARI of 0.67 at 10% downsam-
pling for p = 1.5). On the contrary, there is significant ARI
deterioration both for Seurat and Seurat_def; in particular, at
10% downsampling the ARI deteriorates to 0.405 for Seurat
and to 0.185 for Seurat_def. Notice that in the 10% down-
sampled data set, we use regular k-means for PM2 to allow
for the prediction of smaller sized clusters.
We also investigated whether we could learn the ground truth
number of clusters by optimizing the silhouette criterion in
the scPMP embedding, and compared this with the number of
clusters obtained from Seurat using the default resolution; see
Table 6 in Supplementary Note 2. For 4 out of the 8 RNA data
sets evaluated in this article (RNAMix1, RNAMix2, Baron-
Panc, and CellMix), this procedure on PM2 yielded an es-
timate for k which matched the number of distinct anno-
tated labels. On the other hand, Seurat correctly estimates
the number of clusters for only 2 out of the 8 RNA data sets
(RNAMix1 and TMLung).
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(a) PCA (b) PM2 (c) UMAP (d) t-SNE
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Fig. 4. Top row: 2d PCA, PM2, UMAP, and t-SNE embeddings of Cell Mix data set, colored by true cell type. Bottom row: average linkage dendrograms of cluster means for
the rd embeddings, where r = 40 for PCA, r = 4 for PM2 and UMAP, and r = 3 for t-SNE.
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Fig. 5. Processing and clustering time for PBMC4K and Baron’s Pancreatic data
sets.

Table 5 reports the geometric perturbation. We see that in-
creasing p increases the geometric perturbation, with PM1.5
yielding the smallest geometric perturbation on all data sets.
Although PM1.5 is the clear winner in terms of this metric,
PM2 still performed favorably with respect to UMAP and t-
SNE. Indeed, rd PM2 had lower geometric perturbation than
UMAP on all but one data set (TMPanc), and lower geomet-
ric perturbation than t-SNE on the majority of data sets. Fig-
ure 4 shows the PCA, PM2, UMAP, and t-SNE embeddings
of the Cell Mix data set, as well as a tree structure on the

clusters. The tree structure was obtained by first computing
the cluster means in the embedding and then applying hier-
archical clustering with average linkage to the means. The
PCA tree (Figure 4(e)) was computed using 40 PCs so that it
accurately reflects the global geometry of the clusters. Inter-
estingly path metrics recover the same hierarchical structure
on the clusters as PCA: the cell types HCC827 and H1975 are
the most similar, and H838 is the most distinct. This is what
one would expect given more extensive biological informa-
tion about the cell types, since H838 is the only cell line here
derived from metastatic site Lymph node on a male patient,
while both HCC827 and H1975 originated from the primary
site of female lung cancer patients. However, neither UMAP
or t-SNE give the correct hierarchical representation of the
clusters, because both methods struggle to preserve global
geometric structure as observed in numerous studies (83, 84).
We note that in Figure 4(b) the clusters appear elongated
in the PM2 embedding; such elongated cluster shapes occur
when clusters living in nearly orthogonal subspaces (due for
example to different genetic signatures) are projected into a
lower-dimensional space; see Supplementary Note 3 for an
example illustrating how this phenomenon occurs. While this
is also the case for PCA, the PM embedding exaggerates the
elongation by shrinking noisy directions. Although 2 dimen-
sions is generally not sufficient to visualize the true cluster
shapes, the PM embedding is able to simultaneously denoise
the clusters while preserving their global layout.

Figure 5 records the runtime for processing and clustering (in
minutes) of the Baron’s Pancreatic (n = 1844) and PBMC4K
(n = 4316) data sets. For PBMC4k (our largest data set), we
use the landmark-based approximation of path distances for
scalability. All the PM methods run in less than a minute on
BaronPanc and less than 6 minutes on PBMC4k; RaceID3,
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(a) ARI versus p for real data sets
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Fig. 6. Clustering performance for different values of p

scanpy, and Seurat were also fast. SC3 and SIMLR had long
runtimes, requiring 37.9 and 91.1 minutes respectively for
PBMC4k.

Determining the parameter p. In this section, we explore
the clustering performance of scPMP for different values of
the parameter p. We record the ARI achieved by scPMP for
each real data set for p ranging from 1 to 10 in increments
of 0.5. Figure 6(a) plots the corresponding distributions of
ARI; p = 2 is the clear winner across various p, achieving the
highest median ARI with the smallest spread of values.
Furthermore, for each RNA data set we determined the p

value maximizing the data set’s ARI and investigated whether
there was a correlation between the best p and the degree
of data elongation. We define an elongation score for each

data set by computing the skewness coefficient of kth near-
est neighbor distances for k = 10log(n). More specifically,
letting d

k

i
denote the Euclidean distance of xi from its kth

nearest neighbor, we define the data elongation score as the
following measure of skewness:

G1 = n

(n≠1)(n≠2)

nÿ

i=1

3
d

k

i
≠ d̄

s

43
,

where d̄ = 1
n

q
n

i=1 d
k

i
and s is the standard deviation of the

{d
k

i
}n

i=1.
We observe a moderately strong linear relationship (r =
0.866) between the elongation score of a data set and the
value of p achieving the best ARI as in Figure 6(b). Over-
all these results support using p = 2 as a default, but increas-
ing p if the data set exhibits strong elongation; the elongation
score is a completely unsupervised statistic, and can thus be
computed without access to data labels.

Conclusions
This article introduces a new theoretical framework to ana-
lyze single-cell RNA-seq databased on the computation of
optimal paths. Specifically, path metrics encode both geo-
metric and density-based information, and the resulting low-
dimensional embeddings simultaneously preserve density-
based cluster structure as well as global cluster orientation.
Thus, our method with theoretical guarantees addresses the
inherent challenge of balancing the preservation of local clus-
ter structures and the global data geometry, a common limita-
tion in existing scRNAseq clustering and visualization meth-
ods such as DBSCAN, SC3, scanpy, and Seurat. The flexibil-
ity in choosing the parameter p allows researchers to adjust
the balance between density sensitivity and geometry preser-
vation, tailoring the analysis to their dataset’s specific char-
acteristics, such as noise level and elongation. Compared
to deep learning-based methods, such as CellPLM, scMo-
Former, and scMoGNN, scPMP based on path metrics offers
greater interpretability making it easier to derive biological
insights. More importantly, scPMP is more robust to smaller
datasets than deep learning-based methods since it has fewer
parameters to be trained.
The method exhibits competitive performance when applied
to numerous benchmarks, and the implementation is scalable
to large data sets. Although we investigated other choices
of p, we found that p = 2 performed well on a wide range
of RNA data sets, indicating that p = 2 is an appropriate
balance between density and geometry for this application.
Future research will explore ways to make the method more
robust to noise, tools for better visualization of the PM
embeddings, and adapting the method to the semi-supervised
context.
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Software availability
The code to reproduce all reported results and generate
figures is available at the scPMP github repository. The
repository also contains a tutorial for the scPMP algorithm.
Small differences observed during the reproduction of results
is due to randomness introduced at the imputation step of
data preprocessing.

Data availability
The Cellmix and RNAmix data are downloaded from
GEO under accession code GSE118767, and the prepro-
cessed data are available at their github repository. The
PBMC4K data is available at 10x Genomics’s website
through https://support.10xgenomics.com/single-cell-gene-
expression/datasets/2.1.0/pbmc4k. The Baron’s pancreatic
data is available in GEO with the access code GSM2230757.
The simulated data were created based on the Baron’s data.
Simulation code is provided in the scPMP github reposi-
tory. The mouse tissue scRNAseq data sets are accessible
on Figshare.
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