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Abstract

This paper examines the income inequality among rideshare drivers resulting from
discriminatory cancellations by riders, considering the impact of demographic factors such
as gender, age, and race. We investigate the tradeoff between income inequality, referred to
as the fairness objective, and system efficiency, known as the profit objective. To address
this issue, we propose an online bipartite-matching model that captures the sequential
arrival of riders according to a known distribution. The model incorporates the notion
of acceptance rates between driver-rider types, which are defined based on demographic
characteristics. Specifically, we analyze the probabilities of riders accepting or canceling
their assigned drivers, reflecting the level of acceptance between different rider and driver
types. We construct a bi-objective linear program as a valid benchmark and propose two
LP-based parameterized online algorithms. Rigorous analysis of online competitive ratios
is conducted to illustrate the flexibility and efficiency of our algorithms in achieving a
balance between fairness and profit. Furthermore, we present experimental results based
on real-world and synthetic datasets, validating the theoretical predictions put forth in our
study.

1. Introduction

Rideshare platforms such as Uber (2023), Didi (2023) and Lyft (2023) have garnered signif-
icant attention from various research communities, including computer science, operations
research, and business. A key area of research in this field revolves around designing match-
ing policies that effectively pair drivers with riders. Several studies have been conducted on
this topic, see, e.g., (Danassis et al., 2022; Curry et al., 2019; Ashlagi et al., 2019; Lowalekar
et al., 2018; Bei & Zhang, 2018; Dickerson et al., 2018; Zhao et al., 2019; Tong et al., 2021).
Most of the existing work in this domain focuses on either enhancing system efficiency or
improving user satisfaction, or both.

In this paper, our focus is on examining the issue of fairness among rideshare drivers.
Previous reports have highlighted the existence of an earning gap among drivers based on
various demographic factors, including age, gender, and race, as discussed in studies such
as (Cook et al., 2018; Rosenblat et al., 2016). For instance, Hinchliffe (2017) reported that
“Black Uber and Lyft drivers earned 13.96 an hour compared to the 16.08 average for all
other drivers,” and “Women drivers reported earning an average of 14.26 per hour, compared
to 16.61 for men.” The wage gap observed among drivers from different demographic groups
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Table 1: Summary of major notations.

Notation Description
G Bipartite graph
U Set of types of offline drivers
V Set of types of online requests
f = (u, v) Edge indicates that u can serve v
Bu Matching capacity of driver type u
rv Arrival rate of request type v
T Total number of online rounds
pf Edge existence probability of edge f
∆v Patience of request type v
M Set of successful assignments
Mu Set of edges in M incident to u
wf Profit of a successful assignment f
Eu(Ev) Set of edges incident to u(v)

is partly attributed to discriminatory cancellations by riders. These discriminatory practices
are more noticeable during off-peak hours when the number of riders is comparable to or
even lower than the number of available drivers. It is important to note that in rideshare
platforms like Uber and Lyft, once a driver accepts a rider, the rider gains access to sensitive
information about the driver, such as their name and photo. Furthermore, riders have the
option to cancel the driver within the first two minutes without any charges (H, 2023). This
creates a situation where discriminatory cancellations by riders are technically feasible and
economically risk-free.

Our objective is to address the issue of income disparity among rideshare drivers result-
ing from discriminatory cancellations by riders, while considering the tradeoff with system
efficiency. It is important to note that these two goals, promoting income equality among
drivers and maximizing system efficiency, can sometimes be conflicting. Let’s consider the
scenario of off-peak hours when the number of riders is relatively low. In order to maximize
system efficiency, rideshare platforms like Uber aim to satisfy riders by assigning them to
their preferred or “favorite” drivers. This strategy reduces the likelihood of cancellations
by riders and minimizes the risk of losing riders to competing platforms like Lyft. However,
implementing such a strategy would lead to certain drivers, who are favored by riders, re-
ceiving a significantly higher number of ride requests compared to others. This would result
in a substantial disparity in income among drivers, negatively affecting group-level income
equality. Therefore, finding the right balance between promoting income equality among
drivers and optimizing system efficiency becomes crucial. It requires designing fair alloca-
tion policies that consider both the drivers’ income distribution and the overall effectiveness
of the rideshare system. This way, we can mitigate the negative impact of discriminative
cancellations while still maintaining a satisfactory level of system efficiency.

2. Related Work

The literature examining on-demand service platforms is vast and encompasses various as-
pects of optimization and coordination. For instance, Ma et al. (2017) proposed a linear
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programming model to optimize autonomous vehicle trip chains and determine the required
fleet size using AVSR networks. Taylor (2018) investigated the impact of delay sensitivity
and agent independence on optimal per-service prices and wages. Bai et al. (2019) stud-
ied the coordination of endogenous demand and supply, characterizing optimal price and
wage rates based on a queueing model. Bernstein et al. (2021) focused on the competition
between platforms and formulated a pricing game to analyze the equilibrium prices that
emerge from their interaction. Feng et al. (2021) compared the efficiency of on-demand
hailing systems to traditional street-hailing systems in specific circumstances. Addressing
uncertain demand and idle vehicle supply, Beirigo et al. (2022) proposed a learning-based
optimization approach to approximate the marginal value of vehicles iteratively under dif-
ferent availability settings. Chen et al. (2022) modeled the decision-making processes of
drivers and the platform’s optimization problem as a Stackelberg game, conducting a coun-
terfactual analysis to determine optimal bonus rates for various scenarios. Guo et al. (2023)
focused on sustainability-oriented operational models and developed an efficient method for
generating the Pareto front. These studies collectively contribute to the understanding and
improvement of on-demand service platforms, offering insights into different optimization
approaches, pricing strategies, competition dynamics, and sustainability considerations.

Fairness in operations is an interesting topic which has a large body of work (Bertsimas
et al., 2011, 2012; Chen & Wang, 2018; Lyu et al., 2019; Cohen et al., 2021; Ma et al.,
2020; Chen et al., 2023; Shao et al., 2021; Hosseini et al., 2023; Xu & Xu, 2022). Here is
a few recent work addressing the fairness issue in rideshares. Sühr et al. (2019) proposed
two notions of amortized fairness for fair distribution of income among rideshare drivers,
one is related to absolute income equality, while the other is averaged income equality over
active time. Lesmana et al. (2019) considered nearly the same two objectives as proposed
in this paper. Note that both of the aforementioned work considered an essential offline
setting in the way that all arrivals of online requests are known in advance by considering
a short time window. Additionally, both ignore the potential cancellations from riders, and
assume each rider will accept the assigned driver surely (i.e., all pf = 1). While Nanda
et al. (2020) concentrated on peak hours when the demand for rides exceeds the supply of
drivers, our focus is off-peak hours, characterized by an oversupply of drivers compared to
rider demand. Our work introduces a more sophisticated sampling technique, specifically
attenuation, in comparison to (Nanda et al., 2020). This advancement effectively narrows
the competitive ratio gap between our proposed algorithms and the associated hardness
results.

Our model technically belongs to a more general optimization paradigm, called Multi-
Objective Optimization. Here are a few theoretical work which studied the design of ap-
proximation or online algorithms to achieve a bi-criterion approximation and/or online
competitive ratios, see, e.g., (Ravi et al., 1993; Grandoni et al., 2009; Korula et al., 2013;
Aggarwal et al., 2014; Esfandiari et al., 2016). Aggarwal et al. (2014) studied the problem
of biobjective online bipartite matching and proposed both deterministic and randomized
algorithms for solving this problem. They focused on a relative simpler model and examined
simpler matching algorithms such as Greedy and RANKING. Esfandiari et al. (2016) stud-
ied the bi-objective online submodular optimization and provided almost matching upper
and lower bounds for allocating items to agents with two submodular value functions. But
they did not consider the fairness objective in their model. The work of (Bansal et al., 2012;
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Table 2: Summary of related work of ride-sharing problem.

Author(s) & Year
Research
Questions

Fairness
Definition

Online/
Offline

Objective
Main
Mechanisms

Key Findings

(Ma et al., 2017)
AV trip chains
and fleet size

N/A Offline Min: Cost
Linear
programing

Improving mobility
and sustainability

(Taylor, 2018)
Price and
wage setting

N/A Offline Max: Profit Pricing
Agent independence
and delay sensitivity

(Bai et al., 2019)
Price and wage
rates setting

N/A Online Max: Profit Surge pricing Time-based payout ratio

(Bernstein et al., 2021)
The platform
competition

N/A Online Equilibria Pricing game
Incentive mechanism to
discourage multihoming

(Feng et al., 2021)
The matching
mechanisms

N/A Offline
Waiting
time

Capped
matching

Trade-offs between
different mechanisms

(Beirigo et al., 2022)
Autonomous
ridesharing

N/A Online
Cumulative
contribution

Dynamic
programming

Service level contracts

(Chen et al., 2022)
Incentive
mechanism

N/A Offline
Capacity
and profit

Stackelberg Optimal bonus strategy

(Guo et al., 2023)
Sustainability
operational

N/A Offline
Profit and
travel cost

Approximative
Generate pareto front
efficiently

(Sühr et al., 2019) Two-sided fair
Amortized
fairness

Offline Utility
Two-sided
optimization

Improving income equity

(Lesmana et al., 2019)
Efficiency-Fair
Tradeoff

Maxmin Offline
Efficiency
and fairness

Reassignment
algorithm

Theoretical lower bound

(Nanda et al., 2020) Rider fariness Maxmin Online
Profit and
fairness

Sampling
Competitive ratios:
theoretical lower bound

Our work Driver fairness Maximin Online
Profit
and fairness

Sampling and
attenuation

Competitive ratios:
theoretical lower bound

Brubach et al., 2020; Fata et al., 2019) have the closest setting to us: each edge has an
independent existence probability and each vertex from the offline and/or online side has
a patience constraint on it. However, all investigated one single objective: maximization
of the total profit over all matched edges. Table 2 offers a summary of related work of
ride-hailing problems.

3. Main Model

We adopt the online-matching based model to capture the dynamics in rideshare, as com-
monly used before (Dickerson et al., 2018; Zhao et al., 2019; Ma et al., 2023). Assume a
bipartite graph G = (U, V,E) where U and V represent the sets of types of offline drivers
and online requests, respectively. Each driver type represents a specific demographic group
(defined by gender, age, race, etc.) with a given location, while each request type represents
a specific demographic group with a given starting and ending location. There is an edge
f = (u, v) if the driver (of type) u is capable of serving the request (of type) v (e.g., the
distance between them is below a given threshold).1 The online phase2 consists of T rounds
and in each round, a request v ∈ V arrives dynamically. Upon its arrival an immediate and
irrevocable decision is required: either reject v or assign it to a neighboring driver in U . We
assume each u has a matching capacity of Bu ∈ Z+, which captures the number of driver

1. For simplicity, we refer to a driver of type u and a request of type v directly as a driver u and request v
when the context is clear.

2. The online phase represents the period when online requests arrive and are processed by the algorithm.
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instances belonging to the type u.3 Additionally, we have the following key definitions in
the model.

Definition 1 (Arrivals of Online Requests). Consider a finite time horizon T (known to the
algorithm). For each round t ∈ [T ]

.
= {1, 2, . . . , T}, a request of type v will be sampled (or

v arrives) from a known distribution {qv} such that
∑

v∈V qv = 1. Note that the sampling
process is independent and identical across the online T rounds. For each v, let rv = T · qv,
which is called the arrival rate of request v with

∑
v∈V rv = T .

Our arrival assumption is commonly called the known identical independent distributions
(KIID). This is mainly inspired from the fact that we can often learn the arrival distribution
from historical logs (Yao et al., 2018; Li et al., 2018). KIID is widely used in many practical
applications of online matching markets including rideshare and crowdsourcing (Zhao et al.,
2019; Dickerson et al., 2018; Singer & Mittal, 2013; Singla & Krause, 2013; Sumita et al.,
2022). We start by concentrating on a brief time frame and discretize it so that each round
only has one arrival (keep in mind that we can add some dummy nodes to simulate no
arrivals), and as a result, we can always find a large enough value of T to make it. In the
literature on online bipartite matching under KIID (Feldman et al., 2009; Haeupler et al.,
2011; Jaillet & Lu, 2013; Manshadi et al., 2012), it is customary to make the assumption
that T → ∞.

Definition 2 (Edge Existence Probabilities). Each edge f = (u, v) is associated with an
existence probability pf ∈ (0, 1], which captures the statistical acceptance rate of a request of
type v toward a driver of type u. The random process goes as follows. Once u is assigned
to v, an immediate random outcome of the existence can be observed, which is present
( i.e., v accepts u) with probability pf and not (v cancels u) otherwise. Suppose that (1)
the randomness associated with the edge existence is independent across all edges; (2) the
values {pf} are given as part of the input. The first assumption is motivated by requestor’s
individual choice and the second from the fact that historical logs can be used to compute
such statistics with high precision.

Definition 3 (Patience of Requests). Each request v is associated with a patience value
∆v ∈ Z+, which represents the maximum number of unsuccessful assignments that the
request v can tolerate before leaving the platform. This means that under the patience
constraints, request v can be dispatched to at most ∆v different drivers. Note that v cannot be
simultaneously broadcasted to a set of ∆v different drivers. Instead, v should be sequentially
assigned to at most ∆v distinct drivers (potentially of the same type) until either v is accepted
or it leaves the system after reaching its patience limit. This process is referred to as the
Online Probing Process (OPP). It’s worth mentioning that the OPP begins immediately
after a request v arrives, provided that v is not rejected, and it concludes within a single
round before the next request arrives.

We say an assignment f = (u, v) is successful if u is assigned to v, and v accepts u which
occurs with probability pf . Assume that the platform will gain a profit wf from a successful
assignment f = (u, v) (we call a match then). For a given algorithm ALG, let M be the set

3. Note that during the time horizon T , an individual driver instance (as opposed to a driver type) can
accept at most one online request.
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of (possibly random) successful assignments; we interchangeably use the term matching to
denote this set M. Inspired by the work of (Nanda et al., 2020; Lesmana et al., 2019), we
define two objectives, namely profit and fairness, which capture the system efficiency and
group-level income equality among drivers, respectively.

Definition 4 (Profit Objective). The expected total profit over all matches obtained by the
platform, which is defined as E[

∑
f∈Mwf ].

Definition 5 (Fairness Objective). Let Mu be the set of edges in M incident to u. Define
the fairness achieved by ALG over all driver types as minu∈U E[|Mu|]/Bu , which can be
interpreted as the group-level income equality among drivers.

4. Preliminaries and Main Contributions

In this section, we define the notations and terminologies needed in the paper and summarize
the main contributions.

4.1 Competitive Ratio and Benchmark Linear Programs (LPs)

Competitive Ratio (CR). CR is a metric commonly used to evaluate the performance of
online algorithms. Consider a given (online) algorithm ALG and an offline optimal (OPT),
which is also known as clairvoyant optimal. Note that ALG is subject to the real-time
decision-making requirement, i.e., ALG has to make an irrevocable decision upon every
arrival of online agents (e.g., riders) before observing future arrivals. In contrast, OPT is
exempt from that requirement: it enjoys the privilege of observing the full arrival sequence of
online agents before optimizing decisions. Consider a given instance of an online maximiza-
tion problem as studied here, and let E[ALG] and E[OPT] denote the expected performance
achieved by ALG and OPT under a given metric, respectively, where the expectation is
taken over the randomness on both the random arrivals of online agents and that in ALG
and OPT. We say ALG achieves a CR of at least ρ ∈ [0, 1] if E[ALG] ≥ ρ · E[OPT] for any
possible instances. Essentially, CR captures the gap between a policy and a clairvoyant
optimal due to the real-time decision-making requirement imposed on the former.

For each edge f = (u, v), let xf be the number of probes on edge f (i.e., assignments
of v to u but not necessarily getting matched) in an offline optimal (OPT). For each u (v),
let Eu (Ev) be the set of edges incident to u (v). Consider the following bi-objective LP.4

max
∑
f∈E

wfxfpf (1)

maxmin
u∈U

∑
f∈Eu

xfpf

Bu
(2)

s.t.
∑
f∈Eu

xfpf ≤ Bu ∀u ∈ U (3)

∑
f∈Ev

xf ≤ ∆v · rv ∀v ∈ V (4)

4. Note that {xf} are variables for the LPs.
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∑
f∈Ev

xfpf ≤ rv ∀v ∈ V (5)

0 ≤ xf ≤ Bu · rv ∀f = (u, v) ∈ E. (6)

Let LP-(1) and LP-(2) denote the two LPs with the respective objectives (1) and (2),
each with Constraints (3), (4), (5), and (6). LP-(1) aims to maximize the profit objective
defined in Definition 4, which is to maximize the expected total profit over all matches
obtained by the platform. On the other hand, LP-(2) is formulated to maximize the fairness
objective defined in Definition 5. Constraint (3) indicates that the number of agent type
u ∈ U is finite rather than unbounded. For example, in the context of online ride-hailing,
this constraint implies that the number of drivers in a given area is limited. Constraint (4)
and Constraint (5) are used to bound the total number of probing times and the total
number of matches, respectively. These constraints ensure that the number of probes and
matches remain within certain limits. Note that we can rewrite Objective (2) as a linear
one like max η with additional linear constraints as η ≤

∑
f∈Eu

xfpf/Bu for all u ∈ U . For
presentation convenience, we keep the current compact version. The validity of LP-(1) and
LP-(2) as benchmarks are justified in the lemma below.

Lemma 1. LP-(1) and LP-(2) are valid benchmarks for the two respective objectives, profit
and fairness. In other words, the optimal values to LP-(1) and LP-(2) are valid upper
bounds for the expected profit and fairness achieved by the offline optimal, respectively.

Proof. By leveraging the linearity of expectation, we can verify that objective functions (1)
and (2) accurately capture the expected profit and fairness attained by the offline optimal
solution. To demonstrate the validity of the benchmark for each objective, it is sufficient to
establish the feasibility of all constraints for any given offline optimal solution. For each edge
f , let us recall that xf represents the expected number of probes on f , which corresponds to
the assignments of agent u to task v without necessarily resulting in a match, in the offline
optimal solution. The validity of Constraint (3) is evident as it ensures that each driver u
adheres to their matching capacity of Bu. Additionally, we consider the expected behavior
of task v during the entire online phase. Given that v is expected to arrive rv times, and it
can be probed at most ∆v times upon each online arrival, it follows that the total expected
number of probes and matches over all edges incident to v should not exceed rv∆v and rv,
respectively. This justification supports the inclusion of Constraints (4) and (5). The last
constraint guarantees that, for each edge f = (u, v), the total number of probes conducted
on f does not surpass Bu multiplied by the number of arrivals of task v. Consequently, the
total expected number of probes on f remains below Bu · rv. By establishing the feasibility
of all constraints for any offline optimal solution, we affirm the validity of the benchmark
for both profit and fairness objectives.

4.2 Main Contributions

In this paper, we propose two parameterized matching policies that can smoothly trade
off the income inequality among drivers from different demographic groups and its trade-
off with the system efficiency in rideshare. Our contributions are summarized as follows.
First, we propose a new online-matching based model to address the income inequality
and system efficiency in rideshare. Second, we present a robust theoretical analysis for our

575



Xu & Xu

model. We construct a bi-objective linear program that provides valid upper bounds for the
maximum profit and fairness in the offline optimal. Third, we propose two LP-based pa-
rameterized online algorithms, namely WarmUp and AttenAlg, with provable performances
on both objectives; see Theorem 1 and Theorem 2 below. We say an online algorithm is
(α, β)-competitive if it achieves competitive ratios of α and β on the profit and fairness
against benchmarks LP-(1) and LP-(2), respectively. Lastly, we consider a special example
and formally state the hardness results (see Theorem 3 below).

Theorem 1. WarmUp(α, β) achieves a competitive ratio at least
(
α · 1−1/e

2 , β · 1−1/e
2

)
∼

(0.316·α, 0.316·β) simultaneously on the profit and fairness for any α, β > 0 with α+β ≤ 1.

Theorem 2. AttenAlg(α, β) achieves a competitive ratio at least
(
α · e−1

e+1 , β ·
e−1
e+1

)
∼ (0.46 ·

α, 0.46 · β) simultaneously on the profit and fairness for any α, β > 0 with α+ β ≤ 1.

Theorem 3. No algorithm can achieve an (α, β)-competitive ratio simultaneously on the
profit and fairness with α + β > 1 or α > 0.51 or β > 0.51 using LP-(1) and LP-(2) as
benchmarks.

Results in Theorems 2 and 3 suggest that AttenAlg can achieve a nearly optimal ratio
on each single objective either fairness or profit, though there is some space of improvement
left for the summation of both ratios. We test our model and algorithms on a synthetic
dataset and a real dataset collected from a large on-demand taxi dispatching platform.
Experimental results confirm our theoretical predictions and demonstrate the flexibility of
our algorithms in trading off the two conflicting objectives and their efficiency compared to
natural heuristics (e.g., Greedy-like algorithms).

4.3 Reduction to Unit Capacity for Every Offline Agent

The following lemma suggests that for any online algorithm ALG, the worst-case scenario
(i.e., the instance on which ALG achieves the lowest competitive ratio) arrives when each
driver type has a unit matching capacity. We say an online algorithm achieves an (α, β)-
competitive ratio if it achieves competitive ratios of α and β on the profit and fairness
against LP-(1) and LP-(2), respectively.

Lemma 2. Let ALG be an algorithm that is (α, β)-competitive for the special case when
every offline agent has a unit matching capacity. We can twist ALG to ALG such that ALG
is at least (α, β)-competitive for the general case when each offline agent is allowed to have
any integer matching capacity.

By Lemma 2, we assume w.l.o.g. unit capacity for all offline agent types (driver types)
throughout this paper.

Proof. Consider a given instance5 I with general integer matching capacities. We create
another instance, denoted by Ĩ, by replacing each u with a set Su consisting of |Su| = Bu

5. The term “instance” is referred to as an input instance for an online algorithm, which includes the budget
constraints Bu for all u ∈ U , the patience ∆v and arrival rate rv for all v ∈ V , the weight wf and edge
existence probability pf for all edges {f}, etc.
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identical copies of u. We claim that the optimal values of LP-(1) and LP-(2) on I each
remain the same as those on Ĩ. Consider LP-(2) for example, and let {xf} be a feasible
solution on instance I. Set x̃f̃=(ũ,v) = xf=(u,v)/Bu for every ũ ∈ Su and u ∈ U . We can

verify that {x̃f̃} is feasible to LP-(2) with respect to instance Ĩ. Furthermore, for each
given ũ ∈ Su,∑

f̃=(ũ,v)∈Eũ
x̃f̃ · pf̃

Bũ
=

∑
f̃=(ũ,v)∈Eũ

x̃f̃ · pf̃ =
∑

f=(u,v)∈Eu

(xf=(u,v)/Bu) · pf .

The above equality follows from facts that (1) Eũ = Eu for every ũ ∈ Su and u ∈ Su and
(2) pf̃=(ũ,v) = pf=(u,v) since each Su consists of Bu identical copies of u. Therefore,

min
ũ∈

⋃
u∈U Su

∑
f̃=(ũ,v)∈Eũ

x̃f̃ · pf̃
Bũ

= min
u∈U

∑
f=(u,v)∈Eu

(xf=(u,v)/Bu) · pf .

Thus, we claim that the optimal value of LP-(2) on I should be no more than that on Ĩ,
denoted by LP (2)(I) ≤ LP (2)(Ĩ).

Now, we prove the other way. Let {x̃f̃} be any optimal solution of LP-(2) on Ĩ. w.l.o.g.
assume that

{
x̃f̃=(ũ,v)|ũ ∈ Su

}
all take a uniform value, say zu, for each given u ∈ U since

otherwise we can decrease any outstanding value to make it match the rest while maintaining
the optimal objective value unchanged. Note that {zu|u ∈ U} may not necessarily take
the same value due to disparities over {pf}. Consider such a solution that xf=(u,v) =
Bu · x̃f̃=(ũ,v) = Bu · zu for every u ∈ U . We can verify that {xf} is feasible to LP-(2) on I.
Furthermore,

LP (2)(I) ≥ min
u∈U

∑
f∈Eu

xf · pf
Bu

= min
u∈U

∑
f∈Eu

Bu · zu · pf
Bu

= min
u∈U

∑
f∈Eu

zu · pf

= min
ũ∈

⋃
u∈U Su

∑
f̃∈Eũ

xf̃=(ũ,v) · pf̃ = LP (2)(Ĩ).

Thus, we conclude that LP-(2) yields the same optimal value for both I and Ĩ. Similarly,
through similar analysis, we find that LP-(1) also achieves the same optimal value for both
I and Ĩ.

Now, suppose we have at hand an online algorithm ALG that is (α, β)-competitive for an
instance Ĩ where each offline agent (driver) has a unit matching capacity. We can twist ALG
to an algorithm ALG for any general instance I where each offline agent u has an integer
capacity Bu as follows. First, convert I to Ĩ by replacing each u with a set Su of |Su| = Bu

identical copies. Second, apply ALG to Ĩ. We can verify that ALG is a valid algorithm on
I since (1) each u will be matched at most Bu times since each ũ ∈ Su is matched at most
once by Bũ = 1 in ALG; and (2) each v is probed at most ∆v times upon arrival in ALG,
and so is v in ALG.

For each f = (u, v) and f̃ = (ũ, v), let Zf = 1 and Zf̃ = 1 indicate that f is matched

(probed and present) in ALG and f̃ matched in ALG, respectively. Observe that for profit,
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the performance of the two algorithms, denoted by ALGP (I) and ALGP (Ĩ), satisfies

ALGP (I) =
∑
u∈U

∑
f∈Eu

wf · E[Zf ] =
∑
u∈U

∑
ũ∈Su

∑
f̃∈Eũ

wf̃ · E[Zf̃ ] = ALGP (Ĩ).

Note that LP-(1) has the same optimal value on I and Ĩ. Thus, we claim that ALG
achieves the same competitive ratio of α as ALG for profit against LP-(1). As for fairness,
the performance of the two algorithms, denoted by ALGF (I) and ALGF (Ĩ), satisfies

ALGF (I) = min
u∈U

∑
f∈Eu

E[Zf ]

Bu
= min

u∈U

∑
ũ∈Su

∑
f̃∈Eũ

E[Zf̃ ]

Bu

≥ min
u∈U

min
ũ∈Su

∑
f̃∈Eũ

E[Zf̃ ] = min
ũ∈

⋃
u∈U Su

∑
f̃∈Eũ

E[Zf̃ ] = ALGF (Ĩ).

This suggests ALG is at least β-competitive for fairness against LP-(2).

4.4 Randomized Dependent Rounding

Randomized dependent rounding techniques, denoted by GKPS, was introduced by (Gandhi
et al., 2006). For simplicity, we state a simplified version of GKPS tailored to star graphs,
which suffices for our problem. Recall that Ev is the set of edges incident to v in the
input graph G. GKPS is such a rounding technique that takes as input a fractional vector
z = (zf : zf ∈ [0, 1]|f ∈ Ev) on Ev and outputs a random binary vector Z = (Zf : Zf ∈
{0, 1}|f ∈ Ev), which satisfies the following properties.

• Marginal Distribution: E[Zf ] = zf for all f ∈ Ev.

• Degree Preservation: Pr[
∑

f∈Ev
Zf ≤

∑
f∈Ev

zf ] = 1.

• Negative Correlation: For any pair of edges f, f ′ ∈ Ev, E[Zf = 1|Zf ′ = 1] ≤ zf .

The following notations and assumptions are used throughout this paper: (1) x∗ = {x∗f}
and y∗ = {y∗} are optimal solutions to LP-(1) and LP-(2), respectively; (2) Bu = 1 for all
u ∈ U by Lemma 2; (3) xv = (x∗f/rv|f ∈ Ev) and yv = (y∗f/rv|f ∈ Ev), which are scaled
solutions from xv and yv, respectively, restricted to Ev.

In the next two sections, we will present three algorithms, and each of them invokes a
subroutine that applies GKPS to either xv or yv upon v’s arrival and outputs a random
binary vector Z. From Constraints (4), (5), and (6), we observe that: (1) xv and yv are both
fractional vectors since 0 ≤ x∗f ≤ Bu · rv = rv and 0 ≤ y∗f ≤ Bu · rv = rv for all f ∈ Ev, and
(2) both vectors have a total sum of at most ∆v. By applying the Degree Preservation
property of GKPS, we claim that the rounded vector Z with probability one has at most ∆v

entries equal to one (and all the remaining entries equal to zero). The two algorithms exploit
this fact by using Z to guide online probing, such that edge f is probed only when Zf = 1.
Consequently, we automatically ensure the patience constraint on v, i.e., v receives no more
than ∆v probes upon its arrival. The properties of Marginal Distribution and Negative
Correlation play a key role in ensuring the proper functioning of the attenuations in the
second algorithm, as we need to carefully upper bound the conditional probabilities of other
edges f ′ ∈ Ev being rounded (Zf ′ = 1) given that one edge f is rounded.
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Algorithm 1: Sub-Routine SR(z): Dependent Rounding with Random Permuta-
tion

1 Apply GKPS to the fractional vector z = (zf : zf ∈ [0, 1]|f ∈ Ev), and let
Z = (Zf : Zf ∈ {0, 1}|f ∈ Ev) be the random binary vector output.

2 Choose a random permutation π over Ev.
3 Follow the order π to process each f = (u, v) ∈ Ev:
4 if Zf = 1 and u is available then
5 Probe edge f (i.e., assign v to u).
6 if f is present (which occurs with probability pf ) then
7 Break.

8 else
9 Skip to the next one.

5. Three LP-based Algorithms and Related Competitive Analysis

In this section, we present three LP-based algorithms, and offer formal competitive analyses
for the first two algorithms.

5.1 The First Algorithm WarmUp(α, β)

WarmUp incorporates SR, as shown in Algorithm 1, as a subroutine during each online
round. Specifically, SR takes as part of the input a fractional vector z = (zf : zf ∈ [0, 1]|f ∈
Ev), and it follows a random order to probe all edges in Ev guided by a random binary
vector output by GKPS.

WarmUp takes two parameters: α and β with 0 ≤ α, β ≤ 1 and α + β ≤ 1. The main
idea of WarmUp(α, β) is as follows: In each round when an online agent v arrives, it invokes
SR(xv) and SR(yv) with probabilities α and β, respectively. Recall that xv = {x∗f/rv, f ∈
Ev} and yv = {y∗f/rv, f ∈ Ev} are scaled optimal solutions of LP-(1) and LP-(2) restricted
to Ev, and each has a total sum at most ∆v. Thus, when we run SR(xv) or SR(yv) after v
arrives, we will probe at most ∆v edges incident to v since the final rounded binary vector
has at most ∆v ones due to Degree Preservation of GKPS. WarmUp(α, β) is formally in
Algorithm 2.

We conduct an edge-by-edge analysis. It would suffice to show that each f is probed
with probability at least α ·x∗f ·(1−1/e)/2 and β ·y∗f ·(1−1/e)/2 in WarmUp(α, β). Then, by
linearity of expectation, we establish Theorem 1. For each u ∈ U and t ∈ [T ], let SFu,t = 1
indicate that u is available or safe at (the beginning of) t and SFu,t = 0 otherwise.

Lemma 3. For any u ∈ U and t ∈ [T ], we have E[SFu,t] ≥
(
1− 1

T

)t−1
.

Proof. Recall that we assume w.l.o.g. that each Bu = 1 due to Lemma 2. For each given
ℓ < t and each f = (u, v) ∈ Eu, let Xf,ℓ = 1 indicate that v arrives at time ℓ, Hf,ℓ = 1
indicate f is probed at ℓ, and Pf = 1 indicate that f is present when probed. Note
that in each subroutine of SR(xv) and SR(yv) after v arrives, f is probed only when the
final rounded vector has the entry of one on f (i.e., Zf = 1). Therefore, we claim that
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Algorithm 2: A Warm-Up Algorithm: WarmUp(α, β) with 0 ≤ α, β ≤ 1 and
α+ β ≤ 1

1 Offline Phase:
2 Solve LP-(1) and LP-(2), and let x∗ = (x∗f ) and y∗ = (y∗f ) be optimal solutions,

respectively.
3 For each v ∈ V , let xv = (x∗f/rv : f ∈ Ev) and yv = (y∗f/rv : f ∈ Ev) are scaled

optimal solutions from LP-(1) and LP-(2) restricted to Ev.
4 Online Phase:
5 for t = 1, 2, . . . , T do
6 Let an online agent v arrive at time t.
7 With probability α, run SR(xv);
8 with probability β, run SR(yv);
9 and with probability 1− α− β, reject v.

E[Hf,ℓ] ≤ αx∗f/rv + βy∗f/rv due to Marginal Distribution of GKPS.

E[SFu,t] =
∏
ℓ<t

Pr
[ ∑
f∈Eu

Xf,ℓ ·Hf,ℓ · Pf = 0
]
=

∏
ℓ<t

(
1− Pr

[ ∑
f∈Eu

Xf,ℓ ·Hf,ℓ · Pf ≥ 1
])

≥
∏
ℓ<t

(
1− E

[ ∑
f∈Eu

Xf,ℓ ·Hf,ℓ · Pf

]) (
by Markov’s inequality

)
≥

∏
ℓ<t

(
1−

∑
f∈Eu

rv
T

·
(
α
x∗f
rv

+ β
y∗f
rv

)
· pf

)
=

∏
ℓ<t

(
1− 1

T

(
α ·

∑
f∈Eu

x∗fpf + β ·
∑
f∈Eu

y∗fpf

))
≥

(
1− 1

T

)t−1
,

where the last inequality above follows from (1)
∑

f∈Eu
x∗fpf ≤ Bu = 1 and

∑
f∈Eu

y∗fpf ≤
Bu = 1 due to Constraint (3) in the benchmark LP and (2) α+ β ≤ 1.

Consider a given ũ ∈ U and a given f̃ = (ũ, v), and let χf̃ ,t = 1 indicate f̃ is probed
during round t in WarmUp(α, β) and χf̃ ,t = 0 otherwise.

Lemma 4. E[χf̃ ,t|SFũ,t = 1] ≥
α·x∗

f̃

2T and E[χf̃ ,t|SFũ,t = 1] ≥
β·y∗

f̃

2T .

Proof. We focus on the first inequality, which addresses the case when f̃ = (ũ, v) is probed
in SR(xv). Observe that f̃ is probed in SR(xv) if (1) v arrives at t, which occurs with
probability rv/T ; (2) WarmUp invokes SR(xv), which happens with probability α; (3) ũ is
available at t, i.e., SFũ,t = 1; (4) when SR(xv) is invoked, Zf̃ = 1, i.e., the random vector

output by GKPS has value one for f̃ , which occurs with probability x∗
f̃
/rv by Marginal

Distribution of GKPS; (5) f̃ survives the random order π to get probed before ũ is matched
by some other f ∈ Ev. For each edge f ∈ Ev (including f̃), let Yf = 1 indicate that f
falls before f̃ in the random order π (with Yf̃ = 0 with probability one), Pf = 1 that f is
present when probed, and Zf be the entry on f in the random vector output by GKPS in
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SR(xv). Note that a sufficient condition ensuring the occurrence of event (5) can be that∑
f ̸=f̃ ,f∈Ev

Zf · Yf · Pf = 0, where we refer to some f ̸= f̃ with Zf · Yf · Pf = 1 as that “f

blocks f̃ with respect to the order π.”6

E[χf̃ ,t|SFũ,t = 1] ≥ αrv
T

· Pr[Zf̃ = 1] · Pr
[ ∑
f ̸=f̃ ,f∈Ev

Zf · Yf · Pf = 0
∣∣ Zf̃ = 1

]

=
αrv
T

·
x∗
f̃

rv
·
(
1− Pr

[ ∑
f ̸=f̃ ,f∈Ev

Zf · Yf · Pf ≥ 1
∣∣ Zf̃ = 1

])

≥
αx∗

f̃

T
·
(
1− E

[ ∑
f ̸=f̃ ,f∈Ev

Zf · Yf · Pf

∣∣ Zf̃ = 1
])

(7)

=
αx∗

f̃

T
·
(
1−

∑
f ̸=f̃ ,f∈Ev

E
[
Zf · Yf · Pf

∣∣ Zf̃ = 1
])

≥
αx∗

f̃

T
·
(
1−

∑
f ̸=f̃ ,f∈Ev

x∗f
rv

·
pf
2

)
(8)

≥
αx∗

f̃

T
· 1
2
, (9)

where Inequality (7) follows from Markov’s inequality; Inequality (8) is valid since (a)
E[Zf |Zf̃ = 1] ≤ E[Zf ] = x∗f/rv due to Negative Correlation of GKPS and (b) E[Yf ] = 1/2

and E[Zf ] = pf for every f ̸= f̃ , f ∈ Ev; Inequality (9) follows from
∑

f∈Ev
x∗fpf ≤ rv due

to Constraint (5) of the benchmark LP. By applying similar analysis, we can get the second
part of the result.

Now we have all ingredients to prove the main Theorem 1.

Theorem 1. WarmUp(α, β) achieves a competitive ratio at least
(
α · 1−1/e

2 , β · 1−1/e
2

)
∼

(0.316·α, 0.316·β) simultaneously on the profit and fairness for any α, β > 0 with α+β ≤ 1.

Proof of Theorem 1. For each f = (u, v) ∈ E, let κxf and κyf be the expected numbers of
probes of f in SR(xv) and SR(yv), respectively. Note that

κxf =
T∑
t=1

E[SFu,t] · E[χf,t|SFu,t = 1] ≥
T∑
t=1

(
1− 1

T

)t−1
·
αx∗f
2T

∼
αx∗f (1− 1/e)

2
,

where the last term is obtained by taking T → ∞. Similarly, we can show that κyf ≥
β · y∗f (1 − 1/e)/2. By linearity of expectation, we claim that the expected profit achieved

6. Note that the condition stated here is sufficient but not necessary, since some other f = (u, v) ∈ Ev with
f ̸= f̃ may have u matched before t and, thus, cannot pose any threat to f̃ . In the current analysis of
WarmUp, we assume that every edge f ∈ Ev other than f̃ has the potential to block f̃ , which is defined as
Zf ·Yf ·Pf = 1. This observation is the exact motivation for our second algorithm shown in Section 5.2,
which exploits a refined definition of some edge f ̸= f̃ blocking f̃ and exhibits improved performance
over WarmUp.
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by WarmUp(α, β) should be at least (1− 1/e) · (α/2) ·
∑

f∈E x
∗
fpfwf , which is further lower

bounded by (1−1/e) ·(α/2) ·OPTP due to Lemma 1, where OPTP denotes the performance
of an offline optimal on profit. This establishes WarmUp(α, β) is at least (1 − 1/e) · (α/2)-
competitive for profit. Similarly, we can argue that WarmUp(α, β) achieves the same ratio
for fairness as well.

5.2 The Second Algorithm AttenAlg(α, β)

Let {γt, µt|t ∈ [T ]} be a series defined as follows,

γ1 = 1;µt = 1− γt/2, ∀1 ≤ t ≤ T ; γt+1 = γt(1− µt/T ), ∀1 ≤ t ≤ T − 1. (10)

Overview of AttenAlg(α, β) in Algorithm 3. Inspired by the work of (Brubach et al.,
2020), we present an enhanced version of WarmUp called AttenAlg, which incorporates (of-
fline) vertex- and edge-attenuations guided by an auxiliary series {γt, µt|t ∈ [T ]}, as defined
in Equation (10). AttenAlg consists of two phases, Offline Phase and Online Phase,
similar to WarmUp. The Offline Phase aims to output a set of values {ϕu,t, ψf,t, φf,t|u ∈
U, f ∈ E, 1 ≤ t ≤ T}. Note that (1) ϕu,t represents the precise estimate of the probability
that offline agent u ∈ U is available at (the beginning of) time t ∈ [T ]; and (2) ψf,t and φf,t

denote estimates of probabilities that edge f = (u, v) ∈ Ev survives the random order π
and is ready to probe in Step (5) of SR when SR(xv) and SR(yv) are invoked, respectively,
where the two probabilities both are conditional on that v arrives at t, u is available at
(the beginning of) t, and Zf = 1 in the random vector output by GKPS. All estimates of
{ϕu,t, ψf,t, φf,t|u ∈ U, f ∈ E, t ∈ [T ]} can be obtained through Monte-Carlo simulations of
Online Phase’s Steps up to time t.7

The Online Phase aims to achieve two goals by exploiting estimates obtained in the
Offline Phase. (Goal A) The first goal is to ensure that every offline agent is available
at t with a target probability of γt, which is achieved through (offline) vertex attenuations.
Specifically, at each time step t, we independently relabel each available offline agent u
as either available or unavailable, with respective probabilities of γt/ϕu,t and 1 − γt/ϕu,t.
This ensures that every offline agent has a probability of γt of being available after the
vertex attenuations. Note that the transition of each offline agent from being available to
unavailable is permanent and irreversible. (Goal B) The second goal is to ensure that
each edge f = (u, v) ∈ Ev is probed with target probabilities equal to α · µt · x∗f/rv and
β · µt · y∗f/rv in SR(xv) and SR(yv), respectively, and both probabilities are conditional on
v arriving at time t and u being available at time t after vertex attenuations. The second
goal is achieved by edge attenuations. Particularly, each edge f ∈ Ev is probed with an
extra factor of µt/ψf,t and µt/φf,t when f is ready to probe in Step (5) when SR(xv) and
SR(yv) are invoked, respectively.

Lemma 5. AttenAlg in Algorithm 3 is valid with respect to series {γt, µt|t ∈ [T ]} defined
in (10) such that ϕu,t ≥ γt, ψf,t ≥ µt, and φf,t ≥ µt, for each u ∈ U , t ∈ [T ], and f ∈ E.

The above lemma justifies the validity of AttenAlg. We first show how the lemma leads
to Theorem 2.

7. More precisely, we can get an estimate for each target with a multiplicative error of at most ϵ > 0 and a
high confidence of at least 1−δ > 0 with a sample complexity of O(ϵ−2 ·log(1/δ)); see detailed discussions
in (Dickerson et al., 2021; Ma et al., 2023).
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Algorithm 3: An LP-Based Algorithm with Attenuations: AttenAlg(α, β)

1 Offline Phase:
2 Solve LP-(1) and LP-(2), let x∗ and y∗ be the optimal solutions.
3 For each v ∈ V , let xv = {x∗f/rv, f ∈ Ev} and yv = {y∗f |f ∈ Ev} be the scaled

optimal solutions restricted on Ev.
4 Initialization: Set ϕu,t = 1 for every u ∈ U at t = 1.
5 for t = 2, . . . , T do
6 By simulating Steps from (13) to (17) of Online Phase for all rounds over

t′ = 1, 2, . . . , t− 1, we get a sharp estimate of ϕu,t for the probability of each
u ∈ U being available at (the beginning of) t before vertex attenuations.

7 for t = 1, . . . , T do
8 By simulating Steps from (13) to (17) of Online Phase for all rounds over

t′ = 1, 2, . . . , t− 1, and from Step (13) to SR(xv) on Step (15) without edge
attenuations in Online Phase at t, we get a sharp estimate of ψf,t for the
conditional probability that edge f = (u, v) ∈ Ev reaches Step (5) of SR(xv),
i.e., v is not matched when it comes to f under the random order π, which
assumes that v arrives at t, Zf = 1 (the random binary vector output by
GKPS to xv), and u is available after vertex attenuations are applied at t.

9 By simulating Steps from (13) to (17) of Online Phase for all rounds over
t′ = 1, 2, . . . , t− 1, and from Step (13) to SR(yv) on Step (15) without edge
attenuations in Online Phase at t, we get a sharp estimate of φf,t for the
conditional probability that edge f = (u, v) ∈ Ev reaches Step (5) of SR(yv),
i.e., v is not matched when it comes to f under the random order π, which
assumes that v arrives at t, Zf = 1 (the random binary vector output by
GKPS to yv), and u is available after vertex attenuations are applied at t.

10 Online Phase:
11 Initialization: Label all offline vertices available at t = 1.
12 for t = 1, 2, . . . , T do
13 Vertex Attenuations: Independently relabel each available offline agent u as

available and unavailable with respective probabilities γt/ϕu,t and 1− γt/ϕu,t.
14 Let an online vertex v ∈ V arrive at time t.
15 With probability α, run SR(xv) with edge attenuations. Specifically, when

each edge f ∈ Ev,t is ready to probe in Step (5) of SR(xv), probe f with
probability µt/ψf,t, or go to Step (9) of SR(xv) otherwise, i.e., skip to the next
one with probability 1− µt/ψf,t;

16 with probability β, run SR(yv) with edge attenuations. Specifically, when
each edge f ∈ Ev is ready to probe in Step (5) of SR(yv), probe f with
probability µt/φf,t or go to Step (9) of SR(yv) otherwise;

17 with probability 1− α− β, reject v.

Theorem 2. AttenAlg(α, β) achieves a competitive ratio at least
(
α · e−1

e+1 , β ·
e−1
e+1

)
∼ (0.46 ·

α, 0.46 · β) simultaneously on the profit and fairness for any α, β > 0 with α+ β ≤ 1.
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Proof of Theorem 2. Consider a given f = (u, v). Let κxf and κyf be the numbers of probes
of f in SR(xv) and SR(yv), respectively. Following statements in Goal A and Goal B, we
have

κxf =
T∑
t=1

γt ·
rv
T

·
α · µt · x∗f

rv
= (αx∗f ) ·

T∑
t=1

µt · γt
T

. (11)

By definition of {γt, µt}, we can verify that
∑T

t=1 µt · γt/T = e−1
e+1 when T → ∞. Thus, we

claim that κxf = (αx∗f ) ·(
e−1
e+1). By linearity of expectation, we claim that the expected profit

achieved by AttenAlg(α, β) should be at least (α · e−1
e+1) ·

∑
f∈E x

∗
fpfwf , which is further lower

bounded by (α · e−1
e+1) ·OPTP due to Lemma 1, where OPTP denotes the performance of an

offline optimal on profit. This establishes AttenAlg · (α, β) is at least (α · e−1
e+1)-competitive

for profit. Similarly, we can argue that AttenAlg(α, β) achieves the same ratio for fairness
as well.

Proof of Lemma 5. We prove by induction over t = 1, 2, . . . , T . Consider the base case
t = 1. By definition, we see that ϕu,t = γt = 1 for all u ∈ U . In the following, we show
ψf,t ≥ µt for every f ∈ E at t = 1. By definition, µ1 = 1 − γ1/2 = 1/2. Consider a given
f̃ = (ũ, v), and recall that ψf̃ ,t=1 denotes the probability that f̃ reaches Step (5) of SR(xv),

i.e., v is not matched when it comes to f̃ under a random order π, which is conditional on
events that v arrives at t, Zf̃ = 1 (the entry on f̃ of the random binary vector output by
GKPS to xv), and ũ is available after vertex attenuations are applied at t = 1. Observe that
at t = 1, every u ∈ U is available with probability one, and we essentially apply no vertex
attenuations since γt/ϕu,t = 1 (every available offline agent remains available). For each
edge f ∈ Ev (including f̃), let Yf = 1 indicate that f falls before f̃ in the random order π
(with Yf̃ = 0 with probability one), Pf = 1 that f is present when probed, and SFf,t = 1
that f = (u, v) is available or safe at t (i.e., u is available or safe) after vertex attenuations
at t but before observing any online arrival at t. Thus, for t = 1,

ψf̃ ,t = Pr
[
f̃ reaches Step (5) of SR(xv)

∣∣ Zf̃ = 1, SFf̃ ,t = 1
]

= 1− Pr
[ ∑
f ̸=f̃ ,f∈Ev

Zf · SFf,t · Yf · Pf ≥ 1
∣∣ Zf̃ = 1, SFf̃ ,t = 1

]
(12)

≥ 1− E
[ ∑
f ̸=f̃ ,f∈Ev

Zf · SFf,t · Yf · Pf

∣∣ Zf̃ = 1, SFf̃ ,t = 1
]
.

= 1−
∑

f ̸=f̃ ,f∈Ev

E
[
Zf · SFf,t · Yf · Pf

∣∣ Zf̃ = 1, SFf̃ ,t = 1
]

(13)

= 1−
∑

f ̸=f̃ ,f∈Ev

E[Zf |Zf̃ = 1] · E[SFf,t|SFf̃ ,t = 1] · E[Yf ] · E[Pf ] (14)

≥ 1−
∑

f ̸=f̃ ,f∈Ev

x∗f
rv

· 1
2
· pf (15)

≥ 1− 1/2 = 1/2 = µt = µ1, (16)
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where Equality (12) follows from that f̃ fails to reache Step (5) of SR(xv) iff there exists
one other edge f ∈ Ev with f ̸= f̃ that blocks f̃ in π, i.e., f = (u, v) satisfies Zf = 1, u is
available at t, falls before f̃ in π, and Pf = 1, and thus, leading to v’s matching; Equality (13)
due to independence among {Zf , SFf,t, Yf , Pf} for each given f ∈ Ev; Inequality (15) due
to facts (1) E[Zf |Zf̃ = 1] ≤ E[Zf ] = x∗f/rv following properties of Negative Correlation
and Marginal Distribution of GKPS, (2) E[SFf,t|SFf̃ ,t = 1] = 1 (every u ∈ U is available
and no vertex attenuations are applied at t = 1), and (3) E[Yf ] = 1/2 and E[Pf ] = pf ;
Inequality (16) follows from Constraint (5) in the benchmark LP. Therefore, we claim that
at t = 1, ψf̃ ,t ≥ µt for every f̃ , and we can get the result of φf̃ ,t ≥ µt by applying the same
analysis.

Now, we show the induction from t̃ to t̃ + 1. Assume that ϕu,t ≥ γt, ψf,t ≥ µt, and
φf,t ≥ µt, for every u ∈ U , f ∈ E and all 1 ≤ t ≤ t̃. This means AttenAlg is valid during the
first t̃ rounds, and thus, the two goals of vertex and edge attenuations are achieved for any
1 ≤ t ≤ t̃: (1) every offline agent u has a probability of γt of being available after the vertex
attenuations and (2) each edge f = (u, v) ∈ Ev is probed with target probabilities equal to
α · µt · x∗f/rv and β · µt · y∗f/rv in SR(xv) and SR(yv), respectively, conditional v’s arriving.

We show the claim for t = t̃ + 1. Consider a given ũ ∈ U . Recall that ϕũ,t̃+1 denotes the

probability that ũ is available at the beginning of t̃ + 1 before vertex attenuations. This
event happens iff (1) ũ survives the vertex attenuations at t̃, which occurs with probability
equal to γt̃ by the inductive assumption, and (2) ũ survives the online matching process
from some arriving neighbor, i.e., Steps from (14) to (17) at t̃ in Online Phase. Thus,

ϕũ,t̃+1 = γt̃ · Pr
[
ũ survives Steps from (14) to (17) at t̃ in AttenAlg

]
≥ γt̃ ·

(
1−

∑
f∈Eũ

Pr
[
f is matched at t̃

])

= γt̃ ·

1−
∑

f=(ũ,v)∈Eũ

rv
T

·
(αµt̃ · x∗f

rv
+
βµt̃ · y∗f
rv

)
· pf

 (17)

= γt̃ ·
(
1− µt̃

T
·
(
α ·

∑
f∈Eũ

x∗f · pf + β ·
∑
f∈Eũ

y∗f · pf
))

≥ γt̃ · (1− µt̃/T ) = γt̃+1. (18)

Equality (17) is due to inductive assumption on the goal achieved by edge attenuations
during t̃. Inequality (18) follows from (1)

∑
f∈Eũ

x∗fpf ≤ Bũ = 1 and
∑

f∈Eũ
y∗fpf ≤ Bũ = 1

due to Constraint (3) in the benchmark LP; (2) α+β ≤ 1; and (3) γt̃ · (1−µt̃/T ) = γt̃+1 by
definition. Thus, we claim that ϕũ,t̃+1 ≥ γt̃+1 for any ũ ∈ U . The results of ψf,t ≥ µt and

φf,t ≥ µt for every f at t = t̃ + 1 follow from a similar analysis to the base case at t = 1.
The only annotation to add is for Inequality (15). For any f ∈ E and 1 ≤ t ≤ t̃ + 1, we
have

E[SFf,t|SFf̃ ,t = 1] ≤ E[SFf,t] = γt,

where the first inequality follows from Lemma 3.1 in (Brubach et al., 2020) and the second
equality from inductive assumption on the goal achieved by vertex attenuations up to time
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Algorithm 4: An LP-based Algorithm with Boosting: Boosting(α, β)

1 Offline Phase:
2 Solve LP-(1) and LP-(2), and let x∗f and y∗f be optimal solutions, respectively.

3 Online Phase:
4 for t = 1, 2, . . . , T do
5 Let an online agent v arrive at time t.

6 With probability α, run SR((x∗f/rv) ·
∆v∑

f̃∈Ev,t
x∗
f̃
/rv

);

7 with probability β, run SR((y∗f/rv) ·
∆v∑

f̃∈Ev,t
y∗
f̃
/rv

);

8 and with probability 1− α− β, reject v.

t̃+ 1. As a result, for any given f̃ = (ũ, v), we have at t = t̃+ 1,

ψf̃ ,t̃+1 ≥ 1−
∑

f ̸=f̃ ,f∈Ev

x∗f
rv

· γt̃+1 ·
1

2
· pf ≥ 1−

γt̃+1

2
= µt̃+1,

where the last equality is due to the definition of the series {ψt} in (10). Similarly, we can
show that φf̃ ,t̃+1 ≥ µt̃+1. Thus, we complete the induction.

5.3 The Third Algorithm Boosting(α, β)

Finally, we introduce an LP-based algorithm with boosting, named Boosting(α, β). In each
round when an online agent v arrives, with probability α, we run SR((x∗f/rv) ·

∆v∑
f̃∈Ev,t

x∗
f̃
/rv

);

with probability β, we run SR((y∗f/rv) ·
∆v∑

f̃∈Ev,t
y∗
f̃
/rv

); with probability 1 − α − β, reject

v. In this way, we adjust the sum of entries in the sampling vector to ensure it does not
exceed ∆v. The rationale behind designing Boosting is to leverage the advantages of a
greedy approach. Note that similar to the challenges encountered in (Ma et al., 2023), the
competitive analysis for Boosting presents an exceptionally intricate problem that warrants
exploration in future work. The algorithm is formally stated in Algorithm 4.

6. Hardness Results

We prove Theorem 3 in this section. Consider the below example.

Example 1. Consider a graph which consists of n identical units, each unit i ∈ [n] is a
star graph which includes the center of vi and two other neighbors uai and ubi . Set pi,a = 1
and pi,b = ϵ where we use {i, a} ({i, b}) to index the edges (uai , vi) and (ubi , vi) respectively.
Assume that (1) unit edge weight on all edges; (2) T = n and unit arrival rate on all vi
( i.e., all rv = 1); (3) unit matching capacity on all u ( i.e., all Bu=1); and (4) unit patience
on all v ( i.e., all ∆v = 1).

Let OPT-P and OPT-F be the optimal LP values of LP-(1) and LP-(2) on the above
example respectively. We can verify that: (1) OPT-P = n, where there is a unique optimal
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uai

ubi

vi
wi,a = 1, pi,a = 1

wi,b = 1, pi,b = ϵ

T = n

Bu = 1, ∀u ∈ U

rv = 1, ∀v ∈ V

∆v = 1, ∀v ∈ V

Figure 1: A toy example on which no algorithm can achieve a competitive ratio larger than 1− 1/e
on the profit and no algorithm can achieve competitive ratios on the profit and fairness with a sum
larger than 1.

solution x∗i,a = 1 and x∗i,b = 0 for all i ∈ [n]; (2) OPT-F = ϵ/(1+ ϵ), where there is a unique

optimal solution y∗i,a = ϵ
1+ϵ and y∗i,b =

1
1+ϵ for all i ∈ [n].

Now based on Example 1, we prove the below lemma.

Lemma 6. Consider Example 1 and assume LP-(1) and LP-(2) as benchmarks. We have
(1) no algorithm can achieve a competitive ratio larger than 1 − 1/e on the profit; (2) no
algorithm can achieve competitive ratios on the profit and fairness with a sum larger than
1.

Proof. Consider a given online algorithm ALG, in which the expected number of probes for
(uai , vi) and (ubi , vi) are αi and βi for each i ∈ [n], respectively. Let ALG-P and ALG-F be
the profit and fairness achieved by ALG. We have that ALG-P =

∑
i∈[n](αi+βiϵ),ALG-P =

mini∈[n]

(
αi, βiϵ

)
. Set α

.
=

∑
i∈[n] αi and β

.
=

∑
i∈[n] βi. Note that (1) α + β ≤ n, and (2)

α ≤ (1 − 1/e)n. The latter inequality is due to each αi ≤ 1 − 1/e. Thus, the sum of
competitive ratios on profit and fairness should be

ALG-P

OPT-P
+

ALG-F

OPT-F
=

∑
i∈[n] αi + βiϵ

n
+

mini∈[n]
(
αi, βiϵ

)
ϵ/(1 + ϵ)

≤ α+ ϵβ

n
+
β(1 + ϵ)

n
=
α+ β + 2ϵβ

n
≤ 1 + 2ϵ.

As for profit, we see that ALG-P
OPT-P = α+ϵβ

n ≤ 1− 1/e+ ϵ.

Theorem 3. No algorithm can achieve an (α, β)-competitive ratio simultaneously on the
profit and fairness with α + β > 1 or α > 0.51 or β > 0.51 using LP-(1) and LP-(2) as
benchmarks.

Proof of Theorem 3. Based on the example presented in Lemma 5 of Section 3.1 of (Fata
et al., 2019), we can get a stronger version of statement (2) in Lemma 6, which states that
no online algorithm can get an online ratio better than 0.51 for either the profit or fairness
based on LP-(1) and LP-(2). Summarizing all analysis we prove Theorem 3.
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7. Experiments

In this section, we describe our experimental results on the synthetic dataset and a real
dataset: the New York City yellow cabs dataset8 which contains the trip histories for
thousands of taxis across Manhattan, Brooklyn, and Queens.

7.1 Experiment Setup

Real Dataset. The dataset is collected during the year of 2013. Each trip record includes
the (desensitized) driver’s license, the pick-up and drop-off locations for the passenger, the
duration and distance to complete the trip, the starting and ending time of the trip and
some other information such as the number of customers. Although the demographics of
the drivers and riders are not recorded in the original dataset, we synthesize the racial
demographics for riders and drivers in a similar way to (Nanda et al., 2020). To simplify
the demonstration, we consider a single demographic factor of the race only, which takes two
possible options between “disadvantaged” (D) or “advantaged” (A). We set the ratio of D to
A to be 1 : 2 among riders, which roughly matches the racial demographics of NYC (Review,
2023). Similarly, we set the ratio of D to A among drivers to be 1 : 2 (FinancesOnline,
2023). The acceptance rates among the four possible driver-rider pairs (based on race status
only), (A,A), (A,D), (D,A), (D,D), are set to be 0.6, 0.1, 0.1 and 0.3, respectively. These
probabilities are then scaled up by a factor η such that pf = η + (1 − η) · pf . In our
experiments we set η = 0.5. Note that we can apply our model straightforwardly to the
case when the real-world distribution of {pf} values is known or can be learned. We collect
records during the off-peak period of 4–5 PM when a lot of drivers are on the road while
the requests are relatively lower than peak hours. On January 31, 2013, 20, 701 trips were
completed in the off-peak hour (from 16:00 to 17:00), compared to 35, 109 trips in the peak
hour (from 19:00 to 20:00). We focus on longitude and latitude ranging from (−73,−75)
and (40.4, 40.95) respectively. We partition the area into 40×11 grids with equal size. Each
grid is indexed by a unique number to represent a specific pick-up and drop-off location.

We construct the compatibility graph G = (U, V,E) as follows. Each u ∈ U represents
a driver type which has attributes of the starting location and race. Each v ∈ V represents
a request type which has attributes of the starting location, ending location, and race. We
downsample from all driver and request types such that |U | = 57 and |V | = 134. For
each driver type u, we assign its capacity Bu with a random value uniformly sampled from
[1, B] where we vary B ∈ {10, 15, 20, 25}. For each request of type v, we sample a random
patience value ∆v uniformly from {1, 2} and a random arrival rate rv ∼ N (5, 1) (Normal
distribution), and then set T =

∑
v∈V rv (here, we use the rounded value of the sampled

rv as the final arrival rate). We add an edge f = (u, v) if the Manhattan distance between
starting location of request type v and the location of driver type u is not larger than 1.
The profit wf for each f is defined as the normalized trip length of the request type v such
that 0 ≤ wf ≤ 1.

Synthetic Dataset. We generate the bipartite graph by setting |U | = 50, |V | = 50
and T = 500. We randomly sample the arrival rates for each request type v, such that∑

v∈V rv = T . For each pair of driver type and request type (u, v), we set an edge between

8. http://www.andresmh.com/nyctaxitrips/.

588



Tradeoff between System Profit and Income Equality

them with probability 0.1. For each edge f , we choose its edge existence probability pf
uniformly at random from [0.5, 1), and sample the profit wf uniformly at random from
[0, 1]. For each driver type u, we assign its capacity Bu with a random value uniformly
sampled from [1, B] where we vary B ∈ {10, 15, 20}. We set a uniform patience value
∆ ∈ {1, 2, 3} for all v, i.e., ∀v∈V ∆v = ∆.

Compared Algorithms. We first compare the performance our proposed algorithms, i.e.,
WarmUp, AttenAlg and Boosting. Then, we test the WarmUp(α, β) with α + β = 1 against
two natural heuristic baselines, namely Greedy P (short for Greedy-Profit) and Greedy F
(short for Greedy-Fairness). Suppose a request type of v arrives at time t. Recall that Ev

is the set of neighboring edges incident to v (i.e., the set of assignments feasible to v). Let
E′

v ⊆ Ev be the set of available assignments f = (u, v) such that there exists at least one
drive of type u at t. For Greedy P, it will repeat greedily selecting an available assignment
f ∈ E′

v with the maximum weight wfpf over E′
v (breaking ties arbitrarily) until either v

accepts a driver or v runs out of patience. In contrast, Greedy F will repeat greedily selecting
an available f = (u∗, v) ∈ E′

v with u∗ having the least matching rate before either v accepts
a driver or leaves the system. We run all WarmUp(α, β) algorithms for 1000 independent
trials and take the average as the expectations. We also run Greedy P and Greedy F for 1000
instances and take the average values as the final performance. Note that we use LP-(1)
and LP-(2) as the default benchmarks for profit and fairness, respectively.
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Figure 2: Competitive ratios of profit for LP-
based algorithms with different values of α and
β with α+β = 1, while fixing B = 10 and ∆ = 1.
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Figure 3: Competitive ratios of fairness for LP-
based algorithms with different values of α and
β with α+β = 1, while fixing B = 10 and ∆ = 1.

7.2 Results and Discussions

Figure 2 and Figure 3 visually demonstrate an expected trend: as the value of α increases,
the profit competitive ratios (CR) of all LP-based algorithms show an upward trend, while
their fairness CRs exhibit a decline. Theoretical analysis, as presented in Theorem 1 and
Theorem 2, confirms this observation, stating that the lower bound of the profit CR is
directly proportional to the value of α, while the lower bound of the fairness CR is pro-
portional to 1 − α. Notably, owing to the attenuation and boosting strategies employed,
AttenAlg and Boosting outperform WarmUp in terms of profit CR. However, for the sake
of brevity, we have omitted the plots of AttenAlg and Boosting in the subsequent figures
since there is no discernible difference in performance among these three algorithms when
utilizing the same parameter settings.
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Figure 4: Real dataset: competitive ratios for profit and fairness with different values of α and β with
α+ β = 1. (Red solid lines: fairness competitive ratios for WarmUp; Red dotted lines: lower bound
of fairness competitive ratios for WarmUp; Blue solid lines: profit competitive ratios for WarmUp;
Blue dotted lines: lower bound of profit competitive ratios for WarmUp)
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Figure 5: Real dataset: performance comparisons with Greedy P and Greedy F. (Blue: performance
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Figure 6: Synthetic dataset: competitive ratios for profit and fairness with different values of α
and β with α + β = 1. (Red solid lines: fairness competitive ratios for WarmUp; Red dotted lines:
lower bound of fairness competitive ratios for WarmUp; Blue solid lines: profit competitive ratios for
WarmUp; Blue dotted lines: lower bound of profit competitive ratios for WarmUp)

Figure 4 illustrates the competitive ratios of the proposed algorithm with different values
of α while keeping β fixed at 1 − α. Notably, the profit and fairness competitive ratios of
WarmUp consistently surpass the corresponding theoretical lower bounds (represented by
dotted lines), validating the predictions of Theorem 1. The observed gaps between the
performance and the lower bounds indicate that worst-case scenarios, as described by the
theory, are rare in real-world settings. It is worth noting that Figure 4(d) demonstrates a
tight lower bound match with the fairness performance when B = 25 and α = 1.

In Figure 5, the profit and fairness performances of WarmUp are compared to those
of Greedy P and Greedy F. Several interesting observations emerge from this comparison.
Firstly, regarding profit, Greedy P consistently outperforms Greedy F, while the advantage of
Greedy P overWarmUp becomes more pronounced with larger values of B and less significant
with smaller values of B. Since the expected total number of rider arrivals remains constant
in our experiments, the parameter B directly controls the driver-rider imbalance. Conse-
quently, when B is larger, indicating more available drivers compared to riders, Greedy P
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Figure 7: Synthetic dataset: performance comparisons with Greedy P and Greedy F. (Blue: perfor-
mance of WarmUp; Red: performance of Greedy P; Green: performance of Greedy F)

emerges as the top performer in terms of profit. Conversely, when B is small, careful
policy design is necessary to optimize profit, making WarmUp the dominant choice. Sec-
ondly, with respect to fairness, Greedy F consistently outperforms the other algorithms,
although WarmUp exhibits greater flexibility in achieving fairness objectives. Notably,
WarmUp demonstrates relatively low sensitivity to the first parameter, α, for profit, but
high sensitivity to the second parameter, β, for fairness. This sensitivity is particularly
evident when B is large.

Figure 6 showcases the competitive ratios of WarmUp on the synthetic dataset. Since all
values are randomly generated, the observed trends align closely with our theoretical results.
Generally, as α increases, the profit competitive ratios of WarmUp rise, while the fairness
competitive ratios decrease, as depicted in Figure 6. This aligns well with the control power
exerted by α and β. Specifically, as α increases, WarmUp becomes more profit-oriented,
and vice versa. Another notable observation is that the profit competitive ratios are less
sensitive to the value of B, but the gaps between the profit competitive ratios and their
theoretical lower bounds tend to narrow as B increases. This phenomenon arises because,
with a fixed expected total number of request arrivals, injustices become more prevalent as
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the average capacities of driver types increase, which occurs when B is larger. It is worth
mentioning that, even when α is large, WarmUp can achieve a good fairness competitive
ratio by leveraging a uniform patience parameter ∆, as demonstrated in Figure 6(a),6(b),
and 6(c).

Finally, Figure 7 showcases the smooth tradeoff between the two objectives achieved by
the proposed algorithm when compared to the other benchmarks on the synthetic dataset.
Notably, in some special cases, WarmUp outperforms both Greedy F and Greedy P in terms
of profit and fairness simultaneously, such as when B = 10 and ∆ = 2 or ∆ = 3.

8. Conclusion

This paper presents a comprehensive method that offers flexibility in matching ride requests
to drivers, aiming to reconcile the conflicting objectives of maximizing income equality
among rideshare drivers while maximizing overall system revenue. Our proposed approaches
allow the policy creator to customize the system’s fairness and profitability by leveraging
two distinct parameters. Through rigorous competitive ratio analyses, we demonstrate that
our algorithm, denoted as AttenAlg, achieves a nearly optimal ratio for each individual ob-
jective. In other words, there is minimal room for improvement in terms of the competitive
ratio for both fairness and profit. Furthermore, we provide extensive experimental results
based on both synthetic and real-world datasets. These results not only surpass the theo-
retical lower bounds but also showcase the ability of our approaches to effectively balance
the two objectives by employing natural heuristics. This capability allows for a smooth
tradeoff between fairness and profit. Our work suggests several intriguing directions for
future research. One immediate avenue involves narrowing the gap between the sum of
ratios of profit and fairness achieved by AttenAlg, which currently stands at 0.46. It would
be of great interest to develop a more refined online analysis or establish a sharper hardness
result indicating that the sum of the two ratios should be significantly lower than 1. Addi-
tionally, we invite further exploration into deriving a competitive ratio bound for Boosting.
This would likely involve introducing an auxiliary balls-and-bins model for the purpose of
analysis.
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attenuation-based method and the newly introduced boosting-based algorithm.
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